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HIghlights

• The management of elective and non-elective surgery is debated in the
literature

• Literature reports conflicting results depending on the operative condi-
tions

• We propose a hybrid and flexible model powered by online optimization
algorithms

• Different stakeholder perspectives are taken into account defining a set of
indices

• Dedicated, shared and hybrid policies are evaluated through a quantitative
analysis
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The management of non-elective patients: shared vs.
dedicated policies

Davide Dumaa, Roberto Aringhieria,∗

aDipartimento di Informatica, Università degli Studi di Torino
Corso Svizzera 185, 10149 Torino, Italy

Abstract

The approaches for the management of elective and non-elective surgery can
be classified with respect to the choice of sharing or not the operating theater.
The dedicated operating room policy consists in reserving, each day, one or more
operating rooms to perform only non-elective surgeries. Conversely, the shared
operating room policy allows to perform elective and non-elective surgeries in
the same operating room session. Furthermore, hybrid policies are defined pro-
viding, each day, both dedicated and shared operating rooms. The issue of
adopting one of these policies is debated in the literature and they all could
be the best policy depending on the scenario and the operative conditions. In
this paper we propose a hybrid and flexible model to deal with the surgery pro-
cess scheduling of both elective and non-elective patients, in which new online
and offline optimization algorithms are introduced, taking into account both
patient- and facility-centered objectives. The aim of this paper is to provide a
detailed comparison among different policies taking into account several scenar-
ios and operative conditions in such a way to consider the characteristics of the
operating theater and those of the patients it serves.

Keywords: Surgery process scheduling, Elective surgery, Non-elective surgery,
optimization, discrete event simulation

1. Introduction

An elective surgery is a planned and non-emergency surgical procedure. It
may be either medically required (e.g., cataract surgery), or optional (e.g., breast
augmentation or implant) surgery. The patients requiring an elective surgery
are inserted in a (usually long) waiting list and are scheduled through an ex-ante
planning in such a way to ensure an efficient use of the resources in accordance
with several priority rules.
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At the operational decision level, such a problem is called “surgery process
scheduling” and is generally divided into two sub-problems referred to as “ad-
vanced scheduling” and “allocation scheduling”. The former consists in select-
ing patients from the waiting list and assigning a specific surgery and operating
room (OR) session to each patient over a certain planning horizon [1–9] trying
also to take into account different stakeholder perspectives [10–14]. Given this
advanced schedule, the latter deals with the sequencing of the surgical activ-
ities and the resource allocation for each OR session [15–18]. For a complete
overview of the problems arising in the OR planning and scheduling, the reader
can refer to the exhaustive reviews [19–21].

Conversely, due to the patient medical conditions, a non-elective surgery is
an unpredictable surgery that should be performed within a time limit, which
is shorter than that of an elective surgery. For this reason, non-elective patients
cannot be inserted in the waiting list and scheduled through an ex-ante planning.
Because of their unpredictability, the non-elective patients arrivals are therefore
a further element of uncertainty, in addition to the stochasticity involving an
elective surgery, whose most impactful component is its duration [22–24].

Non-elective surgeries deal with different time limits involving different goals:
non-elective patients with a time limit of 30 minutes must be operated on as
soon as possible while, when the time limit is equal to several hours, one can
evaluate what is more beneficial between an immediate surgery or to postpone
it waiting for the release of further ORs. An immediate surgery can determine
a negative impact on the elective patient scheduling. To limit or to avoid such a
negative impact, the surgery can be postponed increasing the risk of exceeding
the time limit for the non-elective. Such a trade-off should be taken into account
when scheduling a non-elective surgery.

In accordance with the analysis of 31 papers reported in the literature re-
view [25], the policies for handling elective and non-elective patients are classi-
fied into dedicated, hybrid, and shared (or flexible). The Dedicated Operating
Room (DOR) policy consists in reserving, each day, one or more OR sessions
to perform only non-elective surgeries. Conversely, the Shared Operating Room
(SOR) policy allows to perform elective and non-elective surgeries in the same
OR sessions. Furthermore, a hybrid policy is a mix of the two previous policies
providing both dedicated and shared ORs. The issue of adopting one of these
policies is debated in the literature. In [26] and [27] the DOR and the SOR poli-
cies are respectively promoted and the improvement of the non-elective waiting
times is proved in both papers. Same remarks are reported in [28] in which
different hybrid policies are evaluated.

Since the conflicting conclusions reported in these papers could depend on
the scenario and the operative conditions, a detailed comparison among the
different policies is required. However, only two papers [27, 29] out of the 31
provide a (partial) comparison between different policies. The aim of this paper
is to provide such a detailed comparison among different policies taking into
account several scenarios and operative conditions in such a way to consider the
characteristics of the operating theater and that of the patients it serves.

In our previous work [30], a hybrid simulation and optimization model for
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an elective patient flow has been proposed. Such a model deals with the surgery
process scheduling including an online algorithm for the Real Time Management
(RTM) of operating rooms: the RTM is the decision problem arising during the
fulfillment of the surgery process scheduling, that is the problem of supervising
the execution of such a schedule and, in case of delays, to take the more rational
decision regarding the surgery cancellation or the overtime assignment [31].

Exploiting the same modeling framework depicted in [30], in this paper we
propose an extended hybrid and flexible model to deal with the surgery process
scheduling (including the RTM) of both elective and non-elective patients, in
which new online and offline optimization algorithms are introduced in such a
way to deal with the trade-off between the scheduling of elective and non-elective
patients, taking into account both patient- and facility-centered objectives. The
aim of this paper is therefore to exploit such a hybrid model to enable the
analysis and the comparison of the DOR and the SOR policies. Further, we
provide a tool capable to support the decision process in the surgery process
scheduling. Indeed, the generality of the proposed model allows us to replicate
and to compare a wide range of possible scenarios and policies, in which most
of the case studies of the literature can be included.

The paper is organized as follows. The problem statement is presented in
Section 2 while the online and offline algorithms for the optimization of the
DOR and SOR policies are described in Section 3. The computational environ-
ment is defined in Section 4 describing scenarios, configurations and performance
indices. Based on this environment, a comprehensive quantitative analysis is re-
ported in 5: we evaluate the DOR, the SOR and the hybrid policies determining,
for each policy, the best configuration with respect to the considered scenario;
then, we use such configurations in order to compare the three policies in such
a way to derive some insights in terms of supporting decision making; finally,
the analysis also proves the effectiveness of the proposed approaches. Section 6
closes the paper.

2. Problem statement and literature review

An OR session (j, k) identifies a specific OR j of the set J of all the available
ORs that have been assigned by the Master Surgical Schedule to one specialty
in the k-th day of the planning time horizon, whose days are included into the
set K. Given the set S ⊆ J × K of all the OR sessions assigned to a single
specialty, the elective surgical schedule is represented by a set Λ of n = |S|
ordered sequences of elective patients belonging to the waiting list I. Such
sequences are defined during the surgery process scheduling into two steps:

advanced scheduling: a set of patients L ⊆ I is partitioned into n subsets Ljk
corresponding to the patients that should be operated on within (j, k) ∈ S;

allocation scheduling: for each OR session (j, k) ∈ S, all the mjk patients in
Ljk are listed in an ordered sequence λjk = (i1, . . . , imjk).

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The former step is performed at the beginning of the planning horizon by the
advanced scheduling, taking into account: (i) the estimation ei of the surgery
duration of the elective patients i ∈ Ljk (called Estimated Operating Time
– EOT) with respect to the duration djk of the OR session (j, k), and (ii) the
waiting time ti that should be less then or equal to the time limit tmax

i , also called
Maximum Time Before Treatment (MTBT). Such time limit is determined by
the diagnosis related group of the patients, which indicates a general maximum
time, and by the urgency related group assigned to the single patient, accordingly
with his/her urgency [32]. In other words, the urgency related group allows to
define a partition of the patients in the same diagnosis related group in order
to prioritize their surgical operation.

The latter step is performed at the beginning of each OR session by the
allocation scheduling, taking into account that the patients placed at the be-
ginning of the sequence λjk will be exposed to less risk of cancellation than the
patients at the end, due to delays or arrivals of non-elective patients. Hereafter,
for simplicity the patients i1, . . . , imjk ∈ Ljk will be denoted with their position
1, . . . ,mjk in the schedule.

