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Abstract: Characterizing genetic diversity in Africa is a crucial step for most analyses reconstructing 

the evolutionary history of anatomically modern humans. However, historic migrations from Eurasia 

into Africa have affected many contemporary populations, confounding inferences. Here, we present 

a 12.5x coverage ancient genome of an Ethiopian male (‘Mota’) who lived approximately 4,500 years 

ago. We use this genome to demonstrate that the Eurasian backflow into Africa came from a 

population closely related to Early Neolithic farmers, who had colonized Europe 4,000 years earlier. 

The extent of this backflow was much greater than previously reported, reaching all the way to 

Central, West and Southern Africa, affecting even populations such as Yoruba and Mbuti, previously 

thought to be relatively unadmixed, who harbor 6-7% Eurasian ancestry. 

 

One Sentence Summary: An ancient genome from Ethiopia reveals widespread Eurasian admixture 

into modern African populations. 

 

Main Text: The ability to sequence ancient genomes has revolutionized our understanding of human 

evolution. However, genetic analyses of ancient material have focused on individuals from temperate 

and arctic regions, where ancient DNA is preserved over longer time frames (1). Africa has so far 

failed to yield skeletal remains with much aDNA, with the exception of a few poorly preserved 

specimens from which only mitochondrial DNA could be extracted (2). This is particularly 

unfortunate, as African genetic diversity is crucial to most analyses reconstructing the evolutionary 

history of anatomically modern humans, by providing the baseline against which other events are 

defined. In the absence of ancient DNA, geneticists rely on contemporary African populations, but a 

number of historic events, in particular a genetic backflow from West Eurasia into Eastern Africa (3, 

4), act as confounding factors. 

Here, we present an ancient human genome from Africa, and use it to disentangle the effects of 

recent population movement into Africa. By sampling the petrous bone (5), we sequenced the 

genome of a male from Mota Cave (herein referred to as ‘Mota’) in the southern Ethiopian highlands, 

with a mean coverage of 12.5x (6). Contamination was estimated to be between 0.29 and 1.26% (6). 

Mota’s remains were dated to ~4,500 years ago (direct calibrated radiocarbon date (6)), and thus 

predate both the Bantu expansion (7), and, more importantly, the 3ky-old West Eurasian backflow 

which has left strong genetic signatures in the whole of Eastern and, to a lesser extent, Southern 

Africa (3, 4).  



We compared Mota to contemporary human populations (6). Both Principal Component Analysis 

(Fig. 1A) and outgroup f3 analysis using Ju|’hoansi (Khoisan) from Southern Africa as the outgroup 

(Fig. 1B,C) place this ancient individual close to contemporary Ethiopian populations, and more 

specifically to the Ari, a group of Omotic speakers from southern Ethiopia, to the West of the 

highland region where Mota lived. Our ancient genome confirms the view that the divergence of this 

language family results from the relative isolation of its speakers (8), and indicates population 

continuity over the last ~4,500 years in this region of Eastern Africa. 

The age of Mota means that he should predate the West Eurasian backflow, which has been dated to 

~3,000 years ago (3, 4). We formally tested this by using an f4 ratio estimating the West Eurasian 

component (6), following the approach adopted by Pickrell et al (3). As expected, we failed to find 

any West Eurasian component in Mota (Table S5), thus providing support for previous dating of that 

event (3, 4).  

Given that Mota predates the backflow, we searched for its most likely source by modelling the Ari, 

the contemporary population closest to our ancient genome, as a mixture of Mota and another West 

Eurasian population (6). We investigated both contemporary sources (3) as well as other Eurasian 

ancient genomes (5, 9). In this analysis, contemporary Sardinians and the early Neolithic LBK 

(Stuttgart) genome stand out (Fig. 2A). Previous analyses have shown Sardinians to be the closest 

modern representatives of early Neolithic farmers (10, 11), implying that the backflow came from the 

same genetic source that fuelled the Neolithic expansion into Europe from the Near East/Anatolia, 

before recent historic events changed the genetic makeup of populations living in that region. An 

analysis with haplotype sharing also identified a connection between contemporary Ethiopians and 

Anatolia (4, 12). Interestingly, archaeological evidence dates the arrival of Near Eastern domesticates 

(such as wheat, barley and lentils) to the same time period (circa 3,000 years ago) (13, 14), suggesting 

that the direct descendants of the farmers that earlier brought agriculture into Europe may have also 

played a role in the development of new forms of food production in the Horn of Africa. 

