
17 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Type checking for protocol role enactments via commitments

Published version:

DOI:10.1007/s10458-018-9382-3

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1670724 since 2018-07-11T21:56:36Z

Noname manuscript No.
(will be inserted by the editor)

Type Checking for Protocol Role Enactments via
Commitments

Matteo Baldoni, Cristina Baroglio, Federico
Capuzzimati, and Roberto Micalizio

the date of receipt and acceptance should be inserted later

Abstract This work presents a commitment-based agent typing system. Type checking is
done dynamically when an agent enacts a commitment-based protocol role: verification
checks if the agent meets the requirements displayed by the role it means to enact. An exam-
ple implementation in the 2COMM4JADE framework is provided. 2COMM4JADE is based
on the Agent & Artifact meta-model and exploits JADE and CArtAgO, by using CArtAgO
artifacts in order to reify commitment protocols.

Keywords Agent Typing, Social Relationships, Static and dynamic type checking,
Commitments, Commitment-based Interaction Protocols.

1 Introduction

Software infrastructures are quickly changing, becoming more and more global, pervasive
and autonomic. Computing is becoming ubiquitous, with embedded and distributed devices
interacting with each other. Multi-Agent Systems (MAS) have been recognized to be a
promising paradigm for this kind of scenarios, however, as the complexity of programming
these systems increases, the need for effective tools for reasoning on properties of programs
becomes stronger and stronger. This is particularly true because a MAS may be composed
of heterogeneous and autonomously developed agents, which need to operate in a same
environment, share resources, contribute to the achievement of goals.

In this context, interaction, which is recognized as one of the main dimensions that make
a MAS [35], becomes an essential aspect. MAS generally rely on interaction protocols (or
other kinds of “contract”) to specify the interacting behavior that is expected of the agents.
How can, then, an agent designer verify that an agent has the means for carrying out the
encoded interaction? How to decide whether the agent is capable of behaving in a certain
way, or whether it shows specific skills/properties?

A practical way, yet grounding on solid methodological bases, is to rely on some typ-
ing of agents, in a way that is similar to the typing of objects. Typing provides abstrac-
tions to perform sophisticated forms of program analysis and verification: it helps perform-
ing compile-time/run-time error checking, modeling, documentation, verification of confor-

Università degli Studi di Torino, Dipartimento di Informatica, c.so Svizzera 185, I-10149 Torino (Italy).
E-mail: firstname.lastname@unito.it

2 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

mance and of compliance, reasoning about programs and components. It allows light forms
of (a priori/runtime) component verification. The research question is then which character-
istics should be considered in the conceptualization and realization of a typing system for
interacting agents.

First of all, since the typing we are interested in is about agents, it is fundamental that
such a typing be homogeneous with the agent paradigm. It should therefore rely on notions
that are the basic building blocks of the agent paradigm, such as those of behaviors and
goals. This would make the typing system more natural to a programmer who would not
need to mix agent concepts with concepts from, e.g. a functional perspective that bases on
totally different grounds.

Then, in order to accommodate the agents’ autonomy, the most peculiar feature of the
agent abstraction, the typing system should be as least prescriptive as possible. One way of
meeting this requirement is that the typing system be declarative. A declarative approach, in
fact, should only state what a successful interaction should look like, without imposing how
the interaction should be carried out. A typing system which is declarative in nature results
to be more flexible from the agents’ point of view, and hence supports their autonomy.

A further essential characteristic of agents is that they may acquire or lose capabilities
along time. Consequently, a typing system for interacting agents should allow dynamic type
checking, which should be triggered just before an agent tries to join an interaction. Second,
as discussed in [71], a static type checking would be in general unpractical because it should
verify whether all the possible sequences of messages an agent can send and receive are
appropriate for joining an interaction.

Finally, since agents can enact roles in a protocol in a distributed way, also the type
checking, occurring right at enactment time, must be distributed, or local, and rely on infor-
mation possessed by the agent.

The agent typing presented in this work possesses the characteristics described above,
and to the best of our knowledge, no agent typing system having all these characteristics has
yet been proposed in literature. It basically concerns agent interaction, and has the ultimate
purpose of allowing the verification that agents satisfy the requirements for the protocol
roles they mean to enact. The check is performed dynamically at role-enactment time to
account for the fact that agents capabilities may change along time. The important thing is,
in fact, that the needed capabilities are available at the right moment, i.e. when the agent
starts playing a role. Building upon a wide literature that considers relationships as one
of the basic building blocks of the human way of interpreting reality1, our typing system
is conceptually centered around those social relationships, which agents may create along
their interaction when playing protocol roles, because such relationships create expectations
on the agents behavior.

Contribution and Organization. The major contribution of this paper is an agent-based, dy-
namic, and declarative type checking system for agent interactions modeled via commitment-
based protocols. To this end, the paper provides in Section 2 a synthetic description of back-
ground notions regarding commitments, commitment-based protocols, and protocol roles
and role enactment. Social commitments [24,59] are, indeed, one of the fundamental ab-
stractions for ruling agent interaction, while preserving agent autonomy. We discuss (Sec-
tion 3) how commitments can be used for typing MAS and why it is interesting to rely

1The other one being object, a perspective that is widely reflected in computer science proposals – just
think to the entity-relationship model.

Type Checking for Protocol Role Enactments via Commitments 3

on them. In particular, to meet the declarative requirement, commitment conditions are ex-
pressed in terms of precedence logic, a temporal logic introduced in [61] and in [62, Chapter
14] for Web service composition, that is sufficiently powerful to model dependencies among
agents’ behaviors (e.g., choice, parallelism, and precedence), hiding execution details such
as metric temporal constraints (e.g., deadlines as proposed in [43], which can however be
accounted for, as explained in Section 2). In the same section we show how the typing sys-
tem built upon precedence logic enjoys an important progression property: when an agent
joins an interaction, it is guaranteed that it possesses all the required behaviors to conduct
its part of the interaction as far as one of the interaction acceptance states. We therefore
give a formal characterization of a class of commitment-based protocols that supports the
proposed typing (socially-progressive protocols), and formally define and characterize the
notions of debtor and creditor compliance at the basis of the progression property.

Notably, the proposal is not bound to a specific agent programming language; on the
contrary, it can be implemented in different frameworks. A further contribution (Section 4)
is an exemplification of the approach in a real programming framework. We explain how
the typing system and the checking performed at enactment-time were implemented in
2COMM4JADE [6], providing and discussing examples.

This paper significantly improves and extends the proposal in [7], where temporal,
precedence logic was not considered. Moreover, the paper represents an important step for-
ward compared to previous approach discussed in literature. Section 6 provides a thorough
account of the current solutions to the problem of type checking agent-based programs, and
how this proposal overcomes their shortcomings.

2 Background

The typing system we present is specifically conceived for multi-agent systems where agents
need to interact to bring about their own goals. It is therefore quite natural to build the typ-
ing system on top of the same abstractions that are at the basis of agent society models.
In our proposal, in particular, the most relevant notions are those of social relationship and
role. Both will be considered as first-class entities. The conceptual framework of the pro-
posal builds upon [6], where social relationships are explained to be a key component in the
representation of socio-technical systems. The key aspects of that proposal are:

– Interaction protocols specify “what” should occur rather than “how” making it occur
(minimal critical specification principle [25]);

– Agents share a (notional) social state of their interaction, containing an explicit repre-
sentation of the social relationships that tie one agent to another;

– Social relationships:
– have a normative force, they are accepted explicitly by the participants to the inter-

action;
– agents can inspect them to decide whether conforming to them;
– are resources, that are made available to the interacting agents and can be manipu-

lated by them;
– concern the observable behavior;
– are modeled as social commitments.

We now provide a short introduction about commitments and commitment-based protocols.

4 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

2.1 Social Commitments

We represent social relationships among agents in terms of social commitments [59]. A so-
cial commitment models the directed relation between two agents: a debtor and a creditor.
A commitment C(a1,a2, p,q) captures that agent a1 (debtor) commits to agent a2 (creditor)
to bring about the consequent condition q when the antecedent condition p holds. Along
the line of [46,12], commitments are defined over temporal expressions in precedence logic
[61], [62, Chapter 14]. This logic is an event-based linear temporal logic thought to specify
constraints on events of different services to be composed. The interpretation of such a logic
deals with occurrences of events along runs (i.e., sequence of instanced events). Under this
respect, event occurrences are assumed as nonrepeating and persistent: once an event has oc-
curred, it has occurred forever. However, the specification of temporal expressions is done
on “event literals”, namely symbols that constitute the universe of discourse, and that are in-
stanced by event occurrences along runs. This precedence logic has three primary operators:
‘∨’ (choice), ‘∧’ (concurrence), and ‘·’ (before). The before operator enables one to express
conditions such as pay ·deliver: both pay and deliver must occur and in the specified order,
but the two events do not need to occur immediately after one another. The language also
includes event complementation, which can be thought of as a form of negation for events.
Let e be an event. Then e, the complement of e, is also an event. Initially, neither e nor e hold.
On any run, either e or e may occur, not both. Intuitively, complementary events allow one
to specify situations in which an expected event e does not occur, either because of the oc-
currence of an opposite event, or because of the expiration of a time deadline. For instance,
the occurrence of event confirm in a protocol could be considered as the confirmation of a
previous proposal that an agent communicates to another agent. The complementary event
con f irm could be the effect of an explicit cancellation by the agent, or of a timeout (e.g., if
the agent does not confirm within a specific time interval, a cancellation is assumed). Com-
plementation is extended to expressions in general. Given temporal expressions p and q, (i)
p∧q = p∨q. (ii) p∨q = p∧q. (iii) p ·q = p∨q∨ (q · p). For simplicity, the events can be
thought of as propositional but can be generated schematically as in pay$1, pay$2.

Conditional Detached

Expired Satisfied Violated

Active

antecedent fail

antecedent

consequent failconsequent

Fig. 1: Commitment life cycle.

Commitment evolution follows the life cycle formalized in [67], which is reported in
Figure 1. A commitment is Violated either when its antecedent is true but its consequent
will forever be false, or when it is canceled when Detached. It is Satisfied, when the engage-
ment is accomplished (notice that a commitment does not need to be detached before being
satisfied). It is Expired, when it is no longer in effect and therefore the debtor would not fail
to comply even if does not accomplish the consequent. Active has two substates: Conditional
as long as the antecedent does not occur, and Detached when the antecedent has occurred.

Type Checking for Protocol Role Enactments via Commitments 5

Commitments have a normative value because the debtor of a Detached commitment is
expected to bring about, sooner or later, the consequent condition of that commitment oth-
erwise it will be liable for a violation. Thus, commitments provide social expectations on
the agents’ behavior. A commitment is autonomously taken by a debtor towards a creditor
on its own initiative and it is manipulated through the standard operations create, detach,
expire, discharge, violate, assign, delegate, release, cancel. Create generates a new commit-
ment, detach amounts to the satisfaction of the antecedent, expire to the falsification of the
antecedent, discharge to the dischargement of the commitment, violate to the falsification of
the consequent of a detached commitment, assign shifts a commitment to another creditor,
delegate shifts a commitment to another debtor, release is used by a creditor to removes a
commitment towards itself, cancel by a debtor to remove a commitment of its own. We do
not tackle assign and delegate in this work.

Example 1 The commitment C(merchant,client, pay, pack ·deliver) captures that an agent,
playing the role merchant, committed to another agent, playing the role client, to deliver
some item at a specified address if the client agent paid. The occurrence of pay detaches the
commitment, according to the commitments life cycle in Figure 1. Afterwards, the merchant
will have an obligation to first pack the item and, then, deliver it. When pack ·deliver occurs,
the commitment is satisfied. �

Notice that in the understanding of commitments we refer to [59], merchant can pack and
deliver an item even before payment occurs (e.g. when they trust the client or for some
reason decide to give the item for free). The commitment would be satisfied also in this
case. Moreover, the merchant may pack the item, do something else (such as show some
other item to the client or answer to questions), and only after perform the delivery. It is
also not required that merchant herself delivers the item: the delivery could, for instance, be
performed by some shipper hired by merchant. What is important here is that merchant is
liable in case the delivery does not occur when the payment was made as well as when the
item is delivered without packing it.

Commitments arise, exist, are satisfied or otherwise manipulated all within a given social
context. Not only they rely on the social structure of the groups within which they exist, but
also help create that structure [59,12]. Such a context can be identified as the group of agents
(organization or institution) within which the agents interact.

2.2 Commitment-Based Protocols

Commitment-based protocols, as introduced in [60,70,69], capture the intrinsic meaning of
actions in terms of how they create and manipulate commitments. They were introduced
with the aim of overcoming the limits of approaches that specified protocols as sequences of
allowed interactions; namely, the difficulty in accommodating the key aspects of autonomy,
heterogeneity, opportunities, and exceptions, which are crucial to realize the open, dynamic
nature of interactions. Commitment-based protocols assume that a (notional) social state is
available and inspectable by all the involved agents. The social state traces which commit-
ments currently exist, together with their states (according to the lifecycle and the interaction
occurred so far), and with other facts that are relevant to the interaction.

As in [30], we see commitments (and also the social state) as “institutional objects”, i.e.
abstract objects that are created and manipulated according to a set of conventional rules,
on which there is collective agreement by a community of agents. However, relying on
works like [21,65,40,47], that explain how social relationships (hence, commitments) can

6 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

be fully leveraged only when the notion of role becomes a first-class conceptual entity as
well, we refine this vision by adopting the ontological definition of role that was proposed
by Boella and van der Torre [21]2. This is based on the organization metaphor: organiza-
tions, more in general institutions, can be manipulated only by following the rules that they
themselves defined, and that are offered only to those agents which play a role within the
institution. The authors point out that roles, by belonging to social institutions such as or-
ganizations, are actually social roles, and isolate three main properties relating roles, their
players, and institutions: (1) a role must always be associated with the institution it belongs
to and with its player; (2) a role is meaningful only within the institution it belongs to, and
hence the definition of a role is only given within an institution; (3) the actions defined for
a role in an institution have access to the state of the institution and of other roles; these
actions are, therefore, the powers a role player is endowed with. Thus, in our understanding
a commitment-based interaction protocol amounts to a set of role powers, that are specified
in terms of how they manipulate commitments. Each commitment protocol role provides to
its role players the powers of affecting the social state of interaction by executing the actions
associated to that role.

