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Abstract 
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the 
progressive loss of motor neurons in the brain and spinal cord. ALS shares pathobiological 
features with frontotemporal dementia (FTD) and indeed many patients show features of both 
diseases. It is now clear that many different genes and pathophysiological processes contribute 
to the disease, and that it will be necessary to understand this heterogeneity to find effective 
treatments. In this seminar we discuss current clinical and diagnostic approaches as well as 
scientific advances in the fields of genetics, disease modeling, biomarkers and therapeutic 
strategies. 
 
Introduction 
Amyotrophic lateral sclerosis (ALS) has traditionally been considered within the neuromuscular 
domain, despite the presence of selective degeneration of both upper and lower motor 
neurons. However, over the past decade, compelling clinical, imaging and neuropathologic data 
have emerged to indicate more extensive involvement of the neuro-axis than previously 
recognized. Detailed population-based phenotyping has now demonstrated that up to 50% of 
ALS patients develop cognitive and behavioral impairment, and that about 13% present with 
concomitant behavioral variant frontotemporal dementia (bv-FTD).1,2 Pathology studies have 
demonstrated protein aggregation of TDP-43 in both ALS and FTD.3  
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Moreover, the discovery of hexanucleotide repeat expansions in the Chromosome 9 open 
reading frame 72 gene (C9orf72) as the major genetic cause of ALS and FTD4,5 proves beyond 
doubt that ALS and FTD, in at least some cases, constitute the phenotypic extremes of a 
spectrum of the same disorder (Figure 1),6-10 placing ALS among neurodegenerative rather than 
neuromuscular diseases. 
ALS has been traditionally divided into familial and sporadic forms. Over 30 different genes 
have been discovered to date in familial ALS,11 leading to a redefinition of ALS as a clinically and 
genetically heterogeneous, multi-domain neurodegenerative syndrome of motor and extra-
motor systems with multiple underlying pathophysiological mechanisms and different clinical 
sub-phenotypes.9 This re-orientation will require the combined approaches of deep-
phenotyping, neuroimaging, genomics and neuropathological evaluation if we are to further 
understand and eventually effectively treat this disease. 
 
Epidemiology 
The established incidence rate of ALS in populations of European extraction is 2.6-
3.0/100,000,12-15 with an overall lifetime risk of 1:350 for males and 1:400 for females.16,17 Few 
true population-based studies are available from outside of Europe, but several studies support 
differences in the prevalence of ALS across African American, American First Nation, Hispanic, 
and non-Hispanic Caucasian groups. 18-23 There is also emerging evidence of lower incident and 
prevalent rates in populations of mixed ancestral origin, with differences in age of onset in 
admixed populations.15,24-26 In populations of European ancestry, the median age of onset for 
sporadic ALS (SALS) is 65, whereas it is approximately 10 years earlier in mixed 
populations.13,14,26-28 Although careful evaluation of population-based registers over time has 
not indicated substantial changes in the adjusted age-specific incidence, it is likely that the 
increased recognition of the ALS-FTD continuum has led to subtle shifts in the types of patients 
that are included on registers. This may partly explain the observed upward shift in the 
incidence of ALS, particularly in later life.19,29,30 In most population-based studies, ALS is more 
common in males than females by a ratio of 1.2–1.5 to 1.12-15 In contrast to Alzheimer’s disease, 
the risk of developing ALS peaks between the ages of 50 and 75, and declines thereafter. 
Survival is highly variable, but on average patients die from respiratory failure 3-4 years after 
disease onset.12-15 
 
