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Mind your crossings: Mining GIS imagery for crosswalk localization

Dragan Ahmetovic, Carnegie Mellon University

Roberto Manduchi, University of California Santa Cruz

James M. Coughlan, The Smith-Kettlewell Eye Research Institute

Sergio Mascetti, Università degli Studi di Milano

For blind travelers, finding crosswalks and remaining within their borders while traversing them is a crucial

part of any trip involving street crossings. While standard Orientation & Mobility (O&M) techniques allow

blind travelers to safely negotiate street crossings, additional information about crosswalks and other impor-

tant features at intersections would be helpful in many situations, resulting in greater safety and/or comfort

during independent travel. For instance, in planning a trip a blind pedestrian may wish to be informed of

the presence of all marked crossings near a desired route.

We have conducted a survey of several O&M experts from the United States and Italy to determine

the role that crosswalks play in travel by blind pedestrians. The results show stark differences between

survey respondents from the U.S. compared with Italy: the former group emphasized the importance of

following standard O&M techniques at all legal crossings (marked or unmarked), while the latter group

strongly recommended crossing at marked crossings whenever possible. These contrasting opinions reflect

differences in the traffic regulations of the two countries and highlight the diversity of needs that travelers

in different regions may have.

To address the challenges faced by blind pedestrians in negotiating street crossings, we devised a com-

puter vision-based technique that mines existing spatial image databases for discovery of zebra crosswalks

in urban settings. Our algorithm first searches for zebra crosswalks in satellite images; all candidates thus

found are validated against spatially registered Google Street View images. This cascaded approach en-

ables fast and reliable discovery and localization of zebra crosswalks in large image datasets. While fully

automatic, our algorithm can be improved by a final crowdsourcing validation. To this end, we developed a

Pedestrian Crossing Human Validation (PCHV) web service, which supports crowdsourcing to rule out false

positives and identify false negatives.

Additional Key Words and Phrases: Orientation and Mobility, Autonomous navigation, Visual impairments

and blindness, Satellite and street-level imagery, Crowdsourcing

1. INTRODUCTION

Independent travel can be extremely challenging without sight. Many people who are
blind learn (typically with the help of an Orientation and Mobility, or O&M, profes-
sional) the routes that they will traverse routinely [Wiener et al. 2010], for example to
go to work, school or church. Far fewer attempt independent trips to new locations: for
example to visit a new friend or meet a date at a restaurant. To reach an unfamiliar
location, a person who is blind needs to learn the best route to the destination (which
may require taking public transportation); needs to follow the route safely while being
aware of his or her location at all times; and needs to adapt to contingencies, for ex-
ample if a sidewalk is undergoing repair and is not accessible. Each one of these tasks
has challenges of its own. In particular, the lack of visual access to landmarks (for ex-
ample, the location and layout of a bus stop or the presence of a pedestrian traffic light
at an intersection) complicates the wayfinding process. Thus, a straightforward walk
for a sighted person could become a complex, disorienting, and potentially hazardous
endeavor for a blind traveler.

Technological solutions for the support of blind wayfinding exist. Outdoors, where
GPS can be relied upon for approximate self-localization, a person who is blind can
use accessible navigation apps. While these apps cannot substitute for proper O&M
training, they provide the traveler with relevant information on-the-go, or can be used
to preview a route to be taken. A navigation tool, though, is only as good as the map it
draws information from. Existing geographical information systems (GIS) lack many
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features that, while accessible by sight, are not available to a person who is blind. For
example, Hara et al. found that knowing the detailed layout of a bus stop (e.g., the
presence of features such as a bench or nearby trees) can be extremely useful for a
person who is blind in figuring out where to wait for the bus [Hara et al. 2013a]. Other
relevant information lacking in GIS may include the presence of curb ramps (curb
cuts) near intersections, or the location of an accessible pedestrian signal controlled by
a push button.

We propose a novel technique to detect zebra crossings on satellite and street level
images. On four test areas, totaling 7.5km2 in diverse urban environments, our ap-
proach achieves high quality detection, with precision ranging from 0.902 to 0.971,
and a recall ranging from 0.772 to 0.950. Knowing the locations of marked crosswalks
can be useful to travelers with visual impairments for navigation planning, finding
pedestrian crosswalks and crossing roads. A pedestrian, crossing a street outside of a
marked crosswalk, has to yield the right-of-way to all vehicles1. While blind pedestri-
ans do have right of way even in the absence of a crosswalk, we argue that marked
crosswalks, being clearly visible by drivers [Fitzpatrick et al. 2010], and since they
grant right-of-way to pedestrians, are a highly preferable location for street crossing
in terms of safety. Pedestrians who are blind or visually impaired are taught sophisti-
cated O&M strategies for orienting themselves to intersections and deciding when to
cross, using audio and tactile cues and any remaining vision [Barlow et al. 2010]. How-
ever, there may be no non-visual cues available to indicate the presence and location
of crosswalk markings.

Blind travelers may benefit from information about the location of marked cross-
walks in two main ways. First, ensuring that a route includes street crossings only
on clearly marked crosswalks may increase safety during a trip. Second, this informa-
tion can be used jointly with other technology that supports safe street crossing. For
example, recent research [Coughlan and Shen 2013; Mascetti et al. 2016; Ahmetovic
et al. 2014] shows that computer vision-based smartphone apps can assist visually
impaired pedestrians in finding and aligning properly to crosswalks. This approach
would be greatly enhanced by the ability to ask a GIS whether a crosswalk is present,
even before arriving at the intersection. If a crosswalk is present, the geometric infor-
mation contained in the GIS can then be used [Fusco et al. 2014b] to help the user aim
the camera towards the crosswalk, align to it and find other features of interest (e.g.,
walk lights and walk light push buttons).

This article extends our previous conference paper [Ahmetovic et al. 2015] with the
addition of a survey of O&M professionals to better understand the role of pedestrian
crossings in navigation for blind pedestrians (see Section 3). Additionally, we provide
a new web service for validating the collected data through crowdsourcing by adding
new crossings and filtering out false positives (see Section 4.4). A thorough evaluation
of the performance of the automatic labeling system over different areas is presented
in Section 5, along with a preliminary evaluation of the crowdsourcing system for label
assignment refinement.

2. RELATED WORK

In recent years there has been an increasing interest in adding specific spatial in-
formation to existing GIS. Two main approaches can be identified: computer vision
techniques and crowdsourcing.

Satellite and street-level imagery of urban areas in modern GIS are vast data
sources. Computer vision methods can be used to extract geo-localized information
about elements contained in these images (e.g., landmarks, vehicles, buildings). Satel-

1http://mutcd.fhwa.dot.gov
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lite images have been used to detect areas of urban development and buildings [Sir-
macek and Unsalan 2009], roads [Mattyus et al. 2015; Mokhtarzade and Zoej 2007]
and vehicles [Leitloff et al. 2010]. [Senlet and Elgammal 2012] propose sidewalk de-
tection that corrects occlusion errors by interpolating available visual data. In street
level images, [Xiao and Quan 2009] propose detection of buildings, people and vehicles,
while [Zamir and Shah 2010] tackle the issue of localizing user captured photographs.
In a similar way, [Lin et al. 2015], localize street-level imagery in 45◦ aerial views of
an area.