The main objectives for scheduling the elective surgeries are the maximiza-
tion of the OR utilization and the minimization of the cancellations, especially
those concerning the exceeding of the MTBT [20, 32]. The conflict-proneness of
these objectives is amplified by two uncertainty factors, which are the variability
in the actual duration ri of the surgery (Real Operating Time – ROT) and the
inclusion of non-elective surgeries (only for shared ORs) [33].

To deal with such an uncertainty, the RTM of the ORs is performed during
the execution of each OR session, taking decisions to achieve the objective fixed
during the advanced and allocation scheduling with the information available at
that time, that is delays in the ORs, elective and non-elective patients waiting
for a surgery and the remaining amount of overtime. We observe that not always
patients close to the MTBT are placed at the beginning of the OR sessions, but
allocation scheduling rules are often adopted to maximize the OR utilization or
to minimize the cancellations, although their impact has very assorted results
in the literature [30, 33–38]. In such case the role of the RTM could be more
considerable to avoid the exceeding of the MTBT [31].

Supposing that the first m patients of the sequence λjk have been already
operated on at the instant τ , a delay occurs when

ρτjk +

mjk∑

i=m+1

ei > djk (1)

where ρτjk =
∑m
i=1 ri is the time elapsed between the start of the OR session and

the moment τ and
∑mjk
i=m+1 ei is the total expected duration of the remaining

surgeries. In that case the sequence λjk is not feasible without exceeding the
session duration djk, then two different changes can be possible:

• re-definition of the sequence λjk: (i) changing the order of the patients in
the last mjk −m positions, and/or (ii) canceling and postponing the last
mjk −m patients of the sequence;
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• assignment of a part νjk of the amount ν of available overtime shared with
all the other OR sessions scheduled in the planning horizon.

Further issues occur when elective and non-elective patients are managed at
the same time considering the DOR or the SOR policies. Since the DOR policy
allows us to consider separately the two flows of patients, the elective patient
flow is managed considering SE ⊂ S, that is the set of OR sessions dedicated to
the elective surgery, as we proposed in [30], while the non-elective surgery flow is
simply managed in the remaining and dedicated OR sessions. In addition to the
decisions regarding the management of the elective patients, the DOR policy
imposes a further decision, that is how many OR sessions should be allocated
for elective and non-elective surgery.

Table 1: Categorization of non-elective patients with respect to their time limit (extracted
from [25]).

Category Time Limit Category Time Limit

Trauma 30 minutes Emergent from 30 minutes to 24 hours
Urgent from 4 to 24 hours Semi-urgent from 8 hours to 3 days
Add-on 24 hours Work-in from 24 hours to 3 days

Non-elective surgeries should be performed within a time limit that varies
in accordance with their urgency, as reported in Table 1. Because the inser-
tion of non-elective patients can have a negative impact on the elective patient
scheduling, an appropriate handling of non-elective patients could significantly
improve the performance of the two policies. Under the SOR policy, in [25] two
classes of methods have been identified to deal with the non-elective insertion,
that is the slack management and the break-in-moment optimization.

When elective and non-elective surgeries are performed in the same ORs, the
schedule of the elective patients should take into account the possible insertion
of non-elective patients during the execution of the OR sessions. If the whole
session capacity is allocated to plan elective patients, such insertions will cause
an overload that involves an higher demand of overtime, which generally is a
scarce resource. Therefore slack management policies are introduced to avoid
the increase of the cancellations [23, 39–41]. Different policies are obtained on
the basis of two decisions, that is (i) the total amount bjk of time reserved
during the elective advanced scheduling and (ii) the distribution of the slacks
within the schedule. Note that such decisions deal with the trade-off between
cancellations and OR utilization, as well as having a different impact on the two
flows of patients.

To the best of our knowledge, only [42] deals with the Break-In-Moment
(BIM) optimization problem while the real time version of the problem is not
yet studied. In [42], the allocation scheduling is performed focusing on the
Break-In-Moment (BIM), that is each moment during the day in which one of
the OR session is released by a patient, becoming available for the allocation to
the next patient.

Let ι be the BIM in which the m-th patient leaves the OR session (j, k) and
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let Qι be the set of the non-elective patients waiting for an insertion at that
instant. If Qι 6= ∅, then the sequence λjk could be modified inserting one of such
non-elective patients ine ∈ Qι at the position m+ 1 and shifting of one position
the last mjk−m patients. Otherwise the sequence λjk could remain unchanged
and the non-elective patients will wait the next BIMs for the insertion. The
BIM optimization consists in determining the set Λk = {λjk}j that minimizes
the time between two consecutive BIMs, called Break-In-Interval (BII), that
involves a lower waiting time for the non-elective patient. The information
available for the computation of the BIMs is the EOT of the patients i ∈ Ljk.
All the notations introduced in this section are summarized in Table 2.

Table 2: Summary of the notation introduced in the problem statement.

Sets
J : set of operating rooms K: set of the days of the week
S: set of all OR sessions SE : set of OR sessions dedicated to elective patients
I: set of patients in the pre-admission waiting list L: set of scheduled patients
Ljk: set of patients scheduled into the OR session (j, k) λjk: sequence of the patients scheduled into (j, k)
Λ: set of all the sequences λjk Λk: set of all the sequences λjk of the day k
Qι: set of non-elective patients waiting at the instant ι

Indices and cardinalities
j: index of the operating room k: index of the day
i: elective patient ine: non-elective patient
n: number of OR sessions mjk: number of patient scheduled into (j, k)

Times and durations
τ : general instant during the OR session ι: instant corresponding to a BIM
ρτjk: time elapsed since the beginning of (j, k) djk: duration of (j, k)

ti: waiting days to surgery of the i-th patient tmax
i : MTBT of patient i

ei: EOT of patient i ri: ROT of patient i
bjk: slack assigned to the OR session (j, k)

This problem requires to be addressed during the allocation scheduling since
the only way to change the BIMs is to determine an alternative surgery sequenc-
ing. Figure 1 reports an example of scheduling with three ORs planned for the
day k, reserving slacks in two of them. We supposed to have OR sessions with
the same duration and starting at the same time. Each gray rectangle repre-
sents the surgery of an elective patient that has been placed according to λjk.
The length of the rectangle expresses the EOT of the corresponding patients,
causing different BIMs corresponding to all the OR releases during the day k.
Two consecutive BIMs have been indicated with a dashed vertical line: their
distance of time determines one of the BIIs. From a real time management
perspective, the uncertainty can change the BIMs determining the need of an
online resequencing.

In addition, the non-elective insertion problem should consider also the real
time decision of the OR sessions in which the surgery of the non-elective patient
should be inserted: the decision should reach a good trade-off between the
waiting time of the non-elective patients and the cancellation of the elective
surgeries. The literature analysis reveals that such a decision is not considered,
and for this reason we propose two online algorithms in Section 3.2.3.
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Re-sequencing - Fase 1: priorità ai pazienti urgenti

Durata sessione OR

urg. =1.05

urg. = 0.45

Pazienti pianificati:

Pazienti non pianificati:

Re-sequencing - Fase 2: max-fill della sessione residua

urg. =1.05 urg. = 0.22

urg. = 0.45

Pazienti pianificati:

Decisione sull’overtime: si decide se sfruttare lo straordinario

urg.= 1.05 urg. = 0.22Pazienti pianificati:

urg. = 0.45
Richiesta di overtime

Pazienti non pianificati:

Pazienti non pianificati:

BII               BII               BII               BII BII          max BII                          BII             BII
surgery of i

time

O
R

  j

OR sessions
start

djk: duration of the OR sessions

OR sessions
end

ei: EOT of i

BIM BIM
BII

OR release

OR release

slack time

slack time

(day k)

Figure 1: Slacks, BIMs and BIIs – example of configuration with three OR sessions.

3. Elective and non-elective optimization

The issues introduced in Section 2 can be grouped into two classes of opti-
mization problems. The former is the class of Elective-Oriented Optimization
(EOO) problems, involving all the phases of determining the elective surgery
scheduling, that is selecting a set of patients from the waiting list, distributing
and ordering them in all the available OR sessions and taking decisions regard-
ing their cancellation or rescheduling during the real time management. The
latter class of problems is called Non-elective-Oriented Optimization (NOO)
problems, referring to the issues that arise when dealing with the arrival of
non-elective patients, that is the choice of the moments and the OR sessions in
which inserting such patients, but also all the decisions about the elective surgi-
cal schedule oriented to promote the insertion of non-elective patients (e.g., the
BIM optimization). We observe that the latter class makes sense only when the
SOR policy or hybrid policies are adopted, because of dedicating ORs to non-
elective patients does not pose these issues: using the DOR policy, non-elective
are basically inserted in specific ORs taking into account the urgency and the
time of arrival.