More formally, let B be a nonempty set of events. Let E be the set of event tempo-
ral expressions generated from B. Let C be a set of possible commitments of the form
C(x,y, p,q), where x and y are roles, while p and q are temporal expressions in E , Let S be
the set of possible operations on commitments.

Definition 1 A protocol is a tuple 〈A,ρ, power, I〉, where:

– A is the set of protocol actions. Each a ∈ A is a pair 〈e,E〉 where e ∈B is the action
name, including its parameter list when needed, E is a set of possible operations on
commitments in S , that captures the effect of the action execution over the social state;

– ρ is a set of role names, identifying the interacting parties;
– power : ρ→ 2A is a mapping that associates each role with the set of actions empowered

to that role. For each role name x ∈ ρ , power(x) denotes the subset of protocol actions
in A that any player of x can perform in P. So, power(x) is the set of powers that are
endowed to any agent enacting x;3

– I is a set of commitments that are active at the beginning of the interaction, and that are
thus contained in the social state.

For practical reasons, we denote by CP the subset of C of the commitments that can possi-
bly be generated along the executions of protocol P, and by BP the set of events that can
possibly be generated along the execution of P.

Example 2 The Contract Net Protocol (CNP) involves two roles: initiator and participant.
An agent playing the initiator role calls for proposals from any other agent playing the
role of participant. A participant makes a proposal if interested. Proposals are either ac-
cepted or rejected by the initiator. Table 1 reports the powers of the initiator and partic-
ipant roles, and their social effects, i.e., how these actions affect the social relationships
between the involved agents. Cfp has, as social meaning, the creation of a commitment
C(i, p, propose,accept ∨ accept), by which the initiator commits to answer to a partici-
pant’s proposal either with acceptance or non-acceptance. On the other hand, propose has,
as social meaning, the creation of a commitment C(p, i,accept,done∨done), by which the

2See [15–17] for a declination of the proposal in an Object-Oriented context.
3This means that actions have a social effect only if they are executed by an agent who is playing a role

the action is associated with. It does not mean that an agent is enforced to execute only the actions associated
with its role.

Type Checking for Protocol Role Enactments via Commitments 7

participant commits to carry out the assigned task to completion (done) or to failure (done).
Notice that the execution of accept has the twofold consequence to satisfy the commitment
created by cfp and to detach the one created by propose, while accept satisfies the former
commitment and causes the expiration of the latter. �

Table 1: The CNP protocol definition.
ROLES POWERS SOCIAL EFFECTS

INITIATOR: cfp create(C(i, p, propose, accept ∨accept))
accept –
accept –

PARTICIPANT propose create(C(p, i, accept, done ∨done))
propose –
done –
done –

Example 3 An alternative representation of CNP, reported in Table 2, is to rely on an explicit
use of the release commitment operation. In particular, reject has as social meaning the
release of the participant’s commitment, that was created when the latter executed propose.
It also satisfies of the commitment created on the execution of cfp. Accept, done, and failure,
instead, impact on the progression of commitment states along the lifecycle. For instance,
accept causes the satisfaction of the commitment created by cfp. �

Table 2: The CNP protocol definition.
ROLES POWERS SOCIAL EFFECTS

INITIATOR cfp create(C(i, p, propose, accept ∨ reject))
reject release(C(p, i, accept, done ∨ failure))
accept –

PARTICIPANT propose create(C(p, i, accept, done ∨ failure))
refuse release(C(i, p, propose, accept ∨ reject))
done –
failure –

2.3 Commitment Semantics

Concerning the semantics of commitments with temporal expressions, we rely on the pro-
posal introduced in [46], later extended to include dialectical commitments [12]. Briefly, the
semantics is given in terms of a model M = 〈E, T, C, D, X, V〉, where E is a denumerable
set of possible events, while T is the set of possible event runs. Intuitively, C determines
which commitments are active (i.e. conditional or detached) from a debtor to a creditor at
an index in a run. C does so by assigning a set of runs to a set of runs, at each index on each
run, for each debtor-creditor (ordered) pair of agents. D,X,V are respectively the standards
for discharged, expired, and violated practical commitments.

8 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

We assume semantic postulates M1–M7 from [46]. For example, the semantic postulate
M6 accommodates active commitments:

τ |=i Cp(x,y, p,q) if and only if [[q]] ∈ Cx,y(τ, i, [[p]])

Here, we denote by [[q]] the intension of q, that is, the set of runs where q is true on index
0: [[q]] = {τ | τ |=0 q}; τ[i, j], instead, refers to the projection of τ from index i to j, both
inclusive. Intuitively, a commitment is active at index i of run τ iff the intension of its
consequent condition q belongs to the set of sets returned by Cx,y(τ, i, [[p]]). See [46] for the
others. The semantic postulates for operations [12] are:

τ |=i Create(C(x,y, p,q)) iff τ 6|=i C(x,y, p,q) and τ |=i+1 C(x,y, p,q)
τ |=i Discharge(C(x,y, p,q)) iff τ |=i C(x,y, p,q) and τ |=[0,i+1] q
τ |=i Expire(C(x,y, p,q)) iff τ |=i C(x,y, p,q) and τ[0,i+1] |= p
τ |=i Violate(C(x,y, p,q)) iff τ |=i C(x,y, p,q) and τ |=[0,i+1] q
τ |=i Detach(C(x,y, p,q)) iff τ |=i C(x,y, p,q) and τ |=[0,i+1] p

The notion of residuation allows tracking progress towards condition achievement in
the real world. Following [46,61], the residual of a temporal expression q with respect to an
event e, denoted as q/e, is the remainder temporal expression that would be left over when
e occurs, and whose satisfaction would guarantee the satisfaction of the original temporal
expression q. In this work we adopt exactly the same definition of residuation. In particular,
temporal expressions not mentioning an event are independent of that event; conjoined or
disjointed expressions can be treated modularly; and expressions can be incrementally pro-
gressed: a residuated expression embodies the relevant history, no additional history need be
represented.

Residuation is used to compute commitment progress. Given a commitment c=C(x,y, p,
q) and an event e, c/e denotes C(x,y, p/e, q/e). Commitment progression leads to one of the
following outcomes: the commitment expires, it is violated, it is discharged, or its residual
with respect to an event is computed (its antecedent and consequent are residuated). In the
latter case, progression may be trivial in the sense that the commitment conditions are left
unchanged. The following theorem [46], captures how a commitment progresses. Following
[61], > means the temporal expression satisfied by every run and 0 an expression that is
satisfied by no run.

Theorem 1 If τ |=i C(x,y, p,q) and τi+1 = e, then

τ |=i+1Expire(C(x,y, p,q)) if p/e .
= 0

Violate(C(x,y, p,q)) if p/e .
=>, q/e .

= 0

Discharge(C(x,y, p,q)) if q/e .
=>

Detach(C(x,y, p,q)) if p/e .
=>

C(x,y, p/e,q/e) otherwise

Intuitively, the theorem means that always the occurrence of an event e either leads an active
commitments to a final state, or makes its antecedent and consequent conditions progress
one step further.

3 Typing Agents through Social Relationships

Before explaining our typing system, it is useful to recall the characteristics of the multi-
agent systems we are interested in, so as to make the challenges we have to face explicit.

Type Checking for Protocol Role Enactments via Commitments 9

First of all, we are interested in type checking interacting agents. In this context, a type
checking system should, as hoped for in [71], be based on the agents’ observable behaviors.
In addition, the type checking should take into account the agents’ ability to enact roles
dynamically, as envisaged in [34]. This means that agents can start/stop playing roles at any
time along their execution, and can even play more than one role at a time. Such a dynamicity
poses a question about the legitimacy for an agent to play a role at a given time. This suggests
that: (i) the fact that an agent starts playing a role must be dealt with as a special operation,
that we call enactment; and (ii) the enactment of a role demands for some form of runtime
dynamic check. Namely, the type checking must verify whether, at the time of the enactment,
the candidate role player actually meets the expectations required by the role it wants to
play. As noted above, in fact, agents can acquire behaviors at execution times, and these
behaviors may allow them to play specific roles. Finally, we are interested in supporting the
engineering of multi-agent systems so as to spread their application to real-world problems.
This, however, demands for a typing system that helps a programmer in the development of
the agents, especially as concerns their interactions with others. Thus, the typing system we
aim at must be practical (i.e., easy to use), and capable of detecting interaction errors, such
as the lack of some agents’ behaviors that are necessary for the progression of a specific
interaction. On the other hand, the typing system must not be overly prescriptive, by forcing
an agent (or a programmer) to a course of actions for achieving a goal. In short, a strong
requirement for our typing system is to be built upon a declarative language which, relying
on the agent paradigm abstractions, be both simple to use and minimally prescriptive. In
this section we show how this requirement can be met by relying on the precedence logic
introduced in [61] for the composition of Web services.

3.1 Type checking for enactments

An agent can deliberate to enact a protocol role at any time of its execution. Thus, a type
checking system should verify, dynamically, that only an agent adequately equipped to play
the selected role is actually enabled to enact that role. In other words, the type checking
should be a filter on the enactment function: the filter prevents an agent from playing a role
unless it has a proper set of behaviors to carry out all the duties associated with the role to
be enacted. Of course, the type checking is grounded on the assumption that the underlying
protocol is “well-defined”, i.e., each agent can satisfy any of its commitments without being
forced to violate some other. In other words, the protocol must allow agents to achieve their
own goals by coordinating with others so as to find a sequence of behavior executions that
leads to the satisfaction of all the involved commitments. Before presenting the enactment
checking, we thus characterize the class of socially-progressive protocols that support it.

Following [46], we say that an event e is relevant to C(x,y, p, q) when e is involved
either in p or q. That is, e is significant in the expiration, violation, discharge, detachment,
or progression of the commitment. Definition 2 captures this fact.

Definition 2 An event e ∈B is relevant to a commitment C(x, y, p, q) ∈ C iff one of the
following holds: p/e 6≡ p, p/e 6≡ p, q/e 6≡ q, or , q/e 6≡ q.

Definition 3, brings into protocols the notion of “closeness” originally introduced for
enactments in [12]. It states that in a closed protocol, for any relevant event, there is at least
one role that can make it occur, and that all events generated by the protocol are relevant to
some commitment generated by the same protocol.

10 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

Definition 3 A protocol P is closed iff for every commitment c ∈ CP, every event e that is
relevant to c belongs to BP, and for each e ∈BP either there is a commitment c ∈ CP such
that e is relevant to c, or the event creates (cancels or otherwise explicitly manipulates) a
commitment in CP.

Along the line of [45,44], we restrict to considering commitments whose debtor role has
the powers to bring about the consequent condition, and whose creditor role has the powers
to bring about the antecedent condition. This is specified by the following definition.

Definition 4 A protocol P is role-distinct iff for each commitment C(x,y, p,q) ∈ CP, the
temporal expression p is made of events that amount to powers of y while the temporal
expression q is made of events that amount to powers of x.4 When needed, we use a subscript
to denote the role having certain powers (e.g. py and qx).

Let us denote by e a sequence e1,e2, . . . ,en of events. Given two sequences e and e′,
we denote by e+ e′ their concatenation. We also extend the notion of residual of a temporal
expression q to a sequence of events e as follows: q/e=(. . .((q/e1)/e2)/. . .)/en. If q/e .

=>
and for all ei in e, q/ei 6≡ q (all events are relevant to q), we say that the sequence e is an
actualization of the temporal expression q. We denote by q̂ an actualization of q.

Finally, let e be the sequence e1,e2, . . . ,en, we denote by e[1,i] the sequence e1,e2, . . . ,ei,
and by

.
e the temporal expression e1 · e2 · . . . · en where all events are composed by means of

the before operator.

Definition 5 Two temporal expressions q and u are:

– mutually exclusive conditions: if for all q̂ we have u/q̂ .
= 0 and for all û we have q/û .

= 0;
– separable conditions: if there exist q̂ and û such that q/û≡ q and u/q̂≡ u;
– coordinable conditions: if either q and u are separable conditions or there exist q̂ =

e1 + e+ e2 and û = e3 + e+ e4 such that
.
e1 and

.
e3 are coordinable conditions, and

.
e2

and
.
e4 are coordinable conditions.

Example 4 Some simple examples should clarify these notions. Let us consider the fol-
lowing expressions under the control of the same agent, omitted for brevity, q = book∧
con f irm∧ pay and u = con f irm; it is easy to see that q and u are mutually exclusive since
the occurrence of con f irm would prevent the occurrence of any possible actualization for
u, and vice versa. If we consider u′ = get address∧ deliver, we have now that q and u′

are separable since they refer to different sets of events, and hence their actualizations
can be interleaved freely. For instance, a possible sequence of event that can occur dur-
ing execution would be book · get address · con f irm · pay · deliver. Finally, if we consider
u′′ = get address∧ con f irm∧deliver we have that q and u′′ are coordinable. In fact, there
exist actualizations q̂ and û′′ for the two expressions that allow their progression to >. For
instance q̂ = book · con f irm · pay and û′′ = get address · con f irm ·deliver is a possible pair
of actualizations that make q and u′′ coordinable since book and get address are separable
as well as pay and deliver. Another solution could be û′′ = con f irm ·get address ·deliver,
in fact book is trivially separable with an empty event and pay is separable with the subse-
quence get address ·deliver. �

Definition 6 (Coordinable commitments) Two commitments c = C(x,y, py,qx) and c′ =
C(z,w,rw,uz) are coordinable when the following conditions hold:

– x 6≡ z, x 6≡ w, y 6≡ z, and y 6≡ w;

4In terms of [46], this implies that p is controlled by y and q is controlled by x.

Type Checking for Protocol Role Enactments via Commitments 11

– or x≡ z and either qx and uz are coordinable or py and rw are mutually exclusive;
– or x≡ w and qx and rw are coordinable;
– or y≡ z and py and uz are coordinable;
– or y≡ w and py and rw are coordinable.

Namely, two commitments are coordinable if also their antecedent and consequent condi-
tions are coordinable. The first condition asserts that when c and c′ involve four different
agents, then their temporal expressions are trivially coordinable as a consequence of the
role-distinct assumption. The second condition considers the case in which the two com-
mitments share the same debtor agent. In that case, c and c′ are coordinable if their two
consequent conditions are coordinable, or in case the antecedent conditions are mutually
exclusive. In this second case, in fact, the debtor would be led to create only one of the
two commitments. The third and fourth conditions, instead, consider situations in which an
agent is both creditor for a commitment and debtor for the other. These situations demand
that the expressions under the control of the same agent be coordinable. Finally, the last
condition considers the case when both commitments share the same creditor agent. Also
in this case it is required that the temporal expressions under the control of same agent be
coordinable. Notably, the situations in which the two commitments are defined between the
same two agents is not considered explicitly because already captured by a combination of
the provided conditions. For instance, the combination of the second with the last conditions
gives us the way to deal with the situation where the same agent is the creditor for c and c′,
and another agent is the debtor for the very same commitments.

