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Abstract

Rigorous treatment of dynamical electron correlation in crystalline solids is one of the main
challenges in today’s materials quantum chemistry and theoretical solid state physics. In
this work, we address this problem by using the local correlation approach and exploring a
variety of methods, ranging from the full periodic treatment through embedded fragments
to finite clusters. Besides the computational advantages, the direct-space local
representation for the occupied space allows one to partition the system into fragments and
thus forms a natural basis for a hierarchy of embedding models. Furthermore, a subset of
localized orbitals in a cluster or a fragment can be chosen to mimic the unit cell of the
reference periodic system. Introduction of such subsets allows one to define a formal
quantity “the correlation energy per unit cell”, which is directly related to the correlation
energy per unit cell in the crystal. The orbital pairs, where neither of the two localized
orbital indices belongs to the “unit cell” do not explicitly contribute to the “energy per
cell”: Their role is to provide correlated embedding via the couplings in the amplitude
equations. The periodic, fragment and finite-cluster approaches can be combined in a form
of high precision computational protocols, where progressively higher-level corrections are
evaluated using lower-level embedding models. We apply these techniques to investigate
the importance of Coulomb screening in dispersively interacting systems on the examples
of phosphorene bilayer and adsorption of water on 2D silica.
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1 INTRODUCTION

Solid state physics and chemistry is the realm of (Kohn-Sham) density functional theory

(DFT); the vast majority of theoretical studies in that field rely on this method. Mostly,

relatively inexpensive local exchange-correlation functionals are generally used.1 Standard

DFT, however, is known to have certain inherent deficiencies, such as the self-repulsion and

self-correlation of electrons, or the lack of long-range van der Waals dispersion. Furthermore,

in contrast to wavefunction (wf) based methods, where a clear methodological hierarchy

exists, there is no way to systematically improve the accuracy of DFT results. In that sense,

DFT offers a take it or leave it deal.

The lack of long-range van der Waals dispersion in DFT is a particularly severe weakness

of DFT in the context of 3D extended systems like solids. It can noticeable influence the

structure and energetics of a solid and may even decide the relative stability of different

polymorphs2–4. The lack of dispersion in DFT can be rigorously repaired by employing

the random phase approximation as the correlation functional.5,6 However, such DFT cal-

culations are computationally much more expensive than standard DFT calculations, and

therefore applications to solids or adsorption on surfaces employing RPA are much more

rare. Another, more economical way to circumvent the lack of dispersion in standard DFT

is to add the interatomic pairwise C6R
−6 contributions to the DFT energy7–10. Such ap-
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proaches are presently widely used in the theoretical solid state community; nevertheless,

the empiricism and the double counting of the correlation energy can derogate accuracy and

predictive power of the method.

In recent years, wf-based post Hartree-Fock methods started to infiltrate the field. There

are two main approaches to dynamical electron correlation in solids: (i) a periodic approach,

that represents the solid as a system with translational symmetry, and (ii) a finite-cluster

approach, where the solid is approximated by a cluster (optionally embedded), a fragment, or

a series of those. The periodic model itself is usually more reliable for crystals, but periodic

implementations of high-level quantum chemical models are scarce and not yet available for

routine applications. The cluster models are also problematic, but in a different way: since

the computational cost grows very rapidly with the cluster size, computationally tractable

clusters might be not sufficient for an accurate description of the crystal.

Actually, finite cluster based approaches to tackle 3D-periodic systems in the framework

of wf-based methods, like the incremental scheme proposed by Stoll,11–13 have been around

since the 1990s. The latter has been successfully applied to many different systems over the

past years14–26. The incremental scheme in principle converges to the periodic result, but

the convergence rate with respect to the locality and the order of the many-body expansion

can vary very strongly depending on the system and quantity in question (e.g. total vs

correlation energy). The desired accuracy might therefore be not reachable with a compu-

tationally affordable number of increments, if the corresponding clusters are not properly

embedded. This adds another level of complexity to this already quite a technically involved

method. Besides, mismatch of the orbital spaces in different clusters can have an influence on

the corresponding increments, which can finally accumulate to an appreciable and virtually

uncontrollable error.

During the past decade, truly periodic wf-based post Hartree-Fock methods, i.e., methods

employing periodic boundary conditions, started to emerge.27–47 Wf-based methods do not

share abovementioned deficiencies of standard Kohn-Sham DFT and constitute a hierarchy

of well-controlled approximations. In molecular quantum chemistry they are widely used as

a highly reliable and accurate alternative to (the cheaper) DFT. Yet wf-based methods are

more complicated and consequently computationally more expensive than DFT. Especially

the high scaling of the computational cost with system size is problematic and precluded

implementations of such methods in the periodic format: already the simplest post Hartree-

Fock method, Møller-Plesset perturbation theory (MP) of second order (MP2) has a scaling
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of O(N 5) with system size N . This increases even to O(N 7) for the coupled cluster singles

doubles with perturbative triples method, CCSD(T), which represents the “gold standard”

of quantum chemistry. This scaling wall is in fact an artifact of the utilization of delocalized

canonical orbitals in the construction of the Slater determinants; by instead using localized

orbitals the short-range character of electron correlation effects can be efficiently exploited.

On that basis during the past decades in molecular quantum chemistry a number of efficient

methods were devised with low or even O(N ) scaling48–62 up to the level of CCSD(T) or

even beyond.63 This gave impetus also to the development of periodic local wf-based post

Hartree-Fock methods.

The first real periodic correlation method, applicable to 3D as well as to 2D, 1D and

0D periodic crystals, was the local MP2 (LMP2) method implemented in the Cryscor

program.28,34,35,39,44,64–67 The Hartree-Fock reference orbitals are provided by the Crystal

program,68 that uses a basis set of atom-centered Gaussian-type orbitals (GTOs). From

these crystalline orbitals localized Wannier functions (WFs)69,70 and projected atomic or-

bitals (PAOs)66,71–76 are then generated. WFs span the occupied space of the Hartree-Fock

determinant and PAOs the virtual orbital space; the WFs are mutually orthogonal, whereas

the PAOs are non-orthogonal and redundant. In order to reduce the computational cost es-

sentially two local approximations are introduced: (i) a hierarchical treatment of WF pairs

on the basis of the mutual separation between the two WFs of a pair, and (ii) pair specific

restricted excitations spaces (pair domains), allowing occupied → virtual substitutions out

of the WF pair into the related pair domain only.

As an alternative to PAOs, recently several other choices of local virtual orbitals have been

proposed, mainly in the molecular context. The highest possible compactness of pair-specific

virtual spaces is provided by pair natural orbital (PNOs), which were initially proposed a few

decades ago77 and recently regained interest in the local context.51,55,56,60–62,78–86 In addition

to the computational savings, PNOs naturally adjust themselves to the changes in geometry,

leading to smooth potential surfaces. For PAOs, for example, alternation of the domain

sizes along the potential surface might cause noticeable discontinuities. At the same time, in

contrast to PAOs the overall amount of PNOs is vast (each pair has its own unique orbitals),

leading to a surge in the size of certain intermediate tensors. The so called orbital specific

virtuals (OSVs)44,53,54,87–89 offer a convenient compromise between the pair-specific virtual

space and an overall amount of orbitals. For diagonal pairs they are equivalent to PNOs,

while for the off-diagonal ones the virtual space is formed as a union of the respective spaces

corresponding to the individual WFs forming the pair. OSVs were recently introduced also
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in the periodic LMP2 implementation in Cryscor.3,44,90

Apart from the local MP2 method just sketched above, also non-local canonical MP2

and CCSD methods have been presented in the literature.30,31,33,45,47,91 Furthermore, mas-

sively parallel implementations of canonical MP2, and even MP2 nuclear energy gradients

have been recently reported.36,38,42,46 Finally we also mention Quantum-Monte-Carlo (QMC)

method, which stochastically samples the wavefunction,92 and can be presently applied to

quite complicated periodic systems. Conventionally QMC samples the wavefunction in the

position vector representation and requires the fixed-node approximation to gain efficiency.

Recently a QMC-based full configuration interaction method was proposed,93 which samples

the wavefunction in the slater-determinant representation. It has been already applied to

periodic systems, employing both canonical41 and local94 orbitals.

As mentioned above, the cluster approach to electron correlation in solids is attractive

because it automatically allows to adopt all the software arsenal available for molecular

calculations. The price to pay is the slow and difficult convergence of results with respect to

increasing cluster size, needed to ensure that the model cluster indeed provides an adequate

representation of the infinite solid. A natural way to alleviate this problem is to embed

the cluster in an environment, such that the influence of the missing part of the solid will

be effectively represented by the latter. Through years numerous embedding schemes have

been proposed. They can be divided in two categories: (i) an explicit embedding, where

the cluster (or a fragment) experiences an explicit field from the embedding environment;

and (ii) hierarchical embedding, where the cluster is treated as is, but its lower-order energy

component is substituted by that, computed using the periodic model or a larger cluster.

Such an implicit embedding can be equivalently formulated as a correction scheme, where

a periodic lower-order energy is augmented by a higher-order correction, evaluated on a

cluster. One of the simplest embedding schemes of the first kind is point-charge electrostatic

embedding, where the cluster is placed inside a matrix of point charges. For higher accuracy,

however, such a simple scheme is in many cases not sufficient, and various more elaborate

embedding approaches have been proposed.25,94–110

The methods of the second type have also been employed quite extensively. For example,

in the abovementioned method of increments for crystals, the finite-cluster calculations are

usually carried out for the correlation energy only, which is added to the periodic Hartree-

Fock.11,17 Another popular choice of the lower-order periodic treatment is DFT.102,111–114

Recently, with the development of the periodic correlated techniques, the periodic local

MP2 was used as the lower-level method.25,115–117
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In this contribution we overview the periodic, embedded-fragment and finite cluster tech-

niques, based on the local correlation scheme, as implemented in the Crystal/Cryscor

and Molpro118,119 program packages. We demonstrate that by combining these techniques

one can reach a very high accuracy in applications to periodic systems.

We start from the periodic local MP2, which formally can also be seen as a limiting case

of an LMP2 treatment for a fragments self-consistently embedded in an LMP2 environment.

