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Abstract  20 

Salvia sinaloensis Fern. (sage) is a medicinal plant containing plant secondary metabolites (PSMs) with 21 

antioxidant properties. The current study investigated the effects of drought stress on Salvia sinaloensis 22 

morphological and ecophysiological traits, and active constituent production. Sage plants were 23 

cultivated in controlled conditions for 34 days and exposed to full irrigation as control, half irrigation, 24 

and no irrigation. Changes in growth index (G.I.), dry biomass, leaf water potential (LWP), physiological 25 

parameters, active compounds, volatilome (BVOCs) and essential oils (EOs) were determined. Not 26 

irrigated plants showed a decrease in total chlorophyll content (~-14.7%) and growth (G.I., ~-59.4%) 27 

from day 18, and dry biomass at day 21 (-56%), when the complete leaf withering occurred (LWP, -1.10 28 

MPa). Moderate drought stressed plants showed similar trends for chlorophyll content and growth but 29 

kept a constant LWP (-0.35 MPa) and dry biomass throughout the experiment, as control plants. 30 

Carotenoids were not affected by water regimes. The photosynthetic apparatus tolerated mild to severe 31 

water deficits, without a complete stomatal closure. Plants under both stress conditions increased the 32 

percentage of phenols and flavonoids and showed altered BVOC and EO chemical profiles. Interestingly 33 

Camphor, the main EO oxygenated monoterpene, increased in moderate stressed plants while the 34 

sesquiterpene hydrocarbon Germacrene D decreased. The same trend was seen in the headspace under 35 

stress severity. The data evidenced a possible role of the active molecules in the response of S. 36 

sinaloensis plants to drought stress. Taking together, these findings point at S. sinaloensis as a potential 37 

drought adaptive species, which could be used in breeding strategies to obtain sages with  high quality 38 

PSMs, saving irrigation water. 39 

 40 

Keywords: Antioxidant activity, BVOCs, Drought stress, EOs, Monoterpenes, Sage 41 

 42 

Abbreviations 43 

BVOCs Biogenic volatile organic compounds 44 

EOs  Essential pils 45 

PSMs  Plant secondary metabolites 46 

MAPs  Medicinal and aromatic plants 47 

CC  Container capacity 48 

LWP  Leaf water potential 49 

Ci  Internal CO2 concentration 50 

E  Transpiration rate 51 
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gs  Stomatal conductance  52 

A   Net photosynthetic rate 53 

G.I.  Growth index 54 

FRAP  Ferric reducing antioxidant power 55 

Fe3+-TPTZ  Ferric tripyridyl triazine 56 

SPME  Solid phase micro extraction  57 

GC-EIMS Gas chromatography–electron impact mass spectrometry 58 

WUE  Water use efficiency 59 

FW  Fresh weight 60 

DW  Dry weight  61 
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Introduction 62 

Biogenic volatile organic compounds (BVOCs) and essential oils (EOs) are plant secondary metabolites 63 

(PSMs), with important ecological functions within defence, protection, and signalling mechanisms 64 

(Loreto and Schnitzler 2010; Raut and Karuppayil 2014). Plants modulate their concentration to 65 

withstand stress-related conditions (Fleta-Soriano and Munné-Bosch 2016), such as those provoked by 66 

drought (Selmar and Kleinwachter 2013; Kleinwachter et al. 2015).  Water deficit affects many aspects 67 

of plant physiology and biochemistry, activating root to shoot signalling hydraulic and hormones-68 

mediated processes (Gulen and Eris 2004; Jaleel et al. 2008; Schachtman and Goodger 2008; Pirbalouti 69 

et al. 2014; Fleta-Soriano and Munné-Bosch 2016; Ali et al. 2017; Caser et al. 2017). Plants respond by 70 

closing their stomata and accumulating compatible solutes to maintain a low water potential and avoid 71 

dehydration (Skirycz and Inze 2010). The increased diffusion barrier impairs influx of carbon dioxide 72 

(CO2) into leaves. In consequence, lower amounts of CO2 are fixed via the Calvin Cycle, and then less 73 

reduction equivalents (NADP+) are available as electron acceptors (Kleinwachter et al. 2015). In this 74 

state, all reactions must be promoted to consume NADPH + H+ such as the biosynthesis of highly 75 

reduced secondary compounds, i.e. phenols, terpenoids and alkaloids. 76 

BVOCs and EOs are also sources for pharmaceutical, food additives, flavours, and fine chemicals 77 

(Zhao et al. 2005). In the last years the global EO production was around 50 to 100 tonnes per annum 78 

(Lubbe and Verpoorte 2011; Rauter et al. 2012; Ben Farhat et al. 2013). In medicinal and aromatic plants 79 

(MAPs), drought stress enhanced total phenolics and flavonoids production in Labisia pumila Benth. & 80 

Hook. (Jaafar et al. 2012) and monoterpene hydrocarbons and oxygenated sesquiterpenes in 81 

Helichrysum petiolare Hilliard & B.L. (Caser et al. 2016). 82 

Salvia species is well known for possessing numerous secondary metabolites with significant 83 

benefits to human nutrition and health, used in folk medicine for a long time and therefore many species 84 

were listed in the official Pharmacopoeias. Antiinflammatory and antioxidant properties were observed 85 

in leaf extracts of S. officinalis L. (Munné-Bosch et al. 2001), anticonvulsant and sedative properties in 86 

leaves and seed extracts of S. leriifolia Benth (Hosseinzadeh and Arabsanavi 2001), and analgesic, 87 

neuroprotective and antiparkinson properties in roots of S. miltiorrhiza Bunge (Du and Zhang 2004). 88 

However, other Salvia species, such as in S. sinaloensis Fern, had beneficial properties (Abreu et al. 89 

2008) but little information is available.  90 

Despite the enormous richness of MAP species, breeding activities are advanced only for those 91 

plants with high demand and cultivation area (e.g. Origanum vulgare L. and Matricaria recutita L.). 92 

Wild collection and simple domestication are therefore still the main production strategies (Novak 2017). 93 
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The need of support and speed up MAPs breeding also for minor crops impelled us to deepen the 94 

knowledge about S. sinaolensis characteristics in relation to cultivation practices. 95 

In sage, imposed drought stress already proved to increase EOs, total polyphenols content and 96 

monoterpenes in S. officinalis (Abreu and Munne-Bosch 2008; Bettaieb et al. 2009; Bettaieb et al. 2011; 97 

Radwan et al. 2017) and active constituents in S. miltiorrhiza (Liu et al. 2011). 98 

