UHWERSITA
| DEGLI STUDI

[T1S AperTO

DI TORINO
AperTO - Archivio Istituzionale Open Access dell'Universita di Torino
Cord Blood Metabolic Signatures of Birth Weight: A Population-Based Study
This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1663078 since 2020-04-05T10:40:37Z

Published version:
DOI:10.1021/acs.jproteome.7b00846
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

05 February 2025



Cord Blood Metabolic Signatures of Birth
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L, Robinot N, Sunyer J, Vermeulen R, Vrijheid M, Vineis P, Scalbert A, Chadeau-Hyam M

Abstract

Birth weight is an important indicator of maternal and fetal health and a predictor of health in later
life. However, the determinants of variance in birth weight are still poorly understood. We aimed to
identify the biological pathways, which may be perturbed by environmental exposures, that are
important in determining birth weight. We applied untargeted mass-spectrometry-based
metabolomics to 481 cord blood samples collected at delivery in four birth cohorts from across
Europe: ENVIRONAGE (Belgium), INMA (Spain), Piccolipiu (Italy), and Rhea (Greece). We
performed a metabolome-wide association scan for birth weight on over 4000 metabolic features,
controlling the false discovery rate at 5%. Annotation of compounds was conducted through
reference to authentic standards. We identified 68 metabolites significantly associated with birth
weight, including vitamin A, progesterone, docosahexaenoic acid, indolelactic acid, and multiple
acylcarnitines and phosphatidylcholines. We observed enrichment (p < 0.05) of the tryptophan
metabolism, prostaglandin formation, C21-steroid hormone signaling, carnitine shuttle, and
glycerophospholipid metabolism pathways. Vitamin A was associated with both maternal smoking
and birth weight, suggesting a mediation pathway. Our findings shed new light on the pathways
central to fetal growth and will have implications for antenatal and perinatal care and potentially for
health in later life.
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Introduction

Weight at birth is of importance due to its relation to the health of both the mother and the newborn(1)
and is a predictor of the subsequent development of the child.(2, 3) Low birth weight has also been
associated with disease in later life, including cardiovascular disease and diabetes(4) while high birth weight
is associated with increased risk of developing breast cancer and other malignancies.(5, 6) Thus under the
developmental origin of health and disease hypothesis, adverse fetal development may have a lifelong
impact. Exposure to a number of different agents during pregnancy including smoking,(7) air pollution,(8)
and chemicals such as polychlorinated biphenyls(9) have been associated with lower birth weight.
Improved understanding of the biological pathways associated with environmentally induced alterations in
birth weight may identify mechanisms through which fetal growth is affected. This may, in turn, both
inform primary care and ultimately improve the causal evidence regarding adverse fetal development.

Metabolomics is increasingly used in maternal—fetal medicine(10) to identify biological changes associated
with fetal growth. Horgan et al.(11) examined ultra-high-performance liquid chromatography—mass
spectrometry (UHPLC—MS) profiles of first-trimester maternal plasma samples to identify metabolites
predictive of small-for-gestational-age babies. Maitre et al. used nuclear magnetic resonance (NMR)
spectroscopy on maternal pregnancy urine samples to identify metabolites predictive of preterm birth,



small-for-gestational-age, and fetal growth restriction(12) and birth weight.(13) Dessi et al.(14) identified
four metabolites associated with fetal growth restriction in neonatal urine samples. However, only a
handful of studies have investigated metabolic changes in cord blood, which is a particularly relevant tissue
because it contains the essential nutrients, hormones, and immunological factors and potentially harmful
xenobiotic metabolites, to which the developing fetus is directly exposed. Horgan et al.(11) compared six
small-for-gestational-age babies with controls observing differences in levels of sphingolipids,
phospholipids, and carnitines. Ivorra et al.(15) and Tea et al.(16) both used NMR spectroscopy to compare a
small number of low-birth-weight and very low-birth-weight newborns, respectively, with controls and
detected some differences in metabolite levels. Recently, Hellmuth et al.(17) applied a targeted mass-
spectrometry-based analysis and observed a positive association between lysophosphatidylcholines
(lysoPCs) and birth weight. While initial studies have so far been based on small samples or limited subsets
of molecules, they demonstrate the potential of metabolic profiling to detect biological pathways related to
fetal development. Adequately powered studies using sensitive and untargeted platforms are now
required.

In this study, we have employed untargeted UHPLC—MS-based metabolomics to identify metabolic features
associated with birth weight in cord blood collected from a large population-based sample from four
European birth cohorts. We aimed to understand the mechanisms that are important to fetal growth,
which may be influenced by the maternal environment including exposure to air pollutants and tobacco
smoke, and that may impact health over the life course.