3.1. Elective-Oriented Optimization

The EOO problems have been already studied in our previous works [30, 38].
These works determined the approaches providing the overall best performance
to deal with a flow of only elective patients. In order to make the paper self-
contained, we briefly present such approaches that are used in the quantitative
analysis in Section 5.

Advanced scheduling: A metaheuristic divided into two phases:

1. a greedy algorithm selects patients i one by one from I in decreasing
order of wi = ti

tmax
i

and inserts them in Ljk if (j, k) is the first OR
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session from Monday to Friday such that the available operating time
is sufficient according with the EOT ei and the duration djk;

2. a local search algorithm starts from the schedule determined by the
greedy algorithm and tries to improve it by exchanging pairs of sched-
uled patients belonging to two different OR sessions in such a way to
release larger OR blocks in some OR sessions (j, k) ∈ S and to allow
us the insertion of further patients in Ljk.

Allocation scheduling: A LPT (Longest Processing Time) algorithm mod-
ified in such a way to give different priorities to the patients in λjk as
follows:

1. we first schedule those patients close to their MTBT that can not
be postponed to the next week avoiding to exceed such a time limit,
that is patients i ∈ Ljk such that w̃i = ti+7−k

tmax
i

> 1 in which 7−k are

the days to the next week; such patients are scheduled in decreasing
order of w̃i at the beginning of the OR session;

2. patients previously postponed with w̃i ≤ 1 are scheduled in decreas-
ing order of the number of cancellations afterwards;

3. finally, all the remaining patients in Ljk are scheduled using the LPT
rule with respect to ei at the end of the OR session.

RTM – Sequencing check: The sequencing of the non operated patients of
λjk is checked in such a way to ensure that (i) all the patients close to
MTBT are scheduled prior to the other patients; (ii) if such patients run
out the available operating time then a number of patients is selected in
such a way to fill the available operating time following a rule similar to
the Best Fit rule for the Bin Packing problem [43].

RTM – Overtime allocation: If the overtime available is sufficient to avoid
the cancellation of a patient, then the overtime is allocated if such a patient
is close to the MTBT. Otherwise the overtime is allocated to the patient
i, scheduled in the OR session (j, k), if and only if the following criterion
is satisfied:

(
1 +

∑
h≤k nh
n

− ντk
ν

)(
ei + ρτjk
djk

)
≤ 1, (2)

where nh is the number of OR sessions in the day h and ντk is the already
allocated amount of overtime to the OR session (j, k) until the instant τ .

3.2. Non-Elective Oriented Optimization

As discussed in Section 2, the problem of inserting non-elective patients
can be tackled with three methods, that is the slack management, the BIM
optimization, and the Non-Elective Real Time Insertion (NERTI).
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3.2.1. Slack management

Before scheduling the elective patients, there are two different choices regard-
ing the slack management that should be taken. The first decision is in which
OR session to provide a slack, which means to decide the number ns < nk of
ORs that will contain a slack during the day k. The second decision is about
the fraction π of time to reserve in each of those OR sessions with respect
to their total duration. The couple of parameters (ns, π) will indicate that a
slack of duration πdjk has been reserved in each of the OR sessions (j, k), with
j = nk−ns+1, . . . , nk and k ∈ K, while the OR session (j, k), with j ≤ nk−ns
are entirely available during the advanced scheduling.

3.2.2. BIM optimization

With BIM (or BII) optimization we refer to the problem of sequencing the
surgery of scheduled patients within the OR sessions of the day k in such a
way to minimize the waiting time of possible non-elective patient arrivals. The
problem has a strong stochastic component because of the unpredictability of
the non-elective and their characteristics, that is the time of arrival, the surgery
duration and the urgency (with the corresponding time limit). Although in
literature such a problem is addressed before the beginning of the OR sessions,
that is during the allocation scheduling, we also take into account the possibility
of optimizing the BIIs configuration during the execution of the OR session, in
such a way to exploit the updated information, that is the Real Operating Time
(ROT) ri of the patient i operated on (instead of the estimation ei) and the
insertion of non-elective surgery already performed.

We propose the Break-In Layout Local Search (BILLS), an algorithm in-
spired to that proposed in [42], but capable to deal with the elective patients
close to their MTBT. The algorithm tries with a local search to improve an
initial solution Λk = {λjk}j exchanging pairs of patients in the same sequence
λjk in such a way to minimize an objective function accounting for the waiting
time of the elective patients. The algorithm ends when there is no improvement
of this function in the neighborhood. We propose two alternative objective
functions to

z1 = max
m≥1

(ιm − ιm−1) (3)

z2 =
1

d

∫ d

0

β(t)dt (4)

where ι0 is the instant in which the OR sessions begin, ιm are all the instants
corresponding to all the other ordered BIMs (m = 1, 2, . . .), d is the duration of
the OR sessions of the day and β : [0, d]→ [0, d] is the function which associates
to each instant the time remaining to the release of the next OR. The former
objective function represents the longest time interval between two consecutive
BIMs. The latter is the average value of the estimated waiting time with respect
to the overall duration of the OR sessions. Note that using deterministic surgery
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durations (EOTs), equation (4) is equal to

1

d

∑

m≥1

(ιm − ιm−1)
2

2

therefore we can define the equivalent, but simpler, objective function

z′2 =
∑

m≥1
(ιm − ιm−1)

2
.

ι0 ι1 ι2 ι3 ι4 ι5

b(t)

t

z1

z2

average of b(t)

longest BII

Figure 2: BIM optimization: computation of the objective functions z1 and z2 (we supposed
that all the OR sessions begin at the same instant and that djk = d for all (j, k)). In the
figure, the decreasing function b(t) from ιi to ιi+1 (i = 0, . . . , 4) measures the remaining time
to ιi+1, that is the waiting time of a non-elective patients arriving at t ∈ (ιi, ιi+1).

Figure 2 shows an example for the elective surgeries schedule and the cor-
responding values of the objective functions z1 and z2. In the lower part of the
figure, the piece-wise linear function b(t) has been obtained starting from the
BIMs ι0, . . . , ι5. Note that b(t) is equivalent to β(t) when deterministic times
are considered.

Since patients close to their MTBT are scheduled by the LPT modified
algorithm (reported in Section 3.1) at the beginning of the session to avoid a
cancellation, we impose that such patients can not be swapped during the local
search.

We use two versions of this algorithm: an offline version will be used for the
allocation scheduling at the beginning of each day while an online version will
be used every time an operating room is released.

3.2.3. NERTI

The insertion of a non-elective patient within a certain OR session determines
(i) the shift of the remaining elective surgeries and (ii) the variation of the BIIs
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configuration determining an effect to the other non-elective patients. Such
modifications can have an impact that should be considered. With NERTI we
refer to the problem of deciding when and in which OR session a non-elective
patient could be inserted, which requires an online approach because such a
patient could arrive in any instant during the day asking for a surgery within
a short time limit. Such a decision could determine (i) a different need of
overtime or the cancellation of the elective patients previously scheduled and
(ii) longer waiting times of further more urgent non-elective patients (still not
arrived). To deal with the two different impacts discussed above, we propose
two algorithms: the Non-Elective Worst Fit (NEW-Fit) algorithm and the Non-
Elective Insertion Criterion (NEIC).

Parameters. We take into account the arrivals of non-elective patients which
must be treated within the end of the current day k taking into account different
time limits tmax

i < 24 hours, as reported in Table 1.
Let Sk be the set of the OR sessions planned on the day k. At the instant

ι of the day k, let h be an operating room available after having operated on
µhk patients i1, . . . , iµhk . Let iµjk be the patient that is still within the OR,
with respect to the other OR sessions (j, k), j 6= h. Let Lιhk be the set of the
waiting elective patient scheduled in (h, k) ∈ Sk, that are ordered in the last
mhk − µhk positions of the sequence λhk (i.e., iµhk+1, . . . , imhk). Let Qι be the
set of all the waiting non-elective patients at the instant ι. If at that moment
the operating room j is available, then the next patient should be selected from
Lιhk ∪ Qι. Note that the problem arises only if Qι 6= ∅. Let us introduce the
parameter

εµjk =

{
max

(∑
i1,...,iµjk−1

ri + eiµjk − ρ
ι
jk, 0

)
if j 6= h

0 otherwise

that is the estimated time for the next release of (j, k).