Recently, [Koester et al. 2016] proposed a technique based on Support Vector Ma-
chines (SVMs) to recognize pedestrian crossings from satellite images. The authors
compare the performance of the proposed solution, in terms of precision and recall,
with that reported in our previous paper [Ahmetovic et al. 2015] on the San Fran-
cisco dataset (SF1 region, see Section 5). While the solution proposed by Koester et al.
has better performance than the first step of our classifier (which is based on satellite
images only), our complete solution (i.e., based on satellite images and Street View
panoramas) has superior performance. The previous solutions also present no way of
addressing errors in the automated detection.

An alternative approach for detection of features in geo-spatial imagery is crowd-
sourcing. In particular the impact of volunteered crowdsourcing, called volunteered ge-
ographic information (VGI), is stressed in [Goodchild 2007]. Wheelmap2 allows acces-
sibility issues to be marked on OpenStreetMap, the largest entirely crowdsourced GIS.
[Hochmair et al. 2013] assess bicycle trail quality in OpenStreetMap while [Kubásek
et al. 2013] propose a platform for reporting illegal dump sites.

Specific spatial information can be used to support people with visual impairments
to navigate safely and independently. Smartphone apps that assist visually impaired
individuals to navigate indoor and outdoor environments [Rituerto et al. 2016; Ahme-
tovic et al. 2016a; Ahmetovic et al. 2016b] have been proposed. For example, iMove3 is
a commercial application that informs the user about the current address and nearby
points of interest. Large scale analysis of iMove usage data from 4055 users of the sys-
tem shows how users can be clustered in different user groups based on their interest
in different types of spatial information [Kacorri et al. 2016]. Other research proto-
types, Crosswatch [Coughlan and Shen 2013] and ZebraLocalizer [Ahmetovic et al.
2011], allow pedestrians with visual impairments to detect crosswalks with a smart-
phone camera. Similar solutions designed for wearable devices have the great advan-
tage of not requiring the user to hold the device while walking [Poggi et al. 2015].

Crowdsourcing is also used to assist users with visual impairments during naviga-
tion. BlindSquare4 is a navigation app that relies on the Foursquare social network for
points of interest data and OpenStreetMap for street info. VizWiz5 allows one to ask
help of a remote assistant and attach a picture to the request. BeMyEyes6 extends this
approach to allow assistance through video feed. [Rice et al. 2012] gather information
on temporary road accessibility issues (e.g., roadwork, potholes). StopInfo [Campbell
et al. 2014] helps people with visual impairments to locate bus stops by gathering
data about non-visual landmarks near bus stops. [Hara et al. 2013a] improve on this
approach by performing crowdsourcing on street-level imagery, without the need to
explore an area of interest in person. [Guy and Truong 2012] propose an app to gather

2http://wheelmap.org
3http://www.everywaretechnologies.com/apps/imove
4http://blindsquare.com/
5http://vizwiz.org
6http://www.bemyeyes.org
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information on the structure and position of nearby crossings through crowdsourcing
of street-level images and to assist users with visual impairments in crossing streets.

Computer vision techniques can use satellite and street-level images to assist peo-
ple with visual impairments. [Hara et al. 2013c] propose the detection of inaccessible
sidewalks in Google Street View images. [Murali and Coughlan 2013] and [Fusco et al.
2014a] match wide-angle (180-360◦) panoramas captured by smartphone to satellite
images of the surroundings for estimating the user‘s position in an intersection more
precisely than with GPS.

Hybrid approaches using automated computer vision techniques for menial work
and human “Turkers” for more complex tasks have also been proposed. [Hara et al.
2013b] extend the previous work to combine crowdsourcing and computer vision de-
tection of accessibility problems, such as obstacles or damaged roads. In another work
[Hara et al. 2014], a similar technique analyzes Street View imagery for the detection
of curb ramps, which are then validated by crowd workers. Our approach, by using
a satellite detection step followed by a Street View detection stage, limits the Street
View validation to only those areas in satellite imagery in which candidates have been
detected. Similarly, the open source project “OSM-Crosswalk-Detection: Deep learn-
ing based image recognition”7 aims at recognizing pedestrian crossings from satellite
images using a deep learning approach; results are validated by humans using the
MapRoulette8 software that is integrated in OpenStreetMap. A similar approach to
crosswalk detection is proposed by the Swiss OpenStreetMap Association with another
MapRoulette challenge aimed at validating crosswalks that have been automatically
detected from satellite images9.

To the best of our knowledge, our technique is the first to combine satellite and
street-level imagery for automated detection, and crowdsourcing for validation of ze-
bra crossings. The final crowdsourcing validation step makes it possible to add missed
crosswalks, filter false detections, and can be extended to gather other information
on the surroundings of the detected crossings, which can be of use to visually im-
paired pedestrians in finding and aligning to the crossings. Detected crosswalks can
be added to a crowdsourced GIS and used by travelers with visual impairments dur-
ing navigation planning. Solutions that detect crosswalks using the smartphone video
camera [Ahmetovic et al. 2014; Coughlan and Shen 2013] can benefit from this infor-
mation to assist the user in finding crossings at long distances that cannot be captured
by the camera.

3. O&M SURVEY ON STREET CROSSING

While it may be intuitive for most sighted pedestrians that a marked crosswalk should
be a safer place to cross a street than an unmarked one, one should be cautious when
applying the same notion to the case of blind pedestrians. In order to achieve a clearer
understanding of the importance of marked crosswalks for blind navigation, in this sec-
tion we present a short survey that was administered to nine Orientation and Mobility
(O&M) specialists. O&M professionals routinely help blind travelers in all aspects of
urban navigation, from walking in a straight line by “shorelining” (maintaining con-
stant distance to a surface parallel to the intended direction), to planning safe and ef-
ficient routes, to crossing a street. They represent an invaluable source of knowledge,
as most of them have extensive experience with a wide variety of blind and visually
impaired travelers.

7https://github.com/geometalab/OSM-Crosswalk-Detection
8http://maproulette.org/
9http://sosm.ch/missing-crosswalks-a-maproulette-challenge/
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3.1. Study Method

Since the rules of traffic can be quite different across countries, we decided to consult
O&M specialists from the two different countries (the U.S. and Italy) that are home
to the authors. Specifically, five respondents live in the U.S., while the remaining four
are based in Italy. These individuals were recruited through the authors’ network of
acquaintances. While our sample is limited to only two countries, substantial differ-
ences already emerged from the survey, highlighting the risk of quick generalization
and the importance of traffic norms on the way blind travelers plan their routes.

In order to understand the results of our survey, it is important to appreciate the
rules regarding street crossing in the two countries considered. A crosswalk is defined
as “the portion of a roadway designated for pedestrians to use in crossing the street”
[Zegeer 1995]. In the U.S., crosswalks are implied at all road intersections, regardless
of whether they are marked by painted lines or not [Kirschbaum et al. 2001]. In addi-
tion to intersections, mid-block crosswalks can be defined, but only if a marked cross-
walk is provided. In contrast, pedestrians in Italy are supposed to only cross streets on
marked crosswalks, overpasses or underpasses, unless these are located at more than
100 meters from the crossing point, in which case pedestrians can cross the street or-
thogonally to the sidewalk, giving the right of way to cars [Ancillotti and Carmagnini
2010]. To account for this difference, we worded our survey differently for the U.S. and
the Italian versions. The survey questions are listed in the Appendix. Surveys were
sent to the O&M specialists by email, giving them the choice to respond by email or
via a telephone call. The U.S. respondents sent their responses by email, while the
Italian ones preferred to use the phone.

