
01 October 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

The Messinian diatomite deposition in the Mediterranean and its relationships to the global silica
cycle

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1661164 since 2022-01-14T17:38:48Z



Accepted Manuscript

The Messinian diatomite deposition in the Mediterranean region
and its relationships to the global silica cycle

Luca Pellegrino, Francesco Dela Pierre, Marcello Natalicchio,
Giorgio Carnevale

PII: S0012-8252(17)30499-3
DOI: https://doi.org/10.1016/j.earscirev.2018.01.018
Reference: EARTH 2576

To appear in: Earth-Science Reviews

Received date: 27 September 2017
Revised date: 23 January 2018
Accepted date: 23 January 2018

Please cite this article as: Luca Pellegrino, Francesco Dela Pierre, Marcello Natalicchio,
Giorgio Carnevale , The Messinian diatomite deposition in the Mediterranean region
and its relationships to the global silica cycle. The address for the corresponding author
was captured as affiliation for all authors. Please check if appropriate. Earth(2017),
https://doi.org/10.1016/j.earscirev.2018.01.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.earscirev.2018.01.018
https://doi.org/10.1016/j.earscirev.2018.01.018


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

1 

 

The Messinian diatomite deposition in the Mediterranean region and its 

relationships to the global silica cycle 

 

Luca Pellegrino

, Francesco Dela Pierre, Marcello Natalicchio, Giorgio Carnevale 

Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso, 35 10125 Torino, Italia 

 

ABSTRACT 

Diatomites constitute a widely represented lithology in the Messinian sections of the circum-

mediterranean Neogene marginal basins. Although traditionally interpreted as genuine evidence of 

the gradually restricted conditions that characterized the Mediterranean just before the Messinian 

salinity crisis, their coeval occurrence with a global intensification of the opaline production in the 

world oceans (late Miocene-early Pliocene biogenic bloom) suggests that an integrative analysis of 

the origins of these sediments is necessary. A comprehensive analysis of the geological and 

paleontological records suggests that the synergistic intervention of abiotic (tectonic and climate 

reconfigurations) and biotic (expansion of grass-dominated, opal-rich biomes) controlling factors 

may have promoted a remarkable enhancement of silica flux from continents to oceans, which in 

turn can explain the opaline burst that occurred during the late Miocene, at both the global and 

Mediterranean scale. The finely laminated pattern and the rich fossil content of diatomaceous 

deposits, that are usually considered to be byproducts of anoxic conditions, are briefly discussed. 

Some studies seem to indicate that, instead of anoxia, the aggregation and sedimentation of diatom 

tests may play a critical role in these processes. The lower Messinian diatomites of the 

Mediterranean region are generally interbedded with organic-rich sediments (sapropels) clearly 

attesting prolonged, precessionally-controlled periods of basin stratification and bottom water 

anoxia or hypoxia. A causal relationship between sapropel and diatomite deposition in the 
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Mediterranean is proposed, considering the possible interplay between stratification-adapted 

diatoms and anaerobic bacteria and their respective role in influencing the marine silica cycle. 

 

Keywords: Diatomites; Messinian; silica cycle; Neogene biogenic bloom; sapropel 
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1. Introduction 

 

Diatom-rich deposits represent an intriguing issue for multidisciplinary researches. Their 

sedimentological and paleontological analysis may shed light on past climate conditions and 

oceanographic circulation patterns, as well as on spatial and temporal variations of the nutrient 

supply to oceanic and lacustrine basins (e.g., Kemp, 1996; Jordan and Stickley, 2010). Their 

paleobiological content, often excellently preserved, provides a unique opportunity to reconstruct 

the ancient marine biocoenoses (e.g., Bradley and Landini, 1984; Gaudant et al., 1996, 2010; 

Carnevale, 2004a, b, c; 2006a, b, 2007; Carnevale and Bannikov, 2006; Carnevale and Pietsch, 

2006). Moreover, diatomaceous earths have been investigated for commercial purposes and oil 

production (Shukla and Mohan, 2012; Cermeño, 2016). 

Thick successions of marine diatomaceous sediments were deposited in the Mediterranean 

region during the late Neogene, especially during the early Messinian (~7-6 Ma). These diatom-rich 

deposits are usually alternated with organic-rich layers and marls, forming cyclical successions 

reflecting orbitally-controlled (precession) climatic changes (e.g., Hilgen and Krijgsman, 1999; 

Pérez-Folgado et al., 2003). Their deposition has been classically linked to the progressive closure 

of the connection between the Atlantic Ocean and the Mediterranean Sea (Selli, 1954; Krijgsman, 

2002) at about 7.2 Ma (Kouwenhoven et al., 1999; Kouwenhoven and van der Zwaan, 2007), which 

culminated with the extensive deposition of evaporites (carbonate minerals, gypsum and halite) 

between 5.97 and 5.33 Ma, during the so-called Messinian salinity crisis (Krijgsman et al., 1999; 

Manzi et al., 2013). However, many aspects of this extensive biosiliceous event are still poorly 

understood, mostly concerning the sources of the silica exploited by diatoms. In this regard, it is 

interesting to note that a global enhancement of biosiliceous productivity occurred during the so-

called late Miocene-early Pliocene biogenic bloom (Cortese et al., 2004). This suggests that the 

Mediterranean diatomaceous deposition was possibly controlled by the synergistic effect of regional 
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and supra-regional processes, although the latter have been overlooked or just briefly discussed (e.g. 

Ogniben, 1955, 1957; Moissette and Saint Martin, 1992; El Ouahabi et al., 2007). 

Here, we review the current state of knowledge about the lower Messinian Mediterranean 

diatomites, in order to explore a possible relationship between the Mediterranean opal burst and the 

late Miocene global enhancement of biosiliceous deposition, with particular regard to the terrestrial 

sources of silica and the processes that may have promoted their seaward export. Secondly, we aim 

to evaluate the significance of the cyclic stacking patterns observed in the Mediterranean 

diatomaceous successions, and their potential implications in terms of the biogenic silica cycle. 

 

2. The Mediterranean diatomite deposition and the late Neogene global biogenic bloom: a 

general overview 

 

Following the closure of the Tethyan Seaway at about 19 Ma (e.g., Harzhauser et al., 2007) 

the Mediterranean was transformed into a semi-enclosed appendix of the Atlantic Ocean. Here, 

during the late Miocene, diatomites accumulated since around 7.9 Ma (Krijgsman et al., 2000; 

Hüsing et al., 2009), but the main phase of the Mediterranean opal burst took place diachronously in 

the early Messinian, between 7 and 6 Ma, forming the well-known ‘Tripoli’ unit (Hilgen and 

Krijgsman, 1999). This unit exhibits a well-defined lithological cyclicity, recorded at both the 

macro- and microscale. The former (Fig. 1A) is expressed by dm- to m-thick lithological cycles 

consisting of diatom-rich layers rhythmically interbedded with calcareous marls and sapropels, and 

is believed to reflect precessionally-controlled dry-wet climate fluctuations influencing the 

hydrological budget of the Mediterranean marginal basins (e.g., Hilgen and Krijgsman, 1999; 

Modestou et al., 2017). The microscale cyclicity (Fig. 1B) is instead evidenced by the alternation of 

mm-thick biogenic and lithogenic laminae, and is related to short-term (seasonal, annual), 

climatically-driven variations in the terrigenous supply (e.g., Rouchy, 1982). These cyclic 

diatomaceous deposits are found in a variety of uplifted marginal basins that originated in different 
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geodynamic settings along the southern rim of the Mediterranean (southern Iberian Peninsula, 

Northern Africa, Sicily, Ionian Islands, Crete, Gavdos, Cyprus) and in the Apennine range (Fig. 

2A). The offshore occurrence of the lower Messinian diatomites is instead uncertain, due to the 

paucity of data beneath the abyssal evaporites. A deep perspective is solely provided by two DSDP-

ODP sites (Cita et al., 1978; Pierre and Rouchy, 1990), but this record is too scanty to support a 

broader distribution of the Messinian diatomaceous facies throughout the entire Mediterranean. 

In Spain, opal-CT rich layers that originated from the diagenetic transformation of 

diatomites are found in the Sorbas and Nijar pull-apart basins within the 50 m-thick lower Abad 

Member (Turre Fm.), whose base is dated at 7.2 Ma. They are overlain by a 70-m thick cyclic 

diatomaceous succession deposited between 6.7 and 6 Ma (upper Abad Member), represented by 

the quadripartite cycle of sapropel-marl-diatomite-marl (Fig. 2B; Vázquez et al., 2000; Krijgsman 

et al., 2001; Sierro et al., 2001, 2003; Pérez-Folgado et al., 2003). In Morocco (Boudinar and 

Melilla-Nador post-orogenic basins), diatomites deposited between 6.73 and 6.11 Ma (Saint Martin 

et al., 2003; van Assen et al., 2006; El Ouahabi et al., 2007) are rhythmically interbedded with 

marly, clayey and tephra layers (Fig. 2B), forming successions of variable thickness (20-115 m). In 

Algeria, the alternation of diatomites, scattered ash layers and diatomaceous, calcareous, sandy, 

clayey or organic-rich marls are reported from the Chelif and Oran wedge-top basins, forming the 

so called Beida Stage (Anderson, 1933, 1936; Perrodon, 1957; Baudrimont and Degiovanni, 1974; 

Rouchy, 1982; Gersonde and Schrader, 1984; Mansour et al., 1995, 2008; Mansour and Saint-

Martin, 1999; Arab et al., 2015). This succession is one of the thickest (175 m on average) and best 

exposed outcrops in the Mediterranean region; although detailed astrochronological dating is still 

missing, its age is comparable with that of Moroccan deposits from Melilla-Nador, i.e. comprised 

between 6.7 and 6.1 Ma (Mansour and Saint Martin, 1999; Cornée et al., 2004). In the Italian 

peninsula, scattered outcrops of lower Messinian diatomites interbedded with silty and sandy 

turbiditic layers are reported from the Piedmont basin (Pecetto di Valenza and Mussotto d'Alba; 

Fig. 2B), at the junction between the Alps and the Apennines (Sturani and Sampò, 1973). In the 
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northern Apennine, diatomaceous layers are reported from the main foredeep basins (Mondaino and 

Montefiore Conca), where they are interbedded with bituminous marls, organic-rich mudstones, 

siltstones and turbiditic sandstones; the thickness of these diatom-bearing successions ranges from 

few to hundreds of meters (Selli, 1954; Savelli and Wezel, 1978; Arcaleni et al., 1995; Coward et 

al., 1999). Along the Tyrrhenian margin of the chain (Fine and Tora Valleys), a few meters thick 

successions of diatomites and silty and sandy marls are found (Bradley and Landini, 1984; Bossio 

et al., 1998; Benvenuti et al., 2014). Similar successions, ranging in thickness from few to some 

tens of meters, are reported from the southern Apennine foredeep and wedge-top basins, near Monte 

dei Frentani (Ciaranfi et al., 1980), at Capo di Fiume (Fig. 2B; Carnevale, 2004b) and in the Apulia 

foreland ramp (Matano et al., 2005; Matano, 2007). The Tripoli Fm. is found in the Calabrian 

wedge-top basins, near Rossano and Crotone, with thickness of 60 m (Roda, 1964; Barone et al., 