  Here we investigated S. sinaloensis dynamics in response to water limitation through 99 

morphological, ecophysiological and phytochemical analyses, contributing to our understanding of the 100 

mechanisms underlying plant adaptation and PSMs production.  101 

 102 

Materials and methods 103 

Plant material and treatments 104 

Three year old plants from the CREA-FSO collection (Code database RGV FAO Salv095, Sanremo, 105 

Imperia, Italy - 43°81’60.28’’N Lat, 7°76’67.38’’E Long) were cloned by cuttings in the glasshouse of 106 

Dept. of Agricultural, Forest and Food Sciences of the University of Torino (Italy, 45°06’23.21’’N Lat, 107 

7°57’82.83’’E Long), and cultivated in vases (9 cm in diameter – one plant per vase) containing peat 108 

(Silver Torf, Agrochimica, Bolzano, Italy) and Agriperlite® (70:30), and fertilized with 4 g L-1, 109 

Osmocote (15:11:13; Scotts Europe, The Netherland). When plants reached 20 cm in height, one 110 

hundred and twenty pots were transferred in a growth chamber at 20 °C, 60% relative humidity and 16 111 

h photoperiod (constant average PAR of 300 μmol·m-2·s-1). 112 

 The experimental design was a split-plot design with three treatments and four replications per 113 

treatment. Plants were randomly divided in three groups and subjected to irrigation at 100% of container 114 

capacity (CC, control), half of the irrigation volume provided to CC controls (50% CC - moderate 115 

drought stress), or no irrigation (0% CC). The value of 50% CC was set to determine moderate drought 116 

stress in S. sinaloensis plants in a previous study (Caser et al., 2012). All the water contents were kept 117 

constant throughout the experiment. Gravimetric determinations of water contents were made by 118 

weighing soil samples before and after oven-drying to constant weight at 80 °C for one week. These 119 

values were used to calibrate all measurements of the moisture content of the substrate in the container. 120 

Container capacity was determined 48 h after irrigation and was calculated according to the equation of 121 

Paquin and Mehuys (1980). The soil moisture levels were maintained by manual irrigation and checked 122 

by weighting individual container every two days. The experiment lasted for a total of 34 days. 123 

 124 

Ecophysiological measurements 125 
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Leaf water potential (LWP, Ψw), internal CO2 concentration (Ci), transpiration rate (E), stomatal 126 

conductance (gs) and net photosynthetic rate (A) were measured twice a week (10-12 a.m.). In each 127 

treatment, LWP was counted in three leaves of five plants with a Scholander chamber (Soil Moisture 128 

Equipment, Santa Barbara, CA, USA) (Scholander et al. 1965). 129 

 Ci E, gs and A were measured through a gas analyzer ADC-LCPro+ (The Analytical Development 130 

Company Ltd, Hoddesdon, UK).  For each treatment three apical leaves of five plants were clamped in 131 

the leaf chamber, and routines of measurements were performed according to Caser et al. (2016). The 132 

CO2 concentration (450-470 ppm) and vapour pressure deficit (19.46 ± 1.67 Pa/KPa) were kept constant 133 

during the experiment. The ratio between A and E was used to calculate the instantaneous water use 134 

efficiency (WUE). 135 

  136 

Determination of pigment content  137 

Fifty mg from four fresh fully formed leaves per treatment were used to determine chlorophyll and 138 

carotenoids twice a week. After an over-night extraction in 5 ml of methanol at 4 °C in the dark, pigments 139 

were spectrophotometrically determined at 665, 652, and 470 nm using a Ultrospec 2100 pro (Amersham 140 

Biosciences, UK) as described by Lichtenthaler (1987).  141 

 The Chlorophyll Meter SPAD-502 (Konica Minolta Sensing Inc., Osaka, Japan) was used to 142 

measure the relative quantity of chlorophyll present in five randomly selected leaves per treatment. 143 

 144 

Determination of growth index and biomass 145 

Height and diameter of each plant per treatment were measured to calculate the growth index (G.I.; 146 

Π*{[(W'+W'')/2]/2}2*H, W' is the broadest diameter, W'' is the perpendicular diameter and H is the 147 

height; Hidalgo and Harkess 2002) . At day 34, roots and aerial parts of ten plants per treatment were 148 

separated and weighed. After recording their fresh biomass, they were oven-dried at 65 °C for one week 149 

and dry biomass was measured. 150 

 151 

Determination of phenol and flavonoid content, and antioxidant activity 152 

Fresh leaves (100 mg per treatment) were pulverized and homogenized in a mortar with 1 ml of 70% 153 

(v/v) methanol to facilitate the extraction. After 30 minutes of incubation on ice, the extracts were 154 

centrifuged at 10.000 g for 10 minutes at room temperature to collect the supernatant (methanol extract) 155 

to be used for the determination of phenol and flavonoid content, and the antioxidant activity. The 156 

content of total phenols was measured by using the Folin-Ciocalteau’s phenolic method and determined 157 
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as reported by Singleton and Rossi (1965). Twenty µl of methanol extracted samples were added and 158 

mixed with 0.5 ml of Folin-Ciocalteau’s reagent and 0.45 ml of 7.5% (w/v) of saturated sodium 159 

carbonate solution. After the incubation at room temperature for 2 h, the absorbance at 765 nm of the 160 

samples was detected in UV-VIS spectrophotometer (Cintra 101, GBC Instruments, Australia). 161 

 Total flavonoid content was determined by applying the colorimetric method of Kim et al. 162 

(2003). Twenty-five µl of methanolic extract were added to 225 μl of distilled water and to 75 μl of 5% 163 

(w/v) sodium nitrite (NaNO2). After 5 minutes of incubation were added 75 µl of 10% (w/v) of aluminum 164 

trichloride (AlCl3) and after 5 minutes were added 500 μl of 1M sodium hydroxide (NaOH). The 165 

absorbance of the samples was detected at the UV-VIS spectrophotometer (Cintra 101, GBC 166 

Instruments, Australia) after 15 minutes at 415 nm. The quantitative determination was made using a 167 

calibration curve with, as standard, quercetin 1:1 (w/v) dissolved in absolute methanol. 168 

 The antioxidant activity was determined by using the ferric reducing antioxidant power (FRAP) 169 

method with minor modification (Szőllősi and SzőllősiVarga 2002). The FRAP procedure is based on 170 

the reduction of a ferric-tripyridyl triazine complex to its ferrous colored form in the presence of 171 

antioxidants. An intense blue color complex was formed when ferric tripyridyl triazine (Fe3+-TPTZ) 172 

complex was reduced to the ferrous (Fe2+) form and the absorption at 593 nm was recorded. The 173 

calibration curve was plotted with absorbance at 593 nm versus concentration of Fe2+ solution which in 174 

turn plotted against concentrations of standard antioxidant. A total of 50 μl samples extract were added 175 

to 1.5 ml of the FRAP reagent and mixed well. The absorbance is measured at 593 nm using UV-VIS 176 

spectrophotometer (Cintra 101, GBC Instruments, Australia). Samples are measured in three replicates. 177 

