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BAYESIAN EPISTEMOLOGY

Stephan Hartmann and Jan Sprenger

February 2, 2010

1 Introduction

Bayesian epistemology addresses epistemological problems with the help of the
mathematical theory of probability. It turns out that the probability calculus
is especially suited to represent degrees of belief (credences) and to deal with
questions of belief change, confirmation, evidence, justification, and coherence.
Compared to the informal discussions in traditional epistemology, Bayesian epis-
temology allows for a more precise and fine-grained analysis which takes the
gradual aspects of these central epistemological notions into account. Bayesian
epistemology therefore complements traditional epistemology; it does not re-
place it or aim at replacing it.

Bayesian epistemology can be traced back to the work of Reverend Thomas
Bayes (1701-1761) who found an elementary mathematical theorem that plays a
central role in Bayesian epistemology. More on this below. Later Bayesian ideas
began to surface not only in philosophy, but also in statistics, formal learning
theory, and other parts of science. Obviously, the probability calculus finds
many applications because of its enormous flexibility, expressive power, and
formal simplicity. Bayesian epistemology shares much with these endeavors,
including a certain scientific attitude vis-a-vis the problems in question, but it
is worth noting that Bayesian epistemology is, in the first place, a philosophical
project, and that it is its ambition to further progress in philosophy. This essay is
structured as follows. Section 2 introduces the probability calculus and explains
why degrees of belief obey the probability calculus. Section 3 applies the formal
machinery to an analysis of the notion of evidence, and highlights potential
application. Section 4 discusses Bayesian models of coherence and testimony,
and section 5 ends this essay with a comparison of traditional epistemology and
Bayesian epistemology.

2 Probability and Degrees of Belief

Bayesian epistemology can be described as the attempt to use an intuitive, but
powerful tool – the probability calculus – for tackling long-standing problems in
epistemology and philosophy of science. In particular, Bayesian epistemology
models degrees of belief as mathematical probabilities. Probability is interpreted
subjectively or epistemically (as opposed to the “objective chance” of an event).
This section explains the relationship between the different interpretations of
probability, the concept of degree of belief, and the application of those tools to
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epistemological problems. We start with some motivational remarks that draw
on the analogy to deductive logic.

Deductive logic is often perceived as the logic of full rational belief, in the
sense that an agent’s set of (fully endorsed) beliefs can be described as a set of
first-order propositions. If this set is logically inconsistent, i.e. if there is no joint
model of all propositions, then the agent cannot be (epistemically) rational: the
propositions cannot hold simultaneously, hence she ought to abandon at least
one of her beliefs. The calculus of deductive logic is helpful here: it detects
inconsistencies in a set of beliefs by exploring their implications according to a
set of inferential rules.

The mathematical theory of probability plays the same role with respect to
partial rational beliefs, in the sense that the probability calculus is a powerful
instrument in order to infer the doxastic implications of a certain set of partial
beliefs. To spell out the concept of a rational or irrational degree of belief,
Frank Ramsey [1926] (1978) suggested to make use of the standard, economic
conception of rationality – irrational degrees of belief would cost us money if
we let them guide our actions. The crucial concept is betting behavior, or the
inclination to accept and reject bets according to our degrees of belief. For fixed
betting odds, a bet appears to be more favorable if we have a strong degree of
belief in the underlying propositions than if we only weakly believe in it. This
suggests to quantify a degree of belief in terms of the betting odds which we
consider to be fair. As Ramsey argues, sports events are not the only occasion
when we get involved in betting:

“[...] all our lives we are in sense betting. Whenever we go to the
station we are betting that a train will really run, and if we had not
a sufficient degree of belief in this we should decline the bet and stay
at home.” (Ramsey [1926] 1978, 85.)