2008; Zecchin et al., 2013), and diatomites regularly interbedded with sapropels have been also 

reported near Catanzaro (Cianflone and Dominici, 2011). In Sicily, cyclic sequences locally up to 

90 m thick and mostly composed of sapropel-diatomite-marl triplets were deposited between 7 and 

6 Ma (Tripoli Fm.) in the Caltanissetta foredeep basin and in the Castelvetrano and Ciminna wedge-

top basins (Fig. 2B; Gersonde and Schrader, 1984; Pedley and Grasso, 1993; Hilgen and 

Krijgsman, 1999; Blanc-Valleron et al., 2002; Roveri et al., 2008). Thin successions of nearly pure 

"papershale" diatomites are reported from the Iblean foreland, associated with diatremes (Suiting 

and Schmincke, 2010). In the Ionian Islands, very thin lower Messinian biosiliceous levels with 

diatoms and silicoflagellates are reported from Zakynthos and Corfu (Rouchy, 1982; Frydas and 

Keupp, 2015). In Crete, scanty silicoflagellate-bearing opaline deposits characterize the lower 

Messinian succession of the Heraklion graben (Frydas, 2004). Cyclic diatomaceous deposits dated 

between 6.8 and 6 Ma and characterized by sapropel-diatomite-marl triplets have been described 

from Gavdos, where they attain a thickness of ~15 m (Metochia section, Fig. 2B; Pérez-Folgado et 

al., 2003; Drinia et al., 2007). The major biosiliceous event in Cyprus is dated between 6.5 and 6.1 

Ma (Orszag-Sperber et al., 2009). Diatomites interbedded with marls, sapropels and carbonate beds 
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(Pakhna Fm., Fig. 2B), forming successions of some tens of meters of thickness, occur in the 

Polemi, Pissouri and Psematismenos basins, around the Troodos massif (Rouchy, 1982; Orszag-

Sperber et al., 2009; Manzi et al., 2016; Gennari et al., 2017) and in the Mesaoria basin, close to the 

Kyrenia range (Manzi et al., 2016; Varol and Atalar, 2016). In Turkey, lower Messinian 

biosiliceous facies, primarily composed of sponge spicules, are found in the Adana basin (Faranda 

et al., 2013). 

Outside the Mediterranean, the last 15 Myr constitute a period of remarkable intensification 

of opaline deposition in the global oceans, associated with the evolutionary diversification of 

diatoms (Fig. 3; Lazarus et al., 2014; Renaudie, 2016). In this regard, it is interesting to note the 

global occurrence of extensive pelagic oozes, starting at about 15 Ma, composed of mat-forming 

giant diatoms of the genera Coscinodiscus, Ethmodiscus, Rhizosolenia, Stephanopyxis and 

Thalassiothrix, which are adapted to exploit stratified waters usually occurring in correspondence 

with oceanic fronts or in response to the establishment of a seasonal pycnocline induced by 

freshwater inflows in land-locked basins (Kemp and Baldauf, 1993; Smetacek, 2000; Kemp et al., 

2006). This highly-silicified "shade-flora" (Sournia, 1982) may support an enormous subsurface 

primary production at the Deep Chlorophyll Maximum, rivaling or even outcompeting diatom taxa 

inhabiting the surface layer (Kemp et al., 2006). The expansion of the cryosphere after the Mid-

Miocene Climatic Optimum favored the development of the North Atlantic Deep Waters, the 

strengthening of the Antarctic Bottom Waters and the establishment of the Atlantic anti-estuarine 

circulation, which promoted the collapse of the Atlantic opaline productivity and the relative silica-

enrichment of the Indian and Pacific oceans (Keller and Barron, 1983; Cortese et al., 2004). 

Another prominent peak in the global biosiliceous production took place broadly between 7 

and 4.5 Ma and is commonly referred to as the late Miocene-early Pliocene biogenic bloom (Figs 3 

and 4; Cortese et al., 2004). This late Neogene opal burst was associated to the world-wide 

enhancement of carbonate, phosphate and barium accumulation rates, to the vertical extension of 

the oxygen minimum zones (Diester-Haass et al., 2002, 2004), and to the considerable abundance, 
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biodiversity and increase in body size of many groups of large predatory marine vertebrates (Fig. 

3), including fishes (e.g., Santini et al., 2013; Santini and Sorenson, 2013; Schwarzhans and 

Aguilera, 2013), marine mammals (e.g., Pyenson and Vermeij, 2016) and seabirds (Warheit, 2002; 

Norris et al., 2013). These data support a scenario of dramatic boost of oceanic productivity 

dominated by diatoms, fueling the whole trophic web (Berger, 2007). Originally recorded in the 

equatorial Indo-Pacific ocean and reported as a product of the nutrient redistribution between basins 

(Farrell et al., 1995), the world-wide extension of the late Miocene-early Pliocene biogenic bloom 

suggests that it was rather related to an overall increase of nutrient supply from lands to oceans 

(Filippelli and Delaney, 1994; Filippelli, 1997; Hermoyian and Owen, 2001; Diester-Haass et al., 

2002, 2004, 2005; Jianru et al., 2002; Cortese et al., 2004; Guptha et al., 2007; Lyle and Baldauf, 

2015; Zhang et al., 2016). 

 

3. Geobiosphere interactions on continents: a neglected link to the silica cycle 

 

The bioavailability of dissolved silica (orthosilicic acid, H4SiO4; hereafter DSi) controls the 

diatom life-history in modern oceans (Sullivan and Volcani, 1981; Egge and Aksnes, 1992; Martin-

Jézéquell et al., 2000, 2003; Ragueneau et al., 2000) and has triggered the evolutionary rise of 

diatoms as prominent primary producers in the geological past, especially during the last 40 Myr 

(Falkowski et al., 2004; Cermeño et al., 2015).  

The current content of silicon in the modern oceans has been estimated to be around 97,000 

Tmol Si, with an average residence time of about 10,000 years (Tréguer and De La Rocha, 2013). 

Therefore, from a deep time perspective, the oceans are dependent on land-derived DSi, which is 

mainly supplied by river runoff (~7.3 ± 2 Tmol Si yr
-1

). Nevertheless, the continental silica cycle is 

not completely understood and quantified as in the oceans, where about 240 ± 40 Tmol Si yr
-1

 are 

sequestered by diatoms in the upper (photic) water column to produce their siliceous tests 
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(frustules), and ~6.3 ± 3.6 Tmol Si yr
-1

 are exported to the ocean floor through sinking of diatom 

frustules (Tréguer and De La Rocha, 2013). 

On land, the ultimate source of DSi is the weathering of silicate rocks, which is based on the 

following reaction: 

 

                  
          

  

 

Silicate weathering is primarily the product of the interaction between tectonics and climate (Fig. 

5). Tectonic uplift increases the surface of fresh rock exposed to meteoric agents and the deepening 

of fluvial erosion. On the other hand, elevated mountain ranges promote the formation of rain 

shadows, as well as the development of wide atmospheric low-pressure zones,  in turn increasing 

the riverine erosion in the areas seasonally exposed to rainfalls and the oceanward transport of 

weathered materials and dissolved nutrients (Ruddiman, 1997). A direct product of tectonics is 

volcanism, which may favor silica eutrophication of aquatic basins through the input of volcanic 

ashes (Taliaferro, 1933). Furthermore, the combined effect of plate tectonics and orbital variability 

controls the growth and demise of the cryosphere; the resulting eustatic fluctuations expose 

subaerially the continental shelves and lower the riverine base level, playing a fundamental role in 

the transfer of terrestrial silicates toward the oceans (Hay and Southam, 1977). 

Biogenic silica (hereafter BSi) is a fundamental component of the terrestrial silica cycle, but 

its importance has been overlooked for a long time (Street-Perrott and Barker, 2008). Vascular 

plants are weathering-agents of primary silicates and clays, able to enhance the extraction of DSi 

from the substratum and to convert it into BSi in the form of phytoliths, which are released to the 

soil after plant senescence and herbivore digestion (Cooke and Leishman, 2011). Although the 

original role of plant silicification is still a matter of debate among evolutionary biologists 

(Coughenour, 1985), phytoliths have a structural, physiological and defensive role against a great 

variety of abiotic and biotic stresses (Raven, 1983; McNaughton et al., 1985; Richmond and 
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Sussman, 2003; Ma and Yamaji, 2006; Cooke and Leishman, 2011). The high dissolution rates of 

the BSi particulate, which is more rapidly convertible into DSi than lithogenic silica (Fraysse et al., 

2006; Guntzer et al., 2012), make a crucial contribution to the export of DSi from terrestrial 

vegetation to the oceans (Alexandre et al., 1997; Derry et al., 2005; Fulweiler and Nixon, 2005; 

Pokrovsky et al., 2005; Gérard et al., 2008; Struyf and Conley, 2009; Struyf et al., 2010; Ran et al., 

2015). According to Struyf and Conley (2012), terrestrial plants are huge silica filters able to store 

~60-200 Tmol Si yr
-1

 in their living tissues. Such values are comparable to the annual production of 

BSi in the oceans (see above). Nevertheless, the underground store of BSi, derived from the 

ongoing accumulation of phytoliths in the soil, may be even more than 400 times greater than its 

aboveground counterpart (Blecker et al., 2006). Considering the vast soil-plant pool of fast 

dissolvable BSi, it is therefore necessary to take into account the evolution of terrestrial ecosystems 

and plant communities through time in order to properly interpret the history of oceanic opaline 

productivity (Conley and Carey, 2015; Trembath-Reichert et al., 2015). 

Grass-dominated ecosystems, which presently cover ~40% of the Earth’s land surface (White et al., 

2000) and are dominated by plants with high silicon requirements (up to 10% of their dry weight) 

and high turnover rates (Hodson et al., 2005; Linder and Rudall, 2005; Ma and Yamaji, 2006), are 

considerably active ecosystems in the so-called “terrestrial silica pump” (Blecker et al., 2006; 

Carey and Fulweiler, 2012; Conley and Carey, 2015; Osterrieth et al., 2015). In grasslands, two 

additional components significantly contribute to the continental silica cycle: grazers and fires (Fig. 