3.2. Survey Results

The first two questions in the survey investigated the importance of choosing marked
crosswalks in a route that requires crossing a street, even if this may imply a slightly
longer route (Question 2). Somewhat surprisingly, the U.S. O&M specialists did not
feel that blind pedestrians should preferably cross a street on a marked crosswalk. For
example, one respondent said:

Whereas it would be preferable for all legal crossings at intersections to be marked
with high visibility crosswalk markings to help alert motorists of the potential
presence of pedestrians, not all intersections are marked. The lack of crosswalk

markings at an intersection does not make the crossing illegal or particularly unsafe.

Another respondent said:

It might be “preferable” that they cross streets with painted lines, but it’s not realistic.
There are too many intersections without these lines, and there are too many negative
consequences to address in finding an alternate intersection. Bottom line, they are not

“unsafe” at crossings that do not have painted lines.

Likewise, all U.S. respondents, when faced with the hypothetical situation described in
Question 2, said that they would advise taking Path 1 (which implies crossing a street
at an intersection without a marked crosswalk) rather than Path 2 (which requires
walking on a longer route in order to cross the street on a marked mid-block cross-
walk). The answers to this question, however, were more nuanced. For example, one
respondent pointed out that the deciding factor would not be the presence or absence
of a marked crosswalk, but rather whether the crosswalk is controlled by a stop sign
or a traffic signal; hence, unless the mid-block crosswalk were controlled, Path 1 would
be preferable according to this O&M specialist. Another respondent said:

ACM Transactions on Accessible Computing, Vol. 9, No. 4, Article 39, Publication date: March 2010.
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One drawback in a mid-block crossing, even with a crosswalk, is that cars don’t
always anticipate someone crossing and may be going too quickly to stop easily or may

just not be watching out for pedestrians as much as they do at corners.

A third respondent remarked that:

Generally I teach Path 1 regardless of markings because of the ability to maintain a
straight line of travel. Also its visibility is much greater in Path 1 allowing them to use
traffic to cross safely. I avoid mid-block crossings as they are less safe due to restricted

visibility and drivers generally not anticipating mid-block crossers.

Asked whether the availability of an app that helps the traveler locate the mid-block
marked intersection would be a determining factor in the choice of Path 1 vs. Path 2,
the U.S. respondents did not seem to think that it would. One commented:

An app telling the traveler where the crosswalk markings are, in and of itself, would
not be helpful (especially at an uncontrolled crossing). However, if that app could help
them maintain a straight line of travel throughout the crossing (i.e. prevent them from

veering), that would be of significant use.

Another respondent said:

It would have to be a very savvy traveler to cross with technology [sic] as there is
already an increased cognitive load with the additional challenges let alone diverting

attention to the app.

A third one remarked:

I would still not recommend wasting time and walking mid-block. Even with the app,
it will still be somewhat challenging to determine where exactly to line up to make this

mid-block crossing, especially in the absence of parallel traffic.

The Italian O&M specialists consulted in this survey gave a diametrically opposite
response. All four respondents stated emphatically that a person who is blind should
always try to cross a street on marked crosswalks, as long as they are identifiable by
the pedestrian. For example, one respondent said (note: all quotations translated from
Italian):

Not all drivers recognize a white cane or a guide dog. Crossing the street on a zebra
crosswalk is certainly preferable, and it is safer as the blind walker is protected by two

rights: the right of a pedestrian [crossing on a marked crosswalk] and the right of a
person who is blind [using a white cane or a guide dog].

They also generally opined favorably on Path 2 vs. Path 1, for multiple reasons: en-
vironmental and emotional control (In Path 1, one is exposed to noise from multiple
directions, with cars coming from all sides), cultural factors (We as drivers are used to
give the right of way on marked crosswalks), and the walker’s own experience (Crossing
on the crosswalk is simpler, although the more clever ones can cross on the intersection).

Question 3 in the survey asked for the type of information that a blind pedestrian
would need when deciding where to cross a street, as well as the type of informa-
tion that an existing or a hypothetical app could provide. Several of the respondents
commented that the information requested by the first part of the question is ba-
sic O&M material (e.g. [Pogrund et al. 2012]), which any independent blind trav-
eler should already be familiar with. This includes the ability to detect/identify cor-
ners/intersections, the ability to analyze any intersection they may come across, and
strategies for lining up with the crossing. In fact, as one respondent pointed out:
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The “where” to cross (i.e. where to physically stand to line up for the crossing) is not as
important as the “when” to cross (i.e. identifying the type of traffic control present).

None of the O&M specialists interviewed seemed to have much experience with apps
such as Blindsquare, which give information about one’s location and nearby streets.
(In fact, one respondent commented that these apps sometimes “freeze up”, leaving
blind users unable to move on). Several respondents remarked that knowledge of
whether the street is one-way or two-way, the presence of a traffic signal, as well as
the name of the street and of nearby streets, would be very useful. One respondent
remarked that an existing service, ClickAndGo10, already provides this type of infor-
mation. Two Italian respondents indicated that localization of the starting point of a
zebra crossing would be useful. Other useful information that could be provided by a
hypothetical app include: the width of the street to cross, the shape of the intersection,
the volume of traffic, the visibility at a corner, and the traffic movement cycles. Several
respondents remarked that a main challenge when crossing the street is locating the
destination corner, given the difficulty of walking straight, especially in the absence of
parallel traffic that can help define a path from departure to the destination curb.

The last question in our survey regarded the type of information that would be help-
ful to have in an intersection. We note in passing that at least one existing app, In-
tersection Explorer, available for Android, can provide some information about nearby
street intersections. Since intersections automatically define crosswalks (at least in
the U.S.), this question overlaps in part with Question 3. Respondents indicated that
useful information would include: the cardinal directions of the streets in the intersec-
tion, along with the user’s own location; the shape of the intersection (in particular,
unusual layouts); the nearside parallel surge of the traffic flow; the presence of traf-
fic controllers, including pedestrian acoustic signals; the presence of medians or of
right turn islands; the presence of “do not cross” barriers; the type of traffic control
(if present), and the location of pushbuttons for the activation of acoustic pedestrian
signals; “anomalous” intersections containing diagonal crosswalks, or crosswalks that
end against a wall or a vegetated area rather than on a sidewalk. One U.S. O&M spe-
cialist clearly stated that being informed of the presence or absence of crosswalks is not
important; this contrasted with the opinion of two Italian respondents, who indicated
that finding the locations of marked crosswalks is extremely important. Finally, two
respondents mentioned the difficulties associated with crossing the street at a round-
about [Ashmead et al. 2005], a type of intersection layout that has become pervasive
in Europe.

