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Abstract ? provide an excellent review of several classes of Bayesian non-
parametric models which have found widespread application in a variety of
contexts, successfully highlighting their flexibility in comparison with paramet-
ric families. Particular attention in the paper is dedicated to modelling spatial
dependence. Here we contribute by concisely discussing general computational
challenges which arise with posterior inference with Bayesian nonparametric
models and certain aspects of modelling temporal dependence.
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1 Computational challenges in Bayesian nonparametric models

One of the most successful strategies of the Bayesian nonparametric approach
to statistical inference has arguably been semiparametric mixture modelling,
which has proved to be extremely flexible and widely applicable. Semiparamet-
ric modelling assumes the observations are generated by parametric densities
conditionally on the value of a set of parameters, which in turn are assigned a
nonparametric distribution. More formally, we have the hierarchical represen-
tation

Yi|θi
ind∼ ϕ(yi|θi), θi|G

iid∼ G, G ∼ q(G∗, ζ). (1)
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Here Y1, . . . , Yn are the observations, θ1, . . . , θn are a set of latent variables
that parametrise the densities ϕ(yi|θi), and G is a nonparametric distribution
with prior q. The latter is in turn parametrised by a baseline distribution G∗

on the parameter space Θ ⊂ Rd and by a vector of reals ζ.

Upon observation of a dataset, posterior inference requires evaluating the
conditional distribution of the parameters given the data. As is typically the
case in absence of a fully conjugate model, i.e. such that the family of distri-
butions assigned to the parameters is closed upon conditioning to the data,
one needs to resort to Markov chain Monte Carlo methods to sample from the
posterior. Early contributions dealing with this problem date back to ?, ? and
?, and the large use of computer-aided inference has since boosted the inves-
tigation of new and efficient algorithms to deal with posterior analysis under
a variety of modelling assumptions, generating a very lively literature. A brief
introduction to such methods can focus on models as in (??) under the assump-
tion that the mixing distribution G is almost surely a discrete probability mea-
sure with representation G :=

∑
h≥1 whδθ∗h , where {wh} are random weights

that sum up to one and {θ∗h} are iid random points, taken independent of the
weights, from the baseline distribution G∗. When the weights are obtained by
normalising the increments of a time-changed subordinator, or more generally
of a completely random measure (?), this specification coincides with the rele-
vant class of random probability measures given by (homogeneous) normalised
random measures with independent increments (?), which have recently been
object of intense research and in turn include the celebrated Dirichlet process
(?). See ? for a recent review.

A broad classification of algorithms which enable to perform posterior infer-
ence under the above specifications divides them into marginal and conditional
Gibbs sampling methods. Marginal Gibbs samplers are so called because they
integrate out of (??) the random probability measure G. This entails sampling
from

L(dθ1, . . . ,dθn|y) ∝
n∏
i=1

ϕ(yi|θi)L(dθ1, . . . ,dθn) (2)

where L(dθ1, . . . ,dθn) is the prior marginal distribution of a sample from G
and y = (y1, . . . , yn) are the data. This marginal distribution can typically be
characterised in terms of the predictive laws L(θi|θ1, . . . , θi−1, θi+1, . . . , θn),
which gives rise to Pólya urn schemes, in the case of the Dirichlet process (?),
or generalisations thereof. Accordingly, Gibbs samplers with invariant distri-
bution (??) are often called generalised Pólya urns Gibbs samplers.

Since G is discrete, the θi’s will induce a partition ρ = {C1, . . . , Ck} of
{1, . . . , n} with Cj = {i : θi = θ∗j }, where j = 1, . . . , k and θ∗1 , . . . , θ

∗
k’s are the

distinct values in θ1, . . . , θn. Given that {xh} are iid and independent of {wh}
in G, the law L(θ1, . . . , θn) is equivalent to

L(C1, . . . , Ck, θ
∗
1 , . . . , θ

∗
k) = p(n1, . . . , nk)

k∏
j=1

g∗(θ∗j ),
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where ni = card(Ci) and g∗ is the density associated with G∗. The function
p is called exchangeable partition probability function (EPPF), and represents
the law of the random partition ρ. Marginalising over θ∗1 , . . . , θ

∗
k yields back

(??) which becomes

L(C1, . . . , Cn|y) ∝
k∏
j=1

m(yCj
)p(n1, . . . , nk) (3)

where m(yCj
) :=

∫
Θ

∏
i∈Cj

ϕ(yi|θ)dθ is the marginal distribution of the data
in group Cj . The computation now relies on the availability of efficient strate-
gies for sampling from the EPPF, which are model-specific. Efficient solutions
have been found based on the so called Chinese restaurant process (?) and its
generalisations. Furthermore, expression (??) is the starting points for setting
up inference under product partition models with regression on covariates, a
class of models introduced in ? and extended to the spatial setting by ? (cf. also
Section 5.3 of ?).