5). Grazers, both vertebrates and invertebrates, and fires act as "ecological engineers" through a 

selective pressure triggering favorable feedbacks for grassland stability and the expansion of 

grasses. Due to their low metabolic requirement, grasses are more adaptable than trees or woody 

shrubs to highly-stressed environments (Rice and Parenti, 1978; Batmanian and Haridasan, 1985; 

Abrams et al., 1986; McNaughton et al., 1988; Milchunas et al., 1988; Ojima et al., 1989; Day and 

Detling, 1990; Wallace, 1990; Holland et al., 1992; Singh, 1993; Frank et al., 1998; Higgins et al., 

2000; Bond et al., 2003a,b; Bond and Keeley, 2005). As a defensive response to grazing and fire, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

11 

 

grasses tend to accumulate more phytoliths, enhancing the DSi extraction (Cid et al., 1989; Massey 

et al., 2007; Melzer et al., 2010). Phytoliths present in grazers’ feces are many times more 

susceptible to dissolution than those derived from the senescence of plant tissues in the litter, due to 

physical and chemical digestive processes removing the organic film that envelopes phytoliths 

(Vandervenne et al., 2013). Remarkably, grazers are mobile and dependent on waterways, therefore 

they can further facilitate the silica input to rivers. Moreover, it should be taken into account that 

land mammal mobility preceeding the late Pleistocene-early Holocene extinction events was much 

greater than that of today, representing a key factor in the past land-to-sea nutrient mobilization 

(Doughty et al., 2016). Fires act similarly to grazers, degrading the organic envelope of phytoliths, 

enhancing their solubility and their long-distance dispersion through ashes, which are rapidly 

mobilized by winds during dry periods, or by rivers during flooding events (Folger et al., 1967; 

Locker and Martini, 1986; LaClau et al., 2002; Pisaric, 2002; Vermeire et al., 2005; Pierson et al., 

2011; Unzué-Belmonte et al., 2016). 

 

4. The global geobiosphere contribution to late Neogene silica fluxes 

 

The analysis of the late Neogene geo-paleontological global record reveals an intriguing 

coincidence between the intensification of tectonic processes, climate changes and terrestrial biotic 

turnovers, overall favorable to the strengthening of continental silica release to the ocean and the 

latest Miocene opaline deposition (Fig. 3; Kidder and Erwin, 2001; Falkowski et al., 2004; Kidder 

and Gierlowski-Kordesch, 2005; Cermeño et al., 2015). 

Tectonic processes were particularly intense during the middle and late Miocene (Potter and 

Szatmari, 2009, 2015) and were responsible for the remarkable events of mountain uplift, closure 

and opening of oceanic gateways, acceleration of ocean spreading rates, and increase of terrigenous 

fluxes to oceans. The two most cited and debated late Miocene geologic events were the uplift of 

the Tibetan-Himalayan sector at about 8 Ma (Harrison et al., 1992; Molnar et al., 1993; Zhisheng et 
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al., 2001; Molnar, 2005; Zheng et al., 2003, 2006; Yang et al., 2016) and the roughly 

contemporaneous uplift of the Andean range, the latter associated with widespread volcanism 

(Garzione et al., 2008). These processes largely affected the global atmospheric circulation patterns, 

resulting in the reinforcement of monsoonal regimes, river runoff, continental erosion and nutrient 

cycling (Raymo et al., 1988; Rea, 1992; Molnar et al., 1993; Filippelli, 1997; Burckle, 1989; An et 

al., 2001; Garzione et al., 2008). Similar coeval processes involved other sectors, such as Africa and 

western Eurasia (Potter and Szatmari, 2009, 2015 and references herein). Such events occurred in a 

global context of considerable sea-level lowering (Haq et al., 1987; Abreu and Anderson, 1998; Rai 

and Maurya, 2009) able to enhance the erosional processes primarily driven by tectonic uplift. 

During the middle and late Miocene, a remarkable displacement of the forest cover occurred 

associated with a global expansion of grassy biomes (Jacobs et al., 1999; Strömberg, 2011; Pound, 

2012), likely induced by a long-term (~40 Myr) trend of cooling and aridification resulting from the 

progressive establishment of a marked seasonality and wide rain shadows in continental interiors. 

The growth of ice caps during the middle-late Miocene (Zachos et al., 2001) and the widespread 

Neogene tectonics (Rea et al., 1998; Dettman et al., 2001; Zhisheng et al., 2001; Guo et al., 2004; 

Sepulchre et al., 2006; Kohn and Fremd, 2008) actively contributed to such an ecological transition. 

The emergence of C4 photosynthesis was a powerful physiological innovation, which also 

contributed to enhance this turnover (Fig. 3). Originally proposed as an ecological response to a 

supposed global pCO2 drawdown (Cerling et al., 1997; Ehleringer et al., 1997), the C4 revolution is 

currently considered a consequence of enhanced seasonality, water stress and recurrence of fire, all 

conditions that characterized the latest Miocene landscapes (Pagani et al., 1999; Bond et al., 2005; 

Keeley and Rundel, 2005; Beerling and Osborne, 2006; Tipple and Pagani, 2007; Osborne, 2008; 

Scheiter et al., 2012; Hoetzel et al., 2013; Bond, 2015; but see Herbert et al., 2016). However, C3 

grasslands remained common at higher latitudes and altitudes and continued to persist and to be 

grazed upon in wetter patches of tropical-subtropical regions dominated by C4 grasses and sedges 

(Edwards et al., 2010; Strömberg, 2011). Actually, it is possible to affirm that "fully open 
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grasslands, whether C3 or C4, were likely a late Miocene-Pliocene phenomenon" (Strömberg, 

2011). However, as far as the differences between the silica content of C3 and C4 grasses are 

concerned, the available data are rather scanty and contradictory (e.g. Kaufman et al., 1985; 

McInerney et al., 2011), although a just few studies stated that C4 grasses accumulate more 

phytoliths than C3 grasses (Merceron et al., 2005; Ségalen et al., 2007; Bouchenak-Khelladi et al., 

2009). The question is complicated by the fact that grass opal content is not simply the direct 

product of the evolutionary history of the grass taxa but represents an ecological response to grazing 

and fire (see above). Therefore, it is reasonable to hypothesize that the global rise of grassy open 

habitats, not their specific C3-C4 grass composition (apparently not influential in terms of phytolith 

production), represents the crucial biotic event that enhanced the terrestrial silica pump in the latest 

Miocene. 

The grassland spread had a significant influence on terrestrial animal communities, 

especially among mammals (Janis, 1993) but also among birds (Fuchs et al., 2015) and insects 

(Voje et al., 2009). The Miocene-Pliocene herbivore record clearly shows a marked adaptation to 

cursorial movements, and to the improvement of the chewing of abrasive particles like phytoliths 

and grit (i.e. hypsodonty and hypselodonty), thereby providing a clear indication of the broad 

occurrence of grass-dominated open habitats subjected to periodical drought (Damuth and Fortelius, 

2001; Hummell et al., 2010; Liu et al., 2012; Kaiser et al., 2013; Retallack, 2013). The expansion of 

grass-dominated "flammable ecosystems" provided the fuel for the increase in the fire regime at 

around 7 Ma, as suggested by the global charcoal record (Fig. 3; Bond, 2015). 

Finally, the increased dust accumulation recorded in many oceanic and terrestrial sectors 

during the latest Miocene (Diester-Haass et al., 2006) suggests a global intensification of the eolian 

transport (Fig. 3), likely favored by the reduction of the dense arboreal cover and by the 

strengthening of monsoonal winds. Winds may have provided a significant contribution to the 

continental silica flux, blowing away phytolith-rich dusts from grassland top soils during arid 

periods. 
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Summarizing this long discussion, the integrative analysis of the available data indicates that 

the late Miocene-early Pliocene opaline peak was broadly coeval to the global rise of C3 and C4 

grasslands populated by grazers, affected by fire and lashed by winds, and to an active geodynamic 

context and low eustatic sea level (Fig. 3). In some sectors of the Pacific margin of North and South 

America, reinforced upwelling triggered by global cooling helped diatom proliferation (Suto et al., 

2012), but the amount of silica supplied by continents was evidently enough to ensure opaline 

production also in typical oligotrophic contexts (e.g., Kemp and Baldauf, 1993). 

 

5. The Messinian silica-enrichment of the Mediterranean 

 

The origin of lower Messinian diatomites in the Mediterranean has been traditionally 

interpreted as the record of the early stages of restriction of the Atlantic connection initiated at 

around 7.2 Ma and possibly resulting from the combined effect of tectonic uplift and glacio-eustatic 

fluctuations (Fig. 6; Kouwenhoven et al., 1999; Krijgsman et al., 1999). According to this 

interpretation, such conditions may have promoted a sluggish deep water circulation and the 

increase of bottom anoxia characterized by weak benthic activity, which therefore favored the 

preservation of diatom tests and opaline deposits (e.g., Parea and Ricci Lucchi, 1972; Sturani and 

Sampò, 1973; Sturani, 1976). In addition, nutrient retention favored by the weakening of the deep 

water outflow from the Mediterranean stimulated a considerable diatom productivity. However, as 

prophetically noted by Ogniben (1955, 1957), the remarkable world-wide occurrence of the Upper 

Miocene opaline deposits (Fig. 4) suggests that besides the Mediterranean regional context, other 

global-scale controlling factors must be taken into account. For instance, a reinforced upwelling 

regime bringing deep, nutrient-rich waters toward the photic zone has been proposed as the main 

triggering factor of diatom productivity (e.g., Perrodon, 1957; Sturani and Sampò, 1973; McKenzie 

et al., 1979; Moissette and Saint Martin, 1992), mostly based on the relative abundance of the 

diatom Thalassionema nitzschioides and the foraminifer Globigerina bulloides in a few lower 
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Messinian diatomites (but see Pestrea et al., 2002). Nevertheless, the widespread occurrence of 

giant mat-forming diatoms like Coscinodiscus spp. and members of the family Rhizosoleniaceae as 

well as of neogloboquadrinid foraminifers points to the periodic stratification of the basin (Kemp et 

al., 2000; Kemp and Villareal, 2013), likely associated with conspicuous freshwater inputs. 

Moreover, the progressive attenuation of the upwelling currents and the increased influence of river 

runoff have been highlighted in many studies dealing with the deposition of lower Messinian 

diatomaceous successions, especially in the central and eastern Mediterranean domains (e.g., van 

der Zwaan, 1979; Suc et al., 1995; Bellanca et al., 2001; Blanc-Valleron et al., 2002; Londeix et al., 

2007; Pérez-Folgado et al., 2003), but also in the westernmost settings (e.g. Moissette and Saint 

Martin, 1992; Mansour et al., 1995; van Assen et al., 2006). Therefore, the role of upwelling 

currents in the Mediterranean during the early Messinian should be framed within a context of 

considerable river runoff (Gladstone et al., 2007; Simon et al., 2017). 

In any case, even admitting a marked influence of riverine contribution, the ultimate sources 

of the DSi delivered to the Mediterranean basin remain unclear. 