 At the end of the experiment, the total amount of total phenols, flavonoids and antioxidant 178 

activity per plant (mg/plantFW) was estimated on the basis of the plant fresh biomass. 179 

 180 

BVOC analysis 181 

The evaluation of biogenic volatile organic compounds (BVOCs) was conducted at day 14. The 182 

headspace of 3 g of twig was measured by applying a Supelco Solid Phase Micro Extraction (SPME) 183 

(Supelco, Bellefonte, PA, USA) with polydimethylsiloxane (PDMS, 100 µm). Each sample was 184 

introduced into a 100 ml glass conical flask and equilibrated for 30 min. After the equilibration time, the 185 

fiber was exposed to the headspace for 15 min at room temperature; once sampling was finished the 186 

fiber was withdrawn into the needle and transferred to the injection port of the Gas Chromatography–187 

Electron Impact Mass Spectrometry (GC-EIMS) system where the fiber was desorbed. GC-EIMS 188 

analysis was performed with a Varian CP 3800 gas chromatograph (Varian, Inc., Palo Alto, CA) 189 
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equipped with a DB-5 capillary column (30 m × 0.25 mm; coating thickness 0.25 μm) and a Varian 190 

Saturn 2000 ion trap mass detector chromatograph (Varian, Inc., Palo Alto, CA). Analytical conditions 191 

were as follows: injector and transfer line temperature were 250 °C and 240 °C, respectively; oven 192 

temperature was programmed from 60 °C to 240 °C at 3 °C min−1; helium as carrier gas was set at 1 mL 193 

min−1; and the injection was in splitless mode. Identification of the constituents was based on comparison 194 

of their retention times with those of authentic samples, and on computer matching against commercial 195 

(NIST 98 and ADAMS) and home-made library mass spectra built from pure substances and MS 196 

literature data (Swigar & Silvestein, 1981; Davies, 1990; Adams, 1995).   197 

 The relative proportions of the volatile constituents were percentages obtained by peak-area 198 

normalisation, and all relative response factors were taken as one. 199 

 200 

EO analysis 201 

Twenty g of dried leaves were used for the distillation of essential oils (EOs) by using a Clevenger-type 202 

apparatus (2 h) (Farmacopea Ufficiale della Repubblica Italiana, vol I. IXth edn. Zecca dello Stato: 203 

Rome, 1991). The yields of distillation were not determined due to the low amount of the starting plant 204 

material. The EOs obtained were solubilized in n-hexane, filtered over anhydrous sodium sulphate and 205 

stored in a vial at 4 °C in the dark until use. GC-EIMS was used to analyse all EOs (injection of 0.2 μL, 206 

10% hexane solution) as reported above. 207 

 208 

Statistical analysis 209 

Data were previously tested for the variance homogeneity. Ryan-Einot-Gabriel-Welsch-F post-hoc test 210 

(REGW-F) (P < 0.05) was applied by means of the SPSS statistical package (version 19.0; SPSS Inc., 211 

Chicago. Illinois). 212 

 213 

Results and discussion 214 

Changes in ecophysiological parameters 215 

In this study, moderate drought stress did not affect LWP compared to control (Fig. 1). In both cases it 216 

was constant throughout the experiment, with a mean value of -0.35 MPa. On the opposite, no irrigation 217 

significantly reduced LWP to -0.64 MPa at day 7. Then, a decreasing trend was observed till day 21 (-218 

1.10 MPa) when the complete leaf withering occurred. Within the genus, similar results were found by 219 

Eakes et al. (1991) in S. splendens Sellow ‘Bonfire’ whose leaves reached a LWP ranging between -1.10 220 

and -1.40 MPa when exposed to episodic drought (moisture stress conditioned). In other xerophytic sage 221 
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species, drought induced much lower LWP. S. officinalis plants subjected to 50% CC and 25% CC 222 

reached LWP equal to -3.00 and -4.80 MPa, respectively (Bettaieb et al. 2011), and S. mellifera Greene 223 

under severe drought condition reached LWP equal to -8.0 MPa, even if severely affected by embolism 224 

(Hargrave et al. 1994). 225 

Stomatal closure is the primary mechanism by which plants regulate water loss. It is widely 226 

observed that plants reduce stomatal conductance of their leaves in response to declining water potential 227 

(Oren et al. 1999). Here, drought did not affect internal CO2 (Ci) concentration with the exception for 228 

the 0% CC treatments that led to increase Ci at day 21(Fig. 2A). More differences were found for E, gs 229 

and A, showing similar trends (Fig. 2B-C-D). Not irrigated plants showed lower values from day 14, 230 

shifted to day 21 (as regarding gs and A) and from day 25 (E). At the end of the experiment no differences 231 

were observed between control and half irrigation for all measured traits. Thus, drought stress led to 232 

partial stomata closure (Fig. 2B). As result, the influx of CO2 is diminished, visible by the strongly 233 

decreased rate of photosynthesis in the stressed plants (Fig. 2C) and the lower growth rate (Fig. 3). 234 

However, as the stomata closure is not very distinct, the actual CO2 concentration in the stressed plants 235 

is not significantly lower than in the controls. Obviously, the steady state concentration, at least in part, 236 

is determined by the photosynthetic action (i.e. the affinity of RuBisCO). This is confirmed by the fact 237 

that in the severely stressed plants, the internal CO2 concentration increased, when CO2 consumption is 238 

stopped due to the lacking photosynthetic activity after 21 days. Results suggested that the 239 

photosynthetic apparatus of S. sinaloensis could tolerate mild to severe water deficits and decreasing in 240 

photosynthesis couple with reduced stomatal function (Eakes et al. 1991; Galmes et al. 2007). 241 

Instantaneous water use efficiency (WUE, A/E) is used as an indicator of the water amount 242 

applied for growing by plants. Different authors indicated that stressed plants showing higher A/E are 243 

more able to utilize energy obtained by photosynthesis per unit of water transpired (Liu and Stützel 244 

2004; Monclus et al. 2006). In this study, drought did not affect WUE except for the 0% CC treatment 245 

at day 21 (Fig. 2E). This finding indicates that S. sinaloensis could efficiently use water resources under 246 

moderate and severe drought stress condition at least under control conditions. In many species WUE 247 

was improved under water limitation and low gs (Liu et al. 2005). Among these, Trifolium alexandrinum 248 

L. (Lazaridou and Koutroubas 2004), Spartina alterniflora Loisel (Hessini et al. 2009), Callistemon 249 

(Alvarez et al. 2011), Hybamthus floribundus Lindl. (Kachenko et al. 2011), Rosa hybrida L. (Cai et al. 250 

