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Abstract 

Although the upper crust is the most accessible among other crustal units, so far little attention was 

paid about its role on the continental collision style and on exhumation processes of metamorphic 

rocks. With this respect, several 2D thermo-mechanical numerical experiments of post-subduction 

continental collision were performed, which allowed investigating the interplay between surface 

processes, thermal history and rheology of the upper crust units. The viscous strength of upper and 

lower plate upper crust (U.U.C. and L.U.C.) was systematically changed, obtaining a reference set 

of experiments to which subsequently we applied enhanced erosion patterns and variable radiogenic 

heat productivity of the sediments. 

We obtained three classes of collisional style: 1) decoupled asymmetric; 2) coupled asymmetric; 3) 

coupled symmetric. In general, for high-rates of radiogenic heating, a strong U.U.C. leads to one-

sided, asymmetric and coupled hot orogen, which shifts to two-sided symmetric for weaker U.U.C.. 

Lower radiogenic heat productivities yield colder orogens, promoting more asymmetric orogens and 

eventually the decoupling between upper and lower plates. The enhanced erosion leads to narrower 

and colder orogens, affecting the collisional style only for a relatively strong L.U.C. rheology. 

Exhumation of high-grade metamorphic rocks mainly depends on the L.U.C. strength: a weak 

viscous rheology promotes pure shear thickening of the incoming crust in the orogenic front, which 

inhibits both burial and exhumation processes. Higher viscous strengths promote deeper subduction 

of the L.U.C., with subsequent heating, delamination, partial melting and exhumation of high-grade 

rocks via channel flow. Enhanced erosion, although not a necessary condition, favours the extrusion 

of the partially melted mid-crustal channel. 
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Overall, the numerical experiments reproduce the first order structural and/or metamorphic patterns 

of several natural cases (Himalayas, Boehmian Massif ,Eastern-Central Alps, Apennines) and 

further suggest that the upper crust rheology is one of the key parameters controlling the collisional 

style and exhumation processes.   

 

Keyword: Numerical Modelling; Crustal Rheology; Continental Collision; Surface Processes; 

Radiogenic Heating; Hot Orogens 
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1.Introduction 

Continental collision systems are one of the most impressive and intriguing manifestations of plate 

tectonics, where the continental crust strongly deforms and several petrological reactions occur. 

Over the last decades, thanks to the improvement of analytical methodologies, in particular 

geochronology, the temporal and petrological evolution of collisional orogens has been described 

more accurately. Nevertheless, as collisional systems are complex tectonic settings where distinct 

processes (deformation, solid-solid and solid-fluid phase transitions, fluid flow, surface processes, 

etc.) occur simultaneously, the interpretation of the whole set of geological data is generally 

difficult. In this respect, numerical simulations allow to integrate several of the main geological 

processes characteristic of continental collision, offering the opportunity to investigate how they 

interfere with each other. Several numerical studies have attempted to reproduce active and fossil 

collisional orogens, highlighting the role that different initial conditions and parameters have in the 

evolution of the collision zone. For example, it has been shown that the initial thermal structure of 

the continental crust can potentially change the final style of collision, leading to either a stable 

(underthrusting) or unstable (thickening) continental subduction and different exhumation patterns 

of metamorphic rocks (Ge Toussaint et al., 2004; Burov et al., 2014; Sizova et al., 2014) . Surface 

processes influence the development of shear zones and brittle faults within the foreland basin 

(Avouac and Burov, 1996; G. Toussaint et al., 2004; Burov and Toussaint, 2007), the stability of 

continental subduction(Burov and Toussaint, 2007; Burov et al., 2014) and the exhumation of the 

low viscosity channel inside large hot orogens (Beaumont et al., 2001, 2004, 2006; Jamieson et al., 

2004)). Shear and radiogenic heating control the thermal history of the collisional orogeny, and as 

consequence melt productivity, metamorphic patterns and shear zone localization(Burg and Gerya T. 

V., 2005; Burg and Schmalholz, 2008; Faccenda et al., 2008). Crustal rheology affects the strength 

of both lower and upper plates, yielding to different collisional architectures(Faccenda et al., 2008; 

Burov et al., 2014; Liao and Gerya, 2017). Finally, the convergence rate and the interaction between 

fluid (melt or water) and solid rocks exert primary controls on the coupling between the 

plates(Faccenda et al., 2008, 2009; Sizova et al., 2012)  

In the present study, we explore the combined effects of the upper crust rheology of both lower and 

upper plates, radiogenic heat production and surface denudation rates, and show that these 

parameters have a control over the formation of collisional zones with distinct structural and 

metamorphic patterns that can be compared with natural cases (Himalayas, Bohemian Massif, the 

Alps and the Apennines). 

Our study focuses mainly on rocks that experienced high-grade metamorphism (>700ºC) and 

underwent pervasive melting. For this purpose, several numerical experiments were designed to 
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reproduce conditions typical of large hot orogens. Following large hot orogens feature high 

temperatures and pervasive melting of the upper-middle crust, and their tectonic behaviour is 

mainly characterized by the lateral migration of a low viscosity channel bearing partially melted 

rocks. The behaviour of large hot orogens was mainly described as a function of the amount of 

partially melted rocks and their susceptibility to climate forcing. The channel-flow model described 

by Beaumont et al. (2001) became quite popular over the last years as it seemed to have reproduced 

the exhumation of the Great Himalayan Sequence (GHS) as a partially melted coherent unit. 

Recently, this result has been questioned on the basis of geological data highlighting a much more 

complex evolution of the GHS, which shows a diachronic burial and exhumation history distributed 

over different sub-units It follows that further investigations on the tectonic and metamorphic 

evolution of this orogen is required.  

 

2.Initial Setup 

All the simulations were performed by using the petro-thermo-mechanical code I2VIS(Gerya and 

Yuen, 2003) , which resolves the fundamental equations of continuum mechanics with a 

conservative finite-difference method and a non-diffusive marker-in-cell technique (see Appendix). 

The simulations herein described take into account only parametrized solid-melt phase transitions. 

The mechanical behaviour of the material is simulated with a visco-plastic rheological model. 

The computational domain is a rectangular box of 4600x300 km with ~ 9 millions Lagrangian 

particles (Fig. 1). The Eulerian grid is composed by 818x161 nodes, and the resolution spans 

between 30 km to 1 km and 4 km to 1 km along the horizontal and vertical directions, respectively. 

The highest numerical resolution is set around the collision zone. The initial geometry is made up of 

three domains: the left continental plate (lower plate) featuring a passive margin with a 10 km thick 

sedimentary unit on the right; the central oceanic plate which is partially subducted; the right 

continental plate (upper plate) which is kept fixed (e.g.,  The continental crust is composed by a 21 

km thick upper crust (dark and light grey for the lower plate; red for the upper plate) overlying a 15 

km thick lower crust (olive green and dark olive green), while the oceanic crust is composed by a 

thin layer of sediment (2 km, orange) overlying a 7 km thick layer of mafic rocks (dark green) 

(Fig.1). The oceanic sediments ensure lubrication along the subduction interface, inhibiting 

potential deformation within the upper plate during oceanic subduction, thus limiting the parametric 

space solely to the ones regarding the continental collision, and allowing to develop realistic 

collisional geometries. Temperature increases linearly within the continental lithosphere from 0 °C 

at the top to 400 °C at Moho depths, and then to 1300 °C at the lithosphere-asthenosphere boundary. 