Clinical presentations and diagnosis 
ALS is characterized by progressive motor deficits that develop over the course of weeks to 
months. It may affect any voluntary muscle, which means the presentation is heterogeneous 
ranging from dysarthria to a foot drop (Table 1).9 The motor neurons in the oculomotor nuclei, 
and Onuf's nucleus however appear to be relatively less vulnerable and therefore eye 
movement and sphincter control remain unaffected. On neurological examination both upper 
(UMN) and lower motor neuron (LMN) signs are present (Figure 1). The onset of the disease is 
focal in most patients and over time other regions of the body become affected. The pattern of 
disease progression (or spread) appears to be both local (within the same region, e.g. from 
hand to upper arm) as well as to neuro-anatomically linked regions (contra-lateral or rostral-
caudal).31  
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The heterogeneous presentation and varying rates of progression render the diagnosis of ALS 
challenging. There is currently no diagnostic test that definitively demonstrates ALS, and the 
different differential diagnoses and investigations must therefore be tailored to each individual 
patient. The El Escorial or Awaji diagnostic criteria (Table 3a)32,33,  which are primarily used for 
research purposes, require a history of progressive weakness spreading within a region or to 
other regions (bulbar, cervical, thoracic or lumbar) with evidence of LMN (clinical or 
electrophysiological) and UMN (clinical) involvement and the exclusion of other disease 
processes that may otherwise explain the presentation.32-35  
Patients are also often classified by site/pattern of onset or by degree of UMN/LMN 
involvement, which may have prognostic value (Table 2), but also helps to structure the 
differential diagnosis (DDx) and the diagnostic work-up (Table 1).36 In Figure 2 we provide a 
practical approach to a patient suspected of having ALS and an overview of the most useful 
ancillary investigations. 
 
ALS variants 
When UMN and LMN signs are clearly present in multiple regions, diagnosing ALS is relatively 
straightforward following exclusion of other possible diagnoses by imaging and 
neurophysiology. However, at disease onset UMN signs may be predominant and LMN 
involvement may only become evident at a later stage or vice versa. In these cases the 
differential diagnosis  is more extensive and includes ALS variants, treatable ALS mimics and 
disorders with a more benign prognosis.37 Recognizing these mimics and variants is therefore 
critical (Figure 2). A detailed discussion on the most common mimics is provided in the 
supplementary material. 
The latest revision of the El Escorial diagnostic criteria contains restricted forms of ALS; 
progressive spinal muscular atrophy (PMA, exclusive LMN degeneration) and primary lateral 
sclerosis (PLS, exclusive UMN degeneration).35 Whether these are indeed separate diseases or 
forms of ALS is a longstanding topic of debate, in particular for PMA. Autopsies of PMA patients 
have shown corticospinal tract involvement,38 PMA patients may carry mutations in ALS-
genes,39 may have cognitive involvement40 and patients in ALS-pedigrees have pure LMN 
phenotypes.9  
Similarly, UMN degeneration, as occurs in PLS leads to progressive and disabling spasticity, but 
is rarely associated with respiratory failure. Therefore the prognosis of PLS is generally more 
benign (>10 years to normal lifespan) and important to diagnose.41 The main challenge is to 
distinguish between UMN-predominant ALS, which usually progresses to a more generalized 
form of ALS within 4 years. Pure forms of hereditary spastic paraplegia (HSP) are an important 
diagnostic alternative to PLS. HSP is usually familial with young onset and is symmetrical, with 
limited or no involvement of the arms. Progression is usually slower in comparison to PLS and 
bulbar involvement is rare in HSP. Genetic testing for HSP-genes should be performed and in 
some cases the correct diagnosis only becomes evident through follow-up.41-43 
 
Cognitive & behavioral changes in ALS 
Cognitive change and behavioral change form an intrinsic component of some forms of ALS. 
The current approach is to first make a definitive diagnosis of ALS, and to subsequently screen 
for cognitive and behavioral changes. Studies show that 5-15% of ALS patients also have FTD 
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and in up to 50% cognitive or behavioral changes within the spectrum of FTD are present.1,2,9,44 
Similarly, 12.5% of bv-FTD patients develop ALS and mild motor neuron involvement is seen in 
approximately 40% of FTD patients.45,46 The diagnostic criteria for FTD apply to ALS patients as 
they would to any other patient (Table 3c).47,48 Patients with cognitive or behavioral changes 
that do not fulfill formal diagnostic criteria can be grouped into 3 categories; ALS with 
behavioral impairment, ALS with executive impairment and ALS non-executive impairment 
(Table 3b).49 
 