Thus, we can describe our degrees of belief by means of the betting odds
which we consider fair. To make this explicit, we need some formalism: A bet
on the event A is a triple 〈A|x|y〉 where x and y are positive real numbers. The
bookie pays the bettor y euros if A occurs and the bettor pays the bookie x
euros if A does not occur. x is the bettor’s stake, and the ratio (x+y)/x is called
the betting odds on A, indicating the bettor’s total gain (including the stake)
for a successful e 1 euro bet. Such a betting odd is a preliminary quantification
of a degree of belief. Naturally, an agent judges the bet 〈A|x|y〉 to be fair if it
offers no advantage to either side, i.e. if to the agent’s mind, neither the bookie
nor the bettor have an advantage, and both have the same expected utility. In
this case, (x+ y)/x are the betting odds corresponding to the agent’s degree of
belief.

The connection to the probability calculus is quickly made: if x is much
greater than y and the bettor takes more risk than the bookie, the agent believes
the event A to be probable. Conversely, if agent S believes A to occur in (100 ∗
p)% of all possible cases, he will consider the bet 〈A|x|y〉 to be fair if and only
if there is no advantage for either side and the bet is a zero-sum game:

p y + (1− p)(−x) = 0. (1)

The only real number that solves equation (1) is p = x/(x + y) ∈ [0, 1]. This
value p is called the probability corresponding to S’s degree of belief. It is easy to
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see that there is an isomorphism between probabilities and betting odds since
we can determine the probability from the betting odds by taking the inverse,
and vice versa. In the remainder, we will therefore read “the probability of
A” as the subjective degree of belief in A. Evidently, 1 denotes maximal and
0 minimal degree of belief. What exactly makes a judgment on the fairness
of a bet, or actual betting behavior, irrational? If we accept 1:1 bets on an
event A which you know to be highly improbable, we might still be rational.
Maybe we have less information than you. Or there is not enough information
available to determine a uniquely rational degree of belief. For instance, if we
have a certain degree of belief in the independent propositions A and B, our
degree of belief in A ∨ B should not be lower. Thus, degrees of belief/betting
odds/probabilities are not arbitrary if we proceed from A and B to their truth-
functional compounds. Probability theory reflects these entanglements in two
simple axioms (Kolmogorov 1933):

Definition: Let A be a field of propositions (i.e. a set of propositions that
is closed under truth-functional combination and contains all tautologies). P :
A → [0, 1] is a probability function on A if and only if

• P (A) = 1 for any tautology A.

• For incompatible (mutually exclusive) propositions A and B, P (A∨B) =
P (A) + P (B).

Any such function P is called a probability. The axioms are natural: Each
tautology is assigned maximal degree of belief, and the disjunction of mutually
exclusive propositions is assigned the sum of the individual degrees of beliefs.
As a corollary, we obtain that P (¬A) + P (A) = P (A ∨ ¬A) = 1.

We will see in a minute that these simple equations contain everything that
an agent’s rational degrees of belief have to satisfy, and vice versa. Here, the
famous Dutch Book Theorem comes in: if one of the probability axioms is vi-
olated, the betting odds implied by the agent’s probabilities cannot have been
fair altogether – it is possible to construct a system of bets that assures a risk-
free gain to the bookie or the bettor, a so-called Dutch Book. Therefore these
degrees of belief cannot have been rational either.

Dutch Book Theorem: Any function P : A → [0, 1] on a field A that does not
satisfy the axioms of probability allows for a system of bets that is vulnerable to
a Dutch Book. There is a second theorem, the Converse Dutch Book Theorem,

which ensures that probability functions are not vulnerable to Dutch Books:

Converse Dutch Book Theorem: No probability function P : A → [0, 1] is
vulnerable to a Dutch Book.

Proofs: See Kemeny 1955.

In other words, the Dutch Book Theorem establishes the probability calculus
as a logic of partial belief. Probabilistic degrees of belief are immune to Dutch
Books, and non-probabilistic degrees of belief aren’t. For instance, if your de-
grees of belief in A, B and A∨B did not conform to the probability axioms, we
could offer you a bet on A∨B in a twofold way: directly, or as a bet implied by
two single bets on A and B. But the implicit betting odds would be different,
leading to a reductio ad absurdum:
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“If anyone’s mental condition violated these laws [of the probability
calculus], his choice would depend on the precise form in which the
options were offered him, which would be absurd.” (Ramsey [1926]
1978, 84.)

