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ABSTRACT 

Nordic walking is a form of walking that includes a poling action, and therefore an 

additional subtask, with respect to conventional walking. The aim of this study was to assess 

whether Nordic walking required a task-specific muscle coordination with respect to 

conventional walking. We compared the electromyographic (EMG) activity of 15 upper and 

lower limb muscles of nine Nordic walking instructors, while executing Nordic walking and 

conventional walking at 1.3 ms
-1

 on a treadmill. Non-negative matrix factorization method 

was applied to identify muscle synergies, representing the spatial and temporal organization 

of muscle coordination. The number of muscle synergies was not different between Nordic 
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walking (5.2±0.4) and conventional walking (5.0±0.7, p=0.423). Five muscle synergies 

accounted for 91.2±1.1% and 92.9±1.2% of total EMG variance in Nordic walking and 

conventional walking, respectively. Similarity and cross-reconstruction analyses showed that 

four muscle synergies, mainly involving lower limb and trunk muscles, are shared between 

Nordic walking and conventional walking. One synergy acting during upper limb propulsion 

is specific to Nordic walking, modifying the spatial organization and the magnitude of 

activation of upper limb muscles compared to conventional walking. The inclusion of the 

poling action when Nordic walking do not require an increased complexity of movement 

control, making Nordic walking suitable for adapted physical activity programs that involve 

also subjects with low motor skill. 

 

INTRODUCTION 

Nordic walking is a form of total body exercise obtained by adding the use of walking 

poles to conventional walking. Nordic walking has become a popular physical activity 

recommended not only for healthy adult [1, 2] but also for elderly people [3]. Moreover, it 

has been increasingly adopted as physical activity useful for overweight [4-6] and 

neurological patients [7, 8]. This success arises not only from the benefits gained by its 

practise, but also from the fact that it is relatively easy to perform. The Nordic Walking 

technique suggested by INWA (International Nordic Walking Association) guidelines, has 

been developed with the aim to maintain a natural, biomechanically-correct walking and an 

appropriate posture. Nordic walkers apply propulsive force through the poles, combining a 

pushing action of one pole with the contralateral lower-limb push-off, at each walking stride. 

Upper body is thus significantly engaged in the propulsion during Nordic walking, resulting 

in a higher use of upper body musculature [9-11] and a greater energy expenditure with 

respect to conventional walking at a given speed [6, 10, 12-14]. Arm movements can be 

considered as an additional task with respect to conventional walking, leading to hypothesise 

that this might increase movement complexity and coordinative demand. To date, no 

information is available about the coordination strategies employed in Nordic walking 

locomotion. Filling out this gap of knowledge should be very important, particularly in 

reference to the widespread use of Nordic walking with frail populations [8, 15, 16].  
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Evaluating muscle coordination in the framework of muscle synergies is a method 

that has the potential to give a global picture of muscle coordination strategies [17]. Muscle 

synergy could be defined as a synchronic activation of a group of muscles. For this reason, 

muscle synergies simplify the control of complex movements reducing the number of degrees 

of freedom that the nervous system might specify for motor control [18, 19]. Thus, muscle 

synergies are considered to be the basic control signals responsible for generating the muscles 

activation needed for executing a specific motor task [20-22]. The most used algorithm to 

evaluate muscle synergies is called non-negative matrix factorization (NNMF) [23]. It models 

the activity of many recorded muscles as a linear combination of a small set of time-invariant 

muscle synergies, i.e. muscle-weighting, each activated by a time-varying activation 

coefficient [19]. Muscle-weighting is defined as the spatial feature that represents individual 

muscle contributions for recruiting muscle synergy, and the synergy activation indicates time-

varying coefficients of the synergy recruitment [23, 24].  

A small number of muscle synergies (usually four or five) has been demonstrated to 

describe the organization of muscle activation during human walking [25]. Importantly, these 

muscle synergies have been associated to the functional subtasks of gait, suggesting that 

synergistic control of muscles reflects biomechanical goals [26-29]. As synergies are 

associated to functional subtasks, the number of synergies provides information about the 

complexity of motor control [30, 31]. Thus, one can expect that adding a propulsive upper 

body action to the conventional walking might increase the number of the functional 

subtasks, consequently increasing the number of muscle synergies. Moreover, comparing 

muscle synergies between conventional walking and Nordic walking allow the identification 

of similarities and/or differences in the motor control of their subtasks. There is a growing 

body of literature investigating the effect of speed, ground slope, and locomotion mode (i.e 

walking vs running) on muscle synergies involved in human locomotion. It is accepted that at 

least some muscle synergies are shared across a range of walking speeds [25, 32] and 

between walking and running [32], the muscle weightings of each synergy was found to be 

modulated to accomplish a wide repertoire of human locomotion conditions [33, 34]. 

Therefore, synergy analysis seems to be a suitable method to probe the difference in muscle 

coordination between conventional walking and Nordic walking.  

While it is well established that Nordic walking brings an increment in the activation 

of upper body muscles with respect to conventional walking, it is not known whether this 

causes a change in the pattern of coordination. Thus, the aim of this study was to investigate 

the effect of Nordic walking on muscle coordination compared to conventional walking. As 
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far as the poling action could be considered as an additional subtask, our hypothesis was that 

poling leads to an increase in the complexity of the locomotion, thus increasing the 

dimensionality of muscle synergies in Nordic walking compared to conventional walking. 

We also hypothesized that the two forms of locomotion only partially share the same muscle 

synergies, because the use of upper limbs in the propulsion introduces some changes in the 

coordination pattern.  

