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Abstract 16 

Lactic acid bacteria (LAB) have a long history in industrial processes as food starters and 17 

biocontrol agents, but also as producers of high-value compounds. Lactic acid, their main product, 18 

is among the most requested chemicals owing to its multiple applications including synthesis of 19 

biodegradable plastic polymers. Moreover, LAB are attracting candidates for production of ethanol, 20 

polyhydroalkanoates, sweeteners, exopolysaccharides, etc.. LAB generally have complex 21 

nutritional requirements. Moreover, they cannot directly ferment inexpensive feedstocks such as 22 

lignocellulose. This significantly increases the cost of LAB fermentation and hinders its application 23 

to produce high-volume low-cost chemicals. Different strategies have been explored to extend LAB 24 

fermentation to lignocellulosic biomass. Fermentation of lignocellulose hydrolysates by LAB has 25 

most often been reported and is the most mature technology. However, current economic 26 

constraints of this strategy have driven research for other alternative approaches. Co-cultivation of 27 

LAB with native cellulolytic microorganisms may allow to reduce the high cost of exogenous-28 

cellulase supplementation. Special attention will be given here to construction of recombinant 29 

cellulolytic LAB by metabolic engineering which may generate strains able to directly ferment 30 

plant biomass. The present review will illustrate the state-of-the-art of these strategies and 31 

perspectives towards their application to industrial 2nd generation biorefinery processes. 32 

 33 
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Introduction 37 

Lactic acid bacteria (LAB) have extensive industrial application, mainly in food 38 

fermentation and as probiotics (Mazzoli et al. 2014). Relevant industrial processes involving LAB 39 

also include fermentative production of lactic acid (LA). LA is among the most requested chemicals 40 

because of its several applications in food (e.g. acidifier and flavour-enhancing agent), cosmetic 41 

(emulsifying and moisturing agent) and pharmaceutical (intermediate) industries and as building 42 

block for the synthesis of biodegradable plastic polymers (e.g. polylactides, PLAs) (Abdel-Rahman 43 

et al. 2013). It has been estimated that about 90% of the worldwide LA is produced through LAB 44 

fermentation (Sauer et al. 2008). LA can be produced also by chemical synthesis, but this gives rise 45 

to a racemic mixture of D- and L-LA which is not suitable for PLA production (Abdel-Rahman et 46 

al., 2016). Furthermore, D-LA can cause metabolic problems to humans and therefore cannot be 47 

used in the food, drink, and pharmaceutical industries (Jem et al. 2010). Depending on specific 48 

LAB strain genome, i.e. the presence of gene(s) encoding D- or L- lactate dehydrogenase and/or 49 

racemase, D- or L-LA or their mixtures can be produced. In addition, LAB have been considered as 50 

candidates for production of other high-value compounds such as ethanol, polyhydroalkanoates, 51 

polyols, and exopolysaccharides (Mazzoli et al. 2014). However, most LAB are auxotrophic for 52 

several amino acids, nucleotides and vitamins (that should be supplemented to their growth media). 53 

Furthermore, LAB, with few exceptions, cannot ferment abundant inexpensive biomass, such as 54 

starchy or lignocellulosic feedstocks. These are significant limits for LAB to be applied to 55 

economically viable biorefinery processes, especially those aimed at high-volume low-value 56 

molecules (e.g. ethanol). Nowadays, most LA is produced by bioconversion of dedicated crops 57 

(mainly corn) by industries such as Corbion-Purac (The Netherlands), Galactic (Belgium), 58 

NatureWorks LLC-Cargill (USA) (Abdel-Rahman et al. 2013; de Oliveira et al. 2018). As the 59 

global demand for LA is rapidly increasing (16.2 % annual growth) (de Oliveira et al. 2018), such a 60 

process represents a threat for these food crops. Development of fermentation processes based on 61 

2nd generation (i.e. lignocellulosic) feedstocks appears as a priority for extensive application of 62 

LAB in biorefinery. 63 

So far, no native cellulolytic and/or hemicellulolytic LAB has been identified. However, a 64 

number of LAB strains have been isolated from “plant environments”, e.g. from fermented 65 

vegetables or the gastrointestinal tract of herbivores where plant biomass is the main carbon source. 66 

These LAB developed the ability to ferment a variety of soluble sugars derived from plant 67 

polysaccharide hydrolysis (see next section). Supplementation of cellulases in the growth medium 68 

(Adsul et al. 2007;° Wee and Ryu 2009; Shi et al. 2015; Bai et al. 2016; Hu et al. 2016; Overbeck 69 
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et al. 2016; Wang et al. 2017; Grewal and Khare 2018) or co-cultivation with cellulolytic 70 

microorganisms (Shahab et al. 2018) have therefore been used as efficient strategies to allow plant 71 

biomass fermentation by LAB. Alternatively, the development of recombinant LAB equipped with 72 

heterologous cellulase systems has been pursued so as to obtain strains that can directly ferment 73 

lignocellulosic feedstocks (i.e. consolidated bioprocessing, CBP) (Mazzoli et al., 2014). The state-74 

of-the-art of these strategies and future research directions towards their application in industrial 75 

processes will be described in the next sections. 76 

 77 

LAB ability to ferment soluble mono-/oligo-saccharides from 78 

lignocellulosic biomass 79 

LAB can metabolize several monosaccharides, including both hexoses (e.g. fructose, 80 

glucose, galactose) and pentoses (e.g. xylose) (Kandler 1983), which are common components of 81 

lignocellulosic materials. Based on their metabolism, LAB are classified as homo-, hetero- and 82 

mixed acid-fermenters (Kandler 1983). In homofermentative metabolism, sugars are catabolized 83 

through the Embden-Meyerhof-Parnas pathway and converted to pyruvate which is finally reduced 84 

to LA. Heterofermentative metabolism involves sugar conversion through the phosphoketolase 85 

pathway giving rise to equimolar mixtures of LA and ethanol/or acetic acid (Kandler 1983). Finally, 86 

in mixed acid fermenters, glycolysis-derived pyruvate is metabolized through multiple pathways 87 

resulting in production of LA and ethanol and/or acetic and/or formic acid mixtures (Kandler 1983). 88 

Efficient metabolism of pentose sugars is particularly important when hemicellulose fermentation is 89 

addressed (Jordan et al. 2012). Some LAB such as Lactobacillus (Lb.) pentosus, Lb. brevis, Lb. 90 

plantarum and Leuconostoc (Leu.) lactis can metabolize both arabinose and xylose through 91 

heterofermentative metabolism (Fig. 1) (Tanaka et al. 2002; Okano et al. 2009a). An additional 92 

xylose fermentation pathway featuring higher LA production yields was identified in Lactococcus 93 