3.3. Discussion

In conclusion, this survey has highlighted some important aspects related to street
crossing without sight, in particular where to cross a street, as well as the information
needs of an app that could assist a blind traveler in these situations. Contrary to our
expectation, the U.S. O&M respondents did not think that crossing a street at a marked
crosswalk would be any safer than at an unmarked crosswalk. In contrast, the Italian
respondents unanimously recommended crossing a street only at a marked crosswalk,
if possible. This sharp difference in opinions is a consequence of the different traffic
regulations in the two countries. We may conclude that prior knowledge of the location
of marked crosswalks, as facilitated by the techniques discussed in this article, could be
very important for blind pedestrians living in some but not all countries. In particular,
the traffic code in the U.S. (and possibly in other countries) implies crosswalks at all

10http://www.clickandgomaps.com
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intersections even without marking, which reduces the importance of using marked
crosswalks for street crossing.

4. ZEBRA CROSSING IDENTIFICATION

GIS Detection

Algorithm

Volunteer

(sighted user)

DB

PCHV

Server

Routing app

(blind user)

Navigation app

(blind users)

Fig. 1. System architecture.

Multiple types of marked crosswalks are used across the world. In the United States,
at least two different types of marked crosswalks are available11. The transverse mark-
ing consists of two white lines, perpendicular to the road direction, with width be-
tween 6in (15cm) and 24in (60cm). The separation between the two lines is at least
6ft (180cm). Zebra crossings, known as “continental crossings” in USA, can be visually
detected at larger distances than other marked crosswalks under the same illumina-
tion conditions [Fitzpatrick et al. 2010]. The zebra crossing pattern is often recom-
mended because it is most visible to drivers [Knoblauch and Crigler 1987]. According
to [Kirschbaum et al. 2001], “use of the continental design for crosswalk markings also
improves crosswalk detection for people with low vision and cognitive impairments.”
In other countries (e.g., Italy), zebra crossing is the only form of marked crosswalk.

While in this contribution we focus on U.S. and Italian zebra crossings, the param-
eters of the detection can be tuned for other types of zebra crossings with different
geometric characteristics. Other marked crosswalk types, such as transverse mark-
ings, could also be detected through appropriate computer vision techniques. We plan
to extend our zebra-crossing detector to other transverse markings in future work.

A zebra crossing is a set of parallel, uniformly painted, white or yellow stripes on a
dark background. The gaps separating the white stripes are of the same color of the
underlying road and they define “dark stripes”. Each stripe is a rectangle or, in case
of diagonal crossings, a parallelogram. United States regulation dictates that zebra
crossings be at least 6ft (180cm) wide, with white stripes 6in (15cm) to 24in (60cm)
thick. The thickness of the dark stripes is not regulated. Italian regulation define zebra
crossings as composed of at least 2 light stripes and 1 dark stripe. The stripes are 50cm
thick and have a width of at least 250cm.

4.1. Technique Overview

Our system (Figure 1) is composed of two key components: an automated crossing de-
tection cascaded classifier and a manual crossing validation web service. The cascade
classifier, depicted in Figure 2, first detects candidate zebra crossings from satellite im-
ages. These results are then validated on Google Street View panoramic images at the
locations produced by the satellite image classifier. In addition to automated detection,

11http://mutcd.fhwa.dot.gov
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we have created provisions for volunteers (Pedestrian Crossing Human Validation, or
PCHV) to manually add crossings or delete false detections through an intuitive web
interface (see Section 4.4). Finally, these results are stored in a database. We are cur-
rently storing this database on a private server, although we are planning to eventually
port it to an accessible GIS system such as OpenStreetMap. External accessible apps
can use the detected crossing information for navigation or route planning.

Satellite Images

Processing

Street view

images processing

Satellite images

Candidate

crossings

Street view images

Detected

crossings

Geographical

area

Fig. 2. Overview of computer vision cascade approach: the system finds candidate crosswalk markings in
satellite images and then verifies or rejects these candidates in the corresponding Street View images.

Given a certain region A of interest, one or more satellite images covering A are
downloaded and analyzed by the algorithm described in Section 4.2. We have used
Google Maps aerial images in our experiments, although of course other providers
could also be used. We use a detector with a very high recall rate in this phase, since
zebra crossings are never added in the subsequent stages (except possibly through hu-
man input in the parallel PCHV modality). Hence, a number of false positives should
be expected. In the second stage, described in (Section 4.3), Google Street View panora-
mas (if available) are downloaded for locations close to the location of each satellite
image detection. The purpose of this stage is to filter out any false detections from the
satellite images. Of course, this may also result in the unfortunate removal of some
zebra crossings correctly detected in the first stage.

The combined use of satellite images and Street View panoramas helps reduce the
overall computational cost while ensuring good detection performance. While Street
View images have much higher resolution than satellite images (and thus enable bet-
ter accuracy), downloading and processing a large number of panoramas would be
unwieldy. For example, in experiments with our SF1 dataset (Section 5), we found
that surveying an area A of 1.6km2 would imply downloading approximately 637MB of
panoramic image data. The amount of satellite image data for the same area is much
smaller (≈ 23MB), with only 16MB of panoramic image data required for validation.
Thus, in this example, our cascaded classifier only needs to download and process 6%

of the data that would be required by a system that only analyzes Street View panora-
mas.

4.2. Satellite Image Processing

Algorithm 1 describes our procedure to acquire and process the satellite images12. We
rely on the Google Static Maps API13 to download satellite images through HTTP calls.
Each HTTP call specifies the GPS coordinates of the image center, the zoom factor,

12Satellite and Street View imagery courtesy of Google c©
13https://developers.google.com/maps/documentation/staticmaps/
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and the image resolution. The maximum image size for downloading is constrained to
640 × 640 pixels; hence, for large input areas, several HTTP requests need to be sent.
Note that in the following we use the maximum zoom factor, at which the image size
corresponds to an area of approximately 38m×38m.

A
640px

38m
=

640px

38m
=

(a) Area A partitioned

1 2 3

4 5

6 7 8

current

image

d
d

(b) Extended image (c) Zebra crossing on two adjacent images

Fig. 3. The system collects satellite images of the target area.

ALGORITHM 1: Satellite images acquisition and processing

Input: Rectangular geographical area A.
Output: a set Z of zebra crossings, each one represented by its position and direction.
Method:
1: Z ← ∅ {algorithm result}
2: partition A into a set R of sub-regions
3: for all (sub-region r ∈ R) do
4: if (r does not contain a road) then continue
5: download satellite image i of area r
6: generate extended image i′

7: L← detect line segments in i′

8: S ← group line segments in L in candidate crossings
9: for all (candidate crossing s ∈ S) do
10: if (s is not a valid crossing) then continue
11: z ← position and direction of zebra crossing s
12: merge and add z to Z
13: end for
14: end for
15: return Z

A region of interest A is acquired by downloading enough satellite images to cover
it (Figure 3(a)). The locations and areas of these images (sub-regions) are easily com-
puted given the zoom factor. In fact, not all sub-regions need to be downloaded, but only
those that contain one or more roads (since a region without a road cannot contain a
zebra crossing). This information can be obtained through the Google Maps Javascript
API14, which exposes a method to compute the closest position on a road to a given
location. Thus, before downloading an image centered at a point p, we compute the
distance from p to the closest road; if this distance is larger than half the diagonal
length of the image, we conclude that the image does not include any roads, and avoid
downloading it (Algorithm 1, Line 4). Besides reducing the overall number of images
to be downloaded (note that there is a maximum daily number of requests that can

14https://developers.google.com/maps/documentation/javascript/
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be submitted to Google Maps), this simple strategy helps reducing the rate of false
positives.