The lack of effort dedicated to this topic is surprising, particularly if considered from the 

perspective of a land-locked sea surrounded by vast drainage systems (Gladstone et al., 2007) and 

suffering the initial stages of isolation from the oceanic domain (Kouwenhoven et al., 1999; 

Krijgsman et al., 1999). In such a regional context, the rapid exhaustion of silicon and its efficient 

burial rate after each event of frustule settling reduced the residence times of this element in the 

water column (Laruelle et al., 2009), likely resulting in a growing demand from diatom 

communities of crucial importance to maintain their ecological supremacy over non-siliceous 

phytoplankton (see above). Consequently, a cyclical injection of DSi was crucial to support the 

proliferation of diatoms and their preservation in the sedimentary record. Therefore, the assessment 

of both oceanic and terrestrial sources of DSi, as well as of the tectonic and eustatic processes that 

may have favored its basinward release and the possible role of volcanism, is needed to explain the 

latest Miocene silica enrichment in the Mediterranean. 
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5.1. The role of the Atlantic inflow 

As mentioned above, the Atlantic Ocean experienced a dramatic decrease in opaline 

accumulation since about 15 Ma. A partial recovery occurred during the late Miocene-early 

Pliocene (Figs 3-4), although the Indo-Pacific domain continued to represent the main opal sink and 

the Antarctic opal belt started to develop at that time (e.g., Gombos, 1984; Diester-Haass et al., 

2002; Diekmann et al., 2003; Cortese et al., 2004; Renaudie, 2016). Intriguingly, the Amazon 

drainage system and its effective runoff toward the Atlantic Ocean, started around 9 Ma becoming 

fully established at 6.8 Ma because of the intensification of the Andean uplift in a context of global 

sea-level lowstand (Hoorn et al., 2010, 2017; Latrubesse et al., 2010). The Amazon river drained 

extensive grassy areas, which developed from 9 Ma onwards on soils derived from the Andean 

dismantling (Hoorn et al., 2010, 2017; Latrubesse et al., 2010). On the other side of the Atlantic, 

fire-inception in grass-dominated habitats is observed in the pollen and charcoal records from the 

Niger delta between 7.5 and 6 Ma (Fig. 3; Morley and Richards, 1993). The pollen record of ODP 

Site 1081 (offshore Namibia) highlights an abrupt increase of grasses at 6.8 Ma and a peak in 

charred cuticles between 7.1 and 5.8 Ma (Hoetzel et al., 2013). Therefore, both the western and 

eastern Atlantic continental margins were prone to the release of DSi during the late Neogene. 

Under this perspective, the Mediterranean was the easternmost locus of the Atlantic opaline 

accumulation, and may have sequestered significant amounts of DSi during the late Neogene phase 

of silica-enrichment of the Atlantic waters. 

However, the reduction of the connections between the Atlantic Ocean and the 

Mediterranean Sea, starting at about 7.2 Ma because of the tectonic uplift of the Rifian and Betic 

gateways (Fig. 6; Kouvenhowen et al., 1999; Capella et al., 2016), may have severely limited the 

budget of DSi entering the Mediterranean Sea. In this context, considering a Messinian anti-

estuarine thermohaline circulation pattern similar to the modern one (Kouvenhowen and van der 

Zwaan, 2006), the possible oceanic DSi inputs were limited to the surface Atlantic inflow, which in 
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terms of DSi concentration and transport is rivaled by the present Mediterranean riverine discharge 

(Ribera d'Alcalà et al., 2003). Therefore, although an Atlantic contribution is not a-priori 

excludable, the main controlling factor of the Mediterranean silica-enrichment actually was the 

continental supply from the surrounding regions. 

 

5.2. The terrestrial sources of silica 

The late Miocene runoff into the Mediterranean basin was at least three times greater than 

that of today and was strongly controlled by the African rivers, particularly in the central and 

eastern parts of the basin (Gladstone et al., 2007). The intensification of the African runoff was 

most likely related to the rearrangements of atmospheric circulation patterns, in turn promoted by 

the combination of the orbital variability, i.e. the precessionally-controlled northward shift of the 

Intertropical Convergence Zone, as well as by the late Miocene geodynamics (Griffin, 2002; 

Marzocchi et al., 2015). The tectonic uplift of the Himalaya-Tibet (~8-7 Ma) and Ethiopian (~10-6 

Ma) plateaus triggered the enhancement of the coupled Asian-African monsoonal system and the 

rejuvenation of the inner African watersheds (Sepulchre et al., 2006; Gani and Gani, 2007; Köhler, 

2008; Marzocchi et al., 2015). At the same time, but especially between 7.5 and 4.6 Ma, the Eonile, 

Sahabi, Gabes and Libyan basins began to supply the central and eastern Mediterranean with large 

amounts of continental waters derived from boosted seasonal rainfalls (Zeit Wet Phase sensu 

Griffin, 2002). These basins covered vast regions of the African continental interiors, characterized 

by the expansion of grass-dominated open biomes during the late Neogene (Fig. 6). 

In the sectors immediately surrounding the Mediterranean, a general trend of cooling and 

seasonal aridification occurred from 8 Ma until 5.9 Ma, promoting a sharp decrease in the sea-

surface temperature (from 28 to 19°C), which reached its lowest values between 7.2 and 6.6 Ma 

(Tzanova et al., 2015; Böhme et al., 2017). The onset of Sahara desertification at around 7 Ma 

(Schuster et al., 2006; Klaver et al., 2015; Böhme et al., 2017) is one of the most impressive results 

of the late Tortonian-early Messinian peri-mediterranean climate deterioration (Fig. 6). Most likely, 
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the resulting expansion of open habitats and the consequent strenghtening of the eolian transport 

were able to induce a further increase of DSi concentration in the Mediterranean. 

 

5.2.1. The inner African opal reservoirs 

The progressive expansion of savannah habitats with a significant C4 component in central 

Africa at about 7 Ma is documented by the mammal assemblages (dominated by high-crowned 

bovids), mesowear, and isotope ratios of dental remains of Toros-Menalla, Tchad (Vignaud et al., 

2002; Ségalen et al., 2007; Blondel et al., 2010). Another evidence of the presence of the latest 

Miocene grassland expansion in Central Africa is the high abundance of smectite in the clay 

fraction of Lake Chad, deriving from the leaching of vertisols surrounding the lake and developed 

under a grassy cover (Moussa et al., 2016). The hydrographical and paleoecological continuity 

between Chad and Libya during the Messinian is suggested by the co-occurrence of remains of the 

wetland antrachotheriid Lybicosaurus petrocchii, in coeval strata at Toros-Menalla and Sahabi 

(Lihoreau et al., 2006), as well as by similar ichthyofaunas (e.g., Stewart, 2001). 

The analysis of the pollen content of the DSDP 231 core from the Gulf of Aden documents a 

peak in grass fraction at around 10.5 Ma, suggesting an early radiation of grass-dominated 

ecosystems in eastern Africa, followed by two subsequent stages of expansion at about 7 Ma and 

5.5 Ma (Bonnefille, 2010). Although the East African grass pollen increase at ~7 Ma was associated 

with an isolated tree pollen peak, likely indicative of a very short humid phase (see Bonefille, 

2010), the early Messinian grass burst occurred during an overall decrease of the forest cover, 

attesting the rise of full open landscapes during this period. The early Messinian phase of grassland 

spread in eastern Africa coincided with the increase of biodiversity and hypsodonty values in 

herbivorous mammals, particularly bovids, as well as with shifts toward a C4-rich diet (Cerling et 

al., 1997; Bibi et al., 2009; Bibi, 2011; Bobe, 2011; Stromberg, 2011). At about 6 Ma, the East 

African grasslands collapsed, and a dramatic expansion of arid shrublands occurred (Fig. 6; 

Bonnefille, 2010). 
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5.2.2. The peri-mediterranean grassy biomes 

The reconstruction of the peri-mediterranean Messinian biomes provided by Favre et al. 

(2007) shows the presence of a mainly C3-dominated  grass cover (Cerling et al., 1997; Senut et al., 

2009; but see Böhme et al., 2017) along the actively drained southern margin of the Mediterranean 

(Gladstone et al., 2007), from the Iberian Peninsula to the Nile delta, including the emerging 

Apennine chain, southern Greece and western Anatolia. According to Fortelius et al. (2006), the 

proportion of high hypsodont herbivores, well adapted to exploit the grass-dominated ecosystems 

surrounding the Mediterranean, increased in the late Turolian (MN 13), at about 7 Ma (Fig. 6). 

More specifically, the northern Africa fossil record reveals a clear trend toward more open 

habitats during the late Miocene (Fauquette et al., 2006; Favre et al., 2007). In Morocco, herbaceous 

taxa mainly represented by Poaceae and Asteraceae are abundant in the Tortonian-Messinian pollen 

record from the Rifian corridor (Bachiri-Taoufiq et al., 2008). In Algeria, the lower Messinian 

deposits of the Chelif basin indicate a similar scenario, with extensive grassy lowlands behind the 

littoral zone (Chikhi, 1992). The abundant carbonized plant remains recovered in the Beida Stage of 

the Chelif basin suggest the presence of grassy environments affected by fires in the proximity of 

the basin. Anderson (1936) reported that "Imprints of small blades of fresh- or brackish-water 

monocotyledons are fairly common" and "The blades of sedges or grasses are of types that grew 

either in fresh or, at most, brackish water and are probably not far from their original habitat". 

Based on the vertebrate assemblage of the Sahabi Formation, Boaz et al. (2008) inferred a wooded 

savannah punctuated by wetlands in northern Libya at around 7 Ma. Compared to North Africa, 

Calabria and Sicily probably experienced more arid conditions (Suc et al., 1995; Fauquette et al., 

2006). Nevertheless, as previously reported, their faunal assemblages suggest similar savannah-like 

ecological settings (Ferretti et al., 2003; Rook et al., 2006; Gramigna et al., 2008; Marra et al., 

2011). The palynological record of offshore Egypt (site Naf 1) corroborates a scenario where grassy 

open habitats with different composition (steppe-like on the western side, savannah-like on the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

20 

 

eastern side, according to Fauquette et al., 2006) formed a more or less continuous belt along peri-

mediterranean North Africa during the Messinian. 

In western Eurasia, the presence of open habitats dominated by Poaceae and other 

herbaceous taxa is well documented in the Iberian Peninsula since the early Miocene, and an 

important increase of southern and eastern steppes in this region is recorded during the Tortonian 

and Messinian (Jiménez-Moreno et al., 2010; Casas-Gallego et al., 2015). On the Italian peninsula, 

Neogene open vegetation is poorly represented in the northernmost regions (Bertini and Martinetto, 

2008), but abundant grasses are documented in the early Messinian Apennine localities such as 

Gabbro and Velona (Berger, 1957; Trevisan, 1967; Bradley and Landini, 1984; Ghetti et al., 2002; 

Favre et al., 2007), suggesting a N-S aridity gradient. A synoptic overview of the terrestrial 

paleoecological transitions in Greece was provided by Ioakim et al. (2005), who reported a regional 

trend toward more open biomes in northern, central and southern basins during the late Miocene 

(10-7 Ma), as well as a N-S gradient similar to that recorded in Spanish and Italian localities. 

