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Abstract 
In plants, iron (Fe) deficiency-induced chlorosis is a major problem, affecting both yield 
and quality of crops. Plants have evolved multifaceted strategies, such as reductase 
activity, proton extrusion, and specialised storage proteins, to mobilise Fe from the 
environment and distribute it within the plant. Because of its fundamental role in plant 
productivity, several issues concerning Fe homeostasis in plants are currently intensively 
studied. The activation of Fe uptake reactions requires an overall adaptation of the primary 
metabolism because these activities need the constant supply of energetic substrates (i.e., 
NADPH and ATP). Several studies concerning the metabolism of Fe-deficient plants have 
been conducted, but research focused on mitochondrial implications in adaptive 
responses to nutritional stress has only begun in recent years. Mitochondria are the 
energetic centre of the root cell, and they are strongly affected by Fe deficiency. 
Nevertheless, they display a high level of functional flexibility, which allows them to 
maintain the viability of the cell. Mitochondria represent a crucial target of studies on plant 
homeostasis, and it might be of interest to concentrate future research on understanding 
how mitochondria orchestrate the reprogramming of root cell metabolism under Fe 
deficiency. In this review, I summarise what it is known about the effect of Fe deficiency on 
mitochondrial metabolism and morphology. Moreover, I present a detailed view of the 
possible roles of mitochondria in the development of plant responses to Fe deficiency, 
integrating old findings with new and discussing new hypotheses for future investigations. 
   
 
Abbreviations 
mETCmitochondrial electron transport chainNDininternal type II NADPH 
dehydrogenasesNDexexternal type II NADPH dehydrogenases 
Keywords 
Energy metabolismFe deficiencyTricarboxylic acid (TCA) cycleMitochondriaRespiratory 
chain 
Introduction 
Iron (Fe) is an essential element for all living organisms because it is a cofactor for 
fundamental biochemical activities, such as energy metabolism, oxygen transport and 
DNA synthesis. Because of its redox reactivity [Fe shuttles between the reduced ferrous 
(Fe2+) and the oxidised ferric (Fe3+) forms], which allows it to associate with proteins and 
bind to oxygen, Fe transfers electrons and mediates catalytic reactions (Aisen et al., 
2001). Fe is also potentially toxic because it can catalyse the propagation of reactive 
oxygen species (ROS) and the generation of highly reactive radicals (such as the hydroxyl 
radical) through Fenton chemistry (Koppenol, 1993). The ensuing oxidative stress is 
associated with damage to cellular macromolecules, tissue injury and disease (Galaris and 
Pantopoulos, 2008; Kell, 2009). Notably, the bioavailability of oxidised Fe3+ is poor due to 
the limited solubility of its compounds. Thus, the acquisition, usage and detoxification of 
Fe poses a considerable challenge for cells and organisms, which have evolved 
sophisticated mechanisms to satisfy their metabolic needs and, concomitantly, minimise 
the risk of toxicity (Andrews, 2008; De Domenico et al., 2008; Hentze et al., 2010). In 
plants, most of the concern about Fe nutrition is related to its low availability in soil 
solutions. In fact, notwithstanding its abundance, Fe exists in well-aerated soils as scarcely 
soluble oxides and oxyhydroxides and is therefore not freely available for plant uptake. To 
cope with this problem, plants have developed two main strategies: graminaceous plants 
use a chelation-based strategy (Strategy II), whereas the majority of plants, dicotyledons 
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and non-graminaceous monocotyledons, use a reduction-based strategy (Strategy I) 
(Schmidt, 1999; Curie and Briat, 2003; Abadía et al., 2011) (Fig. 1). The chelation-based 
mechanism (Strategy II) has evolved in grasses, which includes most of the world's staple 
grain crops. Grasses produce molecules of the mugineic acid family called 
phytosiderophores (PSs). The PSs form a stable, hexadentate complex with Fe3+, which 
is the predominant form of Fe found in aerobic soils. PSs are secreted into the rhizosphere 
where they chelate and help to solubilise Fe3+. The Fe (III)–PS complex is then absorbed 
by the root cells through the action of Yellow Stripe1 (YS1) proteins (von Wiren et al., 
1999; Curie et al., 2001; Abadía et al., 2011) (Fig. 1, right panel). In Strategy I, Fe 
acquisition is mediated by a reduction-based mechanism: a ferric chelate reductase (FCR) 
converts Fe (III)-chelates to Fe (II), and an iron regulated transporter (IRT1) moves the ion 
across the plasma membrane (PM) into the cell. Additionally, in most of the Strategy I 
plants studied to date, there is an associated increase in the activity at the PM, i.e., H+-
ATPase transports ions across the membrane, which lowers the pH of the growth medium, 
increases the Fe solubility and generates the electrochemical proton gradient necessary to 
drive ion uptake (Rabotti and Zocchi, 1994; Dell’Orto et al., 2000; Santi et al., 2005; Santi 
and Schmidt, 2008, 2009) (Fig. 1, left panel). The genes encoding these enzymes have 
been identified in several plants (Eide et al., 1996; Robinson et al., 1999; Eckhardt et al., 
2001; Waters et al., 2002, 2007; Santi et al., 2005). Additionally, in Strategy I plants a 
plethora of organic compounds, including carboxylates, phenolics, and flavonoids, are 
increased under Fe deficiency (Cesco et al., 2010; Tomasi et al., 2008). 

 
  Download full-size image 
Fig. 1. Schematic representation of the mechanisms of iron uptake in plant roots. Left 
panel: Dicotyledonous plants induce the so-called Strategy I mechanism, characterised by 
the induction of the FCR, IRT1 and H+-ATPase at the plasma membrane level. Right 
panel: monocotyledonous plants induce the so-called Strategy II mechanism, 
characterised by the production and the extrusion of the PS in the rhizosphere, and the 
uptake of the Fe3+–PS complexes by the plants. Abbreviations: FC-R, ferric chelate-
reductase; IRT1, iron-regulated transporter; PM, plasma membrane; PSs, 
phytosiderophores; YSL1, yellow strip-like 1. 
