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Mean-variance target-based optimisation for defined contribution

pension schemes in a stochastic framework

Francesco Menoncin∗, Elena Vigna†

August 7, 2017

Abstract

We solve a mean-variance optimisation problem in the accumulation phase of a defined contribution

pension scheme. In a general multi-asset financial market with stochastic investment opportunities and

stochastic contributions, we provide the general forms for the efficient frontier, the optimal investment

strategy, and the ruin probability. We show that the mean-variance approach is equivalent to a “user-

friendly” target-based optimisation problem which minimises a quadratic loss function, and provide

implementation guidelines for the selection of the target. We show that the ruin probability can be kept

under control through the choice of the target level. We find closed-form solutions for the special case

of stochastic interest rate following the Vasiček (1977) dynamics, contributions following a geometric

Brownian motion, and market consisting of cash, one bond and one stock. Numerical applications report

the behaviour over time of optimal strategies and non-negative constrained strategies.

Keywords: Mean-variance approach; defined contribution pension scheme; stochastic optimal control;

martingale method; efficient frontier; ruin probability.

JEL: C61, D81, D90, G11, G22.

1 Introduction and motivation

Defined contribution (DC) pension schemes are becoming more and more important in the pension systems of

most industrialised countries and are replacing the defined benefit (DB) schemes that were more frequent in

the past. It is well known that the investment risk, which is borne by the sponsor in DB pension schemes, is

faced by the member in DC pension schemes and its analysis is therefore of the utmost importance nowadays.
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The optimal investment strategy in the accumulation phase (i.e. prior to retirement) in a DC framework

has been derived in the literature with a variety of objective functions (mainly maximisation of expected

utility of final wealth) and financial market structures, see, among many others, Boulier et al. (2001),

Haberman and Vigna (2002), Deelstra et al. (2003), Devolder et al. (2003), Battocchio and Menoncin (2004),

Cairns et al. (2006), Di Giacinto et al. (2011).

The long-term investment planning of pension schemes is less frequently cast in the framework of a mean-

variance portfolio selection. Mean-variance problems for DC plans are solved in He and Liang (2013), Yao

et al. (2013), Vigna (2014), Guan and Liang (2015) and Wu et al. (2015).

The likely reason for the scarcity of literature is the well-known difficulty in solving the mean-variance

optimisation problem in both a discrete multi-period framework and in continuous time. The first solution

in continuous time to this kind of problem was found in Richardson (1989), and subsequently by Bajeux-

Besnainou and Portait (1998), both through the so-called martingale approach. In the first paper, the

financial market consists of a riskless and a risky asset, and there is no derivation of the efficient frontier.

In the second paper, the interest rate is stochastic, the efficient frontier is derived, and explicit solutions

are found in the special case of the Vasiček (1977) model. Li and Ng (2000) and Zhou and Li (2000)

solved, respectively in the multiperiod framework and in continuous time, the mean-variance problem by

transforming it into a standard stochastic optimal control problem. Since then, a number of extensions have

been following.

Even if the choice of the most appropriate point on the efficient frontier is relevant for matching at best

investors’ preference and, thus, practically implement the mean-variance approach, the literature devotes

little attention to this issue. One of the main contributions of this paper is to enhance the comprehension of

how to select the correct subjective level of risk/reward for a member of a DC pension scheme. We interpret

the mean-variance problem as a target-based problem and provide a closed-form one-to-one simple relation-

ship between the target (in terms of final wealth to be reached) and the appropriate level of risk/reward.

Furthermore, we show how to keep under control the ruin probability through the choice of the target.

Finally, we provide a lowest threshold for the target as a function of the initial wealth and the expected

present value of future contributions.

We stress the importance of targets in DC pension funds. Let us consider, for instance, the so-called

replacement ratio, i.e. the ratio between the pension rate and the final salary. The achievement of a minimum

replacement ratio was guaranteed in DB pension schemes, but is not in DC pension schemes. The possibility

of selecting a suitable wealth-target at retirement might enable members of a DC plan to get close to a

desired replacement ratio, and might help reducing the inequity among pension fund members belonging to

different cohorts that is typical of DC plans (see e.g. Knox, 1993).

The equivalence between mean-variance criterion and the target-based approach is one of the character-

istics that make the mean-variance preferences appealing with respect to other types of preferences. Due to

this equivalence, the identification of the risk profile for the mean-variance investor can be done via the se-

lection of a final target at retirement, while it is done via the selection of an abstract risk aversion coefficient
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for other common types of preferences (e.g., the relative risk aversion coefficient for power preferences, the

absolute risk aversion coefficient for exponential preferences etc.). For the average pension fund member it

is easier to select a wealth target rather than an abstract index. Our selection of mean-variance preferences

is also motivated by the evidence that the performance of most investment funds is determined according to

mean-variance criteria (see Chiu and Zhou, 2011).

The relationship between targets and points on the mean-variance efficient frontier was introduced by

Zhou and Li (2000), and in the context of a DC pension plan was pointed out by Vigna (2014) in a Black

and Scholes financial market with constant contribution. In this paper, we extend Vigna (2014) to a more

general complete financial market with an arbitrary number of risky assets, risk sources and state variables,

and stochastic contribution.

A second contribution of our work is the analytical solution of the mean-variance problem in a DC pension

plan in a quite general financial framework. A rather important special case with stochastic interest rate

and stochastic salary is solved explicitly and analysed in detail.

As a third contribution, we propose an empirical methodology for implementing the non-negativity

constraints on portfolio shares. This issue is usually neglected by the literature on DC pension funds

with stochastic interest rate. Furthermore, the comparison between optimal non-constrained strategies and

suboptimal constrained strategies is presented. The constrained strategies turn out to be similar to empirical

investment strategies actually adopted by DC pension schemes in UK.

The remainder of the paper is organised as follows. In Section 2 we outline the general financial market

and derive the wealth dynamics. In Section 3 the mean-variance optimisation problem is solved using

the embedding technique introduced by Zhou and Li (2000) and the martingale approach; the optimal

portfolio, the ruin probability and the efficient frontier are provided analytically. In Section 4 the equivalence

between the mean-variance approach and the target-based approach is shown, and guidelines for the practical

implementation of the mean-variance model are provided. Section 5 contains a numerical application and

presents a special case with financial market consisting in a riskless asset, one bond and one stock. Two

stochastic state variables are considered: the riskless interest rate following the Vasiček (1977) dynamics and

the contribution following a geometric Brownian motion. The optimal portfolio and the efficient frontier are

analysed with different risk profiles, and suboptimal strategies with non-negative weights are introduced and

studied. Section 6 concludes. All proofs are gathered in Appendix.

2 The framework

The financial market is arbitrage free, complete, frictionless, and continuously open at any time t ∈ [0, T ].

The risk is described by a set of n independent Brownian motions W (t), defined on the complete filtered

probability space {Ω,F (t) ,P}, where F (t) is the filtration generated by the Brownian motions and P is the

real-world probability measure. The financial market is described by the following variables:

• s state variables z (t) (with z (0) = z0 ∈ Rs known) whose values solve the stochastic differential
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equation (SDE)

dz (t)
s×1

= µz (t, z)
s×1

dt+ Ω (t, z)
s×n

dW (t)
n×1

; (1)

• one riskless asset whose price G (t) solves the (ordinary) differential equation

dG(t) = G(t)r (t, z) dt,

where r (t, z) is the spot instantaneously riskless interest rate;

• n risky assets whose prices P (t) (with P (0) = P0 ∈ Rn known) solve the matrix stochastic differential

equation

dP (t)
n×1

= IP
n×n

[
µ (t, z)
n×1

dt+ Σ (t, z)
n×n

dW (t)
n×1

]
, (2)

where IP is the n×n square diagonal matrix that reports the prices P1, P2, ..., Pn on the diagonal and

zero elsewhere.