The next level in the embedding hierarchy is LMP2 or local direct ring coupled cluster doubles

(LdrCCD) for a fragment, embedded in the periodic HF mean field. The final embedding

model is a large finite cluster treated at the CC level up to LCCSD(T), in which a subset

of the localized occupied orbitals define a formal unit cell, which is embedded in the rest of

the cluster. We will refer to such an approach as “unit cell in cluster”.

Furthermore, we will combine this embedding hierarchy with the method correcting

scheme. The lower order energy component will be provided by the periodic LMP2 or

embedded fragment LdrCCD. The correction as the energy difference between LCCSD(T)

and LMP2 or LdrCCD will be evaluated using finite clusters and the “unit-cell-in-cluster”

approach.3 The recently developed LCCD[S]-R−6 scheme,58,59 applicable to large clusters,

allows for accurate description of the weak intermolecular interactions, making possible to

explore the convergence of the correcting scheme with the cluster size. As an application of

this technique we will investigate the importance of Coulomb screening effects in dispersively

bound periodic systems. Phosphorene bilayer and water adsorbed on 2D silica will be taken

as examples.

2 Theory

In this section we introduce the hierarchy of embedding models and provide the underlying

formalism.

2.1 Preliminaries: definitions, notation and nomenclature

The local correlation scheme is the essential integral part of all the approaches discussed in

this work. In the considered models the occupied space will be spanned by either Wannier

functions (WFs), or, in case of finite clusters, by localized molecular orbitals (LMOs). The

occupied orbitals will be denoted by the indices i, j, k, ... In the periodic case, these indices

alone refer to the WFs belonging to the reference unit cell, while for the WFs outside the

reference cell an additional calligraphic index I, J , K, ... will denote the corresponding
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translation vector. As the virtual orbitals in this work we will use PAOs, denoted as a, b, c,

..., and in the periodic case the PAO cells will be again identified by the calligraphic indices

A, B, C. Within the local approximation the virtual space is restricted to pair domains,

denoted [ij], which are unions of the individual PAO domains of the orbitals i and j. Due

to the time reversal symmetry all the orbitals will be chosen real. The electron repulsion

integrals (ERIs) will be given in the chemical notation, e.g.:

(ia|jb) ≡
∫
dr1

∫
dr2ψi(r1)ψa(r1)

1

|r1 − r2|
ψj(r2)ψb(r2), (1)

where ψ(r) represents a direct-space local orbital spanning the occupied or virtual space.

Such integrals can be efficiently approximated by a suitable multipolar expansion or the

density-fitting factorization.

In this work we also introduce several specific terms, which will allow us to describe

and discuss the embedding approaches within the local correlation scheme. These terms

reflect the different ways to partition a periodic system or a cluster into local fragments.

The first term we introduce is a “pair fragment”. A pair fragment comprises a subset of the

occupied localized orbital pairs, where one of the indices belongs to the reference cell and

the other is restricted according to some criterion, for example a cutoff distance. The set of

the individual localized occupied orbitals appearing in the pair fragment form the “orbital

fragment”. Finally the atoms that correspond to the union of all the domains of the orbitals

from the orbital fragment will be referred to as the “atomic fragment”.

Next, as mentioned above, the term “unit cell” we will use not only in the context of

periodic system, where it has a well defined meaning. In a large enough orbital fragment,

cut out of a periodic system, one can identify a subset of the fragment’s occupied orbitals,

which in the parent periodic system constitute the orbital unit cell. This subset of orbitals

we will denote as a “unit cell in a fragment”. Introduction of the unit cell in a fragment

allows for defining and calculating the “energy per unit cell” in a fragment. In contrast to

truly periodic systems, such energy is not invariant with respect to the choice of the unit

cell. However, the larger the fragment the less sensitive this energy to the choice of the cell

and the closer to the periodic result. The quickest convergence to the periodic energy is

expected for most compact unit cells, located in the center of the fragment, as the boundary

effects are then minimized.

Furthermore, an analogous approach is possible for molecular clusters, provided they

sufficiently well mimic the periodic system in question. In this case, the localized orbitals

of the cluster resemble those of the periodic system in terms of their localization centers

and orientation. This permits for interrelating between the relative sets of orbitals and,
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consequently, defining a subset of the cluster’s orbitals, whose periodic-system counterparts

form the unit cell. We well refer to this subset as a “unit cell in cluster”. Similarly to the

case of a fragment, considered above, the “energy per cell” in a cluster does depend on the

choice of the “cell”, but if the latter is located in the center of the cluster, the convergence

of the corresponding energy to the periodic value with expansion of the cluster is expected

to be the fastest.

2.2 Periodic local MP2 method

We start with the fully periodic direct-space LMP2 formalism.65 The LMP2 energy per cell

is given by an expression:

ELMP2 =
∑

i jJ∈(i jJ )

ei jJ , (2)

where (i jJ ) denotes the pair list and ei jJ are the pair energies:

ei jJ =
∑

aA bB∈[i jJ ]

T̃ i jJ
aA bB (i aA|jJ bB) . (3)

Here [i jJ ] is the PAO pair-domain for the pair i-jJ and T̃ are the contravariant doubles

amplitudes

T̃ i jJ
aA bB = 2T i jJ

aA bB − T
i jJ
bB aA. (4)

Importantly, the pair list restricts the summation over one of the indices in (2) (here the first

index) to the reference cell only. One can also symmetrize the expression for the correlation

energy per cell with respect to this restriction:

ELMP2 =
1

2

∑
i jJ∈(i jJ )

(ei jJ + ejJ i) . (5)

Another important aspect of eq. (2) is that formally the sum over J runs to infinity,

but in real calculations this index obviously has to be restricted, for example according to a

certain cutoff radius Rcut. The convergence of the LMP2 energy with respect to Rcut is rather

slow; the missing energy contribution in 3D solids fades off just as R−3cut. In the reciprocal

space approach this manifests as the slow convergence of the correlation energy with the

k-mesh. In the direct space, however, one can avoid seeking the explicit convergence with

Rcut. To obtain the converged periodic ELMP2 it is sufficient to choose Rcut such that the

pair energies eijJ for each pair of orbitals i and j attain the long-range R−6 decay regime:

ei jJ ≈
−Cij

6

R−6i jJ
, (6)
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where R−6i jJ is the distance between the centroids of the WFs i and jJ Then the pair-

specific Cij
6 coefficients can be fitted using the explicitly computed pair energies and the

missing correlation energy beyond Rcut can be straightforwardly recovered using (6).

In the local direct-space representation the Fock matrix is not diagonal and the LMP2

amplitudes equations are to be solved iteratively in order to obtain the amplitudes T i jJ
aA bB.

In the case of non-orthogonal virtual orbitals (i.e. PAOs) the periodic LMP2 residual takes

the form:65

LMP2RaAbB
i jJ = (i aA|jJ bB) +

∑
a′A′,b′B′
∈[i jJ ]

[
FaA a′A′T ijJ

a′A′b′B′Sb′B′ bB + SaA a′A′T i jJ
a′A′ b′B′Fb′B′ bB

]

−
∑
kK

 ∑
a′A′,b′B′
∈[i kK]

SaA a′A′T ikK
a′A′b′B′FkK,jJSb′B′ bB +

∑
a′A′,b′B′
∈[kK jJ ]

SaA a′A′Fi,kKT
jJ kK
a′A′b′B′Sb′B′ bB

 , (7)

where F denotes the internal or external Fock matrix and S is the PAO overlap matrix. The

domain approximation restricts the virtual-index ranges to the respective pair domains.

All the quantities entering eq. (7) are translationally invariant:

Sa a′A′ = FaA a′(A′⊕A), (8)

Fa a′A′ = FaA a′(A′⊕A), (9)

Fi jJ = FiI j(J⊕I), (10)

(i aA|jJ bB) = (iI a (A⊕ I) |j (J ⊕ I) b (B ⊕ I)) , (11)

T i jJ
aA bB = T

iI j(J⊕I)
a(A⊕I) b(B⊕I), (12)

where the symbolic operation ⊕ applied to the cell indices implies summation of the respec-

tive translation vectors.

The LMP2 amplitude equations

LMP2RaA bB
i jJ = 0 (13)

are solved only for the pairs from the pair list (i jJ ). The amplitudes for the pairs outside

this list are assumed zero unless they are translationally equivalent [cf. eq. (12)] to those

included in the list. This means that the pair list restricts also the kK-summations in the

last two terms of (7).

A periodic LMP2 with a restricted pair list can be interpreted as a pair-fragment LMP2

(the pair fragment is determined by the pair list), embedded in the periodic HF plus the
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periodically translated fragment LMP2 [via the translation of the fragment’s amplitudes

(12) in the last term of (7)]. By varying the fragment size one can inspect the decay of the

finite-size error in the correlation energy, while still remaining in the periodic framework.

This type of embedding will be the highest in our the hierarchy of embedding models, and

we will refer to it as “periodic fragment”.

We stress again that in order to obtain the full periodic correlation energy per cell, one

does not need to expand the pair fragment till convergence (which is rather slow), as the

extrapolation technique (6) after a certain fragment’s size becomes quite accurate. In the

canonical correlation calculations, an approximation, related but not exactly equivalent to

the pair-list truncation, is introduction of a finite k-mesh (or a single Γ-point). This ap-

proximation does not allow for a straight-forward embedding interpretation, as in our case,

or a pair-wise extrapolation according to eq. (6). However other extrapolation schemes are

possible.117,120

2.3 Periodic-Hartree-Fock-embedded local direct ring-CCD

As the next level model we consider an orbital fragment cut from a crystal and subjected

to a molecular local correlation treatment. The localized occupied and virtual orbitals, as

well as the Fock matrix in the basis of these orbitals are those of the periodic Hartree-Fock

calculation. The PAOs, as usually, belong to the domains of the fragment’s orbitals and thus

are centered only on the atoms of the atomic fragment. Nevertheless, by construction they

are orthogonal to the whole periodic occupied manifold rather than that of the fragment.

The electron repulsion integrals are also computed in the periodic format, and although they

involve only the orbitals of the fragment, they correspond to a subset of the real periodic

ERIs. Such an embedding scheme corresponds to a correlated level treatment of the orbital

fragment, embedded the periodic Hartree Fock solution.