 

MATERIALS AND METHODS 

Participants  

The study population was 9 (5 males, 4 females) Nordic walking instructors (mean 

age 39±12 years, height 1.70±0.08 m, body weight 62.8±8.2 kg) licensed by the ANWI 

(Associazione Nordic Walking Italia) and with at least 2 years of experience in Nordic 

walking (mean 3±1 years). The participants were recruited on a voluntary base, part of them 

were recruited directly by contacting instructors whose name was obtained by local offices of 

the Nordic Walking association (ANWI) and part of them were contacted as being 

acquaintances of the aforementioned participants. The general health status was normal; none 

had any health condition that could affect exercise capacity. Participants were instructed to 

refrain from performing strenuous physical activity in the 24 h before the experimental 

session. All the participants provided their written informed consent before participating in 

the experiments. The study was approved by the local Ethical Committee (Department of 

Neuroscience, Biomedicine and Movement Science, University of Verona) and performed in 

accordance with the Helsinki Declaration.  

 

Procedure  

Tests were performed on a motorized treadmill with a belt surface 2.5 m wide and 3.5 

m long (RL3500E, Rodby, Sweden). Participants were requested to perform five minutes of 

either conventional walking or Nordic walking. EMG signals were recorded for 30 s during 

the last minute of exercise to ensure the acquisition of almost 20 cycles. Participants wore 

their habitual shoes and used NW poles (Exel, Nordic Walker, Espoo, Finland) equipped with 

special carbide tips to ensure appropriate grip with the treadmill belt surface. As 

recommended by the INWA, correct pole length was determined by multiplying the subject’s 

height in cm by 0.68 rounded down to the nearest 5 cm within a tolerance of 2.5 cm.  
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An infrared reflective marker (diameter 1.4 cm) was attached to the right heel to 

detect heel strike [35]. Heel position was recorded at a sampling rate of 100 samples/s using 

an optoelectronic motion capture system (6 cameras, MCU240, ProReflex; Qualisys, 

Gothenburg, Sweden). EMG signals were recorded at a sample rate of 2048 samples/s using 

multichannel amplifier (EMG-USB2, OT Bioelettronica, Turin, Italy) with a recording 

bandwidth 10-500 Hz. Bipolar Ag/AgCl surface EMG electrodes (Spes Medica, Battipaglia, 

Italy), with 2-cm inter-electrode distance, were placed over 15 muscles of the right side of the 

body including: Tibialis Anterior (TA), Soleus (SO), Gastrocnemius Medialis (GM), Vastus 

Lateralis (VL), Rectus Femoris (RF), Biceps Femoris (BF), Semitendinosus (ST), Gluteus 

Medius (Glu), Upper Trapezious (UT), Erector Spinae (ES) at the level of L2-L3, Latissimus 

Dorsi (LD), Anterior Deltoid (AD), Posterior Deltoid (PD), Biceps Brachii (BB), Triceps 

Brachii (TB). Before the placement of the electrodes, the skin was slightly abraded with 

abrasive paste and cleaned with water in accordance with SENIAM recommendations [36]. 

The optimal position and orientation of the electrodes were sought for each muscle following 

guidelines previously described [37]. A preliminary test was performed to check for cross 

talk and cable-induced noise and, when needed, electrodes and cables were repositioned. The 

electrodes and cables were fixed and secured on the body of the participants with an 

extensible dressing (Fixomull
®

, Beiersdorf, Hamburg, Germany) to avoid movement 

artifacts. 

 

EMG processing 

Data were analyzed by custom-written software in MATLAB R2015a (Mathworks, 

Natick, Massachusetts). Before processing, the EMG signals were carefully inspected, 

checking for noise and movement artifacts. For each trial, 10 to 25 consecutive, noncorrupted 

(i.e. without movement artefacts) gait cycles were selected for analysis [38]. Raw EMG 

signals were band-pass filtered (bi-directional, 4th-order, zero lag Butterworth, band-width 

20-400 Hz) to attenuate motion artefacts. The electrocardiogram contamination was removed 

from the EMG signals of trunk and upper limbs using the method proposed by Willigenburg 

and collegues [39]. All signals were then rectified and low-pass filtered at 9 Hz (bi-

directional, 4th-order, zero lag Butterworth), resulting in the EMG envelopes [40]. 
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For both conventional walking and NW, the beginning of each cycle was considered 

from the local maximum forward position in the sagittal plane of the right heel marker [35]. 

The EMG envelopes were then re-sampled on a 100-point vector by means of a cubic spline 

interpolation. The EMG amplitude was normalized to the average of peak values across the 

available cycles of NW. Thus, EMG signals resulted into an m × t matrix (E), where m 

indicates the number of muscles (15) and t is the time base (100 samples × number of gait 

cycles).  

Differences across EMG patterns were assessed with the cross-correlation analysis 

[41, 42]. This analysis provided two values: i) rmax coefficient (that is the maximum of the 

cross-correlation function) which gives an indication of the similarity of shape between EMG 

envelopes; ii) lag time, that is the magnitude of the shift between EMG envelopes. 

 

Muscle synergy analysis 

As done in previous studies [41-44], NNMF was performed from a set of consecutive 

gait cycles. The advantage of this technique is to take into account the inter-cycle variability 

[38, 45]. For this purpose, we implemented the Lee and Seung algorithm [46, 47]. Matrix 

factorization minimizes the residual Frobenius norm between the initial matrix and its 

decomposition, given as follows: 

 

E = WC + e = Er + e 

 

Where E and Er are m × t matrix, W is a m × s matrix (where s is the number of 

synergies), C is a s × t matrix, and e is a m × t matrix. E represents the initial EMG matrix, Er 

represents the reconstructed EMG, W represents the muscle synergy vector matrix, C 

represents the synergy activation coefficient matrix, and e is the residual error matrix, i.e., the 

difference between E and Er, typically related to noise [48]. The algorithm is based on 

iterative updates of an initial random guess of W and C that converge to a local optimal 

matrix factorization (see Lee and Seung 2001 for more details).  