Recently, Böhme et al. (2017) have inferred a savannah biome with a significant C4 grass 

component, increasing from the late Tortonian to the early Messinian, at Pikermi and Pirgos. This is 

only partially consistent with the phytolith and pollen record of Anatolia and surrounding areas, 

which suggests the presence of mostly C3- (rather than C4-) dominated savannah settings since the 

early Miocene, and their subsequent expansion at about 9 Ma (Strömberg et al., 2007, 2011; 

Biltekin, 2010; Kayseri-Özer et al., 2017). 

In the mammalian communities, two main events occurred in the late Miocene, the so-called 

Vallesian Crisis and the rise of Pikermian mammals. The Vallesian event occurred at around 9.7 Ma 

and consisted of the extinction of many European forest-adapted taxa (e.g., tapirids, cervids, 

hominoids, false saber-tooth cats and bear dogs, flying squirrels; Agustí et al., 2013). The 

Pikermian faunas, characterized by hypsodont savannah-adapted equids and bovids, originated in 

the sub-Paratethyan region around 13 Ma and dispersed westward, reaching their climax between 9 

and 6 Ma (Fig. 6; Fortelius et al., 2006; Eronen et al., 2009; Böhme et al., 2017; Kaya et al., 2018). 
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Since the earliest Messinian, they were substituted by more open- and dry-adapted mammalian 

guilds (Koufos et al., 2011; post-Pikermian faunas sensu Böhme et al., 2017). The final 

disappearance of savannah-adapted herbivores in western Eurasia occurred around the Miocene-

Pliocene boundary (Fig. 6), most likely due to the return of more humid and forested conditions 

unfavorable to the presence of large assemblages of grazers (Fortelius et al., 2014; Kaya et al., 

2018). 

 

5.3. Tectonics and eustasy during diatomaceous deposition 

The Mediterranean diatomaceous deposition between 7 and 6 Ma occurred in a context of 

recurrent eustatic fluctuations (e.g., McKenzie et al., 1979; Thunell et al., 1987; Pomar and Ward, 

1994; Kouvenhowen et al., 1999; Pedley et al., 2007; Violanti et al., 2007; Orszag-Sperber et al., 

2009; Gibert et al., 2013) and active geodynamics (Fig. 6; see below). Tectonics and eustasy may 

have enhanced the release of continental DSi through the steepening and expansion of hydrographic 

networks and the exposure of continental margins. Diatomites originated in those sectors of the 

sedimentary basins that were mostly reached by nepheloid plumes triggered by riverine transport or 

shelf instability, and therefore by the finest detrital fraction deriving from the continental 

dismantling; this fine and dissolution-prone material was able to support diatom productivity 

without a significant dilution of the opaline tests, thereby promoting the preservation of pristine 

biogenic sediments (e.g., Sturani and Sampò, 1973; Dixit et al., 2001). 

 

5.3.1. Betics-Rif 

Diatomite deposition in the Betic Cordillera during the late Tortonian-early Messinian 

coincides with important events of uplift, basin shallowing and restriction, siliciclastic deposition 

and subsidence (Krijgsman et al., 2001; Sierro et al., 2001; Braga et al., 2003; Jolivet et al., 2006), 

which are related to the tectonic inversion of the Algero-Balearic basin (Giaconia et al., 2015). 

Clear markers of synsedimentary tectonic processes are small-scale deformations and the 
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emplacement of turbiditic layers and slumps recorded in the Sorbas-Nijar basins (Krijgsman et al., 

2001; Sierro et al., 2001, 2003; Braga et al., 2003; Pérez-Folgado et al., 2003; Flores et al., 2005). 

The closure of the Betic corridor, recorded by the continentalization of the Granada and Guadix 

basins, occurred between 7.3 and 6.8 Ma (Jolivet et al., 2006). The mammalian record suggests that 

land bridges were formed by the interplay between tectonics and eustasy, which sporadically 

connected the Iberian peninsula and North Africa ~250.000 years before the onset of the salinity 

crisis (Agustí et al., 2006; Gibert et al., 2013). 

In the Rif area, Krijgsman et al. (1999) interpreted the shallowing of the Taza-Guercif basin 

at around 7.2 Ma as the result of regional tectonic uplift and global sea-level lowering. This process 

was responsible for the progressive restriction of the Rifian corridor, which terminated at about 6 

Ma. Conversely, the sectors surrounding the eastern Rifian area, characterized by diatomaceous 

deposition (e.g., Boudinar and Melilla-Nador), were mainly affected by extensional tectonics 

(Azdimousa et al., 2006). Moreover, the Arbaa Taourirt basin records a facies transition from marls 

to shallow-marine conglomerates and sandstones in the early Messinian, while the nearby Boudinar 

basin shallowed at 6.5 Ma (Achalhi et al., 2017). 

 

5.3.2. Atlas-Tell 

Toward the easternmost regions of northwestern Africa (Algeria, Tunisia), the Neogene 

uplift was less intense in a general setting primarily characterized by extensional tectonics (Frizon 

de Lamotte et al., 2009). Diatomaceous deposition in the Chelif basin occurred during its maximum 

widening, in a local context dominated by a moderate tectonic uplift (Neurdin-Trescartes, 1995). 

However, synsedimentary tectonic activity is recorded in the Algerian diatomaceous successions by 

the local occurrence of slumps (Perrodon, 1957; Rouchy, 1982), and the emergence of the Algerian 

coastline between Algiers and Chenoua massifs, which started in the middle Miocene and 

apparently increased since the late Miocene (Authemayou et al., 2016). 
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5.3.3. Alps-Apennine 

The extensive late Miocene erosion of the Alpine belt started at about 5.5 Ma (Willett, 2010) 

and was preceded by the rapid exhumation of the external crystalline massifs (Mt. Blanc, Aiguilles 

Rouges, Aar-Gotthard and Argentera) between 10 and 5 Ma (Bigot-Cormier et al., 2000, 2006; 

Carrapa et al., 2004; Glotzbach et al., 2008, 2010; Valla et al., 2012). The enhanced dismantling of 

the Ligurian Alps occurred at around 7 Ma, in response to relative sea-level lowering (Foeken et al., 

2003). According to Wölfler et al. (2016), the exhumation of many sectors of the eastern Alps 

occurred during the Messinian. 

In the Piedmont basin (PB), the terrigenous contribution during the diatomaceous deposition 

is attested by the recurrence of turbiditic siltstones and sandstones and by the presence of plant 

remains within the Pecetto di Valenza succession (Sturani and Sampò, 1973; Pavia, 1989; Gaudant 

et al., 2010). The major source of detrital supply to the PB during the middle-late Miocene was 

most likely the Argentera massif, at least until 7.12 Ma (Carrapa et al., 2004). A huge slump 

recorded in the Pollenzo section of the PB provides evidence of the remarkable synsedimentary 

tectonic activity during the early Messinian in this area (Dela Pierre et al., 2011). 

The Apennines uplift rate intensified since the late Miocene, in response to the opening of 

the Tyrrhenian basin between 8.6 and 7.8 Ma (Duermeijer et al., 1998) and the related eastward 

migration of the chain system. In the northern Apennines, the peri-Adriatic foredeep basin 

originated in an active compressional setting that led to the deposition of turbidites sourced by the 

erosion of the Alps (i.e. Marnoso-Arenacea Fm.; Ricci Lucchi, 1986), and organic-rich shales. The 

latter are coeval to the Tripoli Formation deposited in the marginal settings, and are associated with 

enhanced denudation processes favored by the uplift of the surrounding sectors (Coward et al., 

1999; van der Meulen et al., 1999; Roveri et al., 2001; Hüsing et al., 2009) and by the development 

of silled restricted basins (Savelli and Wezel, 1978). The diatomaceous successions outcropping in 

Emilia Romagna, Marche and Tuscany are characterized by important markers of synsedimentary 

tectonics (e.g., Sarti et al., 1995) and terrestrial supply (Savelli and Wezel, 1978; Bradley and 
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Landini, 1984; Arcaleni et al., 1995). Erosional surfaces, unconformities and synorogenic turbiditic 

deposits confirm the active denudation of central Apennines during the late Tortonian-early 

Messinian (Centamore and Rossi, 2009; Vezzani et al., 2010). Diatomites from the Capo di Fiume 

section are characterized by recurrent markers of synsedimentary tectonics and terrigenous supply, 

such as intrastratal microfractured zones, slumps, speckled beds and plant remains (Carnevale, 

2004b). In the southern Apennines, active compressional tectonics gave rise to the formation of 

wedge-top basins and to the deposition of synorogenic sediments during the late Tortonian-early 

Messinian (Vezzani et al., 2010). During the Messinian, the forearc Crotone basin was 

characterized by "the highest accumulation rates of the whole Late Neogene-Quaternary" and by 

"alternating pulse of subsidence and uplift" (Massari et al., 2010). The sediment supply to the 

Crotone and Rossano basins was supported by the erosion of the Sila massif, along the Ionian flank 

of the Calabrian arc, since the late Tortonian (Barone et al., 2008). 

 

5.3.4. Sicily 

A series of E-W striking wedge-top basins developed during the late Tortonian-early 

Messinian in Sicily, in response to the southward migration of the fold and thrust Apennine-

Maghrebides belt (Pedley and Grasso, 1993; Rosenbaum et al., 2002; Roveri et al., 2008). These 

basins were filled with siliciclastic (Terravecchia Fm.) and pelagic sediments (Licata Fm.), which 

are overlain by the diatomaceous Tripoli Fm. (Butler et al., 1995). This unit exhibits variations of 

thickness and sedimentation rate, which point to a strong synsedimentary tectonic activity (Suc et 

al., 1995; Pedley and Maniscalco, 1999), further confirmed by the recurrence of slumps (Richter-

Bernburg, 1973; Bellanca et al., 2001). The Iblean foreland of SE Sicily records a late Tortonian-

early Messinian tectonic quiescence (Pedley et al., 2007), although manifold volcanic events 

occurred in this area since about 7 Ma, as indicated by the association of diatremes with thin 

diatomaceous layers (Schmincke et al., 1997). 
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5.3.5. Greek Islands 

Following the late Miocene collision between the Apulian platform and western Greece, the 

latter experienced a shortening phase that promoted the progressive uplift of the Ionian islands, 

especially in the mid-Pliocene (van Hinsbergen et al., 2006). The partial emergence of Zakynthos 

Island started, however, during the early Messinian and is attested by terrigenous layers, rich in 

terrestrial plant remains, which accumulated in Laganas Bay (Papanikolau and Dermitzakis, 1981; 

Rouchy, 1982), and Corfu was also partly uplifted and eroded during the Messinian (van 

Hinsbergen et al., 2006). 