Intuitively, a set of commitments is coordinable when there is a sequence of events,
that allows the involved agents to make all the considered commitments progress until their
discharge/detach (depending on whether each agent is debtor or creditor).

The previous definitions allow us to introduce the concept of socially-progressive pro-
tocol. Intuitively, a protocol is expected to be defined in such a way that it will allow the
agents, playing its roles, to be in condition to discharge all the commitments that may be
brought about in such role playing, i.e., to satisfy one such commitment without violating
another.

Definition 7 (Socially-progressive protocol) A closed and role-distinct protocol P is so-
cially progressive iff each pair of commitments c and c′ in CP is coordinable.

Let cone(τ, i) = {τ ′|τ[0,i] = τ ′[0,i]}. Intuitively, the cone of a run at an index includes all
possible future branches given the history (the part of the run up to the index) [46].

Proposition 1 Given a socially progressive protocol P and a commitment c =C(x,y, py,qx)
in CP, if τ |=i Create(c), τ |= j Detach(c), i≤ j, and τ |=k Discharge(c), j≤ k, then for each
p̂y, and q̂x, ∃τ ′ ∈ cone(τ, i) such that τ ′ |=i+n Detach(c), where τ ′[i+1,i+n] amounts to p̂y, and
τ ′ |=i+n+m Discharge(c), where τ ′[i+n+1,i+n+m] amounts to q̂x.

Proof Given an actualization p̂y and an actualization q̂x, let us define τ ′ as the concatenation
of τ[0,i] with p̂y, with q̂x, and with any sequence of events not appearing previously. The
run τ ′ exists because, on the one hand, since the protocol is closed, all the events that are
relevant either to py or to qx are generated inside the protocol. On the other hand, as a
consequence of the role-distinct property, the events generated by any two agents can be
interleaved freely. It follows that among the set of possible runs in cone(τ, i) there exists a
τ ′ where the first n events after the i-th step are generated by the actualization p̂y, while the
subsequent m events are generated by the actualization q̂x. Now, by definition of p̂y, we have
that τ ′ |=i+n Detach(c). Then, by definition of q̂x, we have that τ ′ |=i+n+m Discharge(c).

12 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

Notice that, the selected τ ′ may discharge a commitment and not another one the agent
is also involved in as debtor, as it could cause the expiration of a commitment in which
the agent is involved as creditor. In other words, we do not look for a τ ′ that necessarily
satisfies all the commitments an agent is in charge of. The proof, in fact, just shows the
existence of at least one τ ′ where the actualizations p̂y and q̂x do occur. However, this is not
restrictive because since the protocol is socially progressive, any pair of such commitments
is coordinable, thus there always exists a coordinable sequence of events that allows an agent
to discharge/detach all.

An important consequence of Proposition 1 and Theorem 1 is that it is possible to pro-
gram each agent’s behavior as a reaction to a change in the social state. This is possible
because each event occurrence causes the progression of at least one commitment even
when commitment conditions are temporal expressions, that take more than one step to be
satisfied or to fail. Thus, the significance of Property 1 is that, when a socially-progressive
protocol is properly enacted by a group of agents, there always exists at least one course
of events that brings all the commitments possibly created along the interaction to satisfac-
tion. In other terms, the agents interacting via a socially-progressive protocol will never get
stuck because no agent knows how, or has the capability, to make the interaction progress a
step further. Through progression each such step is semantically captured in the social state.
Of course, the key problem, now, is verifying that when an agent tries to enact a role in
a socially-progressive protocol, that agent has the capabilities for accomplishing the role’s
duties. This is right the goal of our typing system, which aims at verifying that an agent
implementation produces the proper subset of the relevant events in response to commit-
ment progressions. Another consequence is that, since socially-progressive protocols are
role-distinct, each agent can individually and locally check its capacity to play a protocol
role – by being able to make the commitments, it may be involved into, progress to dis-
charge/failure. Of course, having the capacity to satisfy a commitment does not mean that at
run-time agents will never violate their commitments. Their autonomy in deliberating which
actions to execute is not reduced in any way.

Definition 8 Given a socially-progressive protocol P, a commitment c = C(x,y, py,qx) in
CP, the sequence of events e, and an event e′, such that e and e+ e′ are prefixes either of p̂y
or of q̂x, a type expression has the form c/e→ c/(e+ e′).

Type expressions are used to specify those commitment progressions which are caused by
the execution of behaviors – due to the fact that such behaviors make the event e′ occur. In
the following, we focus on behaviors that cause the occurrence of at most one event of a
same protocol.5

Example 5 Let us consider the following commitment that we have already seen as part
of the CNP protocol in Example 3: c = Ci, p, propose,accept ∨ re ject Possible type ex-
pressions for c are, for instance c/{} → c/{propose} and c/{} → c/{accept}. The first
expression types a progression of c from a state where c is conditional to a state where it is
detached. The second expression types a progression of c from active (i.e., conditional or
detached) to satisfied.

As a more interesting example consider commitment c′=C(mer,cus,book · pay, procure ·
pack · (deliver∨mail)): merchant mer commits to customer cus to procure some required
goods pack them and either deliver personally or send them via mail, provided that the cus-
tomer books and pays for the goods. Possible type expressions for the merchant are c′/{}→
c′/{procure}; c′/{procure}→ c′/{procure, pack} and c′/{procure, pack}→ c′/{procure,

5This is not restrictive as it is possible to encapsulate many such behaviors into a new one.

Type Checking for Protocol Role Enactments via Commitments 13

pack, deliver}. Only the last expression types a progression from state detached to state sat-
isfied; whereas, the previous expressions are intermediate progressions which do not change
the current state of c′. �

Definition 9 (b-type) Given a socially-progressive protocol P and a set of commitments
c1, . . . ,cn in CP, a b-type is defined as a set of type expressions: {c1/e1→ c1/(e1+e), . . . ,cn/en→
cn/(en + e)}, where the temporal expressions

.
e1, . . . ,

.
en are coordinable.

A b-type is used to type an agent behavior. For instance the merchant agent in Example 5
may be involved in, besides in commitment c′, also in the following commitment c′′ =
C(shipper,merchant, pack ·mail,ship). Note that c′ and c′′ are coordinable, and hence their
progression must proceed synchronously at least for those shared events. Thus, the merchant
may have a behavior b-pack whose b-type is {c′/{procure}→ c′/{procure, pack},c′′/{}→
{pack}}; meaning that b-pack generates the event pack, whose occurrence makes both c′

and c′′ progress. Notice that an agent behavior may have more than one b-type, each one
referring to a different protocol. Indeed, a protocol represents the scope within which b-
types can be defined and are meaningful. When a single behavior is adorned by more than
one b-type, each within the scope of a different protocol, the behavior has an effect on each
of such protocols. Namely, the events generated by the behavior execution make at least one
commitment in each of these protocols progress.

Definition 10 Given a socially-progressive protocol P and a commitment c in CP, let b1 and
b2 be two b-typed behaviors of some agent. We write b1 vc b2, if the b-type of b1 contains
c/e→ c/(e+ e′) and the b-type of b2 contains c/(e+ e′)→ c/((e+ e′)+ e′′).

A sequence of behaviors b1, . . . ,bn of an agent is an ordered list of behaviors w.r.t.
c, if bi vc bi+1, 1 ≤ i ≤ n− 1. Let us denote such an ordered list by [b1, . . . ,bn]vc . Any
[b1, . . . ,bn]vc specifies a sequence e of events that makes the commitment c progresses along
with the execution of the mentioned behaviors; more precisely, e = e1, . . . ,en, where bi has
b-type c/e[1,i−1]→ c/(e[1,i−1]+ ei). We write [b1, . . . ,bn]

e
vc

to make explicit that e is such a
sequence of events.

Definition 11 Given a socially-progressive protocol P and a commitment = C(x,y, py,qx)
in CP, a [b1, . . . ,bn]

e
vc

is complete if e is an actualization of qx or py.

Definition 12 (Debtor-compliance) Given a socially-progressive protocol P and a com-
mitment c = C(x,y, py,qx) in CP, an agent a is debtor-compliant w.r.t. c if it has a set of
behaviors b1, . . . ,bn such that [b1, . . . ,bn]

q̂x
vc

.

Intuitively, an agent, that is debtor compliant w.r.t. a certain commitment, has a set of
behaviors that, when executed in the proper order, will allow the agent to make the com-
mitment progress from the Detached to the Discharged state. In other words, that agent is
equipped with an implementation to deal with its obligations [36]. In order to enact a pro-
tocol role, an agent must be debtor-compliant with all the commitments where such a role
appears as debtor.

Definition 13 (Creditor-compliance) Given a socially-progressive protocol P and a com-
mitment c = C(x,y, py,qx) in CP, an agent a is creditor-compliant w.r.t. c if it has a set of

behaviors b1, . . . ,bn such that [b1, . . . ,bn]
p̂y
vc

, or such that [b1, . . . ,bn]
p̂y
vc

, or it has a behavior
b whose b-type is c/e→ c/(e+ releasec), where releasec is an event that causes the release
of the commitment c.

14 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

Although we adopt the same perspective of Singh about social commitments, that an
agent does not need to accept a commitment for which it is creditor nor it is committed to
bringing about the antecedent condition, it is important is that the programmer is aware of
the opportunity provided by the commitment, should one ever be created. A commitment
that is not possible to detach nor to release by an agent is a symptom that the programmer
may not have such awareness and for this reason it ought to be brought to the attention of
the programmer. Consequently it needs to be tackled by the type checking as it may, indeed,
amount to a programming mistake. For this reason, we demand, through Definition 13, that
a creditor agent, even though not obliged to possess an actualization for the antecedent
conditions of its commitments, has at least a behavior for releasing those commitments.
Practically, a creditor agent must either be capable of bringing about the antecedent (making
the commitment progress to Detached), or it must be capable of falsifying the antecedent
(making the commitment progress to Expired), or finally it must be capable of releasing
the commitment. In the last case, the idea is that a creditor agent should not be forced to
possess implementations concerning commitments to which it is not interested. Thus, for
completeness reasons, the enactment checking verifies whether an agent has considered all
the commitments in which it can appear as creditor. This is solved transparently by checking
that the agent can detach or (not exclusive) can release each of its commitments.

Proposition 2 Given a socially-progressive protocol P and a commitment c =C(x,y, py,qx)
in CP, let a be an agent that enacts role x and that is debtor-compliant w.r.t. c. If τ |=i

Detach(c) and τ |= j Discharge(c), i ≤ j, then a has an implementation [b1, . . . ,bn]
q̂x
vc

, and
∃τ ′ ∈ cone(τ, i) such that τ ′ |=i+n Discharge(c), where τ ′[i+1,i+n] amounts exactly to the same
actualization q̂x of agent a’s implementation.

Proof Since the agent a is debtor compliant w.r.t. the commitment c, it has a complete
implementation [b1, . . . ,bn]

e
vc

, where e is an actualization of qx. By Proposition 1 and by
definition of actualization, for each run τ ′, such that the sequence of events τ ′[i+1,i+n] is an
actualization q̂x, we have that τ ′ |=i+n Discharge(c). In particular this will hold also for the
actualization e. Moreover, since the protocol is role-distinct, agent a is independent of the
other agents in bringing about qx, by executing [b1, . . . ,bn]

e
vc

.

Proposition 3 Given a socially-progressive protocol P and a commitment c =C(x,y, py,qx)
in CP, let a be an agent that enacts role y and that is creditor-compliant w.r.t. c. If τ |=i

Create(c) and τ |= j Detach(c), i≤ j, then a has an implementation [b1, . . . ,bn]
p̂y
vc

and ∃τ ′ ∈
cone(τ, i) such that τ ′ |=i+n Detach(c), where τ ′[i+1,i+n] amounts to p̂y, or it has a behavior
b whose b-type is c/e→ c/(e+ releasec).

Proof The proof follows an schema that is analogous to the one of Proposition 2.

Propositions 2 and 3 mean that a group of agents can enact a role in a socially-progressive
protocol only when they are creditor and debtor compliant for each commitment in which
their role appears either as creditor or as debtor. When this happens, Property 1 is preserved:
the agents enacting the protocol can produce at least one course of events that brings to the
satisfaction of any commitment possibly created during the interaction. This excludes typi-
cal interactions errors, such as, deadlocks, situations where no agent knows how to proceed,
or where an agent is forced to violate one of its commitments for satisfying another one.

In fact, an agent might be involved in many commitments of a same protocol at a time,
either as debtor or as creditor, and, in general, the discharge of a commitment may cause the
violation (or the expiration) or another.

Type Checking for Protocol Role Enactments via Commitments 15

However, we focus on socially-progressive protocols, which guarantee that each pair
of commitments is coordinable (i.e., there is a way to satisfy both). On the other hand,
b-types too require the involved temporal expressions to be coordinable. This means that
each agent has the possibility to generate a coordinable sequence of events that allows it to
discharge/detach all of its commitments.

Of course, it could be interesting to consider also other commitment state transitions in
the typing, besides those yielded by the events create, detach, and discharge occurring in this
order. We decided to focus on this kind of transitions because they are the ones that bring
about opportunities and obligations: creditor-compliance aims at guaranteeing that agents
be aware of the possible opportunities, while debtor-compliance guarantees that agents are
endowed with behaviors that allow them to face their possible obligations. Opportunities are
given in terms of commitments towards agents, while obligations are commitments taken
by agents. We conclude this section with some examples to summarize the concepts at the
basis of our type checking, and to show how the type checking actively controls the agents’
role enactments.

