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Abstract 

 

We seek evidence that top performing hedge funds follow a different strategy than mediocre 

performing hedge funds by examining the structure of significant risk factors that explain the out of 

sample excess net returns. Consequently, we examine the out of sample returns of hedge funds to 

determine, first, if hedge funds have outperformed the market in recent years, second, whether top 

funds actually outperform mediocre performing hedge funds and thirdly, whether top funds have a 

different risk profile than mediocre hedge funds and therefore appear to follow a different strategy. 

We find that the risk profile of top quintile performing funds is distinctly different than mediocre 

quintile funds by having fewer risk factors that appear to anticipate the troubling economic conditions 

that prevailed after 2006.  
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I. Introduction 

 

The hedge fund industry continues to attract enormous sums of money. For example, 

BarclayHedge, a hedge fund information provider, reports that the global hedge fund industry has 

nearly $2.5 trillion of assets under management as of December 2014, a 13% increase from the 

previous year.
2
 Yet, due to the comparatively light regulatory nature of the industry, we know very 

little about how these assets are managed or what strategies hedge fund managers pursue. 

We seek evidence that top performing hedge funds follow a different strategy than mediocre 

performing hedge funds by examining the structure of significant risk factors that explain the out of 

sample excess net returns. Consequently, we examine the out of sample returns of hedge funds to 

determine, first, if hedge funds have outperformed the market in recent years, second, whether top 

funds actually outperform mediocre performing hedge funds and thirdly, whether top funds have a 

different risk profile than mediocre hedge funds and therefore appear to follow a different strategy.  

We enhance our investigation by using robust non-parametric techniques. Specifically, we 

employ stochastic dominance tests to determine if the hedge fund industry outperformed the market in 

recent years and whether top performing funds persistently outperform mediocre performing hedge 

funds. As explained more formally later, in portfolio decision making the principle of stochastic 

dominance is superior to the commonly used mean-variance rule since it has the advantage of 

exploiting the information embedded in the entire distribution of stock market returns instead of a 

finite set of moments of the distribution.  Another attractive feature of stochastic dominance is that 

being a non-parametric analysis, statistical inference based on stochastic dominance tests does not 

depend on any asset pricing model or require hedge fund returns to be normally distributed. 

We also employ quantile regressions to investigate the strategies executed by top and mediocre 

performing funds. Unlike normal regression techniques, quantile regressions provide the risk profile 

of hedge fund returns. Specifically, quantile regressions examine the quantile response of the excess 

hedge fund return at say the 25
th
 quantile, as the values of the independent variables change. Quantile 

regressions do this for all quantiles, or in other words, the whole distribution of the dependent 

variable, thereby providing a much richer set of information concerning how the excess return of 

hedge funds response to different sources of systematic risk. To comprehend this huge amount of 

information, we graph the response by quantile of the excess hedge fund return to changes in the 

systematic risk factors. Finally, we examine how the risk profile of top and mediocre performing 

funds change through time by running rolling quantile regressions throughout our sample period from 

January 2001 to December 2012. This allows us to determine how the risk profile of top and mediocre 

performing hedge funds respond as the generally robust economic conditions turn sour post 2006.  

                                                 
2
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3 

 

This area of research complements the recent literature that seeks to understand the factors that 

influence hedge fund performance and performance persistence. Specifically, Li, Zhang and Zhao 

(2011) examine the effects of managerial characteristics, Sun, Wang and Zheng (2012) examine 

strategy distinctiveness, Cumming et al. (2012) examine the influence of regulation, Chincarini (2014) 

compares the effect of quantitative and qualitative investment styles and Schaub and Schmid (2013) 

study the effects of liquidity restrictions on hedge fund performance and performance persistence. Our 

contribution is to examine whether top performing funds are in some sense “different” from the run of 

the mill hedge funds and whether this difference can be attributed to a distinctive risk profile that 

mediocre hedge funds are unable or unwilling to emulate.  

This paper raises several questions. Is there any evidence that the hedge fund industry, as an asset 

class, has outperformed “the market” in the recent past that includes the recessionary and slow growth 

economic conditions that have evolved post 2006? Can the recently developed manipulation proof 

performance measure of Goetzmann et al. (2007) provide evidence that top performing hedge funds 

persistently deliver top performance? If so, for how long? Do top funds follow a distinctive strategy, 

as indicated by a distinctly different risk profile, that lead to persistent, superior performance? How 

did the hedge fund industry react to the liquidity lead crash and subsequent recovery? 

We investigate these questions using diversified portfolios of fund of fund and of all hedge funds. 

For each month, we form portfolios of hedge funds by quintile according to that month’s 

manipulation proof performance measure of Goetzmann et al. (2007) and by the traditional Sharpe 

ratio. Unlike the Sharpe ratio, the manipulation proof performance measure is robust to the return 

distribution and is resistant to manipulation by portfolio managers. We then hold these portfolios for 

twenty four months and then measure the out of sample performance of these portfolios by quintile 

and by performance measure. Therefore, we examine the out of sample performance of diversified 

portfolios so that our evidence mimics the activities of investors in hedge funds. 

Accordingly, our empirical investigation proceeds in four stages. First, we examine whether all 

hedge funds have indeed outperformed “the market” in recent years. We find that all hedge funds, as 

approximated by all fund of funds and by all hedge funds, do second order stochastically dominate 

“the market” in the January 2001 to December 2012 time period but only if we define the market as 

the Russell 2000 index. For more narrow benchmarks, the S&P500 and the MSCI emerging market 

indices, the hedge fund asset class dominates the market only according to the heavily criticized 

Sharpe ratio. In contrast, the more robust manipulation proof performance measure (hereafter MPPM) 

finds that the hedge fund industry does not stochastically dominate the market when compared to the 

S&P500 and the MSCI indices. This result is consistent with Bali, Brown and Demirras (2012) who 

also find that the TASS fund of fund hedge funds do not outperform the S&P 500 in recent years.  

Second, we examine whether top performing hedge funds still persistently outperform mediocre 

performing hedge funds out of sample once we include the challenging economic conditions of recent 

years using the traditional Sharpe ratio as well as the Goetzmann et al. (2007) manipulation proof 

http://www.sciencedirect.com.ezproxy.brunel.ac.uk/science/article/pii/S0378426612002956
http://www.sciencedirect.com.ezproxy.brunel.ac.uk/science/article/pii/S0378426612002956
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performance measure. We find that the top performing quintile of hedge funds do second order 

stochastically dominate the mediocre performing third quintile out of sample according to the MPPM. 

However, this superior performance persists for only six months, far less than the two or three years 

reported earlier by Boyson (2008) and Ammann, Huber and Schmit (2013) who use less robust 

parametric techniques.  

Third, we examine the role liquidity as well as other risk factors, such as momentum, plays in 

achieving excess net rates of return. We do this for funds of superior and mediocre performance in an 

attempt to determine whether or not top performing funds follow a distinctive strategy, or take on a 

distinctively different risk profile, than mediocre performing funds. We find that top performing fund 

returns are driven by a different risk profile than is evident in more modestly performing funds. 

Specifically, top performing fund returns are exposed to a market and a momentum factor whereas 

mediocre third quintile fund returns are driven by additional factors for liquidity and momentum 

reversal. In detail, quantile regressions reveals that the market and momentum factors are statistically 

significant in explaining top fund of fund returns six months out of sample at the 25
th
, 50

th
  and 75

th
 

quantiles. In contrast, mediocre third quintile fund of fund returns are significantly related to the 

market, momentum, liquidity and momentum reversal factors six months out of sample at the 50
th
 and 

25
th
 quantiles. At the 75

th
 quantile however, mediocre third quintile performing funds look like top 

performing funds in that the returns are significantly related only to a market and a momentum factor.  

Finally, we explore the strategies followed by top and mediocre performing fund of fund hedge 

funds by examining the time series values of the coefficients for risk factors by quantile as we move 

from the robust economic conditions that prevailed prior to 2007 to the recessionary and slow growth 

conditions that have evolved since. We find that for the top performing funds, the dispersion of 

coefficient values for the market return factor and for the momentum factor increase as the upper and 

lower bounds for these coefficients increase in the months leading up to the financial crisis period but 

by 2008 the coefficient values return to a more normal range. A similar pattern for the market return 

and momentum factors is evident for the mediocre third quintile performing funds. However, for third 

quintile performing funds, large increases for the upper and large decreases for the lower bounds for 

the long term reversal and liquidity factors is delayed until the actual recession of 2008. This pattern 

of the coefficients hints that the market and the momentum factors, factors that are significant in 

explaining top fund performance, anticipate the liquidity crisis and subsequent recession. In contrast, 

the long term reversal and aggregate liquidity factors, factors that significantly explain mediocre 

hedge fund performance, merely react to the 2008 recession. These results are consistent with Stivers 

and Sun (2010) who find that the momentum factor is procyclical and with Kacperczyk et al. (2014) 

who find evidence that market timing is a task rather than an innate talent that top performing 

managers can execute. 
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In the next section we review the literature. Section II reports some related literature while 

Section III describes the data. Our empirical analysis proceeds in Section IV and V while Section VI 

summarizes and concludes. 