Re-sequencing - Fase 1: priorità ai pazienti urgenti

Durata sessione OR

urg. =1.05

urg. = 0.45

Pazienti pianificati:

Pazienti non pianificati:

Re-sequencing - Fase 2: max-fill della sessione residua

urg. =1.05 urg. = 0.22

urg. = 0.45

Pazienti pianificati:

Decisione sull’overtime: si decide se sfruttare lo straordinario

urg.= 1.05 urg. = 0.22Pazienti pianificati:

urg. = 0.45
Richiesta di overtime

Pazienti non pianificati:

Pazienti non pianificati:

OR k

OR h

day k

r2

e5e4

r1

r1

djk

dhk

waiting patients

ɩ

εμjk
ρɩ

jk

ρɩ
hk

Lɩ
hk

Lɩ
jk

Qɩ

e3e2

st
ar

t

st
ar

t

end

end

elective

non-elective

e4

e3

(μhk = 1)

(μjk = 3)

Figure 3: Parameters defined at the releasing of an operating room.

In Figure 3 an example of OR release at the instant ι is reported. In the OR
session (h, k) the first surgery is concluded after r1 minutes, that is the ROT
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of the first patient, then ριhk = r1 and εµhk = 0. The time elapsed in the OR
session (h, k) is equal to the sum of the ROTs of the operated patient plus the
time elapsed from the entry of the current patient. The time required for the
end of the surgery of such a patient is estimated by εµjk computed using its
EOT. The waiting patients that are candidates for the allocation of (h, k) are
marked with an asterisk.

NEW-Fit. The algorithm provides an online greedy construction of an alter-
native schedule of the patients in which we try to insert the non-elective patients
in Qι. On the basis of this auxiliary schedule, the NEW-Fit re-determines the
sequence λhk establishing if to continue with the planned schedule or to insert
a non-elective patient as next surgery in (h, k) in such a way to reduce the
maximum exceeding time with respect to the duration of the sessions.

Algorithm 1: Non-Elective Worst Fit
Input : δ;

1 begin
2 ps ← iµhk+1; /* next elective patient pe in Lτhk */

3 pu ← arg mini∈Qι
(
tmax
i − ti

)
; Q′ ← Qι;

4 foreach OR session (j, k) do L′j ← Lιjk; ε′µjk ← εµjk ;

5 S = (i1, . . . , iµhk , iµhk+1, . . . , imhk ); flag← false; stop← false;
6 while Q′ 6= ∅ and not stop do
7 pne ← arg mini∈Q′

(
tmax
i − ti

)
; x? ← +∞; j? ← −1;

8 foreach (j, k) ∈ Sk do
9 x = ριjk + εµjk +

∑
i∈L′j

ei − djk;

10 if x < x? and ε′µjk ≤ δ(tmax
pne − tpne ) then x? ← x; j? ← j;

11 if j? = −1 then S = (i1, . . . , iµhk , p
u, iµhk+1, . . . , imhk ); stop← true;

12 if j? = h and flag = false then ps ← pne; flag← true;
13 L′j? ← L′j? ∪ {pne}; Q′ ← Q′ r {pne}; ε′µj?k ← ε′µj?k + epne ;

14 if flag = true then S = (i1, . . . , iµhk , p
s, iµhk+1, . . . , imhk );

Output: S;

The pseudo-code reported in Algorithm 1 describes the algorithm NEW-Fit,
having the parameter δ ∈ (0, 1] which is used to define, for each non-elective
patient i, an early deadline δtmax

i until which the insertion can be planned. The
early deadline is introduced in such a way to deal with the uncertainty of the
surgery duration. When δ is close to 0, NEW-Fit reduces the risk of exceeding
the non-elective time limit. On the contrary, when δ is close to 1, the number
of feasible insertions increases and better global solutions can be computed. In
Section 5, we study the performance of the algorithm varying the value of δ.

After the initialization of the auxiliary data structures, the algorithm starts
a loop to determine the auxiliary schedule. At each iteration, the current non-
elective patient pne is scheduled on one of the OR sessions (j, k) such that the
condition of the early deadline in correspondence of the instant of insertion

ε′µjk ≤ δ(tmax
pne − tpne) (5)
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is satisfied, where ε′µjk is equal to εµjk plus the sum of the EOTs of the non-

elective patients planned in (j, k) in the previous iterations. The algorithm
selects the OR session that minimizes the difference between the estimated total
duration of the operated and non-operated patients in Ljk

ριjk + εµjk +
∑

i∈L′j

ei (6)

and its duration djk. Such a rule corresponds to insert the patient pne in the
OR session with the maximum unused OR time in such a way to minimize
the overtime demand, when djk is greater than (6). The aim is to balance the
workload among the OR sessions. At a certain iteration, if the condition (5) is
not satisfied for any OR session of the day, it means that we are not able to
plan all the non-elective patients before their early deadlines, then the NEW-Fit
terminates inserting the most urgent non-elective patient pu as next operation
within the sequence λhk, that is at the (µhk + 1)-th position. When all the
insertions are feasible within the time limits and at least one non-elective patient
has been inserted in the OR session (h, k), the NEW-Fit returns adding at the
(µhk+1)-th position of the sequence λhk the one with the shortest early deadline.
Otherwise, the sequence λhk remains unchanged and the elective patient iµhk+1

will be the next to be operated on in (h, k).

NEIC. This algorithm establishes the best BIM for inserting a non-elective
patient on the basis of the number of BIMs available up to the end of the OR
session. The idea is to schedule a non-elective patient only when a sufficient
number of BIMs is available in the next minutes, in such a way to guarantee
the insertion of further and more urgent arriving non-elective patients. Let δ be
the same parameter used in NEW-Fit. Let i ∈ Qι be the non-elective patient
with the minimum value of tmax

i − ti. On the basis of the EOTs of the elective
schedule, let ῑ be the time estimated for the next OR release, which is the first
BIM after the time t. Finally, let η(t0, T ) be the number of BIMs within a
certain interval of time (t0, T ). Then the patient i is inserted in the released
OR (h, k) if and only if at least one of the following conditions is satisfied

tmax
i − ti ≤ T (7)

δ(tmax
i − ti) < ῑ (8)

η(t, t+ δ(tmax
i − ti))

δ(tmax
i − ti)

≤ η(t, t+ δT )

δT
(9)

otherwise the schedule remains unchanged.
Let i+ be a possible further patient that arrives right after the entry of a

patient in the OR session (h, k), which we have to allocate within the shortest
time limit T , that is the worst case for our online problem. The condition (7) is
satisfied if the patient i is closer to the time limit than i+, while the condition (8)
is satisfied if patient i can not wait until the next OR release without exceeding
the early deadline. In both cases, it is not convenient to optimize the waiting
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time of further non-elective patients, because of the short time limit of an already
waiting patient. The condition (9) is satisfied when the frequency of BIMs in
the next δ(tmaxi − ti) minutes, that is the early deadline of i, is lower than the
frequency of BIMs in the next δT minutes, that is the early deadline of i+. In
this case it is better to insert i even if δ(tmax

i − ti) > δT because there are more
frequent BIMs in the next minutes than hereafter.

4. Setting up the computational environment

We performed a quantitative analysis in order to assess the impact of the dif-
ferent policies (the DOR, the SOR and the hybrid policies) and the optimization
approaches when they are used separately or jointly.
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Figure 4: The surgical CP and the optimization problems.

We implemented a Discrete Event Simulation (DES) model that generates
single and heterogeneous items belonging to both elective or non-elective pa-
tient flows, and makes them move across different activities depending on the
respective surgical clinical pathways, which are described in Figure 4. We pro-
vided the possibility of adopting both DOR and SOR policy or combining them
getting hybrid policies. Further, we embedded our offline and online optimiza-
tion approaches introduced in Section 3 in such a way to evaluate their impact
week by week, that is how the previous decisions (e.g., determining less or more
cancellations) can impact on the current decisions.