As the methodological level for the fragment-based calculation we choose the local direct

ring-CCD (LdrCCD) method.110 It is similar to the SOSEX variant of the random phase ap-

proximation,121–123 but contain additional diagrams that originate from the antisymmetricity

of the amplitudes in the spin-orbital basis. The LdrCCD residual for the orbital fragment
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reads:

LdrCCDRaA bB
iI jJ =LMP2 RaA bB

iI jJ

+
∑
kK

∑
a′A′,cC
∈[iI kK]

SaA a′A′T̃ iI kK
a′A′ cC (kK cC|bB jJ ) +

∑
kK

∑
cC,b′B′
∈[kK jJ ]

(aA iI|kK cC)T̃ kK jJ
cC b′B′Sb′B′ bB

+
∑
kK

∑
a′A′,cC
∈[iI kK]

SaA a′A′T̃ iI kK
a′A′ cC

∑
lL

∑
dD,b′B′
∈[lL jJ ]

(kK cC|lL dD)T̃ lL jJ
dDb′ B′Sb′B′ bB. (14)

Since the orbitals come from the periodic calculation, they still hold the information about

the unit cells, they are centered in, and so the quantities in (14) are indexed correspondingly.

Formally, the fragment’s correlation energy accumulates the contributions from all pos-

sible pairs iIjJ , where the both iI and iJ belong to orbital fragment. It is however not

straight-forward to relate this energy to the periodic energy per cell. Firstly, this energy

grows with the fragment size, rather than converge to the periodic value. Secondly, for any

realistic fragment, a substantial share of the pairs would have both WFs located near the

fragment’s boundaries, which would contaminate the resulting energy with the boundary

effects directly via the corresponding pair energy contributions.

In order to alleviate these problems and reach a smooth convergence of the energy ob-

tained in the fragment calculation to the periodic result, one can keep the unit-cell-based

definition of the energy also for the fragment. As noted above, for each orbital of the frag-

ment the information on its centering cell in the parent periodic system is still available, so

one can identify the pairs where (i) both orbitals, (ii) only one orbital or (iii) none of the

orbitals belong to the unit cell. With this information at hand one can define the LMP2 or

LdrCCD correlation energy per “unit cell in a fragment” Eu.c.
corr. as [cf. eq. (5)]:

Eu.c.
corr. =

∑
ij

(
eij +

1

2

[∑
J 6=0

ei jJ +
∑
I6=0

eiI j

])
. (15)

For the sake of clarity, the index permutation invariance of the pair energies is not taken

into account in eq. (15). The energy expression, where this invariance is exploited can be

found in Ref.110 [cf. eq. (7) therein].

The pairs directly contributing to the energy (15) form the pair fragment as defined in

the beginning of sect. 2. We denote these pairs as reference-cell pairs (r.c.-pairs), as at least

one of the indices belongs to the reference cell. The remaining pairs, i.e. those with both

indices outside the unit cell, are nevertheless processed in the calculation. The amplitudes

of these pairs are essential as they couple to r.c.-pairs in the amplitude equations: see the
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last two terms in eq. (7) and the last three terms terms in eq. (14). In this sense, these pairs

provide the correlated (in this case LdrCCD) embedding for the pair fragment. Therefore

we will call them embedding pairs (emb.-pairs).

Figure 1 qualitatively compares the periodic and fragment’s pair energies and their con-

tribution to the overall correlation energy per cell, in the case of a model bilayer system

with two WFs per cell, which are depicted as circles. The unit cell indices are shown in a

calligraphic font. Each arrow represents an inter-layer orbital pair (up to the second-nearest

neighbors), with the first index denoted by a square and the second one by an arrowhead.

The correlation energy expression for the periodic case (2) contains only the pairs shown

in Figure 1a. This can serve as guide, showing how to obtain the energy per cell in fragment.

In the fragment-based treatment all occurring pairs (cf. Figure 1b) are explicitly evaluated.

Therefore, in order to get the actual energy-per-cell value [i.e. eq. (15)], one has to properly

scale their contribution in the energy expression to match the pattern of Figure 1a. A direct

comparison of the panels of Fig. 1 reveals that the number of pairs with both indices in the

reference cell is the same in both periodic and fragment cases, suggesting the factor 1 in the

first term of (15). The pairs with only one index in the reference cell are doubled in the

fragment calculation compared to the periodic case (note that ei jJ = ejJ i). This double

counting of the pairs is taken into account by the factor 1/2 for the second and third terms

of eq. (15). Finally the emb.-pairs do not have periodic counterparts in Figure 1a, and thus

are excluded in (15) entirely.

In order to reveal the difference between the embedding model of this section and the

“periodic-fragment” approach of section 2.2, we investigate the translational invariance (or

a lack thereof) in the involved quantities. As noted above, the orbitals, the Fock and overlap

matrices and the ERIs come from the periodic calculations, so they are inherently transla-

tionally invariant. In other words, the relations (9)–(12) are valid, although not explicitly

used in the fragment calculations. For the amplitudes, which are evaluated in the fragment-

based format, the translation symmetry (12) is not explicitly imposed and thus is lost in

the iterations, even if the starting amplitudes are taken from a periodic LMP2 calculation.

This manifests the actual principal difference between these two embedding models: in the

first case the pair fragment is embedded in the translational images of the r.c. amplitudes,

while in the second case the emb.-pair amplitudes are evaluated separately. Nevertheless,

the latter model still very adequately represents the periodic system, especially so for larger

fragments, where the distinction between the embedding regions becomes progressively less

significant.
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(a)

(b)

Figure 1: Comparison of (a) periodic and (b) fragment classification of inter-slab-adsorbate

pairs, in the case of a model bilayer system with two WFs per cell. The WFs of the lower

and upper layers are displayed by smaller blue and larger red circles, respectively, and are

denoted by combined intra-cell (1, 2) and cell-counting (2, 1, . . . , 2) indices. The latter are

given by the calligraphic font and decorated with an over-bar if the cell corresponds to a

“negative” translation. Panel (a) presents the full periodic system and panel (b) a fragment

cut out from it. The pairs are schematically represented by arrows: squares denote the first

orbital index in a pair and arrowheads the second. In panel (b) the black solid arrows refer

to pairs with both orbitals inside the reference cell, the blue dashed arrows to pairs with just

one WF inside it, and the green dotted arrows to pairs with both WFs outside the reference

cell. Reprinted with permission from Ref.110. Copyright 2016, American Chemical Society.
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The periodic and embedded fragment approaches have their advantages and disadvan-

tages. Obviously the periodic description is more closely related to the studied periodic

system. Besides, the efficiency of the periodic approach benefits from the translational sym-

metry, such that for any quantity involved in the calculation only its translationally unique

subset needs to be explicitly evaluated. The translational invariance, however, imposes also

certain difficulties. Firstly the algorithms have to be adapted for translating the intermedi-

ates on the fly to make their contractions efficient. This often requires that the batches of

the intermediate quantities, that have to be kept in memory simultaneously, should contain

the complete cell-index ranges.39,64

Secondly, the long-range inter-pair couplings might lead to extremely extended ranges

for the intermediates involved in the corresponding contractions. For example, an efficient

evaluation of the LdrCCD terms in the amplitude equations is carried out via 3-index inter-

mediates A:57,110

LdrCCDRaA bB
iI jJ ←

∑
PP

AiI aA
PP AjJ bB

PP , (16)

defined in eq. (18) of Ref.110. The index PP denotes here the auxiliary functions, used

for the density fitting representation of the ERIs of the first term in eq. (7) and last three

terms in eq. (14). In the periodic format this implies that the range for the auxiliary

functions PP should cover all the possibly involved product densities iIaA, jJ bB, kKcC,
lLdD appearing in these terms. For the r.c.-pairs the range of the second orbital in a pair

and the corresponding product density is restricted by the pair list. However, the couplings

involve also emb.-pairs, which implies additional translation of both indices. This becomes

especially severe in the quadratic LdrCCD term [the fifth term in eq. (14)], which contains

two additional translational extensions into the emb.-pair region. The range for the fitting

functions, which has to follow the range of the involved densities, thus expands vastly.

In a fragment-based calculation, where the translational invariance of the amplitudes

is not preserved anyway, such problems are absent. The fitting orbital range is simply

determined by the atomic fragment and does not grow beyond the range defined by the initial

Rcut. Another advantage of the fragment approach is that its implementation is technically

much easier, as it requires only an appropriate interface between the periodic and molecular

programs. The actual calculation is processed using the existing well optimized and tested

molecular implementation. This becomes especially relevant for higher-level coupled cluster

approaches, such as LCCSD or LCCSD(T). Implementation of interfaces allowing for such

calculations in the embedded fragment framework is currently in progress.

14



2.4 Large-finite-cluster LCCSD(T)

The third model we consider here is a large cluster that is obtained by cutting an atomic

fragment out of a crystal and, in case dangling bonds occurring after the cut, saturating them

by hydrogen atoms. Since we will seek for reasonably accurate finite-cluster representations

of the periodic system, the clusters should be sufficiently large. In particular they will be

assumed to be larger than the unit cell of the parent system.

In analogy to the embedded fragment approach we define a formal unit cell, now in the

cluster, as this will allow us to obtain a quantity directly related to the periodic calculation,

namely the energy per unit cell. Obviously the energy per unit cell in cluster is not invariant

with respect to choice of such a unit cell. But we again use this lack of invariance for reaching

the fastest possible convergence to the periodic result by placing the unit cell in the center

of the cluster.

In contrast to the fragment, however, the localized orbitals, that define the unit cell,

cannot be directly transferred from the periodic calculation to the cluster. Therefore they

have to be identified among the cluster’s localized orbitals. On the other hand, since the

atomic and bonding structure of the cluster has to closely resemble that of the crystal, the

principal localization and orientation of the localized orbitals in the crystal and cluster have

to match, at least when they can clearly be assigned to bonding and/or lone-pair orbitals.

Technically the procedure for the choice of the unit cell in cluster is described below in sect.

2.5.