  

II. Literature review 

 

The case for hedge funds “beating” the market is not clear. While Ackermann et al. (1999) find 

evidence that hedge funds outperform mutual funds they are unable to find any evidence that hedge 

funds outperform market indices. Meanwhile, Brown et al. (1999) find that Sharpe ratios and Jensen’s 

alphas of hedge fund portfolios are higher than for the S&P 500. However, Brown et al. (1999) 

express concern that survival bias could have exaggerated the performance of hedge funds. Weighing 

up all of the evidence, Stultz (2007) concludes that hedge funds offer returns commensurate with risk 

once hedge fund manager compensation is accounted for. More recently, Dichev and Yu (2011) 

document a sharp reduction in buy and hold returns for a very large sample of hedge funds and CTAs, 

from on average 18.7% for 1980 to 1994, to 9.5% from 1995 to 2008. As discussed later in detail, our 

more recent sample, from January 31, 2001 to December 31, 2012, reports that hedge fund returns are 

even lower, obtaining only 37 basis points per month (4.5% per year) net rate of return on average. 

Moreover, Bali, Brown and Demirras (2012) find that only the long short equity hedge and emerging 

market hedge fund indices outperformed the S&P500 in recent years. Clearly, it is possible that the 

hedge fund industry is entering a mature phase and prior conclusions concerning the performance of 

the hedge fund industry may no longer apply.  

Some research strongly supports persistence, other research is more equivocal. Ammann et al. 

(2013) and Boyson (2008) find that top performing hedge funds formed on Fung and Hsieh (2004) 

alphas continue to provide statistically significant performance three and two years later respectively. 

Ammann et al. (2013) find that strategy distinctiveness as suggested by Sun, Wang and Zheng (2012) 

is the strongest predictor of performance persistence while Boyson (2008) finds that persistence is 

particularly strong amongst small and relatively young funds with a track record of delivering alpha. 

Fung et al. (2008) find that funds of hedge funds with statistically significant alpha are more likely to 

continue to deliver positive alpha. 

More critically, Kosowski et al. (2007) find evidence that top funds deliver statistically significant 

out of sample performance when funds are sorted by the information ratio, but not when the funds are 

sorted by Fung and Hsieh (2004) alphas. Capocci, Corhay and Hübner (2005) find that only funds 

with prior mediocre alpha performance continue to deliver mediocre alphas in both bull and bear 

markets. In contrast, past top deliverers of alphas continue to deliver positive alphas only during 

bullish market conditions. More recently, Brandon and Wang (2013) find that superior performance 

for equity type hedge funds largely disappears once liquidity is accounted for and Slavutskaya (2013) 

finds that only alpha sorted bottom performing funds persist in producing lower returns in the out of 
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sample period. Finally, Hentati-Kaffel and Peretti (2015) find that nearly 80% of all hedge fund 

returns are random where evidence of performance persistence is concentrated in hedge funds that 

follow event driven and relative value strategies. 

Another strand of the hedge fund literature heavily criticizes the use of common performance 

measures such as the Sharpe ratio, alpha and information ratio. Amin and Kat (2003) question the use 

of these measures as they assume normally distributed returns and/or linear relations with market risk 

factors. This strand of research inspired proposals for a wide variety of alternative performance 

measures purporting to resolve issues of measuring performance in the face of non-normal returns. 

However, Eling and Shoemaker (2007) find that the ranking of hedge funds by the Sharpe ratio is 

virtually identical to twelve alternative performance measures. Goetzmann’s et al. (2007) point out 

that common performance measures such as the Sharp ratio, alpha and information ratio can be 

subject to manipulation, deliberate or otherwise. These issues imply that the use of these performance 

measures can obtain misleading conclusions. Goetzmann et al. (2007) then go on to develop the 

manipulation proof performance measure MPPM, so called because this performance measure is 

resistant to manipulation.  

A final strand of the literature examines the structure of risk factors that explains hedge fund 

returns. Sadka (2010) demonstrates that liquidity risk is an important factor that explains the cross 

section of hedge fund returns. Meanwhile, Billio, Getmansky and Pelizzon (2009) find that when 

volatility is high, hedge funds have significant exposure to liquidity risk and Boyson, Stahel and Stulz 

(2010) find evidence of hedge fund contagion that they attribute to liquidity shocks. More recently, 

Bali, Brown and Caglayan (2014) show that a substantial proportion of the variation in hedge fund 

returns can be explained by several macroeconomic risk factors. However, we do not know much 

about how top performing hedge funds add value when compared to mediocre performing hedge 

funds.  

 

III. Data 

 

The data we use comes from a variety of sources. We use Credit Suisse/Tremont Advisory 

Shareholder Services (TASS) database for the hedge fund data. We collect the Fama French risk 

factors from the French Data library and the aggregate liquidity factor from the Lubos Pastor Data 

library. Finally, equity index information is from DataStream. 

We select all US dollar hedge funds that have three years of historical performance prior to our 

start date of January 31, 2001. We need to have three years of data to avoid multi-period sampling 

bias. Hedge fund managers often need 36 months of return data before investing in a hedge fund so 

including funds with a shorter history can be misleading for these investors (See Bali, Brown and 

Caglayan 2014, online appendix 1). We continue to collect all US dollar hedge funds with three years 

http://www.sciencedirect.com.ezproxy.brunel.ac.uk/science/article/pii/S0264999315000462
http://www.sciencedirect.com.ezproxy.brunel.ac.uk/science/article/pii/S0264999315000462
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of data up to December 31, 2012 as that is the last update of the TASS data that we have.
3
 When we 

examine the number of observations in the TASS database, we note the exponential growth of the data 

that seems to have moderated from January 1998 onwards as from that date, the total number of fund 

year observations grew from 20,000, peaking at 50,000 in 2007 and falling to approximately 29,000 in 

2012.
4
 By commencing our study from January 1998 we avoid a possible growth trend in the data. 

From this database, we collect all monthly holding period returns net of fees. We adjust for 

survivorship bias by including all funds both live and dead. We also adjust for backfill bias by 

including data on a given fund only from the date that the fund was listed in TASS. We estimate the 

Sharpe ratio as the monthly holding period return of the hedge fund less the one month T-bill return 

(as reported in the French Data Library) divided by the standard deviation of excess returns calculated 

over the previous two years. 

We calculate the manipulation proof performance measure of Goetzmann et al. (2007) as reported 

below 

 

 

 

 

where 𝑡 = 1, … , 𝑇  and 𝐴 is the risk aversion parameter, 𝑟𝑡 is the monthly holding period return of the 

hedge fund, 𝑟 𝑓𝑡  is the one month t-bill return, and ∆𝑡 is one month. The measure MPPM(A) 

represents the certainty equivalent excess (over the risk free rate) monthly return for an investor with 

a risk aversion of 𝐴 employing a utility function similar to the power utility function. This implies that 

MPPM is relevant for risk adverse investors who have constant relative risk aversion. The MPPM 

does not rely on any distributional assumptions. We estimate MPPM(A) over the previous two years 

using a risk aversion parameter 𝐴 of 2 and then 3.
5
 

Table 1 reports some characteristics of our data that consists of 4,600 funds with 176,483 fund 

month observations. This sample is smaller than Bali, Brown and Demirras (2012) who include non 

US dollar denominated funds but is comparable in size to Ammann et al. (2013) and Hentati-Kaffel 

                                                 
3
 Our understanding is that there are no Madoff funds in the December 31, 2012 version of the TASS database 

that we use. We are aware than six feeder funds heavily invested in the Madoff Funds, specifically Fairfield 

Sentry Ltd (FFS), Kingate Global Fund Ltd (KING), Optimal Strategic US Equity Ltd (OPTI), SantaClara I 

Fund (SANTA), LuxAlpha Sicav - American Selection (LUX) and Herald Fund SPC - USA Segregated 

Portfolio One (HRLD). We checked the live and dead TASS database by fund name, and close variations of 

these names, and find that none of these funds are in the database. We conclude that the Madoff incident does 

not directly affect our results. 
4
 In contrast, the number of fund month observations nearly tripled in the previous five years. The details of the 

annual fund month observations are available from the corresponding author upon request. 
5
 Goetzmann et al. (2007) suggest that the market believes the risk aversion varies between 2 and 4. We 

experimented with a variety of risk aversion parameters from 1 through 10 finding that the rankings by  did 

not change very much. We chose 2 and 3 to illustrate the robustness of our results as hedge fund investors 

should be more risk tolerant that most investors. 
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and Peretti (2015). A striking fact is the huge attrition rate of hedge funds, less than one half of all of 

the hedge funds included in our data are live at the end of our sample period. Live funds are larger, 

have a longer history and have better performance than dead funds. Moreover, net hedge fund returns 

are modest, only 37 basis points per month (approximately 4.5% annually) on average throughout the 

sample period. This confirms the continuing decline in hedge fund returns reported by Dichev and Yu 

(2011).  