The choice of using DES is because of its suitability to analyze a discrete
and stochastic workflow and its capability to represent single entities allow-
ing the application of our algorithms. The resulting hybrid model has been
implemented using AnyLogic 7.1: its Enterprise Library is exploited for the
implementation of the DES simulation framework whilst the optimization mod-
ules are implemented from scratch in Java, which is the native programming
language of AnyLogic.
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4.1. Scenarios

We introduce four scenarios S1–S4 in such a way to provide more accurate
insights from our quantitative analysis. Such scenarios are obtained by varying
the number of OR sessions per day and the distribution of the surgery durations
to represent different settings of the operating theater and different character-
istics of the patient population, respectively. We fixed the arrival rate of the
patients in such a way to match the surgery time per week with the total number
of arriving patients per week multiplied for the average surgery duration. Note
that the total duration of the OR sessions is just sufficient to operate all the
patients if their durations were deterministic and if it were possible to predict
the non-elective arrivals and to perform the advanced scheduling with the 100%
of the OR utilization. This choice allows us to have four scenarios in which the
capacity is adequate to the need of interventions, but extra time is necessary to
deal with uncertainty: we provided 30 minutes of overtime per OR session.

Table 3: Parameters characterizing the four scenarios.

Varying parameters

scenario capacity EOT distribution patients
id OR sessions ν e0 µEOT σEOT arrival rate initial

S1 10 per day 25 hours 60 min 150 min 60 min 160 per week 400
S2 5 per day 12.5 hours 60 min 150 min 60 min 80 per week 200
S3 10 per day 25 hours 30 min 90 min 15 min 266 per week 400
S4 5 per day 12.5 hours 30 min 90 min 15 min 133 per week 200

Common parameters to all scenarios S1 − S4

patient distribution
elective (85% of the total) non-elective (15% of the total)

parameter value urgency (freq.) MTBT type (freq.) time limit

djk 480 min A (3%) 8 days trauma (20%) 30 min
emax 480 min B (5%) 15 days emergent (40%) 90 min
q 15 min C (7%) 30 days urgent (30%) 3 hours

σROT 30 min D (10%) 60 days add-on (10%) 24 hours
rmin 15 min E (15%) 90 days
rmax 480 min F (25%) 120 days

G (35%) 180 days

The main parameters used in the four scenarios S1 − S4 are summarized in
Table 3, in which we adopted the same terminology introduced in Table 1 for the
definition of the time limit for non-elective patients, that is trauma, emergent,
urgent, add-on. According to [44, 45], the EOT of each patient is obtained
generating a value with a 3-parameters Lognormal distribution of minimum
value e0, average µEOT and standard deviation σEOT, truncated to the maximum
value emax. Such values are then approximated to the nearest multiple of a
discretization constant q, which models the estimate made by the physician
during the pre-operative visit. Once the EOT ei has been determined, the
ROT is generated with a Gaussian distribution with average ei and standard
deviation σROT, truncated to the minimum and maximum values rmin and rmax.
We observe that if mjk patients are scheduled in the OR session (j, k), then the
total duration of their surgeries is a random variable with average equal to the
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sum of the EOTs and standard deviation
√
mjkσROT. For instance, if 4 patients

with EOT of 75, 105, 120 and 180 minutes are scheduled in an OR session of
duration 480 minutes and we fix σROT = 30 minutes, then the total surgery
duration will have average 480 minutes and standard deviation 60 minutes,
which means that the probability of exceeding more than 30 and 60 minutes the
closing time is 31% and 16%, respectively.

Finally, we remark that our model allows to modify the settings of all the
parameters reported in Table 3 in order to represent a large variety of operative
conditions.

4.2. Configurations

In order to provide a term of comparison in our quantitative analysis, we
introduce a baseline configuration valid for the DOR, the SOR and the hybrid
policies, in which:

• advanced scheduling is performed using the same greedy algorithm, that
is executing only the first step of the metaheuristic previously introduced;

• allocation scheduling is performed by ordering the elective patients in
decreasing order of wi;

• resequencing is never performed;

• the overtime is subdivided a priori among assigning the amount ν
n to each

OR session, which is always allocated to patients in need until exhaustion;

• all non-elective patients are inserted as soon as possible in the first ded-
icated or shared (in accordance with the policy used) OR session, giving
the priority to the patient closest to the time limit.

We remark that the baseline configuration for the DOR policy has an additional
parameter representing the number of daily ORs dedicated to non-elective pa-
tients.

Table 4: Optimization modules available for the three different phases of the surgery process
scheduling: the first column denotes the optimization module and its parameter(s).

mod.(par.) description type advanced allocation
EOO NOO sched. sched. RTM

A
Greedy + Local Search

√ √
LPT modified

√ √
Best Fit resequencing

√ √
Overtime criterion

√ √
B(ns, π) Slack

√ √
C(z) offline BILLS

√ √
D(z) online BILLS

√ √ √
E(δ) NEW-Fit

√ √
F(δ) NEIC

√ √
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Starting from the baseline configuration, further configurations can be ob-
tained enabling the optimization modules introduced in Section 3. Table 4
reports all the EOO and the NOO modules we will consider in the quantitative
analysis reported in Section 5, specifying the problem in which they are included
and the parameters required (z = z1 or z2 is the objective function used in the
BILLS algorithm). Since the aim of this study focuses on the impact of the
DOR, the SOR and the NOO optimization approaches, we will study only the
overall impact of the EOO approaches. We refer to [30] for a complete analysis,
on the basis of which we define an unique best EOO module (the configura-
tion giving the best overall performance) that will be used in our quantitative
analysis.

Finally, we remark that in Section 5, we report only the results of several
representative configurations with the aim of giving a general idea of the analysis
that our model allows us to do. This choice is determined by the high numbers
of possible configurations: as a matter of fact, limiting both the parameters π
and δ to 4 different values, there are 104 possible configurations for the DOR,
11, 160 for the SOR and 145, 080 for a hybrid policy.

4.3. Performance indices

We define a set indices in such a way to evaluate the performance of each
representative configurations from both the patient and the facility point of
view. Table 5 reports the typical criteria adopted in the literature to evaluate
an operating room planning and scheduling solution: the w and the f indices
are a reformulation of the need adjusted waiting days proposed in [46] while the
remaining ones are reported in [19].

The strong trade-off among the facility- and the patient-centered indices does
not allow us to state what configurations are better than the others, because
it depends on the particular scenario and the individual objectives of hospital
managers. In order to provide a concise analysis, we define an objective function
Z that allow us to determine uniquely what is the more rational configuration,
that is

max Z = 3fE + (1− c) + 4fNE + 2uOR. (10)

We derived the equation (10) in such a way to balance the contribution of
the performance indices related to different stakeholders. We included four
performance indices from Table 5: fE and c to consider the the elective patients
point of view, fNE to take into account the non-elective patients point of view
and uOR for the facility-centered aspect. The coefficients have been fixed in order
to assign the 40% of the weight to both elective and non-elective patients and
the remaining 20% for the efficiency point of view. We observe that Z ∈ [0, 10]
is equal to 10 when the OR sessions are fully utilized, there are not cancellations
and all (elective and non-elective) patients are operated within their time limits.
The objective function Z can be redefined changing the weights and/or involving
other indices in such a way to account for the different perspectives of the
stakeholders.
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Table 5: Patient-centered and facility-centered indices.

Index Definition

Facility-centered

uOR OR utilization
uover overtime utilization
p number of surgeries performed

Elective patient-centered

c fraction of cancellations
t average waiting time spent by elective patients in the waiting list
fE fraction of elective patients operated within the MTBT
wE average value of elective patient’s wi = ti/t

max
i at the time of their surgery

Non-elective patient-centered

fNE fraction of all non-elective patients operated within the time limit
ftr,em,ur,ad fraction of patients operated within the time limit in the classes “trauma”

“emergent”, “urgent” and “add-on”
wNE average value of all non-elective patient’s wi at the time of their surgery
wtr,em,ur,ad average value of patient’s wi at the time of their surgery in the classes

“trauma”, “emergent”, “urgent” and “add-on”

5. Quantitative analysis

In this section we report the results obtained by the quantitative analysis
described in Section 4. In Section 5.1 we discuss the analysis for the DOR poli-
cies, which are more straightforward than the SOR ones because of the reduced
number of possible configurations. Then, the analysis of the SOR policies is
reported and discussed in Section 5.2 with a particular attention to the evalu-
ation of the several NOO algorithms introduced in Section 3.2. Starting from
the best configuration for the DOR policies, we provided the analysis for the
hybrid policies in Section 5.3. Finally, we compare the performance of all the
best configurations of the different policies in Section 5.4.