Below the lithosphere we imposed an adiabatic gradient of 0.5 °C/km. 
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In order to reproduce continental collision we prescribed a constant convergence rate of 2.5 cm yr
-1

 

on the lower plate, which is consistent with the relative convergence between India and Tibet, and 

Europe and Adria(Guillot et al., 2003; Ader et al., 2012) . A free slip boundary condition is set for 

the right, left and top boundaries, while the bottom boundary is permeable (Burg and Gerya T. V., 

2005; Li et al., 2016). We employed the sticky air approximation (low viscosity layer), which yields 

a pseudo-free surface boundary condition and allows reproducing topographic evolution during the 

simulation. 

The viscous strength of the continental lower crust and mantle are given by a “mafic granulite” and 

“dry olivine” flow laws, respectively, while for the upper crust and sediments we used a “wet 

quartzite” flow law (Ranalli, 1995) that has been modified as explained below. We set a relatively 

high strength for the lower crust, which was extensively studied by (Faccenda et al., 2008), and low 

Moho temperatures (400°C, typical of cratonic crust), as both parameters promote high coupling 

between the lithospheric mantle and lower crust, and their stable subduction(Gisèle Toussaint et al., 

2004; Burov et al., 2014) . 

 

3. Results 

In order to understand the role of the upper crust rheology on exhumation patterns and on the 

evolution of post-collisional orogens we have systematically investigated the relative strength 

between the lower plate upper crust (L.U.C) and the upper plate upper crust (U.U.C). To minimize 

the number of variables, instead of using different rheological flow laws, we varied the reference 

viscosity         
 

      
 

 (eq. A.11) of the “wet quartzite” flow law for both the U.U.C. and 

L.U.C. (see Li et al., 2010), such that it is possible to introduce the parameters ΩU.U.C. =               

and ΩL.U.C. =              that express the absolute strength of the two crusts, while their relative 

strength is given by Ω = ΩL.U.C. / ΩU.U.C.. For the two upper crusts, we have tested ΩU.U.C.  and ΩL.U.C.  

values of 1, 10 and 100, simulating a progressively stronger crust where the hard feldspatic phases 

are more abundant and/or less fluids/volatiles are present. The increase in viscous strength promotes 

plastic failure over viscous deformation and consequently controls exhumation processes and 

topography evolution. Also, the maximum topographic height reached by an orogen before the 

gravitational spreading increases with viscosity of the crust (Pusok and Kaus, 2015). The reference 

viscosity of the typically wet and weak sediments is kept constant, so that their strength is equal or 

smaller relative to that of the upper crust. The numerical experiments systematics represent a 

combination of ΩU.U.C., ΩL.U.C. and Ω (9x4 experiments), with the reference set of numerical 

experiments featuring highly radiogenic (5 μW/m
3
), zircon-rich sedimentary units which normally 
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accumulate on craton passive margins(Vidal et al., 1982; Scaillet et al., 1990; Macfarlane, 1992; 

Beaumont et al., 2006; Faccenda et al., 2008)  (Table 1). In addition, in order to investigate the 

tectonic and metamorphic evolution of colder collisional settings and further compare the results 

with a broader class of orogens, we also tested cases with low and intermediate radiogenic heat 

production (Table 4). 

The effects of surface processes are explored in 9 additional experiments by varying the rate of 

erosion across the collisional orogen. We applied enhanced denudation rates acting on the flank of 

the mountain range facing the foreland basin, simulating fast erosion typical of tropical areas (e.g., 

Beaumont et al., 2001; see Appendix). The sedimentation rate is held constant, implicitly assuming 

an efficient redistribution of sediments by riverine transport perpendicular to the modelled 2D 

section. 

 

3.1 Reference set of Experiments: Effects of the U.U.C and L.U.C strength in hot orogens. 

The style of collision and metamorphic rock exhumation is affected by both the relative and 

absolute viscous strength of the L.U.C. and U.U.C. (Fig. 2 and Fig. S.2). In this set of numerical 

experiments, the erosion rate is kept constant and is active only if the surface topography is above 

the sea level. The rate of erosion is low (0.312 mm yr
-1

) and topography is reduced mostly by 

gravitational spreading. It is possible to distinguish two broad classes of collisional styles that differ 

for the flow direction of the L.U.C. material and the integrity of the upper plate: symmetric and 

asymmetric (Fig.2). The principal characteristics are: 

 Symmetric style orogens features unidirectional material flow, in which the material of the 

L.U.C. intrudes into the upper plate in between the upper and lower crust. Intrusion is 

accommodated by the downward flexure of the upper plate lithospheric mantle, which 

results in a double-vergent orogen. In general, these numerical simulations are associated 

with the development of a wide orogenic plateau.  

 Asymmetric style (or wedge shaped, following (Vanderhaeghe, 2012)) orogens features a 

bidirectional material flow, in which the L.U.C. material stops near the suture area (here 

defined as the limit between upper and lower plate material) and then is forced to change its 

direction towards the lower plate foreland due to the high strength of the upper plate acting 

as a backstop. As a consequence, the upper plate experiences a limited deformation due to 

its high viscosity. In case of low L.U.C. viscosity, the incoming material thickens through 

pervasive and diffusive deformation and partially melted rocks tunnel within the thickened 

area. On the other hand, an incoming L.U.C. with high viscosity experiences a corner flow-

like circulation, which yields to an initial upward exhumation of high P-T metamoprhic 
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rocks during the initial stage, and subsequently to a horizontal flow between the 

underthrusting continental crust, and the rigid plastic cold layer at the top. This behaviour 

resembles the conceptual model described in (Platt, 1986, 1993).  

In absence of enhanced erosion, the necessary condition for developing asymmetric orogens relies 

on the U.U.C. strength that must be able to bear the stresses arising during the collision (Faccenda 

et al., 2008, 2009; Warren et al., 2008). As shown in Fig.2, this condition requires high values of 

ΩU.U.C. = 100. Burial and exhumation processes depends mainly on the L.U.C. strength, but in some 

particular cases even the rheology of the U.U.C. has a key role (e.g., in K7 (ΩU.U.C.=1, ΩL.U.C.=100) 

and K8 (ΩU.U.C.=10, ΩL.U.C.=100), respectively; see Fig.S2). 

Two representative experiments for both symmetric and asymmetric cases will be briefly described 

to highlight the effects of the relative and absolute strength of both U.U.C. and L.U.C.:  

 

K2 (ΩU.U.C.=10, ΩL.U.C.=1), symmetric: during the incipient stages of the collision, the passive 

margin sediments are detached from the underthrusting continental plate and accreted to the 

collisional margin, forming a thick and highly radiogenic crust that starts melting at about 15 km 

below the surface (yellow and brown-yellow; see Fig.1 for further details). The partially melted 

crust migrates toward the pro-foreland at mid-crustal depths facilitating the detachment and 

overthrusting of the incoming upper crust (Fig.3 a-b). At the same time, the partially melted 

material slowly migrates towards the retro-foreland and, after the bending of the upper plate, starts 

tunneling through the U.U.C. forming a plateau (Fig.3 c-d). This mode of collision continues till the 

end of the simulation. The distribution of partially melted rocks and the position of the orogenic 

plateau shifts toward the pro-foreland with increasing ΩU.U.C., reflecting a stronger resistance to 

deformation of the upper plate (see Fig.2, in particular K1 and K2). The exhumed rocks register 

low-to-medium peak metamorphism (2-5 kbar, 200-500 °C), and no high-grade metamorphic rocks 

are exhumed to the surface (Fig.4a-b). The exhumation is mainly driven by the melt buoyancy and 

by the erosion, which is low and constant through all the orogen. As such, the partially melted layer 

remains thermally insulated by the overlying low-grade rocks and its thickness progressively 

increases.  