 

<<Tables 1, 2 and 3 about here>> 

 

We also examine the time series characteristics of our data in Table 2. Clearly, the hedge fund 

industry is accident prone, with overall negative excess rates of return in 2002, 2008 and 2011. For 

each of these disappointing years, the number of funds in our sample decreases either during the year 

(2002) or in the year following (2008, 2011). The manipulation proof performance measure gives an 

even more critical assessment of the performance of hedge funds, revealing that hedge funds were 

unable to return a certainty equivalent premium above the risk free rate for five of the twelve years in 

our sample. Overtime, the average size and age of hedge funds is increasing although there is a 

noticeable decrease in the average size post 2008.  

We chose not to break out our results by investment style because the number of funds for each 

style will vary excessively year by year throughout our sample period. Instead we will aggregate our 

data by fund of funds, the largest grouping of hedge funds by style with 1,273 funds and 45,700 fund 

month observations and by all hedge funds. Fung and Hsieh (2008) suggest that fund of fund hedge 

fund data is more reliable than other aggregations of hedge fund data as fund of fund data is less prone 

to reporting biases and so are more reflective of the actual losses and investment constraints faced by 

investors in hedge funds. 

We form equally weighted portfolios of all fund of fund and all hedge funds monthly from January 

31, 2001 until December 31, 2012 from the above data. The distribution of monthly average returns, 

Sharpe and MPPM performance measures for our sample period and for our hedge funds and the 

benchmark S&P 500, Russell 2000 and MSCI emerging market indices are reported in Table 3. It is 

clear that all performance measures for all assets have significant departures from normality so it is 

imperative that we conduct our empirical investigation using techniques that are robust to the 

empirical return distribution of performance measures. 

 
IV. Stochastic dominance tests for hedge funds performance 

 

In this section we develop a procedure for comparing distributions of hedge funds returns. We 

are interested in testing whether hedge funds outperform the market, or whether top performing funds 

outperform mediocre funds out of sample. Our procedure for testing differences between distribution 

http://www.sciencedirect.com.ezproxy.brunel.ac.uk/science/article/pii/S0264999315000462
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functions relies on the concept of first and second order stochastic dominance. Stochastic dominance 

analysis provides a utility-based framework for evaluating investors’ prospects under uncertainty, 

therefore facilitating the decision making process. With respect to the traditional mean-variance 

analysis, stochastic dominance requires less restrictive assumptions about investor preferences. 

Specifically, stochastic dominance does not require a full parametric specification of investor 

preferences, but relies only on the non-satiation assumption in the case of first order stochastic 

dominance and risk aversion in the case of second order stochastic dominance (see Appendix A for a 

formal definition of first and second order stochastic dominance criteria). If there is stochastic 

dominance, then the expected utility of an investor is always higher under the dominant asset than 

under the dominated asset. This implies that the dominated asset would not be chosen by any non-

satiated investor.  

    Testing for stochastic dominance can be based on comparing (functions of) the cumulate 

distributions of the hedge funds and stock market indexes. Of course, the true cumulated distribution 

functions are not known in practice. Therefore, stochastic dominance relies on the empirical 

distribution functions. In the literature several procedures have been proposed to test for stochastic 

dominance. An early work by McFadden (1989) proposed a generalization of the Kolmogorov-

Smirnov test of first and second order stochastic dominance among a number of prospects 

(distributions) based on i.i.d. observations and independent prospects. Later works by Klecan et al. 

(1991) and Barrett and Donald (2003) extended these tests allowing for dependence in observations, 

and replacing independence with a general exchangeability amongst the competing prospects. An 

important breakthrough in this literature is given in Linton, Maasoumi and Whang (2005) where 

consistent critical values for testing stochastic dominance are obtained for serially dependent 

observations. The procedure also accommodates for general dependence amongst the prospects which 

are to be ranked. Since hedge fund returns are well known to have fat-tail distributions, the inference 

procedure suggested by Linton et al. (2005) will be adopted in our work. 

 

A: Testing for Hedge Fund Performance  

 

In order to test if the returns of portfolios of all fund of fund and all hedge funds outperform the 

market we consider the three performance measures as represented by the Sharpe ratio, MPP2 and 

MPP3. For each portfolio, we test to determine if the returns of the portfolio first or second order 

stochastically three market indexes, namely, the Russell 2000, S&P 500 and the MSCI emerging 

market indexes. 

The essence of our test strategy is as follows. For a given portfolio, let 𝑋𝑖 (for 𝑖 = 1, … ,3) be the 

performance measure of the portfolio and let 𝑌𝑗 denote the efficiently priced asset represented by the 
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stock market index j (for 𝑗 = 1, … ,3). Let s be the order of stochastic dominance. To establish the 

direction of stochastic dominance between 𝑋𝑖 and 𝑌𝑗 we test the following hypotheses 

 

 𝐻0
1: 𝑋𝑖 ≻𝑠 𝑌𝑗, 

 

and 

𝐻0
2: 𝑌𝑗 ≻𝑠 𝑋𝑖, 

 

with the alternative the negation of the null hypothesis for both  𝐻0
1 and 𝐻0.

2  We infer that returns of 

the portfolio stochastically dominate the returns from the market if we accept 𝐻0
1 and reject 𝐻0

2. 

Conversely, we infer that the market returns stochastically dominate the portfolio returns if 𝐻0
2 

hypothesis cannot be rejected. In cases where neither of the null hypotheses can be rejected we infer 

that the stochastic dominance test is inconclusive. Details of the stochastic dominance testing 

procedure are given in Appendix A.  

Panels A, B and C in Table 4 report the results of this stochastic dominance test. For each panel, 

columns three and four report the empirical p-values for the first and second order stochastic 

dominance tests. Under the null hypothesis if 𝐻0
1: 𝑋1 ≻𝑠 𝑌𝑗 the fund of fund portfolio stochastically 

dominates the j market index at s order, whereas under 𝐻0
2: 𝑌𝑗 ≻𝑠 𝑋1 the opposite is true. The p-values 

in Table 4 were obtained using the bootstrap algorithm described in Appendix A with a 1000 

bootstrap replications. Similarly, columns five and six report the p-values of the test that relate the 

portfolio 𝑋2  which represents the overall of US dollar hedge funds.  

 

<<Table 4 about here>> 

 

In Table 4, rejection of the null hypothesis is based on small p-values of the test statistic described 

in Appendix A. Coming to the result of the test statistic, in Table 4 for all stock market indexes, the 

hull hypothesis of first order stochastic dominance is always rejected no matter which performance 

measure is taken into consideration. This result is not surprising as first order stochastic dominance 

implies that all-non-satiated investors will prefer portfolio 𝑋𝑖  regardless of whether they are risk 

neutral, risk-averse or risk loving. Therefore, first order stochastic dominance criterion may be too 

stringent.   

Panel A in Table 4 clearly shows that by any performance measure and for either aggregation of 

hedge fund portfolios, the hedge fund industry second order dominates the stock market as 

represented by the Russell 2000. Specifically, we see that the hypothesis 𝐻0
1: 𝑋𝑖 ≻𝑠:=2 𝑌𝑗 cannot be 

rejected no matter which performance measure we take into consideration. 
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The test results are however different in Panel B and C. For the S&P500 and the MSCI, neither of 

the null hypothesis 𝐻0
1: 𝑋𝑖 ≻𝑠:=2 𝑌𝑗 or 𝐻0

2: 𝑌𝑗 ≻𝑠≔2 𝑋𝑖 can be rejected. Therefore, the stochastic 

dominance test is inconclusive for both MPPM2 and MPPM3 performance measures. This result is 

consistent with Bali, Brown and Demirras (2012) who also find that the fund of fund hedge fund 

strategy does not outperform the S&P500 in recent years according to the MPPM. In contrast, the 

hedge fund industry second order dominates the stock market according to the Sharpe ratio. Noting 

that the Sharpe ratio is by construction sensitive to departures from normality of monthly hedge fund 

returns, we rely on the more robust MPPM to conclude that the hedge fund industry second order 

stochastically dominates the market only when we approximate the market by the broader Russell 

2000 index. 