The above, briefly described, marginal sampling methods are extremely
useful since they allow to reduce an infinite-dimensional computation to a
finite number of operations, entailed by integrating out the random probability
measure. However, a downside is that inference is limited to point estimation
of linear functionals of the population such as, e.g., predictive distributions,
without allowing to quantify the associated uncertainty.

Alternative strategies retain the random probability measure G as part of
the model, to be updated within the Gibbs sampling routine, and are therefore
called conditional methods. Given the series representation of G, this strate-
gies then shift the problem to that of simulating G, conditional on the data,
with small or no approximation error. Truncation methods are the most intu-
itive option, and entail finding an appropriate N in GN :=

∑N
h=1 whδxh

which
guarantees certain desired minimal requirements. Several ways to achieve these
have been proposed, among others, in ??????. These truncation methods are
generally fairly easy to implement, but need to fix a priori, implicitly or ex-
plicitly, some notion of distance between the approximating and the target
measure.

Other, very successful, stochastic truncation methods allow to perform ex-
act sampling from the random probability measure and have proven to be
reliable and relatively easy to implement. These include the slice sampler (??)
and the retrospective sampler (?) together with their adaptations and general-
isations. The slice sampler requires introducing appropriate latent [0,1]-valued
variables ui so that

L(dui,dθi|G) =

∞∑
h=1

1(0,wh)(dui)δxh
(dθi),

whereby integrating u out of the previous recovers L(dθi|G) = G(dθi). Define
now

L(θi|ui, G) = Gui
(dθi) :=

∑
h∈A(ui)

δxh
(dθi)
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where A(ui) := {h : wh > u} is a finite set. From the latter it is clear
that sampling G, conditional on u1, . . . , un, θ1, . . . , θn and the data, entails
updating only finitely-many of its components, namely the pairs (wh, xh) for
h ∈ ∪ni=1A(ui).

The retrospective sampler instead is based on the idea of exchanging the
intuitive order of simulation for sampling from G. This would lead to sampling
the infinite sequences {wh}, {xh}, then draw vi uniformly distributed in (0, 1)

and set θi = xl if
∑l−1
j=1 wl < vi <

∑l−1
j=1 wl, The retrospective sampler instead

first samples vi and then draws as many wh, xh as are needed to meet the
above inequalities.

Gibbs sampling procedures described so far are very appealing strategies
but still computationally intensive methods. This makes the use of mixtures
such as (??) infeasible when dealing with large datasets, or when the com-
putational resources are limited. Recently, variational Bayes methods have
been proposed as an alternative (?). Acting essentially as optimisation algo-
rithms, under these methods the posterior distribution of G is approximated
by a distribution q̃, called variational distribution, of a finite dimensional pro-
cess. The goal is then to adjust the parameters of q̃ in order to minimise the
Kullback–Leibler divergence between q̃ and the posterior. Robustness of vari-
ational Bayes methods is currently one of the open problems in the Bayesian
nonparametric literature, as it is known they can underestimate the model
uncertainty.

2 Temporal dependence in Bayesian nonparametric models

An important line of research in Bayesian nonparametrics on the so called
dependent processes has developed from the ideas introduced in ?, where col-
lections of dependent random probability measures {Gz, z ∈ Z} are consid-
ered, and Gz encodes the current state of the problem in correspondence of
the covariate value z. Cf. ?, Section 3.2.1. Computational methods for depen-
dent models are very often problem-specific extensions of those summarised
in Section ??. Providing a general overview of these computational strategies
would be a difficult task far beyond the scope and possibilities of this discus-
sion. Since Section 5 of ? presents some applications of dependent models for
spatial data, we choose here to briefly discuss some issues related to models
with temporal dependence, with particular emphasis on the role of conjugacy.

A common setting for Bayesian inference with temporal dependence is
that of partial exchangeability, whereby the available data are of the form
yti,1, . . . , yti,ni

, where the indices ti are discrete data-collection times, ni ≥ 1
for all i, and the data yti,j are such that, as j varies,

yti,j | Gti ∼iid Gti .

Hence the data are exchangeable across the ti-sections, but not overall. From
a temporal modelling perspective, one ideally wants the correlation between
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pairs of random measures Gt and Gs increase as the indices t and s get closer,
and decay to zero as t and s grow farther apart.