Experimental Section

Cohorts and Sampling

Within the context of the EXPOsOMICS collaborative European project,(18) metabolomic analyses were
conducted on umbilical cord blood samples from four population-based birth cohorts: ENVIRONAGE,(19)
Piccolipiu,(20) INMA,(21) and Rhea.(22) The ENVIRONAGE cohort recruited women when they arrived for
delivery at the South-East-Limburg Hospital in Gent, Belgium between 2010 and 2013. The INMA cohort
enrolled women during the first trimester of pregnancy at public primary health care centers or hospitals in
Sabadell, Spain between 2004 and 2006. The participating Piccolipiu cohort center enrolled women giving
birth at the main hospital of the City of Turin, Italy, between 2011 and 2013. The Rhea cohort enrolled
women during the first trimester of pregnancy at public primary health care centers or hospitals in
Heraklion, Greece between 2007 and 2008. Whole blood samples were collected using venipuncture of
cord vessels before the placenta was delivered and processed as follows in each cohort: In ENVIRONAGE,
samples were collected into EDTA (BD, Franklin Lakes, NJ) vacutainers and within 20 min were centrifuged
at 3200 rpm for 15 min into plasma. In Piccolipiu, samples were collected into BD EDTA vacutainers, stored
at 4 °C for <24 h, and centrifuged for 10 min at 1300g into plasma. In Rhea, samples were collected into BD
gel separator vacutainers and centrifuged within 2 h at 2500 rpm for 10 min into serum. In INMA, samples
were collected into BD gel separator vacutainers, stored at 4 °C for <4 h, and centrifuged at 3000 rpm for
10-15 min into serum. Samples were immediately frozen at -20 °C (INMA) or -80 °C (all other cohorts) until
analysis. Cohort inclusion criteria and further protocols can be found in the respective cohort references.

Family lifestyle factors were collected from mothers through interview by trained fieldworkers and medical
history for each family transferred from hospital records. Samples were selected from each cohort on the
basis of biomaterial and data availability. Selected samples were shipped to International Agency for
Research on Cancer, Lyon, France for metabolomics analysis.



Exposure Assessment

Exposure to air pollutants (particulate matter <10 um (PMy), £ 2.5 um (PM,5) and <0.1 um (UFP) and NO,)
was assessed at the home address, averaged over the year before pregnancy, by land use regression
models.(23)

Sample Analysis

Samples were randomized and prepared by mixing a 30 uL aliquot with 200 uL of acetonitrile and filtering
the precipitate with 0.2 um Captiva ND plates (Agilent Technologies). The filtrate was collected into a
polypropylene well plate that was sealed and kept refrigerated until analysis. A quality control (QC) sample
was prepared by mixing small aliquots of 91 randomly selected study samples. Aliquots (30 uL) of the QC
sample were then processed along with the study samples, with each 96-well plate containing four
individually extracted QCs. Samples were analyzed as a single uninterrupted batch with a UHPLC—-MS
system consisting of a 1290 Binary LC system, a Jet Stream electrospray ionization (ESI) source, and a 6550
QTOF mass spectrometer (Agilent Technologies). The autosampler tray was kept refrigerated, and 2 pL of
the sample solution was injected on an ACQUITY UPLC HSS T3 column (2.1 x 100 mm, 1.8 um; Waters).
Column temperature was 45 °C and mobile phase flow rate was 0.4 mL/min, consisting of ultrapure water
and LC-MS-grade methanol, both containing 0.05% (v/v) of formic acid. The gradient profile was as follows:
0—6 min: 5% - 100% methanol, 6—~10.5 min: 100% methanol, 10.5-13 min: 5% methanol. The mass
spectrometer was operated in positive polarity using the following conditions: drying gas (nitrogen)
temperature 175 °C and flow 12 L/min, sheath gas temperature 350 °C and flow 11 L/min, nebulizer
pressure 45 psi, capillary voltage 3500 V, nozzle voltage 300 V, and fragmentor voltage 175 V. Data were
acquired in centroid format using an extended dynamic range mode, with a scan rate of 1.67 Hz and a mass
range from 50 to 1000. For MS/MS analyses the isolation width was 1.3 Da and collision energies were 10,
20, and 40 V. Continuous mass axis calibration was performed using two reference ions (m/z 121.050873
and m/z 922.009798). The analytical run was initiated with priming injections of in-house human plasma
extract to achieve a stable response, followed by the study samples and one QC sample after every 12
injections. Data were acquired using MassHunter Acquisition B.05.01 software.

Data Preprocessing

Preprocessing of the acquired data was performed using Qualitative Analysis B.06.00 SP1, DA Reprocessor,
and Mass Profiler Professional 12.1 software (Agilent Technologies). The initial processing was performed
with Molecular Feature Extraction (MFE) algorithm for small molecules using a mass range of 50—1000.
Thresholds for the mass and chromatographic peak heights were 1500 and 10 000 counts, respectively.
Quality score threshold was 80. Only singly charged proton adducts ([M+H]*) were included. Spacing
tolerance for isotope peaks was 0.0025 m/z plus 7 ppm. The isotope model for common organic molecules
was used, and features with indeterminate neutral mass were excluded. Feature alignment was performed
with retention time and mass windows of 0.075 min and 15 ppm +2 mDa. A target list for a recursive
extraction was created from features present in at least 2% of the samples. Find by Formula (FBF) algorithm
was then employed with match tolerance for the mass and retention time +10 ppm and +0.04 min,
respectively. lon species was limited to [M+H]", and a threshold for chromatographic peak height was 2000
counts. The resulting features were aligned in Agilent Mass Profiler Professional using the same parameters
as described above. For statistical analysis, metabolic features present in <60% of the samples were
removed, data were log-transformed, and missing values were imputed using the impute.QRILC function
within the imputeLCMD R package.(24)