Many conventional neuropsychological tests require patients to be able to speak and write and 
therefore may not be suitable for use in ALS. A number of screening tools specifically designed 
for ALS are now available and include the ALS-Brief Cognitive Assessment (ALS-BCA)50, ALS-
Cognitive Behavioral Screen (ALS-CBS)51, ALS-FTD-Q52 and Edinburgh Cognitive and Behavioral 
ALS Screen (ECAS).53 Patients who have abnormal scores on these screening tools should be 
referred for full neuropsychological assessment.  
Apathy and loss of sympathy are the most common behavioral symptoms affecting 
approximately 10% of all patients.53 Fluency, language, social cognition and executive function 
are the most commonly affected cognitive domains. Memory impairment may also be found, 
but rarely exists in isolation.54 To date, only a limited number of longitudinal studies have been 
performed on cognition in ALS. Data suggests that patients without deficits at diagnosis remain 
unaffected and that cognitive decline in patients with non-executive impairment is slow or 
perhaps even stable. Executive dysfunction is associated with a more rapid disease 
progression.55  
Recognizing cognitive and behavioral impairment is important as it is associated with mutations 
in specific genes (e.g. C9orf72, TBK1), more aggressive disease, non-compliance with treatment 
recommendations and increased care-giver burden.50,51 Moreover, as impairment in capacity 
affects medico-legal decision-making, power of attorney should be discussed early in the 
disease in those with evidence of cognitive or behavioral changes.56  
 
Pathophysiology  
The mechanisms underlying neurodegeneration in ALS are still incompletely understood. A long 
list of cellular and molecular processes has been implicated and includes mitochondrial 
dysfunction, axonal transport, toxic protein aggregation, impaired protein degradation 
(proteasome and/or autophagy), prion-like spreading, excitotoxicity, lack of neurotrophic 
support from non-neuronal cells, dysfunction of non-neuronal cells, oxidative stress, 
hypermetabolism, inflammation, defects in RNA metabolism, RNA toxicity and others. Extensive 
literature providing convincing evidence for each of these mechanisms exists and has been 
reviewed elsewhere.8,44 It is however possible that defects in some of these pathways are a 
secondary phenomenon and therefore genetics seems a logical starting point to disentangle 
this issue. 
In 5-15% of patients ALS or FTD runs in the family (FALS)9,57,58 and in these cases a single genetic 
defect is thought to cause disease. Functionally the majority of the 30 genes associated with 
FALS11 can be grouped into 3 main pathophysiologic processes, namely RNA biology, protein 
turnover, and axonal transport suggesting that deficits in these pathways are causal.8 
However, most patients have a negative family history, in which case the disease is (within the 
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caveats explained below) thought to be sporadic and to be caused by a combination of 
environmental and genetic risk factors.17 In recent years multiple genetic risk factors for SALS 
have been identified. The search for environmental risk factors has however been less fruitful. 
Many case-control studies of exposure risks have been confounded by methodological errors 
and low power. High incidences of ALS have been recorded in Guam and the Kii Peninsula 
(Japan) and associations with cyanobacterial neurotoxins (BMAA) have been proposed, but 
never confirmed.59-61  
Clustering of ALS has also been reported among Italian soccer players and American football 
players62,63, and a number of detailed population-based, case-control studies have sought an 
association between intensive physical exercise and ALS, but with conflicting results.64,65 It is 
possible the factors that determine an athletic disposition confer risk, rather than the actual 
exercise itself (“born to run” rather than “running to death”). Other environmental factors that 
have been associated with ALS include smoking, exposure to pesticides and organic toxins, and 
electromagnetic radiation.17 With the exception of smoking66, definitive evidence of risk 
remains to be established and will require large unbiased population-based case-control studies 
for confirmation. 
The high degree of variability in phenotype and family history as well as the large number of 
genes, pathways and environmental risk factors that have been implicated seem to imply 
different mechanisms underlie neurodegeneration in different patients.  
In fact, data from a recent study suggests that deficits in multiple pathways are required to 
develop ALS.67 Interrogation of population-based registers demonstrated a log-linear 
relationship between incidence and age of onset, which similar to cancer, is consistent with a 
multistep model of disease. The number of steps required to cause disease can be estimated 
from the model as 6 steps. In this model each step represents a distinct pathophysiological 
process of which the last is the disease trigger. These findings emphasize the need to study 
genetic, environmental and lifestyle risk factors.67 Although the multi-step model is still only a 
hypothesis, it is consistent with many features of ALS including, phenotypic variability, late-
onset, non-penetrance, genetic pleiotropy and why the disease process cascades across the 
motor system rapidly after onset. 
 