(Lc.) lactis IO-1 (Tanaka et al. 2002). In this strain, at high xylose concentration, xylose catabolism 94 

is shifted from the phosphoketolase pathway to the pentose-phosphate pathway which catalyzes its 95 

homo-lactic conversion (Fig. 1) (Tanaka et al. 2002). 96 

Efficient metabolism of oligosaccharides derived from partial hydrolysis of 97 

cellulose/hemicellulose is essential for optimal fermentation of these polysaccharides (Galazka et 98 

al. 2010; Lane et al. 2015). In native cellulolytic microorganisms, a significant part of these 99 

oligosaccharides are likely not saccharified in the extracellular environment (Desvaux 2006). 100 

Instead, they are transported through specific proteins into the cytoplasm where they are further 101 
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metabolized through either hydrolytic or phosphorolytic mechanism (Desvaux 2006). Notoriously, 102 

cellodextrin transport and intracellular metabolism have been engineered in important candidates 103 

for 2nd generation biorefinery such as Saccharomyces cerevisiae and Yarrowia lipolytica (Galazka 104 

et al. 2010; Lane et al. 2015). Advantageously, an increasing number of natural LAB have been 105 

shown to metabolize cellobiose and other short cellodextrins or short oligosaccharides derived from 106 

hemicellulose (e.g. xylan, β-glucan) hydrolysis (Ohara et al. 2006; Adsul et al. 2007a; Kowalczyk 107 

et al. 2008; Okano et al. 2010b; Lawley et al. 2013). Recently, Lc. lactis IL1403, i.e. one of the 108 

very reference LAB strains, has shown the natural ability to ferment up to 109 

cellotetraose/cellopentaose (Gandini et al. 2017). This study has indicated that this strain is 110 

equipped with membrane transporters for short cellodextrins, although they have not been identified 111 

yet. The genome of this strain is rich in genes encoding putative β-glucosidases/6-P-β-glucosidases, 112 

while no gene coding for cellodextrin phosphorylase is present (Bolotin et al. 2001). As regards the 113 

metabolism of partial hydrolysis products of hemicellulose, it is worth reminding the identification 114 

of three LAB strains, i.e. Lc. lactis IO-1, Leu. lactis SHO-47 and Leu. lactis SHO-54, that can 115 

ferment xylooligosaccharides with degrees of polymerization up to six (Ohara et al. 2006). Here 116 

again, it was demonstrated that these xylooligosaccharides are hydrolyzed by intracellular 117 

xylosidases, while transporters for their uptake were not identified (Ohara et al. 2006). Although 118 

rare, the presence of genes encoding enzymes involved in depolymerization of 119 

xylooligosaccharides, and/or arabinoxylans and/or arabinans (i.e. β-xylosidases and 120 

arabinofuranosidases) has been detected in different strains of Lactobacillus spp., Pediococcus spp., 121 

Leuconostoc/Weissella branch, and Enterococcus spp. (Michlmayr et al. 2013). Recently, Lb. 122 

ruminis, an inhabitant of human bowels and bovine rumens, has been shown to ferment 123 

tetrasaccharides derived from barley β-glucan (Lawley et al. 2013). 124 

Since fermented vegetables and other environments rich in plant biomass are habitats in 125 

which LAB can be commonly found, it is likely that future analyses will identify further LAB 126 

strains equipped with basic biochemical systems for metabolizing sugars derived from plant 127 

material. 128 

 129 

Alternative strategies for lignocellulose fermentation through LAB 130 

Fermentation of pre-treated lignocellulosic biomass by natural LAB 131 
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Since natural LAB cannot directly hydrolyze and ferment polysaccharides present in 132 

lignocellulose physical and/or chemical and/or enzymatic pre-treatment(s) of biomass are 133 

necessary. Several examples of fermentation of different pre-treated/hydrolyzed lignocellulosic 134 

feedstocks by LAB have been reported that include de-oiled algal biomass (Overbeck et al. 2016), 135 

barley bran (Moldes et al. 2006), corncob (Guo et al. 2010; Bai et al. 2016), corn stover (Hu et al. 136 

2016; Wang et al. 2017), de-oiled cottonseed cake (Grewal and Khare 2018), oak wood chip (Wee 137 

and Ryu 2009), paper mill sludge (Marques et al. 2008; Shi et al. 2015), sugarcane bagasse (Adsul 138 

et al. 2007; Laopaiboon et al. 2010), trimming vine shoots (Bustos et al. 2005; Moldes et al. 2006), 139 

wheat bran (Naveena et al. 2005; Li et al. 2010), wheat straw (Grewal and Khare 2018) (Table 1). 140 

Two main technical challenges are specifically associated with this fermentation strategy: i) 141 

generation of inhibitory compounds by physico-chemical pre-treatment; ii) inefficient 142 

saccharification of biomass (for an extensive overview Abdel-Rahman et al. 2016). Most physico-143 

chemical methods generate inhibitory by-products such as phenolic and furan compounds (e.g. 144 

furfural and 5-hydroxymethylfurfural), organic acids (e.g. acetic, formic, and levulinic acid) and 145 

alcohols (Zhang et al. 2016a). The latter may negatively interfere with the activity of 146 

cellulolytic/hemicellulolytic enzymes and/or the metabolism of fermenting strains (Abdel-Rahman 147 

et al. 2016). Furthermore, enzymatic hydrolysis of plant polysaccharides frequently suffers from 148 

inhibition by end-product (e.g. glucose, cellobiose) accumulation (Abdel-Rahman et al. 2016). For 149 

this reason, separate hydrolysis and fermentation (SHF) approach can be advantageously replaced 150 

by simultaneous saccharification and fermentation (SSF) strategy. The latter minimizes end-product 151 

inhibition of hydrolases through rapid consumption of soluble sugars by fermenting 152 

microorganisms (Lynd et al. 2002). Furthermore, lignocellulose fermentation suffers from the 153 

complex nature of this biomass, consisting of different polysaccharides (mainly cellulose, 154 

hemicelluloses and pectin) (Lynd et al. 2002). Lignocellulose hydrolysis generates sugar mixtures 155 

which may undergo inefficient fermentation caused by heterofermentation of pentoses (see previous 156 

section) and/or carbon catabolite repression (Jojima et al. 2010). The latter refers to inhibition of 157 

pentose metabolism by the presence of glucose leading to non-simultaneous fermentation of sugar 158 

mixtures that often leaves most sugar unutilized (Abdel-Rahman et al. 2016). A wide variety of 159 

solutions can be employed to overcome these limitation(s) (Abdel-Rahman et al. 2011; 2016). 160 