2012), Vitis vinifera L. ‘Grenache’ and ‘Tempranillo’ (Lovisolo et al. 2010; Medrano et al. 2015), and 251 

Helichrysum petiolare (Caser et al. 2016). In sage, Lambrecht et al. (2011) observed that leaf 252 

physiological activity of S. mellifera was not limited by imposed water deficits as well as indicated in 253 
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our study. The photosynthetic apparatus was not completely affected by drought stress also in S. 254 

splendens ‘Bonfire’ (Eakes et al. 1991) and in S. pitcheri L. (Hamerlynck et al. 1997), highlighting the 255 

positive water use efficiency attitude of different species within the genus Salvia. 256 

 257 

Changes in chlorophyll, carotenoids and plant growth 258 

The decrease of chlorophyll and carotenoids in drought stressed plants is reported by several authors 259 

(Kaminska-Rozek and Pukacki 2004; Pastenes et al. 2005; Guerfel et al. 2009). Here, moderate and 260 

severe drought stress reduced the total chlorophyll content starting from day 18 up to the end of the 261 

experiment (Supplementary Table 1), while carotenoids and Chl:Car ratios were not affected by the 262 

imposed irrigation regimes. Plants of S. officinalis treated with 50% CC and 25% CC presented similar 263 

values and trends (Bettaieb et al. 2011). Similarly, a chlorophyll decrease was observed also in plants of 264 

Catharanthus roseus L. (Jaleel et al. 2008) and Helichrysum petiolare (Caser et al. 2016). Jaleel et al. 265 

(2009) indicated that carotenoids play an important role in protecting different processes from reactive 266 

oxygen species damages. Here, the presence of constant amount of carotenoid during the experiment 267 

suggests a possible role to cope with oxidative damages. Similar results were observed by Caser et al. 268 

(2016) in H. petiolare plants subjected to 50% CC water regime.  269 

The evaluation of SPAD units by the use of the chlorophyll meter is commonly used to associate  270 

leaf damages and abiotic stresses (Caser et al., 2013) and leaf photosynthesis (Castelli et al. 1996). Here, 271 

no significant results were highlighted (data not shown). Similarly, Caser et al. (2012) showed no 272 

differences of SPAD values in S. dolomitica Codd and S. sinaloensis plants under drought conditions 273 

with the exception for those irrigated with 20% CC in which was observed an increase. 274 

 The decrease of chlorophyll content might cause a reduction in growth parameters of plants 275 

under water stress conditions (Viera et al. 1991). In this study, all the treated plants grew similarly till 276 

day 11 (Fig. 3). Then, drought stressed plants significantly reduced their growth. Not irrigated plants 277 

reached the lowest G.I. at day 21 (2654.00 cm3), while plants under 50% CC kept constant G.I. from 278 

day 18 onward, ranging between 6908.73 cm3 and 5686.40 cm3. These results are in agreement with a 279 

preliminary study on S. sinaloensis plants treated with different irrigation regimes where irrigation with 280 

20% CC and 40% CC significantly reduced the plant growth compared to 80% CC and controls (Caser 281 

et al. 2012). However, as shown in Table 1, here only severe drought stress reduced drastically the total 282 

dry mass of plants (-56%), affecting particularly the roots (-67%). Thus, the R:A ratio (-55%), favoring 283 

the shoot as showed in other species under severe drought stress conditions (Comas et al. 2013; Caser et 284 

al. 2016). A reduction of shoot dry weight, leaf area, stem length and root length was similarly seen in 285 



11 

 

S. splendens (Eakes et al. 1991; Burnett et al. 2005). On the opposite, half irrigated plants showed an 286 

increase in root dry biomass (+14%) and consequently in R:A ratio (+37%) compared to control. Since 287 

roots are the only source to acquire water from soil, the root growth, its density, proliferation and size 288 

are key responses of plants to drought stress (Kavar et al. 2007). The drought tolerance of tea, onion and 289 

cotton was increased by improved root growth and root functioning (Farooq et al. 2009). 290 

 291 

Changes in phenols and flavonoids and antioxidant activity 292 

Polyphenols and flavonoids are among the most adaptable PSMs, helping plants to cope with different 293 

stress conditions (Di Ferdinando et al. 2014). In this study the total content of phenols in full-irrigated 294 

plants decreased during the whole experiment, reaching the lowest value between days 21 and 25 (0.98 295 

mg/g FW) (Fig. 4A). Conversely, at the same data point moderate stressed plants exhibited the highest 296 

amounts (14.26 mg/g FW and 13.16 mg/g FW at the days 21 and 25, respectively). A different behavior 297 

was also observed in severe stressed plants, that showed higher content of phenols from day 11 to day 298 

18 with the highest value at day 11 (15.74  mg/g FW). A similar dynamic was observed for the total 299 

flavonoids accumulation (Fig. 4B). In control plants, flavonoids increased during the first 7 days of 300 

cultivation. Subsequently, they dramatically decreased reaching minimum values between days 21 (1.19 301 

mg/g FW) and 25 (1.16 mg/g FW). By contrast, in moderate stress condition flavonoid content kept 302 

constant until day 21, later increased with higher values from day 18 till the end of the experiment, 303 

reaching the maximum content at day 25 (2.89 mg/g FW). In the not irrigated plants, the total content of 304 

flavonoids peaked at day 11 (3.73 mg/g FW). In literature, different works showed that in drought 305 

stressed plants was observed an increase in secondary metabolites content. Plants of Prunus persica L., 306 

Echinacea purpurea L., Hypericum brasiliense Choisy, Trachyspermum ammi L. and Labisia pumila 307 

Benth. & Hook. subjected to drought stress showed significant increase in total phenols (Kubota et al. 308 

1988; Gray et al. 2003; de Abreu and Mazzafera 2005; Azhar et al. 2011; Jaafar et al. 2012) and Pisum 309 

sativum in flavonoids (Nogués et al. 1998). In Salvia officinalis, an increase in phenols was observed in 310 

half irrigated plants (Bettaieb et al. 2011). Here, a mid to late increase in total phenols and flavonoids 311 

occurred in plants subjected to 50% CC. According with Paulsen and Selmar (2016), imposed drought 312 

stress generally results in decrease of aerial biomass gain and the corresponding dry or fresh weight are 313 

strongly influencing the content of natural products in MAPs. Here, as indicated in Table 2, moderate 314 

drought conditions resulted in a significant increase of the total content of phenols in comparison to 315 

severe drought stressed plants and controls (16.44, 22.85 and 10.43 mg/plant in 100% CC, 50%CC and 316 