Under Fe-limited growth conditions, the induction of the Strategy I mechanism is not 
restricted to the activation of FCR, IRT1 and H+-ATPase. A metabolic reprogramming of 
plant root cells is necessary; the activation of reduction processes and the enhanced 
proton extrusion require an adequate energy supply in the form of NADPH and ATP. The 
recharging of such substrates requires the acceleration of the metabolism that is strictly 
linked to energy production (Zocchi, 2006; Vigani and Zocchi, 2009). In fact, several 
papers published in the last 30 years revealed that almost all enzymes belonging to the 
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glucose catabolism, mainly at the glycolysis level, are increased in several Strategy I 
plants (Table 1). Among the metabolic activities that increase in Fe–deficient plants, 
phosphoenolpyruvate carboxylase (PEPC) is one of the most important (see references in 
Table 1). PEPC is a ubiquitous enzyme in plants that catalyses the fixation of bicarbonate 
to phosphoenolpyruvate (PEP) to produce oxaloacetate (OAA) and Pi. To maintain an 
adequate rate of glycolysis, PEP must be consumed at a high rate. Under conditions of Fe 
deficiency, it has been postulated that the activation of PEPC could be the downstream 
driving force for glycolysis that leads to an increase in the rate and production of cytosolic 
acidification to activate H+-ATPase (Zocchi, 2006). Additionally, the activation of PEPC 
could be responsible for the production of organic acids. Indeed, when under Fe 
deficiency, plants produce considerable amounts of organic acids, mainly citrate and 
malate (Abadía et al., 2002 and references therein). The following is a list of potential 
role(s) of increased organic acids under Fe deficiency: (i) to control the cytosolic pH or 
feed the increased activity of H+-ATPase at the PM; (ii) to increase production of 
oxalacetate (as a product of PEPC) and/or malate to replenish the tricarboxylic acid (TCA) 
cycle; and/or (iii) to facilitate the acquisition of Fe from the soil by the root cell (Abadía et 
al., 2002). 
Table 1. Experimental evidences about the increase of some cytosolic enzymes of glucose 
catabolism under Fe deficiency in several Strategy I plants. References are tabulated 
according to the type of induction (activity and/or protein content and/or transcript) 
observed under Fe deficiency with regard the specific enzyme. The numbering of 
references is specified below. 
Enzyme Activity Protein Transcript 
HK 7   
PGI    
ATP-PFK 5; 7; 11; 12 14; 15  
PP-PFK  14  
F1,6BPA  8; 13; 14; 15 6 
G3PDH 1; 2; 5; 11; 12 12; 13; 15 6 
TPI  8; 13 6 
PGK  13; 14 6 
PGM  8; 14; 15 6 
Enolase  8; 13; 14; 15 6 
PK 5; 7; 11; 12  6 
PEPC 2; 3; 4; 7; 9; 10; 11; 12; 16 3; 8; 16 6; 10; 17 
G6PDH 1; 2; 4; 11; 12 14; 15  
(1) Sijmons and Bienfait (1983); (2) Rabotti et al. (1995); (3) De Nisi and Zocchi (2000); (4) 

López-Millán et al. (2000a,b); (5) Espen et al. (2000); (6) Thimm et al. (2001); (7) 
Zocchi et al. (2007); (8) Li et al. (2008); (9) López-Millán et al. (2009); (10) Andaluz et 
al. (2009); (11) M'Sehli et al. (2008); (12) Jelali et al. (2010); (13) Rellán-Álvarez et al. 
(2010); (14) Donnini et al. (2010); (15) Rodríguez-Celma et al. (2011); (16) Slatni et al. 
(2011); (17) De Nisi et al. (2010). Abbreviations: ATP-PFK, ATP-dependent 
phosphofructokinase; F1,6BPA, fructose 1,6-bisphosphate aldolase; G6PDH, 
glucose-6-phosphate dehydrogenase; GAPDH, glyceraldehyde 3-phosphate 
dehydrogenase; HK, hexokinase; PEPC, phosphoenolpyruvate carboxylase; PGI, 
phosphoglucoisomerase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate 
mutase; PK, pyruvate kinase; PP-PFK, PP-dependent phosphofructokinase; TPI, 
triosephosphate isomerise. 

Overall, the upregulation of glycolysis under Fe deficiency provides: (i) ATP synthesis to 
sustain the major activity of the H+-ATPase; (ii) the formation of reducing equivalents for 
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the FC-R; (iii) the formation of PEP and (iv) a contribution to the regulation of cytosolic pH. 
Because Fe deficiency induces an energy demand in the cell, it is critical to understand 
how this stress affects mitochondria. 
Plant mitochondria and iron 
Mitochondria play a key role in energy transduction, and are the site of aerobic respiration, 
a process common to almost all eukaryotic organisms that releases a large amount of free 
energy in the cell. Mitochondria possess two membranes that divide the organelle into four 
compartments: (i) the outer membrane (OMM); (ii) the region between the two membranes 
or intermembrane space (IMS); (iii) a highly invaginated inner membrane (IMM); and (iv) 
the matrix, which is the aqueous phase contained within the inner membrane (Sweetlove 
et al., 2007). The IMM is the site of oxidative phosphorylation (OXPHOS) electron 
transport chain coupling NADH and FADH2 oxidation, and reduction of oxygen, to proton 
translocation and OXPHOS. The TCA cycle, which is responsible for the oxidative 
decarboxylation of organic acids leading to reduction of NADP and FAD and substrate-
level phosphorylation of ADP to ATP, takes place in the matrix (Millar et al., 2011 and 
references therein). 
The mitochondrion occupies a central place in the metabolic network of eukaryotes. 
Essential metabolic processes occur within the organelle, and several other metabolic 
pathways either converge on or derive from the mitochondrion. In plants, mitochondria 
provide precursors for a number of essential biosynthetic processes (e.g., nitrogen fixation 
and the biosynthesis of amino acids, tetrapyrroles and vitamin cofactors, Douce, 1985; 
Douce and Neuberger, 1989; Mackenzie and McIntosh, 1999). 
Interestingly, mitochondria are also a focal point of Fe metabolism. An analysis of the 
metallome of mitochondria isolated from Arabidopsis revealed a 26:8:6:1 molar ratio for 
iron:zinc:copper:manganese (Tan et al., 2010), suggesting that Fe is the primary 
micronutrient present in the mitochondrion (Nouet et al., 2011). Mitochondria contain a 
large amount of metalloproteins that require Fe to carry out their function (Bertini and 
Rosato, 2007). In fact, several enzymes belonging to both the respiratory chain and to the 
TCA cycle are Fe-containing proteins. Moreover, crucial steps of the Fe–S cluster 
assembly for the entire cell take place in the mitochondria, suggesting an important role for 
this compartment in Fe handling by the cell. 