 

B: Performance persistence of top performing hedge funds 

 

We now consider whether top performing funds outperform mediocre funds out of sample. Our 

testing strategy is to construct top (fifth) quintile portfolios formed on the Sharpe ratio, the MPPM(2) 

and MPPM(3) performance measures and compare the performance of these portfolios to the 

performance of similarly formed mediocre (third) quintile portfolios.
6
 These quintile portfolios are 

based on the average performance over the previous two years and each portfolio, once formed, is 

held for twenty-four months. Given our twelve year sample period, from January 31, 2001 to 

December 31, 2012, we form 120 monthly portfolios for each quintile. The portfolios are equally 

weighted. Individual funds that were included in the formation portfolio that later disappeared during 

the out of sample twenty-four month valuation period are assumed reinvested in the remaining funds. 

Therefore, we measure persistence of performance by comparing the out of sample performance of 

portfolios formed on the top and mediocre portfolio according to a given performance measure for up 

to twenty four months after the quintile portfolios were formed. 

The testing strategy is as follows. Let 𝛿 = 𝑡 + 𝜀  be the time increment, for each  j, let 𝑍𝑘 be the k-

th quintile of Θ, where Θ = {𝑍𝑘: 𝑧𝑘|𝛿, 𝑍𝑘 ⊆ 𝑋𝑖 , 𝑘 ∈ {1, … ,5}}. We consider the subset Θ̃ ⊆ Θ with 

𝑘 ∈ {3,5} then, for each i, j and 𝛿, we test the following hypotheses   

                                                 
6
 We chose to compare the fifth and third quintile portfolios rather than the fifth and first quintile because it 

is clear that the first quintile is tainted by survivorship bias. To investigate, we form portfolios by quintile 

according to the net holding period return, average the 120 holding period returns for each of the 24 out of 

sample months and then plot the monthly net holding period return by quintile and by out of sample month. 

While the average holding period returns for the fifth and third quintiles asymptotically decline towards zero 

from above, the first quintile asymptotically decline towards zero from below. Moreover, there is a much larger 

attrition of funds in the first than in the fifth or third quintiles indicating that the improvement in the 

performance of the first quintile is merely the attrition of poorly performing funds. Consequently, we suspect 

that the performance of the first quintile is tainted by survivorship bias and so forms a suspect benchmark for 

determining performance persistence. The results of this analysis are available from the corresponding author 

upon request. 
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𝐻0
1: 𝑍5 ≻𝑠 𝑍3, 

 

and 

𝐻0
2: 𝑍3 ≻𝑠 𝑍5. 

 

As before, the alternatives are the negation of the null hypotheses. We infer that returns of the top 

portfolio 𝑍1 stochastically dominate the returns from the market if we accept 𝐻0
1 and reject 𝐻0

2. 

Conversely, we infer that the returns of the mediocre portfolio 𝑍2 stochastically dominate the 

portfolio returns if 𝐻0
2 hypothesis cannot be rejected. 

Table 5 reports the results of our performance persistence tests. Table 5 is organized into three 

panels, each panel reporting whether the portfolio formed by top funds stochastically dominate the 

portfolio formed by mediocre funds one, six, twelve, eighteen and twenty-four months out of sample 

according to the Sharpe ratio, the MMPM(2) and MPPM(3) respectively. For each panel, reading 

along the columns, columns three and four reports the p-values of the first and second order stochastic 

dominance test for top versus mediocre funds and the reverse for the fund of funds strategy and the 

last two columns reports the same for the all hedge funds in our sample.   

 

<<Table 5 about here>> 

 

Looking at 𝑋2, for the heavily criticized Sharpe ratio, the portfolio of top hedge funds 𝑍5 first and 

second order stochastically dominate mediocre hedge funds portfolio 𝑍3 up to twenty-four months out 

of sample for all hedge funds. This result is in line with much of the literature, including Amman et al. 

(2013) and Boyson (2008). For the fund of funds portfolio 𝑋1 however, 𝑍5 first order dominate the 

portfolio formed with mediocre performing hedge funds 𝑍3 for only one month and second order 

dominate for six months out of sample according to the Sharpe ratio.  

The results for the fund of fund portfolio 𝑋1 seem more believable than those relating to the total 

fund portfolio 𝑋2 as first order dominance is a very strong claim and the claim that first order 

dominance holds for as long as two years appears extreme. Moreover, a reliance on the fund of fund 

rather than all funds is consistent with Fung and Hsieh (2008) suggestion that fund of fund hedge fund 

data is more reliable than other aggregations of hedge fund data. 

It is striking that the conclusions we obtain differ according to which performance statistic is 

considered. In contrast to when measuring performance using the Sharpe ratio, we find that the 

corresponding dominance tests when using the MPPM(2) and MPPM(3) performance measures are 

consistent for the overall sample of funds and for the fund of fund sub-sample. Specifically, top 

quintile funds first and second order dominate mediocre funds up to six months out of sample. Unlike 
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Slavutskaya (2013), we do find some evidence of performance persistence for top funds, but the 

persistence is much more modest than found by Ammann et al. (2013) and Boyson (2008). We 

conclude that the top performance of hedge funds do persist, but for only for a few months rather than 

a few years. 

 

V. Risk profile of hedge funds 

 

Table 5 shows that top quintile performing hedge funds continue to out-perform the 

corresponding mediocre hedge funds at least six months out of sample. This suggests that top 

performing funds are different in some way that enables them achieve distinctly superior 

performance. In an attempt to discover how these top performing funds are different from mediocre 

funds we examine the risk profiles of top and mediocre funds six months out of sample.  

Following the traditional literature, we use the Fama and French (1995) empirical asset pricing 

model as the basic multi-factor model that describes market risks that hedge fund managers take in 

order to generate returns. We augment this model for momentum (Carhart 1997), momentum reversal 

and aggregate liquidity (Pastor and Stambaugh 2003) as prior research suggests that these are likely to 

be other priced risk factors. 

In this section we restrict our attention to the fund of fund portfolio 𝑋1 and explain out of sample 

net excess returns of hedge funds by quintile for the fund of fund sector as our results above suggest 

that the aggregation of hedge funds by the fund of fund strategy obtains more reliable results and 

because Fung and Hsieh (2008) suggest that fund of fund hedge fund data is more reliable than other 

aggregations of hedge fund data. The procedure is to regress excess hedge fund returns for the 

quintiles of hedge funds at six months out of sample on risk factors for the excess market return 

MKTRF, for the Fama and French (1995) risk factors for size SMB and value HML, the Carhart 

(1997) risk factor for momentum MOM, for momentum reversal LTR and for the Pastor and 

Stambaugh (2003) liquidity factor AGGLIQ.  

 

In detail, let Θ̈ be the subset Θ̈ ⊆ Θ with Θ̈ = {𝑍𝑘: 𝑧𝑘|𝛿, 𝑍𝑘 ⊆ 𝑋1 , 𝑘 ∈ {3,5}}. We define  

𝐹𝑘 = 𝑍𝑘 − 𝑅𝐹, 

 

where 𝑍𝑘 are the monthly rate of returns of the portfolio 𝑋1 for six months after the portfolio was 

formed and RF is the one month rate of return from the French Data Library. Then, the model 

specified is as follows: 

 

𝐹𝑘  = 𝑓(𝑀𝐾𝑇𝑅𝐹, 𝑆𝑀𝐵, 𝐻𝑀𝐿, MOM, 𝐿𝑇𝑅,  𝐴𝐺𝐺𝐿𝐼𝑄).        (1) 
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We estimate equation (1) using the quantile regression method. Quantile regression is a procedure 

for estimating a functional relationship between the response variable and the explanatory variables 

for all portions of the probability distribution. The previous literature focused on estimating the effects 

of the above risk factors on the conditional mean of the excess returns. However, the focus on the 

conditional mean of returns may hide important features of the hedge fund risk profile. It is natural to 

go beyond central location of the return distribution. While the traditional linear regression model can 

address the question of whether or not the risk factor in equation (1) affects the hedge fund 

conditional returns, it can’t answer another important question: Does a one unit increase of the risk 

factor of equation (1) affects low risk hedge fund returns differently from high risk fund returns?  

Therefore, the conditional mean function represents well the center of the distribution but little 

information is known about the rest of the distribution. In this respect, the quantile regression 

estimates provide information regarding the impact of risk factors at all parts of the returns’ 

distribution.  