All the results reported in this section are the average value of the per-
formance indices over 30 different simulation runs for each scenario and con-
figuration. Each run starts from a different seed in such a way to obtain an
independent and identical distributed replication. A time horizon of two years
has been fixed: after a warm up period of one year, the steady state results are
collected over the second year. This allows us also to appreciate the impact of
decisions over time and not only over the single planning horizon of one week.
Such parameters are those already used in [30] in which the patient pathway
has been validated.

For each policy, we focus on the results of the scenario S1 showing the impact
of the EOO and, after, the effect of each single NOO module on the performance.
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On the basis of the best values of Z, we also evaluate the impact of enabling
all the best NOO modules at the same time. Because of the huge number of
configurations, we will show only the best configuration for the scenarios S2−S4

to remark that different scenarios could require a different approach.
The average execution time for a single simulation running over the whole

time horizon ranged between 7 and 348 seconds, depending on the fixed scenario
and configuration. The scenario S3 required the longest computational times,
because of the higher amount of patients. For the same reason, S2 had the best
performance in terms of execution time: all configurations required on average
less than 23 seconds for each complete run. In general, the greater impact is
given by the optimization modules A and D, because of the use of a local search
algorithm in both of them. However, the times required are satisfactory for our
aims.

5.1. DOR

We simulated different configurations of the DOR, which are obtained vary-
ing the number of dedicated OR sessions over the total number of 10, using
or not the EOO modules and adopting or not a policy G for the immediate
insertion of trauma patients: while as default they can access only to the ded-
icated ORs, adopting this policy they are allowed in any OR that is released
first. The reason of such a policy is the need of an immediate intervention for
the patients of this type. The main results about the scenario S1 are reported
in Table 6, in which several baseline configurations are obtained varying the
number of dedicated ORs.

Table 6: DOR – Scenario S1 with 10 ORs – main performance indices.

conf. # ded. enabled Performance indices
id ORs modules uOR uover p c t fE wE fNE wNE Z

A1 1 78.0% 9.3% 6.5k 6.9% 58 99.0% 0.52 47.1% 2.01 7.344
B1 1 G 78.6% 9.3% 6.5k 6.9% 56 99.0% 0.50 49.3% 1.89 7.446
C1 1 A,G 86.6% 57.8% 7.2k 0.0% 11 99.3% 0.13 49.2% 1.88 7.681
A2 2 76.4% 9.0% 6.0k 7.1% 92 80.1% 0.82 72.2% 1.01 7.747
B2 2 G 76.8% 9.0% 6.0k 7.1% 91 81.2% 0.81 73.7% 0.92 7.849
C2 2 A,G 85.6% 57.0% 6.8k 0.0% 39 99.3% 0.36 74.1% 0.90 8.656
A3 3 71.6% 8.7% 5.4k 7.3% 132 22.5% 1.22 87.1% 0.43 6.520
B3 3 G 71.8% 8.6% 5.4k 7.2% 131 23.7% 1.21 87.8% 0.42 6.586
C3 3 A,G 80.5% 53.2% 6.1k 0.0% 85 89.9% 0.76 92.6% 0.35 8.984
A4 4 64.3% 7.8% 4.6k 7.4% 171 1.6% 1.68 93.4% 0.22 5.993
B4 4 G 64.4% 7.8% 4.7k 7.2% 170 1.6% 1.67 93.5% 0.21 6.007
C4 4 A,G 71.1% 38.8% 5.1k 0.0% 136 19.1% 1.27 96.4% 0.12 6.852
A5 5 56.0% 6.7% 3.9k 7.3% 201 0.1% 2.16 95.5% 0.15 5.873
B5 5 G 56.0% 6.8% 3.9k 7.2% 204 0.1% 2.18 95.6% 0.14 5.875
C5 5 A,G 61.7% 31.8% 4.3k 0.0% 183 0.8% 1.86 98.8% 0.04 6.211

As expected, increasing the number of ORs dedicated to non-elective pa-
tients, their waiting times decrease allowing the respect of the time limits. How-
ever this causes a worsening of the elective patient performance, which have less
available resources, but also a lower OR utilization.
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Figure 5: DOR – Scenario 1 – Percentage of patients treated in time for various numbers of
dedicated ORs, with A and G enabled.

Figure 5(a) remarks the strong trade-off between the percentage of elective
and non-elective patients operated on time, while Figure 5(b) focuses on the
different type of non-elective patients and shows that the most urgents have a
higher risk of exceeding the time limits when the number of dedicated ORs is
not sufficient.

Regardless of the number of dedicated ORs, the EOO is able to better ex-
ploit the overtime than the baseline configurations. Then the OR utilization is
significantly improved and cancellations are almost totally annulled. This fact
is also due to the lower uncertainty that the DOR policy has because of the
insertion of non-elective patients does not affect on the risk of elective patients
cancellation, as in the SOR.

When the module G is enabled, a slight improvement of the non-elective
waiting times has been observed, but an even greater contribution is given by
the EOO. In Table 7 can be seen that this fact is more evident for trauma
and emergent patients. In particular, wtr = 1.24 in the baseline configuration,
that means that the average waiting time is 7 minutes over the time limit, but
enabling the modules A and G such exceeding is less than one minute and there
is 3.6% more trauma patients operated on time. Therefore, the proposed EOO
approaches have also a positive impact on the non-elective patients, although
they are designed for an elective patient flow.

Table 7: DOR – Scenario S1 – Focus on non-elective patient-centered indices, 3 dedicated
ORs

config. # ded. enabled Performance indices
id ORs modules fNE ftr fem fur fad wNE wtr wem wur wad

A3 3 87.1% 77.7% 82.4% 95.4% 100% 0.43 1.24 0.34 0.17 0.03
B3 3 G 87.8% 78.5% 83.4% 95.7% 100% 0.42 1.20 0.31 0.16 0.03
C3 3 A, G 89.9% 81.3% 86.4% 97.2% 100% 0.35 1.01 0.27 0.13 0.02

Although the baseline configuration A2 is better than the baseline configu-
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ration A3, when the optimization modules are enabled configuration B3 has a
greater value of Z than B2. Then the number of dedicated ORs that maximizes
the performance strictly depends on the optimization approaches that are used.

Table 8: DOR – Scenarios S1 − S4 – Best configurations.

scen. config. # ded. enabled Performance indices
id id ORs modules uOR uover p c t fE wE fNE wNE Z

S1 C3 3 A, G 80.5% 53.2% 6.1k 0.0% 85 92.6% 0.76 89.9% 0.35 8.984
S2 C1 1 A, G 81.9% 52.7% 3.3k 0.0% 46 99.3% 0.42 64.6% 1.30 8.202
S3 C2 2 A, G 83.6% 60.6% 10.8k 0.1% 55 99.3% 0.48 71.4% 1.01 8.505
S4 C1 1 A, G 81.3% 69.1% 5.4k 0.3% 57 99.2% 0.50 60.5% 1.43 8.018

All the previous remarks for the scenario S1 are confirmed also for the other
scenarios, whose best configurations are listed in Table 8. We observe that, in
scenario S1, the best configuration C3 provides the 30% of the ORs to the non-
elective patients, that are the 15% of the total, because the unpredictability
of such patients requires a higher amount of resource to deal with the time
limits. Differently, the scenario S3 maximizes the objective function with the
configuration C2, which provides the 20% of the ORs to the non-elective. This
result indicates that the need of dedicated ORs depends also on the surgery
duration distribution, that is the only difference between the two scenarios.

5.2. SOR

Starting from the unique baseline configuration D1 defined for the SOR,
Table 9 reports the results of different configurations obtained enabling and
combining the optimization modules to maximize the objective function Z for
the scenario S1.

