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MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF

p-LAPLACIAN NEUMANN PROBLEMS WITHOUT GROWTH

CONDITIONS

ALBERTO BOSCAGGIN, FRANCESCA COLASUONNO, AND BENEDETTA NORIS

Abstract. For 1 < p <∞, we consider the following problem

−∆pu = f(u), u > 0 in Ω, ∂νu = 0 on ∂Ω,

where Ω ⊂ RN is either a ball or an annulus. The nonlinearity f is possibly
supercritical in the sense of Sobolev embeddings; in particular our assump-

tions allow to include the prototype nonlinearity f(s) = −sp−1 + sq−1 for
every q > p. We use the shooting method to get existence and multiplicity

of non-constant radial solutions. With the same technique, we also detect the

oscillatory behavior of the solutions around the constant solution u ≡ 1. In
particular, we prove a conjecture proposed in [D. Bonheure, B. Noris, T. Weth,

Ann. Inst. H. Poincaré Anal. Non Lináire vol. 29, pp. 573-588 (2012)], that

is to say, if p = 2 and f ′(1) > λradk+1, there exists a radial solution of the problem

having exactly k intersections with u ≡ 1 for a large class of nonlinearities.

1. Introduction

1.1. Assumptions and main results. The aim of this paper is to investigate the
existence of solutions of the following p-Laplacian Neumann problem

−∆pu = f(u) in Ω

u > 0 in Ω

∂νu = 0 on ∂Ω,

(1.1)

where 1 < p < ∞, ν is the outer unit normal of ∂Ω, and we require very mild
assumptions on f , which allow in particular to consider

f(s) = −sp−1 + sq−1 for every q > p (1.2)

as a prototype nonlinearity. Our main purpose is not to impose any growth condi-
tions on f(s) as s → ∞, so that f may have a supercritical behavior with respect
to the critical Sobolev exponent (that is to say, N > p and q > Np/(N − p) in the
prototype nonlinearity (1.2)).

We work in a radial domain Ω ⊂ RN , N ≥ 1, which is either an annulus

Ω = A(R1, R2) := {x ∈ RN : R1 < |x| < R2}, 0 < R1 < R2 <∞,

or a ball

Ω = B(R2) := {x ∈ RN : |x| < R2}, 0 = R1 < R2 <∞,
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2 A. BOSCAGGIN, F. COLASUONNO, AND B. NORIS

and we look for radial solutions of (1.1). Throughout the paper, with abuse of
notation, we denote u(r) := u(x) for all |x| = r

We assume that f satisfies the following conditions:

(freg) f ∈ C([0,∞)) ∩ C1((0,∞));
(feq) f(0) = f(1) = 0, f(s) < 0 for 0 < s < 1 and f(s) > 0 for s > 1;

(f0) there exists C0 ∈ [0,∞) such that lims→0+
f(s)
sp−1 = −C0;

(f1) there exists C1 ∈ [0,∞] such that lims→1
f(s)

|s−1|p−2(s−1) = C1.

We remark that the choice of the constant 1 in (feq) is arbitrary, this constant could
be replaced by any s1 ∈ (0,∞), thus changing accordingly (f1). We also stress that
we do not impose at infinity any of the conditions frequently used in the literature,
such as the Ambrosetti-Rabinowitz one.

Remark 1.1. Let us notice that the assumptions (freg) and (f1) are not indepen-
dent; indeed, the differentiability of f at s = 1 implies C1 ∈ [0,∞) if p = 2 and
C1 = 0 if 1 < p < 2. We believe that this regularity condition can be removed
by an approximation argument; however, since it is satisfied for the model nonlin-
earity (1.2), we have preferred to avoid this technical step. We also observe that,
in view of (feq), the ratio f(s)/sp−1 appearing in hypothesis (f0) is negative for
s → 0+, so that lim sups→0+ f(s)/sp−1 ≤ 0; actually, a careful inspection of the
proofs shows that, in all the results below, (f0) could be replaced by the weaker
assumption lim infs→0+ f(s)/sp−1 > −∞, that is to say, f(s)/sp−1 is bounded in a
right neighborhood of s = 0.

In order to state our main results, let us introduce λrad
k as the k-th radial

eigenvalue of −∆pu = λ|u|p−2u in Ω with Neumann boundary conditions, i.e.
0 = λrad

1 < λrad
2 < λrad

3 < . . . , cf. Section 2.2 for further details. In case the
constant C1 appearing in assumption (f1) is positive, we have the following exis-
tence and multiplicity result.

Theorem 1.2. Let Ω be either the annulus A(R1, R2) or the ball B(R2) and let f
satisfy (freg)-(f1).

Assume that C1 > λrad
k+1 for some integer k ≥ 1. Then, there exist at least k

non-constant radial solutions u1, . . . , uk to (1.1). Moreover, uj(r) − 1 has exactly
j zeros for r ∈ (R1, R2), for every j = 1, . . . , k.

In particular, if C1 = +∞, then (1.1) has infinitely many non-constant radial
solutions.

Noting that in the case p = 2 we have C1 = f ′(1), Theorem 1.2 shows that the
conjecture proposed in [8] holds true, that is to say, if f ′(1) > λrad

k+1 for some integer
k ≥ 1, there exists a radial solution of (1.1) having exactly k intersections with the
constant solution u ≡ 1. More precisely, taking into account also Remark 1.1, we
can state the following general result.

Corollary 1.3. Let Ω be either the annulus A(R1, R2) or the ball B(R2) and let
f satisfy (freg)-(feq). If f(s)/s is bounded in a right neighborhood of s = 0 and
f ′(1) > λrad

k+1, then there exist a radial solution u of
−∆u = f(u) in Ω

u > 0 in Ω

∂νu = 0 on ∂Ω,
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such that u(r)− 1 has exacly k zeros for r ∈ (R1, R2).

When C1 = 0, a different behavior appears. First, the existence of non-constant
solutions of (1.1) depends on the diameter of the domain. Secondly, if the diam-
eter is sufficiently large, there exist now two solutions having the same oscillatory
behavior, in the sense specified in the following theorem.

Theorem 1.4. Let f satisfy (freg)-(f1) with C1 = 0.

(i) For any integer k ≥ 1 there exists R∗(k) > 0 such that if R2 > R∗(k), then
problem (1.1) in Ω = B(R2) has at least 2k non-constant radial solutions.

(ii) For any integer k ≥ 1 and any ε > 0 there exists R∗(k, ε) > 0 such that if
R1 < εR2 and R2 > R∗(k, ε), then problem (1.1) in Ω = A(R1, R2) has at
least 2k non-constant radial solutions.

Denoting these solutions by u+
1 , . . . , u

+
k , u−1 , . . . , u

−
k , we have that each u±j (r) − 1

has exactly j zeros for r ∈ (R1, R2), for every j = 1, . . . , k.