Although multiple mechanisms appear to be at play, abnormal aggregation of TDP-43 is the key 
pathological feature seen in nearly all ALS patients (with the exception of most SOD1 and FUS 
cases), which suggests that altered function of this protein plays a crucial role in the disease.3,68 
Several hypotheses surround this topic. TDP-43 normally localizes to the nucleus where it has a 
function in transcription. In ALS TDP-43 is misfolded and aggregates in the cytosol and is thus 
mislocalized. Therefore nuclear loss-of-function resulting in transcription deficits has been 
suggested. TDP-43 aggregates may also acquire toxic properties through increased 
hydrophobicity and sequestration of essential cellular components, generation of oxidative 
species and proteasome inhibition.  
Interestingly, there is mounting evidence that these aggregates might spread through a self-
perpetuating or prion-like mechanism. Misfolded TDP-43, SOD1 and FUS are capable of forcing 
native protein into the misfolded configuration, which is perhaps aggravated under certain 
conditions (cell stress). These newly misfolded proteins (seeds) are in turn capable of misfolding 
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their native counterparts hereby initiating a cascade.69-71 For SOD1 it has been shown that 
these seeds can spread to neighboring cells and within neuroanatomical pathways, which could 
be reflective of the clinically observed spread of disease.71 Recently, cell-to-cell transmission via 
exosomes of dipeptide repeat proteins (DPRs) linked to C9orf72 has also been reported.72 

Recently another mechanism for disease spread was proposed. Several viral infections can 
cause motor neuron dysfunction (HIV, polio), but there is no evidence that ALS is due to viral 
infections. However, a substantial part of the human genome (8%) is comprised of viral 
sequence, which are remnants of infections that occurred in our distant ancestors and 
incorporated into the germline. The vast majority of this viral sequence has been rendered 
defective through the accumulation of non-sense mutations. Initial studies showed reverse 
transcriptase activity in the serum of ALS patients, and this was shown to be likely from 
activated endogenous retrovirus rather than acquired infection.73-75 

A candidate virus was recently identified in a study demonstrating expression of the human 
endogenous retrovirus K (HERV-K) in the cortical and spinal neurons in a subpopulation of ALS 
patients, but not in healthy controls. The HERV-K genome encodes 3 genes, including one that 
encodes an envelope protein (env) which is selectively toxic to motor neurons in mouse 
models. Strikingly, expression of HERV-K genes is regulated by TDP-43. This raises the possibility 
that changes in TDP-43 may lead to the reactivation of inherited retroviral sequences resulting 
in the expression of HERV-K env and subsequent neurodegeneration.76 Based on these data a 
clinical trial with HERV-K suppression has been initiated in the US (NCT02437110), and in 
Australia (NCT02868580). 
Both the prion hypothesis and the viral reactivation theory pose interesting explanations for 
the manner in which the disease spreads after onset and could be the final step in the multi-
step model. 
 