The configuration E1 corresponds to the configurations C1–C5 of the DOR,
because of the use of the EOO and the implication of the module G in any SOR
policy. All the performance indices are improved by the module A: OR utiliza-
tion and waiting times of both elective and non-elective patients are better than
those of the DOR. The higher OR utilization is due to the advanced scheduling
that plans elective patients in all the OR session and, as opposed to the DOR,
never an OR slot is unused because of the lack of non-elective patients to oper-
ate on, this allows us to operate on more elective patients per week and to have
shorter waiting times. On the other hand, non-elective patients do not need
the release of a specific dedicated OR to be inserted, then their waiting times
are lower than those of the DOR up to 3 dedicated ORs. The high utilization
of the overtime suggests that the online approach included in the EOO avoids
a high number of cancellations, nevertheless the value of c is high because of
the uncertainty determined by the insertion of non-elective surgery in almost
filled OR sessions. Figure 6 shows that the used EOO approaches avoid the
lengthening of the waiting list. Because of the general improvement given by
the EOO optimization, the module A has been always enabled in the further
configurations involving NOO approaches.
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Table 9: SOR – Scenario S1 – Performance indices.

conf. enabled Performance indices
id modules uOR uover p c t fE wE fNE wNE Z

D1 89.0% 12.2% 6.8k 21.4% 40 98.8% 0.37 91.0% 0.35 9.167
E1 A 93.1% 99.9% 7.1k 11.5% 8 99.3% 0.11 92.4% 0.32 9.423
F1 A,B(5, 0.3) 89.6% 99.7% 6.8k 25.2% 48 99.1% 0.43 92.9% 0.35 9.208
F2 A,B(5, 0.4) 88.6% 93.1% 6.7k 21.0% 54 99.1% 0.48 92.8% 0.33 9.247
F3 A,B(5, 0.5) 85.6% 80.1% 6.4k 13.7% 73 99.2% 0.64 93.8% 0.29 9.300
F4 A,B(5, 0.6) 79.6% 63.6% 5.9k 10.2% 103 61.2% 0.92 94.9% 0.23 8.120
F5 A,B(10, 0.15) 93.3% 90.0% 7.1k 4.5% 8 99.3% 0.11 93.0% 0.31 9.520
F6 A,B(10, 0.2) 93.1% 84.5% 7.1k 2.7% 17 99.3% 0.17 92.8% 0.32 9.528
F7 A,B(10, 0.25) 87.9% 63.7% 6.7k 0.6% 52 99.3% 0.46 93.2% 0.30 9.459
F8 A,B(10, 0.3) 84.6% 51.6% 6.4k 0.2% 69 99.2% 0.61 93.6% 0.28 9.410
G1 A, C(z1) 92.9% 99.6% 7.1k 11.0% 8 99.3% 0.11 93.2% 0.29 9.454
G2 A, C(z2) 93.0% 99.2% 7.1k 10.5% 8 99.3% 0.11 94.2% 0.25 9.503
G3 A,D(z1) 92.6% 99.6% 7.1k 10.7% 8 99.3% 0.11 93.6% 0.28 9.469
G4 A,D(z2) 92.7% 99.3% 7.0k 10.3% 8 99.3% 0.11 94.2% 0.25 9.499
H1 A, E(0.25) 92.6% 99.9% 7.1k 10.1% 8 99.3% 0.11 87.7% 0.46 9.240
H2 A, E(0.5) 92.9% 100% 7.1k 10.0% 8 99.3% 0.11 86.2% 0.51 9.183
H3 A, E(0.75) 92.5% 99.9% 7.1k 9.5% 7 99.3% 0.11 85.6% 0.53 9.158
H4 A, E(1) 92.6% 99.8% 7.1k 9.6% 8 99.3% 0.11 84.4% 0.55 9.112
I1 A,F(0.25) 93.1% 100% 7.1k 11.8% 8 99.3% 0.11 92.5% 0.33 9.424
I2 A,F(0.5) 92.9% 99.9% 7.1k 11.6% 8 99.3% 0.11 91.8% 0.35 9.393
I3 A,F(0.75) 92.5% 99.8% 7.1k 11.4% 8 99.3% 0.11 91.6% 0.37 9.380
I4 A,F(1) 93.1% 100% 7.1k 11.3% 8 99.3% 0.11 90.9% 0.40 9.365
J1 A,B(10, 0.2), E(1) 92.9% 82.8% 7.1k 2.5% 17 99.3% 0.18 92.9% 0.32 9.528
J2 A, C(z2),F(0.25) 92.7% 99.2% 7.1k 10.4% 8 99.3% 0.11 94.3% 0.25 9.501
K1 A,B(10, 0.2), C(z2), 92.8% 83.4% 7.1k 2.3% 18 99.3% 0.19 94.8% 0.24 9.605

F(0.25)

60 120 180 240 300 360
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Figure 6: SOR – Scenario S1 – Length of the elective waiting list with and without EOO.

Configurations F1–F8 concern the slack management and have been obtained
fixing the number ns equal to 5 (half of daily ORs) and 10 (all daily ORs), and
ranging the parameter π in such a way to reserve a percentage between 15%
and 30% of the total time with a 5% step, that is π ranges between 0.3 and 0.6
when ns = 5 and between 0.15 and 0.3 when ns = 10.

As shown in Figure 7, at the increasing of π both the OR utilization and the
number of cancellations decreases, because there is less probability to exceed
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Figure 7: SOR – Scenario S1 – OR utilization and fraction of cancellation, varying the fraction
of slack on the total surgery time.

the total duration of the OR sessions that involves a lower request of overtime,
which is proved by a lower value of uover. Conversely, the waiting times of the
elective patients raise when π increases, causing a significantly lowering of fE
for the configuration F4. In all the other configurations involving slacks, more
than 99% of elective patients are operated within the MTBT, but the growth of
the waiting list can be unmanageable on a longer period. Furthermore, slacks
lead to a slight improvement of non-elective patients performance.

The effectiveness of BIM optimization has been tested in configurations G1–
G4, using the two different objective functions z1 and z2 in the BILLS algorithm,
for both the offline and the online version. A first difference with the configura-
tion E1 is the higher percentage of non-elective patients operated on within the
time limits, that is more remarkable for the trauma patients using the objective
function z2, as can be seen in Table 10. However, it seems that the online version
of the algorithm does not provide a further improvement respect to the offline
version. Furthermore, the NOO modules C and D slightly impact also on the
trade-off between OR utilization and cancellations, fostering the improvement
of the latter at the expense of the former.

Table 10: SOR – Scenario S1 – Impact of BIM optimization on the non-elective patients.

config. enabled Performance indices
id modules fNE ftr fem fur fad wNE wtr wem wur wad

E1 A 92.4% 68.9% 96.8% 99.8% 100% 0.32 0.95 0.24 0.12 0.02
G1 A, C(z1) 93.2% 71.2% 97.7% 99.7% 100% 0.29 0.84 0.21 0.10 0.02
G2 A, C(z2) 94.2% 74.9% 98.3% 99.8% 100% 0.25 0.72 0.18 0.09 0.02
G3 A,D(z1) 93.6% 72.9% 97.8% 99.8% 100% 0.28 0.81 0.21 0.10 0.02
G4 A,D(z2) 94.2% 74.9% 98.3% 99.8% 100% 0.25 0.74 0.18 0.09 0.02

The NEW-Fit algorithm has been used in configurations H1–H4 varying the
value of the parameter δ between 0.25 and 1.00 with step 0.25. We observe that
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when δ = 1 the early deadline for the non-elective patients is fixed equal to the
time limit, while decreasing δ to 0 the algorithm uses an even more restrictive
early deadline. As expected, enabling E the number of cancellations decreases
because the non-elective patients are inserted in such a way to balance the
workload among the OR sessions. In proportion to the value of δ, this causes
higher non-elective patients waiting times that induce to a higher number of
patients exceeding the time limit due to the uncertainty of the surgery durations
of the previous patients. The reason of the limited impact of the NEW-Fit
algorithm is probably due to the workload of the chosen scenario, whose baseline
configuration D1 shows high performance from the elective patients point of
view (fE = 98.8%). As a matter of fact, the effectiveness of the the NEW-
Fit algorithm has been proved in other more overloaded scenarios, as reported
in [31]. Furthermore we analyzed the impact of the NEW-Fit algorithm jointly
to the insertion of slacks in the schedule. Configuration J1 gives the best value
of Z varying δ in (0, 1], that is the combination of the configurations F6 and
H4. The results are very similar to that computed for the configuration F6,
but it is interesting that the negative impact of the NEW-Fit algorithm on the
non-elective patients can be canceled using slacks.

An analogous analysis has been provided for the NEIC algorithm in the
configurations I1–I4. All the performance indices are very close to those of
the configuration E1, except the waiting times of the non-elective patients that
increases slightly. However the NEIC algorithm is implemented to preserve
the BIM optimization when the non-elective patients are inserted, therefore in
configuration J2 we tested the impact when the BIM are optimized, but without
better results.