Noting that the prototype nonlinearity (1.2) satisfies the assumptions (freg)-(f1)
with

C0 = 1, C1 =

 0 if 1 < p < 2,
q − 2 if p = 2,
+∞ if p > 2,

we have the following corollary of Theorems 1.2 and 1.4.

Corollary 1.5. Let Ω be either the annulus A(R1, R2) or the ball B(R2), and
consider the Neumann problem

−∆pu+ up−1 = uq−1 in Ω,

u > 0 in Ω,

∂νu = 0 on ∂Ω,

(1.3)

with q > p. Then:

(i) for p > 2, (1.3) has infinitely many non-constant radial solutions;
(ii) for p = 2 and q−2 > λrad

k+1 for some k ≥ 1, (1.3) has at least k non-constant
radial solutions;

(iii) for 1 < p < 2, for any integer k ≥ 1 and any ε > 0 there exists R∗(k, ε) > 0
such that if R1 < εR2 and R2 > R∗(k, ε), then problem (1.3) in Ω =
A(R1, R2) has at least 2k non-constant radial solutions. Analogously in the
case Ω = B(R2).

We remark that all the solutions found in this paper satisfy u(0) < 1 and are
increasing near the origin, see Section 3 for some open problems concerning solutions
with u(0) > 1. For the special case in which the nonlinearity is a small perturbation
of the exponential function, solutions with u(0) > 1 are found in [37].

1.2. Pre-existing literature. Semilinear and quasilinear elliptic equations with
Sobolev-critical and supercritical growth have been extensively studied in the liter-
ature, but mainly coupled with Dirichlet boundary conditions. H. Brezis adresses
to Neumann problems Section 6.4 of his survey on Sobolev-critical equations [12],
saying that little is known in this case. The first result of which we are aware
concerning Neumann boundary conditions is the one by Lin and Ni in [26]. The
authors consider the equation (1.3) with p = 2, q > 2N/(N − 2) and Ω = B(R2),
and prove that for R2 sufficiently small (1.3) only admits the constant solution,



4 A. BOSCAGGIN, F. COLASUONNO, AND B. NORIS

whereas for R2 sufficiently large there exists a non-constant solution. We also refer
to [27] for similar results in the case q < 2N/(N − 2). When q is critical, this kind
of result is no longer true. Indeed, in [1], Adimurthi and Yadava prove that in
dimensions N = 4, 5, 6 there exists a decreasing solution in balls of small radius.
This depends not only on the dimension N , see [2, 13], but also on the shape of the
domain, see [43]. We also wish to mention that [2] is the first paper where (1.3) is
studied for p 6= 2.

As soon as N > p, q > Np/(N − p) and Ω = B(R2), the absence of Sobolev
embeddings prevents from treating (1.3) with the standard variational techniques.
Of course, the choice of working in a radial setting allows to gain some compactness,
but not enough, for example, to define the Euler-Lagrange functional associated to
the equation. Recently, some techniques have been proposed to overcome this
lack of compactness. Different methods have been introduced simultaneously and
independently, for p = 2, in [9], [23] and [42]. In particular, in [42], Serra and
Tilli get over the lack of compactness by considering the cone of non-negative, non-
decreasing radial functions of H1(Ω). This technique proved to be quite powerful
and has been adopted in many of the subsequent papers that we are going to
illustrate. Serra and Tilli prove that, if g satisfies some suitable assumptions and
a(|x|) > 0 is a non-decreasing and non-constant weight, then the radial problem

−∆u+ u = a(|x|)g(u), u > 0 in B(R), ∂νu = 0 on ∂B(R)

admits at least one radially increasing solution. Secchi generalises this result to the
case p 6= 2 in [41] using the same assumptions on g e a.

In [8] and in [14] the authors consider the case a constant, respectively in the
cases p = 2 and p > 2 (see also [30]). The additional difficulty is now to prove
that the solution found is itself non-constant, and this can be done under an extra
condition on g, namely (g3) below.

Theorem 1.6 ([8, Theorem 1.3],[14, Theorem 1.1]). Let p ≥ 2 and let g : [0,∞)→
R be of class C1([0,∞)) and satisfy

(g1) lims→0+
g(s)
sp−1 ∈ [0, 1);

(g2) lim infs→∞
g(s)
sp−1 > 1;

(g3) there exists a constant u0 > 0 such that g(u0) = up−1
0 and g′(u0) > λrad

2 +1

if p = 2, or g′(u0) > (p− 1)up−2
0 if p > 2.

Then there exists a non-constant, radial, non-decreasing solution of

−∆pu+ up−1 = g(u), u > 0 in B(R), ∂νu = 0 on ∂B(R). (1.4)

Let us first comment the case p = 2. We notice that, in the semilinear case,
condition (g3) involves the second radial eigenvalue of −∆ with Neumann boundary
conditions. In fact, the authors in [7] show that a bifurcation phenomenon is
underlying the existence result, at least in the case of the prototype nonlinearity
g(u) = |u|q−2u. They prove that at q − 2 = λrad

k+1, k ≥ 1, a new branch of solutions
bifurcates from the constant branch u ≡ 1. This nontrivial branch consists of
solutions having exactly k oscillations around the constant solution 1. We also
refer to [6], [4], [5] for other results about this class of problems. As mentioned
above, it was conjectured in [8] that a similar behavior should hold also for a
general nonlinearity. If we consider a nonlinearity f related to g by f(s) = g(s)−s,
the conjecture asserts that, if f ′(u0) > λrad

k+1, k ≥ 1, there should exist a radial
solution of (1.1) having exactly k intersections with the constant solution u0. For
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f asymptotically linear (and hence Sobolev subcritical), this conjecture was proved
in [28]. By means of bifurcation techniques, the authors show that, if f ′(u0) > λrad

k+1

for some k ≥ 1, then there exist at least 2k different non-constant solutions of (1.4),
k of them are increasing and k decreasing in a neighborhood of zero. In the present
paper (cf. Corollary 1.3) we are able to provide a complete proof of the conjecture,
without assuming any growth conditions at infinity on f .

We remark that the assumptions (freg)-(f1) are substantially more general than
(g1)-(g3). Indeed, we have f(s) = −sp−1 + g(s) and (g1) requires that the constant
C0 defined in (f0) belongs to (0, 1], (g3) requires that, when p > 2, C1 defined in
(f1) satisfies C1 = +∞, and (g2) is equivalent to lim infs→+∞ f(s) > 0. In addition,
in the present paper we find infinitely many solutions of (1.1) in the case C1 = +∞,
whereas in [14] only one solution was found (the non-decreasing one, which we can
now prove being indeed strictly increasing, see (2.8)-(2.9) below). Indeed, to the
best of our knowledge, no multiplicity results were known for problem (1.1) in the
case p 6= 2. In particular, for p < 2 we obtain here a multiplicity result which
is completely new in the literature. As already noticed, the behavior for C1 = 0
(corresponding to p < 2 for the prototype nonlinearity (1.2)) is different from the
one for C1 > 0, since the existence of solutions depends on the diameter of the
domain, and solutions always come in couples, so that we find two solutions with
the same oscillatory behavior. In this regard, see also the numerical simulations in
Section 3.