To avoid local minima, the algorithm was repeated 40 times for each subject. The 

solution that minimized the squared error between original and reconstructed EMG patterns 

was kept. The number of synergies being an input of the NNMF algorithm, the algorithm was 

run from two to nine synergies. Then we selected the least number of synergy that accounted 

for >90% of the variance accounted for (VAFtotal) [41, 44] while adding an additional synergy 

did not increase VAFtotal by > 3%. VAF was also computed for each muscle individually 
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(VAFmuscle) to ensure that each muscle activity pattern was well accounted for the extracted 

muscle synergies, using a threshold of 75% [41, 49]. To allow comparisons among 

individuals and motor tasks, muscle synergy vectors (W) were normalized by the norm of 

each vector, as previously suggested [50, 51]. The corresponding activation coefficients (H) 

were scaled by the same quantity [50, 51]. 

As previously suggested [52], in an arbitrary subject the synergies were ordered 

according to the timing of the main peak of their activation coefficient. Then the synergies in 

the other subjects were sorted on the base of the values of synergy vectors similarity (see next 

paragraph) with that of the reference subject. This procedure assured the best matching 

between synergies across subjects and conditions [52].  

To facilitate the comparison of the set of synergies between conditions and 

participants, the same number of muscle synergies, i.e. five, were extracted. This choice was 

acceptable since previous investigations, that analyzed a comparable number of muscles 

including those of upper limbs, showed that five muscle synergies well describe the pattern of 

muscle activation in conventional walking [25, 32, 53]. 

 

Assessment of similarity between muscle synergies.  

Similarity analysis between muscle synergies was done for each participant. It was 

conducted by computing the scalar product between pairs of vectors normalized by the 

product of their norms, which prioritizes the comparison between the shape of the vectors 

rather than amplitude [20]. Values above 0.80 has been used to define if a pair of vector is 

similar [27, 38]. The activation coefficients C were compared using cross-correlation 

analysis. We used two criteria: rmax (the maximum of the cross-correlation function) and lag 

time (the magnitude of the shift between synergy activation coefficients) [54, 55]. If the 

synergy vectors of the muscle synergies were similar between conventional walking and 

Nordic walking, we also examined the differences in the duration and magnitude of the 

activation patterns [50, 51]. As previously recommended, the duration of the activity was 

defined as the full-width at half-maximum (FWHM) of the main peak [32, 52, 56]. The 

magnitude of the activity was examined by calculating the root mean square (RMS) of the 

activity during the FWHM [52]. Both the FWHM duration and RMS was calculated for each 

subject and each condition on the activation coefficients averaged across available cycles. 
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Cross-validation of the extracted synergy 

To verify the robustness of the extracted muscle synergies between the two tasks, we 

used a cross-validation procedure as proposed by previous researchers [21, 41, 45, 57-59]. 

For each participant, we checked whether the muscle synergy vectors W extracted from 

Nordic walking accounted for EMG envelopes of conventional walking. To do this, the 

muscle synergy matrix (i.e. muscle synergy vectors) extracted from Nordic walking was held 

fixed in the algorithm and the coefficients matrix C was free to vary with the multiple 

updating role until convergence [46]. The cross-reconstruction procedure was carried out 

separately for each subject. VAFtotal and VAFmuscle values were calculated to evaluate the 

quality of this cross-reconstruction. We assumed that if conventional walking and Nordic 

walking were modulated by similar muscle synergies, the use of muscle weightings obtained 

from Nordic walking could be used for successfully reconstructing the EMG data of 

conventional walking and vice-versa [60, 61]. A threshold of 80% for VAFtotal reconstruction 

has been proposed as an indicator of acceptable reconstruction accuracy [55, 60-62]. 

However, to determine if the change induced by the task nature was higher than the within-

task variability, we firstly determined the robustness of the cross-reconstruction within each 

task [55, 63]. Thus, to determine the within-task variation of the synergies we firstly applied 

the cross-reconstruction analysis within each condition. For each condition, we divided the 

available duration of EMG signals into two parts: the first 30% (part 1) and the remaining 

70% of time (part 2). The muscle synergy vectors extracted from part 1 were used to 

reconstruct the EMG pattern of part 2 of the same task. As previously suggested [55], we 

considered as a threshold of similarity the upper limit of the 95% confidence interval of the 

VAFtotal change when EMG patterns of the part 2 were reconstructed using the synergy 

vectors of part 1. Thus, we considered that the synergies of conventional walking were 

significantly affected by NW if the VAFtotal was reduced more than this threshold. 

 

Analysis on a subset of muscles 

To examine if differences in synergy composition between tasks were only caused by 

the intervention of upper limbs in Nordic walking we extracted muscle synergies on a subset 

of muscles (10 out of 15 muscles), removing the following five upper limb muscles: LD, AD, 

PD, BB, TB. Moreover, EMG of upper limb muscles in conventional walking usually 

presents a low signal-to-noise ratio [40] and this may influence the goodness of synergy 

extraction in conventional walking [23, 27, 32]. Upper limb muscles were mainly involved in 

the poling phase of Nordic walking and conversely were very low activated in the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

conventional walking. Since the modification of the number of muscles might affect the 

number of synergies extracted [64], we re-analysed the synergy dimensionality considering 

this subset of muscles. Furthermore, we reanalysed the quality of the cross-reconstruction 

using the subset of muscles. 

 

Statistical analysis 

Statistical analysis was performed in MATLAB R2015a (Mathworks, Natick, 

Massachusetts). Kolmogorov-Smirnov normality test was used to assess distributions 

normality. If the continuous data were not normally distributed were log-transformed before 

statistical analysis and back-transformed to obtain descriptive statistics. Significant 

differences in VAFtotal, VAFmuscle, FWHM, and RMS between conventional walking and 

Nordic walking were calculated using paired t-tests. Student’s paired t tests were also used to 

compare the VAF values between the original and the cross-reconstructed EMG signals. 