 

K7 (ΩU.U.C.=1, ΩL.U.C.=100), symmetric: During the initial stages of the collision, the orogen is 

asymmetric, with the lower plate capable of supporting collisional stresses, and high-grade 

metamorphic rocks that are extruded via corner-flow within the lower plate (Fig.5 a-b). 

Subsequently, the relatively weak U.C.C. starts deforming and thickens in two distinct phases: an 

initial phase of intrusion and tunneling of the partially melted material, followed then by the 
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overthrusting of the L.U.C. material over the U.C.C. that generates a symmetric orogen with 

extrusion of high grade rocks (which achieve a temperature T >700°C during the metamorphic 

peak)in both flanks of the plateau. As collision continues, the hot L.U.C. migrates progressively 

toward the retro-foreland causing an asymmetric distribution of the partially melted material (Fig. 

5c-d). On the other hand, if the strength of the U.U.C. is higher, the partially melted rocks 

redistribute symmetrically across the inner part of the orogen (Fig.2, K8 (ΩU.U.C.=10, ΩL.U.C.=100), 

in particular). The exhumed rocks show homogeneous high temperature (~650-700 °C), and the 

peak temperature is achieved at low-intermediate pressures (Fig.6 a-b). Only during the initial stage 

of the collision the high temperature rocks record high pressures (see Fig. 6b and Fig 6e). The 

timing of the metamorphic peak systematically increases toward the retro-foreland (Fig. 6c). The 

preferential migration of the hot materials toward the upper plate has implication on exhumation 

processes, tectonic processes and topography evolution (see Fig. 5 b-d, Fig 6f). In particular the 

foreland basin initially migrates toward the lower plate direction, then toward the upper plate 

direction.   

 

Test K6 (ΩU.U.C.=10, ΩL.U.C.=100), asymmetric: (Fig.7) high-grade metamorphic rocks are extruded 

via channel flow in the lower plate flank of the orogen during the initial stages of the continental 

collision. Subsequently, diffusive buckling takes place within the incoming upper crust which then 

is overthrusted above the partially melted channel. The processes of exhumation is inhibited, and 

the only rocks displaying peak metamorphism at high temperatures (650-700 °C) and moderate-to-

high pressures are localized in the inner part of the plateau (Fig.8c). 

 

Test K9 (ΩU.U.C.=100, ΩL.U.C.=100), asymmetric: (Fig.9) both L.U.C. and U.U.C. are strong enough 

to bear the collisional stresses. The L.U.C. is under-thrusted at high-depths down to the suture area 

where it decouples from the lower crust and experiences pervasive partial melting. The buoyant 

partially melted rocks move toward the lower plate foreland, being channelized between the cold 

and rigid top of the orogenetic building, and the incoming L.U.C.. The channel flow that is 

generated in such conditions persists through the remaining part of the simulation, and the 

exhumation of high-grade metamorphic rocks is achieved both in the plateau and in the orogenic 

front (see Fig. 10 d and f). During the lateral migration of the hot channel, the uppermost part of the 

orogen locally experiences extensional deformation that migrates toward the foreland, aiding the 

exhumation of high-grade domes. The partially melted rocks migrate at depths through a linear and 

non-chaotic channel flow that accommodates most of the convergence. The peak temperature is 

reached during exhumation, which can be divided in two stages (see Fig. 9 a-d): 1) Heating and 
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decompression; 2) quasi-isobaric cooling. The increase of temperature during the decompression is 

a consequence of shear heating, due to the high strain rate of the weak partially melted area. The 

peak pressure recorded by exhumed rocks decreases from the suture area towards the lower plate 

foreland (e.g.,  The rocks displaying the highest peak pressure (20 kbar, 650-700 °C) are exhumed 

during the initial stages of the collision (30-40 Myrs), while those exhumed at later stages record 

progressively lower peak pressures (Fig.10b,e). The velocity of the partially melted rocks varies 

along the horizontal direction, ranging from 3 to 7 cm yr
-1

 (i.e., 1.2 to 2.8 times the convergence 

rate). 

 

3.2 Effect of enhanced erosion 

Each experiment of the reference set was performed again applying enhanced erosion on the 

orogenic front (Table 3). The enhanced erosion is active in an area limited by the foreland 

topographic minimum and the maximum height achieved by the orogeny (see Table 3 and Section 

A4 in Appendix). Enhanced erosion promotes the exhumation of high pressure metamorphic rocks 

(peak P ~20 kbar) near the suture zone. Furthermore, it affects the style of the collisional orogen 

(e.g., K7strong (ΩU.U.C.=1, ΩL.U.C.=100) and K8strong (ΩU.U.C.=10, ΩL.U.C.=100)), that passes from 

being symmetric to asymmetric due to the removal of the accreted material in the foreland (Fig.11, 

Fig.S.3). Erosion exerts an indirect control on the thermal state of the orogen: it removes material 

reducing the thickness of crust (limiting the effect of the radiogenic heat production) and cools the 

orogen generating fast exhumation of the hotter inner part of the orogen. As a consequence, the 

amount of melt is significantly lower with respect to the reference set of numerical experiments 

(Fig.2 and Fig.11). As erosion rates linearly increase with the height (H, km) of the orogen, the 

cooling effect increases with ΩL.U.C, the strength of the orogen. Next, we briefly describe the 

evolution of one representative model displaying such asymmetric orogen: 

 

K7strong (ΩU.U.C.=1, ΩL.U.C.=100): Similarly to his reference counterpart (K7), the initial part of 

the simulation is characterized by the accumulation of the sediments from both the oceanic plate 

and the passive margin. Subsequently, a partially melted channel forms and extrudes in the lower 

plate foreland. The collisional orogen is narrower than the counterpart without enhanced erosion. 

Temperatures are lower, and the amount of melt produced is limited within the orogen (Fig.12 a-d). 

Despite this, the exhumed crustal units record high temperatures. The youngest rocks are exhumed 

near the suture zone and register the peak temperature at high pressures (650-700 °C, 24-25 kbar, 

Fig.13a and Fig.13d), while older rocks are exhumed mainly in the lower plate flank of the orogen 

(600-650 °C, 10-12 kbar; Fig.13b,e ).  
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3.3 Radiogenic Heat Production 

We tested the effect of low radiogenic heat production by decreasing Hr of the sedimentary rocks 

from 5 μW/m
3 
to 3.5 or 1.5 μW/m

3
 . As for the reference set of experiments, the erosion rate is low 

and constant. Lowering these values has several first order effects on the numerical experiments. 

 

 Hr = 1.5: There are two modes of collision (both asymmetric) depending on the L.U.C. strength: 

coupled and decoupled (i.e.,  Most of the numerical experiments are in the latter category, and are 

characterized by a high or intermediate value of ΩL.U.C. On the other hand, the experiments with the 

lowest viscosity contrast (ΩL.U.C. = 1) exhibit a coupled, asymmetric collisional style with low 

production of partially melted rocks and no exhumation of high-grade metamorphic rocks (Fig.14 

and Fig. S4). The evolution of a fully decoupled collisional orogen results in a complex pattern of 

exhumation. This can be seen for example in test K4r1 (ΩU.U.C.=10, ΩL.U.C.=1) (Fig.15), where the 

lower plate decouples from the upper plate and starts to rollback after the onset of the continental 

collision. Slab rollback triggers massive upwelling of the asthenosphere that is in direct contact with 

the orogenic building (see Fig. 16a,b). As a consequence, heat flow increases, triggering melting of 

the lower orogenic crust which starts to move upward forming a dome of high-grade metamorphic 

rocks (750-800 °C, 10-20 Kbar). The mixing of cold and hot material yields a complex 

metamorphic surface pattern featuring several tectono-metamorphic discontinuities (see Fig. 