Equation (1) can be specified as 

 

𝑄(𝜏|𝑅 = 𝑟) = 𝑅′𝛽(𝜏),       for 0 ≤ 𝜏 ≤ 1      (2) 

 

where 𝑄(∙) = inf{𝑓𝑘: 𝐺(𝐹𝑘) ≥ 𝜏} and 𝐺(𝐹𝑘) is the cumulate density function of 𝐹𝑘 . The vector 𝑅𝑡 is 

the set of risk factors in equation (1) and 𝛽  is a vector of coefficients to be estimated. In equation (2) 

the 𝜏-quantile is expressed as the solution of the optimization problem 

 

𝛽̂ (𝜏) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝜌𝜏(𝐹𝑘 − 𝑅′𝛽)𝑛
𝑖=1            (3) 

 

where 𝜌𝜏(𝜉) = 𝜉(𝜏 − 𝐼(𝜉 < 0)) and 𝐼(∙) is an indicator function. Equation (3) is then solved by linear 

programming methods and the partial derivative: 

 

𝛽̂ =
𝜕𝑄(𝜏|𝑅 = 𝑟)

𝜕𝑟
 

 

can be interpreted as the marginal change relative to the 𝜏-quantile of 𝑄(∙) due to a unit increase in a 

given element of the vector 𝑅. As 𝜏 increases continuously from 0 to 1, it is possible to trace the entire 

distribution of 𝐹𝑘 conditional on 𝑅. 

Table 6 reports our quantile regression estimates of equation (2) for the top and mediocre 

portfolios of net returns six months out of sample. In column three the estimated coefficients for 

equation (2) with dependent variable the quantiles of 𝐹5 are reported, whereas column five relates to 

the estimates of equation (2) with the quantiles of 𝐹3 as response variable. In column four and six the 

bootstrapped standard errors of the estimated coefficient are reported. The standard errors were 
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calculated by resampling the estimated residuals of equation (2) using the non-parametric bootstrap 

method with a 1000 replications.  

In Table 6 the results are reported at the 25
th
, 50

th
 and 75

th
 quantiles. This enables us to delve 

within the distribution of the top performing and mediocre portfolios to see if the risk profile for the 

less performing funds differs from higher performing funds within a given performance quintile. This 

provides a much richer set of results rather than merely considering the conditional mean of 𝐹𝑘 as a 

function of the risk factors in equation (1). 

 

<<Table 6 about here>> 

 

Clearly, top performing hedge funds have a distinctly different risk profile than mediocre funds. 

Top performing funds have a statistically significant market risk and momentum factor at all three 

quantiles. In contrast, mediocre quantile funds also have a statistically significant liquidity and 

momentum reversal factor at the 25
th
 and 50

th
 quantiles. This clearly suggests that mediocre funds rely 

on illiquid assets to achieve performance whereas this is not a significant factor for top performing 

funds. Moreover, the momentum reversal factor is significantly negative implying that mediocre 

funds “give up” some of the earlier momentum profits. This is in accordance with the theory proposed 

by Vayanos and Woolley (2013) who model momentum and momentum reversal as a consequence of 

gradual order flows in response to shocks in investment returns. This suggests that mediocre funds do 

not quickly change their strategy when it starts to fail. Interestingly, the risk profile of mediocre funds 

at the 75
th
 percentile is the same as top performing funds. This suggests that the very best of the 

mediocre performing hedge funds emulate top performing hedge funds.
7
 

Figure 1 and 2 provide a graphical view of the marginal effects of risk factors on excess returns. 

Figure 1 and 2 correspond to the estimates in Table 6, but the estimates are reported this time for each 

𝜏, with 0 ≤ 𝜏 ≤ 1. The bold line in Figure 1 shows the return response for the risk factors for top 

performing funds, six months out of sample and Figure 2 shows the same for mediocre performing 

funds. The thinner lines provide the 5% upper and 95% lower bootstrap envelope. 

 

<<Figures 1 and 2 about here>> 

 

The graphical patterns in Figure 1 and 2 show the effect of a covariate on the response variables 

𝐹𝑘. For example, in Figure 1 the fifth box shows the marginal effect on the conditional distribution of 

𝐹5 due to a one additional unit of risk factor MOM fixing the other risk factors. Figure 1 shows that 

                                                 
7
 We replicate table 6 using all hedge fund data despite the warnings of Fung and Hsieh (2008) that fund of fund 

data is more reflective of the actual losses and investment constrains faced by hedge funds. Even so, the results 

we obtain are similar to those reported above except that top performing hedge fund returns are inversely related 

to the market factor at all quintiles. These results are available from the corresponding author upon request. 
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the MOM effect for top funds is significantly positive at all but the very lowest quantiles because the 

confidence envelope does not cross the zero line so that zero is outside the confidence interval. Figure 

1 also shows an upward-sloping curve for the effect of momentum for all quantiles less than the 0.20
th
 

quantile. The increase decelerates above the 0.20th quantile.  

Looking at Figure 2, we see that for mediocre performing funds, LTR is significantly different 

from zero for all 𝜏 (the quantile on the 𝑥-axis) and increases with 𝜏. This can be interpreted as a 

location shift and shape shift.  If there was only a location shift, increasing the risk factor LRT would 

cause every quantile to increase by the same amount, leading to a graph of the estimated coefficient 

versus 𝜏 resembling a horizontal line. Instead the estimated coefficient for LTR is monotonically 

increasing with 𝜏  , that is 𝛽(𝜏) > 𝛽(𝜚) for 𝜏 > 𝜚. This property tells us that an additional unit of LTR 

has a greater effect on 𝐹3 for higher risk quantile hedge funds than for lower 𝐹3 brackets.
8
  

Finally, we estimate the time varying coefficients for equation (2). This will allow us to investigate 

the evolution of the estimated coefficients over time and so investigate how the risk profile of hedge 

funds adjust as we approach and move through the 2007-08 financial crisis. In order to avoid clutter, 

we focus on the conditional median equation (i.e. the 50th quantile) in (2). In this case the parameters 

in equation (2) are a function of time and the model can be written as  

 

𝑄(𝜏|𝑅 = 𝑟) =  𝛽0𝑡  +  1,𝑡𝑀𝐾𝑇𝑅𝐹 + 2,𝑡𝑆𝑀𝐵 + 3,𝑡𝐻𝑀𝐿 + 

                              4,𝑡𝑀𝑂𝑀 + 5,𝑡𝐿𝑇𝑅 + 6,𝑡𝐴𝐺𝐺𝐿𝐼𝑄 + 𝜀.            (4) 

 

We examine how the risk profiles of top and mediocre hedge funds change over time by running 

rolling quantile regressions. Figures 3 and 4 plot the estimates of the coefficients of (4) using a 36 

month constant size window. Figure 3 reports the results for top quintile funds together with the 95 

confidence envelope and Figure 4 reports the same for mediocre hedge funds. Both figures show that 

the confidence envelope of the market risk and the momentum factors rise in 2006 and early 2007 

suggesting that these risk factors were subject to greater uncertainty in the run up to the recent 

financial crisis. These results are consistent with Stivers and Sun (2010) who find that the momentum 

factor is procyclical. Meanwhile, the liquidity and momentum reversal factors appear to have a 

delayed response to the financial crisis for mediocre hedge funds as the confidence envelope of these 

coefficients rise after the early part of 2007. Together, these finding suggest that top performing hedge 

funds have a risk profile that anticipates growing economic risks whereas mediocre hedge funds have 

a risk profile that includes factors that react rather than anticipate growing economic uncertainty. 

                                                 
8
 It is worth noticing that the proposed estimation method is robust to heteroskedastic innovation in (4). It is well 

known that return data have quite heavy tails. Most of the available literature uses ordinary least squares 

methods with Newey West correction to provide an estimate of the covariance matrix of the parameters for the 

standard errors. However, even when the Newey West correction is used the estimated parameters are sensitive 

to outliers. The quantile regression is able overcome this problem. 

http://en.wikipedia.org/wiki/Covariance_matrix
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These results are consistent with Kacperczyk et al. (2014) who find that market timing is a task that 

only skilled managers can perform. 

 

<<Figures 3 and 4 about here>> 

 

VI. Conclusions 

 

In response to the questions raised in the introduction, our stochastic dominance tests find that 

only when compared to the broad Russell 2000 index do hedge funds outperform the market. Unlike 

Capocci, Corhay and Hübner (2005) and Slavutskaya (2013), we find that the superior performance of 

top quintile hedge funds do persist according to the MPPM, but only for six months rather than for 

two or three years as reported by Ammann et al. (2013) and Boyson (2008). We find evidence that 

that top funds follow a distinctive strategy that mediocre performing hedge funds are unable or 

unwilling to emulate.  