For results in a non-radial setting (in the case p = 2), we refer to the recent works
[15, 18]. We also wish to mention the generalisations to systems considered in [10,
29] and the extensive literature concerning concentrating solutions for supercritical
Neumann problem with a perturbation parameter, see for example [33, 34, 31, 35,
32, 17].

1.3. Main ideas of the proof and organization of the paper. We adopt a
shooting method: it seems indeed that such a technique turns out to be particularly
effective when trying to identify the different multiplicity scenarios appearing on
varying of p; moreover, it allows to avoid most of the technical assumptions on
the nonlinearity. For an application of the shooting method in a similar situaton
we refer to [3], where the authors consider the supercritical Hénon equation with
Neumann boundary conditions.

In Section 2.1 we rewrite the radial equation in (1.1) as the planar ODE system

rN−1|u′|p−2u′ = v, v′ = −rN−1f(u),

(cf. (2.5)) and prove local uniqueness, continuous dependence and global continu-
ability of solutions. The shooting method consists in studying the initial value
problem u(R1) = 1 − d, v(R1) = 0 and looking for values d ∈ (0, 1) such that the
corresponding solution (ud, vd) satisfies vd(R2) = 0. Thanks to the local unique-
ness, we can pass to polar-like coordinates (ρ(r), θ(r)) around the point (1, 0) (see
(2.8)), so that the problem reduces to

find d ∈ (0, 1) such that θd(R2) = kπp for some k ∈ Z,

with πp defined in Lemma 2.3.
In Section 2.2 we recall some known results concerning the associated eigenvalue

problem, while Section 2.3 is devoted to the proof of Theorem 1.2. The main point
is to show that, if C1 > λrad

k+1, k ≥ 1, then θd(R2) > (k + 1)πp for d sufficiently
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close to 0. This can be done by comparing (1.1) with its associated eigenvalue
problem. In Section 2.4 we prove Theorem 1.4; here, the key step is to show that,
if R1, R2 are chosen as in the corresponding statement, then θd(R2) > (k+ 1)πp for
some d ∈ (0, 1). This is proved by adapting to our context a phase-plane argument
introduced in [11]. Finally, in Section 3 we present some numerical simulations
obtained with the software AUTO07p [20], and propose some open problems.

2. Multiplicity of solutions via the shooting method

2.1. Preliminary results. First of all, as usual when dealing with positive solu-

tions of a boundary value problem, we introduce a continuous extension f̂ : R→ R
of f by setting

f̂(s) :=

{
f(s) if s ≥ 0,

0 if s < 0.

By taking into account the radial symmetry of (1.1), we consider the following
1-dimensional problem{

−
(
rN−1ϕp(u

′)
)′

= rN−1f̂(u) in (R1, R2),

u′(R1) = u′(R2) = 0,
(2.1)

where

ϕp(s) := |s|p−2s

and the prime symbol ′ denotes the derivative with respect to r. We remark that,
in the case Ω = B(R2), namely R1 = 0, the boundary condition u′(0) = 0 comes
from the symmetry and the C1,α(Ω̄)-regularity of the solutions u of (1.1), cf. [25,
Theorem 2] and also [40]. For future reference, we also note that ϕ−1

p = ϕp′ , where

1

p
+

1

p′
= 1.

We first give the following maximum principle-type result (compare also with [36,
Section 2]).

Lemma 2.1. Let u be a solution of (2.1). Either u ≡ −C, with C ≥ 0, or u(r) > 0
for every r ∈ [R1, R2].

Proof. Let us first prove that either u is a negative constant, or u is non-negative.
To this end, suppose by contradiction that u is non-constant and that u(r0) < 0
for some r0 ∈ (R1, R2). Let [r−, r+] ⊂ [R1, R2] be the maximal interval containing

r0 such that u(r) < 0 for every r ∈ (r−, r+). By the definition of f̂ , we have

f̂(u(r)) = 0 for every r ∈ [r−, r+]. (2.2)

Since u is non-constant, by the equation in (2.1) we get the existence of r1 ∈
(R1, R2) such that u(r1) > 0, that is to say, r− 6= R1 or r+ 6= R2. Suppose, to fix
the ideas, that r+ 6= R2, so that

u(r+) = 0. (2.3)

Now we distinguish two cases: either r− 6= R1 or r− = R1. If the first case occurs,
then u(r−) = 0. Hence, by (2.3) we have u′(r−) ≤ 0 ≤ u′(r+), so that, since ϕp is
non-decreasing, ϕp(u

′(r−)) ≤ 0 ≤ ϕp(u′(r+)) and also

(r−)N−1ϕp(u
′(r−)) ≤ 0 ≤ (r+)N−1ϕp(u

′(r+)). (2.4)
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Then, using the equation in (2.1), (2.2) and (2.4), we obtain that rN−1ϕp(u
′(r)) = 0

for every r ∈ [r−, r+], implying u = 0 in [r−, r+] as well, a contradiction.
If the second case occurs, that is r− = R1, then u′(r−) = 0. Again (2.2) implies

rN−1ϕp(u
′(r)) = 0 for every r ∈ [R1, r

+] and hence, by (2.3), u = 0 in [R1, r
+], a

contradiction.
It remains to show that any non-negative solution of (2.1) is positive. To this

aim, we observe that if the (non-negative) function u vanishes but is not identically
zero, then it necessarily has a double zero, that is, u(r0) = u′(r0) = 0 for some r0 ∈
[R1, R2]. By assumption (f0) and [39, Theorem 4]-(δ), the solution of this Cauchy
problem is unique and so it has to be u ≡ 0 on [R1, R2], which is a contradiction. �

In view of the above lemma, from now on we will study problem (1.1) simply by
looking for non-constant solutions of (2.1). This will be done by using a shooting
approach: we write the equation in (2.1) as the planar ODE system in (R1, R2)

u′ = ϕ−1
p

( v

rN−1

)
, v′ = −rN−1f̂(u), (2.5)

we consider the associated Cauchy problem with initial conditions

u(R1) = 1− d, v(R1) = 0, (2.6)

where d ∈ [0, 1], and we look for values d ∈ (0, 1) such that the corresponding
solution (ud, vd) is defined on the whole [R1, R2] and satisfies vd(R2) = 0 (and
hence u′d(R2) = 0).