17a,b,d,f). The L.U.C. experiences crustal scale faulting with blocks that are piled in the orogenic 

front. The burial and exhumation processes are complex: the high deformation in the frontal part of 

the orogen and the continuous extension in the adjacent crustal units produce highly diachronic 

metamorphism (Fig. 17c). 

 

Hr=3.5: the experiments with low ΩL.U.C feature the same characteristics as those of the reference 

set of tests (Fig. 2), except for delayed U.U.C deformation, production of partially melted rocks and 

timing of metamorphic rock exhumation (Fig.15 and Fig. S5) (Faccenda et al., 2008). Intermediate 

L.U.C. strength shifts the mode of collision from fully decoupled to asymmetric style (Figs. 14 - 15). 

 

4 Discussion 

In our numerical experiments we have not considered separation of the melt phase from the solid 

matrix, which would affect the rheological behaviour and the buoyancy of the extruding mid-crustal 

channel (Gerya et al., 2008; Faccenda et al., 2009; Sizova et al., 2010, 2014; Gerya and Meilick, 

2011; Vogt et al., 2012). Furthermore, melting reactions are parameterized (Table 2), while a self-
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consistent approach where the physical properties and melt fraction of stable mineral aggregates are 

computed as a function of the local P-T conditions (e.g., (Connolly, 2005, 2009)) is envisaged for 

future developments of the present study. Although displaying different viscous behaviors in several 

tests, the upper crust of the upper and lower plates is assumed to be homogeneous, neglecting 

structural and compositional heterogeneities that could affect both metamorphic and tectonic 

patterns(Reuber et al., 2016). The employed numerical domain and the permeable bottom boundary 

condition do not allow reproducing slab interaction with major phase transitions of the mantle 

(Faccenda and Dal Zilio, 2017) and/or slab breakoff which has been shown to be important when 

studying exhumation processes(Duretz et al., 2011) .  

Taking into account these limitations, our results give numerous insights for deciphering 

metamorphic patterns in collisional orogens. When the upper crust is weak, the high-grade 

metamorphic rocks starts tunnelling beneath the thickened crust, and they remain thermally 

insulated from the cold surface, leading to a thickening of the partially molten layer and no 

exhumation. This promotes gravitational instabilities and small-scale convective currents within the 

hot channel that super-impose over the large-scale lateral migration toward the upper and lower 

plates (e.g., Test K2, Fig. 3, and Test K6, Fig.6). These results are consistent with those of where the 

deformation of the upper plate and associated shift of tectonic and metamorphic activity toward the 

upper plate occurred mainly when using a weak lower crust rheology (wet quartzite flow law). 

Asymmetric collisional zones associated with strong-intermediate L.U.C. rheology features a 

crustal flow pattern that resembles the corner flow model of (Platt, 1993),promoting the exhumation 

of high-grade metamorphic rocks. Such material circulation occurs when the upper plate acts as an 

efficient backstop (K7-K9, Fig.6a,b and Fig.10a,b), and a continuous mode of exhumation is 

obtained when enhanced erosion is applied (Fig.13). Orogenic spreading during the ongoing 

collision is driven mostly by the partially melted rocks that absorb all the deformation and 

propagate the structure toward the lower plate.  

The numerical experiments with high radiogenic heating of the passive margin sedimentary rocks 

were designed to explore the evolution of Phanerozoic hot orogens (i.e., Himalaya), and are not 

representative of Proterozoic-Archean hot orogens (e.g. (Sizova et al., 2014, 2015) or ultra-high 

temperature orogens (Chardon et al., 2009) that require a hotter lithosphere and/or a pervasive 

interaction between mantle magmatic processes and juvenile continental crust production. Our 

results are directly comparable with the numerical experiments provided by (Beaumont et al., 2001, 

2004, 2006) and (Jamieson et al., 2004)which however are crustal scale kinematic models that do 

not take into account an initial oceanic subduction stage (responsible for the formation of a pre-

collisional subduction margin and accretionary prism) and where the continental crust is forcibly 
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subducted down to the middle of the orogen. In our models the collisional orogen progressively 

thickens, displaying an asymmetric evolution of the metamorphism and deformation toward the 

lower plate that can eventually become symmetric with a progressive shifting of the deformation 

and exhumation towards the upper plate. In the latter case, the partially melted material 

preferentially tunnels the upper plate and we observe a continuous redistribution of material 

between the two plates (e.g. K1-K2, K4-K5, Fig.2).  The numerical experiments with crustal 

channel flow are analogous to the result by (Beaumont et al., 2001, 2004, 2006)and (Jamieson et al., 

2004), reproducing a similar topographic evolution, but differ with respect to the metamorphism. 

When the incoming L.U.C. crust is weak, the channel flow does not exhume toward the surface 

even when applying a strong surface erosion in the foreland flank of the orogen. We observe a 

thickening of the partially melted layer with time and development of convective motions inside 

that area. On the other hand, the numerical experiments with a strong L.U.C. display channel flow 

eventually extruding at the surface and thus exhuming large amounts of high temperature rocks with 

metamorphic peak conditions of T = 650-700 °C, P = 6-10 kbar.  

The effect of enhanced and focused erosion changes with the upper crust rheology, and in general 

favours cooling and narrowing of the orogen. For a weak or intermediate L.U.C. viscous rheology, 

enhanced denudation rates promote exhumation of high-grade rocks near the suture zone, and 

medium-grade rocks in the lower plate flank of the orogen. When the rheology of L.U.C. is strong, 

the overall architecture of the orogeny switches from symmetric to asymmetric as the accreting 

material is efficiently removed (compare tests K7-8strong, Fig. 11, with K7-8, Fig. 2), creating well-

organized patterns of metamorphic rock exhumation both in space and time.  

The radiogenic heat productivity controls the thermal structure of the orogen and its rheological 

behaviour, shifting the modes of collision from fully decoupled orogens toward double sided hot 

orogens with increasing Hr. This transition is systematic: the decoupling between the upper and 

lower plate is usually associated with weakening of the subduction channel due to the insertion of 

relatively weak upper crustal material (e.g.,(Faccenda et al., 2009)). Conversely, when the crustal 

prism is hotter, the upper crust is weaker and more easily detached from the subducting lower plate 

before entering the subduction channel. Thus, the radiogenic heat productivity has a first order 

control on the final style of the collisional orogen. 

The evolution of our experiments resembles the conceptual model drawn by (Vanderhaeghe and 

Teyssier, 2001; Vanderhaeghe, 2009, 2012). During the initial stage of continental collision, a thick 

orogenetic root forms near the suture zone, which undergoes pervasive melting. As function of the 

rheology and radiogenic heating there are possible paths that the collisional system can follow. The 

first case features coupled collisional orogens and the collapse by gravitational spreading during the 
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ongoing collision, with lateral migration of the partially melted material and the crust that 

distributes over a wider area. In the second case, the initially thick orogeny is thinned by decoupling 

of the upper and lower plates, followed by slab rollback and asthenosphere upwelling. Decoupling 

is promoted by the insertion of relatively weak crustal material within the subduction channel, 

which is then intruded by theasthenospheric mantle. The thermal history of the orogen is controlled 

mainly by the internal heat production in the first case, while in the latter case by the heat flux from 

the asthenosphere. 