Strategies to reduce the concentration of inhibitory compounds include the choice of alternative 161 

milder physico-chemical pre-treatments (e.g. acid or alkaline treatment, steam explosion, ionic 162 

liquids) (Abdel-Rahman et al. 2011) and methods (e.g. chemical additives such as ion exchange 163 

resins, bioabatement) for detoxifying pre-treated biomass (Laopaiboon et al. 2010; Jönsson and 164 

Martín 2016). Alternatively, the use of enzymes and LAB strains with higher tolerance to these 165 
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compounds (either natural or obtained through evolutionary or rational engineering) is a valuable 166 

option (Abdel-Rahman et al. 2016). Cellulase mixtures with different composition and different 167 

configurations of the fermentative process (e.g. SHF and SSF) can be used to optimize specific 168 

biomass hydrolysis (Abdel-Rahman et al. 2016). Finally, several LAB strains showing highly 169 

efficient metabolism of pentoses are known. Homolactic fermentation of xylose has been observed 170 

in Lc. lactis IO-1 (Tanaka et al. 2002) or E. faecium QU 50 (Abdel-Rahman et al. 2015). Several 171 

LAB showing relaxed carbon catabolite repression have been reported. For instance, different Lb. 172 

brevis strains were able to simultaneously utilize xylose and glucose derived from hydrolysis of a 173 

variety of lignocellulosic feedstocks (Guo et al. 2010; Grewal and Khare 2018), while E. faecalis 174 

RKY1 co-metabolized mixtures of sucrose, glucose, and/or fructose to LA with high yield (Reddy 175 

et al. 2015) and E. faecium QU 50 homofermentatively utilized glucose/xylose mixtures (Abdel-176 

Rahman et al. 2015). Additionally, metabolic engineering strategies have been used to develop 177 

strains with improved pentose catabolism, as described in the following sections. 178 

Actually, some studies demonstrate that very efficient bioconversion of lignocellulosic 179 

biomass into nearly optically pure LA through LAB fermentation (with LA yields close to the 180 

theoretical maximum) can be obtained by selecting optimal combination of pre-treatment, process 181 

configuration and microbial strain suitable for a specific substrate (Table 1). However, both 182 

physico-chemical and enzymatic treatments utilized in these studies have significant costs which 183 

represent relevant economic barriers at the industrial scale (Okano et al. 2010a). Despite extensive 184 

research efforts for reducing the cost of production of cellulases, no significant decrease has been 185 

observed since the 1990s (Olson et al. 2012). A recent study has estimated the cost of at-site 186 

production of cellulases as $10/kg protein (the cost of commercial cellulases is higher) (Klein-187 

Marcuschamer et al. 2012). Based on calculations used by Lynd et al. (2017), it can be estimated 188 

that the cost of added cellulases per kg LA produced through lignocellulose fermentation cannot be 189 

lower than 0.31 $. It is worth noting that the cost of fermentative production of LA should be at or 190 

below 0.8 $ /kg for PLA to be economically competitive with fossil fuel-based plastics (Okano et 191 

al. 2010a). Such an economic target is therefore very challenging through processes such as those 192 

described in this section, where the cost of physico-chemical and enzymatic pre-treatment risks to 193 

be significantly too high. Some techno-economic analyses of LA production from renewable 194 

biomass have been recently summarized by de Oliveira et al. (2018). Costs may widely vary 195 

depending on the process configuration (e.g. type of feedstocks, method for biomass pre-treatment, 196 

LA purification process). In most cases the minimum LA sell price was higher than 0.8 $ /kg (i.e. 197 

between 0.83 and 5 $ /kg). However, a recent study reported a minimum sell price of 0.56 $ /kg for 198 

LA produced through fermentation of pre-treated (i.e. dilute acid plus enzymatic hydrolysis) corn 199 
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stover (Liu et al. 2015). Interestingly, cellulase cost was reported as the highest in the entire process 200 

(Liu et al. 2015). Research for alternative strategies for lignocellulose fermentation with lower 201 

dependence on biomass pre-treatment(s) is therefore highly recommended. Significant attention has 202 

been dedicated to the so-called CBP, i.e. single-pot fermentation of lignocellulosic biomass 203 

(Mazzoli 2012). This process configuration differs from SHF and SSF especially in that it does not 204 

involve a dedicated process step for cellulase production (Lynd et al. 2005). This could be obtained 205 

through cellulolytic microorganisms-LAB consortia or by engineering cellulolytic ability in LAB. It 206 

has been calculated that CBP could lower cost of biological conversion of lignocellulose by about 207 

78 % (Lynd et al. 2005). 208 

 209 

Fermentation of lignocellulosic biomass by cellulolytic microorganisms-LAB consortia 210 

Co-cultivation of LAB with native cellulolytic microorganisms could interestingly replace 211 

saccharification of lignocellulosic biomass by exogenously supplemented cellulases. Utilization of 212 

microbial consortia including cellulolytic strains and high-value compound producing microbes has 213 

been successfully applied to convert cellulosic feedstocks to a variety of products such as ethanol or 214 

butanol (Zuroff et al. 2013; Brethauer and Studer 2014; Wen et al. 2014). To date, a single 215 

application of this strategy to production of LA by LAB fermentation has been reported (Shahab et 216 

al. 2018). In this study, a stable consortium between the cellulolytic fungus Trichoderma reesei and 217 

Lb. pentosus based on mutual benefits was developed (Fig. 2). Lb. pentosus efficiently consumes 218 

cellobiose thus avoiding inhibition of T. reesei cellulase activity. On the other hand, a by-product of 219 

sugar fermentation by Lb. pentosus, i.e. acetic acid, can serve as carbon source for T. reesei (Shahab 220 

et al. 2018). Fermentation of whole-slurry pre-treated beech wood by this consortium led to 221 

production of 19.8 g/L of LA, with an estimated yield of 85.2% of the theoretical maximum, 222 

through CBP (Shahab et al. 2018). This study demonstrates that this approach, that mimics 223 

microbial syntrophic communities involved in natural decay of plant material, deserves further 224 

investigation. In parallel, difficulties related to design and maintain stable artificial microbial 225 

communities represent main challenges of this strategy (Johns et al. 2016). 226 

 227 

Construction of recombinant cellulolytic/hemicellulolytic LAB through metabolic engineering: 228 

state of the art and future directions. 229 
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Forefront research in development of 2nd generation biorefinery includes endowing 230 

microorganisms that produce high-value chemicals with the ability to directly ferment 231 

lignocellulose without prior physico-chemical and/or enzymatic pre-treatment through recombinant 232 

techniques (Mazzoli et al. 2012). The number of examples of recombinant cellulolytic strategies 233 

(RCS) addressed to LAB is growing (Mazzoli et al. 2014; Gandini et al. 2017; Stern et al. 2018). 234 