We stress that, when Ω = A(R1, R2) (that is, when R1 > 0), the initial condition
v(R1) = 0 plainly corresponds to u′(R1) = 0; on the other hand, when Ω = B(R2)
(that is, when R1 = 0), the situation is more delicate. Indeed, the ODE system

(2.5) exhibits, for r = R1 = 0, a singularity of order r−
N−1
p−1 . When p > N , such a

singularity is in L1 and system (2.5) can be treated within the Carathéodory theory
of ODEs (see, for instance, [24]); on the contrary, for 1 < p ≤ N this is no longer
true. Nonetheless, it can be shown via fixed point arguments in Banach spaces that
the Cauchy problem (2.5)-(2.6) (requiring v(R1) = 0) still has a (local) solution.
All this is nowadays well-known (see [22, 39]) and any solution (u(r), v(r)) of (2.5)-
(2.6) is such that u′(R1) = 0 and u solves the equation in (2.1) in the usual sense
(namely, u(r) and rN−1ϕp(u

′(r)) = v(r) belong to C1([R1, R2]) and the equation
is satisfied pointwise). See also Remark 2.5.

To make our shooting procedure effective, we now prove the following result of
uniqueness, continuous dependence, and global continuability.

Lemma 2.2. For any d ∈ [0, 1], the solution (ud, vd) of (2.5)-(2.6) is unique and
can be defined on the whole [R1, R2]; moreover, if (dn) ⊂ (0, 1) is such that dn →
d ∈ [0, 1], then (udn(r), vdn(r))→ (ud(r), vd(r)) uniformly in r ∈ [R1, R2].

Proof. We first focus on the uniqueness; notice that by this we mean that (ud, vd)
remains unique as long as defined and, in turn, this requires us to investigate the
local uniqueness of any Cauchy problem

u(r̄) = ū, v(r̄) = v̄,

associated with (2.5), where r̄ ∈ [R1, R2] and (ū, v̄) ∈ [0, 1] × {0} if r̄ = 0 and
(ū, v̄) ∈ R2 if r̄ > 0. If r̄ 6= 0, v̄ 6= 0 and ū 6= 0, this follows from the Cauchy-
Lipschitz Theorem. Otherwise, this is a non trivial issue for three different reasons:
first, for r̄ = 0 the system is singular (this being possible, of course, only if R1 = 0);
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second, the system is not Lipschitz continuous when v = 0 for p > 2 (since ϕ−1
p is

not Lipschitz at zero); third, the system is not Liptschiz continuous when u = 0

for 1 < p < 2 (since f̂ is not Lipschitz at zero). This subtle problem has been
extensively investigated in [39]; according to Theorem 4 therein, we can conclude
that the uniqueness holds true in each of the following cases:

• r̄ ≥ 0, ū = 0 and v̄ = 0: this follows from (f0), corresponding to case (δ) of
[39, Theorem 4];
• r̄ ≥ 0, v̄ = 0 and ū 6∈ {0, 1} for p > 2: this follows from the facts that

f̂(u) 6= 0 for 0 < u 6= 1, corresponding to case (β)(v) of [39, Theorem 4],

and that f̂(u) ≡ 0 for u < 0, since in this can the equation can be explicitly
solved;
• ū = 0 and v̄ 6= 0 (hence, r̄ > 0) for 1 < p < 2: this follows again from (f0),

corresponding to case (α)(iii) of [39, Theorem 4].

Thus, the only remaining possibility to be analyzed is r̄ ≥ 0, ū = 1 and v̄ = 0; in
this case, we must show that the only solution is u ≡ 1. To this end, we define the
function

H(r) :=
|u′(r)|p

p′
+ F̂ (u(r)),

with r in a neighborhood of r̄, F̂ (u) =
∫ u

1
f̂(s) ds. Notice that, in view of (feq) and

of the definition of f̂ , it holds that F̂ (s) ≥ 0 for any s ∈ R and F̂ (s) = 0 if and
only if s = 1. Hence H(r) ≥ 0 and H(r) = 0 if and only if u(r) = 1 and u′(r) = 0.
In particular, H(r̄) = 0. Observing that

|u′(r)|p = |ϕp(u′(r))|p
′

and that

(ϕp(u
′(r)))

′
= −N − 1

r
ϕp(u

′(r))− f̂(u(r)) for r 6= 0,

a straightforward computation yields

H ′(r) = −N − 1

r
|u′(r)|p ≤ 0 for r 6= 0.

It follows that H(r) = 0 for r ≥ r̄, so that u(r) = u(r̄) = 1 for r ≥ r̄ ≥ 0. If r̄ = 0,
this is enough to conclude; if r̄ > 0 we also need to check the backward uniqueness.
To this end, we observe that

|H ′(r)| = N − 1

r
|u′(r)|p ≤ ηH(r)

for r > 0 in a neighborhood of r̄ and η > 0 a suitable constant (depending on the
neighborhood). Hence, by Gronwall’s Lemma,

H(r) ≤ H(r̄)eη|r−r̄|

for r in a (left) neighborhood of r̄. Again, this implies H(r) = 0 and, finally,
u(r) = 1 in a (left) neighborhood of r̄.

We now prove that the solution (ud, vd) can be globally extended to the whole
interval [R1, R2]. By contradiction, suppose that its maximal interval of definition
is [R1, r

∗) for some r∗ ≤ R2; then, the standard theory of ODEs implies that

lim
r→(r∗)−

(|ud(r)|+ |vd(r)|) = +∞. (2.7)



9

Since F̂ ≥ 0 and H ′(r) ≤ 0, we get

|u′d(r)|p

p′
≤ H(r) ≤ H(R1) for all r ∈ [R1, r

∗),

that is |u′d| is bounded. Consequently,

|vd(r)| = rN−1|u′d(r)|p−1 ≤ C and |ud(r)| ≤ ud(R1) +

∫ r

R1

|u′d(s)|ds ≤ C ′

for all r ∈ [R1, r
∗) and for some C, C ′ > 0. Hence, (2.7) cannot occur, and so

(ud, vd) can be extended to the whole interval [R1, R2].

Finally, having proved the uniqueness and global continuability, the continuous
dependence property follows from the standard theory of ODEs (compare again
with [39]). �

Notice now that, as a consequence of the uniqueness of the solutions to the
Cauchy problems proved in Lemma 2.2, we have that, if d ∈ (0, 1],

(ud(r), u
′
d(r)) 6= (1, 0) for every r ∈ [R1, R2].

Accordingly, we can investigate the behavior of the solution (ud, vd) to (2.5)-(2.6),
by introducing a system of polar-like coordinates around the point (1, 0). Precisely,
we set {

u(r)− 1 = ρ(r)
2
p cosp(θ(r))

v(r) = −ρ(r)
2
p′ sinp(θ(r)),

(2.8)

where (cosp, sinp) is the unique solution of
x′ = −ϕp′(y),

y′ = ϕp(x),

x(0) = 1, y(0) = 0.

These functions were first introduced in [16] (see also [19], [21]). They are called
p-cosine and p-sine functions because they share many properties with the classic
cosine and sine functions, as we recall below.