Once the unit cell is chosen, the cluster’s pairs can be grouped into the three categories

depending on how many orbitals of a pair belong to the unit cell: (i) both orbitals (r.c.-pairs

A), only one orbital (r.c.-pairs B), or none of them (emb.-pairs.). Following the discussion

in sect. 2.3 the standard molecular expression for the correlation energy Ecorr. =
∑

ij eij has

to be modified to provide the correlation energy per cell:

Eu.c.
corr. =

∑
ij∈(r.c.−A)

eij +
1

2

∑
ij∈(r.c.−B)

eij + 0
∑

ij∈(emb.)

eij. (17)

Similarly to the fragment case, the amplitudes of all the pairs are updated and then

used in the couplings, but only those of the r.c.-pairs directly contribute to the energy. The

correlated embedding model is therefore similar in both approaches: the pair fragment is

embedded in the complete set of fragment’s or cluster’s amplitudes. What differs now is

the HF embedding level: in the fragment approach it is the periodic HF, while in the finite-

cluster one it is just cluster’s HF. It is the lowest-level embedding model considered here.

However, it is still expected to provide reasonably accurate results, provided the cluster
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is large enough. Comparable or even lower-level embedding models are commonly used in

incremental calculations for solids,25,99,124,125 which nevertheless have been demonstrated to

deliver rather accurate results. Besides, in contrast to the standard incremental scheme

calculations, we will use the finite cluster model not for obtaining its full correlation energy,

but rather for corrections to the correlated periodic or embedded fragment results (cf. sect.

2.6).

The substantial advantage of the finite cluster model is that the highly efficient implemen-

tations of molecular local coupled cluster methods can be readily exploited. In particular, it

opens a possibility to reach the LCCSD(T) level of accuracy for periodic systems. However,

if the weak intermolecular interactions play an essential role in the studied system, the stan-

dard PAO-based LCCSD(T)52 treatment could provide unsatisfactory description. Indeed,

the actual LCCSD residual equations are so complicated and computationally intensive, that

in the PAO-based LCCSD(T) version of Molpro they are conventionally processed for the

so called strong pairs only,52 i.e. the pairs with a very short interorbital distance. The

reasoning behind this approximation is that these pairs provide the major fraction of the

total correlation energy. The remaining pairs, i.e. the close and weak ones, are treated at

the LMP2 level. The only difference between the close and weak pairs is that the former are

included in the L(T) residuals and optionally could provide a feedback to the strong-pair

LCCSD residuals.

In many applications, especially those dealing with intermolecular interactions, the short-

range correlation energy cancels to a large extent in the energy differences and the interaction

energy is dominated by the long-range interactions, which within the conventional scheme

remains virtually at the LMP2 level. Recently we proposed a new formulation of the PAO-

based LCCSD method, that treats close and weak pairs much more accurately, but whose

computational cost is comparable to that of the initial scheme.58,59 The underlying princi-

ple used in the formulation of this model, denoted as LCCD[S]-R−6, was the following: the

close and weak pairs should be included in a common coupled cluster amplitude equation

framework, but the quickly decaying diagrams could be omitted. Importantly, the compu-

tationally expensive ladder diagrams, that do decay quite fast,58–60,62,126 could be excluded

from the close and weak pair amplitude equations.

The specification of the LCCSD(T)|LCCD[S]-R−6 model can be found in Ref.59. Here is

a brief overview:

• The strong-pair residuals contain:

– (i) all the LCCSD diagrams (cf. Refs.49,73) involving singles and/or strong-pair
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doubles amplitudes;

– (ii) all the close-pair-doubles diagrams, whose leading energy contribution decays

as R−6 (the LMP2-terms plus the diagrams D1-D9 and D13-D16 of Ref.58). These

diagrams correspond to the LCCD-R−6 model;

– (iii) all the linear weak-pair-doubles diagrams, whose leading energy contribution

decays as R−6 (the LMP2-terms plus the diagrams D1, D3 and D6 of Ref.58).

These diagrams correspond to the LrCCD3 model.

• The close-pair residuals contain:

– (i) the LCCD-R−6 diagrams involving strong/close-pair amplitudes;

– (ii) the LrCCD3 diagrams of weak-pair amplitudes.

• The weak-pair residuals contain:

– the LrCCD3 diagrams of all strong-, close- or weak-pair amplitudes.

• The R−6-decaying singles contribution, involving the close-pair doubles amplitudes, is

calculated perturbatively at the end in the flavor of the “[T]” approach (and therefore

denoted as “[S]”), i.e. including only the 4th order terms with the converged LCCSD

amplitudes (the diagrams D18-D21 of Ref.59).

• The triples as before are computed for the close/strong pairs48,52 (among the three

pairs that form a triple two are allowed to be close).

• Since the inter-monomer pairs are of major importance for the intermolecular inter-

actions, we assign them to be close pairs regardless of their inter-orbital distance or

connectivity.

The LCCSD(T)|LCCD[S]-R−6 model was benchmarked on a wide range of intermolecular

systems and was found to be very accurate. We therefore apply it now to study intermolecular

interactions in solids. The correlation energy per cell within this approach requires additional

regularization. Firstly, the LCCSD correlation energy expression has a quadratic singles

term, which can be represented as a formal sum over pairs. The LCCSD pair energy can be

written as

eLCCSD
ij =

∑
ab∈[ij]

T̃ ij
ab (ia|jb) +

1

2

∑
a∈[i]
b∈[j]

(
2T i

aT
j
b − T

i
bT

j
a

)
(ia|jb) (18)
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and plugged in eq. (17). Here T i
a are the singles amplitudes and [i] – the singles domains.

Secondly, the “[S]” and “(T)” contributions are computed as a posteriori energy correc-

tions and thus require separate expressions. The “[S]”-correction per cell [cf. eq. (5) of

Ref.59] originates from the feedback from the singles to the close-pair doubles, so its value

per cell takes the form:

Eu.c.
L[S] = 2

∑
ij

∈(r.c.−A)

∑
a∈[i]

T a
i

∑
bc∈[ij]

T̃ ij
bc (ab|jc) +

∑
ij

∈(r.c.−B)

∑
a∈[i]

T a
i

∑
bc∈[ij]

T̃ ij
bc (ab|jc))

+
∑
k

∑
c∈[k]

T c
k

2
∑
ij

∈(r.c.−A)

∑
ab∈[ij]

ScaT̃
ij
ab (bj|ik) +

∑
ij

∈(r.c.−B)

∑
ab∈[ij]

ScaT̃
ij
ab (bj|ik)

 .(19)

For the perturbative triples energy48 per cell Eu.c.
L(T) we have to partition the occupied

orbital triples into 4 subsets: (i) all three orbitals are in the reference cell (r.c.-triples A),

(ii) only two orbitals are in the reference cell (r.c.-triples B), (iii) only one orbital is in the

reference cell (r.c.-triples C), (iv) all three orbitals are outside the reference cell (emb.-triples).

A procedure, analogous to that of sect. 2.3 for the doubles, gives

Eu.c.
L(T) =

1

3

1
′∑

ijk
∈(r.c.−A)

eijk +
2

3

∑
ijk

∈(r.c.−B)

eijk +
1

3

∑
ijk

∈(r.c.−C)

eijk + 0
′∑

ijk
∈(emb.)

eijk

 . (20)

where a prime over a summation sign means exclusion of the i = j = k terms. The individual

triples energies eijk are given by the following expression:48

eijk =
∑

abc∈[ijk]

X ijk
abc

W ijk
abc +

∑
d∈[i]

T i
dSad (jb|kc) +

∑
d∈[j]

T j
dSbd (ia|kc) +

∑
d∈[k]

T k
d Scd (ia|jb)

 ,(21)

where the intermediates X ijk
abc and W ijk

abc are given by the equations (30) and (19) of Ref.48,

respectively, and [ijk] denote the triples domains. We note that the energy expression (20)

does not exploit the index-permutation symmetry in the triples energies eijk. In order to

include it, one has to restrict the occupied orbital summation ranges to i ≥ j ≥ k and

substitute the uniform factor of 1/3 with a term-specific one 2− δij − δkj [cf. eqs. (28) and

(29) of Ref.48].

Finally we note that in the L(T0) approximation,48 which omits the inter-pair couplings

in the triples residuals (i.e. the off-diagonal elements of the internal Fock matrix in the

localized orbital basis are neglected), the emb.-triples become unnecessary (they provide
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neither contribution to the energy nor embedding through the couplings). This can notice-

ably reduce the overall number of triples as well as of the intermediates (e.g. 3-external ERIs

associated exclusively with emb.-triples), leading to substantial computational savings.

2.5 Technical details

The molecular local coupled cluster method, used in this work, originates from the local

correlation theory of Pulay and coworkers.71,72,126–131 The formalism of local CCSD was

presented in Ref.73 and its efficient implementation in the Molpro code in Refs.49,50,52

(the local density fitting approach for 4-external ERIs can be found in Ref.132). Ref.63

describes the triples correction L(T). Finally the recent LCCSD(T)|LCCSD-R−6 technique

was proposed and tested in Refs.58,59.