Natural ability to grow on lignocellulose relies on multiple-enzyme systems that mainly consist of 235 

glycosyl hydrolases and polysaccharide lyases (Lynd et al. 2002). Most studies have been addressed 236 

to two main paradigms for cellulose depolymerization, the non-complexed enzyme model of 237 

aerobic fungi and bacteria and the cellulosome complexes of anaerobic microorganisms (Lynd et al. 238 

2002). The latter are based on scaffolding proteins (i.e. scaffoldins) that generally provide multiple 239 

functions, i.e. the ability to bind enzyme subunits (thus organizing the enzyme complex 240 

architecture), polysaccharides and cell surface through specific protein domains (Mazzoli et al. 241 

2012). RCS aim at mimicking nature by engineering minimal cellulolytic systems (Mazzoli 2012) 242 

(Fig. 3). Traditionally, a minimal non-complexed system able to act efficiently on cellulosic 243 

substrates consists of an exoglucanase, an endoglucanase and a β-glucosidase (Lynd et al. 2002) 244 

(Fig. 3A, B). A mini-scaffoldin is also required in the case of mini- or designer-cellulosomes (Fig. 245 

3C). However, in most studies aimed at LAB engineering with heterologous cellulases reported so 246 

far, a single cellulase was introduced (for an extensive review, Mazzoli et al. 2014) (Table 2). This 247 

modification may enable metabolization of short cellodextrins or partial hydrolysis of 248 

cellulose/hemicellulose but is insufficient for these recombinant strains to efficiently grow on and 249 

ferment complex lignocellulosic substrates (Mazzoli et al. 2014) (Table 2). Actually, most of these 250 

recombinant strains were aimed at being used as inoculants for silage fermentation (i.e. for 251 

improving silage acidification and/or digestibility) (Bates et al. 1989; Scheirlinck et al. 1989; Rossi 252 

et al. 2001; Ozkose et al. 2009) rather than as biocatalysts in biorefinery processes. More recently, 253 

construction of cellulolytic LAB for industrial production of LA has been considered. Among the 254 

most performant strains, Lb. plantarum engineered with Cel8A endoglucanase from C. 255 

thermocellum was able to grow on cellooligosaccharides long up to 5-6 glucose residues (Okano et 256 

al. 2010b). Several studies have reported that expression of heterologous cellulases may be toxic 257 

(Mingardon et al. 2011; Moraïs et al. 2014). Hence, expression of multiple cellulases is extremely 258 

challenging. The development of artificial syntrophic consortia (consisting of recombinant strains 259 

that biosynthesize single different cellulase-system components) has been used to circumvent this 260 

bottleneck (Moraïs et al. 2013; 2014; Stern et al. 2018). Morais and co-workers (2013) have shown 261 

the potential of simple consortia of recombinant Lb. plantarum strains secreting cellulase-xylanase 262 

mixtures for biomass (i.e. wheat straw) bioconversion. The same research group has significantly 263 
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improved its hemi/cellulolytic LAB consortium over time by including strains that biosynthesize 264 

different: i) surface-anchored mini-scaffoldins (each able to bind up to 4 enzymatic subunits); ii) 265 

adaptor mini-scaffoldins (each able to bind up to 2 enzymatic subunits) and; iii) endoglucanases and 266 

xylanases (Moraïs et al. 2014; Stern et al. 2018) (Fig. 3C). Synthetic Lb. plantarum consortia that 267 

display mini-cellulosomes incorporating up to six enzymatic subunits could be developed, which is 268 

a remarkable result (Stern et al. 2018). Although these enzyme complexes showed improved 269 

hydrolysis of wheat straw, they were unable to support growth of Lb. plantarum on wheat straw as 270 

the sole carbon source. This result is likely related to the amount and/or type of sugars released by 271 

the specific designer cellulosomes which seems insufficient/unsuitable for Lb. plantarum growth 272 

(Stern et al. 2018). Additionally, it has to be reminded that management of these consortia at the 273 

industrial scale may not be trivial. Recently, a cellulase system consisting of a β-glucosidase and an 274 

endoglucanase has been engineered in a single Lc. lactis strain through construction of an artificial 275 

operon (Gandini et al. 2017). This strain could directly convert cellooligosaccharides up to at least 276 

cellooctaose to L-LA with high yield. However, the basal expression triggered by the used promoter 277 

(P32) did not show to be very high, and further improvement of this strain towards application in 278 

biorefinery will be required, e.g. through increased cellulase expression (Gandini et al. 2017). 279 

Attempts to improve hemicellulose metabolism in LAB include few examples of expression 280 

of heterologous xylanases (Raha et al. 2006; Morais et al. 2013; Gandini et al. 2017) (Table 3). 281 

Morais et al. (2013) demonstrated that xylanase-expressing Lb. plantarum improved cellulose 282 

accessibility. Most other metabolic engineering studies have concerned the improvement of pentose 283 

conversion into LA through disruption of the phosphoketolase pathway and introduction or 284 

enhancement of the pentose phosphate pathway (Okano et al 2009 a; b; Shinkawa et al. 2011; Qiu 285 

et al. 2017) (Table 2). These studies obtained impressive results since engineered strains were able 286 

of nearly homolactic fermentation of xylose and/or arabinose (Table 3). Additionally, some 287 

engineered strains showed the ability to co-ferment glucose/xylose mixtures without carbon 288 

catabolite repression (Yoshida et al. 2011; Zhang et al. 2016b). 289 

Although the number of RCS targeted to LAB engineering is growing, research progress on 290 

these organisms is still far behind that obtained in other microbial models, such as S. cerevisiae. All 291 

abovementioned examples suffer from multiple limits which hamper application of such 292 

recombinant LAB to industrial fermentation of real cellulosic substrates. In most cases, inducible 293 

promoters have been used to control the transcription of heterologous cellulases (Table 2). Inducible 294 

promoters have been preferred so as to delay cellulase expression in the late exponential phase, thus 295 

avoiding major growth inhibition by cellulase expression. However, utilization of inducible 296 
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promoters is not cost-sustainable at the industrial scale, since large amounts of expensive inducer 297 

should be employed. A further problem may be represented by the limited amount of cellulases 298 

which are secreted by the recombinant cellulolytic LAB obtained so far (Table 2) (Mazzoli et al. 299 

2014). As a basis for comparison, cellulase activity of native cellulosome-producing Clostridium 300 

thermocellum on cellulosic substrates can range between 100 and 1000 U/L (Krauss et al. 2012; 301 

You et al. 2012). In many state-of-the-art recombinant cellulolytic LAB, measured cellulolytic 302 

activities are around or under the lower side of this range (Table 2) and are strongly dependent on 303 

specific cellulase (Stern et al. 2018). Although available genetic tools for LAB are relatively 304 

abundant, those enabling strong constitutive expression of proteins have long been restricted to few 305 

choices, such as the lactococcal P32 and P45 promoters (Table 2). Luckily, new constitutive 306 

promoters with different strengths are being discovered for both Lactococci (Zhu et al. 2015) and 307 