Statistical Analysis

The relationship between birth weight and the cord metabolome was assessed using a metabolome-wide
association scan (MWAS) approach with separate linear regression models for each metabolic feature using
the “omics” R package.(25) To account for multiple comparisons, we applied a Benjamini-Hochberg
correction using an overall false discovery rate of (FDR) <5%. The covariates included in the main MWAS
analysis were gestational age, sex, cohort, maternal height, maternal weight, and paternal height.
Covariates were chosen first following visualization of assumptions using a directed acyclical graph (Figure
s1) and then following testing of associations with both birth weight in bivariate analyses (Analysis of
Variance or Pearson’s correlation tests) and with metabolic features as visualized by Q—Q plots of the p-
value distribution. We chose to not adjust for environmental factors that may be associated with birth
weight in the main analysis because we hypothesized that the metabolome may mediate these
associations. Instead we tested for potential confounding by environmental factors in sensitivity analyses
through stratification by covariates and adjustment separately for each birth-weight-associated risk factor.

We further investigated links between risk factors and birth weight by first constructing a linear regression
model of birth weight, including those factors associated with birth weight (p < 0.1) in bivariate analyses.
We then adjusted the model for the metabolome, using the first components of a principal component
analysis (PCA) of metabolites associated with birth weight in the main MWAS analysis. The number of
components to include was selected by examination of a scree plot of explained variance. Where risk factor
associations were attenuated following adjustment on birth-weight-related metabolites, we tested the
association of that factor with all birth-weight-related metabolites in a further analysis.

All analyses were performed in R version 3.3.(26)
Metabolite and Pathway Annotation

Annotation of the discriminating features was done as follows: (1) The m/z values of all features were
searched against the human metabolite database(27) and Metlin(28) using [M+H]*, [M+Na]*, and [M+2H]*
as adducts and +8 ppm for molecular-weight tolerance. In addition, MyCompoundID metabolite library(29)
was searched for potential conjugates (sulfates, glucuronides) and neutral losses (-NH3, H,0) using [M+H]"
ions and +8 ppm mass tolerance. (2) Features were grouped based on retention time similarity and
intensity correlation across the samples to assist in identifying ions originating from the same metabolite.
(3) Quality of the chromatographic peaks and spectra were inspected, and the plausibility of database
candidates was assessed based on retention time, isotope pattern, and adduct formation or neutral losses.
(4) Identification was confirmed by reanalysis of representative samples and pure standards when available
and comparison of the retention times and the MS/MS spectra. When standards were not available,
MS/MS spectra were acquired and compared against those in mzCloud (www.mzcloud.org) or Metlin.
Chromatograms and spectra can be found in the Supporting Information (Additional Data Set 1). The level
of identification was as proposed by Sumner et al.(30)

Significantly enriched metabolic pathways were identified using the Mummichog program.(31) The
algorithm searches tentative compound lists from metabolite reference databases against an integrated
model of human metabolism to identify functional activity. Fisher’s exact tests and permutation are used to
infer p values for likelihood of pathway enrichment among significant features as compared with pathways
identified among the entire compound set present in reference list (the entire metabolome data set),
considering the probability of mapping the significant m/z features to pathways. Mummichog parameters
were set to match against ions produced by the MS method employed ([M]", [M+H]", [M+2H]**, [M+3H]*",



[M+Nal+, [M+H+Na]*, [M+K]", [M-H,0+H]", [M-Hs0,+H]", [M-NH;+H]", [M-CO+H]’, [M- CO,+H]", [M-
HCOOH+H]", [M+HCOONa]*, [M-HCOONa+H]*, and [M-C5H,0,+H]*) at +8 ppm mass tolerance.

Results

Participant Information

Samples of cord blood collected from 499 deliveries (200 from ENVIRONAGE, 100 each from INMA and
Rhea, and 99 from Piccolipiu) were included in the analysis. The mean birth weight was 3309 g
(interquartile range 2992-3598 g) with 16 (3%) babies born with low birth weight (<2500g). Demographic
information and covariate associations with birth weight are shown in Table 1. Gestational age, cohort, sex,
maternal height, weight and body mass index, paternal height, maternal weight gain during pregnancy,
smoking by the mother, and residential exposure to air pollution were all significantly associated with birth
weight in bivariate analyses.