0% CC, respectively). While, no differences were noted in flavonoid content between moderate drought 317 
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stress and control conditions (6.42, 6.47 and 2.73 mg/plantFW of flavonoids in 100% CC, 50%CC and 318 

0% CC, respectively). These findings should be taken in consideration for future industrial purposes. 319 

Drought induces oxidative stress in plants, in which reactive oxygen species (ROS) are produced 320 

(Munné-Bosch and Penuelas 2003). Plant resistance to ROS is associated with an increase in antioxidant 321 

activity to prevent stress damage (Bor et al. 2003). In this study, only plants under 50% CC showed a 322 

significant increase of antioxidant activity at the end of the experiment (Fig. 4C). Similarly, at the end 323 

of the experiment the total amount of antioxidant activity per plant was much superior in moderate 324 

drought stressed plants than the others (106.37, 125.98 and 20.86 mg/plantFW in 100% CC, 50% CC 325 

and 0% CC, respectively) (Table 2). These findings confirm the ability of this plant to encounter the 326 

water limitation (50% CC) activating stress defense signaling and pathways respect to severe drought 327 

stress (0% CC) where metabolic and physiological constraints are not able to allow plant survival. 328 

 329 

Changes in emitted BVOCs 330 

Different authors observed that any stress factor can potentially change the rate of volatile release and 331 

alter the bouquet of BVOCs (Dicke and Baldwin 2010; Holopainen and Gershenzon 2010; Niinemets et 332 

al. 2013). Their emission can vary drastically depending on the species, organ, developmental stage and 333 

environmental conditions (Holopainen and Gershenzon 2010). Abiotic stress can enhances the emission 334 

of BVOC rates and patterns by the alteration of the communication with other organisms and 335 

photochemical cycles (Loreto and Schnitzler 2010). In the present study, the volatiles emitted and 336 

identified from the analyzed twigs are reported in Supplementary Table 2. In total a number of 20, 32 337 

and 38 compounds were recognized in plants treated with full irrigation, half irrigation and no irrigation, 338 

respectively, accounting for 92.1%, 96.6% and 95.4% of the total compositions, respectively. The 339 

volatile fractions were characterized mainly by sesquiterpene hydrocarbons (sh) although a mild 340 

reduction by increasing stress conditions was observed (57.5% < 42.8% < 42.7% in full irrigation, half 341 

irrigation and no irrigation, respectively). No irrigation affected the production of four of the six reported 342 

volatile molecule classes. In particular, an increase in oxygenated monoterpenes (om) (9.7%, 16.2% and 343 

23.6% in full irrigation, half irrigation and no irrigation, respectively), was observed. Among the other 344 

categories not-terpene derivates (nt), oxygenated sesquiterpene (os) and apocarotenoids (ac) were 345 

observed only in few percentage. However, plants under 50% CC exhibited the highest content in 346 

monoterpene hydrocarbons (mh) (24.2%, 37.1% and 22.0% in full irrigation, half irrigation and no 347 

irrigation, respectively). All investigated headspaces showed different array of the main constituents. 348 

The chemical profile in fully irrigated plants was characterized by Germacrene D > β-Caryophyllene > 349 
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β-Pinene, in moderate stressed plants by β-Pinene > Camphor > β-Caryophyllene and in severe stressed 350 

plants by β-Caryophyllene > Camphor > β-Pinene. Among the various constituents, a very sharp 351 

decrease (4.4 times) was observed for the Germacrene D (from 22.0% to 5.0% in full irrigation and no 352 

irrigation, respectively). On the opposite the oxygenated monoterpene Camphor increased 2.5 times 353 

when plants were subjected to 0% CC. 354 

The literature is ambiguous concerning BVOC emission in relation to water availability. 355 

Several recent reviews addressed the roles of BVOCs in enhancing the tolerance of plants to various 356 

general abiotic stressors (Holopainen and Gershenzon 2010; Loreto and Schnitzler 2010; Possell and 357 

Loreto 2013; Rinnan et al. 2014). In particular, under drought Mediterranean climatic condition, the 358 

emission of oxygenated monoterpene is common (Loreto et al. 2014) and is thought to promote direct 359 

and indirect defense by modulating the signaling that biochemically activates defense pathways in 360 

response to stressful conditions (Loreto and Schnitzler 2010; Rinnan et al. 2014). Pistelli et al. (2013) 361 

reported an increase in oxygenated monoterpenes in Salvia officinalis plants under in vitro growing 362 

conditions. Moreover, there is evidence that the strength of the emission of BVOCs can be quantitatively 363 

related to the severity of abiotic stresses (Niinemets et al. 2013). As reported by Niinemets et al. (2004) 364 

the emission of oxygenated BVOCs depends on stomatal behavior. The stomatal closure in response to 365 

drought stress is therefore expected to drastically affect the emission of these compounds as showed in 366 

Quercus ilex L. (Bertin and Staudt 1996; Llusia and Peñuelas 1998; Loreto et al. 2001). Here, on the 367 

contrary we observed an increase in oxygenated monoterpenes under mild and severe drought stress 368 

associated with a not completely stomatal closure. Progressing soil water deficiency enhanced 369 

monoterpene emissions also in Pinus halepensis Mill. and Cistus albidus L., whereas did not affect it in 370 

Rosmarinus officinalis L. and Quercus coccifera L. (Ormeño et al. 2007). By contrast, overall emissions 371 

of sesquiterpenes were reduced by water deficiency in all the four species (Ormeño et al. 2007). 372 

Moreover, Hansen et al. (1997) and Ormeño et al. (2007) noticed that monoterpene emission in R. 373 

officinalis was not dependent by photosynthesis, but may originate from “de novo” synthesis in the 374 

photosynthetic tissues (Steinbrecher et al. 1999; Ormeño et al. 2009; Nogués et al. 2015). Taking 375 

together, all these results on BVOCs could represent important findings for studying the plant-376 

environment interactions and can be used in breeding strategies to improve volatile compounds yield 377 

and quality. 378 

 379 

Changes on essential oil 380 
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In a wide range of experiments was highlighted that plants under drought stressed showed an increase 381 

in secondary metabolites content (Selmar and Kleinwächter 2013). Here, a total of 78 constituents were 382 

detected in the investigated EOs of which 59, 41 and 62 in full, half and not irrigated plants, respectively 383 

(Supplementary Table 3). Drought stress conditions only slightly increased the total number of 384 

constituents identified in the EOs (94.0, 99.6 and 98.8% at full irrigation, half irrigation and no irrigation, 385 

respectively). Similar results were observed in Satureja hortensis L. (Baher et al. 2002), Lippia 386 

berlandieri Schauer (Dunford and Vazquez 2005), Petroselinum crispum (Mill.) (Petropoulos et al. 387 