Wilcoxon signed rank test was used to test differences between the number of synergies 

between conditions. To identify a shift in the time lag of EMG envelopes and muscle synergy 

coefficients, sample Student’s t tests with zero as reference value was performed.  

 

RESULTS 

Individual EMG patterns 

The average (±95% CI) EMG envelopes are reported in Figure 1. Table 1 shows the 

coefficients of similarity and lags between envelopes shapes. All muscle showed high 

similarity coefficients (all rmax≥0.85). The higher indexes of similarity (rmax≥0.96) were found 

in the muscles of the lower-body (TA, SO, GM, VL), whereas the lower indexes 

(0.85≤rmax≤0.87) were found mainly in the muscles of the upper-body (LD, AD, BB, TB, and 

BF). 

All muscles except LD, PD, TB were activated in the same gait phases in both 

conditions, indeed they did not show lags in the EMG envelopes between the two conditions 

(Table 1). In particular, TA, BF, and ST reached their peak of activation close to the instant 

of heel strike (0% of cycle); VL, RF, GLU, and ES (first peak) reached their peak at the 10% 

of gait cycle; SO and GM at the 40% of gait cycle (Figure 1). Differently, LD, PD, and TB, 

which are the muscles mainly involved in the poling action, showed their activity peak from 

12% to 17% later in Nordic walking than in conventional walking (Table 1), thus resulting in 

an activity peak around the 60-70% of gait cycle in Nordic walking, compared to the 50% in 

conventional walking (Figure 1). 
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Dimensionality of muscle synergies 

Figure 2 shows the variance accounted for (VAFtotal) each number of muscle 

synergies for each condition. Table 2 shows the individual values for the number of synergies 

extracted which was 4, 5, and 6 synergies in 11%, 66%, and 22% of occasions, respectively. 

Contrary to our hypothesis, the number of muscles synergies did not change between the 

locomotion modes (conventional walking 5.0±0.7, Nordic walking 5.2±0.4, p=0.423). 

Analyzing individual results, three subjects (S4, S6, S7) showed an additional synergy, 

whereas one subject (S3) presented one less synergy in Nordic walking than in conventional 

walking (Table 2).  

To compare the synergy compositions between tasks, we used five muscle synergies 

for all participants in both tasks (see Methods). The VAFtotal explained by five synergies was 

greater in conventional walking (92.9±1.2%) compared to Nordic walking (91.2±1.1%, 

p=0.002). 

Figure 3 shows the VAFmuscle calculated when the selected five synergies were 

extracted. The VAFmuscle in conventional walking ranged from 76.6±12.2% (ES) to 

96.1±1.6% (GM), in Nordic walking ranged from 81.3±8.5% (ES) to 95.4±2.2% (TB). Thus, 

on average all muscles were well represented by the five muscle synergies in both tasks. 

However, while in conventional walking the upper limb muscles (LD, PD, BB, TB) showed 

on average low values of VAFmuscle (ranging from 76.6±12.2% to 82.1±4.2%), in Nordic 

walking these muscles showed consistently higher values (ranging from 89.1±6.2% to 

95.4±2.2%).  

 

Functional characterization of muscle synergies 

Figure 4 shows the sets of muscle synergy vectors (W) and the corresponding 

activation coefficients (C) for conventional walking (blue) and NW (red). In both 

conventional walking and Nordic walking, the five extracted muscle synergies were similar 

to those reported previously for walking [25, 32, 38] and could be related to the subtasks of 

the gait cycle. 

 Synergy #1 (“leg deceleration” function) mainly represented the activation of BF and 

ST (knee flexors/hip extensors) and TA (ankle dorsiflexor), being active during late swing 

and the initial contact phase.  

Synergy #2 (“weight acceptance” and “single leg support” functions): mainly 

represented the activation of VL and RF (knee extensors), and Glu (hip abductor) and was 

activated during the early stance.  
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Synergy #3 (“propulsion” function) mainly represented the activation triceps surae 

muscles, i.e. SO and GM (plantar flexors), and was activated in the late stance phase.  

Synergy #4 mainly represented the activation of ES (trunk extensor) and a spread 

activation of upper limb muscles. This synergy was activated mainly in the late stance and is 

related to “trunk extension” and “upper limb swing” functions.  

Synergy #5 mainly represented the activation of TA (ankle dorsiflexor) and upper 

limb muscles. This synergy was activated later than synergy #4, during the leg swing phase. 

In conventional walking, this synergy is more related to “ankle dorsiflexion” and “upper limb 

swing” functions, since mainly represented the activity of TA (ankle dorsiflexor) and AD, 

BB, and UT (shoulder flexors and stabilizer, respectively). In Nordic walking, this synergy 

has the function of “upper limb propulsion”, indeed the muscles LD, PD, and TB were 

pronouncedly activated as elbow and shoulder extensors. 

 

Comparison of muscle synergies 

The results of the similarity analyses are reported in Table 3. The normalized scalar 

product between the muscle synergy vectors (muscle weightings) were high for synergies #1, 

#2, #3, and #4 (r≥0.81, Table 3), indicating that the composition of these muscle synergies 

was similar across conventional walking and Nordic walking (spatial similarity). Regarding 

the activation coefficients, muscle synergies #1, #2, #3, and #4 can be considered robust 

across conditions and activated with the same profiles in the two tasks. Indeed, the shape 

(rmax≥0.91), the magnitude (all p values ≥ 0.12), and the duration (all p values ≥ 0.38) of the 

main peak for these synergies were similar in conventional walking compared to Nordic 

walking (Table 3).  

Despite the overall similarity, some differences can be highlighted between tasks (Fig 

2). For example, during Nordic walking the muscles around the hip are in general less 

represented in synergies #1 (BF and ST) and #2 (RF and Glu) compared to conventional 

walking. Moreover, the activation of upper limb muscles acting during the shoulder flexion 

(UT, AD, and BB) were spread differently across synergies: while these muscles are the most 

represented muscle in synergy #5 of conventional walking, they showed higher weightings in 

the synergy #1 of Nordic walking.  