The periodic local MP2 method, implemented in the Cryscor code,65 also stems from

Pulay’s local correlation scheme. It uses the AO-based periodic HF reference133 computed

by the Crystal program.134 The initial periodic LMP2 implementation had the ERIs cal-

culated by a 4-index transformation.28 However only when the density fitting representation

of ERIs64,67,135 was implemented, the method became practically usable. The currently used

version of the local density fitting is described in Refs.39,67. In Refs.64,65 one can find the

algorithms for solving the periodic LMP2 equations [cf. eq. (13)], and in Refs.35,65 – the

description of the C6/R
6
ij-type extrapolation technique [cf. eq. (6)]. Construction of the

occupied WFs is processed partially in the reciprocal and partially in the direct space ac-

cording to the procedure of Zicovich-Wilson et al.70, while the PAOs are generated in the

reciprocal space and then transformed into the direct space.66 Very recently we presented

the embedded LdrCCD method.110

The implementational details of these methods are well documented and we will not

reiterate them here. We will focus only on two technical aspects, which are relevant for

the present study, but have not yet been fully described. First, we explain how the pair-

and orbital fragments are built for adsorbate-slab or two-slab systems. In such calculations

there are two very distinct groups of pairs: intra-slab (or intra-adsorbate) and inter-slab-

adsorbate. Within a given Rcut, the intra-pairs are usually much more numerous than the

inter-pairs. At the same time, when the interaction energy is calculated, the intra-pair-energy

to a large extent cancels out in the energy difference, while the inter-pair energy remains

entirely intact. Hence, the direct application of a single Rcut tolerance is inefficient, since it

is strongly biased towards an unnecessary expansion of the intra-pair list, while the essential

inter-pair list remains poor unless very large Rcut is used.
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One can use of course two different tolerances Rintra
cut and Rinter

cut as in Ref.110, but with

two parameters the convergence test becomes much more difficult. Besides, in the Molpro

LdrCCD implementation, each orbital from the orbital fragment has to have a corresponding

diagonal pair in the pair list. This means that even if an orbital jJ appears in the orbital

fragment only because of some inter-pair ijJ , it will automatically generate a diagonal

embedding intra-pair jJ jJ . However, in the slab-only calculation, which is needed to

compute the energy difference, this ijJ inter-pair will be obviously absent and thus jJ jJ
will not appear either. In such a situation the pair fragments and thus the energies in the

slab-adsorbate and isolated-slab calculations could be unbalanced, ruining the reliability of

the energy difference.

In order to avoid these problems, for defining the fragment we employ a three-step pro-

cedure based on a single tolerance Rintra
cut . We start with determining all the intra-pairs for

the slab. The r.c.-intra-pairs are obtained directly using Rintra
cut . That yields the intra-slab

part of the pair fragment and thus of the orbital fragment. Then the emb.-intra.-pairs are

added, which have the following properties: (i) both orbitals of each emb.-pair must belong

to the orbital fragment, already specified by the r.c.-pairs, and (ii) each emb.-pair must have

a translational image among the r.c.-pairs.

As a second step, the same procedure is applied to the intra-adsorbate fragment. After

that the orbital fragment is considered to be defined. With that as the third step the r.c.-

inter-pairs are obtained, as all possible inter-r.c.-pairs within this orbital fragment. Finally

the inter-emb.-pairs are added, which are defined as the pairs that fulfill the above-mentioned

two criteria, now applied to the inter-pairs.

With such a procedure we achieve a rich list of inter-pairs regardless of Rintra
cut . Therefore,

even small Rintra
cut calculations provide meaningful results and the convergence with the frag-

ment size is expected to be fast, which saves a considerable computational effort of processing

the otherwise very numerous intra-pairs. At the same time the whole procedure is driven

by a single tolerance making expansion of the fragment straightforward. Finally, since the

Rintra
cut is always applied to the intra-pairs, no imbalance can occur in the slab-adsorbate vs

isolated-slab or isolated-adsorbate calculations.

The second topic of this section refers to the finite-cluster case and describes how the

“unit cell in cluster” is determined. As was explained in sect. 2.4, such a “unit cell” is

defined by a set of localized occupied orbitals, which are similar to those forming the unit

cell in the crystal. If the cluster is a good representation of the solid, such orbitals can always

be found. Unfortunately, a manual search for these orbitals is very tedious and has to be
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automatized to make the approach practicable. One of the ways to simplify this process is

to relate the orbital unit cell to the atomic unit cell. The latter can easily be located in the

cluster even before any calculation is taking place. However, a naive inclusion of all localized

orbitals, that are centered near the atoms of the unit cell, could still lead to a wrong result.

We will illustrate this problem on an example: consider a linear chain (-A-B-A-B-A-B-)

with two atoms in the cell A and B, each having one lone-pair WF and one bonding WF

connecting it with the neighboring atom to the right. The orbital unit cell consists of 4 WFs:

the lone-pair WFs of both atoms and the bonding WFs, connecting A with B both inside

the zeroth cell, and B from the cell -1 with A from the zeroth cell. However, if we assign all

the WFs that belong to the atoms of the zeroth cell, we well get 5 WFs: two lone pair WFs,

but three bonding WFs, since the orbital that connects the B atom from zeroth cell and A

from the first cell will be also added, although this WF is just a translational image of one

of the in-cell WFs.

In order to avoid this double counting we employ the following procedure, which correctly

determines the orbital unit cell provided all the localized orbitals have a pronounced bonding

(two atoms in the core domain) or lone-pair (one atom in the core domain) character. We

divide all unit cell atoms in two classes: class A and class B. For each atom of the class A

we include all WFs that have this atom in their core domains. This means that these WFs

are allowed to connect the atoms of class A with atoms outside the unit cell. At the same

time, for the atoms of class B this is not allowed: if an orbital has an atom of class B in

its domain, the other atom in the domain must be also inside the unit cell. Otherwise this

orbital will not be included in the list of the unit cell orbitals. Returning to our example,

the atom A should be then of the class A and the atom B of the class B. Then the unit cell

will correctly consist of two lone-pair WFs and two bonding ones, while the spurious WF,

that connects the atom B with the atom A from the cell 1 will be omitted.

We note, that this scheme does not provide a black box solution, as finding the class A

and class B atoms has to be carried out in the manual regime. Though it is way simpler than

picking up the proper LMOs, for complicated periodic systems, it could still be a formidable

task. Presently we are working on a completely automated scheme, but it turns out to be

technically rather complex and cumbersome.

2.6 Hierarchical correction scheme

One of the essential advantages of the wavefunction-based approach is a possibility for a

systematic improvement of the result. In particular, within the CCSD(T) level one attains
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a very high accuracy, at least in single-reference cases, such that these results can serve as

a benchmark for both experiment and theory. For solids, however, CCSD(T) calculations

without additional approximations are virtually impossible due to the excessive computa-

tional cost. At the same time, the presented hierarchy of embedding approximations allows

one to effectively approach the CCSD(T) level by accumulating different energy components

and refining corrections.

Quite a number of protocols based on energy correcting schemes that combine a lower-

order description at a periodic level with higher-order correcting energy increments evaluated

on a cluster or set of clusters can be found in literature. They commonly use the following

form of the energy expression:

E = ELL,per. + δEHL−LL,cl. (22)

with

δEHL−LL,cl. = (EHL,cl. − ELL,cl.) , (23)

where “LL” and “HL” stand for “low-level” and “high-level”, and “per.” and “cl.” for

“periodic” and “finite cluster”, respectively. The cluster can be optionally embedded. The

target quantity E is usually an interaction energy per some structure unit: for example,

cohesive energy per atom, lattice energy per molecule, adsorption energy per adsorbate

molecule, etc. Sometimes the total energy per cell is also considered.

The most common choices for the low-level treatment are periodic HF or DFT. One of

the reasons is that both HF and DFT capture reasonably well the electrostatic interactions,

which are indeed very long-range and do require the correct periodic treatment. Besides,

these methods are computationally inexpensive, especially so non-hybrid DFT, and are im-

plemented in publicly available quantum chemical periodic program packages. A correction

to periodic HF or DFT is expected to be of a less long-range character and thus a finite-

cluster treatment could be sufficient. For example, the widely used incremental scheme11,17

of Stoll and coworkers usually adds a CCSD(T) correlation energy, computed via finite-

cluster many-body expansion, to the periodic HF [i.e. LL=HF, HL=CCSD(T)]. Another

well known scheme of Sauer and coworkers111,113,114 employs periodic DFT and a finite clus-

ter MP2-DFT correction [i.e. LL=DFT, HL=MP2]. As a final refinement a CCSD(T)-MP2

energy difference calculated on a smaller cluster can be added.

The embedding hierarchy for correlated methods, presented in this work, offers a very

convenient platform for the correcting scheme (22) of a much higher level, as it permits for
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more accurate models both at LL and HL stages. Firstly, LL is in this work increased to

the correlated level. Secondly, by employing the LCCSD(T)|LCCD[S]-R−6 method for HL,

which is applicable to large systems, it becomes possible to control convergence of the results

with the cluster size.

We start with the periodic LMP2 method as LL. In contrast to HF and standard DFT,

MP2 does capture dispersion, which means that the HL in this case provides only a correction

to the latter, rather than the whole effect. With that one can expect that in this case the

δEHL−LL,cl. converges with the cluster size much faster, than when LL is HF or DFT. For a

certain class of systems this is indeed the case, e.g. for small not very polarizable molecules

forming a crystal or adsorbed on a surface, for which MP2 itself is not too far off. The

correction on top of periodic LMP2 is then much smaller than the overall correlation energy

contribution and can be captured already with very small cluster models.

For example, for the CO2 or HCN crystals25 the standard incremental scheme converges

quite slowly with the cluster size, which reflects the slow R−3cut decay rate of the unaccounted

dispersion (vide supra). Furthermore, in the HCN crystal the electrostatics plays an impor-

tant role (the individual molecules have a strong dipole moment), which cannot be adequately

captured by a finite-cluster representation. Here the periodic HF seems to be insufficient for

accurate electrostatic interaction energy, making a scheme with LL=HF too crude. At the

same time, with LL=LMP2, the incremental scheme converges already within a few most

compact clusters to a result, which agrees very well with the experimental one.

In highly polarizable systems, however, MP2 notoriously overestimates dispersion. In

such cases the post-MP2 correction is not small. This means that for such systems, MP2

as the LL method offers very little or even no advantage with respect to LL=HF. One of

the seemingly easy ways to correct this problem is to use the empirically corrected spin-

component-scaled (SCS) MP2. It can be evaluated within an MP2 calculation without any

additional cost, and for dispersively bound dimers of highly polarizable molecules provides a

better interaction energy than MP2. Unfortunately, SCS-MP2 cannot cure the MP2 problem

of the unscreened description of the Coulomb interaction (vide infra). The screening of

the Coulomb interaction is very efficient in small-gap bulk systems and could thus have a

profound effect on dispersion.

A third LL method we propose in this work is LdrCCD. It is in many cases less accurate

than MP2 or SCS-MP2, but its error is usually less dependent on the polarizability and, very

importantly, it does include the Coulomb screening via the Coulomb-ring diagrams.110,136–139

Presently, the periodic version of LdrCCD is not yet available. However by progressively
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expanding the embedded fragment one can closely approach the converged periodic result.