Thus, the Dutch Book Theorem establishes probability as the mathematical
model of degrees of belief. However, the axiom of probabilities merely constrain
systems of degrees of belief. They do not capture the irrationality of isolated
beliefs. There are some people who know that the (objective, ontic) chance
that their football club wins the national championship is no more than 0.01,
but they continue to accept 1:8 bets on that event. Whatever the reasons
for such a behavior, they act against their own knowledge. The inconsistency
arises from the gap between the subjective degree of belief and the objective
chance of the event. For this reason, we need a principle that supplements the
Dutch Book Theorem with an account of the relationship between chances –
objective probabilities in the world – and rational degrees of belief. This task
is fulfilled by the Principal Principle (PP, Lewis 1980): If an agent knows the

objective probability of proposition A to be equal to p and he has no “overruling
information” available, then his rational degree of belief in A must also be equal
to p. Lewis (1980) argues for the self-evidencing character of (PP), and this is

in line with our intuitions: if we know a roulette table to be perfectly fair, we
have no reason to play a specific strategy. But as Strevens (1999) points out, it
is hard to give a non-circular defense of (PP).

Nevertheless, (PP) gives, together with the Dutch Book Theorem, a compre-
hensive account of the statics of rational belief. But what about the dynamics?
We are lacking a principle that asserts how degrees of belief should be changed
in the light of incoming information. Here, the third and final cornerstone of
Bayesian epistemology enters, namely the updating of degrees in the light of new
evidence. The degree of belief in proposition A after learning another proposi-
tion E is expressed by the conditional probability of A given E, P (A|E). This
value is defined as P (A.E)/P (E) and is usually interpreted as the probability
of A if we take E for granted.

Bayesian Conditionalization: The rational degree of belief in a proposition A
after learning E is the conditional probability of A given E: Pnew(A) = P (A|E).

By means of the famous Bayes’s Theorem (see Joyce 2008), we can reformu-
late this equation and make it easier to handle in practice:

Pnew(H) = P (H|E) =
P (H)P (E|H)

P (E)
(2)

=
P (H)P (E|H)

P (H)P (E|H) + P (¬H)P (E|¬H)

To give an easy example: A friend of yours has bought a new car. Your prior
degree of belief that it is a Ford is about 0.1 (corresponding to the percentages
of Fords among newly bought cars). One day, he comes to your place, driving
a Ford. If he actually owns a Ford, it is quite likely that you see him in a Ford
rather than in his wife’s Toyota (P (E|H) ≈ 0.8), whereas, if he did not own
a Ford, he would probably taken his wife’s car, public transport rather than
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borrowing a Ford from someone else (P (E|¬H) ≈ 0.05). Using (2), this leads
to your new degree of belief Pnew(H) ≈ 0.94. In other words, you are now quite
convinced that he has bought a Ford.

Together, the Dutch Book Argument, the Principal Principle and Bayesian
Conditionalizations are the three pillars of Bayesian epistemology. Let us have
a look what one can do with them.

3 Measuring Evidence

A central concept in modern epistemology and modern science is evidence.
Something is evidence for a proposition or a scientific theory A, something
makes us believe that A, etc. Philosophy of science has, over the past decades,
exploited the probabilistic machinery to explicate what it means that a sci-
entific theory is confirmed or undermined. Although this debate mainly took
place in philosophy of science journals, it is obviously significant for epistemol-
ogy: probabilistic confirmation renders a theory more credible, in other words,
it is evidence for the theory, and evidence is, in turn, central to justifications
and reasons. There are two concepts of evidence that have to be kept apart:
the absolute and the relative one. According to the absolute concept, E is evi-
dence for a proposition A if and only if, given E, A is highly probable (P (A|E)
is high). For instance, a perception is (absolute) evidence for a certain belief
if, taking the perception or granted, the belief is highly probable. This under-
standing certainly captures some ways of using the word “evidence”, but on the
other hand, E can be absolute evidence for A even if E lowers the probability
of E. For instance, let A be the proposition that your favorite football club will
not be national champion in the next year. Even if they win a league match
(E), the probability of A given E is still sufficiently high to make E absolute
evidence for A (P (A|E) is still sufficiently high, although lower than P (A|¬E)).
At least unless you support Chelsea, Barcelona, or the like.