2008), S. officinalis (Bettaieb et al. 2009), and Laurus nobilis L. (Maatallah et al. 2016) plants treated 388 

with similar drought stressed conditions. Regarding the type of constituents, moderate drought stress 389 

increased the total amount of monoterpenes (both oxygenated monoterpenes and monoterpene 390 

hydrocarbons: 51.5, 77.1 and 54.9% and 1.4, 6.0 and 1.9% in full irrigation, half irrigation and no 391 

irrigation, respectively) and deeply reduced the oxygenated sesquiterpenes (29.2, 6.3 and 26.9% in full 392 

irrigation, half irrigation and no irrigation, respectively). Similarly, imposed moderate drought stress 393 

strongly increased (2 to 4 fold) the content of Camphor, a specific compound in the essential oil, as also 394 

reported in S. officinalis plants (Bettaieb et al. 2009; Nowak et al. 2010) and in Picea abies L. and Pinus 395 

silvestris L. (Turtola et al. 2003). Nowak et al. (2010) reported that moderate stressed condition resulted 396 

in a massive increase of concentration of monoterpenes compensating the reduction in biomass. In fact, 397 

the stimulation to produce high terpene content under drought stress could be due to the low allocation 398 

of carbon to the growth, suggesting a trade-off between growth and defense (Turtola et al. 2003).  399 

The main constituent of EOs in all the studied plants was Camphor (an oxygenated monoterpene). 400 

This constituent strongly increased under 50% CC (36.5, 62.8, 38.7% in full irrigation, half irrigation 401 

and no irrigation, respectively). Our results showed a chemical profile composed by Camphor > 402 

Caryophyllene oxide > α-Cadinol in 100% CC; Camphor > β-Caryophyllene > Borneol in 50% CC; and 403 

by Camphor > Caryophyllene oxide > β-Caryophyllene in 0% CC. Abreu et al. (2008) reported 404 

interesting antioxidant properties of S. sinaloensis due to the presence of phenolic diterpenes in 405 

comparison with S. officinalis extracts. In the present study, moderate drought stress application induced 406 

an increase in oxygenated monoterpenes that are generally the most active components in many EOs 407 

(Ruberto and Baratta 2000; Imanshahidi and Hosseinzadeh 2006), such as in S. cinnabarina L. with 408 

hypotensive effect (Alfieri et al. 2007), S. dolomitica with anti-bacterial activity (Kamatou et al. 2007) 409 

and in S. officinalis with antifungal and anti-inflammatory activity on mammalian cells (Abu-Darwish 410 

et al. 2013). These results may contribute to a good utilization of S. sinaloensis EOs for plant breeding 411 

and pharmaceutical applications. 412 
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 413 

Conclusions 414 

Drought is one of the abiotic stresses that most severely affects plant growth and development. 415 

Consequently, plants adjust their structure, metabolism and function to withstand it. Generally, it is 416 

characterized by reduction of water content and leaf water potential, turgor loss, closure of stomata and 417 

decrease in cell enlargement and growth. However, with respect to MAPs, the water shortage can lead 418 

to an enhancement of the content of PSMs, Our results showed that in S. sinaloensis drought affects 419 

morphological, ecophysiological and chemical traits depending on the stress severity. Plant growth 420 

parameters and chlorophyll were generally reduced but the photosynthetic apparatus demonstrated to 421 

tolerate moderate to severe drought conditions, without a complete stomatal closure. Interestingly, under 422 

moderate stressed conditions, monoterpene hydrocarbons increased in both BVOCs and Eos (e.g. 423 

camphene), while volatile oxygenated monoterpenes increased still with increasing stress severity (e.g. 424 

camphor). Thus, drought stress did not inhibit per se the biosynthesis of monoterpenes, even better the 425 

highest BVOCs and EOs contents were obtained in moderate drought stress condition. Furthermore, this 426 

stress condition induced a mid to late increase in phenols, flavonoids and antioxidant activity, suggesting 427 

that active molecule accumulation is associated with drought tolerance. 428 

 In conclusion, here an integrated approach, combining metabolomic and physiological studies, 429 

allowed us to get new insights in mechanisms and processes involved in S. sinaloensis adaptation to 430 

drought stress and PSMs production. Coupling this information, breeders and industries may optimize 431 

MAPs breeding and cultivation, in order to produce high quality plant materials adopting sustainable 432 

cultivation techniques. 433 
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Tables 693 

Table 1 694 

Aerial and root dry mass accumulation and root:aerial (R:A) ratio of Salvia sinaloensis plants under full 695 

irrigation (100% container capacity, CC), half irrigation (50% CC), or no irrigation (0% CC). In brackets 696 

are reported the percentage variations referred to controls. 697 

Water regime 
Dry mass accumulation (gDW/plant) 

R:A ratio 
Total Aerial part Root 

100% CC 3.57a (100%) 1.06a (100%) 2.51a (100%) 2.37b (100%) 

50% CC 3.75a (105%) 0.88ab (83%) 2.87a (114%) 3.26a (137%) 

0% CC 1.59b (44%) 0.77b (73%) 0.82b (33%) 1.06c (45%) 

P ** * ** * 

The statistical relevance of ‘Between-Subjects Effects’ tests (*=P<0.05, **=P<0.001, ns=not significant). Mean values showing the same letter are not 698 

statistically different at P≤0.05 according to the REGW-F test. 699 

 700 

Table 2 701 

Total amount (mg/plantFW) of phenols, flavonoids and antioxidant activity at the end of the experiment 702 

in Salvia sinaloensis plants under full irrigation (100% container capacity, CC), half irrigation (50% 703 

CC), or no irrigation (0% CC). In brackets are reported the percentage variations referred to controls. 704 

Water regime 
Total amount (mg/plantFW) 

Total phenols Flavonoids Antioxidant activity 

100% CC 16.44 b (100%) 6.42 a (100%) 106.37 b (100%) 

50% CC 22.85 a (139%) 6.47 a (101%) 125.98 a (118%) 

0% CC 10.43 c (63%) 2.73 b (43%) 20.86 c (20%) 

P ** * * 

The statistical relevance of ‘Between-Subjects Effects’ tests (*=P<0.05, **=P<0.001, ns=not significant). Mean values showing the same letter are not 705 

statistically different at P≤0.05 according to the REGW-F test.  706 
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Figure captions 707 

Fig. 1 Dynamics of leaf water potential (LWP) of Salvia sinaloensis plants treated with full irrigation 708 

(100% container capacity, CC - black line), half irrigation (50% CC - dark grey line), or no irrigation 709 