We note that in practical applications, high accuracy can be achieved only if other er-

rors, in addition to the method error discussed so far, are also corrected. This can include

the basis set incompleteness error, frozen core approximation error, local approximation er-

ror, CCSD(T) method error, etc.25,26,115–117,140,141 In this respect the δEHL−LL,cl. correction

could actually consist of several components, evaluated with different clusters. It is possible

to obtain the LMP2 result close to the basis set limit (using LMP2-F1239) as well as the

core correlation at the LMP2 level still remaining in the periodic regime.115 The basis set

correction is, however, of a relatively short-range, provided the periodic LMP2 basis set is

sufficiently good, say, of augmented-triple-zeta level. The interactions due the core elec-

tron are usually non-negligible also only at short distances. Therefore the corresponding

corrections to a good accuracy could also be calculated using moderately sized clusters.

In this paper we will not discuss other corrections apart from the method error correction.

For an overview we refer to Refs.116,141, where extended correcting protocols are presented

and discussed in detail. Here we only focus on the scheme (22) with the LL=MP2, SCS-

MP2 or LdrCCD, carried out using the periodic (sect. 2.2) or embedded-fragment models

(sect. 2.3), and HL=LCCSD(T)|LCCD[S]-R−6 with large clusters and the unit-cell-in-cluster

approach.

3 Calculations and discussion

In this work we apply the presented methodology to investigate the importance of the

Coulomb screening effects for van-der-Waals interactions in solids and to which extent that

imposes a challenge for the theory. The term “screening” is often associated with weakening

of the Coulomb interaction between a pair of electrons, holes or an electron and a hole due to

the influence of other electrons and/or holes through mutually-coupled correlated Coulomb

interactions. It is essentially a many-body effect and can formally be represented by the ring

diagrams. Therefore the direct random-phase approximation (RPA), which sums up the

cascades of these diagrams to infinity,136,139 captures exactly this effect. CCSD also includes

these diagrams but in addition many other types of correlated interactions. The LdrCCD

model is based on the direct RPA,121 but adds to it a few exchange-type diagrams.58,110

The MP2 method does not contain Coulomb-ring diagrams and thus describes unscreened

correlated Coulomb interactions only.

In the molecular context it is not common to study screening as a separate effect. In
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(a) (b)

Figure 2: The systems studied in this work: phosphorene bilayer (side view, panel a), and a

water monolayer adsorbed on 2D silica ( top view, panel b). The phosphorus atoms are given

in yellow color, the silicon atoms in blue, the water’s oxygen in red, the silica’s oxygens in

pink, the hydrogens in grey. In the 2D silica – water system, half of the water molecules are

located over the silicon atoms, while the other half over the centers of the silica’s 6-membered

rings. The green lines indicate the unit cells.

solids, on the contrary, screening plays an essential role, for example, in exciton binding

and other contexts, and is thus a subject of extensive investigation and modeling. However,

the solid state theory only since recently has started focusing on van der Waals dispersion

interactions systematically (cf. e.g. Refs.2,3,14,21–26,104,115–117,124,125,141–158) and many aspects

of this effect including the influence of the screening are currently under active research.

3.1 Specification of the systems

The effectiveness of the HL/LL protocol (Section 2.6), based on the embedding models of

sections (2.2-2.4) and the role of screening is studied on the interaction between the phos-

phorene sheets in a phosphorene bilayer (Fig. 2a) and adsorption of water monolayer on

2D-silica (Fig. 2b). Both black phosphorus,90,141,155,159–171 which is a small gap semiconduc-

tor, and 2D silica,172–180 an insulator, are promising systems from the technological point of

view and are extensively studied experimentally and theoretically.

The structure of phosphorene bilayer was taken from Ref.90 (p-LMP2/TZVPP2 entry

of table S2), which is quite close to the experimental one. As mentioned, we will focus on

evaluating the interaction energy per phosphorus atom, given by:

∆E =
1

8
(Ebilayer − Elayer 1 − Elayer 2) (24)
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P10H8–P16H10 P16H10–P16H10 P16H10–P32H14 P32H14–P32H14

Figure 3: The cluster models used for the phosphorene bilayer. The grey, blue and red atoms

are phosphorus, and yellowish – hydrogens. The red and blue atoms denote the unit cell

atoms of type A and B, respectively (cf. sect. 2.5).

where 8 is the number of atoms in a unit cell for the bilayer.

In the case of 2D silica, we are interested in evaluating the interaction energy of water

molecules on the substrate; unfortunately, it is experimentally not known, in which particular

structure water adsorbs on 2D silica. A B3LYP study of Ref.172 proposed a water monolayer

structure with two water molecules per silica unit cell both located above surface Si atoms.

In our own optimization (at the B3LYP-D3 level with the POB-TZVP basis set181) we

found a structure with one of the water molecules located above the center of the ring (Fig.

2b). According to a periodic LMP2 calculation this geometry is energetically preferable by

around 1 kcal/mol per water molecule. We note, however, that the formation of the water

layer is driven by the competition between the water-silica and relatively strong water-water

interactions. Therefore the actual structure of the adsorbate is likely to show a strong

dependence on the water coverage, whose detailed study goes beyond our present purposes.

In this study we consider the structure of Fig. 2b as a model structure rather than a physical

one, aiming to test the accuracy of different computational approaches for such a system.

Water within this structure forms a hexagonal hydrogen-bond network. The interaction

energy per water molecule for the 2D silica – water system is defined as:

∆E =
1

2
(Esilica−water − Esilica − Ewater monolayer) (25)

and within the water monolayer itself:

∆E =
1

2
(Emonolayer − Emolecule 1 − Emolecule 2) . (26)

The energies E in eqs. (24)-(26), apart from Emolecule, can refer to the total (HF+correlation)

or correlation energy per unit cell. In all these expressions the relaxation of the monomers is

not taken into account, and the interaction energies are counterpoise corrected. This means
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Si12O18H12–(H2O)4 Si20O32H16–(H2O)7 Si26O43H18–(H2O)13 Si32O54H20–(H2O)12

(a)

(H2O)6 (H2O)10 (H2O)16 (H2O)32

(b)

Figure 4: The cluster models used for the 2D silica – water system (a), and water monolayer

(b). The silica atoms are shown in blue, oxygen in red and hydrogen in pink.
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that the isolated phosphorene sheets in (24), 2D silica and the water monolayer in (25) and

the water molecules 1 and 2 in (26) are taken in the same geometry as in the corresponding

interacting systems and with the presence of the other monomer [or monomers in case of the

lateral interaction energy (26)] in a form of ghost atoms, holding the basis functions.

As the unit cell and the energy per unit cell are defined for the fragments and finite

clusters, the corresponding interaction energies were also computed using eqs. (24)-(26).

For the phosphorene bilayer and silica-water system the embedded fragments were obtained

according to the procedure described in sect. 2.5 with Rintra
cut varying from 1 bohr to 12 bohr.

For the water monolayer a global Rcut was used ranging from 6 bohr to 20 bohr.

For each system 4 different clusters of progressively increasing size were used. They are

depicted in Fig. 3 (phosphorene bilayer) and Fig. 4 (water – 2D silica and water monolayer).

They were cut out from the periodic structures with the dangling bonds (in the phosphorene

bilayer and silica) saturated with hydrogens: with the P–H and Si–H distance of 1.42 and

1.48 Å, respectively. For the water molecules no bonds were cut. The four silica clusters were

chosen such that they contained one, two, three and four 6-membered rings, respectively (cf.

Fig. 4a).

All the geometries are explicitly given in the supplementary information182 in a form of

the Crystal input (for the periodic structures) or xyz-files (for the finite clusters).

3.2 Computational parameters

The periodic HF calculations and subsequent generation of WFs were performed using

the Crystal code.134 Periodic local MP2 calculations and preparation of the ERIs and

other intermediates for the fragment calculations were done with the Cryscor code.35 For

the fragment-based and finite-cluster calculations the local correlation program of Mol-

pro52,59,63,110,118 was employed.

Basis sets of augmented-triple-zeta quality were used in the periodic, fragment and most

of the finite-cluster calculations. For phosphorene bilayer at the periodic HF stage it was

a TZVPP2 basis set from Ref.90, which was then augmented by diffuse d- and f-orbitals

from aug-cc-pVTZ183 for the correlated periodic and embedded-fragment calculations via the

dual basis set technique.66 In the silica-water system, the periodic and fragment calculations

employed the basis consisting of s- and p- (only s- for hydrogen) orbitals from def2-TZVPP184

and d-and f- (p- and d- for hydrogen) orbitals from cc-pVTZ185. Again the at the correlated

level, the diffuse d- and f- orbitals from aug-cc-pVTZ were added for O and Si. Some of the

exponents for the silicon atoms were upscaled to avoid HF convergence problems. The basis
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sets are given in the supplementary information182 in a form of the Crystal input.

The finite cluster calculations used mostly aug-cc-pVTZ183 (cc-pVTZ for H) basis sets.

The calculations for the largest phosphorene bilayer cluster (P32H14–P32H14), largest water

cluster ((H2O)32) and two largest silica-water clusters (Si26O43H18–(H2O)13 and Si32O54H20–

(H2O)12) were performed with the aug-cc-pVDZ basis, and the aug-cc-pVTZ value was ap-

proximated by adding the corresponding aug-cc-pVTZ − aug-cc-pVDZ energy difference,

evaluated on the second largest (phosphorene bilayer and water monolayer) or third largest

(silica–water) clusters.

The periodic HF calculations were carried out with the TOLINTEG186 tolerances of 10 10

10 25 75. The Brillouin zone was sampled with an 12×12 k-mesh. In the periodic, fragment

and finite-cluster local correlation calculations the virtual space was restricted to the core

PAO domains. In order to identify the lone-pair and bonding LMOs in the finite-cluster

calculations for the automatic unit cell determination (cf. sect. 2.5) the Boughton-Pulay

criterion, used for the definition of such core domains, had to be adjusted to 0.97 – 0.975

(depending on the cluster). Since in this paper we focus on the method correction within

the HL/LL correcting scheme, the domain- and basis-set errors were not explored.