Using Mota as an unadmixed African reference and the early farmer LBK as the source of the West 

Eurasian component, it is possible to reassess the magnitude and geographic extent of historical 

migrations, avoiding the complications of using admixed contemporary populations (6). We 

estimated a substantially higher Eurasian backflow admixture than previously detected (3), with an 

additional 4-7% of the genome of most African populations tracing back to a Eurasian source, and, 

more importantly, we detected a much broader geographical impact of the backflow, going all the 

way to West and Southern Africa (Fig. 2B). Even though the West Eurasian component in these 

regions is smaller than in Eastern Africa, it is still sizeable, with Yoruba and Mbuti, who are often used 



as African references (15, 16), showing 7% and 6%, respectively, of their genomes to be of Eurasian 

origin (Table S5).  

Since Mota predates recent demographic events, his genome can act as an ideal African reference to 

understand episodes during the out-of-Africa expansion. We used him as the African reference to 

quantify Neanderthal introgression in a number of contemporary genomes (6). Both Yoruba and 

Mbuti, which are routinely used as African references for this type of analysis (15, 16), show a 

marginally closer affinity with Neanderthal than Mota based on D statistics, and an f4 ratio analysis 

detected a small Neanderthal component in these genomes at around 0.2-0.7%; greater than 

previously suggested (16), and consistent with our estimates of the magnitude of their Western 

Eurasian ancestry (6). Whilst the magnitude of Neanderthal ancestry in these contemporary African 

populations is not enough to change conclusions qualitatively (estimates of Neanderthal ancestry in 

French and Han only increased marginally when tested with Mota as a reference), it should be 

accounted for when looking for specific introgressed haplotypes (17) or searching for unknown 

ancient hominins who might have hybridized with African populations (18).  

 We also investigated the Mota genome for a number of phenotypes of interest (6). As expected, 

Mota lacked any of the derived alleles found in Eurasian populations for eye and skin colour, 

suggesting that he had brown eyes and dark skin. Mota lacked any of the currently known alleles that 

give lactose tolerance, which may have implications concerning when pastoralism appeared in 

southwestern Ethiopia. In addition, Mota did possess all three selected alleles that have been 

recently shown to play a role in the adaptation to altitude in contemporary highland Ethiopian 

populations (19). The presence of these mutations supports our conclusion that Mota is the 

descendant of highland dwellers, who have lived in this environment long enough to accumulate 

adaptations to the altitude (20, 21). 

Until now, it has been necessary to use contemporary African populations as the baseline against 

which events during the worldwide expansion of Anatomically Modern Humans are defined (16, 22–

24). By obtaining an ancient whole genome from this continent, we have shown that having an 

unadmixed reference that predates the large number of recent historical migrations can greatly 

improve our inference. This result stresses the importance of obtaining unadmixed baseline data to 

reconstruct demographic events, and the limitations of analyses that are solely based on 

contemporary populations. Even older African genomes will thus be needed to investigate key 

demographic events that predate Mota, such as earlier instances of back-flows into Africa (25). 
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Figure legends 

Fig. 1.  Mota shows a very high degree of similarity with the highland Ethiopian Ari populations. 

(A), PCA showing Mota projected onto components loaded on contemporary African and Eurasian 

populations. The inset magnifies the PCA space occupied by Ethiopian and Eastern African 

populations. (B), outgroup f3 quantifying the shared drift between Mota and contemporary African 

populations, using Ju|’hoansi (Khoisan) as an outgroup; bars represent standard error;  (C), map 

showing the distribution of outgroup f3 values across the African continent. In (A) and (B), 

populations speaking Nilo-Saharan languages are marked with blue shades, Omotic speakers with 

red, Cushitic with orange, Semitic with yellow, and Bantu with green. Mota is denoted by a black 

symbol. 

Fig. 2. Quantifying the geographic extent and origin of the West Eurasian component in Africa. (A), 

admixture f3 identifying likely sources of the West Eurasian component (lowest f3 values). 

Contemporary populations in blue, ancient genomes in red; bars represent standard error. (B), map 

showing the proportion of West Eurasian component, λMota,LBK, across the African continent. 
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