Genetics of ALS  
In approximately 60-80% of FALS patients a gene mutation of large effect (presumably 
pathogenic) can be identified, of which C9orf72 (40%), SOD1 (20%), FUS 1-5% and TARBDP (1-
5%) are the most common.11  
The genetics of SALS are less well understood. Twin studies have shown that the genetic 
contribution to SALS is considerable (61% (38%-78%)).77,78 The latest genome-wide association 
study in ALS analyzed the genetic architecture of the disease by partitioning the explained 
heritability by allele frequency, and demonstrated that the remaining genetic risk factors are 
likely disproportionately to be rare variants (0.1–5%) with intermediate to large effects.79 This 
implies that ALS is an oligogenic disease, which is distinct from many common disorders and 
neuropsychiatric conditions such as schizophrenia, which are highly polygenic (due to the 
additive effect of many common genetic polymorphisms with small effects).80 An oligogenic 
model is consistent with the observation of incomplete penetrance in many ALS pedigrees, the 
reduced rate of ALS in admixed populations, and the presence of multiple ALS associated genes 
co-segregating with disease in some kindreds.81-83 Heritability can also be obscured in small 
pedigrees (death resulting from other causes before the onset of ALS, loss of contact, etc.) 
causing familial cases to present as “apparently” sporadic.84 This is reinforced by the finding 
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that approximately 10% of sporadic ALS cases have mutations in known FALS-genes and that 
first-degree relatives of sporadic patients are at an 8-fold higher risk of developing disease.85 
Rigid dichotomizing ALS into familial and sporadic disease can now be considered an over-
simplification, as all of the evidence points towards similarities in genetic architectures between 
familial and sporadic disease.  
Moreover, it is also increasingly recognized that ALS genes may be pleiotropic, meaning that 
they are involved in multiple phenotypes. The most established example of pleiotropy is 
C9orf72, which is clearly linked to ALS and FTD, but also to PLS, PMA, Parkinsonism, Huntington 
phenocopies, Alzheimer’s disease, corticobasal degeneration, schizophrenia, psychosis and 
bipolar disorder.10 Other examples of pleiotropy are repeat expansions in ATXN2 gene (in which 
pure-CAG expansions cause spinocerebellar ataxia type 2, but intermediate-length interrupted 
repeats are risk factors for ALS and parkinsonism).86,87 Similarly, rare genetic variation in ANG is 
a risk factor for ALS and parkinsonism88,89 and mutations in hnRNPA1, hnRNPA2b1, SQSTM1 and 
VCP have been reported in pedigrees with a heterogeneous phentoype (also known as 
multisystem proteinopathy) that includes ALS, FTD, IBM and Paget’s disease of the bone.90-92 
Other genes, including Matr3, CHCHD10 and SQSTM1 have also been implicated in 
myopathies.93-95  
Considering the genetic architecture of ALS, it is likely that whole genome sequencing of large 
numbers of patients and controls will be required to fully understand the genetics of this 
disease. An international whole genome-sequencing project was initiated in 2012 with the goal 
of sequencing the complete genomes of 15,000 ALS cases and 7,500 controls 
(www.ProjectMine.com) and is estimated to be completed by the end of 2017. 
Notwithstanding the advances in our understanding of ALS from a genomic perspective, 
substantial dilemmas remain from a clinical perspective. While some ALS mutations are directly 
pathogenic, this has not been demonstrated for many reported variants. For instance, over 150 
mutations have been reported in SOD1, but irrefutable evidence for direct pathogenicity is only 
available for a few mutations (e.g. p.A5V, homozygous p.D91A).96,97 Similarly, initial studies 
suggested that C9orf72 is fully penetrant by the age of 80, but there is now a growing number 
of reports of asymptomatic C9orf72 expansion carriers of advanced age, and penetrance 
estimation using statistical methods suggests this mutation has only moderate penetrance 
(http://alsod.iop.kcl.ac.uk/misc/penetrance.aspx).84  
Non-penetrance and genetic pleiotropy in ALS is incompletely understood and C9orf72 perhaps 
best illustrates the complexity of this topic. Disease severity and phenotype appear to be 
dependent on the size of the repeat expansion (which may vary between cell types within an 
individual (mosaicism)), methylation status of the promotor and the expansion itself as well as 
the presence of genetic variation in other genes (e.g. TMEM106b, ATXN2 and others).10,98-102   
Providing genetic counseling to ALS patients and their relatives is becoming increasingly 
challenging. There is a growing realization among patients in the Internet era that their disease 
may be genetic and the “right to know” is a basic principle of human clinical genetics 
recognized by most international regulatory statements and legislation.103,104  
However, given the complexity of the subject, opinions regarding genetic testing differ.105-107 
Recently a group of neurologists and clinical geneticists proposed guidelines for genetic testing 
in ALS, in which they suggest that genetic testing should be offered to all patients with a first or 
second degree relative with ALS or FTD and the option of genetic testing should be discussed 