Drift and diffusion terms in (1) and (2) are assumed to satisfy the usual conditions for the existence and

uniqueness of a strong solution to the SDEs.

The absence of arbitrage and completeness imply the existence of a unique risk-neutral equivalent mar-

tingale measure Q. There exists a unique vector of market prices of risk ξ (t, z) which solves the linear system

Σ (t, z) ξ (t, z) = µ (t, z)− r (t, z) 1, where 1 is a vector of 1’s (i.e. ∃Σ (t, z)
−1

). Assuming that ξ(t, z) satisfies

the Novikov’s condition, the Girsanov theorem applies and the Wiener processes dW (t) can be rewritten

under Q as follows:

dWQ (t) = ξ (t, z) dt+ dW (t) . (3)

The Radon-Nikodym derivative is (the prime denotes transposition):

m (t0, t) = e
− 1

2

´ t
t0
ξ(u,z)′ξ(u,z)du−

´ t
t0
ξ(u,z)′dW (u) ⇐⇒

dm (t0, t) = −m (t0, t) ξ (t, z)
′
dW (t) ,

m (t0, t0) = 1.

Thus, given any t−measurable random variable Z (t), the following relationship holds true

EQ
t0 [Z (t)] = Et0 [Z (t) ·m (t0, t)] , (4)

where EQ
t0 [•] and Et0 [•] are the expected values, under the risk neutral and the real world probabilities

respectively, conditional to F (t0).

Let B (t, T ) be the price in t of a zero-coupon bond expiring in T , and σB (t, T ) the (vector) diffusion

term of dB(t,T )
B(t,T ) . It is well known that a so-called “forward probability measure” (FT ) can be defined as
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follows

dWQ (t) = σB (t, T ) dt+ dW FT (t) , (5)

and, given any T−measurable random variable Z (T ), we can write

EQ
t

[
Z (T ) e−

´ T
t
r(u,z)du

]
= EFT

t [Z (T )]EQ
t

[
e−
´ T
t
r(u,z)du

]
= EFT

t [Z (T )]B (t, T ) , (6)

where the new numeraire of the economy is B (t, T ) (Björk, 2009). FT will be useful for simplifying the role

of contributions in the evolution of the pension fund’s wealth.

Remark 1. The forward probability measure is needed to split the expected value of a product into the

product of two expected values, as in (6). In this way, also the derivative of the expected value can be

written in a much simpler way.

The stochastic contribution paid by the member into the fund’s wealth X (t) per time unit is c (t, z) > 0.

If w (t) ∈ Rn contains the monetary amount invested at time t in each risky asset (i.e. a portfolio) and

satisfies the usual “admissible” properties (Karatzas and Shreve, 1998), the wealth dynamics are given by

dX (t) =
(
X (t) r (t, z) + c (t, z) + w (t)

′
(µ (t, z)− r (t, z) 1)

)
dt+ w (t)

′
Σ (t, z) dW (t) . (7)

3 Optimisation problem

3.1 Mean-Variance and Target-Based approaches

We assume that the representative member of the pension fund is a mean-variance optimiser who solves the

following problem (where Vt [·] is the variance operator, conditional to F (t)):

(Pα) minJ (w (·)) ≡ αV0 [X (T )]− E0 [X (T )] , (8)

where α > 0 is a measure of risk aversion. If w∗ (t) solves (Pα) for some α > 0 and X∗ (T ) is the associated

wealth level, the set (V0 [X∗ (T )] ,E0 [X∗ (T )]) is called the efficient frontier.

Even if Vt [·] does not satisfy the “smoothing” property of the expected value, Zhou and Li (2000) show

that Problem (8) can be approached by solving a corresponding standard linear quadratic control problem:

(Pγ) minJ (w (·)) ≡ E0

[
1

2
(X (T )− γ)

2

]
, (9)

with a suitable relationship between α and γ. Problem (Pγ) can be interpreted as a target-based approach

where γ plays the role of a target. Since Kahneman and Tversky (1979), who underlined the importance of

reference points in decision making, the benchmark tracking has been widely used in portfolio selection1 and

1See, among many others, Gaivoronski et al. (2005), He and Zhou (2011) and Jin and Zhou (2013).
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pension funds optimisation.2 With this interpretation in mind, the difficult task of selecting a proper abstract

risk aversion coefficient α is transformed into the easier task of selecting a final target γ. Implementation

guidelines for the selection of γ are provided in Section 4. We now focus on the solution of Problem (9)

and defer to Section 4 the equivalence result demonstrated in Zhou and Li (2000) and the implementation

guidelines.

Remark 2. It is important to stress that, differently from the classical investment-consumption problem, in

Problems (Pα) and (Pγ) the control variable is only the investment strategy. The contribution stream c(s, z)

paid into the fund is not (and cannot be) a decision variable. Indeed, while in a DB pension scheme the

yearly contributions are calculated by the actuary in order to fund future (defined) benefits, in a DC pension

scheme the periodic contribution is defined in the rules of the scheme as a fixed percentage of the salary, and

cannot be modified. Thus, the contribution is stochastic because the salary (or labour income) is stochastic,

but cannot be controlled by the member or the employer.

Remark 3. The solution to (Pα) is not time-consistent. Indeed, Problems (Pγ) and (Pα) are equivalent

only at time 0. Addressing the time-inconsistency with the so-called “sophisticated” approach would imply

solving the time-consistent version of (Pα) (Basak and Chabakauri, 2010 and Björk and Murgoci, 2010).

Instead, here we assume that the investor adopts the so-called “pre-commitment” approach and solves (Pγ).

3.2 Optimal wealth, optimal portfolio, ruin probability

Problem (9) can be equivalently solved through either dynamic programming or martingale approach. We

use the second method and, accordingly, the control variable of optimisation problem (Pγ) is now X (T ):

infX(T ) E0

[
1
2 (X (T )− γ)

2
]

s.t. EQ
0

[
−
´ T

0
c (s, z) e−

´ s
0
r(u,z)duds+X (T ) e−

´ T
0
r(u,z)du

]
≤ x0.

(10)

First, we solve for the optimal wealth.

Proposition 1. The optimal wealth of Problem (10) is

X∗ (T ) = γ − (γ − χT )B (0, T )E0

[
e2Φ(0,T )

]−1

eΦ(0,T ), (11)

where

Φ (t, T ) = −
ˆ T

t

r (u, z) du− 1

2

ˆ T

t

ξ (u, z)
′
ξ (u, z) du−

ˆ T

t

ξ (u, z)
′
dW (u) , (12)

χT =
x0 +

´ T
0
EFs

0 [c (s, z)]B (0, s) ds

B (0, T )
. (13)

2See, among many others, Blake et al. (2013), Josa-Fombellida and Rincón-Zapatero (2008) and Josa-Fombellida and Rincón-
Zapatero (2012).
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Proof. The proof is in the appendix.

Remark 4. The quantity χT given by (13) is key in the implementation of the target-based approach: it

is the wealth achievable at time T without risk. This is due to the fact that its numerator is the sum of

the initial wealth and the expected present value of all the future contributions and its denominator is the

discount factor from T to 0. Thus, χT is the compounded value in T of initial wealth and contributions. In

Section 4.1 we will see that χT is the lowest threshold for the final target.

Then, we find the optimal portfolio.