The increased denudation of the Aegean uplifted area led to the first stage of sapropel 

deposition at Gavdos at around 10 Ma (Schenau et al., 1999). The source of terrigenous supply 

changed at about 8.2 Ma, in this case with a considerable contribution from North-African rivers 

(Köhler et al., 2008). A strong tectonic control on the lower Messinian succession of Metochia is 

inferred by Drinia et al. (2007), who also reported reworked benthic foraminiferans (Elphidium spp. 

and Asteriginata planorbis) most likely derived from erosional processes involving the shallower 

area of the basin. 

 

5.3.6. Cyprus and western Anatolia 

Extensional tectonics affected Cyprus during the late Miocene-early Pliocene, although 

evidence of an incipient emersion and erosion of the Troodos massif are recorded in the upper 

Tortonian-lower Messinian sediments bordering this ophiolitic complex (Orszag-Sperber et al., 

2009; Manzi et al., 2016). In the Polemi basin, markers of synsedimentary tectonics (slumps, 

angular unconformities) and enhanced terrigenous supply (plant remains) are recorded in many 

sections (Merle et al., 2002; Orszag-Sperber et al., 2009). The Pissouri basin was certainly affected 

by synsedimentary tectonics, at least during the last phases of diatomaceous deposition, as revealed 

by the presence of slumps (Krijgsman et al., 2002; Merle et al., 2002). The Tokhni section of the 

Psematismenos basin recorded an increase in detrital grains from 6.5 Ma, suggesting the 
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intensification of riverine supply, probably linked to the tectonically-induced shallowing of the 

basin (Orszag-Sperber et al., 2009; Gennari et al., 2018). The Kyrenia range was actively uplifted in 

the late Miocene (Rouchy, 1982; Harrison et al., 2004; McCay and Robertson, 2013; Varol and 

Atalar, 2016). 

The late Miocene uplift of the Taurides range, along the southern margin of the central 

Anatolian plateau, started between 8-7 and 5.45 Ma (Cosentino et al., 2012; Schildgen et al., 2012), 

and its dismantling resulted in the massive accumulation of terrigenous deposits in the Adana basin 

(Faranda et al., 2013). 

 

5.4. The role of volcanism 

A causal relationship between Mediterranean volcanism and the deposition of Messinian 

diatomites was proposed by Anderson (1933, 1936) and Ogniben (1955, 1957), on the basis of the 

seminal work of Taliaferro (1933). Nevertheless, such a relationship is weakly supported by 

stratigraphic evidence, particularly by the lack of a systematic association between diatomaceous 

and ash layers. In the interval comprised between 7 and 6 Ma only a few volcanic events are 

documented in the peri-mediterranean region (see Potter and Szatmari, 2015). Volcanism mainly 

affected the southwestern Mediterranean area (Savelli et al., 2002; Doblas et al., 2007) and the 

Hoggar region in southern Algeria (Azzouni-Sekkal et al., 2007). Only in the Melilla-Nador and 

Chelif basins and locally in Sicily (Ogniben, 1955, Suiting and Schmincke, 2010) and in a few 

sectors of the southern Apennines (Matano, 2007), the occurrence of several ash layers interbedded 

with diatomites support the hypothesis of a volcanic origin of DSi, but most likely at a very local 

scale (Courme and Lauriat-Rage, 1998; Saint Martin et al., 2003; van Assen et al., 2006). In the 

northernmost Mediterranean sector involved in the diatomaceous deposition (Piedmont basin), no 

volcanic activity has been documented during the Messinian (Sturani and Sampò, 1973). The age 

for eastern Mediterranean volcanism was substantially out-of-phase with the early Messinian 
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marine diatomite deposition, with only very minor events occurring between 7 and 6 Ma in Thrace 

and western Anatolia (Fytikas et al., 1984; Agostini et al., 2007). 

 

5.5. A general model to interpret the Mediterranean opal burst 

The above review of the current state of knowledge on the early Messinian Mediterranean 

opaline event strongly suggests that diatomites may represent the sedimentary expression of the 

complex interplay between ecological turnover on land and predisposing conditions in the basins, 

rather than the simple byproduct of basin restriction preluding the onset of the Messinian salinity 

crisis (Figs 6 and 7). 

Even if the restriction of the Atlantic communication at ~7.2 Ma (Kouvenhowen and van der 

Zwaan, 2006) may have promoted nutrient retention in the Mediterranean, in the absence of a 

continuous supply of DSi diatoms would have been quickly replaced by other groups of 

microplaktonic organisms able to flourish under silica-limited conditions (see above), and the 

deposition of diatomaceous sediments in the circum-mediterranean marginal basins would have 

been severely limited. On the contrary, the extension, thickness, and excellent preservation of the 

lower Messinian diatomites are indicative of an overabundance of DSi in Mediterranean waters, 

able to promote diatom productivity and the preservation of their opaline remains within the 

sedimentary archive. DSi was supplied by river runoff and, most likely, by the enhanced eolian 

transport of phytoliths from continental sectors surrounding the Mediterranean peripheral basins, 

particularly from the African inlands. The onset of diatomaceous deposition is remarkably coeval 

with the expansion of the East African open grassy biomes at about 7 Ma and with the rise of grass-

dominated ecosystems in the western and central regions of the continent (Fig. 6; Morley and 

Richards, 1993; Bonnefille, 2010). On the other hand, the demise of Mediterranean diatomites at 

about 6 Ma coincided with the abrupt decline of grasslands and the maximum expansion of arid 

shrublands in East Africa (Bonnefille, 2010). These intriguing time relationships suggest a strong 

causal linkage between terrestrial turnovers and marine opaline production in the Mediterranean 
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during the latest Miocene. It is reasonable to hypothesize that the general trend of aridification that 

occurred in eastern Africa during the early Messinian stage of grassland expansion acted as a 

further catalyst for silica mobilization (Fig. 7). At least initially, both deforestation and 

desertification may have strongly favored the Mediterranean silica enrichment, promoting the 

opening of the African grassy opal sinks and making them more susceptible to release their huge 

siliceous reservoirs through stronger fluvial and eolian erosion. On the contrary, the extreme 

drought affecting the East African landscapes at ~6 Ma reduced the extension of quickly dissolvable 

terrestrial opal reservoirs and promoted the expansion of opal-poor biomes or dusty environments, 

mostly composed of inert lithogenic silica scarcely exploitable by diatoms. As a consequence, the 

DSi budget of the Mediterranean dropped, severely limiting the development of the diatomaceous 

facies. 

Although the crucial factor for the silica enrichment of the Mediterranean was the African 

inland contribution, the local DSi-supply from circum-mediterranean regions was also relevant and 

may explain the temporal and spatial distribution of diatomite deposits and their variable thickness. 

The distribution of grass-dominated open biomes (Favre et al., 2007) and hypsodont mammals 

(Fortelius et al., 2006) in the Mediterranean region during the Messinian (Fig. 7) was associated 

with the main sites of diatomite deposition (Fig. 2A). We propose that the increases in cooling, 

aridity and habitat opening that occurred during the early Messinian in the Mediterranean region 

(e.g., Tzanova et al., 2015; Böhme et al., 2017), associated with concentrated seasonal rainfalls and 

strong winds, able to remove the opal-rich topsoil layers of the peri-mediterranean grass-dominated 

habitats, acted as further positive feedback mechanism for terrestrial silica mobilization similarly to 

what happened in eastern Africa at around 7-6 Ma. 

Diatomaceous deposition occurred in basins widely affected by late Miocene geodynamics 

and sea-level fluctations. These basins were regularly eutrophized by the highest bioavailable 

portion of the terrigenous supply and only marginally affected by the negative effects of the river 

discharge, for example surface water turbidity that could inhibit the proliferation of phytoplankton 
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or excessively dilute the biogenic fraction of the sediments. Moreover, tectonic and eustatic re-

arrangements affected the physiography of marginal basins (e.g., bathymetry and development of 

sills) and the accommodation space, influencing for example, the thickness of diatomaceous 

successions. At a regional scale, the Sicily channel may have limited the connections between the 

western and eastern sectors of the Mediterranean, amplifying the difference between their 

hydrologic regimes (Pérez-Folgado et al., 2003; Gladstone et al., 2007), well before the onset of the 

Messinian salinity crisis (Jolivet et al., 2006). Paleocurrents may have played a critical role in the 

redistribution of DSi within the Mediterranean peripheral basins. The paleocurrent regime may 

explain why the diatomaceous event at the two extremities of the Mediterranean, Algeria and 

Cyprus, occurred with different magnitudes, producing more extensive and thicker deposits in the 

Algerian localities. This difference in thickness is apparently surprising considering the proximity 

of many eastern basins to the main North African river mouths, where certainly large concentrations 

of DSi and other nutrients were introduced. Nevertheless, if an anti-estuarine circulation was active 

during the early Messinian (Kouvenhowen and van der Zwaan, 2006), the eastern Mediterranean 

nutrient budget was partly transferred toward the westernmost domains through the Levantine 

Intermediate Waters. In this regard, the reconstructions of paleocurrents in the Chelif basin 

provided by Neurdin-Trescartes (1995) suggest a relevant E to W paleoflow. Therefore, the 

Algerian basins may have profited from a favorable interplay between localized (herbaceous 

biomes, volcanism) and more distal sources of DSi. 

Volcanic ashes, very scattered within the (westernmost) lower Messinian diatomaceous 

successions of the Mediterranean, possibly played a local role as sources of readily exploitable 

silica for diatom communities. However, the cyclical occurrence of the diatomaceous layers within 

the early Messinian successions suggests a periodical increase of silica levels in the basin, hardly 

compatible with discontinuous volcanic eruptions. 
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6. Sapropel-diatomite couplet and laminated fabric: an interpretation 

The most striking feature of the lower Messinian diatomites is their rhythmic interbedding 

with organic-rich layers (sapropels), arranged in cyclical successions that are extremely 

heterogeneous throughout the Mediterranean (Fig. 2B) and whose interpretation still represents a 

matter of intense debate (e.g., Nijenhuis, 1999; Pérez-Folgado et al., 2003). Moreover, diatomites 

are often characterized by a fairly laminated style that has been classically interpreted as evidence 

of anoxic conditions at the ocean bottom (e.g., Sturani and Sampò, 1973; Savelli and Wezel, 1978; 

Ciaranfi et al., 1980; Rouchy, 1982; Mansour et al., 1995). 

However, an improved knowledge of diatom ecology and life cycles reveals that an 

alternative explanation can be proposed to properly interpret the context of diatomite accumulation. 