Example 6 Let us consider again Example 3, and let us show that this protocol is socially
progressive, in fact: (1) each relevant event is generated by some role in the protocol, and
each generated event is relevant to at least one of the commitments that can possibly be cre-
ated along the protocol execution (closeness); (2) each event can only be generated by one
role (role distinctness); and (3) the commitments are coordinable. To verify this it is suffi-
cient to note that, during the execution of the protocol, two commitments can be generated:
c1 = C(i, p, propose,accept ∨ re ject) and c2 = C(p, i,accept,done∨ f ailure). By Defini-
tion 6, the two commitments are coordinable when the temporal expressions propose and
done∨ f ailure are coordinable, and when accept ∨ re ject and accept are coordinable. The
first pair of expressions are separable, and hence coordinable. For the second pair, instead,
there exists an actualization, consisting of just the event accept, that coordinates the two
expressions. Observe that if we use the representation of CNP described in Example 1, the
involved temporal expressions (i.e., accept ∨ accept and accept) would not be separable.
Still they would remain coordinable (because of the common actualization accept). For the
sake of completeness, had the two temporal expressions been accept and accept, they would
not have been coordinable and the protocol would not have been socially progressive. As-
sume now that an agent is willing to play the initiator role, what behaviors should the agent
possess in order to pass the enactment checking? (In the following we name the behaviors
following the convention bvr-event, meaning that the execution of the behavior body will
cause the occurrence of the social event event.) Let us assume that it is equipped with the
following set of b-typed behaviors:

– bvr-accept: 〈c1/{} → c1/{accept}〉 the type denotes that after the execution of bvr-
accept, commitment c1 will progress (to discharge) with the occurrence of event accept.

– bvr-reject: 〈c1/{} → c1/{re ject},c2/{} → {releasec2}〉, here the type highlights that
the behavior impacts on two commitments: c1 progresses (to discharge) with the event
reject, whereas commitment c2 is released.

Thanks to these behaviors, the agent will pass the enactment checking. In fact, the checking
verifies whether the agent is both debtor-compliant w.r.t. each commitment in the protocol
where initiator appears as debtor, and creditor-compliant w.r.t. each commitment where ini-
tiator appears as creditor. The first requirement is satisfied since the agent possesses at least
one actualization for the consequent condition in c1 (the only commitment where the initia-
tor is debtor). Indeed, the agent has two alternative actualizations to be debtor compliant:

16 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

[brv-accept]accept
c1 and [brv-reject]reject

c1 . The second requirement, to be creditor-compliant for
commitment c2, is satisfied again by behavior bvr-reject, which represents the actualization
[brv-reject]release

c2
, admissible for the creditor role. Analogously, when an agent intends to

play the participant role, a possible set of behaviors that satisfy the enactment checking is:

– bvr-done: 〈c2/{}→ c2/{done}〉 which makes commitment c2 progress to discharge;
– bvr-refuse: 〈c1/{}→ c1/{releasec1}〉 whose effect is releasing commitment c.

The first behavior makes the agent debtor-compliant, the second creditor-compliant. �

Example 7 Consider the trade-like interaction in Table 3 where a merchant m sells goods to
a purchaser p. Intuitively, a merchant commits to a purchaser to procure (if not already

Table 3: A buying and selling protocol definition.
ROLES POWERS SOCIAL EFFECTS

MERCHANT offer create(C(m, p, book, procure · pack))
sell create(C(m, p, pay, pack · deliver))
procure –
pack –
deliver –

PURCHASER book create(C(p, m, >, pay))
pay –

available), pack and deliver goods the purchaser has payed for (offer and sell actions).
On the other side, the purchaser commits to the merchant that it will pay for the goods
it has booked (book action). Thus, the evolution of the protocol can generate the follow-
ing commitments: c1 =C(m, p, pay, pack ·deliver), c2 =C(m, p,book, procure · pack), and
c3 =C(p,m,>, pay). The protocol is socially progressive since it is closed, role distinct and
coordinable. Let us now assume that an agent a is willing to play role merchant. Agent a
has to take care of two commitments where merchant appears as debtor (i.e., c1 and c2),
and one commitment where it occurs as creditor (i.e., c3). On the debtor side, event pack is
mentioned in the consequent conditions of both c1 and c2; therefore, the implementations
of their actualizations must be coordinated; let us show how this is done by considering the
following set of behaviors:

– bvr-procure: 〈c1/{}→ c1/{procure}〉;
– bvr-pack: 〈c1/{procure}→ c1/{procure, pack},c2/{}→ c2/{pack}〉;
– bvr-deliver: 〈c2/{pack}→ c2/{pack,deliver}〉.

These behaviors realize two actualizations for the two commitments c1 and c2. In fact, com-
mitment c1 is discharged via the ordered sequence of behaviors [bvr-procure,bvr-pack]ec1

,
where e equals {procure, pack}. Commitment c2 is discharged by [bvr-pack,bvr-deliver]e

′
c2

,
where e′ = {pack,deliver}. The two actualizations represent a coordinated way to satisfy
both c1 and c2, and hence the agent is debtor-compliant w.r.t. all its commitments. In fact,
if a purchaser booked some goods and immediately after payed for it, agent a would be
committed to satisfy both commitments; however, thanks to the coordination of the two ac-
tualizations, the consequent condition of c1 will be pursued only after the achievement of
event pack; i.e., only after the goods are actually at the merchant’s disposal. On the creditor
side, the merchant must be equipped with a behavior for releasing commitment c3 in order
to be creditor-compliant; i.e., bvr-release: 〈c3/{}→ c3/{releasec3}〉. �

Type Checking for Protocol Role Enactments via Commitments 17

Example 8 Let us consider a protocol role that requires to its players to tackle a commit-
ment, whose consequent is (pack ·mail)∨(give sh ·send tn), meaning that that agent should
either pack some item and then mail it through the post office, or give it to a shipper, and
then send the tracking number to the client. Roughly, debtor-compliance checks that an agent
willing to enact the role declares to have some behaviors for tackling this commitment. It
also checks that such behaviors produce an actualization of the temporal expression. An
agent, declaring to possess the abilities to tackle the commitment, passes the check if it is
able to perform at least one of the two encoded transport procedures, but it would not pass
the check if, for instance, it had behaviors for pack and give sh only, which would allow it
to pack the item and give it to a shipper for delivery. These two behaviors together, in fact,
would not constitute a complete actualization for the consequent condition of c2. �

4 Implementing the Enactment Type Checking in 2COMM

The typing system discussed in the previous sections is independent of any specific multia-
gent platform, it only requires the notion of commitment to be native in it. In order to show
how the type checking can be made concrete, we present a possible implementation that
is grounded upon an existing multiagent platform supporting commitments, and show how
b-types can be added to it and used. The starting point is 2COMM ([6,9,10]), a middleware
that, integrated with existing multiagent platforms, realizes an agent programming environ-
ment where social relationships, modeled as commitments, are made available as first-class
programming elements. So far, two bridges were developed for 2COMM: 2COMM4JADE
allows to use commitments with JADE [18] agents, while 2COMM4JACAMO allows Ja-
CaMo [22] agents to manipulate commitments. For the sake of exposition, we only discuss
here the implementation for 2COMM4JADE. Before getting into details of the implementa-
tion of the typing system, we briefly overview the 2COMM architecture.

4.1 2COMM Quick Tour

Figure 2 sketches an excerpt of 2COMM’s architecture (only the most relevant classes
are shown). In 2COMM commitment-based interaction protocols are realized by means of
CArtAgO [52] artifacts. Specifically, the core of 2COMM extends CArtAgO artifacts by
providing the means for the management, the maintenance, and the update of the social
state, that is associated with each instance of a protocol artifact. The 2COMM protocol ar-
tifact exhibits roles that specify how agents can manipulate the social state; agents playing
roles acquire the powers for creating and affecting commitments.

2COMM is organized in layers as follows. At the top of the hierarchy, the Communi-
cationArtifact class provides agents with a basic tool for mediated communication
that extends the CArtAgO tuple space with the additional notion of roles (see CARole
class). Thus, an agent intending to use an instance of CommunicationArtifact has to
play a role therein defined. To this aim, CommunicationArtifact defines two opera-
tions, enact and deact, that are used at runtime by agents when they access or release an
instance of such a class. Notably, enact already implements some basic form of role enact-
ment checking, but it is limited to syntactic issues (e.g., role name correctness). Intuitively,
a natural way to implement the type checking is to properly extend CommunicationAr-
tifact, and the enact method, in particular.

18 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

JADE

User Program

MyAgent

MyBehaviour

2COMM4JADE

JADEAgentPlayer

2COMM

CommunicationArtifact

ProtocolArtifact

MyProtocolArtifact

<<interface>>
IPlayer

Role

CARole

PARole

MyPARole

RoleID

+

+

+

Commitment

SocialState

Fact

CArtAgO

Artifact

AbstractTupleSpace

0…*

1…*

0…*

2…2

0…*

0…* 0…*

Agent

Behaviour

Fig. 2: 2COMM and its use in programming agents and protocols.

At the next level, the ProtocolArtifact class extends CommunicationArti-
fact by adding the notions of commitment and social state, and by providing the needed
operations to manipulate commitments (i.e., create, discharge, cancel, release, assign, dele-
gate). Note that PARole extends, via CARole, the class Role, which in turn extends the
CArtAgO class Agent, and contains the basic manipulation logic of CArtAgO artifacts.
Since roles extend this super-type, their instances will be able to perform operations on arti-
facts, whenever the role players will decide to do so. Role provides both static methods for
creating artifacts and basic operations that are used during role enactment/deactment. In par-
ticular, on role enactment, an object of class RoleId is created. This is a unique identifier
of the created role instance within the corresponding instance of ProtocolArtifact.

Class SocialState is the repository of social events that occur during an interaction.
It contains instances of the classes Commitment and SocialFact (i.e., events that rep-
resent occurrences of protocol actions). The integrity and coherence of the social state is
maintained by this class, which also provides a collection of methods for querying the state
of the interaction.

The connection between JADE and 2COMM is realized through the 2COMM4JADE
connector, which basically contains the class JadeAgentPlayer. This is an implemen-
tation of the interface IPlayer. Its instances represent JADE agents that can use a protocol
by playing its roles.

Since CommunicationArtifact and ProtocolArtifact are abstract classes,
they cannot be instantiated. A programmer using 2COMM4JADE for programming the
interaction among some agents, needs just to extend ProtocolArtifact, and to ex-
ploit operations on commitments as primitives for the specification of the protocol actions
(i.e. to implement their social meaning, see for instance MyProtocolArtifact). The

Type Checking for Protocol Role Enactments via Commitments 19

roles of a programmer-specified protocol are realized as inner classes of the class that ex-
tends ProtocolArtifact (see, for instance, MyPARole in the figure). This solution
is adopted from [15] and, in particular, it realizes the definitional dependence principle (a
role is meaningful only within the institution it belongs to). Such classes extend the abstract
class PARole that is, in turn, an inner class of ProtocolArtifact. It provides both
the primitives for using the social state (e.g., for asking in which commitments a certain
agent is involved), and the primitives that allow an agent to become, through its role, an
observer of the events occurring in the social state. For example, an agent may query if the
social state contains a commitment with a specific condition as consequent, via the method
existsCommitmentWithConsequent(InteractionStateElement el). Al-
ternatively, an agent may implement the inner interface ProtocolObserver (not re-
ported in the figure), and thus be notified about the occurrence of specific social events.
The operation deact is, instead, used by an agent to stop playing a role. Note that a
protocol instance keeps track of which agent is playing what role by using the property
enactedRoles.

4.2 Extending 2COMM with the Typing System

Now that we have sketched the general architecture of 2COMM, we can proceed with the
discussion of how the typing system can be implemented upon it. Recall that our approach
basically relies on two aspects: the requirements that are associated with each role in a given
protocol, and the capabilities possessed by an agent at the time of the enactment of a role.
Role requirements coincide with the commitments in which the given role can be involved,
whereas capabilities are traced by means of b-types. Thus, these are the concepts that the
implementation has to make concrete. Moreover, recall that the type checking we aim at
must be dynamic: it must be performed at runtime just when an agent tries to enact a role.
The type checking has to verify whether the agent’s implementation is such to make the
agent creditor- and debtor-compliant for each commitment involving the enacted role.

A natural way to approach the problem is to extend the ProtocolArtifact class.
This is done by TypedProtocolArtifacts, which adds the type-checking mecha-
nisms to a “standard” 2COMM ProtocolArtifact. Intuitively, TypedProtocol-
Artifacts overrides the basic enactment checking in CommunicationArtifact:
when an agent invokes enact on a TypedProtocolArtifact instance for a given
role, the operation checks the requirements associated with that role against the agent’s type
(i.e., the set of behaviors that are exhibited by the agent through the enact operation). We
will describe deeply this operation in the following.

Before that, we need to present how the notions of role requirements and b-type are
implemented. In order to be conservative with the existing 2COMM middleware, and to add
the typing system as an additional feature that a programmer can use if she wants to, we have
based the implementation of role requirements and b-types on Java annotations [66]. These
are commonly used to provide meta-data about program elements (methods, classes, and
fields), which can be used to perform activities on program code, for example by developing
tools and code generation mechanisms. Relevant meta-data for our typing system are speci-
fied for class elements (@Target({ElementType.TYPE})); they must be recorded in
the class files and retained at runtime (@Retention({RetentionPolicy.
RUNTIME})).

20 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

The basic idea is that, thanks to the annotation mechanism, a programmer can create a
bridge between a protocol role and the class defining its requirements, and between an agent
behavior and its b-type. Let us start with the bridge between roles and their requirements.

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target({ElementType.TYPE})
3 public @interface RoleType {
4 Class<? extends RoleRequirements> requirements();
5 int interactionCardinality() default 1;
6 }

Listing 1: The annotation RoleType.

Listing 1 reports the implementation of the RoleType annotation. According to the
notions of debtor- and creditor-compliant (see definitions 12 and 13, respectively), this an-
notation allows specifying a set of commitments (i.e., requirements) that a role player
should be able to fulfill.

The annotation also contains the property interactionCardinality, that speci-
fies whether a role can be concurrently played by many agents – as it is, for instance, the
case of the CNP role participant. When implementing a protocol role, it is necessary to mark
the corresponding (inner) class with this annotation, specifying also the class which imple-
ments the desired requirements. That class must extend RoleRequirements (reported
in Listing 2).