Table 1. Participant Information and Covariate Associations with Birth Weight

N (%) or mean (IQR) missing values mean birth weight (IQR) or r with birth weight p value®

birth weight (g) 3309 (2992-3598) 1 - -
gestational age (weeks) 39.2 (38.1-40) 1 0.21 <0.0001
cohort 0 0.014
Rhea 100 (20) - 3220 (2970-3520)

Environage 200 (40) - 3384 (3045-3705)

Piccolipiu 99 (20) - 3221 (2955-3490)

Inma 100 (20) - 3298 (2998-3572)

sex 1 0.0005
male 258 (52) - 3377 (3076-3648)

female 240 (48) - 3237 (2915-3550)

parity 4 0.13
0 129 (26) - 3275 (2990-3570)

1 238 (48) - 3294 (2971-3579)

2 128 (260) - 3379 (3119-3640)

season of conception 3 0.35
January—March 122 (25) - 3318 (3000-3550)

April-June 129 (26) - 3296 (2970-3600)

July-September 160 (32) - 3348 (3019-3630)



October—December

delivery

vaginal

Ccaesarean

maternal age (y)

maternal height (cm)

maternal weight (kg)

maternal BMI

maternal weight gain (kg)

paternal height (cm)

paternal weight (kg)

mother born in country

yes

no

mother’s education

primary school

secondary school

university or higher

father’s education

primary school

secondary school

university or higher

maternal smoking (during second trimester)

yes

no

passive smoke exposure

yes

no

N (%) or mean (IQR) missing values mean birth weight (IQR) or r with birth weight p value®

85 (17)

382 (77)

115 (23)

30.7 (27.9-34

164.5 (160-168)

62 (42-130)

23 (20.8-25.8)

13.63 (10-17)

177.8 (173-182)

82 (73-90)

432 (88)

58 (12)

62 (13)

209 (43)

216 (44)

96 (20)

227 (47)

148 (30)

57 (11%)

439 (89%)

172 (36)

312 (64)

13

17

17

12

28

15

3240 (2980-3485)

3324 (3000-3614)

3259 (2960-3542)

-0.04

0.27

0.24

0.07

3315 (3000-3586)

3287 (2881-3638)

3291 (2975-3595)

3296 (2980-3590)

3333 (3060-3589)

3236 (2915-3550)

3288 (2982-3580)

3365 (3084-3600)

3207 (2890-3440)

3324 (3000-3612)

3295 (2970-3616)

3324 (3000-3592)

0.44

<0.0001

<0.0001

0.001

0.0002

0.003

0.11

0.69

0.64

0.08

0.06

0.50



N (%) or mean (IQR) missing values mean birth weight (IQR) or r with birth weight p value®

exposure to PMyg (pug/m’) 33.0(17.8-44.0) 4 -0.13 0.002
exposure to PM, s (ug/m°) 18.14 (12.4-21.0) 4 -0.11 0.02
exposure to NO, (pg/m®) 29.1(13.4-40.3) 4 -0.11 0.02
a

p value for association with birth weight, calculated from Pearson’s correlation test (continuous
variable) or analysis of variance test (categorical variable). IQR = Interquartile range.

Metabolomic Data

The total number of metabolomic features was 9947. Out of these, 4870 (49%) were found in at least 90%
of the QC sample injections, with 4019 (83%) having a coefficient of variation <30%, indicating good
reproducibility. Features were excluded if present in <60% of participant samples, leaving 4714 metabolic
features for statistical analysis. A PCA of these features (whole metabolome PCA) showed that the first
component explained 18% of variance and 307 components explained 95% of the variance, suggesting
considerable redundancy within the data (Figure s2 (top)). There was clear separation along the second
component by cohort (Figure s2 (bottom)). No separation was observed with other covariates or technical
variables.

Metabolic Features Associated with Birth Weight

In the main MWAS analysis of 481 participants with complete covariate data, adjusted for gestational age,
cohort, sex, maternal height, maternal weight, and paternal height, 138 features were significantly
associated (FDR < 5%) with birth weight (Figure 1).

After grouping of ions originating from the same molecule (matched by retention time and pairwise
feature correlation), there were 68 unique compounds associated with birth weight. Twenty-nine of
these were annotated to at least the level of compound class based on matching mass, isotope
pattern, and product ion spectra (Table 2). Fifteen compounds were identified as acylcarnitines, nine
as phosphatidylcholines (PCs) or lysoPCs, two as tryptophan metabolites (indolelactic acid and an
isomeric form of methoxykynurenate), two as essential nutrients (retinol (vitamin A) and
docosahexaenoic acid (DHA)), and one as a steroid hormone. Seven of these were conclusively
identified through comparisons with authentic standards: decanoylcarnitine, dodecanoylcarnitine
and tetradecanoylcarnitine, indolelactic acid, retinol, the ®-3 fatty acid DHA, and progesterone, one
of the major progestational steroid hormones. In addition to the 29 annotated metabolites, five
compounds (three diacylglycerols and two 1lysoPCs) were tentatively assigned based on exact mass
and isotope pattern due to low intensity or lack of MS/MS spectra or authentic standards (Table 2).
Retention time and exact mass of all significantly associated features, including unassigned
compounds, is given in Table s1. Chromatograms and mass spectra of all annotated compounds are
given in the Supporting Information in Additional Data Set 1.