Iron deficiency and mitochondria are strongly linked because this stress greatly induces 
the Strategy I activities that lead to a great energy demand, thus the participation of the 
mitochondria would be required. 
Iron uptake and handling in plant mitochondria 
Once inside the root cell, Fe can face different fates: (i) chelation by citrate and stored in 
vacuole or transported to the shoot; (ii) sequestration by ferritin in the cytosol; or (iii) 
transportation to organelles, such as mitochondria (Conte and Walker, 2011). The 
processes of Fe transport into plant mitochondria are partially unknown. The OMM 
permeability is conferred by a family of porin proteins, forming channels for the free 
diffusion of a wide range of molecules, and no specific Fe transporter has been identified 
so far. In the IMM, the Fe importer MIT1 (Mitochondrial Iron Transporter 1) has been 
recently identified, which is essential for plant growth and development (Bashir et al., 
2011). Furthermore, the ABC transporter STA1/AtATM3 (ATP-binding cassette 
Transporters of Mitochondria 3) has been characterised in Arabidopsis and implicated in 
the export of Fe–S clusters (Kushnir et al., 2001). In addition, FCR(s), encoded by FRO 
genes in plants, might be involved in mitochondrial Fe transport because AtFRO3 and 
AtFRO8 contain mitochondria-targeting sequences and are mainly located in root and 
shoot veins, respectively (Mukherjee et al., 2006). These findings suggest that a reduction-
based uptake could also take place in the IMM of mitochondria. Moreover, the oxidising 
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conditions found in the mitochondrial IMS (Hu et al., 2008) would indicate the need for a 
reduction-based mechanism (Abadía et al., 2011). 
Once Fe is inside the mitochondria, it can be utilised in several pathways. The most 
important pathways for mitochondrial functionality and cell viability are Fe–S cluster 
assembly, haem biosynthesis and Fe storage. 
Iron–sulphur (Fe–S) clusters are cofactors that are chemically simple but functionally 
versatile. In fact, they represent a prosthetic group of proteins that are essential to life 
processes, such as photosynthesis, respiration and nitrogen fixation. Fe–S clusters consist 
of Fe and acid-labile sulphide (Balk and Lobréaux, 2005). Plant mitochondria operate the 
so-called ISC (Iron Sulphur Cluster) pathway for the assembly of the Fe–S cluster. 
Recently, this pathway was extensively reviewed (Balk and Pilon, 2011). Interestingly, the 
Fe–S cluster assembly capability of plant mitochondria is essential not only for 
mitochondrial Fe–S proteins but also for cytosolic Fe–S protein synthesis. Indeed, in the 
cytosol, the so-called Cytosolic Iron–sulphur protein Assembly (CIA) machinery is present. 
Cytosolic Fe–S protein synthesis depends on ISC components and a mitochondrial ABC 
transporter (ATM3) that has been proposed to export an unidentified product of the ISC 
pathway, allowing Fe–S cluster assembly and therefore Fe–S protein synthesis in the 
cytosol by the CIA machinery (Balk and Pilon, 2011 and references therein). 
There is also evidence that mitochondria can synthesise haem. Haem is a prosthetic 
group formed by an Fe atom that coordinates the binding of a large heterocyclic organic 
ring called a porphyrin. Not all porphyrins contain Fe, but a substantial fraction of 
porphyrin-containing metalloproteins has haem as their prosthetic group: the so-called 
haemoproteins. Haem forms the prosthetic group of photosynthetic and respiratory 
cytochromes involved in energy transduction and oxidases, such as catalase, peroxidase 
and NADPH oxidase (Sweetlove et al., 2007 and references therein). In plant cells, the 
presence of the haem biosynthetic pathway in plant mitochondria is still a matter of 
debate. However, some authors report that the enzymes that catalyse the final steps of 
haem biosynthesis, such as ferrochelatase (which catalyses the insertion of ferrous Fe into 
protoporphyrin IX) and protoporphyrinogen oxidase, are also present mitochondria and in 
plastids (Sweetlove et al., 2007 and references therein). 
The mitochondrial proteins that are critical for Fe homeostasis are ferritin and frataxin. 
Generally, ferritin is considered the primary Fe storage protein in the cell. Ferritin provides 
protection against Fe toxicity and oxidative damage, and its expression is increased upon 
exposure to an excess of Fe (Eisenstein, 2000; Arosio et al., 2009; Briat et al., 2010a,b). 
Zancani et al. (2004) reported the mitochondrial localisation of ferritin in both Pisum 
sativus and Arabidopsis thaliana. Moreover, recently, the ferritin isoform FER4 was 
identified in the mitochondria in Arabidopsis heterotrophic cells (Tarantino et al., 2010b). A 
fer4 Arabidopsis mutant displays different rearrangements of its respiratory machinery but 
is not impaired in its development or response to abiotic stress (Tarantino et al., 2010a,b). 
Although the precise role of ferritin in plant mitochondria has not been resolved 
completely, there is evidence for its role in Fe homeostasis. Frataxin is a conserved 
mitochondrial protein implicated in cellular Fe homeostasis, which functions as an Fe 
chaperone that delivers Fe for the Fe–S cluster and haem biosynthesis (Malinardi et al., 
2011 and references therein). Frataxin deficiency causes severe disease in both humans 
and plants; the absence of frataxin induces severe oxidative stress in mitochondria, while 
its overexpression allows the cell to be more resistant to oxidising agents (Møller et al., 
2011 and references therein). 
Overall, it is increasingly evident that mitochondria can be considered as an ‘iron-handling 
area’ within the cell, possessing several specific enzymes for the maintenance of this 
element. Mitochondria store and process Fe to synthesise a large number of essential 
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proteins for their own functionality and for that of the entire cell. 