Lactobacilli (Duong et al. 2011; Tauer et al.; 2014). Alternatively, generation of libraries of 308 

synthetic constitutive promoters diplaying a wide range of strenght (Jensen and Hammer 1998; Rud 309 

et al. 2006) seems a potent tool to mimicking native cellulase systems in which the highest 310 

synergism is obtained for non-equimolar expression of different enzymes (Mazzoli et al. 2012). 311 

Additional tools to increase cellulase/hemicellulose expression in LAB include improvement of 312 

mRNA stability (Narita et al. 2006; Okano et al. 2010) or increase of translation efficiency through 313 

design of synthetic genes with optimized codon usage (Johnston et al. 2014; Dong et al. 2015; Li et 314 

al. 2016). The most challenging factor in heterologous expression of cellulases consists in finding 315 

efficient secretion strategy (Mazzoli et al. 2012). Saturation of transmembrane transport 316 

mechanisms of the host and accumulation of misfolded or aggregated proteins is the most probable 317 

factor causing toxicity of heterologous cellulases (Illmen et al. 2011; Morais et al. 2014). 318 

Mechanisms of cellulase secretion in native cellulolytic microorganisms are almost completely 319 

unknown. Based on analysis of signal peptide sequence, a recent study postulated that only about 320 

6% of the known cellulases is secreted through established mechanisms (e.g. the Sec or Tat 321 

pathway) (Yan and Wu 2014). In this scenario, studies on heterologous cellulase expression have 322 

often been based on trial-and-error approach so as to find enzymes compatible with the host (Illmen 323 

et al. 2011; Mingardon et al. 2011). Luckily, mechanisms of protein secretion in cellulolytic 324 

clostridia and LAB have shown some similarities since a number of components of cellulase 325 

systems of clostridia, with their original signal peptide, could be efficiently secreted by Lb. 326 

plantarum or Lc. lactis (Okano et al. 2010b; Wieczoreck and Martin 2010; Morais et al. 2013; 327 

Gandini et al. 2017). Alternatively, original signal peptides of cellulases can be replaced with 328 

sequences (i.e. signal peptides, propeptides) promoting efficient protein secretion in the host of 329 

interest (Dong et al. 2015; Lim et al. 2017). Typically, the native (or engineered) signal peptide of 330 
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Usp45, the main secreted protein of Lc. lactis, has been used for promoting the secretion of 331 

heterologous proteins in Lc. lactis (Morello et al. 2008; Ng and Sarkar 2013), including cellulase 332 

system components from different microorganisms (Wieczoreck and Martin 2010; Wang et al. 333 

2014; Liu et al. 2017), while Lp3050 or Lp2588 leader peptides have been used to enable secretion 334 

of cellulosomal components in Lb. plantarum (Stern et al. 2018). All these tools can significantly 335 

help development of RCS of LAB, however, they cannot guarantee their success that currently still 336 

mainly depends on specific protein/host combination. Signal peptides and propeptides likely play 337 

additional roles in protein translocation, maturation and folding which need better understanding 338 

(Harwood and Cranenburgh 2008; Mazzoli et al. 2012; Yan and Wu 2014). Furthermore, unusual 339 

mechanisms of protein folding have been speculated for some cellulases which may require 340 

assistance by specific chaperon(s) (Mingardon et al. 2011). For instance, co-expression of 341 

chaperon-like B. subtilis PrsA protein was able to improve secretion yield of heterologous amylase 342 

and penicillinase in Lc. lactis (Lindholm et al. 2006). Increase of secretion yield of heterologous 343 

cellulases may also be obtained by inactivation of housekeeping protease(s), as demonstrated by Lc. 344 

lactis mutants defective in the unique exported housekeeping protease HtrA (Wieczoreck and 345 

Martin 2010). Co-expression of protease inhibitors found as integral components of some clostridial 346 

cellulosomes (Meguro et al. 2011; Xu et al. 2014) could be an alternative strategy worth being 347 

tested. 348 

Apart from improving the amount of cellulolytic enzymes, future directions in construction 349 

of recombinant cellulolytic LAB should focus on improving synergism of designer cellulase 350 

systems. Expression of multiple enzymes with highly complementary activities, preferably in a 351 

single strain, is essential for developing strains aimed at CBP of complex substrates. Apart from 352 

“traditional” cellulase activities (i.e. exoglucanases, endoglucanases and β-glucosidases, Fig. 3), 353 

attention should be addressed also to recently discovered cellulose-active proteins, such as 354 

microbial expansins (Chen et al. 2016) and lytic polysaccharide monooxygenases (LPMOs) (Liang 355 

et al. 2014). The latter could significantly improve depolymerization of most recalcitrant 356 

polysaccharides, such as crystalline cellulose. Gene integration into the LAB chromosome seems 357 

the most suitable strategy to construct genetically stable strains that co-express multiple cellulases. 358 

An extensive literature on integrative gene expression systems in LAB is available, although it is 359 

mainly focused on lactobacilli and Lc. lactis (for extensive reviews refer to Gaspar et al. 2013 and 360 

Bravo and Landete 2017). Molecular tools for unlabelled (i.e. without insertion of antibiotic 361 

resistance markers) gene integration in the LAB genomic DNA include homologous recombination 362 

(e.g. pORI, pSEUDO and Cre-lox systems) or single-stranded DNA recombineering (Gaspar et al. 363 

2013; Bravo and Landete 2017). Some of them have already been used to improve pentose 364 



13 
 

metabolism in different LAB strains (Table 3), but more extensive application to expression of 365 

heterologous hemi/cellulase systems seems necessary for significant progress of RCS in LAB. 366 

Surface-display of proteins is also a valuable tool for increasing cellulase activity in LAB. 367 

This strategy mimics some of the most efficient cellulose depolymerization systems found in nature 368 

(e.g. cellulosome), where cellulase activity is improved by rapid metabolism of cellulose hydrolysis 369 

products promoted by enzyme-cell proximity (Wieczoreck and Martin 2010). So far, studies in this 370 

direction have been reported by two research groups only, i.e. that of Prof. Martin in Canada 371 

(Wieczoreck and Martin 2010; 2012) and that coordinated by Profs. Mizrahi and Bayer in Israel 372 

(Morais et al. 2014; Stern et al. 2018). While direct binding of glycosyl hydrolases to the LAB 373 

surface may cause allosteric hindrance and diminish enzyme/protein activity (Morais et al. 2014; 374 

Stern et al. 2018), surface display of mini-cellulosomes seems a good compromise for improving 375 

enzyme-cell synergism without major negative effects on cellulase flexibility and activity (Morais 376 

et al. 2014). Furthermore, cellulosomes were shown to improve enzyme stability (Stern et al. 2018). 377 