1 public abstract class RoleRequirements {
2 final private Set<Commitment> C_DEFINITION;
3 final private Set<Commitment> D_DEFINITION;
4 final private String ROLE_NAME;
5 protected RoleRequirements(String roleName,
6 Commitment[] commitsDDefinition, Commitment[] commitsCDefinition) {
7 this.ROLE_NAME = roleName;
8 D_DEFINITION = new HashSet<Commitment>();
9 for (Commitment c : commitsDDefinition) D_DEFINITION.add(c);

10 C_DEFINITION = new HashSet<Commitment>();
11 for (Commitment c : commitsCDefinition) C_DEFINITION.add(c);
12 }
13 private boolean checkCommitmentSatisfied(Commitment c,
14 ArrayList<BType> bTypes) {
15 TreeNode root = new TreeNode(new PartialActualization());
16 ArrayList<TreeNode> leafNodes = new ArrayList<TreeNode>();
17 updateTree(root, bTypes, leafNodes);
18 LogicalExpression le = (LogicalExpression)c.getConsequent();
19 for (TreeNode t : leafNodes) {
20 for (ProtocolAction pa : t.partialAct.getActionList())
21 update(le, pa);
22 if (le.isVerified()) return true;
23 le.resetVerifiedToFalse();
24 }
25 return false;
26 }
27 public boolean isEnactable(ArrayList<BType> bTypes) {
28 boolean debt-ok = true, cred-ok = true;
29 ArrayList<BType> arrNew;
30 HashMap<Commitment,ArrayList<BType>> mapCommitTypes =
31 new HashMap<Commitment,ArrayList<BType>>();
32 for (BType bt : bTypes) {
33 for (Commitment c : bt.getCommitments()) {
34 if (mapCommitTypes.containsKey(c))
35 mapCommitTypes.get(c).add(bt);

Type Checking for Protocol Role Enactments via Commitments 21

36 else {
37 arrNew = new ArrayList<BType>();
38 arrNew.add(bt);
39 mapCommitTypes.put(c, arrNew);
40 }
41 }
42 }
43 // CHECKING CREDITOR COMPLIANCE
44 if (!C_DEFINITION.isEmpty()) {
45 for (Commitment c : C_DEFINITION) {
46 if (!mapCommitTypes.containsKey(c)) return false;
47 cred-ok &= checkCommitmentDetachment(c, mapCommitTypes.get(c));
48 }
49 }
50 // CHECKING DEBTOR COMPLIANCE
51 for (Commitment c : D_DEFINITION) {
52 if (!(mapCommitTypes.containsKey(c))) return false;
53 debt-ok &= checkCommitmentSatisfied(c,
54 mapCommitTypes.get(c));
55 }
56 return debt-ok && cred-ok;
57 }
58 }

Listing 2: The RoleRequirements class.

RoleRequirements has three fields: C DEFINITION and D DEFINITION are
commitment sets, and hence actually encode the role requirements; ROLE NAME is the name
of the role under consideration. Intuitively, actual role types constructors will invoke the
superconstructor and specify proper arrays of commitments, that must be used to verify
debtor compliance and creditor compliance respectively. RoleRequirements provides
the method (isEnactable, line 27) to check if a role with specific requirements can be
enacted by an agent with specific behavior types. This method is invoked by method enact
of TypedProtocolArtifact.

For each commitment that is to be checked when verifying debtor compliance, the
method checkCommitmentSatisfied (line 53) is called. This method (lines 13 – 26)
builds a tree-like structure in order to verify whether the b-types, provided for the enactment,
compose the required actualization (i.e., they can be used to make the commitment progress
to satisfaction). Creditor compliance is checked in a similar way. The only difference is that
in this case it is not required to have a complete actualization because of the possibility to
rely on the release operation.

To give an understanding of how role requirements are practically implemented, let us
quickly show how the role merchant in Example 7 can be defined in terms of its require-
ments. By construction, the protocol has to provide a clear definition of debtor-compliance
to each role in terms of commitments. For the merchant role, the commitments to be consid-
ered are c1 =C(i, p, propose,accept∨ re ject) and c2 =C(p, i,accept,done∨ f ailure). The
merchant’s requirements are therefore implemented in class MerchantRequirements
in Listing 3.

1 public class MerchantRequirements extends RoleRequirements {
2 public MerchantRequirements() {
3 super("Merchant",
4 new Commitment[]{
5 new Commitment(SellingProtocol.MERCHANT_ROLE,
6 SellingProtocol.PURCHASER_ROLE, "book",
7 new CompositeExpression(LogicalOperatorType.THEN,

22 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

8 new Fact("procure"), new Fact("pack"))),
9 new Commitment(SellingProtocol.MERCHANT_ROLE,

10 SellingProtocol.PURCHASER_ROLE, "pay",
11 new CompositeExpression(LogicalOperatorType.THEN,
12 new Fact("pack"), new Fact("deliver")))
13 },
14 null); // no commitments required for creditor compliance
15 }
16 }

Listing 3: Role requirements for merchant.

Since commitments are native in 2COMM, the role requirements implementation is
quite simple: the developer defines the new requirement-class MerchantRequirements
by extending the superclass RoleRequirements. In the constructor of the new class, the
supercostructor is invoked by providing a name for the role, an array of commitments for
debtor-compliance, and an optional array of commitments for creditor-compliance (in this
example the latter is null).

Let us now consider the agent side and present how b-types are implemented. Following
Definition 9, the type of a behavior B can be thought of as a tuple 〈Commitment, Partial-
Actualization, Protocol-Action〉, where:

1. Commitment is the particular commitment that the behavior B manipulates;
2. Partial-Actualization is a list of protocol actions. It specifies which actions are assumed

to have already been executed by the agent when B is executed;
3. Protocol-Action is the (only) action of the protocol the agent is going to perform by

executing the behaviour B.

Annotation BehaviourType, similar to RoleType, is used to specify the b-type of
a behavior, i.e. which commitments a behavior is capable to make progress.

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target({ElementType.TYPE})
3 public @interface BehaviourType {
4 Class<? extends BType> bType();
5 }

Listing 4: The annotation BehaviourType.

Indeed, the actual b-type of an agent’s behavior must be an extension of class BType,
whose implementation is reported in Listing 5.

1 public abstract class BType {
2 private Commitment[] commitments;
3 private PartialActualization partialActualization
4 = new PartialActualization(this);
5 private ProtocolAction newAction;
6 public BType(Commitment[] c, PartialActualization pAct,
7 ProtocolAction newAct) {
8 commitments = c;
9 partialActualization = pAct;

10 newAction = newAct;
11 }
12 public BType(BType previousBType, ProtocolAction newAct) {
13 this.commitment = previousBType.getCommitment();
14 this.partialActualization = previousBType.getPartialActualization()
15 .clone();
16 this.partialActualization.addAction(previousBType.getNewAction());
17 this.newAction = newAct;

Type Checking for Protocol Role Enactments via Commitments 23

18 }
19 // *** getters and setters... ***
20 }

Listing 5: The BType basic class.

Let us give a quick example of how b-types are actually implemented on the agent side
taking again under consideration Example 7, and assuming that we want to implement an
agent that will enact the role merchant. The agent will be equipped with a set of behav-
iors, each of which must be bound to a b-type by means of the annotation mechanism. For
instance, the agent will have behavior PackBehaviour, that is intended to generate the
(social) event pack by invoking the namesake protocol action. The type for such a behavior
is defined by extending the BType class; Listing 6 shows its implementation.

1 public class BvtPackBType extends BType {
2 public BvtPackBType() {
3 super(new Commitment[]{
4 new Commitment(SellingProtocol.MERCHANT_ROLE,
5 SellingProtocol.PURCHASER_ROLE, "book",
6 new CompositeExpression(LogicalOperatorType.THEN,
7 new Fact("procure"), new Fact("pack"))),
8 new Commitment(SellingProtocol.MERCHANT_ROLE,
9 SellingProtocol.PURCHASER_ROLE, "pay",

10 new CompositeExpression(LogicalOperatorType.THEN,
11 new Fact("pack"), new Fact("deliver")))
12 },
13 new ProtocolAction("pack"));
14 }
15 }

Listing 6: BType of bvt-pack behaviour.

Thus, BType specifies which commitments progress as a consequence of the execution
of a particular ProtocolAction. Note that, even though a behavior involves only one
protocol action, it may cause the progression of many commitments. In the above example,
the execution of pack causes the progression of both c1 and c2.

Finally, BvtPackBType must be linked to a specific behavior, PackBehaviour in
our case. This is accomplished as in Listing 7 by means of the Java annotation mechanism.

1 ... agent code ...
2 @BehaviourType(bType = BvtPackBType.class)
3 public class PackBehaviour {
4 ... behaviour specific logic ...
5 }

Listing 7: Linking a BType to an agent behavior.

RoleRequirements and BType abstract classes, together with @RoleAnnotation
and @BehaviourType annotation classes realize the infrastructure upon which the type
checking relies. The actual verification, however, is performed at runtime when an agent
tries to play a specific role of a protocol extending TypedProtocolArtifact. As
noted above, TypedProtocolArtifact inherits from CommunicationArtifact
method enact, which in turn invokes method checkRoleRequirements. However,
while checkRoleRequirements in CommunicationArtifact just makes syntac-
tic name controls, in TypedProtocolArtifact this method is overridden to imple-
ment the comparison between the role requirements and b-types. This is the core of the type
checking system and its implementation is reported in Listing 8.

24 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

1 protected boolean checkRoleRequirements(String roleName, IPlayer player) {
2 if (super.checkRoleRequirements(roleName, player)) {
3 JadeBehaviourPlayer jPlayer = (JadeBehaviourPlayer) player;
4 Behaviour[] offeredPlayerBehaviours = jPlayer.getJadeBehaviour();
5

6 Class<? extends Behaviour> behClass;
7 ArrayList<Annotation> behaviourTypeAnnotations
8 = new ArrayList<Annotation>();
9 Annotation behaviourTypeAnnotation;

10 for (Behaviour beh : offeredPlayerBehaviours) {
11 behClass = beh.getClass();
12 behaviourTypeAnnotation
13 = behClass.getAnnotation(BehaviourType.class);
14 if (behaviourTypeAnnotation == null) return false;
15 behaviourTypeAnnotations.add(behaviourTypeAnnotation);
16 }
17 String roleClassName = (this.getClass().getName())
18 + " dollarsign " + roleName;
19 Class<?> roleClass = Class.forName(roleClassName);
20 Annotation roleAnnotation =
21 roleClass.getAnnotation(RoleType.class);
22 if (roleAnnotation == null) return false;
23 RoleRequirements roleReq = ((RoleType)roleAnnotation)
24 .requirements().getDeclaredConstructor().newInstance();
25 ArrayList<BType> overallBTypes
26 = mergeBTypes(behaviourTypeAnnotations);
27 return rolereq
28 .isEnactable(overallBTypes);
29 } else return false;
30 }

Listing 8: The method checkRoleRequirements with commitment-based type-
checking mechanisms.

checkRoleRequirements performs an initial check on the required role name–
that must be included in the definition of the protocol– by invoking the namesake method
of the superclass (line 2). The behaviors offered for enactment are parsed (line 10) and all
@BehaviourType annotations are extracted. Analogously, the @RoleType annotation
is retrieved from the definition of the role (line 17). Now, requirements can be taken from
the requirements() method of the annotation (line 23); behavior types are collected
(line 26), and both requirements and behavior types are used to check if the agent can enact
the role (line 27).

5 Example: Adding B-Types and Requirements to a CNP Implementation

For the sake of completeness, we outline how the well-known Contract-Net Protocol mod-
eled in terms of a commitment-based protocol in Example 2 can be typed with our method-
ology. An implementation in 2COMM4JADE of such a protocol has been discussed in [6].
In this section, we show how the typing system can be added on top of such an implementa-
tion. Recall that CNP encompasses two roles: initiator and participant, and each of them is
associated with some “powers”, having a meaning in terms of commitment operations. Fig-
ure 3 outlines the overall architecture for the typed CNP. The picture highlights the classes
(and their mutual relations) that are part of the typing package, which extends 2COMM,
and the classes that have to be implemented for adding the type checking feature to the CNP
implementation. For the sake of readability, we abstract with InitiatorBehaviour the

Type Checking for Protocol Role Enactments via Commitments 25

set of behaviors InitiatorAgent is equipped with. As discussed in Example 6, these
are bvr-cfp, bvr-accept, and bvr-reject; namely, one for each role’s power. In the same way,
we abstract with TypeInitiator the behavior type that is associated with each agent’s
behavior. Note that we use a non-standard notation to represent such an association since
the relation between a behavior and its type is actualized via the Java annotation mechanism
(as we will show below). A similar consideration holds for the participant role.

JADE

CNP

InitiatorAgent

InitiatorBehaviour

TypedProtocolArtifact

CNP

PARole

Initiator

+

+

0…*

<<Annotation>>
BehaviourType

<<Annotation>>
RoleTypeBType RoleRequirements

TypeInitiator

TypeParticipant

InitiatorRequirements

ParticipantRequirementsParticipant

+

ParticipantAgent

ParticipantBehaviour

ProtocolArtifact

2COMM

TYPING

Agent

Behaviour

Fig. 3: Excerpt of the typing system architecture, and the example of the typed CNP.

+ requirements() : Class<? extends RoleRequirements>
+ interactionCardinality() : int

<<Annotation>>
RoleType

<<Annotation>>
BehaviourType

+ bType() : Class<? extends BType>

TypeInitiator TypeParticipant InitiatorRequirements ParticipantRequirements

InitiatorBehaviour

+ action()

ParticipantBehaviour

+ action()

Initiator Participant

Protocol-sideAgent-side

CNPBehaviourType BehaviourType RoleType RoleType

+ getCommitment() : Commitment
+ getNewAction() : ProtocolAction
+ getPartialActualization() : PartialActualization

- commitment : Commitment
- partialActualization : PartialActualization
- newAction : ProtocolAction

<<Abstract Class>>
BType

+ getRoleCRequirements() : Set<Commitment>
+ getRoleDRequirements() : Set<Commitment>
+ isEnactable(List<BType>) : boolean
- checkCommitmentDetachment(Commitment, List<BType>) : boolean
- checkCommitmentSatisfied(Commitment, List<BType>) : boolean

- C-DEFINITION : Set<Commitment>
- D-DEFINITION : Set<Commitment>

<<Abstract Class>>
RoleRequirements

Fig. 4: UML excerpt of 2COMM typing framework.