This unintuitive property of absolute evidence calls for a second, different
concept of evidence, namely evidence in the sense of support. In the above exam-
ple, E is evidence for ¬A because it increases the chance of winning the overall
competition (though only to a tiny degree). This relative concept of evidence
as support is the subject of the rest of the section. Not only is it much more
of a relation than the absolute concept, it is also fruitful and widely applicable,
as we will see later.Definition: E is (relative) evidence for a proposition A if

and only if P (A|E) > P (A). Often, we have to tell good from bad evidence,

similar to telling good from bad reasons, or to quantify degree of support, e.g.
in order to address famous challenges such as the Duhem-Quine problem (Ear-
man 1992). For these tasks, we need a measure of evidence. But what is the
most adequate measure of evidence? Which one should we use when judging,
for instance, whether “evidence of evidence” is also evidence? Here are some
suggestions with both an intuitive appeal and a longstanding tradition (other
suggestions have been made by e.g. Crupi et al. 2007):

Difference Measure Takes the difference between the posterior and the prior
degree of belief in A as a measure of the support evidence E lends to A:
d(A,E) := P (A|E)− P (A). (Earman 1992, Rosenkrantz 1994)
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Log-ratio Measure Proposed by Howson and Urbach (1993), this measure is
based on the very same quantities, but replaces the difference in d by the
logarithmic ratio: r(A,E) := logP (A|E)/P (A).

Counterfactual Difference Measure Takes quite a different approach and
compares the posterior degree of belief in A with the counterfactual de-
gree of belief in A had ¬E occurred instead of E: s(A,E) := P (A|E) −
P (A|¬E).

Log-Likelihood Ratio Measures Looks whether A or its negation ¬A better

accounts for observed evidence E: l(A,E) := log P (E|A)
P (E|¬A) .

The task of explicating evidence thus amounts to making a decision between
these measures. This is an intricate task since they also capture different aspects
of evidence. Let’s come back to the Ford example. If you already knew that
your friend had the firm plan to buy a Ford (P (A) = 0.95) then the evidence
that you see him in a Ford is not very impressive from d’s standpoint (d < 0.1)
since your degrees of belief do not change a lot. Still, A accounts much better for
E than ¬A (l ≈ 2.77). Thus, E remains highly useful to discriminate between A
and ¬A, and therefore strong evidence from l’s standpoint. Christensen (1999,
438-39) presents a nice analogy: How would we measure the extent to which
a candidate for US presidency P is financially supported by a group G? The
proportion of G-donations in P ’s funds? P ’s relative position in the presidential
run as a function of the G-donations? And so on. Christensen conjectures

“Thinking about these different measures of support suggests to me
that there is no single clearcut question being asked when we ask
‘How much support does P get from G?’. It would not be surprising
if the same were true of the question ‘How much does evidence E
support hypothesis A?.” (Christensen 1999, 439.)

Hence, a purely example/intuition-based approach to finding measures of
evidence is misguided, since different questions are asked. But one can set
up criteria which all reasonable measures of evidential support have to satisfy.
Then, a lot of measures drop from the list. The remaining ones can be used to
model coherence (see the following section), to tackle longstanding philosophy
of science puzzles such as the Duhem-Quine problem (see Earman 1992), and
they can be connected to empirical evidence in psychology, delivering insights
into human reasoning.