(0% CC - light grey line). Means superscripted by the same letter do not differ significantly, according 710 

to REGW-F post-hoc test (NS = non significant). 711 

 712 

Fig. 2 Gas exchange (internal CO2 concentration, Ci - A; transpiration rate, E - B; stomatal conductance, 713 

gs - C; net photosynthetic rate, A - D) and dynamic of the instantaneous water use efficiency (WUE, A/E 714 

- E) measured on Salvia sinaloensis plants treated with full irrigation (100% container capacity, 100% 715 

CC - black line), half irrigation (50% CC - dark grey line), or no irrigation (0% CC - light grey line). 716 

Mean values showing the same letter are not statistically different at P≤0.05 according to the REGW-F 717 

post-hoc test. The statistical relevance of ‘Between-Subjects Effects’ tests (ns=non significant, 718 

*=P<0.05) was evaluated. 719 

 720 

Fig. 3. Average values of growth index (G.I., cm3) during the experiment. S. sinaloensis plants were 721 

treated with three irrigation regimes: full irrigation (100% container capacity, 100% CC, black line), half 722 

irrigation (50% CC, dark grey line), or no irrigation (0% CC, light grey line). Means superscripted by 723 

the same letter do not differ significantly, according to REGW-F test (NS = non significant; * P<0.05; 724 

** P<0.001). 725 

 726 

Fig. 4 Leaf total phenols (A) and flavonoids (B), and antioxidant activity (C) of Salvia sinaloensis plants 727 

under control condition (black line, 100% container capacity, CC), moderate drought stress (dark grey 728 

line, 50% CC), and severe drought stress (light grey, 0 % CC). Means superscripted by the same letter 729 

do not differ significantly, according to REGW-F test (NS = not significant; * P<0.05; ** P<0.001). 730 
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Supplementary files 

 

Supplementary Table 1. Chlorophyll (a + b), total carotenoid (Car) and their rate (Chl:Car) 

measured on Salvia sinaloensis plants under full irrigation (100% container capacity, CC), half 

irrigation (50% CC), and no irrigation (0% CC). 

  Days 

  0 4 7 11 14 18 21 25 28 32 34 

Chl a + b 

(mg/g FW) 

100% CC 1.40 1.49 1.43 1.38 1.35 1.50a 1.32a 1.36 1.42 1.43 1.45 

50% CC 1.40 1.43 1.25 1.27 1.17 1.15b 1.15b 1.16 1.17 1.24 1.30 

0% CC 1.40 1.39 1.44 1.42 1.38 1.13b 1.07b - - - - 

P ns ns ns ns ns * * * * * * 

Car 

(mg/g FW) 

100% CC 0.23 0.29 0.24 0.25 0.25 0.21 0.26 0.24 0.26 0.23 0.26 

50% CC 0.23 0.22 0.21 0.24 0.20 0.16 0.18 0.19 0.24 0.24 0.23 

0% CC 0.23 0.25 0.24 0.23 0.24 0.17 0.19 - - - - 

P ns ns ns ns ns ns ns ns ns ns ns 

Chl:Car 

100% CC 6.20 5.21 5.92 5.51 5.43 7.07 5.17 5.63 5.41 6.12 5.61 

50% CC 6.20 6.54 5.86 5.24 5.97 7.35 6.45 6.25 4.97 5.15 5.76 

0% CC 6.20 5.45 5.96 6.16 5.89 6.48 5.63 - - - - 

P ns ns ns ns ns ns ns ns ns ns ns 

The statistical relevance of ‘Between-Subjects Effects’ tests (*=P<0.05, ns=not significant). Mean values showing the same letter are not statistically 

different at P≤0.05 according to the REGW-F test. 

 

Supplementary Table 2. Chemical composition (%) of volatiles emitted from Salvia sinaloensis 

plants after full irrigation (100% CC), half irrigation (50% CC) or no irrigation (0% CC). All 

constituents are ordered on the basis of their linear retention index (LRI). 

Category  Constituents lRI 100% CC 50% CC 0% CC 

mh -Pinene 939 4.7 6.5 2.0 

mh Camphene 953 2.6 6.6 2.6 

mh β-Pinene 980 12.0 16.7 7.5 

mh Myrcene 991 0.0 0.5 1.9 

mh Limonene 1031 4.4 3.3 2.3 

mh (Z)-β-Ocimene 1040 0.0 1.9 0.5 

mh (E)-β-Ocimene 1050 0.0 0.9 4.6 

mh Terpinolene 1088 0.5 0.7 0.6 

om Trans-sabinene hydrate 1097 0.0 0.5 0.7 

om Linalool 1098 0.0 0.0 0.6 

nt 1-octen-3-yl-acetate 1110 0.0 0.1 4.3 

om -Campholenal 1125 0.0 0.0 0.4 

om Camphor 1143 8.3 12.9 20.2 



om Borneol 1165 1.4 2.2 0.7 

om -Terpineol 1189 0.0 0.5 0.7 

nt (N)-decanale 1204 0.0 0.1 0.6 

om Isobornyl acetate 1285 0.0 0.1 0.7 

sh δ-Elemene 1339 1.4 0.6 0.2 

sh α-Copaene 1376 2.0 1.0 0.7 

ac-13 (E)-α-damascenone 1380 0.7 0.3 1.0 

sh β-Elemene 1391 1.7 1.7 0.9 

sh Cyperene 1398 0.6 0.5 0.6 

sh β-Caryophyllene 1418 16.0 12.4 24.2 

sh β-Copaene 1429 1.1 1.1 0.3 

sh β-Gurjunene 1432 0.0 0.5 0.4 

sh α-Guaiene 1439 1.7 0.8 0.3 

sh α-Humulene 1454 3.9 3.5 6.5 

sh (E)-β-Farnesene 1458 1.3 2.7 1.0 

sh α-Himachalene  1476 0.0 0.4 0.1 

sh -Muurolene 1477 0.0 0.0 0.2 

sh Germacrene-D 1480 22.0 12.1 5.0 

sh α-Selinene 1485 1.5 2.5 0.8 

sh Bicyclogermacrene 1494 4.3 1.4 0.2 

sh Germacrene-A 1503 0.0 0.3 0.2 

sh 7-epi-α-selinene 1517 0.0 1.3 0.7 

sh δ-Cadinene 1524 0.0 0.0 0.4 

so Caryophyllene oxide 1581 0.0 0.0 0.5 

so α-Cadinol 1653 0.0 0.0 0.3 

  Total  92.1 96.6 95.4 

 
Non Terpene Derivates (nt, %)  0.0 0.2 4.9 

 
Monoterpene Hydrocarbons (mh, %)  24.2 37.1 22.0 

 
Oxygenated Monoterpene (om, %)  9.7 16.2 23.6 

 
Sesquiterpene Hydrocarbons (sh, %)  57.5 42.8 42.7 

 
Oxygenated Sesquiterpene  (os, %)  0.0 0.0 0.8 

 
Apocarotenoids (ac, %)  0.7 0.3 1.0 

*All the constituents identified belong to non terpene derivates (nt), monoterpene hydrocarbons (mh), oxygenated 

monoterpene (om), sesquiterpene hydrocarbons (sh), oxygenated sesquiterpene (os), and apocarotenoids (ac). 