26 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

Figure 4 details the relations existing between the classes of the typing package,
and those in the CNP implementation. In particular, on the protocol side, two require-
ment classes are specified, for the initiator and participant roles, respectively. Each re-
quirement class specifies what commitments an agent playing that role must be debtor/-
creditor compliant. Notably, these requirement classes are related, via the Java annotation
mechanism, to the original Initiator and Participant classes of the CNP imple-
mentation presented in [6]. This points out how the typing checking is a feature that can
be added to already existing code with very little effort. On the agent side, two implemen-
tations of BType are showed, again to ease the readability of the picture, one for typing
initiator agents and the other for typing participant agents. CNPArtifact, Listing 9, is
a slight update of the original class discussed in [6]; changes regard: 1) the superclass now
is TypedProtocolArtifact, and 2) the annotations that create a bind between each
role and the class implementing its requirements. In Listing 9 this can be seen in line 3 for
the initiator role, where the annotation for the nested class Initiator is used to create
a reference with class InitiatorRequirements, and also in line 10 where a similar
annotation is set for the participant role.

1 public class CNPArtifact extends TypedProtocolArtifact {
2 // ...
3 @RoleType(requirements = InitiatorRequirements.class)
4 public class Initiator extends PARole {
5 public Initiator(IPlayer player) {
6 super(INITIATOR_ROLE, player);
7 }
8 // ...
9 }

10 @RoleType(requirements = ParticipantRequirements.class)
11 public class Pariticipant extends PARole {
12 public Participant(IPlayer player) {
13 super(PARTICIPANT_ROLE, player);
14 }
15 // ...
16 }
17 }

Listing 9: Definition of Initiator role.

Class InitiatorRequirements defines the requirements for role initiator. Role
requirements simply amount to the list of commitments involving the given role either as a
debtor or creditor, to which a role playing agent will have to comply with:

1 public class InitiatorRequirements extends RoleRequirements {
2 public InitiatorRequirements() {
3 super("Initiator",
4 new Commitment[]{
5 new Commitment(CNPArtifact.INITIATOR_ROLE, CNPArtifact.PARTICIPANT_ROLE,
6 new Fact("propose"),
7 new CompositeExpression(LogicalOperatorType.OR,
8 new Fact("accept"), new Fact("reject")))
9 },

10 new Commitment[]{
11 new Commitment(CNPArtifact.PARTICIPANT_ROLE, CNPArtifact.INITIATOR_ROLE,
12 new Fact("accept"),
13 new CompositeExpression(LogicalOperatorType.OR,
14 new Fact("done"), new Fact("failure")))
15 }
16);
17 }

Type Checking for Protocol Role Enactments via Commitments 27

18 // ...
19 }

Listing 10: Definition of InitiatorRequirements.

The class adds (lines 5–8, Listing 10) commitment C(i, p, propose, accept ∨ reject) (see
Example 2) to the array D DEFINITION, inherited from the superclass RoleRequire-
ments. Meaning that any agent willing to play the initiator role must be debtor-compliant
with the commitment above. At the same time, (lines 11–14) the class adds the commit-
ment C(p, i, accept, done ∨ failure) to the array C DEFINITION, again inherited from
RoleRequirements, meaning that a role player will need to be creditor-compliant with
such a commitment.

We complete this discussion with an example of behavior typing on the agent’s side.
An agent, that wills to play the initiator role, must offer a set of behaviors that are typed
in a proper way. In Example 6 we have seen that these behaviors are bvr-cfp, bvr-accept,
and bvr-reject (abstracted by InitiatorBehaviour in figures 3 and 4). Let us see how
bvr-accept is actually defined and typed. First of all, the following listing shows how the
implementation of bvr-accept is associated (via annotation) with its type:

1 @BehaviourType(bType = TypeBvrAcceptInitiator.class)
2 public class BvrAccept extends OneShotBehaviour
3 implements CNPInitiatorObserver {
4 // ...
5 }

Listing 11: Definition of class BvrAccpet implementing initiator’s behavior bvr-
accept.

The TypeBvrAcceptInitiator type is actually defined in the following listing
where, as noted above, a b-type is implemented as a triple: commitment, partial actualization
so far, and event that makes the commitment progress. The type in Listing12 follows such
a structure by invoking the superclass constructor (i.e., BType): from line 3 to 9 the com-
mitment C(i, p, propose,accept ∨ re ject) is specified, in line 10 the current (empty) partial
actualization is given, and finally, in line 11 the protocol action, invoked by the associated
behavior, is specified.

1 public class TypeBvrAcceptInitiator extends BType {
2 public TypeBvrAcceptInitiator() {
3 super(new Commitment[]{
4 new Commitment(
5 new RoleId(CNP.INITIATOR_ROLE, RoleId.GROUP_ROLE),
6 new RoleId(CNP.PARTICIPANT_ROLE, RoleId.GROUP_ROLE),
7 new Fact("propose"),
8 new CompositeExpression(LogicalOperatorType.OR,
9 new Fact("accept"), new Fact("reject")))},

10 null,
11 new ProtocolAction("accept")
12);
13 }
14 // ...
15 }

Listing 12: Definition of TypeBvrAcceptInitiator.

28 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

Early Appr. Global S. T. FAAL SimpAL Our Appr.
protocol-based X X X
agent typing X X X X
system typing X X X X X
static type checking X X
dynamic type checking X X
no disclosure X X
msg or meaning based meaning msg msg meaning
flexible X
agent concepts X X
struct. or behavioral behavioral structural structural behavioral

Table 4: Comparison of the relevant literature with our proposal.

6 Related Works

While a main research issue in concurrency programming, including the actor computing
model [1], is the definition of formal models, calculi, and type systems analogously to the
sequential case, for what concerns agents, just a few studies were carried on aspects such as
typing and type safety. In programming languages, type systems are used to help designers
and developers in avoiding code errors, bugs, that can entail unpredictable results. Type
systems can be weak or strong, static or dynamic, but at the end they all share the same
goal: supporting the development of error-free and human-readable code. On the other hand,
most agent system implementations (JADE [18], Jack [41], A-Globe [63]) are based on
programming languages like Java, and do not supply agent-oriented types, but rather rely on
the typing system of the host language used for developing the system itself.

This section explains the main proposals concerning agent typing with their pros and
cons. Table 4 provides a comparison at a glance. Each column corresponds to one of the
introduced works, while each line is a feature that may or may not characterize the proposal.
For helping understand where our proposal sits, the last column summarizes the key features
of the typing we propose. Concerning the rows, a little explanation is needed. Protocol-based
is checked for those proposals that concern protocol-ruled agent interaction. Agent typing
is checked when the proposal provides agent typing. System typing says if the proposal
provides typing of the system as a whole. In such case, system typing tendentiously concerns
the interaction protocol. The static type checking and dynamic type checking rows indicate
the kind of type checking that is supported. No disclosure is checked when the proposal does
not require the disclosure of the involved agents’ behavior. Msg or meaning based specifies
if the typing is defined at the level of messages or at the level of message meaning. Flexible
means that the typing does not capture a behavior procedurally. Agent concepts is marked
when the typing bases upon concepts that are characteristic of the agent framework. Finally,
struct. or behavioral indicates whether the typing system is concerned with the structure of
the agents (or the system) or with its behavior.

Early approaches. To the best of our knowledge, Zapf and Geihs [71] were the first to pro-
pose the use of a type system for (mobile) agents, and they also introduced the idea of using
sub-typing for the substitution of more specific subclasses in places where more general
classes are expected, thus supporting safe extension and program re-use. They underlined
the importance of using a type system which allows dynamic type checking and proposed
to base agent typing (1) on the externally visible actions of the agents, that they identify as
being the messages agents accept and send, (2) on the meaning of the messages agents can

Type Checking for Protocol Role Enactments via Commitments 29

exchange which includes, through the special symbol self, a characterization of the agent
itself, (3) on the used communication protocol. They structure an agent type as a triple. The
first component is the syntactic type, which is stateless and consists of the set of the input
messages and of the set of output messages. The second is a transition type; i.e., a finite
state automaton capturing a communication protocol similarly to regular types [48]. The
third and last component is the semantic type, an annotation aimed at checking behavior-
compatibility, based on J. F. Sowa’s conceptual graphs.

This proposal shows many interesting features. It supports dynamic type checking,
which means that the verification that an agent fits the requirements for interacting in a
MAS is done only when the agent decides to enter the interaction. This is a pro because,
in general, an agent may acquire the required properties just before it enters the system.
Anticipating the check to earlier phases of the agent’s life may result overly prescriptive.
Another pro is that the typing relies only on externally visible actions, because the agents’
internal states are not inspectable. Then, the proposal accounts for the interaction protocol,
i.e. it captures the rules of encounter of the agents. On the negative side, the solution relies
on finite state automata for describing both the interaction and the agents’ behavior. This
choice hinders the agent’s autonomy in two ways. First, agents must supply a description of
their behavior, a requirement that limits applicability. The reason is that in many practical
settings, principals do not wish to disclose their internal procedures or, as in the case when
legacy software is used, it may be impossible for them to disclose it. Second, this descrip-
tion concerns how to do things, rather than what to do: it is prescriptive. An agent may have
the possibility (and the capability) of executing certain tasks in different ways. Prescribing
precise sequences of actions limits flexibility. The agent will not be capable of coping with
exceptional circumstances, errors/faults, opportunities, nor to adapt to dynamic conditions
unless such alternative behaviors are explicitly listed among those accepted by the automa-
ton. Quoting Cherns [25] “..., it is a mistake to specify more than is needed because by
doing so options are closed that could be kept open. This premature closing of options is a
pervasive fault in design.”

Global session types for legacy software. The main claim of [5] is the importance of using
interaction protocols for representing the functioning of a system. To this aim, the authors
use global session types as an abstraction tool, which allows automatically generating mon-
itor agents that are aimed at verifying the correctness of on-going, multi-party interactions.
The monitor agent intercepts all the exchanged messages and verifies whether the proto-
col is respected. Like the previous proposal, also [5] focuses on externally visible actions
(message exchanges) and on the use of interaction protocols. Moreover, similarly to finite
state automata, global session types have a prescriptive, procedural nature, whose drawbacks
have been explained above. The difference is that [5] provides no actual type system; rather
global session types are used for specifying the interaction within a system from a global
perspective. The proposal is implemented in Jason [23]. Global session types are represented
by cyclic Prolog terms, which are consumed as messages are sniffed.

On the negative side, although relying on a monitor agent which checks the exchanged
messages is an important functionality, that allows overlaying the verification of the interac-
tion on top of legacy software (as it was the case in the cited work), it is hardly generalizable.
Then, since agents are not typed and there is no expression of what an agent can or is ex-
pected to do, the proposal is more of a kind of run-time compliance checking. Another
consequence is that when agents enter a system, it is not possible to verify whether their
behavior is compatible with the protocol before the interaction begins. It is also impossible

30 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

to search for agents showing characteristics which allow them to successfully take part to
the interaction.

Concerning the monitor, we disagree with the choice of realizing it as an agent. In or-
der for the system to be transparent, the monitor should be “inspectable” by the interacting
agents, and the infrastructure should guarantee that the monitor is notified of all the ex-
changed messages. We believe that the environment should supply proper monitoring ser-
vices, or an artifact, but not another autonomous agent. Centralization also becomes a bottle-
neck when the number of interacting agents grows. First steps for allowing the distribution
of the verification of the on-going interactions are presented in [3], where an algorithm is
described to project a global session type onto subsets of agents. Further developments are
reported in [4] but they basically concern protocol switch as a way for agents to be adaptive.

Featherweight Agent and Artifact Language. The Featherweight Agent and Artifact Lan-
guage (FAAL) [33] is a formal calculus that models the agent and artifact program abstrac-
tions provided by SimpA [56], a language that realizes all the relevant features of the A&A
meta-model [68,50]. A&A extends the agent paradigm with another primitive abstraction,
the artifact: a computational, programmable system resource, that can be manipulated by
agents, residing at the same abstraction level of the agent abstraction. A&A provides ways
for defining workspaces, i.e., logical groups of artifacts, that can be joined by agents at
runtime. Here agents can create, use, share and compose artifacts to support individual and
collective, cooperative or antagonistic activities. The environment is itself programmable,
and encapsulates services and functionalities.

FAAL accounts both for agents and for artifacts. A well-formed system configuration
is seen as a parallel composition of agent instances, keeping track of a tree of activities
to be carried on autonomously, and of artifact instances, holding a set of operations to be
executed as responses to agent actions over the artifact instance. Agent and artifact instances
are interpreted as independent and asynchronous processes. The calculus provides a basis
on top of which the authors developed a type system that ensures the standard properties
of progress and of preservation of well-formed configurations. It enjoys the type soundness
property of statically typed languages. Well-formed programs do not get stuck in the sense
that if an agent has some activity (or an artifact has some operation) to perform, then there
is surely some rule that can be applied.

Although [33] is the first example of a formal account of agent (and artifact) typing, it
is essentially close to a traditional data type system: each agent (artifact) is associated with
a type that is based on its own structure, without taking into account the behavioral (state)
evolution of the agent (artifact) itself. An agent is not a mere set of functions but rather it is
determined by its capabilities, that can vary along with the execution also as a consequence
of the relationships it entertains with other agents, for instance by playing different roles in
relation with other agents. In addition, the calculus does not account for any of those high-
level cognitive concepts that typically characterize agents and multi-agent systems, such as
beliefs, desires, and intentions, relying instead on traditional functional abstractions.

Typing in SimpAL. In the SimpAL language [53–55] types are seen as useful for realizing
integrated development environments, so much that the authors implemented an Eclipse
plugin [58]. The approach to typing is a classic one, grounded on interfaces. This is the
way in which most programming languages assure coherence, and prevent (statically) or
detect (dynamically) logical errors. SimpAL extends the notion of interface to the agent
abstraction level, introducing the notion of role as a collection of tasks, that an agent is
capable to perform. A role will be implemented by an agent script, containing the behavioral

Type Checking for Protocol Role Enactments via Commitments 31

logic of the agent. Specifically, a SimpAL role is an interface, while a role task is a method
signature, which includes a list of formal parameters needed for its completion, expressed as
pairs 〈name : Type〉. SimpAL provides environment typing and organizational typing too,
used for programming coordination, resources and interactions between agents.

A typing of agents merely based on syntactic interfaces is criticized in [71], where the
authors explain how conventional typing does not suffice the context of agent systems. The
critic bases upon work by Nierstrasz [48] on active objects, that showed how the enumeration
of the possible input and output messages is not sufficient to guarantee the interoperability.
It is advisable to rely, instead, on some sort of behavioral type, including semantic infor-
mation. Moreover, in SimpAL agent type checking is static. This is not a major concern in
a homogeneous, single application environment. However, in an open MAS, where agents
may be composed dynamically, static type checking is not enough; instead, it is necessary
to rely on dynamic type checking and on monitoring. In this setting, agents themselves may
verify their conformance to a role in order to decide whether to enter an interaction as well
as to decide whether adopting new behaviors. As a consequence, the notion of type not only
is a tool that supports the programmer’s work, but it becomes a programming element, that
is used by agents in order to take decisions.