Lemma 2.3 ([44, Lemma 2.1]). Let πp := 2π(p−1)1/p

p sin(π/p) , then

(i) both cosp(θ) and sinp(θ) are 2πp-periodic;
(ii) cosp is even in θ and sinp is odd in θ;

(iii) cosp(θ + πp) = − cosp(θ), sinp(θ + πp) = − sinp(θ);
(iv) cosp(θ) = 0 if and only if θ = πp/2 + kπp, k ∈ Z, and sinp(θ) = 0 if and

only if θ = kπp, k ∈ Z;

(v) d
dθ cosp(θ) = −ϕp′(sinp(θ)) and d

dθ sinp(θ) = ϕp(cosp(θ));

(vi) | cosp(θ)|p/p+ | sinp(θ)|p
′
/p′ ≡ 1/p.

Via the change of coordinates (2.8), system (2.5) is transformed into
ρ′(r) =

p

2ρ(r)
u′(r)

[
ϕp(u(r)− 1)− r(N−1)p′ f̂(u(r))

]
θ′(r) =

rN−1

ρ2(r)

[
(p− 1)|u′(r)|p + (u(r)− 1)f̂(u(r))

]
.

(2.9)

Moreover, we can write the initial condition (2.6) as

ρ(R1) = d
p
2 , θ(R1) = πp, (2.10)
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and denote the corresponding solution by (ρd, θd). It is then easy to realize that
the couple (ρd, θd) gives rise to a solution of (2.1) (and in turn of (1.1)) if and only
if θd(R2) = kπp for some k ∈ Z.

We conclude this preliminary section by noting for further convenience that,
as an immediate consequence of Lemma 2.2, (2.8) and Lemma 2.3, we have the
following.

Corollary 2.4. If (dn) ⊂ (0, 1) is such that dn → d ∈ (0, 1], then (ρdn(r), θdn(r))→
(ρd(r), θd(r)) uniformly in r ∈ [R1, R2]. Furthermore,

lim
d→0

sup
r∈[R1,R2]

ρd(r) = 0. (2.11)

Remark 2.5. It is worth noticing that, when R1 > 0 (that is, if Ω is an annulus), we
can perform a change of variables which transfors the equation appearing in (2.1)
into a simpler one. Precisely, for r ∈ (R1, R2), let

t(r) :=

∫ r

R1

s−
N−1
p−1 ds =

 p−1
p−N

(
r

p−N
p−1 −R

p−N
p−1

1

)
if p 6= N

ln r
R1

if p = N ;

then, t(r) is invertible with inverse

r(t) =


(
p−N
p−1 t+R

p−N
p−1

1

) p−1
p−N

if p 6= N

R1e
t if p = N.

Setting

w(t) := u(r(t)), T := t(R2), a(t) := r(t)
p(N−1)

p−1 ,

we find that (2.1) is equivalent to{
−(ϕp(w

′))′ = a(t)f̂(w) in (0, T )

w′(0) = w′(T ) = 0.

The same procedure can be used in the case R1 = 0 (namely, Ω is a ball) with p > N ,
since also in this case r(t), and consequently a(t), is well defined for all t ∈ [0, T ].
However, here we prefer to work always with the boundary value problem (2.1) in
order to produce a common proof for all our results.

2.2. The associated eigenvalue problem. Consider the eigenvalue problem{
−∆pφ = λ|φ|p−2φ in Ω

∂νφ = 0 on ∂Ω,
(2.12)

where Ω is one of the two radial open domains defined in the introduction, and
λ ∈ R. Since we are interested only in the radial eigenvalues of (2.12), we can
rewrite (2.12) as the following 1-dimensional eigenvalue problem{

−(rN−1ϕp(φ
′))′ = λrN−1ϕp(φ) in (R1, R2)

φ′(R1) = φ′(R2) = 0.
(2.13)

The following result is well-known.
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Theorem 2.6 (Theorem 1 of [40]). The eigenvalue problem (2.13) has a countable
number of simple eigenvalues 0 = λ1 < λ2 < λ3 < . . . , limk→∞ λk = +∞, and no
other eigenvalues. The eigenfunction φk that corresponds to the k-th eigenvalue λk
has k − 1 simple zeros in (R1, R2).

We remark that for every 1 ≤ k ∈ N, if we denote by λk the k-th eigenvalue of
(2.13) and by λrad

k the k-th radial eigenvalue of (2.12),

λk = λrad
k .

Following Sturm’s theory, we are now going to clarify the relationship between the
eigenvalues λrad

k and an angular coordinate ϑ analogous to the one defined in the
previous section. Accordingly, we consider the change of variables{

φ(r) = %λ(r)
2
p cosp(ϑλ(r))

rN−1ϕp(φ
′(r)) = −%λ(r)

2
p′ sinp(ϑλ(r)),

(2.14)

where the functions sinp, cosp are defined as in the previous section. Then, the
eigenvalue problem (2.13) reads as

%′λ(r) =
p

2%(r)

(
1− λr(N−1)p′

)
ϕp(φ(r))φ′(r),

ϑ′λ(r) =
rN−1

%(r)2
[(p− 1)|φ′(r)|p + λ|φ(r)|p] ,

with boundary conditions

ϑλ(R1) = πp and ϑλ(R2) = jπp

for some j ∈ N. Notice that the function r 7→ ϑλ(r) is strictly increasing. As a
consequence, if λ = λk for k ≥ 1, the fact that φk has k−1 simple zeros in (R1, R2)
reads as

ϑλk
(R1) = πp and ϑλk

(R2) = kπp. (2.15)

For further convenience, we also observe that, by (2.14),

r(N−1)p′ |φ′|p = %2
λ| sinp(ϑλ)|p

′
and |φ|p = %2

λ| cosp(ϑλ)|p,
so that

ϑ′λ = rN−1

[
p− 1

r(N−1)p′
| sinp(ϑλ)|p

′
+ λ| cosp(ϑλ)|p

]
. (2.16)

2.3. The proof of Theorem 1.2.

Proof. By (f1), we know that for all n ∈ N there exists δ = δ(n) > 0 such that for
every s satisfying |s− 1| < δ it holds

f̂(s)(s− 1) = f(s)(s− 1) >


(
C1 −

1

n

)
|s− 1|p if C1 ∈ (0,∞),

n|s− 1|p if C1 = +∞.

Then, by (2.9), we get that if |u(r)− 1| < δ(n)

θ′(r) >


rN−1

ρ(r)2

[
(p− 1)|u′(r)|p +

(
C1 −

1

n

)
|u(r)− 1|p

]
if C1 ∈ (0,∞),

rN−1

ρ(r)2
[(p− 1)|u′(r)|p + n|u(r)− 1|p] if C1 = +∞.

(2.17)
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Furthermore, we deduce from (2.8) that

r(N−1)p′ |u′|p = ρ2| sinp(θ)|p
′

and |u− 1|p = ρ2| cosp(θ)|p.