Table 2. Metabolites Significantly Associated with Birth Weight

m/z retention ion name? ID level® compound class  direction of change with P value
time (min) increasing birth weight
368.2793 5.631 [M+H]" 3,5-tetradecadiencarnitine (C14:2) 2 acylcarnitine DOWN 1.00 x 10
8

518.3216 6.782 [M+H]" LysoPC (C18:3) 2 glycerophospholipid UP 4.63 x 10
8



m/z retention
time (min)

494.3250 6.817

344.2797 5.647

206.0822 3.829

522.3555 6.980

641.5112 9.938

269.2278 7.219

639.4946 9.408

396.3100 5.944

522.3565 7.058

329.2482 7.232

766.5815 8.859

316.2489 5.139

810.6053 9.169

258.1699 2.831

342.2641 5.422

314.2318 4.967

370.2955 5.840

615.4959 9.763

734.5700 8.960

314.2321 4.878

315.2320 6.394

288.2171 4.422

232.1537 1.927

220.0605 3.671

548.3681 7.141

782.5712 8.628

3723112 6.006

758.5747 8.684

570.3551 7.021

386.2899 5.568

412.3045 5.750

398.3264 6.109

ion
[M+H]
[M+H]"
[M+H]"
[M+H]
[M+Na]"
(M-
H,O+H]"
[M+Na]"
[M+H]
[M+H]"
[M+H]
[M+H]
[M+H]"
[M+H]
[M+H]
[M+H]"
[M+H]
[M+H]
[M+Na]*
[M+H]
[M+H]
[M+H]"
[M+H]"
[M+H]
[M+H]"
[M+H]"
[M+H]
[M+H]"
[M+H]"
[M+H]
[M+H]"
[M+H]"

[M+H]

name®
LysoPC (Cl16:1)
dodecanoylcarnitine (C12:0)
indolelactic acid
LysoPC (C18:1)
diacylglycerol (C36:3)
retinol
diacylglycerol (C36:4)
9,12-hexadecadienoylcarnitine (C14:1)
LysoPC (C18:1)
docosahexaenoic acid
PC-O (C36:4) (C44HgoNO;P)
decanoylcarnitine (C10:0)
PC (C38:4)
2-hexenoylcarnitine (C6:1)
trans-2-dodecenoylcarnitine (C12:1)
decenoylcarnitine 2 (C10:1)°
tetradecenoylcarnitine (C14:1)
diacylglycerol (C34:2)
PC (C32:0)
decenoylcarnitine_1 (C10:1)°
progesterone
l-octanoylcarnitine (C8:0)
butyrylcarnitine/isobutyryl-l-carnitine
(C4:0)
methoxykynurenate (C; 1H9NO4)d
LysoPC (C20:2)
PC (C36:4)
tetradecanoylcarnitine (C14:0)
PC (C34:2)
LysoPC (C22:5)
3-hydroxy-cis-5-tetradecenoylcarnitine

(C14:1)

3-hydroxyhexadecadienoylcarnitine
(Cle:1)

hexadecenoylcarnitine (C16:1)

ID level®

2

compound class

direction of change with
increasing birth weight

glycerophospholipid UP

acylcarnitine

tryptophan
metabolite

glycerophospholipid

glycerolipid
vitamin
glycerolipid

acylcarnitine

glycerophospholipid

fatty acid

glycerophospholipid

acylcarnitine

glycerophospholipid

acylcarnitine
acylcarnitine
acylcarnitine
acylcarnitine

glycerolipid

glycerophospholipid

acylcarnitine
steroid hormone
acylcarnitine
acylcarnitine

tryptophan
metabolite

glycerophospholipid

glycerophospholipid

acylcarnitine

glycerophospholipid

glycerophospholipid

acylcarnitine
acylcarnitine

acylcarnitine

DOWN

DOWN

8)4

DOWN

UP

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

DOWN

P value
7.45 x 10"
8
8.31 x 10~
8
9.16 x 10~
8
1.45 x 10
;

234 x10°
:
1.30 x 10~
6
1.74 x 10~
6
232 x10°
6
4.55 x10°
6
1.18 x 10
5
1.20 x 10
5
1.30 x 10~
5
1.37 x 10~
5
443 < 10°
5
4.89 x 10~
5
5.20 x 10
5
5.49 x 10
5
6.82 x 107
5
1.17 x 10~
4
1.55x 107
4
2.11 x10°
4
3.21 x 107
4
3.61 x 10
4
4.69 x 10~
4
5.58 x 107
4
6.03 x 10~
4
6.46 x 10~
4
7.88 x 107
4
8.01 x 10
4
8.10 x 10~
4
9.82 x 10~
4

1.01 x 10~
3



Common names as used in HMDB. Molecular formulas given when identification inconclusive or
more than one isomers are possible. Chain lengths and number of double bonds are indicated for
acylcarnitines, glycerophospholipid, and diacylglycerols.

Level 1 (identified compounds): retention time and MS/MS spectra matches with an authentic
chemical standard; Level 2 (putatively annotated compound): no standard available or analyzed but
has a single database candidate within 5 ppm mass error, matching isotope pattern, and MS/MS
spectra; Level 3 (putatively characterized compound class): MS/MS spectral similarity with
compounds from a known chemical class; Level 4 (unknown compounds): no standard or MS/MS
spectra available but a chemically plausible hit in a metabolite database within 5 ppm mass error
and a matching isotope pattern.(60)

Two isomers of decenoylcarnitine were identified.

Likely a positional isomer of methoxykynurenate based on closeness of retention time and
similarities in spectra to those acquired from authentic standard of 8-methoxykynurenate.