Synergy #5 is of particular interest because consisted in the activation of upper limb 

muscles that were activated during the poling action of Nordic walking. It was the only 

synergy that showed significant differences with respect to conventional walking (normalized 

scalar product = 0.55). The main difference between the two tasks were that in Nordic 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

walking the TA was less activated and the LD, PD, and TB were more activated than in 

conventional walking. Despite it was activated in the same gait phase and with the same 

duration in both tasks, synergy #5 presented a trend to change in the shape of the activation 

coefficient (rmax=0.81). Overall these results suggest that in Nordic walking the synergy #5 

became clearly organized to produce the upper limb propulsion.  

 

Cross-validation of muscle synergies 

Table 2 shows the results of the cross-reconstruction analysis. When reconstructing 

EMG the pattern of conventional walking by using the synergy vectors obtained from Nordic 

walking, the cross-reconstruction showed significantly lower VAFtotal values (original 

92.9±1.2%, cross-reconstructed 79.6±4.4%, p<0.001). Despite the reasonable reconstruction 

(≈80%) for the group considered as a whole, four subjects out of nine (S3, S4, S5, S6) did not 

reach the threshold of 80% for VAFtotal (Table 2). Then we examined if the change in VAFtotal 

due cross-reconstruction between tasks was greater than the change in VAFtotal within 

conventional walking. We firstly calculated the upper limit of the 95% confidence interval of 

the change in VAFtotal when the cross-validation was applied within conventional walking 

(see methods) and we found a threshold of 4.9%. This value was similar to the value (6.1%) 

found by a previous study using a similar approach [55]. Considering this threshold, muscle 

synergies were affected by Nordic walking (decrease of VAFtotal > 4.9%) in all participants.  

The cross-reconstruction of Nordic walking EMG pattern using the synergy vectors 

obtained from conventional walking was more problematic. Indeed, this cross-reconstruction 

showed bad quality (VAFtotal 74.4±8.2%). This was an expected result, since in conventional 

walking the upper limb muscles were activated very low [40] and thus the representativeness 

of their weightings in the overall synergies composition was low [23, 27, 32]. In spite of 

these observations, we decided not to consider the results of this cross-reconstruction as a 

measure of robustness of the muscle synergies across conditions. As occurred in the original 

signals, the VAFmuscle of lower limb muscles showed overall high VAFmuscle values (≥86%), 

while trunk ad upper limb muscles showed lower values (ranging from 68% to 80%, see 

Figure 5). These results further underlined that reconstructing the EMG envelopes of trunk 

and upper limb muscles could be problematic. However, the VAFmuscle indexes were greater 

than 75% for all muscles except ES, LD, and BB (Figure 5), suggesting that most muscles 

were well represented in the cross-reconstruction.  
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Analysis on a subset of muscles  

As mentioned before, synergy extraction becomes challenging when muscles with 

low EMG signal-to-noise ratio are present. This was the case of upper limb muscles during 

conventional walking). To check whether the low-quality cross-reconstruction from Nordic 

walking to conventional walking was only due to this matter, we re-analysed only a subset 

data of muscles. Thus, we extracted the synergies of 10 out of 15 muscles, removing the five 

upper limb muscles (LD, AD, PD, BB, TB) from the analysis. Considering the criteria 

mentioned above, five synergies were necessary in this analysis for both conventional 

walking and Nordic walking. In this case, no difference in VAFtotal between the two tasks was 

observed (conventional walking 94.0±1.0%, Nordic walking 93.5±1.0%, p=0.335, see Table 

2).  

When the synergy vectors obtained from Nordic walking was used to reconstruct the 

conventional walking, the VAFtotal was very high (88.9±2.9%). Thus, the cross-validation 

provided accurate reconstruction results VAFtotal > 80% in all subjects (see Table 2). The 

threshold for considering a change in VAF as a change in muscle synergies was 4.7% (that is 

the upper limit of the 95% of Confidence Interval of the within-task variability, see methods). 

Considering this threshold, muscle synergies were affected by Nordic walking (decrease of 

VAFtotal > 4.0%) in only two out of nine participants.  

 

DISCUSSION 

We compared the muscle synergies identified in Nordic walking and conventional 

walking in a group of experienced Nordic walkers. Nordic walking did not require more 

muscle synergies than conventional walking in most of the participants. This finding suggests 

that the motor control of Nordic walking was not more complex than that required for 

conventional walking. The two types of locomotion shared four out five muscle synergies, 

specifically those related to the activation of lower limb muscles. Synergy #5 mainly 

involved the activation of upper limb muscles and was task-specific, having its main role 

during upper limb propulsive action in Nordic walking, while during arm swing when 

conventional walking.  

 

Muscle activation 

The herein findings confirm the results of previous investigations that showed an 

overall higher activation of upper body muscles in Nordic walking than in conventional 

walking [9, 10]. In particular, upper trapezius, latissimus dorsi, posterior deltoid, biceps 
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brachii, and triceps brachii were on average more activated during Nordic walking, when the 

poles are used (see Figure 1). Interestingly, latissimus dorsi, posterior deltoid, and triceps 

brachii, which are the muscles deputed to the propulsive phase trough the poling activation, 

showed a more pronounced peak of activation in Nordic walking compared to conventional 

walking (Figure 1). Table 1 shows that these muscles were activated later (by 12-17%) in the 

cycle phase in Nordic walking with respect to conventional walking. This particular 

activation pattern of walking with the pole was likely due to the Nordic walking technique, 

that requires a long poling phase. The higher activation of these muscles is likely the main 

cause of the augmented energy expenditure of Nordic walking with respect to conventional 

walking [10]. An increase in activation of anterior deltoid and biceps brachii muscles during 

Nordic walking was also seen, not only during the pole recovery but also the poling phase, 

when they are co-activated with the triceps brachii and latissimus dorsii muscles, to stabilise 

the elbow and shoulder joints [10].  