http://www.projectmine.com/
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with all other patients.105 Counseling should be provided by individuals with an up-to-date 
understanding of ALS genetics, who are willing to take responsibility for the interpretation of 
the results. It would seem advisable to limit testing to those genes for which there is strong 
evidence for causality; C9orf72, TARBDP, FUS and SOD1, and the local geographic distribution of 
known causative mutations should be taken into account.108 
 
From genes to biology  
For a long time SOD1 was the only known gene for ALS and transgenic SOD1-mice were the only 
available ALS disease model.109 Although this model recapitulates several aspects of ALS, it is 
probably not representative for most forms of ALS because pathological TDP-43 accumulation is 
not present (Table 4). This may be a possible explanation why translation of therapeutic 
approaches developed in this model to human patients has been difficult.110  
Recent genetic discoveries and advances in molecular biology have facilitated the generation of 
multiple novel ALS models for different genes (e.g. TARDBP, FUS, C9orf72, VAPB, VCP) in 
different species (C. elegans, Drosophila, zebrafish, mouse, rat).109,111-115 Similar to SOD1-mice 
these new models often do not display all features characteristic for the ALS patients carrying 
corresponding mutations, but they have proven to be extremely valuable for understanding the 
effects of gene mutations at the molecular, cellular and systems levels. With ongoing discovery 
of ALS genes and the development of powerful genome editing such as CRISPR/CAS many more 
ALS models are expected to be generated in the coming years. In addition, to animal models, 
stem cell-based cellular models have become increasingly important in ALS research. The ability 
to convert somatic cells from humans, e.g. skin fibroblasts, into induced pluripotent stem cells 
(iPSCs) has revolutionized research into human disease.116 Several studies have already used 
iPSC technology to generate patient-derived motor neurons and employed these cultures to 
detect cellular defects such as impaired neurotransmission, cell death and altered neuronal 
morphology.117 Given the fact that the (epi-)genetic makeup of patients is highly preserved in 
iPSC-generated human motor neurons these cultures are viewed as promising models for 
future screening of therapeutic compounds.117  
Using these models and novel techniques considerable advances have been made in the 
understanding of mechanisms underpinning C9orf72 pathophysiology. Three different, but not 
mutually exclusive, mechanisms have now been proposed. The first proposed mechanism is 
haplo-insufficiency, which is supported by decreased C9ORF72 mRNA and protein expression in 
brain tissue of patients.4 Secondly, as in other repeat expansion disorders, C9ORF72 RNA may 
accumulate in so-called RNA foci, which traps other RNA molecules or RNA binding proteins and 
thereby affects RNA biology.4 Thirdly, ATG-independent RAN translation has been shown. Based 
on the frame and the direction in which the repeat is read, it codes for several short dipeptide 
repeat proteins (DPRs), which appear to have toxic properties.118,119 Interestingly, DPRs can be 
measured in CSF and may be a useful biomarker either diagnostically or as an outcome measure 
in clinical trials. 
 