A non exhaustive list of contributions along this line of investigation which
are based on Dirichlet mixture models includes, among others, ???????. Other
contributions have explored models which go beyond the structure of the
Dirichlet process or closely related constructions, aiming at modelling, for ex-
ample: marginal measures of the dependent process of geometric stick-breaking
type (?), of Pitman–Yor type (?), of GEM type (?), or of gamma type (?);
evolving binary matrices for relational network structures (?), or for dynamic
feature allocation (?); monotonic functional time series (?); emission distribu-
tions for hidden Markov models (??).

Here we are interested in highlighting two roles conjugacy can play in
these approaches to inference. One is with the aim of constructing stationary
temporal models with a built-in simulation scheme available, as done in ???.
The kernel of the idea is to consider joint distributions

L(dθ1, . . . ,dθn,dG) = L(dG)

n∏
i=1

L(dθi | G)

where q is the nonparametric prior on G, and to construct transition functions
through latent variables by writing

P (G,dH) =

∫
L(dH | θ1, . . . , θn)

n∏
i=1

L(dθi | G) (4)

where L(dH | θ1, . . . , θn) is the posterior of H given θ1, . . . , θn. For example, if
p := G(A) ∈ [0, 1] for some fixed set A, the law of G(A) is a beta distribution
and L(dθi | G(A)) is Bernoulli with parameter p, then the above reduces to a
beta-binomial transition

P (p,dp′) = beta(dp′ | a+ θ, b+ n− θ)Binom(θ | n, p)

where (a, b) are prior beta hyperparameters. Note that this is in fact the tran-
sition function of the marginal state of a two-dimensional Gibbs sampler on
the augmented space of (p, θ), which is stationary with respect to a beta. In
a nonparametric framework, if L(dG) = Π(dG | α) for some finite parameter
measure α, and Π is conjugate in the sense that G ∼ Π and X | G ∼ G jointly
imply Π | X ∼ Π(· | f(α,X)) for some function f of the data and the prior
parameter, then (??) yields

P (G,dH) =

∫
Π(dH | f(α, θ1, . . . , θn))

n∏
i=1

G(dθi). (5)

Here Π can be shown to be the reversible measure of the process, so this
strategy allows to construct stationary nonparametric processes. ? discuss
along these lines the Bayesian interpretation of the dynamics of two fami-
lies of continuous-time Dirichlet and gamma dependent models for Bayesian
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nonparametrics, the latter used for example in ?. See also ?. Their transition
functions can be obtained by randomising n in (??) and by introducing ap-
propriate coefficients which make P (G,dH) satisfy the Chapman–Kolmogorov
conditions in continuous time. For example, for these two families one has

Pt(G,dH) =
∑
n≥0

P (Nt = n)

∫
Π(dH | f(α, θ1, . . . , θn))

n∏
i=1

G(dθi), (6)

where Nt is an appropriate Z+-valued continuous-time process which deter-
mines the size of the latent sample (θ1, . . . , θn). This approach has been fol-
lowed explicitly in ?. The resulting transitions are therefore infinite mixtures.
Simulation of these transition functions can in principle be done by resorting
to one of the methods outlined in the previous Section, e.g. by using a slice
sampler twice on the mixture (??) and on the infinite-dimensional random
measure which is the state of process, as done for example in ?. Model-specific
hurdles however may make this unfeasible, e.g. ? develop an exact simulation
scheme for (??) in the finite and infinite-dimensional Dirichlet cases, which
deals efficiently with the non trivial expression for P (Nt = n).

Alternatively, conjugacy can be deliberately sought in order to reduce the
overall Monte Carlo error and predictive uncertainty within a broader compu-
tation. ? for example extend classical posterior characterisations for Dirichlet
and gamma random measures to the two above-mentioned families of depen-
dent processes, conditional on discretely collected data. In particular, sufficient
conditions are identified for these models (cf. ?) that allow to write (??), con-
ditional on y1, . . . , ym collected possibly at different times, as

P (G,dH | y1, . . . , ym) =

m∑
i=0

wi(t)Π(dH | f(α, y1, . . . , yi)).

This reduces (??), upon conditioning to the observed data, to a finite mixture
of distributions in the same conjugate family. Note that the mixture com-
ponents only consider y1, . . . , yi and not the entire sample. The wi(t)’s are
appropriate time-dependent weights which regulate how the posterior mass is
reassigned at different times to the mixture components.
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