In line with a previous study [10], lower-limb muscles showed a similar involvement 

during conventional walking and Nordic walking, both regarding the level and the shape of 

activation (Figure 1 and Table 1). The only exception was the rectus femoris muscles. This 

muscle has been reported to have two peaks of activation during walking: the first peak 

usually coincides with the stance phase and the second peak coincides with the swing phase 

[65]. In Nordic walking the second peak seemed to be lowered with respect to walking 

(Figure 1), suggesting that the use of poles decreased the intervention of this hip-flexor 

muscle in the swing phase (60-70% of gait cycle). This change seems also to induce a change 

in activation profile of synergy #2 (see “Comparison between muscle synergies”). 

 

Dimensionality 

Our results show that five muscle synergies accounted for ≈91% of EMG pattern 

variance in a large number of muscles that are active during Nordic walking, including those 

of the legs, trunk, and upper body [25, 32]. Thus, in experienced Nordic walkers, central 

nervous system could accomplish the control of this particular form of four-limbs locomotion 

by means of a small set of muscle synergies.  

Contrary to the expectations, Nordic walking did not require more synergies than 

conventional walking. When we compared the individual results, three subjects out of nine 

showed one more synergy, and one subject showed one less synergy in Nordic walking 

compared to conventional walking. Thus, we can state that in most subjects the inclusion of 

upper limbs with a propulsive function did not increase the complexity of motor coordination 
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of walking. Since the upper body is cyclically active in Nordic walking with the same 

frequency of leg it becomes part of the locomotion, without increasing the complexity of 

motor control of walking.  

As there is an increasing use of Nordic walking as physical exercise for health, this 

finding is valuable when considering the clinical perspective. Nordic walking has been 

adopted in a wide range of disease, including those affecting neurological functions (e.g. 

Parkinson) [7, 8]. The fact that in our sample Nordic walking was not more complex than 

conventional walking, suggests that Nordic walking is suitable in adapted physical activity 

programs. However, these results may not be applied to novice subjects with lower skill level 

than our participants. Indeed, our participants were Nordic walking instructors with an 

apparently consolidated Nordic walking technique and at least two years of practice. This is 

an important point because the correct technique of Nordic walking may necessitate of a 

sufficient period of practice to be learned. Thus, future studies should address the question 

whether the coordinative organization of Nordic walking would be the same also for 

unexperienced individuals or even neurologically impaired patients. 

Moreover, it should be taken into account that the Nordic walking technique might 

not be consistent across participants. Indeed, despite all participants tried to follow the Nordic 

walking technique guidelines, each participant might have different personal technical 

interpretation of the Nordic walking technique. It is possible that less skilled subjects would 

show even more differentiated muscle coordination. 

On average, the activation of all muscles was well represented by the five muscle 

synergies in both tasks (Figure 3). The five synergies showed sequential activation in the gait 

cycle, with each synergy referring to a specific subtask of the gait cycle, in both locomotion 

modes. However, upper limb muscles showed low VAFmuscle values in conventional walking. 

This is likely due to the low EMG signal-to-noise ratio of upper limb muscles that reduced 

the representativeness of these muscles in the conventional walking [23, 27, 32, 40]. 

Conversely, upper limb muscles showed high VAFmuscle values in Nordic walking, likely 

because of higher EMG signal-to-noise ratio. 

 

Comparison between muscle synergies 

Considering the similarity indexes showed in Table 3, it is possible to say that the four 

muscle synergies mainly activating the lower limbs are similar in the two forms of 

locomotion. Indeed, the normalized scalar product between the synergy vectors were high 

(≥0.81) for the synergies #1, #2, #3 and #4. These results suggest that Nordic walking share 
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the same muscle synergies of conventional walking if trunk and lower limb muscles are 

considered. Thus walking with the use of poles does not change the spatial organization of 

conventional walking.  

Considering the profile and the magnitude of activation of each synergy, it is possible 

to identify the role of each synergy within the locomotion cycle. All the five extracted muscle 

synergies can be related to specific subtasks of gait cycle, in both conditions (Figure 4). The 

muscle synergies #1, #2, #3, and #4 were activated with the same profiles in the two tasks 

and thus were considered robust across conditions. Their role in both types of locomotion 

was “leg deceleration”, “weight acceptance” and “single leg support”, “leg propulsion”, 

“trunk extension” and “arm swing” respectively (see results for details). This means that, at 

least regarding these four synergies, participants did not change the temporal organization in 

the mechanics of walking with and without the use of poles. 

Despite the between-tasks similarity of muscle synergies from #1, #2, #3 and #4, the 

activations of hip muscles presented some changes within synergies. During Nordic walking 

the gluteus medius seems to be less active in the single leg support synergy (#2) compared to 

conventional walking. This suggests that walking with poles might help in stabilizing the hip 

consequently inducing a possible less activation of this muscle. Regarding RF, it is possible 

to see that its lower activation during the swing phase (see Fig 1, second peak of RF 

activation about 60-70% of gait cycle) resulted in lower activation coefficients of synergy #2 

during the same phase in Nordic walking compared to conventional walking (Fig 4). 

Moreover, biceps femoris and semitendinosus muscles seemed to be less activated in the leg 

deceleration synergy (#1). Together, these results may suggest that the leg swing and single 

leg support functions recruited the hip muscles less in Nordic walking compared to 

conventional walking. 