7 Discussion and Future Work

This paper presented a typing system for MAS. The key characteristic of the proposal is that
the typing system is based on notions that are typical of agents rather than on a functional
approach. Specifically, it relies on the direct use of relationships among agents intended
as first-class entities. As such, the proposal represents a novelty w.r.t. previous work on
agent typing, which applies the functional type theory [37,38,54,33]. The functional ap-
proach benefits of the results of a vast literature, but types should be aimed at providing
abstraction/modeling features that help the programmer. Functional typing systems discard
the typicalities of agents and, thus, in our view, they do not accomplish their aim.

The proposal we have made takes a perspective on modeling multiagent systems that is
akin to the one taken by the artifact-centric approach [20,29]. The artifact-centric approach
counterposes a data-centric vision to the classical activity-centric vision in the specification
of processes. An artifact is a concrete, identifiable, self-describing chunk of information, the
basic building blocks by which business models and operations are described. In particular,
it includes a lifecycle model, that contains the key states through which the data evolve,
together with their transitions (triggered by the execution of corresponding tasks). In our
vision, the social state of a protocol execution is the artifact. The lifecycle of such an artifact
is given by the protocol. Theorem 1 together with Proposition 1 show that, in presence
of a socially-progressive commitment protocol, it is possible to take into account just the
commitment lifecycles when programming the agent behaviors.

To better clarify this point, let us consider the expression z = f (g(x)), i.e. y = g(x);z =
f (y). The classical verification carried on through a typing system verifies that the type of x
is correct with respect to the type expected by g, that the value returned by g is correct with
respect to the one expected by f , and finally that the value returned by f corresponds to the
one of z. In an artifact-centric perspective, x is a datum that is transformed through the ap-
plication of g followed by f . In the data-centric approach [49], there is no such input-output
flow through calls of f and g but rather the information itself evolves. So, with reference to
Figure 5, an artifact, initially amounting to the information that above was contained in x,
would evolve to another state and then another, respectively amounting to the information

32 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

x

yz

g

f

Ag1

Ag2

use

perceive

use

perceive

Fig. 5: A data-oriented representation of the composition of two functions, y = g(x), z = f (y).

that previously we put in y and z. The evolution would be caused by the execution of the
operations f and g by the involved agents, as a consequence of the perception of certain
artifact states. In Figure 5, for instance, Ag1 perceives the artifact is in state x and uses the
artifact, performing g. Ag2 executes f when it perceives the state y of the artifact. In such
a context, type verification becomes a verification of the coordination among the agents in
using the artifact. This is the kind of verification our typing system allows. To this end, we
use commitments as requirements. On the creditor side, they specify the opportunities an
agent can take bringing about certain conditions, thanks to an obligation put on the debtor
agent. On the debtor side, commitments specify the need of having certain behaviors that
will allow them to accomplish the possible obligations they may be subject to.

This perspective of typing shares some aspects with the one studied (in object-oriented
settings) by Typestate-Oriented Programming, introduced in [2] and developed in works like
[32,31]. This is an extension of object-oriented programming where objects are modeled
in terms of classes and of changing states. The authors propose that each state may have
its own representation and methods which may cause an object transition to a new state.
The current state of an object is tracked thanks to a flow-sensitive, permission-based type
system. The introduction of states is motivated by the fact that it helps library writers and
users to design, document, and reuse libraries more effectively, with new opportunities to
expressiveness. Damiani et al. [32] propose to use the state of an object as a coordination
means in concurrent object-oriented languages. Following Philippsen’s terminology [51],
the proposal realizes a form of coordination on the side of the callee, i.e., it implements
coordination in the class that is accessed concurrently. The state class construct is introduced
to design coordination protocols via objects that can be safely accessed in a concurrent way.
All fields of such classes are private and their methods are synchronized (they execute in
mutual exclusion on the receiver object). A state class specifies a collection of states as well
as how methods make object states transition. Following again [51], the state class construct
is a boundary coordination mechanism as it realizes callee-side coordination by design. An
interesting point about callee-side coordination is that it is possible to reason about the
correctness of a class implementation based on local information, since all coordination
code is part of the class implementation. In our proposal, the lifecycle is represented by
the commitment protocol itself in a declarative way thanks to commitments, which provide
also the means for specifying role requirements. Moreover, the identification of the class
of socially-progressive protocols allows standardizing state transitions, that agents should
tackle, in terms of commitment state changes.

Relationships and roles are key elements of the proposal. Since the early ’80s, indeed,
Rumbaugh [57] identified the notion of relationship as a first-class element, complemen-
tary to that of object, that cannot be obtained by relying on other notions. Steinmann [65]
then proposed, for Object-Oriented languages, that roles should be seen as intermediaries

Type Checking for Protocol Role Enactments via Commitments 33

between relationships and the objects that engage them. These concepts were further de-
veloped for multi-agent systems. In particular, by extending Sowa’s ideas [64], Guarino
[39] underlines that roles differ from so called “natural” types (i.e., those that relate to the
essence) in that individuals can enter or leave roles without losing their identity, and that
playing a role requires individuals to be in relationship with other individuals. In this per-
spective, the types that constitute the type system proposed in [33] for A&A resemble more
the notion of natural type while our proposal stands at the level of roles and relationships.
Still concerning A&A, notice also that artifacts are not institutions, although they may re-
semble them. They differ in how agents interact with them. While an artifact is a sort of
shared object that is accessible to all agents that are in the environment, to which the artifact
belongs, an institution is accessible only to those agents which have explicitly joined that
institution by playing (at least) a role defined within that institution.

Dastani et al. [34] explore the two concepts of agent role and agent type that are at the
core of methodologies for developing MASs; according to them, during the analysis phase
organizational structures are defined in terms of agent roles, and at design time sets of agent
roles are translated into agent types. Dastani et al. propose an approach to account for role
dynamics by introducing the role operations enact, deact, activate, and deactivate. An agent
role is considered as a triple including a set of normative behavioral rules (conditional and
context-dependent), a set of expected objectives, and a specification of the information that
is expected to be available to the role players. In different words, obligations (i.e., states
that must be achieved by the role player), goals (i.e., states that the role player wants to
achieve), and information (received by the player when enacting the role). The properties of
role coherence, and of consistency of a set of roles are defined. An agent type is a consistent
subset of a given set of agent roles. Roles are intended as guidelines for the specification,
design and implementation of MASs. Whether or not an agent is playing a role is a social
fact, and an agent cannot deact a role at any time (e.g., an agent playing the role buyer
cannot deact the role before paying a bought item). An agent that enacts a role adopts the
goals and rules of the role. Enacting a role, thus, modifies the belief base of an agent and
indirectly affects its behavior. Nevertheless, to achieve the role’s objectives the role should
be activated. The agent is free to select the order according to which pursuing its own goals
and those acquired via the enacted roles. On the other hand, deacting/deactivating a role
means, respectively, that an agent stops enacting the role, and that an agent becomes passive
with respect to the role’s objectives. In our view, however, roles are not abstractions to be
used only at design time, and players are not isolated agents: they interact with one another.
So, we do not see agents as characterized by sets of roles but by their capabilities, and focus
on the issue of understanding at enactment time whether they can fulfill the engagements
they may take towards other agents along the interaction ruled by some reference protocol.
To achieve this purpose, we do not represent roles in terms of goals, but rather in terms of the
social relationships that can arise and tie the agents as they play the protocol roles. Notice,
however, that our approach is not limited to perform a dynamic type checking but could be
used, as in [34], also at design time along the lines of [8].

Besides providing the basic notions of agent type, role requirements, and check of a
role enactment, we implemented the proposal in the context of the 2COMM framework [6].
2COMM enables programming social relationships by exploiting a declarative, interaction-
centric approach. In particular, the social relationships that arise along the interaction among
agents are captured as social commitments – realized as first-class objects –, while interac-
tion is mediated by protocol artifacts.

The choice of relying on commitments is motivated by the desire of typing agents and
roles in a way that results minimally prescriptive, so to preserve the autonomy of the agents

34 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

as far as possible. Indeed, we agree with [48,71] that the typing system should include a
representation of the behavior but, differently from those works – which deal with objects,
we are also convinced of the need of a representation which does not hinder the agents’
autonomy. For this reason, a prescriptive representation, based on finite state automata – as
the one introduced in those works, would not be adequate. Commitments allow specifying
the expected behavior of agents without imposing unnecessary restrictions. In this paper
we have adopted the precedence logic language for expressing antecedent and consequent
conditions. As already explained, this choice is mainly motivated by our belief that, to the
purpose of typing, the specification language should be kept as simple as possible in order
not to burden a programmer with a too hard task when it comes the time of defining and
implementing the types of agents’ behaviors. In case a more expressive language would
be required, e.g., for expressing metric time constraints, our proposal could be extended in
various way. A possibility is to adopt an extension of commitments with deadlines, such as
those proposed in [28,27,26]. An alternative approach would be to adopt approaches like
2CL [13], where commitment protocols are enriched with explicit temporal constraints on
the evolution of the social state. This kind of extension is one of our next goals.

Clearly, a type system allows only a light check of the behavior of the involved agents,
being more concerned with a safe usage rather than a full behavioral compatibility. It does
not imply that an agent, which has the same type of another agent, will display the same
behavior. This does not exclude the possibility to integrate deeper checks, for instance based
on model checking (e.g. [19]). In particular, agents could operate in more complex norma-
tive scenarios where, besides commitments, also authorizations and prohibitions could be
present. For instance, in Revani [42], a MAS is specified in terms of a set of norms (i.e.,
commitments, authorizations, and prohibitions), which are added, or updated, incrementally
in order to meet some predefined user requirements. The user requirements are encoded as
CTL formulae whose validity is checked against the current set of norms. Whenever a re-
quirement is not satisfied, the designer adjusts the current set of norms either by adding a
new norm, or by revising some of those already defined – norm specification patterns are
proposed as an aid for the designer. The process terminates when all the requirements are
satisfied by the norms at hand; these norms are a specification of the sought MAS. Under
this respect, Revani is complementary to our enactment checking because it focuses on the
correctness of the system where the agents will operate. The checking we proposed concerns
instead the adequacy of an agent in playing a role within a system.

Type checking, as a form of lightweight verification, adopts notions (e.g., substitutabil-
ity), that are used also for coping with issues of interoperability and conformance dis-
cussed in [14,11]. The conformance verification aims at guaranteeing that when an agent
plays a role, or substitutes another agent in an on-going interaction, the interoperability of
the system is preserved. Another direction of research that we intend to explore is how
commitment-based types can be adapted to solve the issue of conformance in MAS.

The described agent typing system will help realizing both static, compile-time cod-
ing support, and dynamic, run-time type checking. Inspired by [58], the former could be
realized by developing a plug-in for an IDE that provides coding support, like smart code
completion or warnings about possible type mismatches. The latter, instead, amounts to the
development of tools for verifying, at run-time, the compliance between the agent’s logics
and the role requirements, and hence signaling the occurrence of wrong enactments when
needed. Commitment representations that account for an explicit representation of time, in-
cluding deadlines, as for instance [28], are also a possible future direction of development.
Particularly interesting, in this respect, is the proposal in [43], which aims at detecting pos-
sible misuses of a MAS, again specified as a set of norms. In this case, norms are expressed

Type Checking for Protocol Role Enactments via Commitments 35

in event calculus, which allows a designer to associate norms with a metric time setting the
horizon within which they have to be satisfied. A simple Prolog program can thus infer all
possible misuses of the system looking at all possible runs that either violate some norms, or
are not conformant with domain-dependent rules. Knowing the possible misuses, a designer
can decide to refine some of the norms to prevent, if possible, the misuses, or place some
monitors to detect these misuses when the system will be up and running.

Acknowledgements This work was partially supported by the Accountable Trustworthy Organizations and
Systems (AThOS) project, funded by Università degli Studi di Torino and Compagnia di San Paolo (CSP
2014). We would like to thank the reviwers for their comments and the discussions which holped to improve
the work.

References

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
MA, USA, 1986.

2. J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-oriented programming. In S. Arora and
G. T. Leavens, editors, Companion to the 24th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2009, October 25-29, 2009, Orlando,
Florida, USA, pages 1015–1022. ACM, 2009.

3. D. Ancona, D. Briola, A. El Fallah-Seghrouchni, V. Mascardi, and P. Taillibert. Efficient Verification of
MASs with Projections. In F. Dalpiaz, J. Dix, and M. B. van Riemsdijk, editors, Engineering Multi-Agent
Systems - Second International Workshop, EMAS 2014, Paris, France, May 5-6, 2014, Revised Selected
Papers, volume 8758 of Lecture Notes in Computer Science, pages 246–270. Springer, 2014.

4. D. Ancona, D. Briola, A. Ferrando, and V. Mascardi. Global Protocols as First Class Entities for Self-
Adaptive Agents. In G. Weiss, P. Yolum, R. H. Bordini, and E. Elkind, editors, Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul,
Turkey, May 4-8, 2015, pages 1019–1029. ACM, 2015.

5. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-monitoring mass from
multiparty global session types in jason. In M. Baldoni, L. Dennis, V. Mascardi, and W. Vasconcelos,
editors, Declarative Agent Languages and Technologies X, volume 7784 of Lecture Notes in Computer
Science, pages 76–95. Springer Berlin Heidelberg, 2013.

6. M. Baldoni, C. Baroglio, and F. Capuzzimati. A Commitment-Based Infrastructure for Programming
Socio-Technical Systems. ACM Transactions on Internet Technology, 14(4):23:1–23:23, Dec. 2014.

7. M. Baldoni, C. Baroglio, and F. Capuzzimati. Typing Multi-Agent Systems via Commitments. In
F. Dalpiaz, J. Dix, and M. B. van Riemsdijk, editors, Post-Proc. of the 2nd International Workshop
on Engineering Multi-Agent Systems, EMAS 2014, Revised Selected and Invited Papers, number 8758 in
LNAI, pages 388–405. Springer, 2014.