Specifically, we investigate whether the risk profile of hedge funds differ by quintile by 

performing a quantile regression on out of sample net returns on an augmented Fama and French 

(1995) and Carhart (1997) asset pricing model that includes the Pastor and Stambaugh (1997) 

liquidity risk factor. We find that the risk profile of top quintile performing funds is distinctly 

different than mediocre quintile funds by having fewer risk factors that appear to anticipate the 

troubling economic conditions that prevailed after 2006. In more detail, the out of sample excess 

returns of top quintile funds are positively associated with market risk and with momentum at the 25
th
, 

50
th
 and 75

th
 quantiles. However, excess returns for mediocre performing funds at the 25

th
 and 50

th
 

quantiles are, in addition to market risk and momentum factors, significantly associated with two 

other factors, liquidity and momentum reversal, that appear to react to the difficult economic 

conditions that evolved after 2006. The positive association with liquidity suggests that at least some 

of the returns from investment in these funds are merely premiums from holding illiquid assets. 

Moreover, there is a significant inverse association with momentum reversal, suggesting that some of 

the returns earned from momentum are lost as these funds are slow to change a losing strategy. 

Interestingly, the excess returns on mediocre funds at the 75
th
 quintile have the same risk profile at top 

quintile funds suggesting that, potentially, there are some funds within the mediocre performing funds 

that are emulating the strategies of top performing funds. 

We conclude that persistently superior performing hedge funds are likely following a different 

strategy than mediocre performing funds as they have a distinctly different risk profile. Evidently, top 

performing funds avoid relying on passive investment in illiquid investments and avoid losses from 

momentum reversal but earn risk premiums by accepting market risk and following strategies that 

return momentum profits.  
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Appendix A  

 

The theory of stochastic dominance offers a method of decision making by ranking distribution of 

random variables under given conditions of the utility function of the decision makers. In portfolio 

decision making, the principle of stochastic dominance is vastly more efficient than the commonly 

used mean-variance rule since it has the advantage of exploiting the information embedded in the 

entire distribution of stock market returns instead of a finite set of statistics.  Below, we first briefly 

define the criteria of stochastic dominance and we then describe the testing procedure for stochastic 

dominance adopted in the paper. 

 

Concept of stochastic dominance 

 

Let 𝑈₁ denote the class of all von Neumann-Morgestern type of utility functions, 𝑢, such that 

𝑢′ ≥ 0, also let 𝑈₂ denote the class of all utility functions in 𝑈₁ for which 𝑢′′ ≤ 0, and 𝑈₃ denote a 

subset of 𝑈𝑗 for which 𝑢′′′ ≤ 0. Let 𝑋₁ be and 𝑋2 denote be two random variables and let 𝐹₁(𝑥) and 

𝐹₂(𝑥) be the cumulative distribution functions of 𝑋1 and 𝑋2 respectively, then we define 

     

    Definition 1. 𝑋 first order stochastically dominates  𝑌 if and only if either: 

 

    i) 𝐸[𝑢(𝑋1)] ≥ 𝐸[𝑢(𝑋2)] for all 𝑢 ∈ 𝑈₁ 

    ii) 𝐹₁(𝑥)  ≤  𝐹₂(𝑥)  for every 𝑥 with strict inequality for some 𝑥. 

 

According to Definition 1 investors prefer hedge funds with higher returns to lower returns, which 

imply that a utility function has a non-negative first derivative. First order stochastic dominance is a 

very strong result, for it implies that all non-satiated investors will prefer 𝑋1 to 𝑋2, regardless of 

whether they are risk neutral, risk-averse or risk loving. Second order stochastically dominance also 

takes risk aversion into account, but it posits a negative second derivative (which implies diminishing 

marginal utility) of the investor's utility function. This is sufficient for risk aversion. More formally, 

the definition of second order stochastic dominance is as follows: 

 

    Definition 2. 𝑋1 second order stochastic dominates 𝑋2 if and only if either: 

 

     i) 𝐸[𝑢(𝑋1)] ≥ 𝐸[𝑢(𝑋2)] 

ii) ∫ 𝐹1(𝑡)𝑑𝑡
𝑥

−∞
≤ ∫ 𝐹2(𝑡)𝑑𝑡

𝑦

−∞
  for every 𝑥 with strict inequality for some 𝑥. 

 

Testing procedure for stochastic dominance 
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The test of first order and second order stochastic dominance are based on empirical evaluations of 

the conditions in above definitions. Let 𝑠 = 1,2 represents the order of stochastic dominance. Let 

Φ ∈ { the joint support of 𝑋𝑖 and 𝑋𝑗 , for  𝑖 ≠ 𝑗}. Let 𝐷𝑖
𝑠(𝑥) and 𝐷𝑗

𝑠(𝑦) the empirical distribution of  

𝑋𝑖 and 𝑋𝑗, respectively. To test the null hypothesis, 𝐻0: 𝑋𝑖  ≳𝑠 𝑋𝑗 (where “≳𝑠” indicates stochastic 

dominance at the 𝑠 order), we test that  

 

𝐻0: 𝐷𝑖
𝑠(𝑥; 𝐹𝑖) ≤ 𝐷𝑗

𝑠(𝑥; 𝐹𝑗), 

 

∀ 𝑥 ∈ ℝ, 𝑠 = 1,2. The alternative hypothesis is the negation of the null, that is 

 

𝐻1: 𝐷𝑖
𝑠(𝑥; 𝐹𝑖) > 𝐷𝑗

𝑠(𝑥; 𝐹𝑗), 

 

∀ 𝑥 ∈ ℝ, 𝑠 = 1,2. To construct the inference procedure we consider the Kolmogorov-Smirnov 

distance between functionals of the empirical distribution functions of 𝑋𝑖 and 𝑋𝑗 and define the test 

statistic as 

 

Λ̂=min sup𝑥∈ℝ√𝑁[𝐷̂𝑖
𝑠(𝑥; 𝐹̂𝑖) − 𝐷̂𝑗

𝑠(𝑥; 𝐹̂𝑗)],                           (1A) 

 

where 𝑡 = 1, . . . , 𝑁 and 

 

𝐷̂𝑖
𝑠(𝑥; 𝐹̂𝑖) =

1

𝑁(𝑠−1)!
∑ 1𝑇

𝑡=1 (𝑋𝑖,𝑡 ≤ 𝑥)(𝑥 − 𝑋𝑖.𝑡)𝑠−1,              (2A) 

 

and  𝐷̂𝑗
𝑠(𝑥; 𝐹̂𝑗)  is similarly defined. Linton et al. (2005) show that under suitable regularity conditions 

Λ̂  converges to a functional of a Gaussian process. However, the asymptotic null distribution of Λ̂ 

depends on the unknown population distributions, therefore in order to estimate the asymptotic p-

values of the test we use the overlapping moving block bootstrap method. The bootstrap procedure 

involves calculating the test statistics Λ̂ using the original sample and then generating the subsamples 

by sampling the overlapping data blocks. Once that the bootstrap subsample is obtained, one can 

calculate the bootstrap analogue of  Λ̂. In particular, let B be the number of bootstrap replications and 

b the size of the block. The bootstrap procedure involves calculating the test statistics Λ̂ in (1A) using 

the original sample and then generating the subsamples by sampling the 𝑁 − 𝑏 + 1 overlapping data 

blocks. Once that the bootstrap subsample is obtained one can calculate the bootstrap analogue of  Λ̂ . 

Defining the bootstrap analogue of (1A) as  
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Λ̂∗=min sup𝑥∈ℝ√𝑁[𝐷̂𝑖
𝑠∗(𝑥; 𝐹̂𝑖) − 𝐷̂𝑗

𝑠∗(𝑥; 𝐹̂𝑗)]  (3A) 

 

where  

 

𝐷̂∗(𝑥, 𝐹̂𝑘) =
1

𝑁(𝑠−1)!
∑ {1(𝑋2𝑖

∗ ≤ 𝑥)(𝑥 − 𝑋2𝑖
∗ )𝑠−1 − 𝜔(𝑖, 𝑏, 𝑁)1(𝑋2𝑖

∗ ≤ 𝑥)(𝑥 − 𝑋2𝑖
∗ )𝑠−1}𝑁

𝑖=1   

 

and 

 

𝜔(𝑖, 𝑏, 𝑁) = {  

𝑖 𝑏⁄                                  𝑖𝑓  ∈ [1, 𝑏 − 1]
1                                               𝑖𝑓 𝑖 ∈ [1, 𝑁 − 𝑏 + 1]

 (𝑁 − 𝑖 + 1) 𝑏⁄                       𝑖𝑓 [𝑁 − 𝑏 + 2, 𝑁]         
 

 

    The estimated bootstrap p-value function is defined as the quantity 

 

𝑝∗(Λ̂) =
1

𝑁 − 𝑏 + 1
∑ 1(Λ∗ ≥ Λ̂).