The functional role, muscle composition and shape of activation of synergy #5 was 

different in the two locomotion modes (Figure 4 and Table 3). This synergy mainly involved 

the activation of upper limb muscles, that in conventional walking are involved in the “upper 

limb swing”. However, these muscles have very low activation in conventional walking. In 

Nordic walking this synergy was clearly involved in the poling phase that is the “upper limb 

propulsion”. The main important differences were that the involvement of shoulder and 

elbow extensors, as latissimus dorsi, posterior deltoid and triceps brachii, in this synergy was 

relatively higher in Nordic walking than in conventional walking. Beyond the peculiar 

activation of shoulder and elbow extensors, the activation shoulder and elbow flexors 

(anterior deltoid and biceps brachii together with the upper trapezius acting as stabilizer) 
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was spread differently across synergies. While these muscles are more activated in synergy 

#5 of conventional walking, they are more activated in the synergy #1 of Nordic walking. 

Thus, Nordic walking leads to a change in the muscles coordination for the upper limbs. 

Taking together, these results suggest that the use of the poles modified the spatial 

coordination and the magnitude of activation of the synergy involved in the poling action, 

thus requiring a task-specific muscle synergy.  

 

Cross-validation of the extracted muscle synergies 

The comparison of muscle synergies between different tasks might not exclusively be 

based on similarity indexes but should also rely on cross-validation method [38]. The use of a 

cross-validation method, such as fixing the muscle weightings in combination with the 

activation coefficients to be reconstructed, was found to be more valuable than simply 

comparing muscle weightings [38]. In this study, we reconstructed the conventional walking 

EMGs using the muscle synergy vectors obtained in Nordic walking. It can be assumed that if 

the EMG pattern of one task can be reconstructed by using the vectors of another task, then 

the two tasks share the same modules [34]. In the present study, we found that the cross-

reconstruction of conventional walking EMG pattern accounted for 79.6% of total VAF 

(Table 2). A value of 80% is commonly accepted as a threshold to define a good 

reconstruction. Looking at individual responses, five subjects out of nine showed VAF of 

cross-reconstruction higher that 80% (Table 2). Consequently, we can state that it was 

possible to use the muscle synergies of Nordic walking to describe the muscular activation 

pattern of conventional walking in roughly half of subjects.  

Beyond the overall good cross-reconstruction quality, we furthermore investigate if 

the change in VAF between tasks was higher than the change in VAF calculated within the 

same task. Thus, we firstly measured the robustness of cross-reconstruction within 

conventional walking (see methods). Then we evaluated the between-task individual changes 

in total VAF with respect to the within-task variability [55, 63]. Thus, we considered that the 

synergies of conventional walking were significantly affected by Nordic walking if the total 

VAF was reduced more than within-task variability. Considering this threshold (4.9%), we 

found that in all subjects the change in VAF between tasks was higher than within task. Thus, 

using this criteria in all subjects the muscle synergies of Nordic walking were somewhat 

different than those used in conventional walking. Again, the two criteria used to determine 

the quality of the cross-reconstruction provided different findings for five subjects out of 
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nine. It is reasonable to consider the second criterion, i.e. change in VAF greater than within-

task variability, more sensitive that the first criterion, i.e. overall VAF > 80%. 

Since the synergy that showed most differences between tasks was related to the 

activation of upper limb muscles, we furthermore wanted to investigate if removing the upper 

limbs from the analysis would affect the results of cross-reconstruction. Thus, we performed 

the cross-reconstruction again using only lower limb and trunk muscles, removing from the 

analysis the upper limbs. In such a way, the goodness of cross-reconstruction was high for all 

subjects (all VAF>84%) and the between-tasks change in VAF was lower than within-task 

variability in seven out of nine subjects (Table 2). This means that the low VAF of cross-

reconstruction when using the whole set of muscles was mostly caused by differences in 

upper limb and less by differences in lower limb and trunk. Together these findings suggest 

that regarding trunk lower and body muscles, Nordic walking shares the same muscle 

synergies with conventional walking.  

 

Conclusions 

We can conclude that, contrary to our hypothesis, in experienced individuals Nordic 

walking does not necessitate of more complex movement organization than conventional 

walking. Moreover, Nordic walking and conventional walking share the muscle synergies 

mainly involving the activation of lower limb and trunk muscles. Therefore, walking with the 

use of poles does not profoundly change the muscle coordination of lower body. However, 

the poling action modify the spatial and temporal structure of the muscle synergy involved in 

this action, that represents the upper body action. Thus, Nordic walking requires a task-

specific muscle synergy for the sub-task of upper limb propulsion, but not for trunk and lower 

limb action. 

 

FUTURE PERSPECTIVES 

Since the Nordic walking did not alter the muscle coordination of lower limbs, we can 

suggest the it can be suitable to be adopted in adapted physical activity programs. However, a 

sufficient period of practice is necessary to learn the technique. Future studies should 

characterize the learning period of Nordic walking and investigate whether muscle synergies 

may reflect different level of expertise in Nordic walking. 
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CAPTIONS 

Figure 1 – Group-averaged envelopes (with 95% of Confidence Interval) of 

electromyographic signals are reported for 15 recorded muscles while walking (blue) and 

Nordic walking (red). Each represented pattern consists in the average of 15 to 25 cycles of 

the nine individuals (total about 180 cycles).  

Figure 2 – Variability accounted for (VAFtotal) individual values (grey lines) and 

mean (black line) based on the number of the extracted synergies with the nonnegative matrix 

factorization (NNMF) for walking (left panel) and Nordic walking (right panel).  

Figure 3 – Individual (circles) and average (bar) variability accounted for values 

(mean±SD) for each muscle (VAFmuscle) for walking (left panel) and Nordic walking (right 

panel). A minimum value of 75% for VAFmuscle was used to consider the quality of 

reconstruction of each muscle good.  