Multiple tools for protein surface-display in LAB through covalent (i.e. sortase-mediated) and non-378 

covalent (e.g. LysM domains) binding have been reported (Okano et al. 2008; Wieczoreck and 379 

Martin 2010; Morais et al. 2014; Zadravec et al. 2015) and can be used to further developing these 380 

strategies. 381 

 382 

Conclusion 383 

LAB have long been used for industrial purposes and show good characteristics for future 384 

application also to 2nd generation biorefinery. Generally, they can metabolize several 385 

monosaccharides which are components of plant biomass, including both hexoses and pentoses. 386 

Some of them can directly ferment short cello- or xylo-oligosaccharides or co-ferment hexoses and 387 

pentoses without carbon catabolite repression. Successful examples of LAB fermentation of 388 

hydrolyzed lignocellulosic feedstocks (e.g. algal cake, corncob, corn stover, paper mill sludge, 389 

sugarcane bagasse, trimming vine shoots, wheat straw) have been reported. However, the high cost 390 

of physico-chemical pre-treatment and of the high amounts of commercial cellulases needed for 391 

biomass saccharification are major barriers towards industrial application of these technologies. 392 

Waiting for development of cheaper pre-treatments or cellulase-production processes, research for 393 

alternative lignocellulose-LAB fermentation strategies is in progress. Synthetic consortia of 394 

cellulolytic microorganisms and LAB may eliminate the need for exogenous cellulases through an 395 

approach that mimics natural microbial communities involved in plant biomass decay. The main 396 
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challenge here is represented by maintaining such stable consortia at the industrial scale, but the 397 

studies reported in the literature encourage pursuing research along this, so far scarcely 398 

investigated, path. Recombinant strategies aim at engineering LAB with heterologous cellulase 399 

systems able to directly ferment lignocellulose without any external help. This strategy promises 400 

huge process cost reduction, but is highly challenging. Despite the relatively high number of gene 401 

tools available for LAB, RCS suffer from intrinsic toxicity of many heterologous cellulases and 402 

from lignocellulose recalcitrance requiring expression of multiple synergistic enzyme activities. 403 

Recombinant LAB obtained so far cannot grow on cellodextrins longer than 8-9 glucose units and 404 

intense research efforts will be needed towards direct fermentation of lignocellulosic feedstocks. 405 

In conclusion, interesting progress towards LAB application in 2nd generation biorefinery 406 

has been made. Since finding alternative energies is currently a global priority, it can be hoped that 407 

new economic resources will help further developments in this research area. In this perspective, 408 

each alternative strategy presented in this review represents a promising opportunity. 409 
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Table 1. Examples of LAB fermentation of pre-treated lignocellulosic biomass. Strategies for physico-chemical and/or enzymatic pretreatment of 

biomass are summarized. n.r., not reported; SHF, separate hydrolysis and fermentation; SSF simultaneous saccharification and fermentation. In this 

table, the term SSF has been employed for processes featuring simultaneous saccharification and fermentation of all the soluble sugars derived from 

biomass hydrolysis that, depending of the biomass composition, may be hexoses or pentoses or mixtures (i.e. co-fermentation). 

Biomass Physico-chemical 
treatment(s) 

Enzymatic treatment Microorganisms Fermentation 
mode 

LA 
enanti
omer 

LA 
(g/L) 

Yield 
Y P/S 

(g/g) 

Productivity 
(g/L/h) 

References 

Algal cake 
(de-oiled algal 
biomass) 

- Porcine pepsin (37°C, 
3 h) plus  
α-amylase (37°C, 16 h) 
plus  
endo-1,4-β-D-
glucanase (50°C, 24h) 
from Aspergillus niger 

Lb. casei 12A 
 

SHF Batch L- 
(and 

traces 
of D-) 

11.17 - - Overbeck et 
al., 2016 

Barley bran Biomass was dried, 
milled and hydrolyzed 
with 3% H2SO4 (130°C, 
15 min) 

- Lb. pentosus 
CECT-4023T 

SHF Batch n.r. 33 0.57a 0.60 Moldes et 
al., 2006 

Birch wood 
xylan 

- Xylanase (1.25 g/L) 
(60°C, 20 min) 

Leu. lactis SHO-
47 

SHF Batch D- 2.3 - - Ohara et al., 
2006 

Corncob  Biomass was dried, 
milled and hydrolyzed 
with 2% H2SO4 (130°C, 
15 min) 

- Lb. pentosus 
CECT-4023T 

SHF Batch n.r. 26 0.53a 0.34 Moldes et 
al., 2006 

Corncob  Biomass was mashed 
and hydrolyzed with 
0.1% H2SO4 (80°C, 1 h) 
and 0.8% H2SO4 (110°C, 
2h) 

- Lb. brevis S3F4 SHF Batch n.r. 39.1 0.69a 0.81 Guo et al., 
2010 

Corncob 
residue 

- Commercial cellulase 
mixture (15 FPU/g 
biomass) 

Sporolactobacillu
s inulinus YBS1-5 

SHF Fed-
Batch 

D- 107.2 0.85b 1.19 Bai et al., 
2016 

Corn stover  Biomass was mashed - Lb. brevis S3F4 SHF Batch n.r. 18.2 0.74a 0.76 Guo et al., 
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and hydolyzed with 2% 
H2SO4 at a 10% (w/v) 
(121°C, 1h) 

2010 

Corn stover Biomass was dried, 
sieved and treated with 
5% NaOH (75°C, 3 h) 

Commercial cellulase, 
β-glucosidase, and 
xylanase mixture (30 
FPU/g biomass) 

Lb. pentosus 
FL0421 

SSF Fed-batch 
 

n.r. 92.30 0.66c 1.92 
 

Hu et al., 
2016 

Corn stover Biomass was crushed, 
sieved, dried and 
treated with 1.5% solid 
acid (120°C, 80 min) 

Commercial cellulase 
mixture (30 FPU/g 
biomass) 

Lactobacillus 
delbrueckii 
delbrueckii sp. 
bulgaricus 
CICC21101 

SSF Batch D- 18 -  Wang et al. 
2017 

Deoiled 
cottonseed 
cake 

Biomass was ground, 
sieved and mixed with 
ionic liquid (120°C, 2 h) 

Immobilized cellulases 
(25 FPU/g biomass) 
from Trichoderma 
reesei 

Lactobacillus 
brevis MTCC 
4460 

SSF Batch n.r. - 0.22c - Grewal and 
Khare, 2018 

Detoxified 
Eucalyptus 
globulus 

Biomass was dried, 
milled, and hydrolyzed 
with 3% H2SO4 (130°C, 
1h). 
Hydrolysate was 
neutralized with  
CaCO3 and stirred with 
15% w/v of charcoal 
(room temperature, 1 
day) 