8. M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio. Empowering Agent Coordination with Social
Engagement. In M. Gavanelli, E. Lamma, and F. Riguzzi, editors, AI*IA 2015: Advances in Artificial
Intelligence, XIV International Conference of the Italian Association for Artificial Intelligence, volume
9336 of LNAI, pages 89–101, Ferrara, Italy, September 2015. Springer.

9. M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio. Exploiting Social Commitments in Program-
ming Agent Interaction. In Q. Chen, P. Torroni, S. Villata, J. Y. Hsu, and A. Omicini, editors, PRIMA
2015: Principles and Practice of Multi-Agent Systems, 18th International Conference, number 9387 in
Lecture Notes in Computer Science, pages 566–574, Bertinoro, Italy, October 26th–30th 2015. Springer.

10. M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio. Commitment-based Agent Interaction in
JaCaMo+. Fundamenta Informaticae, 157:1–33, 2018.

11. M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti, and M. P. Singh. Choice, Interoperability,
and Conformance in Interaction Protocols and Service Choreographies. In Proceedings of the 8th In-
ternational Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, pages 843–850.
IFAAMAS, 2009.

12. M. Baldoni, C. Baroglio, A. K. Chopra, and M. P. Singh. Composing and Verifying Commitment-
Based Multiagent Protocols. In M. Wooldridge and Q. Yang, editors, Proc. of 24th International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25th-31th 2015.

13. M. Baldoni, C. Baroglio, E. Marengo, and V. Patti. Constitutive and Regulative Specifications of Com-
mitment Protocols: a Decoupled Approach. ACM Transactions on Intelligent Systems and Technology,
Special Issue on Agent Communication, 4(2):22:1–22:25, March 2013.

36 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

14. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. A Priori Conformance Verification for Guaranteeing
Interoperability in Open Environments. In A. Dan and W. Lamersdorf, editors, Proc. of the 4th Interna-
tional Conference on Service Oriented Computing, ICSOC 2006, volume 4294 of LNCS, pages 339–351,
Chicago, USA, December 2006. Springer.

15. M. Baldoni, G. Boella, and L. van der Torre. Interaction between Objects in powerjava. Journal of
Object Technology, Special Issue OOPS Track at SAC 2006, 6(2), 2007.

16. M. Baldoni, G. Boella, and L. van der Torre. Relationships Meet their Roles in Object Oriented Program-
ming. In F. Arbab, A. Movaghar, J. Rutten, and M. Sirjani, editors, Proc. of the International Symposium
on Fundamentals of Software Engineering, FSEN’07, volume 4767 of Lecture Notes in Computer Sci-
ence (LNCS), pages 440–448, Tehran, Iran, April 2007. Springer.

17. M. Baldoni, G. Boella, and L. van der Torre. The Interplay between Relationships, Roles and Objects. In
F. Arbab, H. Sarbazi-azad, and M. Sirjani, editors, Proc. of the International Conference on Fundamen-
tals of Software Engineering, FSEN’09, volume 5961 of Lecture Notes in Computer Science (LNCS),
pages 402–415, Kish Island, Persian Gulf, Iran, April 2009. Springer.

18. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE - A Java Agent Development Framework. In
R. H. Bordini, M. Dastani, J. JDix, and A. El Fallah-Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications, volume 15 of Multiagent Systems, Artificial Societies, and Sim-
ulated Organizations, pages 125–147. Springer, 2005.

19. J. Bentahar, J.-J. C. Meyer, and W. Wan. Model Checking Communicative Agent-based Systems.
Knowledge-Based Systems, 22(3):142–159, 2009.

20. K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y. Wu. Artifact-centered operational
modeling: Lessons from customer engagements. IBM Systems Journal, 46(4):703–721, 2007.

21. G. Boella and L. W. N. van der Torre. The Ontological Properties of Social Roles in Multi-Agent
Systems: Definitional Dependence, Powers and Roles playing Roles. Artificial Intelligence and Law
Journal (AILaw), 15(3):201–221, 2007.

22. O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi. Multi-Agent Oriented Programming
with JaCaMo. Science of Computer Programming, 78(6):747 – 761, 2013.

23. R. H. Bordini and J. F. Hübner. BDI Agent Programming in AgentSpeak using Jason. In F. Toni
and P. Torroni, editors, Computational Logic in Multi-Agent Systems, volume 3900 of Lecture Notes in
Computer Science, pages 143–164. Springer Berlin Heidelberg, 2006.

24. C. Castelfranchi. Principles of Individual Social Action. In G. Holmstrom-Hintikka and R. Tuomela, ed-
itors, Contemporary Action Theory: Social Action, volume 2, pages 163–192, Dordrecht, 1997. Kluwer.

25. A. Cherns. Principles of Socio-Technical Design. Human Relations, 2:783–792, 1976.
26. F. Chesani, P. Mello, M. Montali, and P. Torroni. Monitoring time-aware social commitments with

reactive event calculus. In Proceedings of the 7th international symposium From Agent Theory to Agent
Implementation (AT2AI-7), 2010.

27. F. Chesani, P. Mello, M. Montali, and P. Torroni. Monitoring time-aware commitments within agent-
based simulation environments. Cybernetics and Systems, 42(2):546–566, 2013.

28. F. Chesani, P. Mello, M. Montali, and P. Torroni. Representing and Monitoring Social Commitments
Using the Event Calculus. Autonomous Agents and Multi-Agent Systems, 27(1):85–130, 2013.

29. D. Cohn and H. Richard. Business Artifacts: A Data-centric Approach to Modeling Business Operations
and Processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.

30. M. Colombetti, N. Fornara, and M. Verdicchio. The role of institutions in multiagent systems. In In
Proc. of the Workshop on Knowledge-Based and Reasoning Agents, VIII Convegno AI*IA, pages 118–2,
2002.

31. S. Crafa and L. Padovani. The chemical approach to typestate-oriented programming. In J. Aldrich
and P. Eugster, editors, Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015,
Pittsburgh, PA, USA, October 25-30, 2015, pages 917–934. ACM, 2015.

32. F. Damiani, E. Giachino, P. Giannini, and S. Drossopoulou. A type safe state abstraction for coordination
in java -like languages. Acta Inf., 45(7-8):479–536, 2008.

33. F. Damiani, P. Giannini, A. Ricci, and M. Viroli. Standard Type Soundness for Agents and Artifacts.
Scientific Annals of Computer Science, 22(2):267–326, 2012.

34. M. Dastani, M. B. van Riemsdijk, J. Hulstijn, F. Dignum, and J.-J. C. Meyer. Enacting and deacting
roles in agent programming. In J. Odell, P. Giorgini, and J. P. Müller, editors, Agent-Oriented Software
Engineering V, volume 3382 of Lecture Notes in Computer Science, pages 189–204. Springer Berlin
Heidelberg, 2005.

35. Y. Demazeau. From interactions to collective behaviour in agent-based systems. In Proc. of the 1st.
European Conference on Cognitive Science, Saint-Malo, 1995.

36. G. Governatori. Law, logic and business processes. In Third International Workshop on Requirements
Engineering and Law, RELAW 2010, Sydney, NSW, Australia, September 28, 2010, pages 1–10. IEEE,
2010.

Type Checking for Protocol Role Enactments via Commitments 37

37. C. Grigore and R. Collier. Supporting Agent Systems in the Programming Language. In J. F. Hübner, J.-
M. Petit, and E. Suzuki, editors, Web Intelligence/IAT Workshops, pages 9–12. IEEE Computer Society,
2011.

38. C. Grigore and R. W. Collier. AF-Raf: an Agent-Oriented Programming Language with Algebraic Data
Types. In SPLASH Workshops, pages 195–200, 2011.

39. N. Guarino. Concepts, Attributes, and Arbitrary Relations – Some Linguistic and Ontological Criteria
for Structuring Knowledge Bases. Data & Knowledge Engineering, 8:249–261, 1992.

40. N. Guarino and C. A. Welty. Evaluating Ontological Decisions with OntoClean. Communications of the
ACM, 45(2):61–65, 2002.

41. N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents - Summary of an Agent
Infrastructure. In Proc. of the 5th International Conference on Autonomous Agents, 2001.

42. Ö. Kafali, N. Ajmeri, and M. P. Singh. Revani: Revising and verifying normative specifications for
privacy. IEEE Intelligent Systems, 31(5):8–15, 2016.

43. Ö. Kafali, M. P. Singh, and L. A. Williams. NANE: identifying misuse cases using temporal norm
enactments. In 24th IEEE International Requirements Engineering Conference, RE 2016, Beijing, China,
September 12-16, 2016, pages 136–145, 2016.

44. N. Kökciyan and P. Yolum. Priguard: A semantic approach to detect privacy violations in online social
networks. IEEE Trans. Knowl. Data Eng., 28(10):2724–2737, 2016.

45. N. Kökciyan and P. Yolum. Priguardtool: A tool for monitoring privacy violations in online social net-
works (demonstration). In C. M. Jonker, S. Marsella, J. Thangarajah, and K. Tuyls, editors, Proceedings
of the 2016 International Conference on Autonomous Agents & Multiagent Systems, Singapore, May
9-13, 2016, pages 1496–1497. ACM, 2016.

46. E. Marengo, M. Baldoni, C. Baroglio, A. K. Chopra, V. Patti, and M. P. Singh. Commitments with
Regulations: Reasoning about Safety and Control in REGULA. In K. Tumer, P. Yolum, L. Sonenberg,
and P. Stone, editors, Proceedings of the 10th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2011, volume 2, pages 467–474, Taipei, Taiwan, May 2011. IFAAMAS.

47. C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and N. Guarino. Social Roles
and their Descriptions. In D. Dubois, C. A. Welty, and M. Williams, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Ninth International Conference (KR2004), Whistler,
Canada, June 2-5, 2004, pages 267–277. AAAI Press, 2004.

48. O. Nierstrasz and D. Tsichritzis, editors. Object-Oriented Software Composition, chapter 6, pages 99–
121. Prentice Hall, 1995.

49. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification. IBM Systems
Journal, 42(3):428 – 445, 2003.

50. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A Meta-Model for Multi-Agent Systems. Au-
tonomous Agents and Multi-Agent Systems, 17(3):432–456, 2008.

51. M. Philippsen. A survey of concurrent object-oriented languages. Concurrency - Practice and Experi-
ence, 12(10):917–980, 2000.

52. A. Ricci, M. Piunti, and M. Viroli. Environment Programming in Multi-Agent Systems: an Artifact-
based Perspective. Autonomous Agents and Multi-Agent Systems, 23(2):158–192, 2011.

53. A. Ricci and A. Santi. From Actors to Agent-Oriented Programming Abstractions in simpAL. In
SPLASH Workshops, pages 73–74, 2012.

54. A. Ricci and A. Santi. Typing Multi-agent Programs in simpAL. In M. Dastani, J. F. Hübner, and B. Lo-
gan, editors, Programming Multi-Agent System, volume 7837 of Lecture Notes in Computer Science,
pages 138–157. Springer, 2012.

55. A. Ricci and A. Santi. From Actors and Concurrent Objects to Agent-Oriented Programming in simpAL.
In G. Agha, A. Igarashi, N. Kobayashi, H. Masuhara, S. Matsuoka, E. Shibayama, and K. Taura, editors,
Concurrent Objects and Beyond - Papers dedicated to Akinori Yonezawa on the Occasion of His 65th
Birthday, volume 8665 of Lecture Notes in Computer Science, pages 408–445. Springer, 2014.

56. A. Ricci, M. Viroli, and G. Piancastelli. simpA: An Agent-Oriented Approach for Programming Con-
current Applications on top of Java. Science of Computer Programming, 76(1):37–62, 2011.

57. J. Rumbaugh. Relations As Semantic Constructs in an Object-oriented Language. In Conference Pro-
ceedings on Object-oriented Programming Systems, Languages and Applications, OOPSLA ’87, pages
466–481, New York, NY, USA, 1987. ACM.

58. A. Santi and A. Ricci. An Eclipse-based IDE for Agent-Oriented Programming in simpAL. In Proc. of
The Seventh Workshop of the Italian Eclipse Community, 2012.

59. M. P. Singh. An Ontology for Commitments in Multiagent Systems. Artificial Intelligence and Law
Journal (AILaw), 7(1):97–113, 1999.

60. M. P. Singh. A Social Semantics for Agent Communication Languages. In F. Dignum and M. Greaves,
editors, Issues in Agent Communication, volume 1916 of Lecture Notes in Computer Science, pages
31–45. Springer, 2000.

38 Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio

61. M. P. Singh. Distributed Enactment of Multiagent Workflows: Temporal Logic for Web Service Com-
position. In The Second International Joint Conference on Autonomous Agents & Multiagent Systems,
AAMAS 2003, July 14-18, 2003, Melbourne, Victoria, Australia, Proceedings, pages 907–914. ACM,
2003.

62. M. P. Singh and M. N. Huhns. Service-oriented computing - semantics, processes, agents. Wiley, 2005.
63. D. Šišlák, M. Rehák, M. Pěchouček, M. Rollo, and D. Pavlı́ček. A-globe: Agent Development Plat-

form with Inaccessibility and Mobility Support. In Software Agent-Based Applications, Platforms and
Development Kits, pages 21–46. Birkhäuser Basel, 2005.

64. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1984.

65. F. Steimann. On the Representation of Roles in Object-oriented and Conceptual Modelling. Data &
Knowledge Engineering, 35(1):83 – 106, 2000.

66. SUN Microsystems, Inc. JSR 175: A Metadata Facility for the Java Programming Language, 2002.
https://jcp.org/en/jsr/detail?id=175.

67. P. R. Telang, M. P. Singh, and N. Yorke-Smith. Relating goal and commitment semantics. In ProMAS,
volume 7217 of Lecture Notes in Computer Science, pages 22–37. Springer, 2011.

68. D. Weyns, A. Omicini, and J. Odell. Environment as a First Class Abstraction in Multiagent Systems.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30, 2007.

69. P. Yolum and M. P. Singh. Designing and executing protocols using the event calculus. In Proceedings
of the Fifth International Conference on Autonomous Agents, AGENTS ’01, pages 27–28, New York,
NY, USA, 2001. ACM.

70. P. Yolum and M. P. Singh. Commitment Machines. In Intelligent Agents VIII, 8th International Work-
shop, ATAL 2001, volume 2333 of LNCS, pages 235–247. Springer, 2002.

71. M. Zapf and K. Geihs. What Type Is It? A Type System For Mobile Agents. In 15th European Meeting
on Cybernetics and Systems Research (EMCSR), 2000.