To illuminate the strategy, we discuss the problem of irrelevant conjunctions.
If your watch yields strong evidence that your philosophy seminar is about to
begin, this should not be strong evidence for the claim that your philosophy
seminar is about to begin and that your favorite football club is going to win
the national championship. The latter proposition just seems to be irrelevant to
the evidential reasoning. Formally, if E is (strong) evidence for A, then E should
not always be (strong) evidence for A plus an arbitrary claim X. However, all
measures of evidence yield that E is evidence for A.X, too, due to the positive
impact of E on A:

Proposition 1 (Fitelson 2002): Assume that E is evidence for A and that
P (E|A.X) = P (E|A) for a sentence X consistent with A. Then E is evidence
for A.X, too, for any measure of support.
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In other words, if we tack a conjunct to our belief in question that does not
change the likelihood of the evidence, then the evidence relation extends to the
conjunction as well. For instance, the seminar schedule and the precision of
your watch are apparently independent of the results of football matches. And
precisely such conjuncts are the ones we would call “arbitrary” or “irrelevant”,
leading to the counterintuitive Proposition 1, regardless of the used measure.
Therefore it is important that in such situations, an evidence measure c satisfies
c(A,E) > c(A.X,E), i.e. E is weaker evidence for the conjunction A.X than
for the original proposition A. It turns out that such a result is available, and
that the paradox can be mitigated:

Proposition 2 (Hawthorne and Fitelson 2004): Assume that E is evidence
for A and P (E|A.X) = P (E|A) for a proposition X with P (X|A.K) 6= 1. Then
the evidence E lends to A exceeds the evidence E lends to A.X, for d, l, and
s, e.g. d(A,E) > d(A.X,E). But for the log-ratio measure r, we always get
r(A,E) = r(A.X,E).

Thus, the measure r drops from our list of candidate measures: If E is
evidence for A, then E is equally strong evidence for A.X for an irrelevant X,
and this is apparently an unacceptable result.

These results do not only affect the debate about evidence measures – they
are important for the psychology of human reasoning as well. You might have
heard about the conjunction fallacy observed by Tversky and Kahneman (1983):
Take the propositions

• E: Linda is 31 years old, single, outspoken, and very bright. She ma-
jored in philosophy. As a student, she was deeply concerned with issues
of discrimination and social justice, and also participated in anti-nuclear
demonstrations.

• A: Linda is a bank teller.

• A.X: Linda is a feminist and a bank teller.

Subjects were asked to assess whether A or A.X is more probable given
evidence E. Strikingly, they predominantly judged A.X to be more probable,
thereby violating the probabilistic law that for each A and X, P (A.X) ≤ P (A).
Or in other words, a proposition cannot be more credible than one of its con-
sequences. How shall we interpret this result? Are the subjects unaware of
elementary logical laws? We need not draw that conclusion. In terms of our
measures of evidence, we can tell a story about their judgments (see Crupi et
al. 2008, Schupbach 2010). The subjects intuitively judged the support rela-
tions between E, A and A.X. Obviously, E is strong evidence for X (“Linda
is a feminist”) and by proposition 1, at least weak evidence for A.X, whereas
E is equally obviously evidence against A. This implies a fortiori that E is
much stronger evidence for A.X than for A. Thus, the subjects apparently con-
founded the concepts of high probability and the concept of evidential support,
instead of committing a mathematical fallacy (but see the alternative story of
Hartmann and Meijs 2010). Note that this formal analysis of the problem is
measure-sensitive: as proposition 2 shows, it would not be available if we used
r as the measure of support. Similarly, claims of social epistemology can be
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tackled by means of evidence measures. For instance, Douven (2009) investi-
gates whether “evidence of evidence” is evidence for a proposition, using the
different explications of evidence presented in this section. All this illustrates
that Bayesian techniques are not (only) a mathematician’s delight, but valu-
able means of tackling traditional epistemological problems. The next section
describes Bayesian models of coherence and testimony.