As shown in clustered correlation heatmap (Figure 2), the longer chained acylcarnitines clustered
together and were moderately correlated with progesterone, the tryptophan metabolites, and the
shorter chained acylcarnitines. The PCs, smaller-sized lysoPCs, and tentatively assigned
diacylglycerols formed three further clusters. The diacylglycerol cluster was moderately correlated
with DHA. Both the diacylglycerol cluster and DHA were negatively correlated with the cluster of
smaller sized lysoPCs.

In PCA of the significant compounds, >50% of variance was explained by 5 components, and 41
components were required to explain >95% of the variance of these features. There was some separation
in results by cohort (Figure 3A), and inspection of the component loadings (Figure 3B) revealed this was
driven mainly by differing levels of acylcarnitines along the first component and of lysoPCs and the
tentatively assigned diacylglycerols along the second component.

Sensitivity Analysis

To further assess the potential cohort-specific results, we also ran our models on each cohort
separately (Table s2). Additionally, we stratified by sex and reran analyses after excluding preterm
and caesarean deliveries (Table s2). Results were generally consistent across cohorts, although we
noted stronger associations for the smaller sized lysoPCs in the INMA cohort and nonsignificant
and opposite directions of association for some acylcarnitines (dodecanoylcarnitine,
decanoylcarnitine, trans-2-dodecenoylcarnitine, and tetradecenoylcarnitine) in Rhea and for the
three tentatively assigned diacylglycerols in Piccolipiu. These differences largely reflect the
heterogeneity of the metabolic profiles we observed in each cohort (Figure 3). Upon stratification
by sex, we observed stronger associations for decanoylcarnitine, tetradecanoylcarnitine, and
hexadecenoylcarnitine in girls and a stronger association with PC (C4HgyNOgP) in boys.
Associations were similar when preterm and caesarean deliveries were excluded, except for slightly
stronger associations with decanoylcarnitine and dodecanoylcarnitine in the analysis of vaginal
deliveries only.

To test for the potential confounding of our results we additionally adjusted the main model
separately by factors that influence birth weight. Additional factors included exposure to PMy,
paternal education, smoking continuing into the second trimester, and maternal weight gain. We
also checked for the confounding effects of mode of delivery and cohort differences in the
metabolome data, using the second component of the whole metabolome PCA. As shown in Table
s3, associations were robust to adjustment by these factors, indicating negligible confounding.



To investigate the role of the metabolome in potentially mediating the effect of risk factors on birth
weight, we adjusted a risk factor model of birth weight (including exposure to PM o, maternal and
paternal education, smoking continuing into the second trimester, and maternal weight gain) by the
first five principal components of birth-weight-associated metabolites (explaining 50.2% of the total
variance in the set of 68 metabolites). Of the included risk factors, only the effect size estimate
linking birth weight and smoking continuing into the second trimester was decreased upon
adjustment on birth-weight-related metabolites (Table 3). Specifically, while the unadjusted model
estimated that babies of mothers who smoked during the second trimester weighed 88.5 g (95%
confidence interval (CI): —197.6 g, 20.5 g) less at birth than babies of mothers who did not, that
weight loss dropped to 74.0 g (95% CI: —170.7 g, 22.6 g) in the model adjusting for birth-weight-
related metabolites.

Table 3. Associations of Risk Factors with Birth Weight, with and without Adjustment for
Metabolites

risk factor model® risk factor model, adjusted for birth-weight- risk factor model, adjusted for retinol

associated metabolome” levels in cord blood®

B (95% CI) B (95% CI) B (95% CI)
exposure to PM;, during -3.37(-11.74,5.00) —4.97 (—12.40, 2.45) -2.90 (-11.09, 5.28)
pregnancy
education level of father (ref
primary school)
secondary school 59.7 (—29.56, 148.96)  80.83 (2.11, 159.54) 71.77 (-15.65, 159.19)
university or higher 116.08 (16.18,215.98) 126.04 (38.11,213.97) 119.19 (21.52, 216.86)
mother smoked during - —74.02 (—170.69, 22.65) —45.06 (—153.30, 63.18)
second trimester 88.54 (—197.62, 20.54)
maternal weight gain 12.42 (5.77,19.07) 13.87 (8.00, 19.75) 11.69 (5.18, 18.19)

Adjusted for gestational age, cohort, maternal height and prepregnancy weight, sex of baby, and
paternal height.

Adjusted for gestational age, cohort, maternal height and prepregnancy weight, sex of baby, and
paternal height and first five principal components of PCA on all birth-weight-associated
metabolites.

Adjusted for gestational age, cohort, maternal height and prepregnancy weight, sex of baby, and
paternal height and levels of retinol in cord blood.

Linear models investigating the association between the birth-weight-associated metabolites and
maternal smoking, adjusted for cohort, maternal education, and body mass index, showed that only
blood retinol levels were significantly different (lower, p = 4.26 x 10~*) among mothers who
smoked during the second trimester (Figure 4). On the basis of this observation, we additionally
looked at the evolution of association between birth weight risk factors in a model adjusting for
retinol levels (Table 3). The effect size estimate of smoking on birth weight was halved upon
adjustment of retinol levels (f =—45.1 g, 95% CI: —153.3 g, 63.2 g). Although these changes are
not statistically significant, they indicate that retinol may partly mediate the effects of smoking on
birth weight.