 

4.1 Comparison with natural orogens 

The numerical experiments are here compared with natural orogens. Despite this study mainly 

focuses on the tectonic and metamorphic evolution of large hot orogens, we will also discuss other 

natural cases with a colder thermal structure.  

 

4.1.1 Himalayas: The Himalayan range is the product of the collision between India and Eurasia, 

and features a complex tectono-metamorphic history(Yin and Harrison, 2000; Yin, 2006). The 

India-Asia collision occurred about 50 Myrs ago (Capitanio et al., 2010; van Hinsbergen et al., 

2011; Jagoutz et al., 2015), with the Indian plate that is currenty moving northward at rates of 4-5 

cm yr
-1 

(Copley et al., 2010). However, as the Indian plate is indenting Asia, the relative velocity 

between India and south Tibet is 1.7-2.5 cm yr
-1

 (Guillot et al., 2003; Ader et al., 2012) , which is 

consistent with convergence rate adopted in our simulations. The high-grade metamorphic rocks 

were subjected to high temperatures (~700 °C) and partial melting(Imayama et al., 2012; 

Montomoli et al., 2015; Iaccarino et al., 2016). These rocks are confined within the GHS that is 

bounded by two major discontinuities: the South Tibetan Detachment on the north and the Main 

Central Thrust on the south (Hodges, 2000; Yin and Harrison, 2000; Yin, 2006). Over the last 

decades, several exhumation models were proposed to explain the exhumation of these high-grade 

migmatitic rocks (Grujic et al., 1996; Nelson et al., 1996; Chemenda et al., 2000; Beaumont et al., 

2001; Kohn, 2008; Montomoli et al., 2015). One of the most popular model consider the GHS as a 

coherent unit that exhumed from deep crustal levels by channel flow. This type of flow would be 

driven by lateral pressure gradients that forms in response to the highly focused erosion on the 

southern flank of the Himalayas (Beaumont et al., 2001). This paradigm was recently questioned by 

(Kohn, 2008; Iaccarino et al., 2015; Wang et al., 2015; Carosi et al., 2016) that have highlighted the 

highly diachronic exhumation patterns of the metamorphic rocks and the existence of several 

tectono-metamorphic discontinuities within the GHS. The new exhumation model proposed for the 

GHS requires continuous under-thrusting of different slices of Indian continental crust, which 
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progressively experience burial, partial melting and exhumation at the surface as high-grade 

metamorphic rocks(Montomoli et al., 2015; Carosi et al., 2016) . Exhumation occurs at first near 

the South Tibetan Detachment, and subsequently shifts toward the Indian foreland with crustal units 

displaying lower P-T metamorphic peaks. This leads to the activation of several shear zones with 

progressive younging of the deformation toward the Indian plate. 

Albeit our simulations could not resolve entirely such a complex structural pattern, the models 

characterized by an asymmetric collisional zone in conjunction with strong erosion mimic several 

of the observed features, i.e. (i) the emplacement of an inverted metamorphic sequence with high-

grade metamorphic rocks thrusted above low-grade material, (ii) the presence of a partially melted 

channel to mid-crustal depths as indicated by bright seismic reflectors (Nelson et al., 1996) which 

occasionally exhume at the surface with extension and doming (Fig.10, Fig 13, Fig18). In principle, 

all the numerical experiments that show channel flow of the partially melted material could be 

representative of the Himalayan range. However, there are several differences that could be not yet 

resolved. Asymmetric collision zones without strong erosion are characterized by a higher (in case 

of high L.U.C. viscosity) or a wider (in case of low L.U.C. viscosity) orogen with respect to the 

Himalayan belt. The numerical experiments that experience long lasting channel flow present a 

wide orogenic plateau with a homogeneous metamorphic pattern, e.g. Test K9 and Test K6. On the 

other hand, the numerical simulations with surface metamorphic patterns similar to those recorded 

in the Himalayan range (e.g. K1, K2 and K3, and their twin experiments with applied enhanced 

erosion) do not feature the exhumation driven by channel flow. Furthermore, the displacement of 

the hot partially melted rocks seems to be insensitive to the enhanced erosion. This could be the 

consequence of our relatively low erosion rates, but as pointed out by (Yin, 2006), the erosion rate 

employed by (Beaumont et al., 2001) is too high when compared to the available data (below 1 

mm/yr).  

In our numerical experiments, the exhumation is more coherent and the diachronic pattern is not 

reproduced. This poses several questions on what are the conditions to generate extrusional shear-

zones that drive the diachronic exhumation processes, and which is the proper length scale to 

address such problem. Our simulations, although not fully representative of the Himalayan range 

evolution, indicate that the focused enhance erosion on the orogenic front that is often invoked to 

explain the exhumation of the GHS (Beaumont et al., 2001, 2004; Jamieson et al., 2004) is not a 

necessary condition, while the rheology of the upper crust seems to exert first order controls on the 

metamorphic patterns. 

 

4.1.2. Bohemian Massif 
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The Bohemian massif is one of the products of the Paleozoic Varisican Orogeny (400-300 Ma). The 

Varisican Orogeny was the consequence of the convergence between Gondwana and Laurasia plates, 

whose margins were a complex collage of continental and oceanic domains. In such scenario, the 

Bohemian massif was the result of the convergence between two continental domains within this 

plates framework (Schulmann et al., 2009, 2014; Kroner and Romer, 2013). 

The history of the Bohemian massif started during the Devonian with the subduction of the Saxo-

Thuringian ocean beneath the Teplà-Barrindian terrain (a small and thinner transitional domain of 

the eastern Brunia microplate) in the western area of the Bohemian massif. The eastern verging 

subduction of the oceanic plate triggered magmatism generating a small magmatic arc, with 

associated a thinner back arc domain (Teplà-Barrindian terrain, Moldanubian domain) (Schulmann 

et al., 2009, 2014). During the collision of the Saxo-Thuringian and the Teplà-Barrindian 

continental terrains, the continental crust was subducted to high depths reaching pressures of 20-25 

kbar and temperatures >800 °C. After their burial, these rocks rose and relaminated at the base of 

the Teplà-Barrindian terrain. Such hot material started to intrude and spread laterally within the 

upper plate as a consequence of its low viscosity (Schulmann et al., 2009, 2014). The orogenic 

wedge is subsequently indented by the eastern Brunia microcontinent producing a multiscale 

folding of the orogenic infrastructure and exhumation of the hot Saxothuringian material with 

different mechanisms. In the south, both the lower and middle orogenic crust were exhumed by 

diapirism in the inner area of the Moldanubian domain, and by channel flow directed toward both 

the Brunia continent and the Saxo-Thuringian suture (Schulmann et al., 2008; Franěk et al., 2011). 

In the northern area, exhumation occurred with the rising of a granulitic dome (the Orlica-Śnieżnik 

gneissitic unit) against the Brunia lithosphere that acted as a backstop (Chopin et al., 2012)). 