4 Coherence and Testimony

In epistemology, the coherence theory of justification is the main alternative
to foundationalism. It says that a set of propositions is justified if it coheres
well (BonJour 1985). The theory is attractive as it avoids the problems of
foundationalism, but it has its problems as well. Most importantly, it is not clear
what it means that a set of propositions coheres. How can this notion be made
more precise? The situation is complicated by the observation that coherence is
a gradual notion. Some sets of propositions seem more coherent, while others are
less coherent. Apparently, we need a measure that specifies how coherent a set of
propositions is. Constructing such a measure may also help to get a better grasp
of what coherence is. Moreover, the availability of a coherence measure will help
addressing long standing problems in the coherence theory of justification. For
example, one may ask if and when coherence is truth-conducive, i.e. under which
conditions is the coherence of a set of propositions an indicator of its truth?
Bayesian epistemologists have addressed these questions and made substantial
progress over the last couple of years. A natural way to start the construction
of a measure of coherence is to depart with an epistemological intuition and to
formalize it. The following two intuitions about coherence can be identified:

(R) Coherence as positive relevance.

(O) Coherence as relative overlap in probability space.

(R) expresses the intuition that the elements of a coherent set mutually support
each other (in the sense of the definition of relative evidence). Such sets of
propositions seem to be more coherent than sets of independent propositions
or sets whose elements are negatively relevant to each other. (O) expresses
the intuition that identical propositions are considered to be coherent. This
is especially plausible if one adopts a witness scenario: Imagine that several
independent witnesses of a crime give identical reports (“The butler left the
crime scene with a bloody knife in his hand.”). Obviously, the given reports are
maximally coherent and any deviation reduces the coherence accordingly. Prob-
abilistically speaking, identical reports maximally overlap in probability space.
So coherence measures, according to (O), the relative overlap of the propositions
in probability space. Coherence measures can be classified according to which
intuition they formalize. For instance, the Shogenji measure, the first explicit
coherence measure in the literature, is a pure relevance measure (Shogenji 1999).
For two propositions A and B, it is given by the following expression:

CS(A,B) :=
P (A|B)

P (A)
=

P (B|A)

P (B)
=

P (A.B)

P (A)P (B)
(3)

CS(A,B) measures how relevant B is for A, i.e. how much the probability of A
is raised if one learns that B is true. Note that the expression is symmetrical in
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A and B, which is a natural request for a coherence measure. Hence, CS(A,B)
also expresses how relevant A is for B. According to this Bayesian explication,
the coherence of a set of proposition is a property of this set relative to a
probability measure P . Different agents with different probability functions
may therefore come to different coherence assignments. They may also rank
different sets differently according to their coherence. The expression on the
right-hand side indicates how the Shogenji measure can be generalized to more
than two propositions. This generalization, however, is problematic as Fitelson
(2003) has shown. The Glass-Olsson measure (Glass 2002, Olsson 2005) is a
pure overlap measure:

CO(A,B) :=
P (A.B)

P (A ∨B)
(4)

Also CO(A,B) can be generalized to more than two propositions in a natural
way. It turns out that none of these and related measures always leads to an
intuitively satisfactory coherence ordering of sets of propositions (Bovens and
Hartmann 2003a, Douven and Meijs 2007). This suggests the search for more
complex measures that take both intuitions – positive relevance and overlap
– into account. This is achieved by the Bovens-Hartmann measure (Bovens
and Hartmann 2003a) and the family of measures that generalize the Bovens-
Hartmann measure (Douven and Meijs 2007). Contrary to the Shogenji measure
and the Glass-Olsson measure, the construction of these measures does not
start with the formalization of an epistemic intuition. It rather starts with
the question what the function of the coherence of a set of propositions is.
One obvious answer is that the coherence of a set of propositions boosts our
confidence in the truth of these propositions. To make this approach explicit,
we need to introduce a witness scenario. Consider a set of propositions S(n) :=
{A1, . . . , An}. Assume that each proposition Ai(i = 1, . . . , n) is confirmed by a
report Ei of a different witnesses. The n witnesses are independent and have
the same reliability. The construction of a coherence measure then proceeds in
three steps:

1. Work out the ratio of the posterior probability P (A1, . . . , An|E1, . . . , En)
and the prior probability P (A1, . . . , An). The posterior probability mea-
sures the probability of the set of propositions after the reports came in.
The prior probability measures the probability of the set of propositions
before the reports came in. The ratio of both, then, measures the con-
fidence boost in S(n). This takes intuition (R) into account. – Notably,
Douven and Meijs (2007) replace the ratio measure by alternative evi-
dence measures (e.g. d and l from section 3), thus obtaining a family of
coherence measures.