𝑁−𝑏+1

𝑖=1

 

 

Under the assumption that the stochastic processes 𝑋𝑖 and 𝑋𝑗 are strictly stationary and 𝛼-mixing 

with 𝛼(𝑗) = 𝑂(𝑗−𝛿), for some 𝛿 > 1, when 𝐵 → ∞ the expression in (3A) converges to (1A). Also, 

asymptotic theory requires that 𝑏 → ∞ and 𝑏/𝑁 → 0 as 𝑁 → ∞. 
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Table 1: Sample of Hedge Funds. 

The table reports the basic sample statistics and the performance of hedge funds from January 31, 2001 until 

December 31, 2012. Statistics are compiled only from the date that they were listed in the TASS database. All 

returns are in percent. SR is the Sharpe ratio. MPPM(2) and MPPM(3) are manipulation proof performance 

measures of Goetzmann et al. (2007) with a risk aversion parameter of 2 and 3 respectively. 

Strategy Number Assets Age Rf RoR SR MPPM(2) MPPM(3) 

Convertible Arbitrage 124 $251.47 6.44 0.18 0.32 0.45 0.00 -0.02 

Dedicated Short Bias 24 $25.73 6.05 0.17 -0.08 -0.06 -0.06 -0.07 

Emerging Markets 417 $196.34 5.94 0.10 0.59 0.18 0.01 -0.01 

Equity Market Neutral 182 $170.66 5.79 0.15 0.36 0.25 -0.02 -0.04 

Event Driven 347 $375.06 6.67 0.15 0.48 0.30 0.03 0.02 

Fixed Income Arbitrage 114 $302.15 6.29 0.17 0.37 0.69 0.02 0.01 

Fund of Funds 1273 $206.00 5.97 0.12 0.12 0.10 -0.01 -0.02 

Global Macro 158 $550.54 5.89 0.13 0.42 -1.03 0.03 0.02 

Long/Short Equity 

Hedge 1265 $155.44 6.27 0.14 0.44 0.10 0.01 0.00 

Managed Futures 295 $257.77 6.43 0.12 0.56 0.26 0.01 -0.01 

Multi-Strategy 266 $437.17 5.86 0.12 0.43 0.23 0.02 0.01 

Options Strategy 12 $92.53 7.70 0.13 0.55 0.48 0.03 0.02 

Other 123 $273.05 5.74 0.11 0.60 0.41 0.03 0.02 

Grand Total 4600 $238.48 6.14 0.13 0.37 0.15 0.01 0.00 

Live Funds 1922 $256.67  6.27 0.08 0.45 0.20 0.02 0.01 

Dead Funds 2678 $221.24  5.62 0.18 0.30 0.09 0.00 -0.01 

First Half 2033 $223.80  5.17 0.23 0.74 0.22 0.04 0.03 

Second Half 2567 $246.31  6.32 0.08 0.19 0.11 -0.01 -0.02 
Assets are in millions, age is in years, returns are in percent per month and returns are net of fees 
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Table 2: Time Series Characteristics of the Sample of Hedge Funds. 

The table reports the time series statistics of the performance of hedge funds from January 31, 2001 until 

December 31, 2012. Statistics are compiled only from the date that they were listed in the TASS database. All 

returns are in percent. SR is the Sharpe ratio. MPPM(2) and MPPM(3) are the manipulation proof performance 

measures of Goetzmann et al. (2007) for investors with a risk aversion parameter of 2 and 3 respectively.  

 

Assets are in millions, age is in years, returns are in percent per month and returns are net of fees. 

 

  

Year Number Assets Age Rf RoR SR MPPM(2) MPPM(3) 

2001 512 $147.72  4.42 0.31 0.25 0.13 -0.08 -0.10 

2002 151 $156.68  4.80 0.13 -0.11 0.08 -0.02 -0.03 

2003 246 $171.35  5.32 0.08 1.39 0.61 0.05 0.04 

2004 455 $223.09  5.09 0.10 0.80 0.44 0.08 0.07 

2005 333 $253.57  5.15 0.25 0.71 0.29 0.04 0.03 

2006 336 $271.30  5.57 0.39 0.93 0.36 0.06 0.06 

2007 397 $314.81  5.86 0.38 0.85 0.32 0.05 0.05 

2008 428 $309.20  5.99 0.14 -1.70 -0.38 -0.10 -0.12 

2009 282 $225.02  6.41 0.01 1.45 0.31 -0.09 -0.12 

2010 483 $225.39  6.68 0.01 0.87 0.34 0.10 0.09 

2011 567 $207.16  6.30 0.00 -0.55 -0.13 0.03 0.02 

2012 410 $207.62  6.62 0.00 0.46 0.24 -0.03 -0.04 

Total 4600 $238.48  5.93 0.13 0.37 0.15 0.01 0.00 
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Table 3: Monthly average characteristics of the performance measures 

The table reports the mean, median, standard deviation, skewness, kurtosis, the minimum and maximum of the 

average monthly performance measures for the fund of fund 𝑋1 and all hedge funds 𝑋2 and the S&P 500, 

Russell 2000 and EMI emerging market index from January 31, 2001 until December 31, 2012. We also report 

the cut offs for the 20
th

, 40
th

, and 60
th

 percentiles for all performance statistics. Jarque-Bera, 𝐽𝐵 =

 𝑛[(𝑆22)/6)  +  {(𝐾— 3)2}/24], is a formal statistic for testing whether the returns are normally distributed, 

where n denotes the number of observations, S is skewness and K is kurtosis. This test statistic is asymptotically 

Chi-squared distributed with 2 degrees of freedom. The statistic rejects normality at the 1% level with a critical 

value of 9.2. All returns are in percent. MPPM(2) and MPPM(3) are manipulation proof performance measures 

of Goetzmann et al. (2007) with a risk aversion parameter of 2 and 3 respectively.  

 

 

  

Statistic Rate of Return Sharpe Ratio 

 𝑋1 𝑋2 Russ S&P EMI 𝑋1 𝑋2 Russ S&P EMI 

Mean 0.25 0.44 0.68 0.32 1.28 0.18 0.13 0.06 0.03 0.18 

Median 0.57 0.66 1.63 1.00 1.28 0.26 0.29 0.22 0.20 0.19 

St. Dev. 1.55 1.79 5.97 4.59 7.04 0.77 0.89 0.99 1.04 1.04 

Skewness -1.29 -0.84 -0.51 -0.59 -0.66 -0.47 -4.15 -0.67 -0.63 -0.49 

Kurtosis 3.52 1.72 0.75 0.93 1.32 0.14 25.85 0.55 0.29 0.12 

Min -6.53 -6.47 -20.80 -16.80 -27.35 -2.16 -6.19 -3.58 -3.44 -2.95 

20
th
 Percentile -0.79 -1.03 -4.28 -2.51 -3.32 -0.43 -0.27 -0.81 -0.80 -0.51 

40
th
 Percentile 0.15 0.19 0.05 0.06 -0.05 0.11 0.13 -0.03 -0.04 -0.02 

60
th
 Percentile 0.78 1.14 2.82 1.51 3.84 0.43 0.39 0.41 0.39 0.55 

80
th
 Percentile 1.48 1.78 5.32 3.72 7.14 0.86 0.66 0.89 0.89 1.01 

Max 3.33 4.89 15.46 10.93 17.14 1.91 1.41 2.17 2.13 2.20 

JB 41.56 27.00 36.61 34.15 27.44 54.49 3547.74 46.59 53.68 55.38 

 MPPM(2) MPPM(3) 

Mean -0.01 0.01 -0.01 -0.02 -0.02 0.01 0.05 -0.01 -0.03 0.02 

Median 0.02 0.03 0.02 0.00 0.05 0.04 0.14 0.03 0.05 0.12 

St. Dev. 0.08 0.10 0.10 0.08 0.21 0.22 0.32 0.23 0.21 0.34 

Skewness -1.40 -1.36 -1.53 -1.22 -0.75 -0.42 -0.96 -0.50 -0.79 -1.01 

Kurtosis 1.88 3.15 3.66 1.36 0.12 0.16 0.89 0.24 0.13 0.94 

Min -0.27 -0.43 -0.49 -0.29 -0.61 -0.61 -0.92 -0.66 -0.63 -0.99 

20
th
 Percentile -0.05 -0.05 -0.06 -0.07 -0.21 -0.16 -0.19 -0.19 -0.23 -0.21 

40
th
 Percentile -0.01 0.00 -0.01 -0.02 0.02 -0.03 0.07 -0.05 0.02 0.02 

60
th
 Percentile 0.03 0.05 0.04 0.03 0.08 0.08 0.18 0.06 0.06 0.16 

80
th
 Percentile 0.05 0.08 0.07 0.05 0.14 0.19 0.28 0.17 0.13 0.26 

Max 0.12 0.18 0.17 0.11 0.42 0.48 0.62 0.47 0.41 0.60 

JB 54.26 44.78 58.62 51.82 63.28 52.48 48.73 51.90 64.31 50.02 
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Table 4: Comparing hedge fund performance with the stock market 