Mitochondrial respiration and Fe deficiency 
In the mitochondria of all eukaryotes, the principal respiratory electron transport chain 
consists of a series of membrane-bound redox centres that catalyse the multi-step transfer 
of electrons from NADH and FADH2 to oxygen. The mitochondrial electron transfer chain 
(mETC) facilitates a number of exergonic redox reactions and conserves energy through 
proton translocation. The standard mETC consists of four multi-centred protein complexes 
(referred to as Complexes I through IV). In addition, the F1F0-ATP synthase (Complex V), 
which does not have electron transfer activity, provides a path for passive proton diffusion 
into the matrix and uses the free energy released by this spontaneous movement to drive 
the phosphorylation of ADP. In addition to the electron transfer chain shared by all aerobic 
eukaryotes, plant mitochondria also possess novel pathways for both the oxidation of 
NADH and the reduction of oxygen. These bypass proteins, the so-called alternative type 
II NADPH dehydrogenases [located both in the external surface of the IMM (NDex) and 
the internal surface of the IMM (NDin)] and the alternative oxidase (AOX), do not pump 
protons, and the free energy released as electrons flow through them is lost as heat. 
These additional enzymes allow a great deal of flexibility in the oxidation of NADPH in 
plants. Type II NADPH dehydrogenases reduce ubiquinone and thus circumvent 
respiratory Complex I, whereas AOX bypasses Complexes III and IV of the cytochrome 
pathway by directly oxidising ubiquinol. Millar et al. (2011) recently reviewed the specific 
molecular and genetic features of each enzyme of the respiratory chain. 
In the absence of Fe, the levels of some Fe-containing components (cytochromes and Fe–
S clusters) were greatly diminished in the mitochondria of Fe-deficient sycamore cells 
(Pascal and Douce, 1993) and cucumber roots (Vigani et al., 2009). In Fe-deficient 
sycamore cells, the activity of Complex II was affected, whereas Complexes I, III, and IV, 
and ATP synthase, were unimpaired. In contrast, in cucumber root, the number of Fe ions 
required for the correct assembly of each mETC complex (unit) and their relative activities 
under Fe-deficient conditions are highly correlated: Complex IV, which has only two Fe 
atoms, showed a decrease in activity of approximately 50%, whereas Complexes I and II, 
which require at least 20 and 10 Fe atoms, respectively, showed a greater decrease (95% 
and 77%, respectively). A proteomic investigation of Medicago truncatula roots under Fe 
deficiency showed a decreased level of some Fe-containing proteins related to the 
respiratory chain (e.g., 76 kDa mitochondrial Complex I) (Rodríguez-Celma et al., 2011). In 
contrast, a proteomic study performed on Fe-deficient Arabidopsis roots showed an 
increased level of several proteins belonging to the respiratory chain. These proteins 
included cytochrome c oxidase, the ubiquinol-cytochrome c reductase complex 
ubiquinone-binding protein and three components of mitochondrial Complex I (Lan et al., 
2011). The contrasting results obtained in cucumber compared with Arabidopsis might be 
explained by the different degree of Fe deficiency conditions used in the studies. 
Overall, root mitochondria are strongly affected by Fe starvation because they require at 
least forty 40 Fe atoms per respiratory unit to function (Vigani et al., 2009). Nevertheless, 
when Fe availability is low, either due to absence, as in the cucumber study, or low supply 
(Fe content in the nutrient solution is low but not zero), as in the Arabidopsis (Lan et al., 
2011) and sycamore cell (Pascal and Douce, 1993) studies, the mitochondria are still 
working. 
Under increased Fe deficiency, it is possible to observe an interesting regulation of the 
respiratory chain in cucumber root; the dehydrogenase pathways (the enzymes able to 
reduce the UQ pool) of the mETC are more affected with respect to the cytochrome 
pathways (the enzymes able to oxidase the UQ pool). The strong decrease of Complex I 
and Complex II activities in the absence of Fe is compensated by the activation of the type 
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II alternative NADPH dehydrogenase (see above). In fact, both the enzymatic activity and 
the protein level of the NDex are highly induced compared with the NDin (Vigani and 
Zocchi, 2010). These findings suggest that the respiratory chain could contribute to 
cytosolic NADPH turnover through the NDex, notwithstanding that the mETC is strongly 
inhibited by Fe deficiency (Vigani and Zocchi, 2010). Accordingly, Higa et al. (2010) 
observed an induction of type II alternative NADPH dehydrogenase in the Fe-deficient 
roots of Hyoscyamus albus that was similar to that in cucumber, where low Fe availability 
decreases the main dehydrogenase enzymes of the mETC (Complexes I and II) and 
induces the alternative dehydrogenase pathways. Interestingly, Higa and co-workers 
(2010) stated that Complex I and Complex II require not only a large number of Fe ions 
but also flavins as cofactors. Interestingly, flavin accumulation and excretion are induced 
upon Fe deprivation in various plant species (Pound and Welkie, 1958; Nagarajah and 
Ulrich, 1966; Kannan, 1988; Welkie et al., 1990). It has been suggested that flavins, which 
accumulate in Fe-deficient roots, could act as electron donors or as cofactors for the FCR 
(Rodríguez-Celma et al., 2011; López-Millán et al., 2000a,b; Gonzalez-Vallejo et al., 1998; 
Welkie and Miller, 1993) because this enzyme contains an FAD-binding sequence motif 
(Schagerlof et al., 2006). However, it is rational to consider that if Complex I and Complex 
II proteins were prevented from becoming fully functional by Fe deficiency, the unused 
flavins might be transported outside the mitochondria, reaching the apoplast and the 
rhizosphere (Higa et al., 2010). 
Generally, Fe deficiency affects the respiratory chain by limiting the activity of Fe-
containing enzymes and inducing the alternative enzymes. This regulation allows the 
respiratory chain to partially satisfy the energy demand of the cell. 
TCA cycle and Fe deficiency 
The TCA cycle is a universal feature of the metabolism in aerobic organisms. It begins with 
the condensation of OAA and acetyl-CoA, proceeds via a series of oxidative steps that 
release two carbon atoms as CO2, and ends with the regeneration of OAA (Fig. 2). In 
plants, acetyl CoA is derived from the end product of glycolysis, pyruvate, by the action of 
mitochondrial pyruvate dehydrogenase. The pyruvate is either imported directly from the 
cytosol or synthesised by the mitochondrial NAD-malic enzyme from malate that, in turn, is 
derived from cytosolic PEP. PEP carboxylase generates cytosolic OAA, which is readily 
converted to malate and aspartate. All three metabolites can be imported into the 
mitochondria to provide a source of malate for the NAD-malic enzyme (Sweetlove et al., 
2010). 