Despite our numerical models are not fully representative of the complex scenario and geometry 

characterizing the Bohemian Massif, they can be helpful to understand the processes of mass 

transfer between the lower and upper plates. The stable subduction of the continental crust down to 

mantle depths is indicative of a strong L.U.C., which can experience high pressure (18 kbar) and 

high temperatures (> 700 °C) conditions (e.g., K7, fig 5-6). Subsequently, these rocks tend to rise 

thanks to the buttress offered by the upper plate lithospheric mantle and to the buoyancy related to 

the presence of melt. If the upper plate crust is relatively weak, the high metamorphic grade 

material starts to intrude and migrate laterally through the upper plate. The relative propagation of 

the material within the upper plate is controlled by the strength of the U.U.C.. Our experiments 

indicate that the deep granulites can be transferred toward the upper plate thanks to the melt 

weakening effect. The exhumation of the high-grade rocks associated with the indentation of the 

stiff Brunia micrcontinent could not be reproduced in detail, as this would require a heterogeneous 
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U.U.C. composed by a thin and weak portion (the Devonian backarc, arc and forearc crust) 

juxtaposed with a strong unit (the Brunia microcontinent). Nevertheless, such an exhumation 

process can be seen in models with a stiff U.C.C. (e.g., K9, Fig. 9-10), where the stiff upper plate 

forces the upwelling of high-grade metamorphic rocks toward upper-middle crust depths.  

 

4.1.3 Eastern and Central Alps: Alps tectono-metamorphic history is complex both in space and 

time. The collisional style and the geometry of the orogen systematically change from the west to 

the east, as a function of the coupling between upper and lower crust of the upper plate(Rosenberg 

et al., 2015; Rosenberg and Kissling, 2013; Liao and Gerya, 2017). The different collisional styles 

are also characterized by different metamorphic and exhumation patterns: high-pressure rocks are 

extensively exhumed in the western portion of the collisional chain where the lower crust of the 

Adria margin is steeply dipping and likely acted as a backstop for the incoming crust of the 

European plate. Medium-grade metamorphic overprint widely affects units in the central Alps 

where the Adria crust overthrusted the European plate (e.g.,(Burg and Gerya T. V., 2005) ). 

Following (Rosenberg et al.,2015.; Rosenberg and Kissling, 2013), the along-strike variability of 

the Alpine collisional zone could be interpreted as due to variations in the viscous strength of 

L.U.C.. Here we further suggest that even differences on the strength of the Adrian Plate (U.U.C.) 

could likewise explain this structural and metamorphic variability (except for the Western Alps). 

The numerical experiments with low L.U.C. and U.U.C. viscosity and medium to high Hr of the 

sediments could be representative for the more symmetric structure of the eastern-central Alps  (i.e., 

K1-K2, K1r2-K2r2, Fig 2,3,4). The U.U.C. strength controls the collisional strain partitioning 

between the two plates and the eventual tunnelling of L.U.C. materials through the upper plate. As 

such, a weaker U.U.C. in the eastern-central Alps could explain the intruding European crust within 

the Adria crust . A relatively weak L.U.C. causes thickening of the crust since the initial stage of 

continental collision which inhibits the burial and exhumation processes (e.g. K1, see Fig.3-4): in 

that case, the metamorphism of the surface rocks records regional heating caused by the hot interior 

of the orogen. The degree of regional metamorphism depends on the radiogenic heat production, 

and as consequence the recorded peak temperatures in K1r2 and K2r2  (350-400 C, 4-5 kbar) are 

lower than in the reference set of experiments.  

 

4.1.4 Northern Apennines: this mountain chain formed in response to the subduction of the Adria 

plate’s western margin. Over the last 25-30 Myr, the Adria plate rolled back toward the east, leading 

to the eastward migration of the Apenninic range and to the opening of the Tyrrhenian basin where 

the thinned and delaminated upper crust of Adria was interested by magmatism and exhumation of 
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high-grade metamorphic rocks(Jolivet et al., 1998; Brun and Faccenna, 2008; Vignaroli et al., 

2009) . Nowadays, the compressional front is located in the Po plain and along the Adriatic coast, 

while extensional tectonics is active within the mountain range and is characterized by high- and 

low-angle normal faults that dissect older sets of thrusts(Collettini and Barchi, 2004; Pauselli et al., 

2006) . 

The fully decoupled numerical experiments obtained with low radiogenic heat productivity of the 

passive margin sediments well reproduce the Northern Apennines tectonic evolution, in particular 

K4r1. This is consistent with the cold thermal structure of the orogen(Pauselli et al., 2006) , which 

could reflect the evaporitic and calcareous (low contents in radiogenic elements) thick sedimentary 

units that have accumulated over the Adria plate during the Mesozoic and Cenozoic (Speranza and 

Chiappini, 2002; Carminati et al., 2013) . The model results are also consistent with decoupled 

collision systems described in (Faccenda et al., 2009), and show a lateral migration of the mountain 

chain followed by the collapse of the adjacent delaminated upper crust. The inner domain features 

low lithospheric thickness, asthenospheric upwelling, continental magmatism, and exhumation of 

high-grade metamorphic rocks due to extensional deformation, while the foreland domain is much 

colder and displays a series of thrusts that facilitate upper crust delamination. 

 

Conclusions 

We systematically varied the viscous strength of upper and lower plate upper crust, the radiogenic 

heat productivity of the sediments and the efficiency of surface denudation processes to explore 

their relative contribution on both the style of collision and exhumation patterns of metamorphic 

rocks. The main results can be summarized as follows: 

 

1) the viscous strength of the U.U.C. controls the strength of the upper plate and the efficiency of 

the propagation of L.U.C. material through it. A relatively weak upper crust favours the migration 

of partially melted L.U.C. material towards the upper plate producing a wide orogenic plateau. 

 

2) the viscous strength of the L.U.C. is the most important factor controlling the exhumation of 

high-grade metamorphic rocks both in the inner portions of the orogenic plateau and along its flanks. 

High viscous resistance prevents diffusive crustal thickening in the lower plate, and promotes stable 

under-thrusting of L.U.C. down to the orogenetic prism. Channel flow-like behaviour of the 

partially melted L.U.C. can be a short-lived or continuous feature: the short-live channel flow 

extrusion usually stops as soon as the L.U.C. crust starts thickening by diffused deformation in the 

pro-foreland. This inhibits the burial and exhumation of incoming L.U.C. and insulates the partially 
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melted rocks from the external environment. The result is a thickened and cloudy-shaped partially 

melted area dominated by small-scale convective currents. 

 

3) Enhanced erosion favours the exhumation of high-grade metamorphic rocks, limits the amount of 

L.U.C. materials intruding the upper plate and results in smaller orogens. 

 

4) High radiogenic heat production of passive margin sediments is crucial for the formation of hot 

orogens. By increasing radiogenic heating there is a systematic shift of the collision modes from 

fully decoupled to symmetric orogenic styles. Low radiogenic heat production and intermediate-

strong L.U.C. rheology promote decoupling even at low convergence rates. 

 

5) The experiments featuring asymmetric collisional style and extrusion of high-grade metamorphic 

rocks are suitable for comparison with the Himalayan range. However, the sequential burial and 

exhumation of these rocks along several regional scale shear zone (e.g. High Himalayan 

Discontinuity) as recently described could not be reproduced in detail. We interpret this discrepancy 

as due to the employed numerical resolution (1km) and to other un-accounted for localization 

processes. Nevertheless, our numerical experiments show that one of the paramount condition to 

achieve channel flow-like behaviour and exhumation of high-grade metamorphic material is the 

constant and stable under-thrusting of the continental crust, subsequent detachment and partial 

melting at depths. Focused erosion is not strictly necessary for exhumation at the surface of the 

high-grade metamorphic rocks. 