In periodic LMP2, the pairs up to 12 Å were explicitly processed, beyond that the

corresponding contribution was obtained using the Cij
6 /R

6
i jJ extrapolation65 [cf. eq. (6)].

In the finite cluster calculations all the inter-monomer pairs were treated as close (cf. sect.

2.4). The intra-pairs were ranked as the strong pairs (one common atom in the corresponding

domains), close pairs (one connecting bond between the atoms in the corresponding domains)

and week pairs (the rest). As was explained in sect. 2.4, in the LCCSD(T) method the strong

pairs enjoy the full LCCSD(T) treatment, the close pairs the LCCD[S](T) one, and the weak

pairs the LrCCD3 treatment.58,59 For the perturbative triples the L(T0) approximation63 was

employed. The ERIs were approximated using the density fitting technique with Weigend’s

aug-cc-pVTZ fitting basis sets.187 The exceptions were the periodic HF, where the ERIs were

computed exactly or via the multipole approximation188, and the periodic LMP2 ERIs for

the pairs between 8 and 12 Å, evaluated by the multipole approximation.65

3.3 Results and discussion

3.3.1 Phosphorene bilayer

We start the discussion of the results with the phosphorene bilayer. Figure 5a compiles the

interaction energies (24), computed using different schemes, ranging from periodic LMP2 to
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Figure 5: Correlation interaction energies ∆Ecorr.(a), the increments thereof ∆Eincr. by the
fragment expansion (logarithmic scale) (b), and HL–LL corrections δEHL−LL (c) for the
phosphorene bilayer as functions of fragment’s or cluster’s size. ∆Ecorr. was computed via
eq. (24). Here the “number of correlated orbitals” directly reflects the size of the fragment or
cluster. ∆Eincr. are the correlation interaction energy increments, obtained within stepwise
extensions of the fragments by increasing Rintra

cut . The corrections δEHL−LL were defined by eq.
(23) with LL=LMP2, SCS-LMP2 and LrdCCD, and HL=LCCSD(T0)|LCCD[S]-R−6. The
periodic LMP2 and SCS-LMP2 results are shown by black and red dotted lines, respectively.
The fragment results are given with dashed lines and filled symbols, while the finite-cluster
ones with solid lines and open symbols: LMP2 – squares, SCS-LMP2 – circles, LrdCCD –
asterisks, LCCSD(T0)|LCCD[S]-R−6 – diamonds. The fragment LMP2 and SCS-LMP2 were
computed in the periodic-fragment model (cf. sect. 2.2), while LdrCCD in the embedded-
fragment model (cf. sect. 2.3). The embedded-fragment LMP2 results are also given in the
panel (a) by the grey dashed line and crosses. In all panels the symbols indicate the actually
computed values.
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finite-cluster LCCSD(T). Firstly, we note that the fragment-based LMP2 and SCS-LMP2

energies smoothly approach the periodic values. Furthermore the LMP2 energies, obtained

using the periodic-fragment model of sect. 2.2 and embedded-fragment model of sect. 2.3

virtually coincide: at the scale of Fig. 5a the deviation between the grey dashed curve with

crosses (embedded-fragment LMP2) and the black dashed curve with filled squares (periodic

fragment LMP2) can be seen only for the smallest cluster. That suggests that the embedded-

fragment model is a very good approximation to the periodic treatment at least at the LMP2

level. The LdrCCD couplings are stronger and of longer range than in LMP2, and thus the

convergence of the embedded-fragment LdrCCD to the periodic result could be slower than

for LMP2. We don’t have the periodic or periodic-fragment LdrCCD implementation ready

yet, so the direct comparison to those is not possible. However, from the convergence pattern

of the embedded-fragment LdrCCD in Fig. 5a one can conclude that, in fact, it converges

even faster than LMP2.

This faster convergence of LdrCCD with respect to LMP2 and SCS-LMP2 is a very

important observation, because this is exactly how the Coulomb screening is supposed to

manifest itself: for distant electron pairs, the dispersive interaction becomes progressively

less efficient due to the influence (screening) of the electrons in between. That leads to a

faster decay of dispersion with the pair distance compared to LMP2 as well as SCS-LMP2.

SCS-LMP2 uses the very same LMP2 amplitudes, which are then scaled with a uniform

factor. This scaling obviously has an influence on the long range interaction as well as on the

short range one, but it cannot correctly reproduce the screening effect. This becomes evident

in the logarithmic plot of the gain in the interaction energy by expansion of the fragment

(Fig. 5b). LMP2 and SCS-LMP2 contributions have a very similar decay rate, while LdrCCD

curve differs from them quite substantially, revealing a noticeable contraction of the effective

range of dispersive interactions.

Now we analyze the results of the finite-cluster model, where the methodological level can

be increased further up to LCCSD(T). We note, firstly, that the finite-cluster LMP2, SCS-

LMP2 and LdrCCD correlation interaction energies are quite close to those of the fragment

approach and the principal pattern of convergence to the periodic result is reproduced.

Importantly, the finite curves demonstrate the same distinction in the decay rate between

LdrCCD on the one hand and LMP2 or SCS-LMP2 on the other.

With finite clusters we can finally compare these curves with the LCCSD(T) reference.

This comparison reveals, that although LdrCCD interaction energy is not very accurate, the

LCCSD(T) curve is virtually parallel to the LdrCCD one. This indicates that the electron
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screening is the most important effect in the long range, at least for this system, shaping

the strength of the distant-pair interaction. Indeed, the difference between LdRCCD and

LCCSD(T) is virtually independent of the cluster size, as follows from δELCCSD(T)−LdrCCD in

Fig. 5c, suggesting that it originates mainly from the short and medium range. Therefore

LdRCCD can be a very efficient choice for LL, as its correction to a very good accuracy can

be evaluated on a small cluster. At the same time, the δELCCSD(T)−LL correction to LMP2

or SCS-LMP2 converges very slowly - not faster than the individual LMP2 or SCS-LMP2

energies themselves. This makes these methods absolutely useless as LL for this system: the

choice LL=HF would be as efficient.

To summarize, for systems of such type both periodic LMP2 and SCS-LMP2 can hardly

be useful. The reason is not only the high polarizability of the monomers, as SCS-LMP2

can cope with that. The main problem comes from the high effectiveness of the Coulomb

screening, which weakens the long-range part of the dispersion substantially. The unscreened

LMP2 or SCS-LMP2 long-range correlation provides then a lot of fictitious attractive inter-

action, causing a gross overbinding in the thermodynamic limit. This overestimation of the

correlation contribution to the interaction energy leads to even more pronounced relative

error in the total interaction energy, in cases when the HF contribution is repulsive, as, for

example, in the phosphorene bilayer, where it amounts to around +4 kJ/mol per P atom.141

To conclude, it is highly advisable for such systems to choose the LL treatment such, that

it captures the screening effect, e.g. LdrCCD.

3.3.2 Water–silica adsorption

Next we consider van der Waals interactions in a system with a larger band gap: in water

adsorbed on 2D silica, the interacting species are all insulators. For the interaction energy

between the water monolayer and silica, LMP2 is no longer as faulty as for phosphorene

bilayer. Indeed, as can be seen from Fig. 6a, which compiles the correlation adsorption

energies for this system, for a small cluster it is even very close to LCCSD(T). However,

despite the wide gap, the screening effects still show up, as the LMP2 interaction grows with

the system size noticeably faster than that of LdrCCD or LCCSD(T). In the SCS-LMP2 this

effect can also be observed in the fragment calculations, but the uniform downscaling of the

pair energies in this method brings it close to LdrCCD.

Due to absence of screening in LMP2, the δELCCSD(T)−LMP2 correction again converges

slowly with the cluster size (cf. Fig. 6b), making the HL/LL scheme with choice of

LL=LMP2 inefficient. LMP2 for this system could in principle be used alone without the HL
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Figure 6: Correlation interaction energies ∆Ecorr.(a) and HL–LL corrections δEHL−LL (b) for

the water monolayer adsorbed on 2D silica as functions of fragment’s or cluster’s size. ∆Ecorr.

was computed via eq. (25). The corrections δEHL−LL are defined by eq. (23) with LL=LMP2,

SCS-LMP2 and LrdCCD, and HL=LCCSD(T0)|LCCD[S]-R−6. The periodic LMP2 and

SCS-LMP2 results are shown by black and red dotted lines, respectively. The fragment

results are given with dashed lines and filled symbols, while the finite-cluster ones with

solid lines and open symbols: LMP2 – squares, SCS-LMP2 – circles, LrdCCD – asterisks,

LCCSD(T0)|LCCD[S]-R−6 – diamonds. The fragment LMP2 and SCS-LMP2 values were

computed in the periodic-fragment model (cf. sect. 2.2), while LdrCCD in the embedded-

fragment model (cf. sect. 2.3). The symbols indicate the actually calculated values. The

“number of correlated orbitals” directly reflects the size of the fragment or cluster.

33



correction as its error at the end does not seem to exceed 2 kJ/mol per adsorbate molecule,

which is in many cases an acceptable accuracy for such an inexpensive method as MP2.

In contrast to LMP2, LdrCCD behaves very similarly to the phosphorene bilayer case. It

again noticeably underestimates the binding energy. But at the same time, the convergence

of the δELCCSD(T)−LdrCCD correction is quite insensitive to the fragment size, again suggesting

that LdrCCD is an appropriate model for LL in the HL/LL scheme.

Finally we focus on the interactions inside the water monolayer. The results for the

lateral interaction energy are compiled in Fig. 7. LMP2 is very accurate here, which is in

agreement with a commonly known success of this method for hydrogen-bonded intermolec-

ular complexes. Screening effects are very small here, so the LMP2 is accurate for the whole

range of studied clusters. LdrCCD is less accurate than LMP2: it again underestimates

the interaction energy. However as an LL method for HL/LL scheme it is again perfectly

suitable. The worst method for this system among studied here is apparently SCS-LMP2.