- Lb. pentosus 
CECT-4023T 

SHF Batch n.r. 14.5 0.70a 0.28 Moldes et 
al., 2006 

Oak wood 
chip  

Biomass was treated 
with 0.5% H2SO4  (room 
temperature, 
overnight) and steam 
explosion (215°C, 5’) 

Commercial cellulase 
mixture (20 IU/g) 
supplemented with  
β-glucosidase (30 
IU/g) (50°C, 48 h) 

Lactobacillus sp. 
RKY2 

SHF 
Continuous 
cell recycle 
(dilution rate 
0.16 h-1) 

n.r. 42 0.95b 6.7 Wee and 
Ryu, 2009 

Recycled 
paper sludge 

Biomass was 
neutralized with 0.3 g 
HCl/g biomass 

- Lb. rhamnosus 
ATCC 7469 

SSF Batch n.r. 73 0.97a 2.9 Marques et 
al., 2008 

Softwood pre- Softwood particles Commercial cellulases Lactobacillus SSF Batch n.r. 60 0.83d 0.62 Shi et al., 
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hydrolysate 
plus paper 
mill sludge 

were sieved and pre-
treated with hot-water 
 

(15 FPU/g glucan) plus 
pectinases (15 mg 
protein/g mannan) 

rhamnosus 
ATCC-10863 

2015 

Sugarcane 
bagasse 

Biomass shreds (1–3 
mm size) were pre-
treated with steam and 
alkali 

Enzyme preparation 
from Penicillium 
janthinellum 

Lb. delbrueckii 
mutant Uc-3 

SSF Batch L- 67 0.83e 0.93 Adsul et al., 
2007° 

Sugarcane 
bagasse 

Biomass was dried, 
milled, treated with 
10% NH4OH and 
hydrolyzed with 0.5 % 
HCl (100°C, 5h). 
Hydrolysate was 
detoxified by amberlite 
treatment. 

- Lc. lactis IO-1 
JCM 7638 
 

SHF Batch n.r. 10.9 - 0.14 Laopaiboon 
et al., 2010 

Sugarcane 
bagasse 

Biomass was ground, 
sieved and mixed with 
ionic liquid (120°C, 2 h) 

Immobilized cellulases 
(25 FPU/g biomass) 
from Trichoderma 
reesei 

Lactobacillus 
brevis MTCC 
4460 

SSF Batch n.r. - 0.52c - Grewal and 
Khare, 2018 

Trimming vine 
shoots 

Biomass was dried, 
milled and hydrolyzed 
with 3% H2SO4 (130 °C, 
15 min) 

- Lb. pentosus 
CECT-4023T 

SHF Batch n.r. 46 0.78a 0.933 Bustos et 
al., 2005 

Trimming vine 
shoots 

Substrate was dried, 
milled and hydrolyzed 
with 3% H2SO4 (130 °C, 
15 min). 

- Lb. pentosus 
CECT-4023T 

SHF Batch n.r. 24 0.76a 0.51 Moldes et 
al., 2006 

Wheat bran Biomass was pre-
reduced and sterilized 

- Lb. amylophilus 
GV6 

Solid state 
fermentation 

L- - 0.23c - Naveena et 
al., 2005b 

Wheat bran 
 

Biomass was treated 
with 1.5% H2SO4 (ratio 
1:4 w/v) (80°C, 20 h) 

- Lb. rhamnosus 
LA-04-1 

SHF Batch L- 75 0.99b 3.75 Li et al., 
2010b 

Wheat straw Biomass was ground, 
sieved and mixed with 
ionic liquid (120°C, 2 h) 

Immobilized cellulases 
(25 FPU/g biomass) 
from Trichoderma 

Lactobacillus 
brevis MTCC 
4460 

SSF Batch n.r. - 0.49c - Grewal and 
Khare, 2018 
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reesei 

 

ag of LA /g of total sugar in the hydrolysate 

bg of LA / g of glucose in the hydrolysate 

cg of LA / g of biomass 

dg of LA / g of total hexose sugars 

eg of LA / g of cellulose in the biomass 
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Table 2. Examples of recombinant cellulolytic strategies (RCS) on lactic acid bacteria (LAB). Recombinant LAB strains listed here were engineered 

with heterologous cellulase/hemicellulose systems. Lb., Lactobacillus; Lc., Lactococcus 

Strains Heterologous protein(s) 
expressed 

Transcriptional 
promoter 

Gene cloning 
strategy 

Heterologous 
protein 

expression/secretion 
levela 

Improved phenotypic 
properties of the strain 

References 

Lb. gasseri ATCC 
33323 

Ce8lA endoglucanase from 
Clostridium thermocellum 

inducible (lacA 
promoter)  

Plasmid 722 U/L (CMC)b Hydrolysis of CMC Cho et al., 
2000 

Lb. jonhsonii NCK 88 Cel8A endoglucanase from C. 
thermocellum 

inducible (lacA 
promoter) 

Plasmid 759 U/L (CMC)b Hydrolysis of CMC Cho et al., 
2000 

Lb. plantarum strains 
B41 and Lp80 

Cel8A cellulase from Bacillus sp. 
N-4 

Not indicated Chromosome 
integration 

34.24/43.61 U/L 
(CMC)b 

Increased silage 
acidification 

Rossi et al., 
2001 

Lb. plantarum Lp80 Cel8A endoglucanase from C. 
thermocellum 

Not indicated Chromosome 
integration 

≈ 90 U/L (CMC)b Hydrolysis of CMC Scheirlinck et 
al., 1989 

Lb. plantarum NCDO 
1193 

Cel5E endoglucanase from C. 
thermocellum 

Not indicated Plasmid 1996 U/L (CMC)b Hydrolysis of CMC Bates et al., 
1989 

Lb. plantarum NCIMB 
8826 (Δldh1) 

Cel8A endoglucanase from C. 
thermocellum 

Constitutive (ClpC 
core promoter) 

Plasmid 6.03 U/L (barley β-
glucan)b 

Growth on 
cellohexaose 

Okano et al., 
2010b 

Lb. plantarum WCFS1 Cel6A endoglucanase from 
Thermobifida fusca 

Inducible (sakacin 
P promoter) 

Plasmid 280 U/L (PASC)b Hydrolysis of sodium 
hypochlorite-
pretreated wheat straw 

Morais et al., 
2013 

Lb. plantarum WCFS1 Xyn11A endoxylanase from T. 
fusca 

Inducible (sakacin 
P promoter) 

Plasmid 3360 U/L (oat spelt 
xylan)b 

Hydrolysis of sodium 
hypochlorite-
pretreated wheat straw 

Morais et al., 
2013 

Lb. plantarum WCFS1 Cel6A endoglucanase plus 
Xyn11A endoxylanase from T. 
fusca plus chimeric scaffoldin-
AT (synthetic consortium) 