Proposition 2. The optimal portfolio of Problem (10) is

w∗ (t) =

(
γB (t, T )−

ˆ T

t

EFs
t [c (s, z)]B (t, s) ds−X∗ (t)

)
(Σ′)

−1
ξ

+ (Σ′)
−1

Ω′
∂
(
γB (t, T )−

´ T
t
EFs
t [c (s, z)]B (t, s) ds

)
∂z (t)

+

(
X∗ (t) +

ˆ T

t

EFs
t [c (s, z)]B (t, s) ds− γB (t, T )

)
(Σ′)

−1
Ω′

∂Et[e2Φ(t,T )]
∂z(t)

Et
[
e2Φ(t,T )

] . (14)

Proof. The proof is in the appendix.

Remark 5. If Φ (t, T ) is Gaussian, the following simplification holds:

Et
[
e2Φ(t,T )

]−1 ∂

∂z (t)
Et
[
e2Φ(t,T )

]
= 2

∂

∂z (t)
(Et [Φ (t, T )] + Vt [Φ (t, T )]) . (15)

We notice in particular what follows:

• the optimal portfolio has three components: the first “standard” Merton’s speculative (mean-variance)

component, a second component hedging against the changes in both contributions and target w.r.t.

the state variables, and a third component hedging against the semi-elasticity in Et
[
e2Φ(t,T )

]
w.r.t.

the state variables;

• the speculative component is proportional to the distance between the optimal wealth increased by the

discounted contributions and the discounted target, i.e. the investor takes more risk to approach the

target. Consequently, ceteris paribus, the higher the target, the higher the speculative component; the

higher the discounted contributions, the lower the speculative component.

The wealth X∗ (t) in (11) is accumulated at the end of the management period through both the return

obtained on the financial market and the compounded contributions. Thus, the optimising agent will be

able to get contributions back, at least partially, only if the final wealth is strictly positive, while he/she will

not in case of ruin.
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The ruin probability can be computed in closed form as follows:

P {X∗ (T ) < 0} = P
{

Φ (0, T ) > ln

(
γ

γ − χT

)
+ ln

(
E0

[
eΦ(0,T )

]−1

E0

[
e2Φ(0,T )

])}
, (16)

and is definitely relevant, because it is (or it should be) one of the drivers in the practical implementation

of the model (see Section 4.2). Indeed, due to (16) and expectedly, the higher the target γ (or, equivalently,

its distance from the lowest threshold χT ), the higher the ruin probability.

However, for the member of the fund it is rather important to know also the probability that the final

wealth will be higher than the compounded contributions (given by χT as in (13)). In our framework, given

(11), this probability can be calculated in closed form as follows:

P {X∗ (T ) ≥ χT } = P
{

Φ (0, T ) ≤ ln

(
E0

[
eΦ(0,T )

]−1

E0

[
e2Φ(0,T )

])}
. (17)

We highlight that if Φ (0, T ) is Gaussian, then the terms in the probabilities above simplify as follows:

ln

(
E0

[
eΦ(0,T )

]−1

E0

[
e2Φ(0,T )

])
= E0 [Φ (0, T )] +

3

2
V0 [Φ (0, T )] .

We notice that the probability that the final wealth is higher than the compounded value of all the

contributions (given by (17)) depends neither on the fund’s target (γ), nor on the value of the compounded

contributions (χT ). The intuition is the following: both χT and X∗ (T ) contain the compounded contribu-

tions and, accordingly, the probability in (17) depends only on the stochastic behaviour of both interest rate

and market price of risk. Finally, because the target γ does not affect the probability in (17), its choice in

the practical implementation of the model (Section 4.2) will be determined only by the ruin probability.

3.2.1 The efficient frontier

Given the optimal wealth (11), its expected value and variance are:

E0 [X∗ (T )] = γ − (γ − χT )E0

[
eΦ(0,T )

]2
E0

[
e2Φ(0,T )

]−1

, (18)

V0 [X∗ (T )] = (γ − χT )
2 E0

[
eΦ(0,T )

]2
E0

[
e2Φ(0,T )

]−2

V0

[
eΦ(0,T )

]
,

and if γ is taken from one equation and plugged into the other, we can obtain the efficient frontier in the

mean-standard deviation plan, that is

E0 [X∗ (T )] = χT +

√
E0

[
eΦ(0,T )

]−2 E0

[
e2Φ(0,T )

]
− 1
√
V0 [X∗ (T )], (19)

where the intercept χT is the wealth achievable with zero variance (Remark 4).
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Remark 6. If Φ (t, T ) is Gaussian, then E0

[
eΦ(0,T )

]
= eE0[Φ(0,T )]+ 1

2V0[Φ(0,T )] and (19) can be written as

E0 [X∗ (T )] = χT +
√
eV0[Φ(0,T )] − 1

√
V0 [X∗ (T )]. Furthermore, if r, ξ and c are constant, Φ (0, T ) =

−
(
r + 1

2ξ
2
)
T − ξW (T ), the intercept is χT = x0e

rT + c
r

(
erT − 1

)
, and the slope is

√
eξ2T − 1.

3.3 The case of an incomplete market

In our approach we have taken into account a complete financial market, where the diffusion matrix Σ in

(2) is invertible. In other words, in this market it is possible to hedge any risk source by replicating it with

a suitable portfolio.

The so-called martingale approach relies precisely on this replicating procedure. The differential of the

optimal wealth X∗ (t) is given by

dX∗ (t) = (...) dt+ Σ∗ (t, z) dW (t) ,

where

Σ∗ (t, z) =

(
γB (t, T )−

ˆ T

t

EFs
t [c (s, z)]B (t, s) ds−X∗ (t)

)
ξ (t, z)

′

+
∂

∂z

(
γB (t, T )−

ˆ T

t

EFs
t [c (s, z)]B (t, s) ds

)
Ω (t, z)

+

(
X∗ (t) +

ˆ T

t

EFs
t [c (s, z)]B (t, s) ds− γB (t, T )

)
∂
∂zEt

[
e2Φ(t,T )

]
Et
[
e2Φ(t,T )

] Ω (t, z) ,

and we have omitted the drift term since it is immaterial to our aim. The diffusion term of the fund’s wealth

in (7), i.e. w (t)
′
Σ (t, z), can be set equal to the diffusion term Σ∗ (t, z) only if Σ (t, z) is invertible. In other

words, this means that we are looking for a portfolio w (t) that replicates the optimal wealth X∗ (t).

If the market is incomplete, and
(
Σ (t, z)

′)−1
does not exist, then the replicating portfolio does not exist.

This means that a perfect hedging cannot be found. Nevertheless, it is still possible either to over replicate

the optimal wealth or to find the portfolio that minimizes the square of the distance between the diffusion

terms of the optimal wealth (Σ∗ (t, z)) and of the wealth in (7). This problem can be algebraically written

as follows

min
w(t)

(
w (t)

′
Σ (t, z)− Σ∗ (t, z)

) (
Σ (t, z)

′
w (t)− Σ∗ (t, z)

′)
,

whose solution is

w∗∗ (t) =
(
Σ (t, z) Σ (t, z)

′)−1
Σ (t, z) Σ∗ (t, z)

′
.

Of course, if Σ (t, z) is invertible (i.e. the market is complete) then
(
Σ (t, z) Σ (t, z)

′)−1
Σ (t, z) =(

Σ (t, z)
′)−1

, and the solution presented in the previous sections is retrieved.

Any approach in the case of an incomplete market allows to find a portfolio which does not provide a
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perfect hedging, and is, accordingly, more expensive. Furthermore, in case of incompleteness, there exist

infinitely many market prices of risk ξ that eliminate any arbitrage opportunity from the market, and the

choice of the price is mainly subjective. This means that any solution found in an incomplete market cannot

be taken as a benchmark for measuring the cost and the portfolio riskiness with respect to a perfect hedging

strategy.