Current and future treatments  
Presently, Riluzole is the only widely available drug that has been shown to prolong survival in 
ALS. The most recent Cochrane review showed that there is a 9% gain in the probability of 
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surviving one year for patients on Riluzole compared to the placebo-group, corresponding to an 
increase in median survival from 11.8 to 14.8 months.120,121  
Recently, Edaravone (a free radical scavenger) was approved for the treatment of ALS in Japan, 
but has not been approved elsewhere. The results from the trial (NCT01492686) demonstrating 
efficacy however remain to be published. Preliminary reports suggest that Edaravone 
significantly slows functional decline over a 24-week period compared to placebo in a 
subcohort of patients characterized by recent disease onset and relative preservation of 
respiratory function.  
Nuedexta has been shown to be effective for treating pseudobulbar affect (uncontrollable 
laughing or crying) in ALS and there are anecdotal reports of improvement in speech and 
swallowing.122 It is not available outside of the USA, although initially marketing authorization 
for Europe was granted. It was however redrawn at the request of the marketing authorization 
holder, apparently based on commercial considerations.  
Differences in drug availability and inconsistencies in decisions from regulatory agencies are 
very frustrating to ALS patients, because they feel they are being denied potentially effective 
treatments. Harmonization of criteria for approval of treatments for lethal diseases, such as 
ALS, between regulatory agencies would therefore be highly desirable.  
 
Precision Medicine  
We now recognize ALS as a syndrome rather than a single disease entity and that therefore 
different pathophysiological mechanisms may be at play in different subtypes. While these 
mechanisms may converge on shared final common pathways resulting in recognizable clinical 
sub-phenotypes, it is likely that different subtypes of ALS will respond to different disease 
modifying therapies. The greatest challenge in ALS will be to unravel the heterogeneity and 
recategorize patients according to (genetic) subgroup or most relevant pathophysiological 
feature (Figure 3), which will facilitate the development of targeted treatments and move the 
field towards precision medicine.  
This would dramatically alter the way trials are conducted. Inclusion criteria would be based on 
genetics or other biomarkers. This will require large-scale international harmonization of 
subtype classification to permit the enrolment of sufficient numbers of patients for such trials.  
The first steps towards precision medicine in ALS have already been taken, as a successful 
phase 1 study with SOD1 antisense oligonucleotides has been performed and a new phase 1 
trial with a potentially more effective oligo is under way.124 Many research groups are working 
on gene-silencing therapies for C9orf72 through antisense oligonucleotides, viral delivery or si-
RNA and small molecules. Initially C9ORF72 knockout models did not demonstrate any 
phenotype, suggesting that this would be a safe strategy.125 However, recent studies have 
demonstrated that the complete knockdown of C9ORF72 has profound consequences and leads 
to severe immune system dysfunction and neoplastic events.126 Therefore, it seems critical that 
selective knock-down of the expanded allele is achieved.  
A recent study in Alzheimer’s disease showed that the monoclonal antibody, Aducanumab, 
selective targets aggregated Aβ, lowers soluble and insoluble Aβ in a dose-dependent manner 
and that monthly intravenous infusions slow memory decline in patients with prodromal or 
mild AD.127 Based on this approach, one could contemplate targeting TDP-43 in a similar 
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fashion. TDP-43 levels are however tightly regulated and overexpression and knock-down could 
be detrimental and therefore not as straightforward as may seem. 
Pioneering work is also being undertaken with the transplantation of neural stem cells in the 
spinal cord of ALS patients and can be done safely. Results from efficacy trials are eagerly 
awaited.128,129 
 
Symptomatic Therapies  
In the absence of effective pharmacological treatments, symptomatic interventions and 
supportive care remain the cornerstone of ALS-management.130-132 Several of these 
symptomatic therapies are associated with a  clear survival benefit, whereas others provide 
symptom relief and therefore positively influence quality of life. 
 