2. Normalize this ratio to make sure that a set of propositions which fully
overlap in probability space, has maximal coherence. This takes intuition
(O) into account. It is easy to see that the resulting function cannot
be a coherence measure as it depends on the reliability of the witnesses.
Coherence, however, is traditionally conceived as an intrinsic property of
a set of propositions and independent of the reliability of the witnesses.

3. To solve this problem, it is requested that a set S(n) is more coherent
than a set S′(n) if and only if the normalized ratio of posterior and prior
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probability is greater for S(n) than for S′(n) for all values of the reliability
of the witnesses. It is easy to see that this entails that there are sets
of propositions X(n) and Y (n) that cannot be ordered according to their
coherence, which is also intuitively plausible. See Bovens and Hartmann
2003a and 2003b for details.

However, it turns out that none of the coherence measures proposed so far is
without problems (Meijs and Douven 2005; Bovens and Hartmann 2005). So
instead of starting with various armchair intuitions, it might be more promising
to go empirical and study the coherence judgments or real people. The results
can then be confronted with the coherence measures put forward in the philo-
sophical literature. It is also possible that the data suggest a new coherence
measure. For preliminary work in this direction, see Harris and Hahn 2009
(see also Oaksford and Chater 2007). It is hoped that a combination of empir-
ical studies, formal modeling and conceptual analysis will help to resolve the
deadlock in the current debate about coherence measures.

Formal analyses of coherence have already been used to examine the relation
between coherence and truth. While recent theoretical results seem to rule out
a general connection (Olsson 2005), in certain cases coherence is an indicator of
truth in the following sense: if two sets of propositions of equal cardinality have
the same prior probability and can be ordered according to their coherence,
then the more coherent of the two also has the higher posterior probability if
all witnesses have the same reliability.

We conclude this section with a discussion of testimony. Epistemologists
have stressed that much of our knowledge derives from the testimony of others,
parents, teachers, textbooks etc. While this seems true, more specific questions
can be asked. For example, how shall the testimonies of several witnesses be
combined? And how shall we change our beliefs in the light of testimonial
evidence? Bayesian epistemology has the resources to make these questions more
precise and to answer them. In Bayesian Epistemology, Bovens and Hartmann
(2003a) develop a general methodology, using the theory of Bayesian networks
(Neapolitan 2003), that facilitate a detailed analysis.

More specifically, models with more or less dependent witnesses of different
reliability can be considered and a range of interesting results can be proven. For
example, “too-odd-to-be-true” reasoning can be studied: imagine that several
independent and partially reliable witnesses give the same report; they all claim
that they saw no. 1 in a lineup of n people at the crime scene. We ask: When are
we more convinced that the witnesses tell the truth, if the number of suspects is,
say, 2 or if it is 100? Most people would say that we are the more convinced in the
truth of the reports, the larger the number of suspects is. This makes much sense
as it becomes increasingly unlikely that a witness hits the truth by accident if the
number of suspects is large. The probability for this is only 1/n and decreases
if n goes up. From a Bayesian perspective, however, different perspectives on
this phenomenon are possible: On the one hand, coinciding reports provide the
better relative evidence (cf. section 3) the higher the number of suspects is.
This seems to confirm our intuitive judgment. But on the other hard, with
increasing number of suspects, the prior probability of no. 1 being responsible
for the crime declines. Thus the posterior probability of the witnesses telling
the truth falls, too, and the coincidence is “too odd to be true”. (Note the
analogy to the Linda case!) This example illustrates once more that Bayesian
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epistemology provides fruitful tools to tackle questions of coherence, testimony
and reliable evidence. For a detailed models and discussion, see Olsson 2002
and Bovens and Hartmann 2003a, ch. 5.