Dividing A in subregions implies that a zebra crossing spanning multiple adjacent
images may be recognized in some of them or may not be recognized in any. Consider
the example in Figure 3(c), where the white dashed line is the boundary between two
adjacent images. To tackle this problem, we construct an extended image by merging
a downloaded image with the borders of the 8 surrounding images, as shown in Fig-
ure 3(b) (see Algorithm 1, Line 6). The width of each border is chosen so as to guarantee
the recognition of a zebra crossing, even if it lies on the edge between adjacent images.
Still, this approach may result in a crossing being recognized in more than one image,
a situation that we need to specifically address.

Our strategy for zebra crossing detection is adapted from the ZebraLocalizer algo-
rithm for zebra crossing recognition on a smartphone [Ahmetovic et al. 2014]. First,
we find line segments corresponding to the long edges of stripes (Figure 4(b)); these
are detected using a customized version of the EDLines algorithm [Akinlar and Topal
2011] (Line 7). The line segments thus obtained are grouped into sets of stripes based
on criteria that include horizontal distance, vertical distance, and parallelism (Line 8).
The resulting candidate crossings (Figure 4(d)) are validated or discarded based on the
number of stripes they contain and on their grayscale intensity (Line 10). Note that,
whereas the ZebraLocalizer requires reconstruction of the ground plane to remove per-
spective distortion [Ahmetovic et al. 2014], this operation is not needed in this case, as
satellite images can be assumed to be frontoparallel (with the ground plane parallel to
the image plane).

(a) Original image (b) Line segments (c) Stripes (d) Crossing

Fig. 4. The system recognizes a zebra crossing from satellite images in four main steps.

A detected zebra crossing is characterized by its orientation (specifically, the orien-
tation of a line orthogonal to the parallel stripes) and by its position (represented by
the smallest quadrilateral encompassing the detected set of stripes, Figure 4(d)). Each
crossing is added to the set of results Z. If Z already contains a zebra crossing with ap-
proximately the same position and direction (which could happen when, as discussed
earlier, the same crossing is viewed by multiple regions), the two crossings are merged
into one.

4.3. Street View Image Processing

Algorithm 2 describes our procedure for validating a single zebra crossing, detected
from satellite imagery, by means of Street View panoramas. Note that this procedure
is repeated for all zebra crossings detected on satellite images.

In Google Maps, Street View panoramas are spherical images (i.e., they span 360◦

horizontally and 180◦ vertically) positioned at discrete coordinates, distributed non-
uniformly in space. These panoramas are structured as a graph that closely follows the
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road graph. The panorama closest to a given location is retrieved through the Google
Maps Javascript API; this also returns the exact location of the panorama.

ALGORITHM 2: Street View images acquisition and processing

Input: candidate zebra crossing z ∈ Z represented by its position and direction.
Output: a validated zebra crossing z′ represented by its position and direction or null if not
validated.

Method:
1: c0 ← get the coordinates of panorama closest to z
2: C ← {c0} {Set of panoramas to be processed}
3: while (C 6= ∅) do
4: c← pop element from C
5: α← direction angle from c to z
6: i← image at coordinates c with direction alpha
7: L← detect line segments in i
8: L′ ← rectify line segments in L
9: S ← group line segments in L′ in candidate crossings
10: for all (s ∈ S) do
11: if (s is a valid crossing) then
12: z′ ← position and direction of zebra crossing s
13: if (z matches z′) then return z′

14: end if
15: end for
16: push in C coordinates of panoramas directly linked to c and close to z
17: end while
18: return null

Note that the closest panorama to a true zebra crossing location is not guaranteed
to provide a good image of the crossing. This could be due to occlusion by the vehicle
used to take the pictures, or by other objects and vehicles. For example, Figure 5 shows
in its center a crossing detected in a satellite image. This crossing is not visible in the
closest panorama, shown to the right, due to occlusion by a car. The crossing, however,
is highly visible in another panorama, shown to the left. Hence, in order to increase
the likelihood of obtaining a panorama with the zebra crossing clearly visible in it, we
download multiple panoramas within a certain radius around the location determined
by satellite image analysis. These panoramas are analyzed in turn, beginning with the
closest one, until a crossing is detected. If no crossing is found in any of the downloaded
panoramas, the candidate detection from the satellite is rejected.

Fig. 5. In the center, the satellite image with the purple pin marking the detected crossing and the graph
of surrounding street views. On the right, the closest Street View shows the crossing covered by a car. On
the left, the crossing is visible.
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Only a small portion of a spherical panorama needs to be analyzed for the purpose
of zebra crossing validation. Since we know the location z of the center of the crossing
as detected in the satellite image, as well as the location of the camera that took the
panorama, we can identify the portion of the panorama facing z within a horizontal
field of view of 60◦ (see Figure 6(b)). The vertical pitch is kept at (−30◦) with vertical
field of view (60◦) (shown in Figure 6(a)); this allows us to exclude from analysis the
portion of the panorama that contains the image of the vehicle used to take the images
and the entire portion of the image above the horizon. Note that, while these fixed
viewing parameters have given good results in our experiments, more complex strate-
gies could be devised to adapt the algorithm to the relative position of the camera vs.
the detected zebra crossing location z.

horizon

pitch

vertical
field

of view

camera direction

(a) Vertical field of view

horizontal
field of
view

camera 

dire
ctio

n

direction
angle

North

(b) Horizontal field of view

Fig. 6. Horizontal and vertical field of view

(a) Satellite detection (b) Street View de-
tection

(c) Reconstructed aerial
view

(d) Imprecision in detec-
tion

Fig. 7. Imprecision in GPS coordinates between satellite and Street View detected crossings.

The image rendered from a panorama with the viewing geometry described above
is processed using an adapted version of ZebraLocalizer [Ahmetovic et al. 2014] al-
gorithm to reconstruct the coordinates of line segments visible on the ground plane
(Algorithm 2, Lines 7 to 11). Note that, since the position and orientation of the vir-
tual camera embodying this viewing geometry is known, the geometric transformation
(homography) from the ground plane to the image plane is easily reconstructed. This
allows us to warp (rectify) the image to mimic the view from a camera placed fronto-
parallel with the ground plane, thus facilitating detection of the zebra crossing. The
rectified line segments are then grouped and validated based on the same criteria de-
scribed in Section 4.2.
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If a zebra crossing is detected in the panoramic image, it position and orientation are
computed and compared with those of the crossing detected in the corresponding satel-
lite image. A certain amount of misregistration is to be expected; for example, the same
crossing detected in a satellite image (Figure 7(a)) and in a Street View panorama (Fig-
ure 7(b)) may have slightly different GPS coordinates (Figure 7(d)). Thus, any compari-
son between the two crossing detections must allow for some tolerance in both position
and orientation.

4.4. Validation via Crowdsourcing

Although our automatic zebra crossing detector produces good results (Section 5),
missed detection and false positives are to be expected, due to multiple reasons (in-
cluding poor image quality, occlusions and missed views of a zebra crossing in the
Street View panoramas). In order to increase the accuracy of these results, we created
a simple web interface mechanism that allows human volunteers to add or remove
data from the database populated by our system (using an approach similar to that
of Hara et al. [Hara et al. 2013c]). Volunteers are able to access the same data avail-
able to the automatic system (satellite and Street View images). This service, called
Pedestrian Crossing Human Validation or PCHV, is publicly available15.