 

6) Our numerical experiments give insights about the mass transfer between upper and lower plates 

in hot orogens, which is a process that shaped the Bohemian massif. Furthermore, the exhumation 

of the Orlica-Śnieżnik dome is consistent with that observed in models characterized by a stiff 

U.C.C., providing a coherent framework through which is possible to generate the conditions of 

exhumation of granulite facies within the dynamics of a wedge shape orogen.  

 

7) Results from models with a low to intermediate radiogenic productivity (yielding colder and 

stiffer orogens) account for the high variability of the Phanerozoic collisional styles observed on 

Earth (e.g., Alps and Apennines), highlighting the role of the upper crust strength and thermal 

evolution on the overall evolution of the orogenetic system. 
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Appendix 

 

A1. Fundamental equations 

A.1.1 Stokes and Continuity Equations 

 

The conservation of mass and momentum equations are solved together using the Boussinesq 

approximation. Hence, the continuity equation is: 

A.1)
   

  
 

   

  
   

where vx and vz are the component of the velocity field. 

The Stokes equation can be expressed in the following way (we used the Einstein notation): 

 

A.2)
   ii

  
 

   i 

  
 

  

  
     ,T, ,     

where   ij is the ij component of deviatoric stress tensor, P is the total dynamic pressure, gi is the 

gravity acceleration component along the considered direction. The rock density depends on the 

chemical composition, temperature, pressure and the volumetric degree of melting. The solid rock 

density is: 

A.3)  T,  = 
 
                          

where T0 and P0  are the standard conditions at which the reference density  0(C) (which depends on 

composition) is measured, α  is the thermal expansivity and    the compressibility. 

A.1.2 Energy Equation 

The Energy conservation equation is: 

 

   A.4)   c
 

 T

 t
  

   

  
 

   

  
          

  A. 5a)   
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 A.5b)    
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A.6b)  =  xx  xx   zz  zz     xz  xz 

 

where cp is the heat capacity of the material, DT/Dt is the Lagrangian time derivative of temperature, 

qx and qz are the horizontal and vertical components of the heat flux, k(T,P,C) is the thermal 

conductivity which depends on composition, pressure and temperature, Ha  is the adiabatic heat, Hs 

is the viscous shear heating, Hr is the radioactive heat production which depends only on the 

composition of the rock considered. Latent heat of melting and crystallization reactions is 

considered as described below (see Partial Melting for further details). The thermal boundary 

conditions are: symmetry boundary condition on left and right boundaries (no heat flux), constant 

temperature on the top boundary and a basal heat flux at the bottom boundary. 

A.2 Partial Melting 

Partial melting is handled by using the parametric equations of the dry liquidus and wet solidus 

reported in Table 1. The volumetric degree of melt, M, is computed as:   

 

A.7) ifT Tws, =  

    ifTws T Tdl, =
   ws

 dl  ws
 

    ifT Tdl, =  

where Tws and  Tdl are respectively the temperature of the wet solidus and dry liquidus at a given 

pressure. The latent heat is taken in account by augmenting the heat capacity ( Cpeff )  and the 

thermal expansion ( αeff ) 

A.8)  p
eff
= p  

 
  

  

  
    

A.9)  eff=α   

          

 
 

Where QL is the latent heat of melting of the rock. 

Density, thermal conductivity, heat capacity, thermal expansivity and compressibility of melt 

bearing rocks with degree of partial melting 0 M 1 are computed as: 

A.10) eff= qsolid         molten    

where q
solid

 and qmolten correspond to the physical property of the solid and melt phases. 
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A.3 Rheological Model 

I2VIS accounts for visco-plastic deformation. The dislocation creep viscosity as function of the 

second invariant of the strain rate tensor       is: 

A11)       
 

 
  

 

     

   

     
      

   
  

where         
 

      
 

 , Ea ,Va, R and T are the activation energy, activation volume, gas 

constant and temperature.  

The diffusion creep viscosity is indirectly computed as (Turcotte and Schubert, 2014)) : 

A.12)            
      

   
  

   

 

where        and      are respectively the stress transition value (which is a constant value that only 

depends on the rocktype) and the second invariant of the deviatoric stress tensor. 

The effective viscosity is calculated as: 

A.13)  creep  
 

 disl
 

 

 diff
 

Plasticity is employed with the Drucker-Prager yielding criterion: 

A.14)                                   

where   is the rock cohesion(  a), φ is the internal friction angle and λ is the pore fluid pressure 

factor. The maximum viscosity is computed as: 

A.15)       
      

     
 

Thus the effective viscosity is:  

A.16)                         

Changing the reference dislocation creep viscosity    will thus affect the relative predominance 

between plastic deformation over viscous deformation. 

The presence of melt is taken into account by setting λ =0.4 and by scaling the creep viscosity with 

the parametric equation introduced by : 

A.17)  pm        exp     
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where ηpm is the modified creep viscosity, a is an empirical parameter (-28+/-3), and M is the 

volumetric degree of melt. 

In all numerical simulations herein presented we have not tested any plastic strain weakening 

criterion. Shear localization is given by the rheological contrast between weak and strong rheology, 

or self develops as consequence of the localized production of shear heating(Burg and Schmalholz, 

2008)  

A.4 Transport Equation 

Erosion/sedimentation processes are simulated according to the transport equation(Faccenda et al., 

2008; Chen et al., 2013). This equation is not conservative, and defines the interface between the 

air/water layer and underlying rocks. At each timestep, the topography is computed according to: 

A.18) 
  

  
=v    

  

  
    v  

where z is the elevation of the topography, vz and vx  are the velocity components at the interface, vs 

and ve  are, respectively, the velocity of erosion and sedimentation. In order to activate erosion or 

sedimentation processes we set a base level (19 km), above which the velocity of erosion is non-

zero, and below which the velocity of sedimentation is positive. In some experiments the erosion 

rate is enhanced as a function of the topographic height: 

A.19)   =2v         

where Ve is the standard erosion rate, H is the topography height measured in m (which is measured 

from the water level depth, 20 km), and Ke is the coefficient of erosion rate (measured in yr
-1

). 

Enhanced erosion is applied after 30 Myrs from the beginning of the numerical experiments 

(coinciding with the onset of collision) and within an area defined by the minimum topography 

reached in the pro-foreland basin and the maximum topography recorded in the adjacent orogen.  
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Tables & Figures 

 

 

 

Parameters Sediments 
Upper Crust Lower Crust 

Oceanic Crust Mantle 

Rheology 
‘Wet Quartzite’(a) ‘Mafic Granulite’(a) ‘Plagioclase An75’

(a) ‘Dry Olivine’(a) 

   (Pan s) 
1.97*1017 1.13*1021 4.80*1022 3.98*1016 

n  2.3 4.2 3.2 3.5 

Ea (KJ mol-1) 
154 445 238 532 

 Va (cm3mol-1) 
1 1 1 1 

σtrans(MPa) 30 
0.03 30 30 

C (MPa) 
1 1 1 1 

sinΦ 
0.2 0.6 0.15 0.6 

ρ(kg m-3)(b) 2650(2400)melted 2700 (2400) melted 3000 (2900) melted 3000 (2900) melted 
3300 

α (K-1) 3*10-5 3*10-5 3*10-5 3*10-5 

β(Pa-1) 10-11 10-11 10-11 10-11 

K(c)(W m-1 K-1)       
   

    
                      

   