Figure 4 – Temporal activation coefficients (with 95% CI, left panel) and muscle 

synergy vectors (right panel) are reported for conventional walking (blue) and Nordic 

walking (red). The five synergies extracted are designated in chronological order (with 

respect to the timing of the main peak of activation coefficients) and numbered from #1 to #5.  
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Figure 5 – Individual (circles) and average (bar) variability accounted for VAFmuscle 

values are reported when nonnegative matrix factorization (NNMF) was applied to cross-

reconstruct the EMG patterns of conventional walking (CW) using the synergy vectors 

obtained in Nordic walking (NW). 

 

Table 1 – Cross-correlation between EMG envelopes of muscles 

 

 cross-correlation (rmax)  Lag (%) WA vs NW 

 Mean SD  mean SD 

TA 0.95 0.02  0.00 1 

SO 0.98 0.01  0.00 1 

GM 0.97 0.02  0.00 2 

VL 0.98 0.02  0.00 1 

RF 0.91 0.09  -1.00 1 

BF 0.94 0.04  0.00 2 

ST 0.92 0.07  0.00 1 

Glu 0.96 0.03  0.00 1 

UT 0.86 0.05  0.00 3 

ES 0.88 0.16  -1.00 2 

LD 0.85 0.09  -17.00 15
*
 

AD 0.86 0.08  1.00 2 

PD 0.92 0.02  -12.00 6
*
 

BB 0.85 0.04  -4.00 5 

TB 0.89 0.06  -12.00 8
*
 

 

The cross-correlation coefficients rmax (mean±SD) were calculated within each 

muscle, for each subject, between the two forms of locomotion. rmax provides an indication of 

the similarity between the waveforms of envelopes. Negative values of lags shows that the 

peak of conventional walking (CW) envelopes occurs before the peak of Nordic walking 

(NW) envelopes. 
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Table 2 – Results on the number of muscle synergy dimensionality and cross-reconstruction validation 

  Subjects  

a) Number of synergies  S1 S2 S3 S4 S5 S6 S7 S8 S9 mean±SD 

 CW 5 6 6 4 5 4 5 5 5 5.0±0.7 

 NW 5 6 5 5 5 5 6 5 5 5.2±0.4 

b) VAF - all muscles            

VAFtotal 5 synergies CW 92.0 91.7 93.0 95.0 94.2 94.0 92.4 91.8 92.2 92.9±1.2 

 NW 91.8 90.2 92.3 91.4 92.4 92.2 89.0 91.7 90.6 91.2±1.1
*
 

VAFtotal cross-reconstruction of CW  86.1 80.8 74.6 73.8 73.6 79.8 82.6 80.1 83.7 79.6±4.4 

Good cross-reconstruction (criterion VAF 80%)  yes yes no no no no yes yes yes  

Good cross-reconstruction (criterion ΔVAF < within 

task) 

 

no no no no no no no no no 

 

c) VAF - subset of lower limb and trunk muscles            

VAF 5 synergies CW 93.1 92.6 93.4 95.3 95.0 95.0 95.2 94.1 93.0 94.0±1.0 

 NW 92.5 93.6 95.1 94.7 93.6 93.3 92.1 93.8 92.8 93.5±1.0 

VAF cross-reconstruction of CW  91.9 87.8 91.1 84.3 85.6 93.1 88.5 89.0 89.8 88.9±2.9 

Good cross-reconstruction (criterion VAF 80%)  yes yes yes yes yes yes yes yes yes  

Good cross-reconstruction (criterion ΔVAF < within 

task) 

 

yes yes yes no no yes yes yes yes 
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For each subject (from S1 to S9), in the part a) the number of synergies extracted are reported. The parts b) provide VAF results for the analysis 

conducted on all 15 muscles while part c) for the subset of 10 lower limb and trunk muscles. In particular, the VAF explained by five synergies 

are reported for CW and NW. The VAF obtained when the EMG of CW are cross-reconstructed using the synergy vector of NW is also reported. 

Then, for each subject, is reported whether (yes/no) the cross-reconstruction provided good results based on two criteria: i) the VAF of cross-

reconstruction is greater than 80% (VAF 80%) and ii) if the between-task change in VAF is less the within-task variability (ΔVAF < within 

task), see method for further details. Statistically significant differences between CW and NW are reported as 
*
p<0.05. Variance accounted for 

(VAF); conventional walking (CW); Nordic walking (NW); Electromyography (EMG). 
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Table 3 - Similarities of muscle synergies between conventional walking and Nordic walking 

 Activation coefficients Synergy vectors 

 Cross-correlation 

(rmax) 

Lag 

(% cycle) 

FWHM (a.u.) Duration of FWHM 

(% cycle) 

Normalized scalar 

product 

   CW NW CW NW  

Synergy #1 0.91±0.13 0±2 1.29±0.37 1.25±0.16 16±5 15±3 0.85±0.08 

Synergy #2 0.96±0.09 0±1 1.39±0.54 1.39±0.11 12±2 12±2 0.88±0.08 

Synergy #3 0.98±0.03 0±1 1.26±0.42 1.03±0.15 19±7 21±8 0.95±0.03 

Synergy #4 0.93±0.03 0±1 0.99±0.45 0.91±0.22 14±9 15±6 0.81±0.10 

Synergy #5 0.81±0.13 2±3 - - - - 0.55±0.23 

 

For each extracted synergy the following parameters are reported (mean±SD): the cross-correlation coefficients rmax which provide an index of 

similarity between the waveforms of synergy coefficients C; lags (time shift) between the peak of the activation coefficient (negative values 

meaning that the peak in Nordic walking (NW) occurs later than in conventional walking (CW); duration of the burst activation of the synergy 

coefficient defined as the full-width at the half maximum (FWHM) of the main peak; magnitude of the activation calculated as the root mean 

square of the activity during the FWHM; Normalized scalar product between synergy vectors W (muscle weightings). The FWHM and duration 

of FWHM were not calculated for synergy #5 because the were different in the two conditions (see methods).  
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