Many diatoms are able to constitute robust, rapidly sinking flocs and mats via chemical or physical 

aggregation (Smetacek, 1985; Alldredge and Gottschalk, 1989; Alldredge et al., 1993; Kemp and 

Baldauf, 1993; Passow et al., 1994, 2001; Bodén and Backman, 1996; Grimm et al., 1997; Pike and 

Kemp, 1999; Passow, 2002; Prieto et al., 2002; Engel, 2004). Such aggregates efficiently bypass 

zooplankton grazing, and once deposited on the seafloor form resistant, impenetrable structures 

which hamper both benthic and infaunal activity, promoting the excellent preservation of seasonal 

laminae and their associated biological content, also in well-oxygenated environments (Kemp, 

1996; Brand et al., 2004; Esperante et al., 2015).  

Oxygen-poor environments favor the preservation of diatom coating, composed of 

polysaccharides, amino acids and glycoproteins that protect frustules from dissolution in DSi-

undersaturated waters (e.g., Lewin, 1961; Hecky et al., 1973). Bacteria, through their enzymatic 

activity, are the main degrading agents of such organic envelopes (Patrick and Holding, 1985; Bidle 

and Azam, 1999, 2001; Passow et al., 2001; Bidle et al., 2003; Roubeix et al., 2008). Assuming 

anaerobic bacteria as being "relatively inefficient in decomposing organic matter" (Kaplan and 

Rittenberg, 1963), anoxic conditions have been considered for a long time as a pre-requisite for 
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diatomite preservation (see Sturani and Sampò, 1973). However, recent studies revealed that 

oxygen-depleted conditions may increase, rather than mitigate, BSi dissolution, especially in the 

long term (Villnäss et al., 2012; Abe et al., 2014; Ekeroth et al., 2016a,b; Lehtimäki et al., 2016). 

This is primarily due to a compositional change of the microbial assemblages able to decompose the 

organic coating of diatoms (e.g., Lehtimäki et al., 2016). Peculiar bacterial communities may 

proliferate much easier in hypoxic waters, because of the drastic reduction of bacteriovores (e.g., 

ciliates) (Cole et al., 1993). The analysis of bacterial communities of Mediterranean sapropels (Süβ 

et al., 2004) and of present-day hypoxic settings in the Gulf of Finland provided by  Sinkko et al. 

(2013), show the predominance of Proteobacteria, Actinobacteria and Bacteroidetes, which are 

involved in BSi-dissolution (Bidle et al., 2003). Once the organic coating has been removed, 

frustule degradation can be caused by the modulation of pH because opal, and more generally 

silicates, are prone to dissolution in alkaline environments (Brehm et al., 2005; Ehrlich et al., 2010). 

It is well known that the degradation of organic matter via sulfate-reducing bacteria, which are 

ubiquitous in oxygen-depleted waters (Muyzer and Stams, 2008), promotes an increase of alkalinity 

of pore waters that can easily induce the dissolution of diatom frustules and consequently 

remobilization of DSi. The possible linkage between enhanced anoxigenic bacterial activity and the 

Si biogeochemical cycle during the early Messinian diatomite accumulation may explain the regular 

occurrence of well-developed sapropels interbedded with diatomites, which is believed to reflect 

orbitally (precession) driven humid-arid climate fluctuations (e.g., Hilgen and Krijgsman, 1999; 

Modestou et al., 2017). The presence of sapropels attests that many Mediterranean basins, from 

Algeria to Cyprus, were affected by prolonged periods of water stratification and anoxia. According 

to Hilgen and Krijgsman (1999), such conditions were favored during humid periods of marked 

runoff promoted by monsoonal rainfalls at times of precession minima. Therefore, it is reasonable 

to assume that huge amounts of DSi derived by the leaching of grassland soils were massively 

supplied to the Mediterranean during sapropel formation. Conversely, diatomite deposition occurred 

during drier periods with increased mixing of the water column, which were probably more 
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accentuated in the western domain (Filippelli et al., 2003; Pérez-Folgado et al., 2003) than in the 

central and eastern ones (Hilgen and Krijgsman, 1999; Pérez-Folgado et al., 2003). Such differences 

were possibly due to the complex interplay between physio- and hydrographic features of the basins 

(e.g., Pérez-Folgado et al., 2003). An overall reduction of continental runoff is, however, expected 

during the earliest stage of an arid phase, with a consequent reduction of DSi-rich waters supply to 

the Mediterranean.  

To reconcile such a complex scenario with our previous assumptions, we suggest the 

intervention of stratification-adapted and heavily silicified giant diatoms, solenioid diatoms, 

Thalassiothrix spp. and Coscinodiscus spp. (Kemp et al., 2000), during the deposition of lower 

Messinian sapropels. In the modern oceans, such taxa produce oligo- or mono-specific laminae after 

the seasonal breakdown of thermocline and nutricline, when the destabilization of the water column 

promotes their massive settling (fall dump sensu Kemp et al., 2000). These slow-growing diatoms 

are abundantly represented in the lower Messinian diatomite successions of the Mediterranean and 

have been reported in Morocco (El Ouahabi et al., 2007), Algeria (Rouchy et al., 1982; Mansour et 

al., 1995, 2008), Spain (Saint Martin et al., 2001), the Apennines (Sturani and Sampò, 1973; 

Ciaranfi et al., 1980; Carnevale, 2004b; Fig. 8), Sicily (Gaudant et al., 1996; Bellanca et al., 2001; 

Blanc-Valleron et al., 2002; Pestrea and Saint Martin, 2002), Gavdos (Pérez-Folgado et al., 2003), 

and Cyprus (Pestrea et al., 2002). However, the possible role of these taxa in the Messinian sapropel 

deposition has been underestimated or denied (e.g., Filippelli et al., 2003), although their 

contribution to Pliocene and Pleistocene sapropel deposition has been confirmed by several studies 

(e.g., Consolaro et al., 2013 and references therein; Kemp and Villareal, 2013 and references 

therein). This is primarily due to the very poor preservation of diatom tests in Mediterranean 

sapropelitic muds (Pearce et al., 1998). The lack of diatom remains in sediments should not be 

considered as evidence of their absence in the water column. Molecular fossil data revealed that 

mat-forming diatoms contributed to the deposition of many organic-rich and BSi-free muds from 

the Late Cretaceous onwards (Köster et al., 1998; Schwark et al., 2009; McKirdy et al., 2010, 2013; 
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Kemp and Villareal, 2013). Unfortunately, an accurate analysis of molecular fossils in the lower 

Messinian sapropels is still not available. Some scattered, but intriguing physical evidence of their 

presence was recorded in the lower Messinian successions of Gibellina (Sicily) and Cyprus, where 

Pestrea and Saint Martin (2002) and Pestrea et al. (2002) recorded an explosion of Rhizosoleniaceae 

abundance in the organic-rich layers. Furthermore, Dela Pierre et al. (2014) identified abundant 

ghosts of giant mat-forming diatoms derived from frustule dissolution in anoxic Messinian 

mudstones from the Piedmont basin. 

We propose that, during humid periods of enhanced monsoonal runoff at precession minima 

(Fig. 9A), severe water stratification favored the proliferation of giant, highly-silicified mat-forming 

diatoms, which slowly consumed the enormous budget of DSi provided by rivers. Through their 

settling, such diatoms yielded a periodical source of degradable organic matter to the bottom of the 

ocean, which was then progressively metabolized by sulfate-reducing bacteria. Such conditions 

promoted the increase of bottom alkalinity, frustule dissolution (Fig. 8) and the consequent release 

of DSi, which remained trapped in the lower layers of the stratified Mediterranean waters. During 

the subsequent onset of a cooler and arid climate (Fig. 9B), characterized by a strong mixing of the 

water column, the DSi-rich waters were transported toward the surface, where a broader spectrum 

of diatoms could proliferate. A further contribution to the silica budget during the drier phases was 

most likely provided by the wind-driven injection of BSi, through the direct transport of easily 

dissolvable phytoliths to the basins. Diatomite deposition occurred under progressively more 

oxygenated waters, which prevented the activity of anaerobic bacteria and the dissolution of 

frustules. Therefore, the preservation of laminated fabric was ostensibly promoted by the 

aggregation strategies of diatoms depending on their particular life-history, and not necessarily on 

the emergence of anoxic conditions. Diatomite accumulation proceeded until the complete 

exhaustion of DSi. 
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7. Summary and conclusions 

 

Considered from a deep-time perspective, the interplay between abiotic and biotic 

weathering of terrestrial silicates controls the release of DSi from land to ocean. The late Miocene-

early Pliocene opaline peak around 7-4.5 Ma was a global event most likely promoted by the 

synergistic effect of vast tectonic readjustments (uplift and volcanism), climatic reconfigurations 

(strong aridity and monsoonal rainfalls) and biological turnovers (full expansion of grass-dominated 

ecosystems), able to promote a substantial increase of the oceanic pools of silica through riverine 

and eolian mobilization of the quickly-dissolvable terrestrial opal reservoirs. 

The Mediterranean, a land-locked sea actively fed by rivers, represents a virtually unstudied 

system for unravelling the complex relationships between the terrestrial sources of silica and the 

marine biosiliceous production in the geological past. The early Messinian diatomaceous deposition 

in the Mediterranean at about 7-6 Ma was the product of synergistic geobiosphere events that 

occurred on a global scale, and of their consequence in a semi-enclosed basin. Even if the Atlantic 

contribution cannot be ruled out, the main contribution to the Mediterranean silica enrichment was 

most likely provided by the African interiors and the peri-mediterranean regions, both affected by 

active tectonics and characterized by an extensive grassy cover in the early Messinian. The 

increasing aridity trend involving these regions at around 7-6 Ma may have acted as a catalyst for 

silica mobilization toward the Mediterranean, promoting the further expansion of grassy biomes and 

the erosion of their opal-rich topsoils, through concentrated seasonal rainfalls and a strong eolian 

transport. Volcanic ashes, typically considered as a fundamental source of DSi, were overall scanty 

and mainly localized in the westernmost domains of the Mediterranean, likely representing only a 

limited local contribution to the early Messinian silica-enrichment of the Mediterranean.  

The lower Messinian Mediterranean diatomite deposits share a fine lamination and are 

commonly alternated with sapropels, i.e. organic-rich sediments formed under stratified waters 

promoted by intensive runoff during the northern hemisphere summer perihelion. Although 
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typically interpreted as the byproduct of oxygen-depleted conditions, the laminated fabric of 

diatomites may be efficiently preserved also in well-oxygented settings, through the formation of 

compacted flocs and mats able to hamper benthic activity. Recent advancements in the knowledge 

of silica biogeochemistry in anoxic settings suggest a possible linkage between the recurrence of 

sapropels, the recycling of DSi and the following episodes of diatomite deposition. The 

proliferation of giant, mat-forming diatoms during prolonged periods of water stratification may 

have sequestered the huge amounts of silica provided by increased runoff. Anoxic conditions, 

promoting the growth of sulfate-reducing bacteria able to increase the alkalinity of bottom waters, 

may have completely dissolved the settled frustules. The resulting DSi was therefore trapped below 

the photic zone and subsequently re-injected during drier periods of stronger mixing of the water 

column, promoting the proliferation of a broader spectrum of diatoms and their preservation in 

oxygenated settings. Most likely, the drier periods of silica re-injection were also characterized by a 

reinforced eolian regime, able to considerably increase the amount of phytoliths dispersed toward 

the Mediterranean basins, and promoting a further spike of silica concentration favorable to the 

preservation of diatomites. 