In this paper there is mainly one source of risk that could create incompleteness: the presence of stochastic

contributions that cannot be replicated. Thus, if the contributions are driven by an additional idiosyncratic

source of risk that cannot be replicated, then the procedure described above should be applied. In the

context of pension funds, this is done, for instance, in De Jong (2008), in the presence of pension liabilities

driven by an idiosyncratic wage risk with power preferences.

Our assumption of market completeness is common in the literature of DC pension plans, because the

financial assets that are correlated with the stochastic contributions are quite liquid on the market. In

fact, the contributions are a percentage of the workers wages and there are many theoretical and empirical

works dealing with the correlation between wages and both financial markets and interest rate. For instance,

Michelacci and Quadrini (2009) presents a framework where the correlation between firms (and financial

markets) and wages is justified from a theoretical point of view and also empirically checked. Accordingly,

the hypothesis of a complete financial market with respect to the risk of contributions (i.e., wages) does not

seem to be too strong.

4 Mean-variance versus target-based

In this section, we summarize Zhou and Li (2000) to show the equivalence between Problems (8) and (9).

Then, we interpret the equivalence in our framework, and we finally provide guidelines for the practical

implementation of the model.

4.1 Equivalence between (Pα) and (Pγ)

Zhou and Li (2000) show that Problem (8) can be approached through a corresponding standard linear

quadratic problem:

min J (w (·)) ≡ E0

[
αX (T )

2 − βX (T )
]
. (20)

Actually, they show that if w∗ (·) is a solution to (8) with α = α, then it is also a solution to (20) with

α = α and β = β satisfying:3

β = 1 + 2αE0

[
X∗ (T ) ;α, β

]
. (21)

3In practice, the solution to the particular problem (Pα) (with exogenous risk aversion α), is found by: (i) first, solving the
general problem (20), finding the optimal wealth in terms of α and β, and calculating E0 [X∗(T );α, β]; (ii) then, in the optimal
solution, replacing α with α and β with β found via (21). The optimal solution to (20) with α = α and β = β is the optimal
solution to (Pα).

10



Problem (20) can be conveniently transformed into the equivalent Problem (9), by setting

γ =
β

2α
. (22)

Therefore, Zhou and Li (2000) show that solving (9) is equivalent to solving (8).

In our framework, when the expected value (18) is plugged into (21), we find that β satisfies (hereafter

the bar over β is omitted for simplicity):

β = 1 + 2αE0 [X∗ (T ) ;α, β] = 1 + 2α

[
β

2α

(
1−

E0

[
eΦ(0,T )

]2
E0

[
e2Φ(0,T )

])+ χT ·
E0

[
eΦ(0,T )

]2
E0

[
e2Φ(0,T )

]] ,
therefore

β = E0

[
eΦ(0,T )

]−2

E0

[
e2Φ(0,T )

]
+ 2α · χT . (23)

It is now possible to interpret the equivalence between the mean-variance problem (Pα) and the target-

based problem (Pγ) by providing the relationship between α and γ. By plugging (23) into (22), we find:

α =
1

2 (γ − χT )
E0

[
eΦ(0,T )

]−2

E0

[
e2Φ(0,T )

]
, (24)

i.e. the higher α the lower γ and vice versa. Indeed, α is a measure of risk aversion in (Pα), while the target

γ in (Pγ) is a measure of the risk tolerance. Moreover:

α > 0 ⇐⇒ γ > χT , (25)

or, in other words, the target must exceed the lowest threshold χT . From the economic point of view, it

is easy to understand why γ > χT : χT is the final wealth obtainable by investing initial wealth and future

contributions in the riskless asset (see (13) and Remark 4), therefore the target must exceed it. If the target

were lower than χT , the problem would not be interesting, as the investor could invest the portfolio entirely

in the riskless asset and obtain even more than the target. According to the quadratic loss function this

excess of final wealth would produce a penalty, and the only way to reach the goal would be throwing away

money, that is clearly problematic for a rational investor.

Remark 7. Given (11), the strict positivity of γ − χT implies that the optimal wealth will never reach the

target γ, which thus behaves as an upper threshold for the desired final wealth.

We can now establish the link between mean-variance and target-based problems.

Proposition 3. Given the financial market and wealth dynamics as in Section 2, there is a one-to-one

correspondence between portfolios on the efficient frontier (19), identified by α > 0, and optimal solutions to

target-based problems (9), identified by γ > χT . The relationship between the corresponding α and γ is given

by (24).

11



Proof. The proof is in the appendix.

In other words, the investor’s preferences can be described in two different ways: mean-variance or target-

based. If the investor has mean-variance preferences described by exogenous α, he/she has target-based

preferences described by a suitable γ. If the investor has target-based preferences described by exogenous

γ, he/she has mean-variance preferences described by a suitable α. The difference is that the set of choice

for α is (0,+∞), independent of the model’s parameters, while the set of choice for γ is (χT ,+∞) where χT

depends on the model’s parameters (see (13)).

4.2 Implementation: choice of the target

The equivalence between (Pα) and (Pγ) has relevant implications. In fact, it may not be easy for an investor

to define his/her risk aversion in terms of a pure number α > 0. Instead, defining a target γ in terms of

monetary units appears to be much more “user-friendly”.

Since γ cannot be less than the riskfree level χT , we parametrise γ as a multiple of χT :

γ = κ · χT , (26)

with κ > 1. The extreme cases for the selection of the target are: (i) γ → χT (or, equivalently, κ → 1 or

α→ +∞) with infinite risk aversion, and (ii) γ → +∞ (or, equivalently, κ→ +∞ or α→ 0) with null risk

aversion.

Proposition 3 allows the member to identify his/her own risk aversion α (and therefore the corresponding

point on the frontier) just by selecting a final target γ, or a multiple κ > 1 of the lowest threshold χT .

Another tool for the practical implementation is the computation of the ruin probability (16), that, due

to (26), is

P {X∗ (T ) < 0} = P

{
Φ (0, T ) > ln

(
1 +

1

κ− 1

)
+ ln

E0

[
e2Φ(0,T )

]
E0

[
eΦ(0,T )

] } . (27)

In the case of an infinite risk aversion (κ→ 1) the ruin probability (27) is null, while for null risk aversion

(κ→ +∞) it is

P {X∗ (T ) < 0} = P
{

Φ (0, T ) > lnE0

[
e2Φ(0,T )

]
− lnE0

[
eΦ(0,T )

]}
. (28)

Remark 8. When Φ (0, T ) is normally distributed, (28) becomes

P {X∗ (T ) < 0} = P

{
−Φ (0, T )− E0 [Φ (0, T )]√

V0 [Φ (0, T )]
< −3

2

√
V0 [Φ (0, T )]

}
= N

(
−3

2

√
V0 [Φ (0, T )]

)
,

where N (•) is the CDF of a normal standard variable.
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Thus, the range of ruin probability associated to Problem (8) (or (9)) is(
0,P

{
Φ (0, T ) > lnE0

[
e2Φ(0,T )

]
− lnE0

[
eΦ(0,T )

]})
. (29)

Accordingly, with a target strictly greater than χT , the non zero ruin probability is the price to be paid in

order to be mean-variance efficient. On the other hand, the ruin probability is controllable and can/should

indeed affect the choice of the target. Through (27), κ > 1 can be chosen to set the ruin probability at any

desired level in the range (29). We recall that a common rule in investment management is the so-called

“safety-first-portfolio”, where the expected wealth is maximised under a constraint on the ruin probability

(e.g. lower than 10−5, 10−3 etc.).