Hence, combining the latter equalities with (2.17), we obtain by (2.11) that for
every n there exists δ′ = δ′(n) > 0 such that for all d ∈ (0, δ′)

θ′d(r) >


rN−1

[
p− 1

r(N−1)p′
| sinp(θd(r))|p

′
+

(
C1−

1

n

)
| cosp(θd(r))|p

]
if C1 ∈ (0,∞),

rN−1

[
p− 1

r(N−1)p′
| sinp(θd(r))|p

′
+ n| cosp(θd(r))|p

]
if C1 = +∞

(2.18)
for all r ∈ [R1, R2].

Now, in both cases (i.e., 0 < C1 < +∞ and C1 = +∞), let k ≥ 1 be an integer
such that C1 > λrad

k+1. For n so large that

n > λk+1 and C1 −
1

n
> λk+1,

relation (2.18) becomes

θ′d(r) > rN−1

[
p− 1

r(N−1)p′
| sinp(θd(r))|p

′
+ λk+1| cosp(θd(r))|p

]
Hence, recalling (2.16) with λ = λk+1 and using the Comparison Theorem for

ODEs, we obtain for d small enough

θd(r) > ϑλk+1
(r) for all r ∈ (R1, R2]. (2.19)

In particular, by (2.15)

θd(R2) > (k + 1)πp

for d sufficiently close to 0. Since θ1(R2) = πp, by the continuity of the map
d 7→ θd(R2) (see Corollary 2.4), we have that for all j = 1, . . . , k there exists
dj ∈ (0, 1) for which θdj (R2) = (j + 1)πp. This corresponds to u′dj (R2) = 0,

providing the desired solution uj of (1.1).
In order to prove the oscillatory behavior of uj it suffices to remark that, since

θdj (r) is monotone increasing (see (2.9) and recall (feq)), there exist exactly j

radii r1, . . . , rj ∈ (R1, R2) such that θdj (r1) = 3
2πp, θdj (r2) = 5

2πp, . . . , θdj (rj) =(
j + 1

2

)
πp. �

Remark 2.7. Let ϑC1
be the angular coordinate defined in (2.14) with λ = C1. In

the case C1 <∞, we can show that θd → ϑC1
uniformly in [R1, R2] for d→ 0+ (in

particular, this holds true also for C1 = 0), thus obtaining a stronger relation than
(2.19). Indeed, by (2.9) and (f1), we have as d→ 0

θ′d = (p− 1)r(N−1)(1−p′)| sinp(θd)|p
′
+ C1r

N−1| cosp(θd)|p + rN−1 o(ρ
2
d| cosp(θd)|p)

ρ2
d

.

Now, Corollary 2.4 and | cosp(θd)|p = O(1) provide o(ρ2
d| cosp(θd)|p)/ρ2

d = o(1) as
d→ 0+. On the other hand, by (2.16),

ϑ′C1
= (p− 1)r(N−1)(1−p′)| sinp(ϑC1)|p

′
+ C1r

N−1| cosp(ϑC1)|p,

whence

|θ′d − ϑ′C1
| ≤ L|θd − ϑC1

|+ o(1) as d→ 0+,
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with L = L(p, C1, sinp, cosp) > 0 being related to the Lipschitz constants of | sinp(·)|p
′

and | cosp(·)|p. Therefore, for all ε > 0 and all r ∈ [R1, R2],

|θd(r)− ϑC1(r)| ≤ L
∫ r

R1

|θd(s)− ϑC1(s)|ds+ ε for d sufficiently small.

By Gronwall’s inequality, for all r ∈ [R1, R2]

|θd(r)− ϑC1(r)| ≤ εeL(r−R1) for d sufficiently small

and so, by the arbitrariness of ε > 0,

|θd − ϑC1 | → 0 uniformly in [R1, R2] as d→ 0+.

2.4. The proof of Theorem 1.4. We will adapt an argument introduced in [11],
and make use of the following result proved therein.

Lemma 2.8 ([11, Corollary 5.1]). Let us consider the system{
ρ′ = P(r, ρ, θ)
θ′ = Θ(r, ρ, θ),

(2.20)

being P,Θ : [r1, r2] × R+
0 × [θ1, θ2] → R continuous functions. Suppose that the

uniqueness for the Cauchy problem associated with (2.20) is ensured and let γ :
[θ1, θ2]→ R be a function of class C1, with γ(θ) > 0 for every θ ∈ [θ1, θ2]. Assume

P(r, γ(θ), θ) ≤ γ′(θ)Θ(r, γ(θ), θ) for every r ∈ [r1, r2], θ ∈ [θ1, θ2].

Then for every (ρ, θ) : I → R+
0 × [θ1, θ2] solution to (2.20) (being I ⊂ [r1, r2] an

interval) and r0 ∈ I,

ρ(r0) ≤ γ(θ(r0)) =⇒ ρ(r) ≤ γ(θ(r)) for every r ∈ (r0,+∞) ∩ I.
For the proof of Theorem 1.4, it is convenient to write the equation in (2.1) as

the planar system in (R1, R2)

u′ = ϕ−1
p

((
R2

r

)N−1

v

)
, v′ = −

(
r

R2

)N−1

f̂(u). (2.21)

The advantage of this new scaling is that the maximum of the weight (r/R2)N−1 in
[R1, R2] is independent of R2, a property that will be useful in the sequel. While,
concerning the minimum of the same weight, we will use the fact that it is positive in
[εR2, R2] for any ε > 0. Comparing (2.21) with (2.5), it is immediately realized that
all the properties discussed in Section 2.1 still hold true for this slightly different
planar formulation of (2.1). In particular, we define (ud, vd) as the solution of
(2.21) satisfying (ud(R1), vd(R1)) = (1− d, 0) and we pass to polar-like coordinates
around the point (1, 0) as in (2.8), that is,{

x(r) := u(r)− 1 = ρ(r)
2
p cosp(θ(r))

y(r) := v(r) = −ρ(r)
2
p′ sinp(θ(r)).

We thus obtain (compare with (2.9)) the system
ρ′ =

p

2ρ

(
R2

r

)(N−1)(p′−1)

ϕp′(y)

[
ϕp(x)−

(
r

R2

)(N−1)p′

f̂(x+ 1)

]
=: P(r, ρ, θ)

θ′ =
1

ρ2

(
R2

r

)(N−1)(p′−1)
[

(p− 1)|y|p
′
+

(
r

R2

)(N−1)p′

f̂(x+ 1)x

]
=: Θ(r, ρ, θ),

(2.22)
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with initial conditions (2.10). We also write

P(r, ρ, θ) =: ρS

(
r, ρ

2
p cosp(θ),−ρ

2
p′ sinp(θ)

)
and

Θ(r, ρ, θ) =: U

(
r, ρ

2
p cosp(θ),−ρ

2
p′ sinp(θ)

)
,

where, noting that |x|p + (p− 1)|y|p′ = ρ2,

S(r, x, y) =
p

2

(
R2

r

)(N−1)(p′−1)

·
ϕp′(y)

[
ϕp(x)−

(
r

R2

)(N−1)p′

f̂(x+ 1)

]
|x|p + (p− 1)|y|p′

and

U(r, x, y) =

(
R2

r

)(N−1)(p′−1)

·

[
(p− 1)|y|p′ +

(
r

R2

)(N−1)p′

f̂(x+ 1)x

]
|x|p + (p− 1)|y|p′

.