Pathway Analysis

Mummichog software assigned tentative annotations to 1629 of the 4714 features analyzed and
assigned tentative annotations to 30 of the 138 features associated with birth weight (Supporting
Information, Additional Data Set 2). Figure 5 shows significantly enriched pathways (p < 0.05)
identified using Mummichog. We observed the enrichment of eight different pathways; two of these
involve the synthesis and metabolism of signaling molecules, prostaglandins, and steroid hormones,
known to be involved in embryogenesis and child birth.



Discussion

This is the largest study to date investigating untargeted metabolic profiles of cord blood associated with
birth-related outcomes, including weight at birth. Variance in birth weight, a trait that reflects the in
uterine conditions throughout pregnancy and is an important predictor of health later in life, is determined
by a complex combination of factors. Twin studies demonstrated the majority of these factors are of
environmental origin.(32) Here we have shown a metabolic signature associated with birth weight, after
controlling for hereditary factors such as parental size, among healthy deliveries from the general European
population. We observed changes in levels of vitamin A, progesterone, and molecules involved in pathways
related to tryptophan metabolism, carnitine shuttle, fatty acid, and glycerophospholipid metabolism.

Levels of vitamin A were higher with higher birth weight, confirming findings from previous studies.(33-36)
Vitamin A likely promotes fetal growth through its role in cell proliferation and embryogenesis and
interaction with nuclear receptors to alter gene expression.(37) While our results are consistent with
changes in cord blood levels of vitamin A associated with smoking previously reported,(38) this is the first
study to the best of our knowledge that has demonstrated a link between vitamin A and both smoking and
birth weight in the same population. Cigarette smoke has been shown to induce vitamin A depletion in
animal models and has been proposed to result from the induction of the CYP1A1 and CYP1A2 enzymes
and the subsequent increase in catabolism of retinoic acid.(39) Vitamin A depletion, therefore, may present
an important etiological pathway linking smoking with lower birth weight, which should be further
investigated.

Progesterone levels were down-regulated with increasing birth weight. This corroborates findings from a
recent targeted study of hormone levels in cord blood among Chinese and American births.(40)
Progesterone is the major progestational hormone involved throughout all stages of pregnancy. It is
required for implantation, maintaining intrauterine conditions, and initiating the signaling cascade to
induce labor. Evidence of the relationship of progesterone measured earlier in pregnancy and birth weight
is inconsistent.(41-43) However, levels of progesterone in cord blood appear unrelated to levels measured
in maternal plasma earlier in pregnancy.(44) This reflects the transition in endocrine metabolism during
fetal development, with the fetal endocrine system being well developed by late pregnancy. Pregnenolone,
the precursor in the production of progesterone by the placenta, is transported to the fetus for metabolism
of large quantities of C-19 steroid hormones by the fetal adrenal glands, which, in turn, signal back to
regulate hormonal production by the maternal and placental systems.(45) The size of the fetus may
influence the production of molecules such as progesterone around the time of labor onset, for instance, to
increase muscle contractibility during delivery. Furthermore, increased activity of the fetal endocrine
system in larger babies may reduce the availability of pregnenolone for progesterone production.

We observed a negative association with birth weight and methoxykynurenate and indolelactic acid. These
metabolites, never previously associated with birth weight, are both final products of tryptophan
metabolism, albeit through different routes, the kynurenine and indole pathways. Tryptophan itself was
identified among the annotated features, and although there was no statistically significant association
between the amino acid and birth weight (p = 0.07), our results indicate altered utilization of tryptophan.
Progesterone has been demonstrated to regulate tryptophan metabolism through the inhibition of Trp 2,3-
dioxygenase.(46) Tryptophan is essential throughout pregnancy, first to meet the demand for protein
synthesis during fetal development, to meet serotonin and kynurenine requirements, and to ultimately



provide quinolinate for the production of NAD®, which plays a key role in mitochondrial function.(47) All of
these requirements will increase with greater fetal growth, thereby leaving less free tryptophan for
conversion into methoxykynurenate and indolelactic acid. Similar results were reported by Favretto et
al.,(48) who observed higher levels of tryptophan and lower levels of kynurenine in cord blood of
intrauterine growth-restricted babies. Animal experiments have shown cord blood levels of tryptophan to
be related to maternal plasma levels,(49) suggesting that cord blood levels may reflect tryptophan
utilization earlier in pregnancy. Therefore, monitoring of tryptophan metabolism throughout pregnancy
may have utility in tracking the health of the developing fetus. Similarly, lower levels of multiple
acylcarnitine species (C4, C6, C8, C10, C12, C14, and C16) were associated with increased birth weight,
likely reflecting differences in energy utilization during development. Carnitine is an essential factor in fatty
acid metabolism, and its most important known metabolic function is to transport fatty acids into the
mitochondria of cells for B-oxidation.(50) The placenta has a high activity of fatty acid oxidation
enzymes,(51) and where defects in long-chain fatty acid oxidation are noted, there is a higher frequency of
small-for-gestation-age babies.(52) Walsh et al.(53) reported higher levels of acylcarnitines, including
dodecanoylcarnitine identified in this study, in cord blood of infants asphyxiated during pregnancy,
emphasizing their importance to healthy fetal development. Clemente et al.(54) recently demonstrated in
the INMA and ENVIRONAGE cohorts that placental mitochondrial DNA content is associated with birth
weight and may mediate the effects of environmental toxicants on birth weight. This supports our findings
of the importance of metabolic pathways related to mitochondrial function. Mitochondria are particularly
susceptible to oxidative stress and therefore may play a key role linking the fetal environment to growth.