In implementing the model, the members of a DC pension fund should be aware of how the distribution

of their final wealth changes with respect to the chosen target, and which is the associated ruin probability.

This could be done via disclosure of tables with percentiles of final wealth, as Section 5 illustrates.

It should also be stressed that the “target” is an upper (unreachable) bound for the wealth (see Remark

7).

The importance of full information to the pension fund members is noted also by Looney and Hardin

(2009). They find that retirement portfolio of pension funds are overly conservative, and that conservatism

diminishes when the investors are provided with prospective probabilities and payoffs over long time horizons.

5 Application to a model with stochastic interest rate and stochas-

tic contribution

In this section we show a market where the state variables are the stochastic riskless interest rate and the

contribution (i.e. z (t) =
[
r (t) c (t)

]′
). Two risky assets are listed on the financial market: a bond

and a stock. We define a base scenario by calibrating the model parameters to historical data. Then,

we investigate the dynamics of the optimal portfolio and its dependence on the risk aversion. Finally, we

discuss the limits of applicability of the optimal strategies, and propose suboptimal strategies that satisfy

non-negativity constraints.

5.1 Interest rate and contributions

Let r (t) follows a Vasiček (1977)’s model and c (t) a geometric Brownian motion under the real-world

probability P. The state variables are assumed to be driven by two independent risk sources:[
dr (t)

dc (t)

]
︸ ︷︷ ︸

dz(t)

=

[
a (b− r (t))

c (t)µc

]
︸ ︷︷ ︸

µz(t,z)

dt+

[
σr 0

c (t)σcr c (t)σcs

]
︸ ︷︷ ︸

Ω(t,z)

[
dWr (t)

dWs (t)

]
︸ ︷︷ ︸

dW (t)

, (30)
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where all the parameters are constant and both r (0) = r0 and c (0) = c0 are known. We assume that both

the market prices of risk (ξr for Wr and ξs for Ws) are constant, so that the statistical properties of (30) do

not change under P or Q.

The dynamics (30) for the state variables has a double advantage: its analytic tractability and the

existence of optimal investment strategy in closed-form. Given (30), the price of the zero coupon bond is

(see Vasiček, 1977)

B (t, T ) = ef(t,T )−g(t,T )r(t), (31)

where

f (t, T ) =

(
1 − e−a(T−t)

a
− (T − t)

)(
b− σrξr

a
− 1

2

σ2
r

a2

)
−
σ2
r

(
1 − e−a(T−t)

)2
4a3

,

g (t, T ) =
1 − e−a(T−t)

a
.

5.2 The financial market

In order to avoid the distortion of the time dependent bond’s duration, we take a constant time-to-maturity

(K) zero-coupon bond (like in Boulier et al., 2001; Battocchio and Menoncin, 2004) whose price is BK (t) =

B (t, t+K).

Remark 9. The zero-coupon bond BK (t) represents the class of the whole bonds whose maturity is K. The

maturity of a bond is a measure of its risk and bonds with different maturities belong to different risk classes.

If the zero-coupon bond volatility g (t, T ) is allowed to vary over time, then also the bond switches from one

risk class to another over time. In this case, the portfolio composition would not be homogeneous over time

in terms of risk classes. Since we want the bond to belong to the same risk class over the whole management

period, then we take into account the bond BK (t), which can of course be replicated by a suitable portfolio

of bonds since we are dealing with a complete market.

Furthermore, we assume that the stock price is driven by both risk sources (Wr and Ws). The dynamics

of these two assets are described by the following matrix stochastic equation (with σsr and σs constant):[
dBK(t)
BK(t)
dS(t)
S(t)

]
︸ ︷︷ ︸
I−1
P dP (t)

=

[
r (t)− g (0,K)σrξr

r (t) + ξrσsr + ξsσs

]
︸ ︷︷ ︸

µ(t,z)

dt+

[
−g (0,K)σr 0

σsr σs

]
︸ ︷︷ ︸

Σ(t,z)

[
dWr (t)

dWs (t)

]
︸ ︷︷ ︸

dW (t)

.

Using (3) and (5) the process c (t) and its expected value can be written under the forward probability
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measure as follows (recall σB (t, T ) =
[
−g (0,K)σr 0

]′
):

dc (t)

c (t)
= (µc − σcrξr − σcsξs) dt+ σcrdW

Q
r (t) + σcsdW

Q
s (t)

= (µc − σcrξr − g (0,K)σrσcr − σcsξs) dt+ σcrdW
FT
r (t) + σcsdW

FT
s (t) ,

EFT
t [c (T )] = c (t) e(µc−σcrξr−g(0,K)σrσcr−σcsξs)(T−t). (32)

Here, we have assumed that the contribution is correlated with both the bond and the stock. In fact, the

previous differential equations imply the following covariances:

C
[
dBK (t)

BK (t)
,
dc (t)

c (t)

]
= −g (0,K)σrσcrdt,

C
[
dS (t)

S (t)
,
dc (t)

c (t)

]
= (σsrσcr + σsσcs) dt,

C
[
dS (t)

S (t)
,
dBK (t)

BK (t)

]
= −g (0,K)σrσsrdt,

where the values of the parameters can be calibrated on the market data as we are about to show in the

following subsections.

5.3 The optimal portfolio

In this special case, Φ (t, T ) in (12) is normally distributed:

Φ (t, T ) = −
(
b+

1

2

(
ξ2
s + ξ2

r

))
(T − t)− (r (t)− b) 1− e−a(T−t)

a
(33)

−
ˆ T

t

(
1− e−a(T−u)

a
σr + ξr

)
dWr (u)−

ˆ T

t

ξsdWs (u) .

and its variance is

Vt [Φ (t, T )] =

(
σ2
r

a2
+ 2

σrξr
a

+ ξ2
r + ξ2

s

)
(T − t) (34)

− 2σr

(σr
a

+ ξr

) 1− e−a(T−t)

a2
+
σ2
r

2

1− e−2a(T−t)

a3
.

The calculation of the optimal portfolio follows easily.
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Proposition 4. The optimal portfolio is given by

w∗r (t) = −σsξr − σsrξs + 2g (t, T )σsσr
g (0,K)σrσs

(
γB (t, T )−

ˆ T

t

EFs
t [c (s, z)]B (t, s) ds−X∗ (t)

)

+
γg (t, T )B (t, T )−

´ T
t
EFs
t [c (s)] g (t, s)B (t, s) ds

g (0,K)

+c (t)
σsσcr − σsrσcs

σrσs

´ T
t
e(µc−σcrξr−g(0,K)σrσcr−σcsξs)(s−t)B (t, s) ds

g (0,K)
,

w∗s (t) =
ξs
σs

(
γB (t, T )−

ˆ T

t

EFs
t [c (s, z)]B (t, s) ds−X∗ (t)

)
(35)

−c (t)
σcs
σs

ˆ T

t

e(µc−σcrξr−g(0,K)σrσcr−σcsξs)(s−t)B (t, s) ds.

Proof. The proof is in the appendix.

Observing that (γ − χT )B (0, T ) = γB (0, T )− x0 −
´ T

0
EFs

0 [c (s, z)]B (0, s) ds, we can prove a sufficient

condition for the positivity of the amount invested in stock.

Proposition 5. If σcs ≤ 0, then the optimal amount invested in the stock for the mean-variance problem

defined by (8) is strictly positive at any time 0 ≤ t ≤ T .

Proof. The proof is in the appendix.