This is a first attempt to frame the lower Messinian diatomaceous deposition in the 

Mediterranean under a terrestrial silica perspective, suggesting a possible linkage with the latest 

Miocene global intensification of the oceanic opaline production. Further triggering factors (e.g., 

peculiar physiography of each sub-basin, paleocurrents, sources and distribution of other nutrients) 

should also be taken into account to more properly interpret this diachronic event. Under this 

perspective, it is worth to mention the role played by phosphorus and iron in the enhancement of 

diatom productivity (e.g., Egge, 1998; Takeda, 1998) during the late Miocene biogenic bloom, both 

at the global and Mediterranean scale. It is well established that continental weathering mobilizes, 

as well as DSi, also these biolimiting elements (e.g., Filippelli, 1997; Cermeño et al., 2015). 

Moreover, the latest Miocene aridity trend also promoted the expansion of the desertic areas, which 

are important sources of iron-rich dusts (e.g., Jickells et al., 2005; Diester-Haass et al., 2006). From 
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this point of view, in the circum-mediterranean region the onset of the Sahara desert at around 7 Ma 

(Schuster et al., 2006) may have played a significant role, especially during the driest periods of 

precession maxima-insolation minima, when the eolian transport was maximized. This highlights 

the relevance of terrestrial ecosystems during the late Neogene intensification of the oceanic 

primary productivity, and suggests unexplored interplays between different biogeochemical cycles. 
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Captions for figures 

 

Figure 1. Cyclical patterns of diatomaceous deposits, at different scales. A) Macroscale cyclicity: 

brownish layers correspond to sapropels (s), greyish layers to marls (m) and the thick whitish layer 

to diatomite (d) (Serra Pirciata section, Caltanissetta Basin). B) Microscale cyclicity: greyish-

brownish laminae are detrital-rich, whitish laminae are diatom-rich (Capo di Fiume section, 

Abruzzo). [Planned for single column width] 

 

Figure 2. A) Distribution of lower Messinian marine biosiliceous (mainly diatom-rich) deposits in 

the Mediterranean. B) Main stratigraphic architectures of the lower Messinian Mediterranean 

diatomite successions. See text for a detailed discussion and references. [Planned for 1.5 column 

width] 

 

Figure 3. Proxies of the global intensification of silica cycle during the Cenozoic. 
18

O/
16

O (‰) – 

Zachos et al. (2001); Sea level (m) – Haq et al., 1987; Grassland-grazer coevolution – Jacobs et al. 

(1999), Strömberg (2011); Wildfires (charcoal record) – Bond (2015), Miao et al. (2016); Eolian 

dusts – Rea et al. (1998), Diester-Haass et al. (2006); 
87

Sr/
86

Sr (‰) – Filippelli (1997), Potter and 

Szatmari (2015); Continental Si fluxes (relative to present) – Cermeño et al. (2015); Diatom 

abundance (% median/smear slide) and biodiversity (% to modern) – Lazarus et al. (2014), 

Renaudie (2016); Marine vertebrate evolution – Norris et al. (2013), Schwarzhans and Aguilera 

(2013), Pyenson and Vermeij (2016), Mayr et al. (2017). The temporal extension of the late 

Miocene-early Pliocene opaline peak is roughly indicated by the grey horizontal bar. PETM –

Paleocene-Eocene Thermal Maximum; Oi-1 – 1st Oligocene oxygen isotope event; Mi-1 – 1st 

Miocene oxygen isotope event; MMCO – Middle Miocene Climatic Optimum. [Planned for full 

width] 
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Figure 4. Global distribution of Upper Miocene and Lower Pliocene oceanic diatom-bearing 

deposits (circles). The rectangle indicates the Mediterranean basin. Modified from Renaudie (2016). 

[Planned for column/1.5 column width] 

 

Figure 5. Sketch showing the relationships between the terrestrial silica cycle and diatomite 

deposition in the oceans. Red arrows indicate the main processes responsible for the intensification 

of silica cycle. Light blue arrows indicate the supporting role of diatoms in the marine food web. 

[Planned for 1.5 column/full width] 

 

Figure 6. Diagram summarizing the main events occurred in inner Africa and in the peri-

mediterranean region. The single asterisk indicates the late Tortonian diatomaceous event in the 

Betics and Sicily. The double asterisk indicate the temporal extension of opal CT-rich layer 

deposition in the Betics. Continuous lines indicate strengthening/expansion. Dotted lines indicate 

weakening/stabilization. MSC: Messinian salinity crisis. [Planned for 1.5 column width] 

 

Figure 7. A simplified model to interpret the Mediterranean silica-enrichment during the early 

Messinian, in the light of the African and peri-mediterranean abiotic and biotic events. Tectonics 

and eustasy promoted the mobilization of the local opal reservoirs. Moreover, the intensification of 

monsoonal rainfalls during the northward migration of the Inter Tropical Convergence Zone (ITCZ) 

favored the DSi-rich runoff from grassy African interiors and peri-mediterranean regions, affected 

by aridification and landscape opening; the southward shift of the ITCZ promoted water stress, 

reduced runoff and increased eolian transport of phytoliths. Green circles and herbivore silhouettes 

represent the main grassy areas inferred by pollens, phytoliths and terrestrial vertebrate remains: A) 

S-W Iberian Peninsula – Fortelius et al. (2006); Jiménez-Moreno et al. (2010); Morocco – Bachiri-

Taoufiq et al. (2008); Algeria – Anderson (1933, 1936); Chikhi (1992); B) N-E Iberian Peninsula – 
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Jiménez-Moreno et al. (2010); Casas-Gallego et al. (2015); C) Northern Apennines (Gabbro and 

Velona basins) – Berger (1957); Trevisan (1967); Ghetti et al. (2002); D) Sicily and Calabria – Suc 

et al. (1995); Marra et al. (2011); E) Greece and Anatolia – Ioakim et al. (2005); Fortelius et al. 

(2006); Strömberg et al. (2007); Biltekin (2010); Böhme et al. (2017); Kayseri-Ozer et al. (2010); F) 

Egypt (site Naf-1) – Fauquette et al. (2006); G) Libya (As Sahabi Fm.) – Boaz et al. (2008); H) 

Eastern and Central Africa – Cerling et al. (1997); Vignaud et al. (2002); Ségalen et al. (2007); 

Bobe (2011); Bibi et al. (2009); Blondel et al. (2010); Bonnefille (2010); I) Western Africa – 

Morley and Richards (1993). Grey arrows indicate tectonic uplift: 1) Rif – Krijgsman et al. (1999); 

2) Betics – Krijgsman et al. (2001); Sierro et al. (2001, 2003); Braga et al. (2003); Jolivet et al. 

(2006); Giaconia et al. (2015); 3) Algerian coast – Perrodon (1957); Rouchy (1982); Authemayou et 

al. (2016); 4) Western Alps – Bigot-Cormier et al. (2000, 2006); Carrapa et al. (2004); Glotzbach et 

al. (2008, 2010); Valla et al. (2012); 5) Eastern Alps – Wölfler et al. (2016); 6) Apennines – Sarti et 

al. (1995); Centamore and Rossi (2009); Vezzani et al. (2010); Barone et al. (2008); Hüsing et al. 

(2009); Massari et al. (2010);  7) Sicilian basins – Richter-Bernburg (1973); Pedley and Grasso 

(1993); Pedley and Maniscalco (1999); Bellanca et al. (2001); Rosenbaum et al. (2002); 8) Ionian 

islands – Papanikolau and Dermitzakis (1981); Rouchy (1982); van Hinsbergen et al. (2006); 9) 

Taurides – Cosentino et al. (2012); Schildgen et al. (2012); 10) Troodos massif and Kyrenia range – 

Harrison et al. (2004); Orszag-Sperber et al. (2009); McCay and Robertson (2013); Manzi et al. 

(2016); 11) Ethiopian plateau – Sepulchre et al. (2006); Gani and Gani (2007). Red arrows indicate 

sea-level fluctuations in the main areas of diatomaceous deposition: a) Rif Corridor and Iberian 

Peninsula – Krijgsman et al. (1999); Gibert et al. (2013); b) Piedmont basin – Violanti et al. (2007); 

c) Apennines – Kouwenhowen et al. (1999); d) Sicilian basins – McKenzie et al. (1979); Suc et al. 

(1995); Pedley et al. (2007); e) Cyprus basins – Krijgsman et al. (2002); Orszag-Sperber et al. 

(2009). The blue question mark refers to the possible Eonile flow toward the Gulf of Sirt during the 

early Messinian (Carmignani et al., 2009). The onset of Sahara desertification at around 7 Ma 

(Schuster et al., 2006) and the occurrence of wildfires in West Africa (Morley and Richards, 1993) 
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and Algeria (Anderson, 1933, 1936) are symbolized by sand dunes and flames, respectively. 

[Planned for full width] 

 

Figure 8. Coscinodiscus sp. giant frustules in a diatom-rich lamina from the Pecetto di Valenza 

section (Piedmont basin). Yellow arrows point to the dissolved portions of the frustules. [Planned 

for column width] 

 

Figure 9. A simplified Si-based model explaining the regular occurrence of sapropels and 

diatomites in the early Messinian successions of the Mediterranean. A) Sapropel formation. During 

humid phases (precession minima, insolation maxima), a strong runoff provided huge amount of 

DSi to the basins and promoted water column stratification favoring the proliferation of 

oligospecific, highly silicified subsurface diatom assemblages (shade flora). Upon reaching the 

seafloor, the diatom frustules were dissolved due to the activity of sulfate-reducing bacteria (SRB) 

which increased alkalinity of the pore waters. B) Diatomite formation. During arid phases the 

reduction of river runoff and the mixing of the water column favored the re-injection of recycled 

DSi (previously trapped below the pycnocline) in the photic layer. Phytolith-rich dust further 

contributed to the silica saturation of the water column. Diversified diatom assemblages, adapted to 

exploit the silica-rich surface waters, proliferated and their frustules were further deposited on well-

oxygenated sea bottom. The suppression of sulfate-reducing bacteria favored the preservation of 

diatom frustules (see text for details). [Planned for 1.5 column/full width] 
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