 
  Download full-size image 
Fig. 2. Representation of the changes occurring at the TCA cycle level under Fe 
deficiency. (A) Hypothetical non-cyclic TCA mode occurring in the case of decrease of 
aconitase and SDH activities under Fe deficiency. (B) Hypothetical non-cyclic TCA mode 
occurring in the case of decrease of SDH activity under Fe deficiency. 
Several authors have suggested that Fe deficiency induces the activation of the TCA 
cycle. Li et al. (2008) observed that the expression of several TCA enzymes (isocitrate 
dehydrogenase, aconitase, succinyl-CoA ligase, and succinate dehydrogenase) was 
simultaneously upregulated in Fe-deficient tomato roots. López-Millán et al. (2009) 
showed that the total organic anion concentrations in tomato root tips did not change 
significantly with Fe deficiency, but their composition was markedly changed. In the control 
root tips, the major organic anions were oxalate, 2-OG and malate, whereas in Fe-deficient 
root tips, citrate and malate accounted for 90% of the total organic anion concentrations. 
Moreover, the authors showed that the activities of five enzymes (ICDH, aconitase, MDH, 
fumarase and CS) involved in organic acid metabolism increased significantly in the tissue 
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extracts of Fe-deficient root tips when compared with the Fe-sufficient tips. The authors 
pointed out that the upregulation of the TCA cycle might have special significance for roots 
responding to Fe deficiency. The TCA cycle provides abundant organic acids, including 
citrate and malate, which play an important role as chelators for Fe transport in plants 
(López-Millán et al., 2000b; Tiffin, 1966). A metabolite study in Beta vulgaris revealed 
large increases in organic acids related to the TCA cycle (Rellán-Álvarez et al., 2010). 
Additionally, a proteomic analysis performed on Medicago truncatula roots revealed an 
increase in the amount of several TCA cycle enzymes under Fe-deficient conditions 
(Rodríguez-Celma et al., 2011). All these data suggest that the TCA cycle plays an 
important role in the Fe deficiency response by providing organic acids and protons for the 
acidification of the rhizosphere. 
Nevertheless, none of the studies mentioned above involved the isolation of purified 
mitochondria. Therefore, they were unable to discriminate between the identical reactions 
occurring in the mitochondrial matrix and in the cytosol (i.e., reactions catalysed by 
aconitase, malate dehydrogenase and isocitrate dehydrogenase). One complication 
inherent in studying the TCA cycle is that almost all the steps in the pathway can be 
bypassed by steps in the cytosol; however, the reactions catalysed by citrate synthase and 
succinate dehydrogenase are exceptions. 
Like the respiratory chain, the TCA cycle possesses two Fe-containing enzymes [i.e., 
aconitase and the succinate dehydrogenase (Complex II of the respiratory chain)]. As 
previously discussed, the succinate dehydrogenase activity in purified mitochondria 
obtained from cucumber roots (Vigani et al., 2009) and sycamore cells (Pascal and Douce, 
1993) strongly decreased under Fe deficiency, suggesting that the TCA cycle was 
decelerated at least at some point. 
Sweetlove et al. (2010) recently reviewed the different carboxylic acid metabolism flux 
modes predicted from metabolic models and concluded that cyclic TCA could not be just a 
cycle. They propose that the cyclic mode of TCA provides efficient energy transfer from 
the carbon bonds of respiratory substrates to ATP, suggesting that it might not be 
necessary to maintain the cyclic flux if the demand for ATP is low or if alternative sources 
of ATP are available. Consistent with this argument, a recent flux-balance model of 
heterotrophic Arabidopsis metabolism demonstrates that a cyclic TCA flux is only 
established as the demand for ATP increases in a cell (Poolman et al., 2009; Sweetlove et 
al., 2010). 
It was proposed that the effect of Fe deficiency on the TCA cycle could induce different 
changes. Considering the expected decrease of aconitase and succinate dehydrogenase 
activities under Fe deficiency, the TCA cycle could shift from a circular to a linear mode, 
creating at least two metabolic scenarios (Fig. 2). First, if both aconitase and succinate 
dehydrogenase activities are strongly affected by Fe deficiency, the TCA cycle could 
similarly work as in the non-cyclic flux mode as predicted from the analysis of an enzyme 
kinetic model (Steuer et al., 2007); malate is imported into the matrix and then converted 
to citrate, which is subsequently exported from mitochondria (Fig. 2A). This hypothetical 
scenario is plausible because there is evidence for the accumulation of the di- and 
tricarboxylic acid carrier (DTC) protein under Fe deficiency, suggesting an increased 
transfer of organic acids, mainly malate and citrate, between the mitochondria and cytosol. 
Additionally, increased citrate export from the mitochondria to the cytosol has been 
observed in several species under Fe deficiency (Vigani and Zocchi, 2009 and references 
therein). However, there is no direct evidence that mitochondrial aconitase is affected by 
Fe deficiency, even if it would be expected. 
Indeed, the second scenario implies that Fe deficiency affects only succinate 
dehydrogenase. In this case, the TCA cycle could work as in the non-cyclic flux mode 
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predicted under conditions of low ATP demand in a genome-scale metabolic model of 
Arabidopsis (Poolman et al., 2009; Sweetlove et al., 2010); malate and/or OAA are 
imported into the matrix and then converted to 2-OG, which is subsequently exported from 
the mitochondrion together with citrate (Fig. 2B). This hypothesis is also reasonable 
because there is evidence for the strong inactivation of Complex II under Fe deficiency 
(Pascal and Douce, 1993; Vigani et al., 2009). 
Taking into consideration that the TCA cycle does not necessarily support a cyclic flux and 
that the actual flux distribution through it will reflect the function of the whole metabolic 
network, a combination of these non-cyclic TCA modes could occur under Fe deficiency. 
Furthermore, the presence of a cyclic or non-cyclic mode of TCA might depend on the 
degree of stress. Indeed, it could be hypothesised that when the amount of Fe in the cell is 
close to zero, Fe-containing enzyme activities are inhibited, which leads to a non-cyclic 
TCA mode. When the amount of Fe is low but not depleted, the Fe-containing enzymes 
might still function, leading only to a slowing of the TCA cycle. In any case, the shift from a 
cyclic to a non-cyclic TCA mode under Fe deficiency could result from a necessity to 
maintain a functioning metabolism, even if important Fe-containing enzymes are not 
synthesised. 