Since the contribution and the stock are assumed to be correlated, the investment in stock satisfies

both a speculation purpose and a hedging purpose against the stochastic changes in the contribution. If

the coefficient σcs is negative, then (given σs > 0 without any loss of generality) a positive shock on dWs

positively affects S (t) and negatively affects c (t). Since the contribution is a positive component of the

fund’s wealth, then the portfolio is hedged against such a risk if the stock is held in portfolio with a positive

weight. In fact, in this case, a negative shock in c (t) is compensated by a corresponding increase in S (t),

and vice versa.

Remark 10. Bajeux-Besnainou and Portait (1998) solve a similar problem but without contributions. In

fact, our results coincide with theirs by setting c0 = µc = σcr = σcs = 0.

5.4 Base scenario

The calibration is performed on four time series (January 1st 1962 - January 1st 2007 – without the sub-

prime crisis): (i) the 3-month US T-Bill interest rate (on secondary market) for r (t), (ii) the 10-year US

Bond interest rate (on secondary market) for BK (t) (with K = 10), (iii) S&P 500 for S (t), and (iv)

compensation of employees (wages and salaries) for US workers (research.stlouisfed.org/fred2 series

A576RC1A027NBEA) for c (t).
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The parameters of the stochastic processes defined in this section are estimated through a least square

optimization based on the discretisation of the processes (Florens-Zmirou, 1989).

All the time series (but the last one) are daily and, accordingly, dt = 1/250. From (30), the variance of

dr(t) is σ2
rdt and its empirical value is Vt [dr (t)] from which

σr =
√

Vt [dr (t)] /dt = 0.0158.

The values of a and b are obtained from an OLS estimation of the discretised r (t) in (30) (ε (ti) is a

white noise):

r (ti+1) = ab · dt︸ ︷︷ ︸
4.2245×10−5

+ (1− a · dt)︸ ︷︷ ︸
0.99929

r (ti) + ε (ti) .

The initial value of interest rate is set to its long term equilibrium value (i.e. r0 = b). The annual average

return on 10-year bonds is about 7.1%, thus

Et [d lnBK (t)] /dt = 0.071, =⇒ r (t)− g (0, 10)σrξr − g (0, 10)
2
σ2
r/2 = 0.071.

If we replace r (t) with the long term equilibrium value b, we obtain ξr = −0.1912.

Remark 11. The value of ξr is negative because of the negative correlation between the interest rate r (t)

and the value of the bond BK (t). Since the expected return on the bond must be higher than the riskless

interest rate, then
1

dt
Et
[
dBK (t)

BK (t)

]
= r (t)− g (0,K)σrξr > r (t) ,

and since g (0,K) > 0, we have that ξr < 0.

The empirical and theoretical variances of the S&P log-return, its means, and its covariances with the

10-year bonds return are (b is used instead of r (t))
V [d lnS (t)] · 1

dt = σ2
sr + σ2

s = 0.0223,

Et [d lnS (t)] · 1
dt = r (t)︸︷︷︸

b

+ ξrσsr + ξsσs − 1
2σ

2
sr − 1

2σ
2
s = 0.067,

C [d lnS (t) , d lnBK (t)] · 1
dt = −g (0,K)σrσsr = −0.0004552,

where two solutions for σs are found; we take the positive one.

We assume that the contributions are proportional to wages and salaries. The theoretical and empirical

mean of the log-difference in the US data, their variances and their covariances with the S&P log-return are4

4Since wages and asset prices have different frequency (yearly versus daily), in the following system dt = 1 and the yearly
S&P log-returns have been considered.

17



Table 1: Parameters for the base scenario, calibrated on the S&P 500, 3-month US T-Bills, 10-year US
Bonds time series, and US employees compensation (January 1st 1962 - January 1st 2007). Efficient frontier:
intercept χT = 8.43, slope 0.99.

Interest rate Stock Bond Wealth Contributions
a = 0.1775 σs = 0.1492 K = 10 x0 = 1 c0 = 0.0548978
b = 0.0595 σsr = 0.006162 T = 20 µc = 0.0683467
σr = 0.0158 ξs = 0.1322 σcr = 0.0244273
ξr = −0.1913 σcs = −0.001343


Et [d ln c (t)] · 1

dt = µc = 0.0683467,

V [d ln c (t)] · 1
dt = σ2

cr + σ2
cs = 0.02446422,

C [d lnS (t) , d ln c (t)] · 1
dt = σcrσsr + σcsσs = −0.000049855,

which has two solutions: (σcr > 0, σcs < 0) and (σcr < 0, σcs > 0).

Here, we have a degree of freedom since we can chose the solution that is more likely to describe the true

financial market. We recall that σcr (σcs) measures how the contribution react to the shocks on the interest

rate(risky asset). Contributions and interest rate have a macroeconomic variable in common: inflation. We

know from Fisher equation that the nominal interest rate and the inflation rate are positively correlated.

Furthermore, also wages and inflation are positively correlated since workers tend to ask for higher wages

when inflation grows. Thus, it is more reasonable to assume that σcr > 0. This choice implies that we must

assume σcs < 0, but this is again in line with the empirical evidence since Fama and Schwert (1977) and

Geske and Roll (1983) show that inflation and stock returns are negatively correlated.

The initial value of the contributions c0 is set in order to have
´ T
t
EFs
t [c (s, z)]B (t, s) ds equal to the

value that would be obtained with a constant contribution c = 0.1, i.e.

c

ˆ T

0

B (0, s) ds = c0

ˆ T

0

e(µc−σcrξr−g(0,K)σrσcr−σcsξs)sB (0, s) ds.

Finally, the initial wealth is set to x0 = 1 and the time-horizon to T = 20. The values of all the parameters

are summarised in Tab. 1. With this set of values, the efficient frontier has intercept χT = 8.43 and slope

0.99.

5.5 Optimal portfolio over time with different risk profiles

This section investigates the behaviour of the optimal portfolio over time by means of Monte Carlo simula-

tions. Given the base scenario as in Section 5.4, we find the efficient frontier (χT = 8.43 and slope 0.99).

The target-based approach requires the member to choose a target γ = κ · χT . Applying (29), in the base

scenario the ruin probability lies in the range (0, 10.8%), depending on the value of κ > 1. With constant
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Figure 1: The efficient frontier in the base scenario (χT = 8.43 and slope 0.99) with three optimal portfolios
corresponding to three risk aversions (i.e. three ruin probabilities). With γ = 1.15χT the ruin probability is
0.01%, with γ = 1.28χT the ruin probability is 0.1% and with γ = 1.5χT the ruin probability is 0.5%.

interest rate, c = 0.1 and ξs = 0.33 (like in Vigna, 2014), the ruin probability would belong to (0, 1.34%).

The interest rate stochasticity has inflated the maximum ruin probability by a factor 8.

Starting from the base scenario in Section 5.4, three values for κ are chosen, to test three levels of risk

aversion:

1. high risk aversion with ruin probability 0.01% ⇒ κ = 1.15;

2. medium risk aversion with ruin probability 0.1% ⇒ κ = 1.28;

3. low risk aversion with κ = 1.5 ⇒ ruin probability 0.5%.

Fig. 1 shows the efficient frontier with the three efficient portfolios associated to the aforementioned risk

profiles.

For each risk profile (i.e. for each value of κ) the optimal portfolio share has been derived in 10, 000 Monte

Carlo scenarios, see Fig. 2 (time on the abscissa). In particular, for each risk profile the graphs report: the

average proportion of wealth invested in bond (top-left), the average proportion of wealth invested in cash

(bottom-left), the average proportion of wealth invested in stock (top-right) and the average behaviour of

optimal wealth, as compared to the target γ (bottom-right).

We observe what follows.
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Figure 2: Optimal portfolios and wealth for three risk profiles: top-left the optimal bond share, top-right
the optimal stock share, bottom-left the optimal cash share, bottom-right both the optimal wealth and the
target.