Inducible (sakacin 
P promoter) 

Plasmid  Hydrolysis of sodium 
hypochlorite-
pretreated wheat straw 

Morais et al., 
2014 

Lb. plantarum WCFS1 Chimeric GH5 and GH9 
endoglucanases and GH10 and 
GH11 xylanases from 
Clostridium papyrosolvens plus 
chimeric adaptor and anchoring 
scaffoldins (synthetic 

Inducible (sakacin 
P promoter) 

Plasmid 0.2-59.1 nMb, c Hydrolysis of sodium 
hypochlorite-
pretreated wheat straw 

Stern et al., 
2018 
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consortium) 

Lb. reuteri XC1 CelW endoglucanase from 
Bacillus subtilis WL001 and 
phyW phytase from Aspergillus 
fumigatus WL002 (artificial 
operon) 

Constitutive (LdhL 
promoter) 

Plasmid 960 U/L (CMC)b Hydrolysis of CMC Wang et al., 
2014 

Lc. lactis HtrA NZ9000 Fragments of CipA scaffoldin 
from C. thermocellum 

Inducible (nisA 
promoter) 

Plasmid 9 x 103 scaffolds/celld Scaffoldins displayed 
on the cell surface 

Wieckzoreck 
and Martin, 
2010 

Lc. lactis IL1403 BglA β-glucan glucohydrolase 
and EngD 
Endoglucanase/Xylanase from 
Clostridium cellulovorans 
(artificial operon) 

Constitutive (P32 
promoter)  

Plasmid 1.220 U/L (pNGP)b; 
157 U/L (Azo-CMC)b 

Hydrolysis of CMC; 
Growth on cellooctaose 

Gandini et 
al., 2017 

Lc. lactis strains 
IL1403 and MG1363 

Cellulase from Neocallimastix 
sp. 

Inducible (lacZ 
promoter) 

Plasmid 5.9 U (CMC)b, e Hydrolysis of CMC Ozkose et al., 
2009 

Lc. lactis MG1316 Xylanase from Bacillus 
coagulans ST-6 

Constitutive (P32 
promoter) 

Plasmid ≈87 U/L (xylan)c Hydrolysis of RBB-xylan Raha et al., 
2006 

Lc. lactis MG1316 Egl3 endoglucanase from 
Trichoderma reesei 

Constitutive (P32 
promoter) 

Plasmid 1118 U/L (CMC)b Improved 
metabolization of 
paper and wheat straw 

Liu et al, 
2017 

 

aMaximum values reported in each study. Substrates used for determining enzyme activity are indicated in parentheses. Azo-CMC, carboxy methyl cellulose; 

N3-G5-β-CNP, 2-chloro-4-nitrophenyl-65-azido-65-deoxy-β-maltopentaoside; PASC, phosphoric acid-swollen cellulose; pNGP, p-nitrophenyl-b-D-glucopyranoside 

(pNGP); RBB-xylan, remazol brilliant blue xylan . 

bEnzyme activity/protein quantification measured in extracellular fraction 

cProtein quantification through ELISA-based binding assays on cultures with OD600nm=1 

dProteins displayed on the cell surface 

eThe volume of extracellular extract used in this study was not reported 
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Table 3. Recombinant LAB showing improved pentose metabolism. Tkt, transketolase; XylA, xylose isomerase; XylB, xylulose kinase 

Strains Heterologous protein(s) expressed Transcriptional 
promoter 

Gene cloning 
strategy 

Improved phenotypic 
properties of the strain 

References 

Lb. plantarum 
NCIMB 8826 
(Δldh1-xpk1) 

Tkt from Lc. lactis IL1403 (replacing endogenous 
phosphoketolase Xpk1) 

Not indicated Chromosome 
integration 

Almost homolactic (D-LA) 
fermentation of arabinose 

Okano et al. 
2009a 

Lb. plantarum 
NCIMB 8826 
(Δldh1-xpk1-xpk2) 

Tkt from Lc. lactis IL1403 (replacing endogenous 
phosphoketolase Xpk1 and Xpk2); XylA and XylB 
from Lb. pentosus NRIC 1069 

Not indicated Chromosome 
integration 

Almost homolactic (D-LA) 
fermentation of xylose 

Okano et al. 
2009b 

Lc. lactis IL1403 
(Δpkt) 

XylA and XylB from Lc. lactis IO-1 and endogenous 
tkt replacing endogenous phosphoketolase (pkt) 

Inducible (xylose) 
for XylAB. Not 

indicated for tkt 

Plasmid and 
Chromosome 

integration 

Almost homolactic (L-LA) 
fermentation of xylose 

Shinkawa et al., 
2011 

Ped. acidilactici 
TY112 (ΔldhD-pkt-
ackA2) 

Transaldolase, tkt (replacing endogenous 
phosphoketolase, pkt), XylA and XylB (replacing 
endogenous acetate kinase, ackA2) from 
Pediococcus acidilactici DSM20284 

Constitutive 
(PldhD) 

Chromosome 
integration 

Almost homolactic (L-LA) 
fermentation of xylose 

Qiu et al., 2018 
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Figure 1. Heterolactic (red) and homolactic (blue) pathways for xylose dissimilation in 
LAB. DHAP, dihydroxyacetone phosphate; Fba, fructose bisphosphate aldolase; GAP, 
glyceraldehyde-3-phosphate; Ldh, lactate dehydrogenase; Pkt, phosphoketolase; Pfk, 
6-phosphofructokinase; Tal, transaldolase; Tkt, transketolase; Tpi, triose phosphate 
isomerase; XylA, xylose isomerase; XylB xylulokinase. 
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Figure 2. Schematic representation of T. reesei/Lb. pentosus consortium developed by 
Shahab et al. (2018). T. reesei grows as a biofilm on the surface of an oxygen permeable 
membrane and secretes cellulases and hemicellulases (EGI: endoglucanase I, CBHI: 
cellobiohydrolase I, CBHII: cellobiohydrolase II, BXL: β-xylosidase, XLN: β-endoxylanase). 
Soluble saccharides produced by T. reesei enzymes are fermented by Lb. pentosus to 
lactic and acetic acid. Acetic acid can serve as energy source for T. reesei (modified from 
Shahab et al. 2018). 
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Figure 3. Paradigms for recombinant cellulolytic strategies reported in LAB. Recombinant 
cells A) secreting minimal non-complexed cellulase system or  biosynthesizing B) surface-
displayed cellulases or C) surface-displayed designer cellulosomes are depicted. Bgl, β-
glucosidase; Eng, endoglucanase; Exg, exoglucanase. 