Mitochondrial dynamics in Fe-deficient plants 
The morphology and ultrastructure of the mitochondria are also affected by Fe deficiency. 
In fact, mitochondria from Fe-deficient sycamore cells displayed a more dilute matrix with 
less pronounced cristae (Pascal and Douce, 1993). Interestingly, in Fe-deficient cucumber 
roots, mitochondria displayed a particular handlebar-like structure and appeared to 
aggregate (Vigani et al., 2009) (Fig. 3A). However, the particular shape that was observed 
in Fe-deficient cucumber roots was also observed in the wild-type heterotrophic cells of 
Arabidopsis grown under control conditions, indicating that this shape is probably not 
specifically related to Fe deficiency (Tarantino et al., 2010b). A similar handlebar-like 
structure observed in Fe-deficient cucumber root has been observed in the Arabidopsis 
drp3a mutant (Logan, 2006, 2010) (Fig. 3). DRP3A is a dynamin-like protein that is 
required for the maintenance of mitochondrial size and number in Arabidopsis and rice; 
this protein has been partially localised to the poles of mitochondria and to sites of 
constriction (Arimura et al., 2004; Fujimoto et al., 2004; Logan et al., 2004). The disruption 
of DRP3A results in an aberrant mitochondrial morphology that is characterised by an 
increase in the size of individual mitochondria and a corresponding decrease in the 
number of mitochondria per cell (Logan, 2010 and references therein). Interestingly, drp3a 
mutants displayed mitochondria with the presence of a matrixule, a thin protuberance of 
up to many micrometers in length that extends from one pole of a mitochondrion (Fig. 3B). 
It has been proposed that the presence of numerous mitochondria with matrixules in drp3a 
mutants is linked to the function of DRP3A as a component of the mitochondrial division 
machinery (Logan, 2010 and references therein). 
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Fig. 3. Morphological comparison of mitochondria from the Fe-deficient cucumber root 
(Vigani et al., 2009; kind permission to reproduce from John Wiley and Sons, license 
number: 2740690508918) and dpr3a mutant of Arabidopsis (Logan et al., 2004; kind 
permission to reproduce from Oxford University Press, license number: 2740640528797). 
(A) TEM analysis displaying the handlebar-like morphology observed in Fe-deficient 
cucumber roots (bar = 1 µm). (B) GFP imaging analysis of the mitochondria from 
Arabidopsis dpr3a mutants (bar = 10 µm). This mutant displayed mitochondria with the 
presence of matrixule, a thin protuberance of up to many micrometers in length that 
extends from one pole of a mitochondrion. Interestingly, similar matrixule formation seems 
to occur in Fe-deficient cucumber plants. Abbreviations: CW, cell wall; M, mitochondrion; 
V, vacuole. 
The higher plant chondriome (all the mitochondria in a cell, collectively) is a highly 
dynamic structure composed predominantly of physically discrete organelles. This 
structure contrasts with that of most animal cell types and yeast cells in which the 
chondriome is frequently organised into long tubules or reticula. An analysis of the 
mitochondrial morphology in vivo has shown that higher plant mitochondria are highly 
pleomorphic, although most frequently they are spherical to sausage-shaped organelles. 
Mitochondria are also dynamic in terms of their movement within cells, moving rapidly 
along cellular structures, such as actin and microtubule cytoskeletal elements (Logan, 
2006, 2010 and references therein). The primary mitochondrial processes that regulate the 
shape and the movement of the organelles in the cell are fusion and fission. These two 
processes compensate for one another, leading to the maintenance of a relatively 
constant number of mitochondria in the cell (Logan, 2006, 2010). Several authors have 
reported that the number of mitochondria was increased in Fe-deficient cells (Landsberg, 
1986, 1994; Pascal and Douce, 1993; Dell’Orto et al., 2002); therefore, it is rational to 
hypothesise that this nutritional stress could modify the mitochondrial fusion/fission ratio. 
Because the plant chondriome is organised as a discontinuous whole, proper 
mitochondrial function requires fine control over the mitochondrial motility and cellular 
distribution. In fact, it is intrinsic in the discontinuous whole hypothesis that there is a ‘need 
to meet’, where the need is to provide a mechanism for the exchange of mitochondrial 
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proteins; the fusion of physically discrete organelles requires mitochondrial movement 
(Logan, 2010). The control of mitochondrial positioning and direction of movement are the 
result of the coordinated activity of myosin and the rate of actin turnover (Logan, 2010). 
Under Fe deficiency, the amount of actin decreases (Donnini et al., 2010), whereas the 
number of mitochondria increases. Mitochondrial motility has not been studied in Fe-
deficient plants, and we do not known exactly how cells organise the cytoskeleton to allow 
organelle and vesicle trafficking in the cytosol. We might speculate that the increased 
number of mitochondria observed in Fe-deficient roots in several studies could be in 
response to an inefficient cytoskeletal structure to enhance the probability of mitochondrial 
contact, thus maintaining the discontinuous whole structure of the plant chondriome. In 
this way, the cell could satisfy the “need to meet” hypothesis. Interestingly, under Fe 
deficiency, mitochondrial contact results from a strongly affected metabolism in which the 
merging of mitochondria could help them to overcome the lack of Fe and at the same time, 
facilitate cell survival. Moreover, the probable shift towards a non-cyclic TCA mode 
increases mitochondrial communication with external components, within the cytosol and 
with other mitochondria. The fact that under a mild Fe deficiency, one of the first enzymes 
affected is Complex II (Pascal and Douce, 1993) would mean that mitochondria, 
perceiving an upcoming Fe deficiency, reprogram their own function, adjusting both the 
respiratory chain and the TCA cycle by acting on only one enzyme. 