• Proof of Theorem 1.4. We treat the two cases Ω = B(R2) and Ω = A(R1, R2)
simultaneously, by taking into account that the condition R1 < εR2 is trivially
verified for all ε > 0 when R1 = 0, that is in the case of the ball. Hence, if
Ω = B(R2), for any k ≥ 1 we can fix any ε > 0 and consider R∗ only depending on
k.

For d ∈ [0, 1] let (ρd, θd) be the solution of (2.22) with initial conditions (2.10).
The key point is to show that for any integer k ≥ 1 and any ε > 0, there exists
R∗(k, ε) > 0 such that for R1 < εR2 and R2 > R∗(k, ε) there exists dk ∈ (0, 1)
such that θdk(R2) > (k + 1)πp. From this, one can easily conclude. Indeed, on one
hand θ1(R2) = πp. On the other hand, θd(R2) < 2πp for d small enough, since
by Remark 2.7 it holds θd(R2) → ϑ0(R2) for d → 0 and ϑ0(r) ≡ πp. Then, by
continuity, it is possible to find for any j = 1, . . . , k two values

0 < d−j < dk < d+
j < 1

such that θd±j
(R2) = (j + 1)πp, giving rise to the desired solutions u±j . The os-

cillatory behavior is then proved as in Theorem 1.1. In fact, by (2.22) θd±j
is

increasing for every j = 1, . . . , k, and consequently, there exist exactly 2j radii
r−1 , . . . , r

−
j , r

+
1 , . . . , r

+
j ∈ (R1, R2) such that θd±j

(r±1 ) = 3
2πp, θd±j

(r±2 ) = 5
2πp,. . . ,

θd±j
(r±j ) =

(
j + 1

2

)
πp.

From now on, we thus focus on the proof of the above claim; this requires,
however, several auxiliary definitions. First of all, we set

M−(x, y) :=



p

2
·
ϕp′(y)

(
ϕp(x)− f̂(x+ 1)

)
(p− 1)|y|p′ + f̂(x+ 1)x

if xy ≥ 0,

p

2
·
ϕp′(y)

(
ϕp(x)− ε(N−1)p′ f̂(x+ 1)

)
(p− 1)|y|p′ + ε(N−1)p′ f̂(x+ 1)x

if xy ≤ 0,
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and

M+(x, y) :=



p

2
·
ϕp′(y)

(
ϕp(x)− ε(N−1)p′ f̂(x+ 1)

)
(p− 1)|y|p′ + ε(N−1)p′ f̂(x+ 1)x

if xy ≥ 0,

p

2
·
ϕp′(y)

(
ϕp(x)− f̂(x+ 1)

)
(p− 1)|y|p′ + f̂(x+ 1)x

if xy ≤ 0.

A straightforward calculation shows that

M−(x, y) ≤ S(r, x, y)

U(r, x, y)
≤M+(x, y) (2.23)

for all r ∈ [εR2, R2] and all (x, y) ∈ R2 \ {(0, 0)}. For example, the inequality
M− ≤ S/U is equivalent to

ϕp′(y)f̂(x+ 1)ρ2

(
r

R2

)(N−1)p′

≤ ϕp′(y)f̂(x+ 1)ρ2, if xy ≥ 0,

and to

ϕp′(y)f̂(x+ 1)ρ2

(
r

R2

)(N−1)p′

≤ ϕp′(y)f̂(x+ 1)ρ2ε(N−1)p′ , if xy ≤ 0,

from which we see that the first inequality in (2.23) is satisfied for r ∈ [εR2, R2], (x, y) ∈
R2 \ {(0, 0)}. The proof of the second inequality in (2.23) is similar.

Then, we define ρ±(θ; θ̄, ρ̄) as the solution of{
dρ
dθ = ρM±

(
ρ2/p cosp(θ),−ρ2/p′ sinp(θ)

)
ρ±(θ̄; ρ̄, θ̄) = ρ̄

(2.24)

and we set for any ρ̄ > 0

mk(ρ̄) := inf
θ̄∈[0,2πp), θ∈[θ̄,θ̄+kπp]

ρ−(θ; ρ̄, θ̄),

Mk(ρ̄) := sup
θ̄∈[0,2πp), θ∈[θ̄,θ̄+kπp]

ρ+(θ; ρ̄, θ̄).

By continuous dependence, we can choose 0 < ρ̌k < ρ∗k < ρ̂k such that

0 < ρ̌k < mk(ρ∗k) ≤ ρ∗k ≤Mk(ρ∗k) < ρ̂k < 1. (2.25)

Finally, we set

δ∗k := inf
ρ̌k≤ρ≤ρ̂k

εN−1f̂(x+ 1)x+ (p− 1)|y|p′

|x|p + (p− 1)|y|p′
.

We are now in a position to prove that, if R1 < εR2 and

R2 > R∗(k, ε) :=
πpk

(1− ε)δ∗k
,

then our claim holds true, namely there exists dk ∈ (0, 1) such that

θdk(R2) > (k + 1)πp.

We first observe that, since ρ1(r) = 0 and ρ0(r) = 1 for any r ∈ [R1, R2], there
exists dk ∈ (0, 1) such that

ρdk(εR2) = ρ∗k,

reasoning as in Corollary 2.4. We are now going to show that

θdk(R2)− θdk(εR2) > kπp, (2.26)
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which concludes the proof since θdk(R1) = πp and, by (2.22), θdk is a non-decreasing
function. We distinguish two cases. If ρdk(r) ∈ [ρ̌k, ρ̂k] for any r ∈ [εR2, R2], we
easily conclude: indeed, by the expression of θ′ in (2.22), the definition of δ∗k and
the choice of R2,

θdk(R2)− θdk(εR2) =

∫ R2

εR2

θ′dk(r) dr ≥ R2(1− ε)δ∗k > kπp.

Otherwise, we let r̄ ∈ [εR2, R2) be the largest value such that ρdk(r) ∈ [ρ̌k, ρ̂k] for
any r ∈ [εR2, r̄] and we prove in this case that

θdk(r̄)− θdk(εR2) > kπp,

implying (2.26) again in view of the monotonicity of θdk .
Suppose by contradiction that this is not true and, just to fix the ideas, that

ρdk(r̄) = ρ̂k (in the case ρdk(r̄) = ρ̌k the argument is analogous). Observe also
that, again by the monotonicity of θdk , we have θdk(r) − θdk(εR2) ≤ kπp for any
r ∈ [εR2, r̄]. Now, we consider the function γ(θ) = ρ+(θ; ρ∗k, θ̄), where θ̄ ∈ [0, 2πp)
is such that θdk(εR2) ≡ θ̄ mod 2πp. By the definition of Mk(ρ∗k) and (2.25), it
holds

γ(θ) < ρ̂k for every θ ∈ [θ̄, θ̄ + kπp];

moreover, from (2.23) and (2.24) we obtain

P(r, γ(θ), θ) ≤ γ′(θ)Θ(r, γ(θ), θ) for every r ∈ [εR2, r̄], θ ∈ [θ̄, θ̄ + kπp].