Fig. 8. A screenshot of the PCHV web service. On the left side, the satellite image pane and, on the right
side, Street View pane.

Figure 8 shows a screenshot of a web page from PCHV. The interface is divided in
two panes. The satellite image is displayed in the left pane, with all detected crossings
in the database shown as red pins. The user may add new pins by clicking on the map,
or may drag existing pins to change their location. Double-clicking on a pin removes
the associated crossing. A single click on a pin triggers display of the location of nearby
panoramas, shown as grey pins. The user can click on any such pins to visualize the
associated panorama in the left pane. Note that, as mentioned earlier, evaluation of
multiple panoramas may be necessary in bad visibility conditions.

5. EXPERIMENTAL EVALUATION

This section reports the results of the experiments conducted to evaluate our technique
These results are quantified in terms of precision (the fraction of correctly detected
zebra crossings over all detected crossings) and recall (the fraction of correctly detected
zebra crossings over all the zebra crossings in the area). We demonstrate that our
cascade classifier is powerful enough to identify most of the zebra crossings, with only

15http://webmind.di.unimi.it/satzebra/pchv.html
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a small number of errors that need to be corrected in a subsequent stage of human-
supervised image inspection.

5.1. Experimental setting

For the evaluation of the automated pedestrian zebra crossing detection, all experi-
ments were conducted on a laptop computer with Intel core i7 4500u 1.8GHz CPU and
8GB RAM. The evaluation considered four spatial regions. The first region, SF116, is
a dense urban area in San Francisco, composed by wide streets, hit by direct sunlight
and surrounded by buildings with 3 to 5 floors. This region was also used in the previ-
ous version of this paper [Ahmetovic et al. 2015], and in about 1 year, the layout of the
SF1 region changed noticeably as many intersections were repainted with continental
crossings (zebra crossings) in place of transverse markings (two line crossings). The
number of zebra crossings increased from 141 to 169. However, we noticed that many
Street View panoramas were not yet updated to include the new layout, as shown in
Figure 9. We constructed a second region, SF217, to include and extend the surface cov-
ered by SF1 by 200%, and we include both regions to show the impact of the changes
in the environment.

(a) Satellite image shows a zebra crossing (b) Street view still shows transverse markings

Fig. 9. Inconsistency between satellite and Street View data.

The third region, NY18, located in Manhattan, New York, is characterized by taller
buildings which cast shadows on the streets below and limit the visibility of zebra
crossings. We selected this region to measure the performance of the automatic detec-
tion in low-luminosity conditions. Finally, the fourth region, MI19, is located in Milan,
Italy. This region is composed of a larger number of narrow streets, often occluded by
tree branches when viewed in satellite images. This condition has a considerable im-
pact on the recognition and a significant number of zebra crossings are not detected.
The web pages in footnotes show the areas with satellite detection results as green
polygons. Green pins represent the detected zebra crossings after satellite and Street
View detection. False positives (unrelated objects detected as crossings) and false neg-
atives (crossings that are not detected) are shown as yellow and red pins, respectively.
Table I reports the main properties of SF1, SF2, NY and MI spatial regions.

Each satellite image has maximum resolution of 640 × 640 pixels, and given the
maximum zoom level available in Google maps for the areas considered, this means
that each satellite image covers 38m ×38m. Thus, a total of 1149 satellite images were

16View the area at: http://webmind.di.unimi.it/satzebra/index.html
17View the area at: http://webmind.di.unimi.it/satzebra/viewer sf.html
18View the area at: http://webmind.di.unimi.it/satzebra/viewer ny.html
19View the area at: http://webmind.di.unimi.it/satzebra/viewer mi.html
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Table I. Main properties of the three spatial regions used in the experimental evaluation.

Region Area Zebra crossings
Satellite Images Street View Panoramas

Available Downloaded Available Downloaded

SF1 1.66km2
141 1149 791 1425 964

SF2 4.74km2
461 3280 2252 4924 867

NY 1.10km2
254 760 586 1606 379

MI 1.69km2
436 1232 1196 1551 483

required to cover SF1, 3280 to cover SF2, 760 to cover NY and 1232 for MI. Since
the size of each image is approximately 46KB, the size of all images is 52MB, 151MB,
35MB and 57MB for SF1, SF2, NY, and MI, respectively. The total number of Street
View panoramas available in SF1 is 1425, 4294 in SF2, 1606 in NY and 1551 in MI. As
we show in the following, we acquired only a small portion of these panoramas, each
having a resolution of 640× 640 pixels and, on average, a size of 51KB.

The number of zebra crossings reported in Table I was computed using the PCHV
web server (see Section 4.4) by one of the authors who thoroughly analyzed satellite
and Street View images of each region and manually marked pedestrian zebra cross-
ings, which were defined as specified in Section 4.

In addition to providing the ground truth for the experimental evaluation, we per-
formed a preliminary study of the human supervision validation component of the sys-
tem for the MI region, as described in Section 5.4. We asked ten participants, recruited
among colleagues and friends, to evaluate the labeling produced by our automatic sys-
tem using the PCHV web service tool (Section 4.4), and to make necessary corrections.
We compared the precision and recall values of the labeling before and after human
supervision, in order to assess the extent to which intervention by a crowdsourced
system can improve the automatically generated labeling.

5.2. Satellite image processing evaluation

As reported in Algorithm 1, only images containing streets are actually considered.
With this approach a total of 791 and 2252 images were actually needed for SF1 and
SF2 regions, with a total size of 35MB and 103MB respectively, which in both cases
is about 67% of total images available. For NY and MI, due to a more dense network
of narrower streets, 586 and 1196 images were needed, for a size of 27MB (77%) and
55MB (97%) respectively. This means that, while in high density urban areas most
images might be required, in urban contexts where the density of the road network
is lower, our technique avoids downloading about one third of the images that would
be otherwise required. In suburban or rural areas we can expect that an even higher
percentage of potential images would be omitted.

The recognition process described in Algorithm 1 (Lines 7-8) detects a total of 773

zebra crossing portions in SF1, 2866 in SF2, 1243 in NY and 1740 for MI. Often a single
zebra crossing is detected as two or more zebra crossing portions. For example this
can happen when a vehicle is visible in the middle of the zebra crossing, causing a
partial occlusion. By merging these zebra crossing portions (Algorithm 1, Line 12) our
technique identifies 199 candidate zebra crossings in SF1, 902 in SF2, 328 in NY and
641 in MI.

The numbers of correct detections (true positives) are reported in Table I. Since we
know the number of actual zebra crossings, we can compute the recall of the first step
of our classifier, which is 0.972 for SF1, 0.974 for SF2, 0.910 for NY and 0.830 for MI. A
few zebra crossings are not detected due to discolored or faded paint (see Figure 10(a))
while others are almost totally covered by trees, shadows or vehicles (see Figure 10(b)).
In the NY dataset many zebra crossings are hard to detect due to shadows of buildings
severely limiting the luminosity of streets below (see Figure 10(d), zebra crossings
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(a) FN - discoloration (b) FN - hidden by trees (c) FP - roof pattern

(d) FN - low luminosity (e) FP - stairs pattern

Fig. 10. False negatives (FN) and false positives (FP) in satellite detection and Street View validation.