Role of mitochondria in controlling the NADPH reduction levels under Fe deficiency 
The presence of type II NADPH dehydrogenases with different properties on both sides of 
the mitochondrial inner membrane allows the mETC to specifically regulate the reduction 
of either mitochondrial or cytosolic NADH or NADPH (Rasmusson and Wallström, 2010 
and references therein). Importantly, metabolite exchangers, together with the activity of 
the TCA cycle enzymes, mediate reductant shuttling across the inner mitochondrial 
membrane, modulating the turnover of reducing equivalents in both the mitochondria and 
the cytosol. Indeed, the reduction of NADH in the matrix and the cytosol are believed to 
equilibrate primarily with the malate/OAA ratios in each compartment, while the reduction 
of NADPH pools between the matrix and cytosol is equilibrated through the export of 
reductant from mitochondrion to the cytosol by both a citrate valve that exchanges citrate 
and 2-oxoglutarate (Igamberdiev and Gardeström, 2003) and a malate valve that 
exchanges malate and OAA (Scheibe, 2004). 
In this context, the reducing power turnover of Fe-deficient cells undergoes a fine and 
complex regulation to satisfy the metabolic request. Indeed, because both the cytosolic 
NADPH and the mitochondrial NADPH need to be re-oxidised to keep the catabolic 
pathways working, a less active respiratory chain could impair this turnover, leading to a 
higher reduced/oxidised NADP ratio, as shown by the increased NADPH/NADP+ ratio in 
Fe-deficient bean and Plantago lanceolate (Sijmons et al., 1984; Schmidt and Schuck, 
1996). However, in Fe-deficient sugar beet and tomato roots, the NADPH/NADP+ ratio 
was lower than the relative control conditions (López-Millán et al., 2000a,b, 2009), 
suggesting that Fe deficiency might stimulate the NADPH-oxidising activities more that the 
NADP+-reducing activities. 
To oxidise the large production of NADPH from metabolism, the cell activates reactions 
that are able to consume NADPH. López-Millán et al. (2000a,b, 2009) reported that Fe 
deficiency increased the activities of fermentative enzymes, such as lactate 
dehydrogenase (LDH), pyruvate decarboxylase (PDC) and several other cytosolic NADH-
consuming enzymes, which could contribute to the oxidation of the pyridine nucleotide 
pool in tomato and sugar beet roots. These data were also confirmed by microarray 
analysis of Fe-deficient Arabidopsis (Thimm et al., 2001) and proteomic data obtained 
from cucumber roots, in which putative alcohol dehydrogenase and malate 
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dehydrogenase proteins accumulated under Fe deficiency (Donnini et al., 2010). The 
mitochondria might participate in the oxidation of NADPH under Fe deficiency by the 
activation of their alternative pathways (i.e., NADPH DHs). The external and internal 
localisation of these enzymes in the inner mitochondrial membrane allows them to oxidise 
the NADPH on both the cytosol and the matrix sides (Vigani and Zocchi, 2010). 
Because Fe deficiency leads to a strong energy demand in the cell, the activation of 
mitochondrial metabolism would represent the perfect solution for the cell. However, the 
lack of Fe strongly affects mitochondrial functionality. Nevertheless, the activity of the plant 
mitochondria results in a complicated reprogramming of their own metabolism. At the level 
of the respiratory chain, alternative pathways are induced, bypassing the impaired 
complexes. The TCA pathway could shift from a cyclic to a non-cyclic mode, bypassing the 
limiting step (for instance, succinate dehydrogenase) and improving external 
communication. This bypass might be accomplished by inducing both the anaplerotic 
reactions to produce organic acids (which are useful for the responses to Fe deficiency) 
and the metabolite shuttles to allow the recycling of reducing power. The cell, in some 
way, helps mitochondria satisfy their “need to meet”, which would be high under Fe 
deficiency, by increasing the number of mitochondria. To facilitate mitochondrial activity, 
the cell could obtain useful compounds for rhizosphere acidification and Fe chelation, such 
as organic acid and flavins, which result from the disuse of Complexes I and II (Fig. 4). 
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Fig. 4. Schematic representation of the role of mitochondria in the Fe-deficient 
dicotyledonous root cell. Under Fe deficiency, the activation of Strategy I responses (FCR, 
IRT1, H+-ATPase) requires a large supply of energetic substrates [i.e., ATP and NADPH]. 
Mitochondria cannot meet this energetic requirement because Fe deficiency affects 
several mitochondrial enzymes. Thus, the cell activates other pathways (e.g., glycolysis) to 
overcome the energetic emergency status. Nevertheless, mitochondria participate in 
metabolic responses induced by Fe deficiency by activating their own alternative 
respiratory pathways. Moreover, unused flavin compounds (i.e., FMN) could be transferred 
to the cytosol and extruded into the rhizosphere, facilitating the Fe reduction activity. 
Overall, the metabolic alteration of Fe-deficient root cells depends on the mitochondrial 
functionality. This organelle, which represents the “Iron-Area” of a root cell, seems to be 
the main target of the Fe deficiency, which might also become a starting point for whole 
cellular metabolic reprogramming to overcome this emergency energetic status (Vigani 
and Zocchi, 2010). The Fe deficiency establishes a cellular effort in which mitochondria 
activate alternative pathways to sustain NADPH turnover and organic acid synthesis. In 
this way, mitochondria facilitate the increase of glycolysis, which becomes a strong source 
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of energy substrates for the activation of the response to Fe deficiency. 
Could mitochondria be involved in the signal transduction of the Fe-deficient status of the 
cell? 
The mitochondrion occupies an integrated position in the metabolic network of plants, 
reflecting the evolutionary origins of the organelle. Indeed, through its integration into the 
ancestral eukaryotic cell, the mitochondrion provided a new arsenal of metabolic 
capabilities (Martin and Russell, 2003; Sweetlove et al., 2007). To communicate with 
external compartments, mitochondria generate several compounds as signals, such as 
ROS and organic acid. It is well known that mitochondria produce ROS that not only cause 
damage to cellular components but are also involved in intracellular signalling; H2O2 is 
considered the most likely messenger (Neil et al., 2002; Møller et al., 2011). Importantly, 
abiotic stress influences mitochondrial H2O2 production (Møller, 2001), which could 
generate secondary signals and therefore transduce the oxidative damage of the 
mitochondrial component to the cell (Halliwell, 2006; Rhoads et al., 2006). Indeed, 
because H2O2 does not have the required specificity to regulate specific genes, it has 
been proposed that (carbonylated) peptides deriving from the proteolytic degradation of 
oxidised protein could irreversibly be the specific secondary ROS messenger from 
mitochondria to regulated source-specific genes (Møller and Sweetlove, 2010; Møller et 
al., 2011). The relationships between Fe deficiency and secondary oxidative stress remain 
controversial because iron is either a constituent or a cofactor of many antioxidant 
enzymes and simultaneously acts as a prooxidant through the Fenton reaction (Halliwell, 
2006). However, Fe deficiency is associated with an accumulation of ROS (Donnini et al., 
2011). In addition to ROS, it has been suggested that TCA-cycle intermediates might be 
potent regulators of gene expression in a manner analogous to sugars (Finkemeier and 
Sweetlove, 2006; Sweetlove et al., 2007). Indeed, the intermediates of the TCA cycle 
could communicate the mitochondrial metabolic status to the cytosol by virtue of the 
presence of di- and tri-carboxylic acid transporter (DTC) proteins located in the inner 
mitochondrial membrane (Picault et al., 2002). The exogenous application of citrate, 
malate and 2-oxoglutarate could induce AOX expression (Gray et al., 2004), suggesting 
that it is the extra-mitochondrial levels of the TCA cycle metabolites that are sensed. 