This table reports the first and second order stochastic dominance tests (s) to determine if the 

fund of fund (𝑋1) and overall universe of US dollar hedge funds (𝑋2) outperform the market 

according to the Sharpe ratio and the Manipulation Proof Performance MPPM using a risk 

aversion parameter of 2 and 3. Panels A, B and C compare hedge funds to the Russell 2000, 

S&P 500 and the MSCI emerging market indices respectively. 

 s 𝐻0
1: 𝑋1 ≻𝑠 𝑌𝑗  𝐻0

2: 𝑌𝑗 ≻𝑠 𝑋1 𝐻0
1: 𝑋2 ≻𝑠 𝑌𝑗 𝐻0

2: 𝑌𝑗 ≻𝑠 𝑋2 

  

Panel A:  R2000 

 

Sharpe 

 

1 

 

0.009 

 

0.025 

 

0.000 

 

0.004 

 2 0.973 0.009 0.570 0.009 

MPPM(2) 1 0.000 0.008 0.000 0.001 

 2 0.763 0.003 0.581 0.007 

MPPM(3) 1 0.000 0.000 0.000 0.027 

 2 0.774 0.008 0.568 0.005 

 

Panel B 

 

S&P500 

 

 

Sharpe 

 

1 

 

0.086 

 

0.000 

 

0.000 

 

0.001 

 2 0.981 0.001 0.817 0.005 

MPPM(2) 1 0.000 0.063 0.000 0.000 

 2 0.988 0.699 0.799 0.999 

MPPM(3) 1 0.000 0.000 0.000 0.000 

 2 0.502 0.463 0.999 0.991 

 

Panel C MSCI 

 

Sharpe 

 

1 

 

0.001 

 

0.003 

 

0.002 

 

0.000 

 2 0.675 0.006 0.614 0.002 

MPPM(2) 1 0.000 0.000 0.000 0.000 

 2 0.999 0.669 0.644 0.998 

MPPM(3) 1 0.000 0.000 0.000 0.000 

 2 0.582 0.483 0.562 0.477 
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Table 5: Comparing top and mediocre hedge fund performance  

This table reports the first and second order stochastic dominance tests (s) to determine if the 

top quintile 𝑍5 fund of fund 𝑋1 and overall universe of US dollar hedge funds 𝑋2 outperform 

the mediocre quintile 𝑍3 for t months out of sample according to the Sharpe ratio and the 

Manipulation Proof Performance measure MPPM using a risk aversion parameter of 2 and 3.  

  𝑋1 𝑋2 

      

t s 𝐻0
1: 𝑍5 ≻𝑠 𝑍3 𝐻0

1: 𝑍3 ≻𝑠 𝑍5 𝐻0
1: 𝑍5 ≻𝑠 𝑍3 𝐻0

1: 𝑍3 ≻𝑠 𝑍5 

      

Panel A Sharpe Ratio 

1 1 0.995 0.082 0.888 0.000 

 2 0.997 0.000 0.999 0.000 

6 1 0.882 0.930 0.983 0.018 

 2 0.992 0.468 0.999 0.000 

12 1 0.283 0.999 0.898 0.030 

 2 0.746 0.477 0.999 0.016 

18 1 0.999 0.988 0.970 0.041 

 2 0.921 0.214 0.970 0.032 

24 1 0.905 0.999 0.998 0.005 

 2 0.355 0.696 0.999 0.009 

Panel B MPPM(2) 

  

1 1 0.991 0.000 0.989 0.000 

 2 0.999 0.000 0.999 0.000 

6 1 0.999 0.041 0.993 0.000 

 2 0.992 0.000 0.999 0.000 

12 1 0.775 0.531 0.494 0.978 

 2 0.999 0.331 0.956 0.720 

18 1 0.420 0.999 0.188 0.999 

 2 0.503 0.970 0.426 0.988 

24 1 0.427 0.999 0.210 0.999 

 2 0.560 0.514 0.595 0.892 

Panel C MPPM(3) 

  

1 1 0.987 0.000 0.945 0.000 

 2 0.999 0.000 0.999 0.000 

6 1 0.987 0.035 0.991 0.000 

 2 0.999 0.000 0.999 0.000 

12 1 0.223 0.999 0.716 0.723 

 2 0.145 0.813 0.995 0.509 

18 1 0.423 0.999 0.157 0.999 

 2 0.634 0.847 0.408 0.989 

24 1 0.995 0.999 0.384 0.999 

 2 0.404 0.780 0.614 0.534 

 

 



28 

 

 

 

  



29 

 

Table 6: Top and mediocre hedge fund risk profiles 

This table reports the quantile response, at the 25
th

, 50
th

 and 75
th

 quantiles, of the returns 

for top performing 𝑍5 and mediocre performing funds 𝑍3 (according to the manipulation 

proof performance measure with a risk parameter of 3) of the fund of fund portfolios six 

months out of sample in response to a unit change in the risk factors for market risk 

(MKTRF), size (SMB), value (HML), momentum (MOM), long term momentum reversal 

(LTR) and liquidity (AGGLIQ). 

Quantile  𝐹5 𝐹3 

  Coefficient Bootstrap S.E. Coefficient Bootstrap 

S.E. 

      

Q25 CONS   -0.755
** 

0.287 -0.365
**

 0.189 

 MKTRF    0.362
***

 0.085   0.277
***

 0.049 

 SMB 0.150 0.159 0.054 0.054 

 HML 0.067 0.190 0.114 0.089 

 MOM    0.214
***

 0.072    0.075
***

 0.030 

 LTR  -0.148 0.153    -0.205
***

 0.079 

 AGGLIQ 0.842 4.420 4.067
*
 2.140 

      

 Pseudo R
2
          0.225          0.413 

      

Q50 CONS 0.647
*
 0.324 0.310

***
 0.114 

 MKTRF 0.295
***

 0.083 0.236
***

 0.045 

 SMB 0.037 0.100 0.058 0.053 

 HML -0.070 0.156 0.056 0.045 

 MOM 0.130
**

 0.079 0.073
***

 0.022 

 LTR 0.014 0.150 -0.118
**

 0.058 

 AGGLIQ -4.523 4.321 4.173
*
 2.095 

      
2
 Pseudo R         0.131         0.320 

      

Q75 CONS 1.985
***

 0.325 0.779
***

 0.110 

 MKTRF 0.281
**

 0.107 0.206
***

 0.037 

 SMB -0.009 0.119 0.049 0.049 

 HML -0.031 0.131 0.059 0.063 

 MOM 0.150
**

 0.071 0.069
**

 0.032 

 LTR 0.011 0.140 -0.033 0.052 

 AGGLIQ -0.799 4.849 1.248 2.553 

      

 Pseudo R
2
         0.153          0.255 

 ***,**,*
 statistically significant at the 1, 5 and 10% level respectively. SE are the bootstrapped 

standard error obtained with 1000 replications.   
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Figure 1: This figure graphs the estimates of equation (4) with the quantile of 𝐹5 as 

dependent variable. Performance is according to proof performance measure with a risk 

parameter of 3 with excess returns as the dependent variable. 
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Figure 2: This figure graphs the estimates of equation (4) with the quantile of 𝐹3 as 

dependent variable. Performance is according to proof performance measure with a risk 

parameter of 3 with excess returns as the dependent variable. 
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Figure 3 Time variation of the risk factors for top performing funds 

These figures show the time varying estimated coefficients of the risk factors in equation (4) 

and their upper UB and lower bounds LB that explains the six month out of sample net 

excess rate of return for the top quintile performing fund of fund hedge funds according to the 

manipulation proof performance measure with a risk aversion parameter of 3. The risk factors 

are the market excess rate of return MRTRF and the size SMB, growth HML, momentum 

MOM, momentum reversal LTR and liquidity AGGLIQ factors. 
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Figure 4: Time variation of the risk factors for mediocre performing funds 

These figures show the time varying estimated coefficients of the risk factors in equation (4) 

and their upper UB and lower bounds LB that explains the six month out of sample net 

excess rate of return for the third (mediocre) quintile performing fund of fund hedge funds 

according to the manipulation proof performance measure with a risk aversion parameter of 

3. The risk factors are the market excess rate of return MRTRF and the size SMB, growth 

HML, momentum MOM, momentum reversal LTR and liquidity AGGLIQ factors. 
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