Lemma 2.8 then implies that

ρdk(r) ≤ γ(θdk(r)) for every r ∈ [εR2, r̄],

so that ρdk(r̄) ≤Mk(ρ∗k) < ρ̂k, a contradiction. �

3. Numerical simulations and open problems

We present here some numerical simulations performed with the software AUTO-
07p [20]. We consider problem (1.3) in dimension N = 1, more precisely

−(ϕp(u
′))′ + up−1 = uq−1 in (0, 1)

u > 0 in (0, 1)

u′(0) = u′(1) = 0.

(3.1)

In Figure 1 we represent the first two bifurcation branches for problem (3.1) in
the case p = 2. The black line represents the constant solution u ≡ 1; the branches
bifurcate at points q = 2 + λrad

k , k = 2, 3. The solutions belonging to the lower
part of the first branch are monotone increasing, the ones belonging to the upper
part of the first branch are monotone decreasing, in both cases they all intersect
once the constant solution u ≡ 1. Solutions of the lower part of the second branch
present exactly one interior maximum point, solutions of the upper part of the
second branch have exactly one interior minimum point, in both cases they have
two intersections with u ≡ 1, and so on. The solutions that we have found in
Corollary 1.5-(ii) belong to the lower parts of the branches, since they all satisfy
u(0) < 1. Much more general simulations for p = 2 can be found in [7]. We remark
that, as explained therein, the global behavior of the upper parts of the branches
can be investigated when the nonlinearity is subcritical (in particular, for N = 1) or
when the problem is considered in an annular domain, while it appears as an open
problem in the general setting. We believe that the shooting technique adopted in
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Figure 1. The first two bifurcation branches for problem (3.1)
in the case p = 2. The color of each solution in the right plot
corresponds to the color of the branch it belongs to in the left
plot. (a) Bifurcation diagram: u(0) as function of q. (b) Solutions
belonging to the first two branches for q ' 50.

this paper could also lead to results similar to the ones obtained in [7], providing (in
the subcritical setting) multiple positive solutions with u(0) > 1. Notice, however,
that here we do not obtain bifurcation continua, but just multiple solutions for a
fixed value of q (studying their behavior with respect to a parameter is possible in
principle, but requires additional arguments from planar topology, see [38]).

In the case p < 2, the branches persist for p sufficiently close to 2, but now
both the upper and the lower part of each branch split into two. In Figure 2 we
represent this phenomenon for p = 1.97. Now we have four branches. According to
the simulations, none of them seems to bifurcate from the constant solution: each
branch seems to be unbounded on both sides, and one side seems to converge to
the constant solution u ≡ 1 as q → +∞, as if the bifurcation point had escaped
to infinity. For this reason, each branch contains two solutions having the same
oscillatory behavior, thus giving rise to the double of solutions with respect to
the case p = 2. Once again, the solutions that we have found in Corollary 1.5-
(iii) belong to the lower branches, since they all satisfy u(0) < 1. The existence
of solutions satisfying u(0) > 1 for p < 2 is for the moment an open problem.
Similarly as in the case p = 2, we conjecture that such solutions should exist when
f has Sobolev-subcritical growth, or when the domain is an annulus, thus giving
rise, in the assumptions of Theorem 1.4, to 4k radial solutions.

We wish to mention that the solutions presented in Figure 2 could not be detected
by bifurcating from the constant. Instead, we adopted the following technique. We
started from a solution of the problem with p = 2 and q equal to a certain value
q̄. We considered bifurcation for this solution in the parameter p (with q = q̄
fixed). This provides a continuum of solutions up to a certain minimum value pmin,
as shown for example in Figure 3. The two solutions obtained in this way for a
certain p̄ satisfying pmin ≤ p̄ < 2 can be used as a starting point to obtain the
graph in Figure 2 (with p = p̄ fixed and q variable). According to this discussion,
it seems to be an interesting question whether the multiplicity scheme of Theorem
1.4 could be obtained when varying p instead of the diameter of the domain, that



18 A. BOSCAGGIN, F. COLASUONNO, AND B. NORIS

Figure 2. The first four “bifurcation” branches for problem (3.1)
in the case p = 1.97. The color of each solution in the last two
plots corresponds to the color of the branch it belongs to in the first
plot. (a) Bifurcation diagram: u(0) as function of q. Notice that
the new folded parts of the branches appear in the figure almost
completely overlapped with the branch of the constant solution.
(b) “Large” solutions belonging to the first four branches for q '
50. (c) “Almost constant” solutions belonging to the first four
branches, q ' 50; again, note that the green and the blue solutions
appear almost completely overlapped.

is if, given a domain and given k ≥ 1, it is possible to obtain 2k solutions for any
p ∈ (pmin(k), 2).

Finally, when p > 2, there seems to persist a phenomenon of bifurcation from the
constant solution. We conjecture that in this case infinite branches bifurcate from
the same point q = p, giving rise to a very degenerate situation. Notice that this
would be coherent with the result of Corollary 1.5-(i). In Figure 4 we present the
first bifurcation branches for p = 2.1. Some numerical difficulties occur also in this
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Figure 3. Bifurcation in the parameter p, starting from p = 2 for
q = q̄ fixed. In particular, for p < 2, a branch of solutions (in red)
is obtained; this folded branch persists for p ≥ pmin, giving rise to
a couple of solutions for every p ∈ (pmin, 2).

Figure 4. Partial bifurcation diagram for problem (3.1) with p =
2.1: the first branches of solutions bifurcating at q = p. The color
of each solution in the right plot corresponds to the color of the
branch it belongs to in the left plot. (a) Bifurcation diagram: u(0)
as function of q. (b) Solutions belonging to the first branches for
q ' 50.

case, probably due to the fact that an infinite number of curves meet at q = p and
that these curves start with an almost flat shape. In order to detect the blue and
green branches, we took advantage of the monotonicity of the solutions belonging
to them; to find the other two branches we adopted the method described above
for the case p < 2. Also in this case, the existence of solutions satisfying u(0) > 1
is an open problem.
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[43] L. Wang, J. Wei, and S. Yan. A Neumann problem with critical exponent in nonconvex

domains and Lin-Ni’s conjecture. Trans. Amer. Math. Soc., 362(9):4581–4615, 2010.

[44] P. Yan and M. Zhang. Rotation number, periodic Fučik spectrum and multiple periodic
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