Table II. Evaluation results for the three regions. The metrics considered are TP: true positives, FP: false
positives, FN: false negatives, Precision and Recall.

Region
Satellite Detection Street View Validation

TP FN FP Precision Recall TP FN FP Precision Recall
SF1 137 4 62 0.688 0.972 134 7 4 0.971 0.950

SF2 458 12 444 0.510 0.974 425 45 46 0.902 0.904

NY 212 21 116 0.646 0.910 194 39 13 0.937 0.833

MI 362 74 279 0.565 0.830 329 107 20 0.948 0.772

outlined in red). The process also yields some wrong detections (false positives), and
precision is 0.688, 0.510, 0.646 and 0.565 for SF1, SF2, NY, and MI, respectively. In many
cases, false positives correspond to rooftops (Figure 10(c)) or other parts of buildings
(Figure 10(e)).

These recall and precision scores refer to parameter settings tuned for high recall
so that the least number of zebra crossings is missed by the algorithm. Naturally,
perfect recall is difficult to attain and comes at the expense of a greater number of false
positives, i.e., a smaller precision. However, considering that a final human supervision
validation step is possible, it is much easier for a human supervisor to rule out false
positives than it is to find false negatives, which requires scrutinizing the entire area
of interest to identify zebra crossings that have not been detected by the algorithm.
Parameters can be tuned for different trade-off levels between precision and recall.
The Pareto frontier shown in Figure 11 shows the best precision and recall trade-offs
obtained during the tuning of the parameters in SF1.

Regarding computation time, we consider the CPU-bound process only and we ignore
the time to acquire images, which mainly depends on the quality of the network con-
nection. The CPU-bound computation required for the extraction of candidate zebra
crossings in a single image is 180ms. Running the algorithm sequentially on the 791

images acquired for SF1 requires a total of 142s. For SF2, NY and MI the time required
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Fig. 11. Pareto frontier of the detection procedure for SF1

is 405s, 105s and 215s, respectively. Note that the process can be easily parallelized and
thus it would be straightforward to further reduce computation time.

5.3. Street view image processing evaluation

In SF1 for each candidate zebra crossing in Z (the set of candidate zebra crossings com-
puted with satellite images), there are on average 5.7 nearby Street View panoramas.
For SF2 and NY, the results are lower: 4.76 and 4.90 respectively. For MI, in particu-
lar the number drops to 2.4 nearby panoramas for each candidate zebra crossing. By
considering true positives only (i.e., candidate zebra crossings that represent actual
zebra crossings), the average number of nearby Street View panoramas increases to
7.3 (SF1), 5.40 (SF2), 5.20 (NY) and 2.8 (MI). In SF1, only 2 candidate zebra crossings
that represent actual zebra crossings have no Street View panoramas in their vicin-
ity (less than 1.5%). Conversely, false positive candidate zebra crossings have a much
lower number of nearby Street View panoramas: 2.6 for SF1, 3.3 for SF2, 3.0 for NY and
2.0 for MI. Indeed, in SF1, 19 false positives (30% of the total) do not have any nearby
Street View panorama (22% in SF2 and 0% in NY 50% in MI) and 46 false positives,
corresponding to 74%, have 3 or fewer surrounding panoramas (52% in SF2, 100% in
NY and 100% in MI). This is caused by the fact that, as observed previously, many false
positives are located on rooftops or other areas that are not in the immediate vicinity
of streets.

As reported in Algorithm 2, our solution acquires nearby panoramas iteratively, un-
til the candidate zebra crossing is validated. In SF1, considering true positives, 1.8
Street View panoramas are acquired on average for each candidate zebra crossing. In
76% of the cases a true positive zebra crossing is validated with at most two panora-
mas, and up to 56% are validated by processing a single Street View panorama (see
Figure 12). Conversely, filtering out false positives requires processing all available
nearby Street View panoramas. Overall, the technique requires acquiring and pro-
cessing ≈ 2 Street View panoramas for each candidate zebra crossing. Similar results
can be observed in SF2, NY and MI regions.

The Street View-based validation (tuned for the best recall score) filters out the ma-
jority of false positives (see Table II) identified in the previous step, yielding a precision
score of 0.971 in SF1, 0.902 in SF2, 0.937 in NY and 0.948 for MI. The few false positives
still present are caused by patterns very similar to zebra crossings, like the stairs in
Figure 10(e). Considering the true positives, most of them are validated (see Table II
again), resulting in a recall score of 0.978 for SF1, 0.928 for SF2, 0.915 for NY and 0.909
for MI. Overall, the recall score of the whole procedure (including both satellite and
Street View detection) is 0.950 for SF1, 0.904 for SF2, 0.833 for NY and 0.772 for MI.

As with the satellite detection, different parameter settings yield different precision
and recall scores during the validation. Figure 11 shows the settings that yield the
best precision and recall trade-offs during the validation.
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Table III. Results of the preliminary evaluation of the Pedestrian Crossing Human Validation component for the
MI region. The metrics considered are the true positive (TP), false positive (FP), false negative (FN) crossings,
and Precision and Recall scores after joint automated detection and human validation. Insertion errors and
Deletion errors define FP and FN crossings, respectively, that were caused by participants’ errors.

Operator TP FP FN Precision Recall Insertion Errors Deletions Errors Duration
1 432 4 2 0.995 0.991 1 0 20min

2 427 9 8 0.982 0.979 2 0 34min

3 406 30 1 0.997 0.931 0 4 13min

4 420 16 12 0.972 0.963 1 0 26min

5 428 8 2 0.995 0.982 0 0 19min

6 428 8 8 0.982 0.982 4 0 47min

7 415 21 8 0.981 0.952 0 0 30min

8 428 8 0 1 0.982 0 0 34min

9 424 12 5 0.988 0.972 0 1 20min

10 433 3 3 0.995 0.993 0 0 55min

Regarding computation time, each Street View image can be processed in 46ms and
hence the total computation time for is 18.5s, 31.0s, 12.7s and 22s for SF1, SF2, NY and
MI, respectively. Overall, considering the two detection steps (from satellite images
and Street View panoramas), the total CPU-bound computation time is 161s, 436s,
118s and 238s to process SF1, SF2, NY and MI, respectively.