The w-3 fatty acid DHA has long been thought to be beneficial to fetal growth, and recent randomized
control trials have found that taking DHA supplements by pregnant women was associated with increases
in gestational length and birth weight.(55, 56) Here we observed a seemingly paradoxical negative
association between cord blood DHA levels and birth weight. However, it has been reported that DHA
intake by the mother explains only a small proportion of variance in DHA levels in cord blood,(57) with the
rest presumably explained by endogenous processes. Reduced DHA levels in cord blood would result from
increased utilization in central nervous tissues and from greater eicosanoid metabolism. We found DHA
levels to be associated with a cluster of metabolites tentatively assigned as diacylglycerols, which are
molecules required for the production of arachidonic acid, an w-6 fatty acid also involved in eicosanoid
metabolism. Together these results highlight the role of long-chain fatty acid and potentially eicosanoid
metabolism in fetal growth. Eicosanoids, in particular, prostaglandins, are produced throughout pregnancy
and play a role in regulating the maternal cardiovascular system and, like progesterone, are involved in
signaling the onset of labor. Glycerophospholipids also showed significant disruption, indicating a variety of
processes occurring in association with these molecular species. The lysoPCs were positively associated
with birth weight and were negatively correlated with DHA and the diacylglycerols, suggesting some
metabolic dependency. Positive associations between birth weight and lysoPCs have also been recently
reported in a targeted analysis.(17) On the contrary, the PCs were associated with lower birth weight. This
could reflect some cell membrane damage leading to the subsequent release of phospholipids, which have
a variety of different proposed biological properties.(58) There is also recent evidence of antiphospholipid
antibodies (and complement activation) cooperating in triggering a local inflammatory process,(59) which
may be linked to suboptimal fetal development.

We have complemented classical laboratory-based metabolic feature annotation in this study with the use
of the recently developed Mummichog algorithm to extract additional biological information at the
pathway level. Because the method matches metabolic features to pathways based on annotation through
exact mass only and does not account for any other physio-chemical identifiers, results of these analyses



should be interpreted with caution. However, because feature misidentification likely applies equally to
both the numerator (significant features) and denominator (total features detected) in enrichment
analyses, the impact of wrong annotation may be less dramatic at the pathway level. We found that the
majority of pathways identified, including tryptophan metabolism, carnitine shuttle, glycerophospholipid
metabolism, and C-21 steroid hormone biosynthesis, were supported by the laboratory annotation of
metabolites.

Recent evidence indicates an effect of birth weight on later metabolic profile,(60) with similarities to
profiles associated with weight status measured in later life stages, suggesting that the metabolic profile of
an individual at the start of life may persist into later life, with implications for health throughout the life
course. Therefore, one may speculate that metabolic pathways identified in this study may provide a link
between the observed associations with between birth weight and disease in adult life. In particular, in
utero levels of progesterone could plausibly mediate the observed association between high birth weight
and later development of breast cancer,(6) as evidence is emerging that progesterone in adult life has a
protective effect on breast cancer.(61) Conversely, tryptophan levels may play a role in the association
between lower birth weight and increased risk of cardio-metabolic disease in later life because tryptophan
has been found to be predictive of subsequent development of type Il diabetes in adult cohorts.(62)
Following up current birth cohorts to adult life would be of great value to investigate these questions.

The main limitation of this study was related to its use of cord blood. Because samples were by necessity
collected at the time of delivery, the study was cross-sectional in nature; therefore, it was difficult to
disentangle whether perturbed metabolites were a cause or a result of variance in birth weight. However,
cord blood provides a window into the direct supply of nutrients and other essential molecules to the
developing fetus, and it also provides a snapshot of metabolism at the start of life. Our study was limited in
scope to investigate changes specifically associated with low-birth-weight (<2500 g) babies because we
sampled from across the general population of births. However, the generalizability of our results, also
considering the large number of samples collected from birth cohorts from across Europe, is a strength.
Although any single metabolomics method cannot cover all molecules of the cord blood metabolome, the
UHPLC-MS platform we used represents a highly sensitive analytical technique able to measure hundreds
to thousands of metabolites. Future work may include the incorporation of complementary metabolomics
methods, other ‘omic approaches such as DNA methylation analysis and multiplex analysis of cytokines,
which are of interest due to their role in mediating hormonal signaling and exploring the role of the cord
blood metabolome in postnatal growth and development.

Conclusions

We have described metabolic profiles associated with birth weight among normal deliveries, highlighting
the role of multiple metabolites in various pathways including tryptophan metabolism, fatty acid, and
glycerophospholipid metabolism, and hormonal signaling. These results will have implications for antenatal
and perinatal care, improving understanding of the pathways through which fetal growth may be affected,
and may have implications for health in later life.
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