• At t = 0 the wealth is always heavily invested in bonds and significantly invested in equities, by short

selling heavy quantities of the riskless asset (i.e. borrowing).

• The percentage invested in both bonds and equities declines over time, while borrowing decreases (i.e.

the negative share invested in cash increases).

• The equity share is between 0 and 1, but this is not the case for bonds and cash; however, with higher

κ also the equity share could exceed 1. Strategies with non-negative weights are considered in Section

5.6.

• The average optimal wealth is increasing and approaches the target (the horizontal lines in the bottom-

right graph) and never reaches it (as dictated by the model).

• The comparison between the three risk profiles is intuitive. The bond and equity shares are highest for

the low risk aversion (red lines), intermediate for the medium risk aversion (green line) and lowest for

the high risk aversion (blue line). In particular, the equity share decreases from 70% to 20% for low

risk aversion, from 30% to 10% for medium risk aversion, and from 10% to 2% for high risk aversion.

• The bond plays the role of a milder risky asset: despite being less risky than the stock, and therefore

being an intermediate asset between cash and stock, the dynamics of the optimal bond share is similar

to that of the stock and different from that of the cash.
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Figure 3: Distribution of the final wealth (X∗ (T )) in three scenarios: with high risk aversion (γ = 1.15χT –
top graph), with medium risk aversion (γ = 1.28χT – middle graph), and with low risk aversion (γ = 1.5χT
– lower graph).

Finally, for the three risk profiles we have analysed the distribution of the final wealth and compared it with

the target. Fig. 3 reports the three histograms of the final wealth distribution; the mean and the median

are also reported, together with the target γ.

In this framework, where Φ (0, T ) has the variance already computed in (34), and with the parameters

gathered in Table 1, the probability that the optimal final wealth is higher than the compounded contributions

(χT = 8.43) is given by

P {X∗ (T ) ≥ χT } = P

{
Φ (0, T )− E0 [Φ (0, T )]√

V0 [Φ (0, T )]
≤ 3

2

√
V0 [Φ (0, T )]

}

= N
(

3

2

√
V0 [Φ (0, T )]

)
= 0.8920669,

which is valid in any scenario of risk aversion.

Final wealth follows a shifted log-normal distribution (as the model implies) concentrated on the left of

the target γ. With higher risk aversion the distribution is more concentrated near γ, while it is more spread

out when risk aversion decreases (indeed, the investment strategy is riskier with a lower risk aversion).
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Table 2: Statistics of final wealth for 10,000 Monte Carlo simulations

Risk aversion Mean 25 percentile Max Min Ruin freq.
High 9.06 8.89 9.69 -2.52 1

Medium 9.61 9.28 10.79 -2.92 5
Low 10.54 10 12.65 -19.82 38

Tab. 2 reports, for each risk profile, some statistics of the final wealth out of 10,000 simulations. In

general, a lower risk aversion leads to a higher final wealth: the mean of the final wealth is highest (lowest)

for low (high) risk aversion and this happens also for the majority of the scenarios: in 75% of the cases the

final wealth lies between 10 and 12.65 for low risk aversion, between 8.89 and 9.69 for high risk aversion, the

medium risk profile giving intermediate results.

According to these statistics, one could be tempted to choose a priori the low risk aversion profile.

However, the price to be paid in order to be richer “on average” is the higher ruin probability: 0.01% for the

high risk averse (i.e. 1 case of ruin out of 10, 000 simulations) versus 0.5% for the low risk averse (38 cases

of ruin). Furthermore, a higher ruin probability is also associated to a longer left tail of wealth distribution,

i.e. to worse results in the bad scenarios. Indeed, the minimum final wealth is −2.52 for the high risk

averse, −2.92 for the medium risk averse and −19.82 for the low risk averse. Even if this is indeed a quite

rare event, investors should be aware of the possibility of starting with initial wealth equal to 1 and ending

up with a final wealth of about −20. Therefore, in a practical application of the model, empirical data on

the distribution of final wealth should be clearly disclosed to the pension fund member, to help him/her to

decide about the subjective level of trade-off between expected wealth and risk that better describes his/her

preferences.

5.6 Implementation issues and cut-shares

The optimal investment strategy and the optimal controlled fund analysed in the previous sections are subject

to two implementation limits. The first one is the fact that the optimal investment strategy is unconstrained.

As a result, the optimal share invested in bond and cash computed in the previous section often fall outside

the range [0, 1]. Therefore, in many cases the optimal strategy requires borrowing considerable amounts of

money and invest it in the bond. Actually, there may exist regulatory limits on the portfolio shares, and

short-selling may be forbidden. In practice, practitioners typically set non-negativity weights in investment

portfolios (Jagannathan and Ma, 2003).

The second important issue is ruin. Although controllable, the probability of ruin is strictly positive

(apart from the degenerate case). A positive ruin probability is likely to be forbidden or unacceptable.

From the mathematical point of view, ruin can be avoided by solving an optimization problem with

constraints on the state variable. This, however, results into a significantly higher degree of complexity and

does not guarantee a consequent constrained optimal strategy.
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A possible way to overcome both practical issues of ruin and a reasonable investment strategy would

be to add constraints on the investment strategy itself. Nevertheless, the mathematical difficulty of an

optimization problem with constraints on the control variables is enormous too, and closed-form solutions

exist only in very special cases which are, accordingly, strongly model dependent. Therefore, the solution to

the constrained problem is beyond the scope of the present paper. To the best of our knowledge, the only

paper where there are constraints on the investment strategy in the accumulation phase of a DC pension

scheme is Di Giacinto et al. (2011), by means of viscosity solutions.

An alternative tractable way to deal with the above-mentioned applicability issues is to adopt suboptimal

investment strategies that are ex-post constrained to fall in the range [0, 1]. The procedure is the following:

• at any time t, if the optimal shares of cash, bond and stock are in [0, 1] no correction is needed on the

optimal shares;

• if some of the shares do not belong to [0, 1], then at least one of the share is negative (because they

sum up to 1); there are two sub-cases:

1. two negative shares and one greater than 1: the negative shares are set to 0, while the remaining

share is set to 1;

2. one negative share and two positive shares (this is the most common situation): we set the negative

share to 0 and modify the other two by imposing that: (i) they sum up to 1 and (ii) their ratio

is equal to the ratio of the optimal shares.

We call “cut-shares” the shares resulting from this procedure. By construction, the cut-shares belong to the

range [0, 1] and they sum up to 1. Furthermore, the cut-shares prevent ruin.

Clearly, the cut-shares are suboptimal, and practitioners should be aware of the reduction in mean-

variance efficiency when constraints are introduced (Alexander and Baptista, 2006). However, they are good

approximations of the optimal shares. Cut-shares of the same type were applied e.g. by Gerrard et al. (2006)

and Vigna (2014) in the context of DC pension schemes with a constant interest rate, and they proved to be

satisfactory: with respect to the unrestricted case the effect on the final results turned out to be negligible

and the controls resulted to be more stable over time.

In Figure 4 the portfolio obtained adopting the cut-shares is shown. In this framework the main risk

that must be hedged is the interest rate risk. Accordingly, most of the wealth is invested in the bond

(which has the highest correlation with the interest rate), while the remaining wealth is mainly invested in

the stock. Of course, the higher the risk aversion, the lower the amount of wealth invested in the stock

(for speculative purposes), and the higher the amount invested in the bond (for hedging purposes). When

retirement approaches, the stock cut-share is almost unaffected, while there is a big swap between bond and

cash. In particular, between 6 and 2 years before retirement (according to the risk aversion), the cut-share

of bond starts reducing, and the cut-share of cash starts increasing. Such a swap is less relevant for a lower
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risk averse agent (whose need for hedging is lower), while it is definitely relevant for a high risk averse agent

whose bond cut-share goes from about 95% to about 35%.