    
       

        

      
   

    
       

        
      

    

    
       

        

Cp (J Kg-1 K-1) 
1000(1500)melted 1000 (1500)melted 1000 (1500)melted 1000 (1500)melted 1000 

Hr
(b)(μW m-3) 1.5 - 5 

1.5 0.25 0.25 0.022 

 

Table 1: Reference thermo-mechanical parameters. The    of L.U.C. and U.U.C. is increased in order to 

obtain a viscosity contrast (Ω) with r s  ct to th  s dim nts of  ,   and      Radiogenic heating rates are 

varied only for sediments.(a)(Ranalli, 1995).(b) (Turcotte and Schubert, 2014).(c)(Clauser and Huenges, 1995).  
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Phase 
Solidus (K) Liquidus (K) Latent Heat(KJ/Kg) 

Upper Crust and 

Sediments(a) 
P<1200 MPa:889+17900/(P+54)+20200/(P+54)2 

P>1200 MPa: 831+0.06P   

1262+0.09P 
300 

Lower Crust(b) P<1600 MPa:   −  ,   /(P+354)+77,800,000/(P+354)2 

P<1600 MPa: 935+0.0035P+0.0000062P2   (b) 

1423+0.105P 
380 

Oceanic Crust(b) P<1600 MPa:973–70,400/(P+354+77,800,000/(P+354)2 

P>1600 MPa: 935+0.0035P+0.0000062P2 

1423+0.105P 
380 

Table 2: Parametrized dry liquidus and wet solidus (a)(Johannes, 1985; Poli and Schmidt, 2002);(b)(Schmidt 

and Poli, 1998) 
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Parameters Standard Strong 

ve (mm yr-1) 
0.312 0.624 

vs (mm yr-1) 
0.0312 0.0312 

Ke(yr-1) 
0 0.0006 

Timing // 30 Ma 

Table 3: Erosion and sedimentation parameters. The standard set of parameters is active outside the area 

where focused erosion is applied, and in any other numerical experiment. Strong erosion is applied after 30 

Ma the beginning of the simulation between the foreland topographic minimum and the maximum 

elevation reached. 
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Reference Test 
Sediment Hr Test 

Test 
ΩU.U.C ΩL.U.C. 

Test Erosion Test 
Hr

Sediment(μW m-3) 
Test 

Hr
Sediment(μW m-3) 

K1 1 1 
K1strong 

Strong 
K1r1 

1.5 
K1r2 

3.5 

K2 10 1 
K2strong 

Strong 
K2r1 

1.5 
K2r2 

3.5 

K3 100 1 
K3strong 

Strong 
K3r1 

1.5 
K3r1 

3.5 

K4 1 10 
K4strong 

Strong 
K4r1 

1.5 
K4r2 

3.5 

K5 10 10 
K5strong 

Strong 
K5r1 

1.5 
K5r2 

3.5 

K6 100 10 
K6strong 

Strong 
K6r1 

1.5 
K6r2 

3.5 

K7 1 100 K7strong Strong 
K7r1 

1.5 
K7r2 

3.5 

K8 10 100 
K8strong 

Strong 
K8r1 

1.5 
K8r2 

3.5 

K9 100 100 
K9strong 

Strong 
K9r1 

1.5 
K9r2 

3.5 

Table 4: Numerical experiments classified according to the Ω of lower and upper plates. The radiogenic heat 

production for sediments in reference tests and enhanced erosion tests is listed in Table 1. Erosion rates and 

radiogenic heat production rates in the reference set of tests are standard. 
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Fig1: Initial setup and rocktype legend.   

 

Fig2: ΩU.U.C -ΩL.U.C. plot for the reference set of experiments: each figure represents a point in the 

parameter space, and represents the last stage of the simulation (~58 Ma), in the area of interest 

(800x200 km along the x and z directions). Each point is referred in the text as a function of its 

coordinates in the strength space. 

 

Fig3: Evolution of experiment K1 (ΩU.U.C.=1, ΩL.U.C.1). Each panel represents a snapshot of the 

numerical simulation at different stages, and it is made up of: P-T-t paths of particles exhumed at 

the surface (left); composition and isotherms (white number and lines), and position of the selected 

markers (colored diamonds) (upper right); second invariant of the strain rate field (lower right). 

 

Fig4:  etamorphic surface pattern in experiment K1 (ΩU.U.C.=1, ΩL.U.C.1). This set of pictures 

represents the peak metamorphic condition registered by the exhumed markers at different 

timesteps.  a-b-c) Surface exhumation patterns along x and versus Time. a) Maximum temperature 

(Tmax); b) pressure at Tmax (PTmax); c) time of achievement of the peak metamorphic conditions 

(tTmax). d-e-f-) Representative profiles at different stages of the numerical experiment of (from top 

to bottom): x vs Tmax ; x vs PTmax; x vs H (topography). 

 

Fig5: Evolution of experiment K7 (ΩU.U.C.=1, ΩL.U.C.100).  Figure description same as in Fig. 3. 

 

Fig6:  etamorphic surface pattern in experiment K7 (ΩU.U.C.=1, ΩL.U.C.100). Figure description 

same as in Fig. 4 

 

Fig7: Evolution of experiment K6 (ΩU.U.C.=100, ΩL.U.C.=10). Figure description same as in Fig. 3. 

 

Fig8:  etamorphic surface pattern in experiment K6 (ΩU.U.C.=100, ΩL.U.C.=10). Figure description 

same as in Fig. 4 

 

Fig9: Evolution of experiment K9 (ΩU.U.C.=100, ΩL.U.C.=100). Figure description same as in Fig. 3. 

 

Fig10: Metamorphic surface pattern in experiment K9 (ΩU.U.C.=100, ΩL.U.C.100). Figure description 

same as in Fig. 4 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

29 

Fig11: ΩU.U.C -ΩL.U.C. plot for the set of models (Kstrong) with enhanced erosion over the foreland 

flank of the orogeny. Figure description same as in Fig. 2. 

 

 Fig12: Evolution of experiment K7Strong (ΩU.U.C.=1, ΩL.U.C.=100). Figure description same as in Fig. 

3. 

 

Fig13: Metamorphic surface pattern in experiment K7Strong (ΩU.U.C.=1, ΩL.U.C.100). Figure 

description same as in Fig. 4, except for 4.b in which the two white lines represent the spatial 

interval in which enhanced erosion is applied.  

 

Fig14: ΩU.U.C -ΩL.U.C. plot for the set of models (Kr1) with low radiogenic heating rates (Hr
Sediments

 

=1.5 μW/m
3
 ). Figure description same as in Fig. 2. 

 

Fig.15: ΩU.U.C -ΩL.U.C. plot for the set of models (Kr2) with medium radiogenic heating rates 

(Hr
Sediments

 =3.5 μW/m
3
 ). Figure description same as in Fig. 2. 

 

Fig16: Evolution of experiment K4r1 (ΩU.U. .=10, ΩL.U. .100). Figure description same as in Fig. 3. 

 

Fig17: Metamorphism in experiment K4r1 (ΩU.U.C.=10, ΩL.U.C.100). Figure description same as in 

Fig. 4. 
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Highlights 

• We present 2D numerical experiments of post-subduction collision 

• The rheology of the upper crust is systematically investigated 

• The effects of surface processes and radiogenic heating rates were also explored 

• Crust rheology and heat sources affect exhumation patterns and the collisional style  

• Results are compared with natural examples of collisional systems (i.e. Himalaya) 
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