5 Concluding Remarks

We conclude this essay with a comparison of traditional epistemology and
Bayesian epistemology and a few remarks about the future of epistemology.
Traditional epistemology typically starts with an epistemic intuition, developed,
perhaps, by examining an example in some detail. Think about the Gettier cases
as an illustration. These intuitions inspire a philosophical theory which, in turn,
is criticized by other examples, triggered by different or more fine-grained intu-
itions.

Bayesian epistemology, on the other hand, draws much of its power from the
mathematical machinery of probability theory. It starts with a mathematical
intuition. The construction of Bayesian models is much triggered by what is
mathematically elegant and feasible (e.g. Spirtes et al. 2001). The mathematics
develops a life of its own (to adopt a phrase due to Hacking), and the comparison
with intuitive examples comes only after the Bayesian account is given.

One of the goals of this essay was to show that traditional epistemology
and Bayesian epistemology can learn from each other: Bayesian epistemology
makes certain debates in traditional epistemology more precise, and traditional
epistemology inspires Bayesian accounts. Both Bayesian epistemology and tra-
ditional epistemology do not much consider empirical data. Both are based on
intuitions, be they mathematical or epistemological. This might be a problem as
privilege is given to the philosopher’s intuitions. However, recent work in exper-
imental philosophy (Knobe and Nichols 2008) has shown that non-philosophers
may have different intuitions. While it is debatable how serious these intuitions
should be taken (maybe people are simply wrong!), it seems clear that both can
profit from taking empirical studies into account so that epistemology becomes,
at the end, an endeavor to which philosophers with various tools (conceptual
analysis, formal methods, and empirical studies) contribute.

The Bayesian framework is very convenient for these studies. It is easy
to use, very powerful, and it comes with principles that can be made plausi-
ble on rational grounds (Dutch book arguments, Principal Principle, Bayesian
Conditionalization). Moreover, this framework has been very successful as the
various applications in epistemology and philosophy of science demonstrate. It
has been a progressive research programme, to use Lakatos’s terminology. But
the Bayesian framework may reach its limits just like a scientific theory has to
be given up at some point. It is therefore advisable that philosophers also keep
on paying attention to other formal frameworks such as alternative theories of
uncertainty (such as the Dempster-Shafer theory; see Haenni and Hartmann
2006) and epistemic logics.

Further readings

Carnap, R. (1950). Logical Foundations of Probability. Chicago: Chicago
University Press. (A classic, nowadays out-of-fashion theory of evidence.)
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Crupi, V., K. Tentori and M. Gonzalez (2007). On Bayesian Measures of Evi-
dential Support: Theoretical and Empirical Issues. Philosophy of Science
74(2): 229–252. (Notable for their use of experimental methods in deter-
mining an adequate measure of evidence.)

Fitelson, B. (2001a). Studies in Bayesian Confirmation Theory. PhD thesis,
University of Wisconsin, Madison. (Comprehensive overview of the debate
on measures of evidence.)

Harris, A.J.L. and Hahn, U. (2009). Bayesian Rationality in Evaluating Mul-
tiple Testimonies: Incorporating the Role of Coherence, to appear in:
Journal of Experimental Psychology: Learning, Memory, and Cognition.
(A psychologist’s approach to measuring coherence.)

Jeffrey, R. (1983). The Logic of Decision. 2nd ed. Chicago: University of
Chicago Press. (Explicates Jeffrey Conditionalization – a more general
version of Bayesian Conditionalization that allows to conditionalize on
uncertain evidence.)

Williamson, J. (2005). Bayesian Nets and Causality: Philosophical and Com-
putational Foundations. Oxford: Oxford University Press. (An introduc-
tion to objective Bayesianism – the position that only one degree of belief
is rational in a given information situation.)
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