We also note that the finite cluster interaction energy does not entirely follow the con-

vergence pattern of the fragment approach both in the case of water-silica and water-water

interactions. Moreover the finite cluster results, in the water-water interaction case, does

not seem to converge to the periodic result at all. We attribute this to the influence of the

electrostatics. In the embedded-fragment approach the correct electrostatics is incorporated

in the periodic HF solution and appears in the correlated formalism (7) or (14) via the cor-

rect periodic Fock matrix. The finite-cluster electrostatics is however always influenced by

the form of the cluster and border effects. A similar behavior was observed in periodic vs

finite cluster correlated calculations on the HCN crystal (cf. Ref.25 and discussion in sect.

2.6). At the same time, and again in close analogy to the HCN case, the HL–LL correction

is virtually immune to the border effects, as it depends on the choice of the cluster only very

slightly (cf. Fig. 7b).

4 CONCLUSIONS

In this work we presented three local models to calculate the dynamic correlation in periodic

systems: (i) periodic fragment, (ii) embedded fragment and (iii) finite cluster. The main

features of these models are summarized in Fig. 8. All three models incorporate a concept

of unit cell, despite the lack of translational symmetry in the latter two. By expansion of

the fragment or cluster the corresponding “energy per unit cell” in all three cases converges

to the periodic one, even though electrostatic effects can be somewhat troublesome in the
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Figure 7: Correlation interaction energies ∆Ecorr.(a) and HL–LL corrections δEHL−LL (b)

for the water monolayer as functions of fragment’s or cluster’s size. ∆Ecorr. was computed

via eq. (26). The corrections δEHL−LL are defined by eq. (23) with LL=LMP2, SCS-LMP2

and LrdCCD, and HL=LCCSD(T0)|LCCD[S]-R−6. The periodic LMP2 and SCS-LMP2

results are shown by black and red dotted lines, respectively. The fragment results are given

with dashed lines and filled symbols, while the finite-cluster ones with solid lines and open

symbols: LMP2 – squares, SCS-LMP2 – circles, LrdCCD – asterisks, LCCSD(T0)|LCCD[S]-

R−6 – diamonds. The fragment LMP2 and SCS-LMP2 values were computed in the periodic-

fragment model (cf. sect. 2.2), while LdrCCD in the embedded-fragment model (cf. sect.

2.3). The symbols indicate the actually calculated values.
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Figure 8: Comparison of the three embedding models, presented in the sections 2.2, 2.3 and

2.4, respectively.

finite cluster case.

The periodic fragment model requires the full periodic implementation and thus is presently

restricted to the LMP2 (or SCS-LMP2) level of treatment. The embedded cluster model uses

the periodic HF solution, periodic occupied and virtual orbitals and ERIs computed in the

periodic framework, but the actual correlated calculation is carried out by a molecular pro-

gram. This model can be presently used for LdrCCD calculations. For the finite cluster

model one can employ any of the implemented local correlation techniques, in particular the

LCCSD(T)|LCCD[S]-R−6 one, which provides close to CCSD(T) accuracy for large systems,

including van-der-Waals-bound complexes.59

We use the embedding models in conjunction with the hierarchical high-level/low-level

(HL/LL) scheme, that allows one to effectively reach a very high level of description for com-

plex systems, in our case solids. For the LL treatment we tested periodic LMP2, SCS-LMP2,

or embedded-fragment LdrCCD, while for the HL treatment the finite-cluster LCCSD(T)

model. Importantly, due to the concept of a unit cell in fragment or cluster, and the local
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correlation scheme, it becomes possible to systematically converge the interaction energies

to the thermodynamic limit.

For a comparative testing of the three approaches we have chosen three prototypical

periodic systems where binding is governed by the van der Waals interactions: (i) a bilayer

of phosphorene, a small gap semiconductor, (ii) water monolayer adsorbed on 2D silica, an

insulator, and (iii) the water monolayer a 2D hexagonal arrangement of molecules. These

examples demonstrate that the reliability of periodic LMP2 as well as SCS-LMP2 strongly

depends on how polarizable the system is and how much the Coulomb interactions are

screened.

For the phosphorene bilayer, MP2 grossly overestimates the interaction energy even for

small clusters, which becomes much more pronounced in the thermodynamic limit. SCS-

LMP2 for a small cluster is seemingly accurate, but the lack of screening effects leads to

substantial growth of SCS-LMP2 error with expansion of the cluster. This reveals that both

LMP2 and SCS-LMP2 for systems like a phosphorene bilayer neither can provide reliable

results on their own, nor can be an efficient LL method within the HL/LL scheme, since the

error (i.e. HL–LL energy difference) depends severely on the size of the finite cluster and

thus converges very slowly.

For water on silica, LMP2 is much better: for a small cluster it is even very close to

LCCSD(T). However again due to the inability to capture the screening effects, the LMP2

error grows with the cluster size. The screening here is weaker than in the phosphorene bilayer

and the final error of the LMP2 in the thermodynamic limit can be considered as acceptable

(1-2 kJ/mol per adsorbate molecule). This suggests that LMP2 alone as a computational

tool could be used for such systems, but not when aiming at very high accuracy within the

HL/LL scheme, as the HL–LL correction again would converge slowly with the cluster size.

Finally, for the water monolayer LMP2 is quite accurate on its own, and can further be very

effectively corrected via the HL/LL scheme already on small clusters, as the screening effects

are negligible here. On the other hand, the dipolar nature of water reveals a shortcoming

of the finite cluster approach, that is how to deal with electrostatics at the cluster borders

when aiming at the total or correlation interaction energy. While this problem might in

principle be attenuated by embedding the cluster in a suitable point charge surrounding

such procedure can be nontrivial and error-prone.

In contrast to LMP2, LdrCCD demonstrates a very systematic behavior, at least for

these three systems: Regardless of the band gap and type of the system, LdrCCD always

somewhat underestimates the interaction. But most importantly, it captures very accurately
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the long-range part of dispersion, whether there is screening or not. This makes the HL–

LL correction with LL=LdrCCD converging very fast with the clusters size. So although

LdrCCD is not a sufficiently accurate method on its own, it seems a very promising candidate

for the LL model, as its error can be virtually completely eliminated by the HL/LL scheme

using already quite compact clusters.

In conclusion, while highly reliable and efficient periodic high-level methods and not yet

mature, a HL/LL fragment combination approach as outlined in this work allows for studying

the details of Coulomb screening, cluster size and shape, correlation level and so on, in a

robust and consistent way, by synergically combining the best of available tools in periodic

and molecular codes. Furthermore, it provides a powerful protocol for high precision ab

initio calculations of interaction energies in periodic systems. The local correlation approach

is the backbone of the whole scheme, as it allows to identify the fragments, recognize the

same “unit cell” entities across the different models, and make high-level quantum chemical

calculations feasible for extended systems.
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136, 144105 (2012).
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(2015).

156. A. Ambrosetti, N. Ferri, R. A. DiStasio, and A. Tkatchenko, Science 351, 1171 (2016).

157. J. Hermann, R. A. DiStasio, and A. Tkatchenko, Chem. Rev. 117, 4714 (2017).

158. A. Ambrosetti, P. L. Silvestrelli, and A. Tkatchenko, Phys. Rev. B 95, 235417 (2017).

159. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat.

Nanotech. 9, 372 (2014).

160. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomnek, and P. D. Ye, ACS Nano 8,

4033 (2014).

161. J. Yang, R. Xu, J. Pei, Y. W. Myint, F. Wang, Z. Wang, S. Zhang, Z. Yu, and Y. Lu

(2014), unambiguous identification of monolayer phosphorene by phase-shifting inter-

ferometry. Preprint at https://arxiv.org/abs/1412.6701.

162. V. Tran, R. Soklaski, Y. Liang, and L. Yang, Phys. Rev. B 89, 235319 (2014).

163. A. Castellanos-Gomez, J. Phys. Chem. Lett. 6, 4280 (2015).

164. J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, Nat. Commun, 4, 4475 (2014).

165. L. Kou, C. Chen, and S. C. Smith, J. Phys. Chem. Lett. 6, 2794 (2015).

166. L. Li, F. Yang, G. J. Ye, Z. Zhang, Z. Zhu, W. Lou, X. Zhou, L. Li, K. Watanabe,

T. Taniguchi, et al., Nat. Nanotech. 11, 593 (2016).

47



167. H. Kim, J. Korean Phys. Socs. 64, 547 (2014).

168. M. Cascella, I.-C. Lin, I. Tavernelli, and U. Rothlisberger, J. Chem. Theory Comput.

5, 2930 (2009).

169. F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, and

R. Weihrich, Z. Kristallogr. 230, 107 (2015).

170. M. Wu, H. Fu, L. Zhou, K. Yao, and X. C. Zeng, Nano Lett. 15, 3557 (2015).

171. F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, and

R. Weihrich, Angew. Chem. Int. Ed. 53, 11629 (2014).

172. S. Tosoni, B. Civalleri, and P. Ugliengo, J. Phys. Chem. C 114, 19984 (2010).
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174. L. Lichtenstein, C. Büchner, B. Yang, S. Shaikhutdinov, M. Heyde, M. Sierka, R. Wlo-

darczyk, J. Sauer, and H.-J. Freund, Angew.Chem. Int. Ed. 51, 404 (2012).

175. L. Lichtenstein, M. Heyde, and H.-J. Freund, J. Phys. Chem. C 116, 20426 (2012).

176. T. Björkman, S. Kurasch, O. Lehtinen, J. Kotakoski, O. V. Yazyev, A. Srivastava,

V. Skakalova, J. H. Smet, U. Kaiser, and A. V. Krasheninnikov, Sci. Rep. 3, 3482

(2013).

177. P. Y. Huang, S. Kurasch, J. S. Alden, A. Shekhawat, A. A. Alemi, P. L. McEuen, J. P.

Sethna, U. Kaiser, and D. A. Muller, Science 342, 224 (2013).

178. X. Yu, E. Emmez, Q. Pan, B. Yang, S. Pomp, W. E. Kaden, M. Sterrer, S. Shaikhut-

dinov, H.-J. Freund, I. Goikoetxea, et al., Phys. Chem. Chem. Phys. 18, 3755 (2016).

179. P. Schlexer, G. Pacchioni, R. Wlodarczyk, and J. Sauer, Surf. Sci. 648, 2 (2016).
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