5.4. Preliminary Study of the Pedestrian Crossing Human Validation

On average, it took 27min for the participants to scan and update the MI area, with
a minimum duration of the experiment of 13 min, 22 sec and a maximum length of 47
min, 7 sec. All participants started with the results of the automated detection results.
As shown in Table III, all of the human supervisors managed to drastically reduce the
number of errors present after the automated detection steps. In particular, even in
the worst case, at least 72% of previously undetected crossings were found, resulting
in a recall score of 0.93. This is a great improvement over the previous score of 0.772,
obtained with only the automated detection. In the best scenario the resulting recall
soars up to 0.997, while the average result is 0.97. Most of the false positive detections
have also been pruned through human supervision, resulting in their reduction of at
least 40% and an improvement of the precision score from 0.948 to 0.972. In this case the
average precision score is 0.989, while Operator 8 managed to prune all false positives
and reach a precision score of 1. During the result validation, we noticed that the
operators sometimes failed to add crossings or delete false positives in areas that were
distant from region borders, intersections, and other markers. We hypothesize that, in
absence of points of reference, it is harder to keep track of which areas have already
been viewed and processed. In future work we propose the use of smaller validation
regions with an automated sliding window mechanism and highlighting of already
verified areas.
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While most of the modifications by the users were beneficial, in some cases the par-
ticipants also introduced new errors, like adding non-existent crossings (Figure 13(a)),
as in case of Operator 6 or deleting existing ones (Figures 13(b)), such as Operator 3.
It is worth noting, however, that the new errors introduced were sporadic and unique
among participants. Indeed, every existing zebra crossing was identified by at least
one participant, and on average by 7.4 participants, while every false detection was
pruned by at least 6 participants, and on average by 7.9. In future work we will per-
form an extensive evaluation of the human supervision system with a higher number
of participants. The goal of the evaluation will be to investigate how to guarantee reli-
able results for human supervised deletions and insertions through consensus between
human supervisors [Kamar and Horvitz 2012; Kamar et al. 2012].

(a) Operator 6: Insertion Errors (b) Operator 3: Deletion Errors

Fig. 13. False positives (FP) and false negatives (FN) in satellite detection and Street View validation.

6. CONCLUSIONS

Blind pedestrians face significant challenges posed by street crossings that they en-
counter in their everyday travel. While standard O&M techniques allow blind travel-
ers to surmount these challenges, additional information about crosswalks and other
important features at intersections would be helpful in many situations, resulting in
greater safety and/or comfort during independent travel. We investigated the role that
crosswalks play in travel by blind pedestrians, and the value that additional informa-
tion about them could add, in a survey conducted with nine O&M experts. The results
of the survey show stark differences between survey respondents from the U.S. com-
pared with Italy: the former group emphasized the importance of following standard
O&M techniques at all legal crossings (marked or unmarked), while the latter group
strongly recommended crossing at marked crossings whenever possible. These con-
trasting opinions reflect differences in the traffic regulations of the two countries and
highlight the diversity of needs that travelers in different regions may have.

To address the challenges faced by blind pedestrians in negotiating street cross-
ings, we devised a computer vision-based technique that mines existing spatial im-
age databases for discovery of zebra crosswalks in urban settings. Our algorithm first
searches for zebra crosswalks in satellite images; all candidates thus found are vali-
dated against spatially registered Google Street View images. This cascaded approach
enables fast and reliable discovery and localization of zebra crosswalks in large image
datasets. We evaluated our algorithm on four urban regions in which the pedestrian
crossings were manually labeled, including two in San Francisco, one in New York City
and the fourth in Milan, Italy, covering a total area of 7.5km2. The technique achieved
a precision ranging from 0.902 to 0.971, and a recall ranging from 0.772 to 0.950, over
the four regions.
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While fully automatic, our algorithm can be improved by a final crowdsourcing val-
idation. To this end, we developed a Pedestrian Crossing Human Validation (PCHV)
web service, which supports human validation to rule out false positives and identify
false negatives.

Our approach combines computer vision and human validation to detect and local-
ize zebra crosswalks with high accuracy in existing spatial images databases such as
Google satellite and Street View. To the best of our knowledge, these features are not
already marked in existing GIS services and we argue that knowing the position of ex-
isting crosswalks could be useful to travelers with visual impairments for navigation
planning, finding pedestrian crosswalks and crossing roads.

In the future, we plan to extend our approach to detect other common types of cross-
walk markings, such as transverse lines. The crossings database could also be aug-
mented with auxiliary information such as the presence and location of important
features such as walk lights (which could be monitored in real time by the app) and
walk push buttons. These could be also added by users or automatically by a visual
detection app.

The resulting crosswalk database could be accessed by visually impaired pedestri-
ans through the use of a GPS navigation smartphone app. The app could identify the
user’s current coordinates and look up information about nearby zebras, such as their
number, placement and orientation. Existing apps such as Intersection Explorer and
Nearby Explorer (for Android) and The Seeing Eye GPSTMand ClickAndGo (for iPhone)
could be modified to incorporate information from the crosswalk database. Computer
vision-based detection apps on smartphones, such as Zebralocalizer [Ahmetovic et al.
2014] and Crosswatch [Coughlan and Shen 2013], could additionally use the database
to help users to approach and align properly to crosswalks even when they are not yet
detected by the app.

Another important way in which the crosswalk database could be used by blind and
visually impaired pedestrians is for help with offline route planning, which could be
conducted by a traveler on his/her smartphone or computer from home, work or other
indoor location before embarking on a trip. For example, a route-planning algorithm
may weigh several criteria in determining an optimal route, including the number
of non-zebra crossings encountered on the route (which are less desirable to traverse
than zebra crossings) as well as standard criteria such as total distance traversed.
The crosswalk database could also be augmented with additional useful information,
including temporary hazards or barriers due to road construction, etc.

Appendix: Survey Questions

Question 1 (U.S. version). As you know, while many crosswalks are marked by
painted lines, others crosswalks at street intersections are not. According to the Fed-
eral Highway Administration, marked crosswalks are used to “define the pedestrian
path of travel across the roadway and alert drivers to the crosswalk location”. Do you
think, based on your experience, that blind travelers should preferentially cross a street
on marked crosswalks?

Question 1 (Italian version). As you know, in Italy pedestrians must cross a street
on a marked crosswalk, provided that one is available within 100m from the cross-
ing position. Regardless of the crossing location, vehicles should always yield to blind
pedestrians with a white cane or a guide dog. Do you think, based on your experience,
that blind travelers should preferentially cross a street on marked crosswalks?

Question 2. Suppose that you are helping an independent blind traveler plan a path
that requires crossing one or more streets. Consider the following hypothetical case.
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sidewalk

path 1

path 2

230 ft 

70 m

Fig. 14. An hypothetical street crossing scenario.

The shortest path (path 1) requires crossing a street at an intersection where there
are no marked crosswalks (but where crossing is legal). However, it would be possible
to cross the same street on a marked crosswalk that is placed mid-block; this would
result in a longer path (path 2). (See Fig. 14.) Which one of the two paths would you
recommend? In your answer, please consider two different cases. In the first case, the
traveler, during the trip, will need to figure out by himself where the crosswalk is. In
the second case, the traveler has an app in his smartphone that helps him find out the
location of the marked crosswalk. Also, please evaluate which factors would determine
whether the traveler should prefer one path over the other.

Question 3. Suppose that a person who is blind is going to a destination she has never
visited before. This blind traveler has not planned a complete path beforehand, or, due
to unexpected circumstances, had to take a detour. At some point, she realizes that she
needs to cross a street she is not familiar with. What type of information would she
need to access in order to determine where to cross the street, that she would be unable
to obtain by herself? In your opinion, are existing apps (e.g. Blindsquare) capable of
providing this type of information? What other type of information that is not currently
achievable by an existing app would be useful to this blind traveler?

Question 4. Suppose you were to advise the designer of an app that gives a person
who is blind information about a specific street intersection. What would be the most
relevant information that this app should be able to provide? In this answer, please
consider the unique challenges posed to blind travelers by complex intersections, or
intersections with non-standard and/or unexpected features.
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