Finally, the configuration K1 is the configuration that maximizes Z and,
compared to E1, improves all the performance indices except a very slight loss
of the OR utilization, with the advantage of using 16.5% less overtime. Table 11
lists the best configurations of all scenarios S1 − S4. We observe that the EOO
and the same configuration of slacks are always enabled, while the BILLS al-
gorithm is used in the offline or online version using the objective function z2.
Both NEW-Fit and NEIC contribute in the best configuration with a slight im-
provement in only one of the four scenarios. The most interesting thing is that
the four not very different scenarios provide four different best configurations,
which remarks the usefulness of a decision support system that is specifically
adapted to the operative environment.

Table 11: SOR – Scenario S1 − S4 – Best configurations.

scen. conf. enabled Performance indices
id id modules uOR uover p c t fE wE fNE wNE Z

S1 K1 A,B(10, 0.2), C(z2), E(1) 92.8% 83.0% 7.0k 2.3% 10 99.3% 0.13 94.6% 0.24 9.595
S2 K2 A,B(5, 0.2), C(z2) 91.8% 81.2% 3.5k 2.8% 14 99.3% 0.16 90.1% 0.39 9.391
S3 K3 A,B(10, 0.2),D(z2),F(1) 94.7% 79.6% 11.8k 1.1% 14 99.3% 0.15 98.4% 0.13 9.793
S4 K4 A,B(5, 0.2),D(z2) 94.3% 79.6% 5.9k 2.0% 17 99.2% 0.18 95.6% 0.21 9.668
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5.3. Hybrid policies

A hybrid policy is a mix of dedicated and shared policies. In our settings, a
number of ORs are reserved for the non-elective patients (as in the DOR) while
the remaining ORs are used to operate on both elective and non-elective patients
(as in SOR). The elective patients are scheduled into the shared ORs. When a
non-elective patient arrives, his/her surgery is scheduled into a dedicated OR,
if available at that time; on the contrary, the surgery is scheduled into the
first released (dedicated or shared) OR. If two or more non-elective patients are
waiting for the insertion, the priority is given to the patient that is closer to
his/her time limit. We observe that the module G for the immediate insertion
of trauma patients is already included in this hybrid policy.

Table 12: Hybrid policy – Scenario S1 – Performance indices.

conf. # ded. enabled Performance indices
id ORs modules uOR uover p c t fE wE fNE wNE Z

L3 3 72.6% 8.9% 5.4k 9.3% 131 23.5% 1.22 95.7% 0.15 6.893
L2 2 79.7% 10.1% 6.0k 11.6% 90 82.6% 0.81 95.4% 0.17 8.769
L1 1 85.2% 11.0% 6.5k 15.8% 58 98.8% 0.52 94.0% 0.24 9.270
M1 1 A 94.4% 97.8% 7.2k 8.1% 8 99.2% 0.12 96.2% 0.17 9.633
N1 1 A,B(10, 0.2), C(2) 91.5% 78.1% 6.9k 1.7% 26 99.3% 0.25 96.3% 0.16 9.659

Table 12 reports the results for the scenario S1. We started considering 3
dedicated ORs (configuration L3), which corresponds to the best configuration
of the DOR, and we decreased this number (configuration L2 and L1) in order
to improve the elective patients performance. In addition the OR utilization has
been improved using less dedicated ORs. As expected, allowing the access of
non-elective patients to resources that the DOR dedicated to elective patients,
the distribution assignment of the operating rooms to the two patient flows
needs to be changed to have a fair balance. Configuration M1 is obtained from
configuration L1 enabling the EOO modules that, also in this case, provide a
very significant and general improvement. Finally, configuration N1 is the best
one using also the NOO approaches. Similar results are obtained for the other
scenarios S2 − S4.

5.4. Comparing policies

We evaluate the impact of the best configurations for the DOR, the SOR
and the hybrid policy comparing their results on the four indices involved in
the objective function Z. Such a comparison is summarized in Figure 8: a
facility-centered index is compared with an elective one in 8(a) while an elective
patient-centered index is compared with a non-elective one in 8(b). We plotted
the configurations using only the EOO approaches for the SOR and the hybrid
policy, in order to appreciate the impact of the NOO. Finally, note that the
results for the configurations M1 and N1 are overlapping in Figure 8(b).

In Figure 8(a) the trade-off between OR utilization and cancellations is ev-
ident. We remark that all the configurations represent a different compromise
between the two indices, except the configuration E1 that is dominated by K1
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Figure 8: Scenario S1 – Comparing DOR, SOR and hybrid on the main performance indices.

and M1. Further, the best compromise seems to be provided by K1 and N1 con-
figurations. On the other side, considering the trade-off between the percentage
of elective and non-elective patients operated within their MTBT, Figure 8(b)
shows that hybrid configurations (M1 and N1) dominate the DOR and the SOR
configurations. Globally, the configuration N1 seems the more rational one in
accordance with the coefficients adopted in (10).

6. Conclusions

In the literature, the problem of sharing operating rooms between elective
and non-elective patients counts a number of different approaches whose results
are usually conflicting. Such approaches are applied and tested to different op-
erative conditions making their comparison very difficult. In order to determine
the best approach under certain operative conditions an ad hoc study is there-
fore necessary. In this paper, we fill this research gap providing a hybrid model
capable to represent a large range of operative and decision-making conditions
to study and evaluate the impact of such approaches.

Our hybrid model uses discrete event simulation to represent the general
surgical pathways of the two patient flows (elective and non-elective) under the
dedicated and shared policies, and their hybrid versions. A set of optimization
approaches are embedded within the model. We consider the approaches pro-
posed in the literature to deal with the sharing of the operating rooms (the reser-
vation of slacks and the break-in-moment optimization). Further, we introduce
three new online algorithms for the real time management of the non-elective
patients, that is the Break-In Layout Local Search, the Non-Elective Worst Fit
and the Non-Elective Insertion Criterion. In particular, the last two algorithms
deal with the Non-Elective Real Time Insertion problem, which suffers from a
lack of studies in the literature.
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Because of the capability of the model to represent a high number of scenarios
and configurations, we have to restrict the quantitative analysis to four repre-
sentative scenarios, choosing conditions such that the workload caused by the
elective patients is proportional to the available resources. For each of the four
scenarios, we show the performance of both the dedicated and shared operating
room policies. Further, for the latter we observe the impact of the optimization
modules when they are enabled separately and, on the basis of their results, we
combine them to find the best configuration with respect to both the (elective
and non-elective) patient and facility points of view. Furthermore, the impact
of a hybrid policy is evaluated.

From the management policy point of view, the results confirm the strong
trade-off between the OR utilization and number of cancellations, which is
widely discussed in literature. While the dedicated operating room policy al-
lows us to have a very low probability of elective-patients cancellations, the
shared operating room policy is able to increase the use of the resources and,
consequently, to reduce the length of the waiting list. However, a better trade-
off between the performance of the elective and non-elective patients is given
by the shared operating room policy. We also show that hybrid policies could
provide a further performance improvement.

In summary, our analysis suggests the use of a hybrid policy to manage
elective and non-elective patients even if shared and dedicated policies can be a
good compromise in certain operative conditions. However, to account for the
different perspectives of the stakeholders, it is always recommended to provide
an ad hoc analysis.

From an algorithmic point of view, we prove the effectiveness of the elective-
oriented optimization approaches: they are able to manage the elective patient
flow and, counter-intuitively, also some non-elective performance indices take
advantage from them. This result suggests that an appropriate management of
the elective patient flow is a necessary condition to have a positive impact when
dealing also with the non-elective patient flow.

Regarding the non-elective-oriented optimization algorithms, our analysis
suggests that an appropriate slack management can overcome the limitation of
a dedicated policy, at parity of overall operating time, causing less cancellations
but lowering the OR utilization, with a slight improvement of the non-elective
patients performance. The Break-In Layout Local Search algorithm has a pos-
itive impact on non-elective patients without deteriorating the performance of
the elective patients. Finally, the impact of the the Non-Elective Worst Fit and
the Non-Elective Insertion Criterion seems limited in the operative conditions
represented by the four scenarios. However, the effectiveness of the Non-Elective
Worst Fit is proved in [31] in more crowded surgical pathways.
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