Under Fe deficiency, a number of organic acids, such as citrate, are synthesised in the 
root cells from the TCA cycle. Moreover, DTC proteins accumulate in Fe-deficient 
cucumber roots (Vigani et al., 2009). The multiple roles for citrate are: Fe chelation, Fe 
transport, the regulation of cellular pH, and as a carbon skeleton source. Because of its 
multiple functions, citrate exported from the mitochondrion might be both in response to 
the Fe deficiency and an indicator of the metabolic status of the cell, together with the 
induction of several mitochondrial metabolic carriers that are able to strongly activate the 
exchange of organic acids and reducing equivalent compounds with the cytosol. Indeed, 
the cytosolic reducing equivalents might be transferred to the mitochondria through both 
specific reducing equivalent shuttles, such as glycerol-3-phosphate (G-3-P) shuttle (Shen 
et al., 2003, 2006) and several metabolite shuttles that operate between the two 
compartments, including shuttles for malate/OAA (Ebbighausen et al., 1985) and 
malate/aspartate (Journet et al., 1981). 
There is accumulating evidence for calcium (Ca2+) involvement in mitochondrial 
signalling. In fact, Ca2+ itself might be an important part of the signal transduction 
pathways that originate from the mitochondria. Mitochondria contain relatively high 
concentrations of Ca2+ (Logan and Knight, 2003) and can be considered intracellular 
Ca2+ stores. Moreover, mitochondrial Ca2+ might be released into the cytosol during 
abiotic stress (Subbaiah et al., 1994), and there is evidence that mitochondrial Ca2+ levels 
respond to environmental signals (Logan and Knight, 2003). However, there is no clear 
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evidence for Ca2+ involvement in the transduction of Fe deficiency-inducible responses. 
However, indirect findings suggest that Ca2+ might act as a second messenger in 
targeting the Fe deficiency signal in roots. In fact, Buckhout et al. (2009) reported the 
induction of genes encoding 14-3-3 proteins and some protein kinases in Fe-deficient 
Arabidopsis roots, which would be target proteins of the Ca2+–calmodulin-transduced 
signal. Moreover, in Fe-deficient cucumber roots, it has been observed that a gene 
encoding calmodulin was overexpressed and its relative protein level was increased 
(Vigani et al., in press). Overall, these data suggest that Ca2+ is potentially involved in the 
transduction of Fe deficiency signals and that the mitochondria could participate in 
targeting the signal of altered Fe nutritional status. 
Another well-known second messenger that could also be important in mitochondrial 
signal transduction is nitric oxide (NO). It is well documented that plants generate NO and 
that NO can act as an important signal molecule in a variety of scenarios (Wendehenne et 
al., 2004; Shapiro, 2005). 
In plants, there are reports suggesting the existence of NO synthase (NOS)-like activities 
in various developmentally and physiologically stressful situations (Corpas et al., 2009). 
However, the existence of NOS in plant mitochondria is doubtful (Gupta et al., 2010). 
Indeed, it has been recently shown that plant mitochondria might be involved in NO 
turnover by the inter-conversion of nitrite and NO at the site of complex IV. Cytochrome c 
oxidase could represent the most plausible and established candidate for the nitrite-to-NO 
conversion, although other components of mETC could perform this reaction (Gupta and 
Igamberdiev, 2011 and references therein). 
Importantly, NO has also recently been demonstrated to be involved in the induction of Fe-
deficiency responses. Indeed, it has been shown that the NO level in roots was rapidly and 
continually elevated when plants were transferred to an Fe-deficient growth medium 
(Graziano and Lamattina, 2007; Jin et al., 2009; Chen et al., 2010). Furthermore, it has 
been observed that NO is required for the molecular events involved in controlling the 
development of lateral (Correa-Aragunde et al., 2004; Mendez-Bravo et al., 2010) and 
cluster roots (Wang et al., 2010), which are typical morphological changes that occur 
under Fe deficiency in several plants (Landsberg, 1994; Dell’Orto et al., 2002). 
Thus, it is clear that mitochondria have several signal types that might be involved in Fe 
deficiency signal transduction. 
Concluding remarks 
As in other organisms, changes in the availability of Fe in plant mitochondria determine the 
reorganisation of cellular metabolism. The complex alteration of root metabolism under Fe 
deficiency has been reviewed here, discussing old and new findings. It is clear that 
mitochondria represent a central site of the metabolic regulation in the cell. In the case of 
low Fe availability, plant mitochondria become both a victim and a crucial site of 
fascinating alternative processes that make them unique in their role. The mitochondrion is 
probably the most affected compartment of the root cell under Fe deficiency. 
Nevertheless, it is not destined just to succumb but to play a central role, through the 
effective modulation of the respiratory chain and the TCA cycle, in the Fe-deficient 
metabolic network. The mitochondrial flexibility in the development of the adaptive 
response to Fe deficiency is not only related to metabolism but also in mitochondrial 
dynamics. Moreover, the importance of mitochondria as possible signal-producing sites 
suggests an intriguing hypothesis that the mitochondrion might act as a cellular-stress 
sensor of Fe deficiency for the induction of the metabolic reprogramming of the cell. 
Therefore, it would be of interest to concentrate future research on understanding how Fe 
deficiency influences mitochondria and vice versa, that is, how mitochondrial remodelling 
facilitates the reprogramming of root cell metabolism. 
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