The suboptimality of the cut-shares is underlined by the fact that the average wealth reached with the

cut-shares is always lower than the average optimal wealth reached with the optimal shares computed in the

paper (see the bottom-right panel of Figure 4). However, the lower mean of final wealth is in general partially

compensated by a lower standard deviation of final wealth. In detail, results not displayed here show that

with medium risk aversion, the reduction in mean (of final wealth) is about 10%, while the reduction in

standard deviation (of final wealth) is about 13%; with low risk aversion, the reduction in mean is about

16%, while the reduction in standard deviation is about 39%. Further simulations show that in the mean-

standard deviation plan the suboptimal portfolios lie on a straight line (starting from χT ) whose slope is

lower than that of the efficient frontier.

The strategy of the cut-shares is easily implementable, it approximates the optimal mean-variance efficient

strategy and reaches the double-goal of no-ruin and feasible strategies. Therefore, the cut-shares strategy

can be considered as a reasonable trade-off between the optimal mean-variance efficient strategies of the

theoretical model and a realistic implementation of it. Last but not least, the strategies displayed in Figure

4 are in line with the so-called lifestyle strategy, which is widely adopted by DC pension funds in UK (Cairns

et al., 2006): the large initial investment in risky assets is progressively switched into cash in the decade prior

to retirement. In our framework, since the stock is mainly used for speculative purposes, the remaining of

the portfolio must be allocated between a riskier asset (the bond) and the riskless asset. Thus, the amount

of the riskier asset is high at the beginning of the period and, during the last period, the portfolio strategy

is switched towards the riskless asset.

6 Final remarks

In this paper we have first solved in closed form a mean-variance portfolio problem for a DC pension scheme

in a multi-asset complete market with stochastic investment opportunities and stochastic contributions. In

such a framework, we have provided a link between the class of mean-variance problems and the class of

target-based problems characterised by minimisation of a quadratic loss driven by a target. We have shown

a one-to-one correspondence between risk aversion coefficients and targets, providing a suitable financial

interpretation. Also the ruin probability is computed in closed form and we show the link between the

target and the ruin probability: a higher target can be achieved at the price of a higher ruin probability.

Finally, we have investigated a special case with: (i) interest rate following the Vasiček (1977)’s dynamics,

(ii) contributions following geometric Brownian motion, and (iii) a financial market consisting of a riskless

asset, one bond and one stock.

The interpretation of the mean-variance problem as a target-based problem should make it easier to

apply the model to real investment management in DC pension funds. The selection of the correct trade-off

between the desired value of the final wealth and the risk that the member is wiling to accept should be
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Figure 4: Suboptimal portfolios and wealth for three risk profiles: top-left the bond cut-share, top-right the
stock cut-share, bottom-left the cash cut-share, bottom-right the wealth behaviour when strategies are cut
(continuous line) or not cut (dashed line)

facilitated by the clear disclosure of tables reporting the distribution of final wealth and the probability of

ruin.
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Appendix

Proof of Proposition 1

Recalling (4) and (6), the Lagrangian function of (10) is

L = E0

[
1

2
(X (T )− γ)

2
+ λX (T ) e−

´ T
0
r(u,z)dum (0, T )

]
− λx0 − λ

ˆ T

0

EFs
0 [c (s, z)]B (0, s) ds,
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where λ is the Lagrangian multiplier. The derivative of L with respect to X (T ) must be set to zero for each

state of the world, i.e.

X∗ (T ) = γ − λe−
´ T
0
r(u,z)dum (0, T ) . (36)

Now, λ is computed from the constraint in (10) where X∗ (T ) is substituted, and the inequality is replaced

by the equality (since we want the solution to be compatible with the minimum amount of initial wealth):

λ =
γB (0, T )−

´ T
0
EFs

0 [c (s, z)]B (0, s) ds− x0

E0

[
e−2

´ T
0
r(u)dum2 (0, T )

] .

By defining the stochastic process Φ(t, T ) as in (12), and noting that Et
[
eΦ(t,T )

]
= B (t, T ), then the

optimal wealth can be written as in (11).

Proof of Proposition 2

In the optimal solution, the constraint (10) must hold at any instant in time:

X∗ (t) = −
ˆ T

t

EFs
t [c (s, z)]B (t, s) ds+ Et

[
X∗ (T ) e−

´ T
t
r(u,z)dum (t, T )

]
.

If the optimal final wealth (36) is plugged into this equation we have:

X∗ (t) = −
ˆ T

t

EFs
t [c (s, z)]B (t, s) ds+ γB (t, T )− λm (0, t) e−

´ t
0
r(u,z)duEt

[
e2Φ(t,T )

]
. (37)

Now, the passages are as follows: (i) dX∗ (t) is found through Itō’s lemma on (37) (differentiating w.r.t.

m (0, t) and z (t)), (ii) λm (0, t) e−
´ t
0
r(u,z)duEt

[
e2Φ(t,T )

]
is substituted into the diffusion term of dX∗ (t) from

(37), and (iii) this diffusion term is set equal to the diffusion term of investor’s equation in (7) in order to

find the portfolio which replicates the optimal wealth. Such a portfolio is given by (14).

Proof of Proposition 3

Consider a target-based problem (Pγ) -(9) with γ > χT . Due to Zhou and Li (2000), the corresponding

optimal investment strategy, given by (14), is also the optimal investment strategy of the mean-variance

problem (8) with α satisfying (24) where γ = γ. Vice versa, given a mean-variance problem (Pα)-(8) with

α > 0, Zhou and Li (2000) demonstrate that its solution coincides with the solution of the associated (Pγ)

problem, with γ satisfying (24) where α = α.
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Proof of Proposition 4

Given (33), the coefficient of the optimal portfolio third component is (recall (15)):[
2 ∂
∂r(t) (Et [Φ (t, T )] + Vt [Φ (t, T )])

2 ∂
∂c(t) (Et [Φ (t, T )] + Vt [Φ (t, T )])

]
=

[
−2 1−e−a(T−t)

a

0

]
=

[
−2g (t, T )

0

]
.

The other components of the optimal portfolio are (recall (31) and (32)): ∂(γB(t,T )−
´ T
t

EFs
t [c(s)]B(t,s)ds)

∂r(t)
∂(γB(t,T )−

´ T
t

EFs
t [c(s)]B(t,s)ds)

∂c(t)

 =

[
−γg (t, T )B (t, T ) +

´ T
t
EFs
t [c (s)] g (t, s)B (t, s) ds

−
´ T
t
e(µc−σcrξr−g(0,K)σrσcr−σcsξs)(s−t)B (t, s) ds

]
.

Thus, we can compute

(
Σ′
)−1

ξ =
1

−g (0,K)σrσs

[
σsξr − σsrξs

−g (0,K)σrξs

]
,
(
Σ′
)−1

Ω′ =
1

−g (0,K)σrσs

[
σsσr c (t) (σsσcr − σsrσcs)

0 −g (0,K) c (t)σrσcs

]
,

and plug them into (14) for obtaining the desired optimal portfolio.

Proof of Proposition 5

In (35), it is easy to show that γB (t, T ) −
´ T
t
EFs
t [c (s)]B (t, s) ds − X∗ (t) follows a geometric Brownian

motion whose initial value γB (0, T )−
´ T

0
EFs

0 [c (s)]B (0, s) ds− x0 is positive due to (25).
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