 

Supplementary Table 3. Effect of full irrigation (100% CC), half irrigation (50% CC) or no 

irrigation (0% CC) on the essential oil constituents of Salvia sinaloensis plants. Constituents are 

ordered on the basis of their linear retention index (LRI). 

Category * Constituents lRI 100% CC 50% CC 0% CC 

nt Hexenal 800 0.2 1.0 0.0 



nt (E)-3-hexen-1-ol 851 0.2 0.5 0.0 

mh α-Pinene 939 0.0 0.5 0.1 

mh Camphene 953 0.6 3.6 0.5 

mh Sabinene 976 0.4 1.2 1.0 

nt 3-Octanone 988 0.0 0.2 0.0 

mh Myrcene 991 0.0 0.3 0.1 

nt 3-Octanol 993 0.0 0.0  0.1 

mh Limonene 1031 0.0 0.1 0.1 

om 1,8-Cineole 1033 0.7 0.2 0.1 

mh -Terpinene 1062 0.2 0.2 0.0 

om Cis-sabinene hydrate 1068 0.0 0.0 0.4 

nt (N)-octanol 1070 0.0 0.0 0.0 

om Trans-linalol oxide (furanoid) 1074 0.2 0.2 0.2 

om-no Camphenilone 1083 0.2 0.3 0.2 

mh Terpinolene 1088 0.2 0.0 0.0 

om Linalool 1098 0.2 0.2 0.7 

nt 1-octen-3-yl acetate 1110 0.5 1.8 1.8 

om -Campholenal 1125 0.3 0.4 0.9 

om Trans-pinocarveol 1142 0.6 1.4 1.7 

om Camphor 1143 36.5 62.8 38.7 

om Isoborneol 1156 0.0 0.0  0.2 

om Pinocarvone 1162 0.5 0.8 1.1 

om Borneol 1165 7.5 4.7 5.1 

om 4-Terpineol 1177 1.3 1.6 1.0 

om Cymen8-ol-para 1187 0.2 0.0 0.2 

om α-Terpineol 1189 0.5 0.7 0.6 

om Myrtenal 1193 1.4 1.5 2.1 

om Verbenone 1217 0.0 0.1 0.2 

om Trans-carveol 1217 0.0 0.0  0.2 

om Isobornyl formate 1233 0.6 0.2 0.3 

om Carvone 1242 0.0 0.0 0.2 

om Perilla aldehyde 1271 0.0 0.0 0.1 

om Isobornyl acetate 1285 1.0 1.0 0.9 

nt 2-undecanone 1296 0.1 0.0 0.0 

nt (N)-tridecene 1292 0.1 0.0 0.0 

om α-Terpenyl acetate 1352 0.0 1.1 0.0 

nt Undecanol-N 1374 0.3 0.0  0.1 

sh β-Bourbonene 1384 0.3 0.3 0.0 

ac-13 (E)-β-damascenone 1380 0.3 0.0 0.2 

sh Cyperene 1398 0.2 0.0 0.1 

sh α-Gurujene 1409 0.0 0.0 0.9 



sh β-Caryophyllene 1418 1.5 5.7 8.3 

sh β-Gurjunene 1432 0.5 0.0 0.0 

sh α-Guaiene 1439 0.5 0.0 0.0 

sh Aromadendrene 1439 0.3 0.0 0.9 

sh α-Humulene 1454 0.2 0.0 0.1 

ac-12 Geranylacetone 1453 0.0 0.0 0.2 

sh (E)-β-farnesene 1458 0.0 0.0 0.2 

sh -Himachalene 1476 0.2 0.0 0.0 

sh Germacrene-D 1480 0.0 0.3 0.0 

sh β-Selinene 1485 0.8 0.0 0.6 

sh Cis-β-guaiene 1490 0.2 0.0 0.1 

sh Bicyclogermacrene 1494 0.4 0.0 0.0 

sh Cuparene 1502 1.2 0.3 0.2 

sh 7-epi-α-selinene 1517 1.0 0.2 0.5 

sh δ-Cadinene 1524 1.3 0.1 0.3 

sh α-Calacorene 1542 0.3 0.0 0.0 

sh Selina-3,7(11) diene 1542 0.0 0.0 0.2 

os Elemol 1549 0.3 0.2 0.8 

os Longicamphenylone 1559 0.3 0.4 0.2 

os Trans-nerolidol 1564 0.4 0.0  0.2 

os Spathulenol 1576 1.9 0.5 1.6 

os Caryophyllene oxide 1581 9.8 3.0 10.4 

os Cis-β-elemenone 1594 0.4 0.1 0.2 

os Humulene oxide 1606 0.8 0.3 1.3 

os 1,10-di-epi-cubenol 1614 1.5 0.3 1.0 

os α-Acorenol/g-Eudesmol 1630 0.6 0.0 0.7 

os β-Acorenol 1634 0.3 0.0 0.1 

os Epi-α-cadinol 1640 0.8 0.0 0.3 

os β-Eudesmol 1649 0.2 0.0 0.2 

os α-Cadinol 1653 9.1 1.4 6.2 

os 14-hydroxy-9-epi-E-caryophyllene 1664 1.6 0.0 1.6 

os Cis-14-nor-muurolen 5-en 4-one 1682 0.9 0.1 1.4 

os (E,E)-Farnesol 1722 0.2 0.0 0.2 

os 14-oxy-a-muurolene- 1764 0.2 0.0 0.2 

os (Z)-α-santalol acetate 1786 0.0 0.0 0.4 

nt (N)-octadecane 1800 1.5 0.0 0.1 

  Total   94.0 99.6 98.8 

 
Non Terpene Derivates (nt,%)  2.8 3.5 2.2 

 
Monoterpene Hydrocarbons (mh, %)  1.4 6.0 1.9 

 
Oxygenated Monoterpene (om, %)  51.5 77.1 54.9 

 
Sesquiterpene Hydrocarbons (sh, %)  8.8 6.8 12.4 



 
Oxygenated Sesquiterpene  (os, %)  29.2 6.3 26.9 

  Apocarotenoids (ac,%)   0.3 0.0 0.4 

*All the constituents belong to non terpene derivates (nt), monoterpene hydrocarbons (mh), oxygenated 

monoterpene (om), sesquiterpene hydrocarbons (sh), oxygenated sesquiterpene (os), and apocarotenoids (ac). 