Symptomatic therapies with survival benefit: 
- Studies have shown that care is most effective and positively impacts survival when delivered 
by a multi-disciplinary team, including physiotherapists, occupational therapists, speech 
therapists, respiratory physicians, dieticians, gastroenterologists, social workers, family 
physicians, neurologists and rehabilitation physicians.133,134  
- Weight loss is commonly seen in ALS as the disease progresses and is multifactorial in nature 
(loss of muscle tissue, hypermetabolism, difficulties eating (swallowing or shortness of breath) 
or decreased appetite). Multiple studies have shown that prevention of malnutrition improves 
survival and quality of life.135 Guidelines recommend patients to undergo gastrostomy to enable 
enteral feeding and hereby sustain nutrition and medication intake when 10% of body weight 
has been lost. However, a recent study showed that the majority of patients who had lost more 
than 10% of their premorbid body weight failed to regain weight after following gastrostomy 
and even continued to lose weight. The authors therefore suggest that placement of a 
gastrostomy tube is most effective an earlier stage (5% weight loss).(REF: Stavroulakis, T. et al. 
The impact of gastrostomy in motor neurone disease: challenges and benefits from a patient 
and carer perspective. BMJ Support. Palliat. Care 6, 52–59 (2016)) 
- Non-invasive ventilation (NIV) prolongs survival with an effect size greater than riluzole.136 The 
use NIV at night (and during daytime if required) is associated an increase in median survival of 
7 months and also improves quality of life.136 However, NIV-use requires significant effort from 
patients, carers and respiratory physicians and is therefore not be feasible for all patients, 
particularly those with cognitive impairment or severe bulbar problems. Results from a cohort 
study including 929 patients suggest NIV also benefits survival in bulbar-onset patients and that 
a trial of NIV should be offered to all patients, even when likely to be poorly tolerated.137 
Considering the challenges associated with NIV, alternative strategies for 
maintaining/supporting respiration are desirable. Diaphragm pacing or phrenic stimulation was 
approved as treatment for respiratory failure based on two studies showing that implantation 
appears safe and better survival in implanted patients with NIV compared to historical controls 
on NIV only (37.5 versus 21.4 months respectively).138,139 However, two recent randomized-
controlled trials contradict this finding. In fact, both studies observed a significant excess of 
mortality in the implanted patients with NIV compared to those on NIV-only. These findings 
caused both trials to be stopped prematurely. Although the mechanism underlying a potentially 
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harmful effect of diaphragm pacing is not clear, the use of diaphragmatic pacing is NOT (?)  
recommended as a routine treatment for patients with ALS in respiratory failure.140,141  
 
Treatments with symptomatic benefit:  
Over the course of the disease many signs and symptom may develop such as excess salivation, 
emotional lability, dropped head, frozen shoulder, pain, cramps, spasticity and others. Expert 
consensus guidelines for the management of these aspects of ALS are available and have been 
reviewed elsewhere.  
 
The importance of biomarkers 
The identification of reliable biomarkers is a high priority in ALS.145 Diagnostic biomarkers could 
reduce diagnostic delay (presently 9-12 months) and would facilitate early initiation of 
treatment, which is likely when it is most effective in a neurodegenerative disease. 
- Current measures of disease progression: The primary outcome measure in ALS trials is 
survival and/or rate of decline on the ALS Functional Rating Scale–revised (ALS-FRS-R).146,147 
Although robust, a considerable amount of time needs to pass before these outcome measures 
become informative, resulting in lengthy and expensive trials. Early and reliable biomarkers 
could potentially accelerate trials and therefore the quest for an effective treatment for ALS. 
Decline in muscle strength and respiratory function have extensively been studied as markers 
of disease progression. There are several ways to measure muscle strength148-150, of which hand 
held dynamometry is probably the preferred method in the field presently as it can be 
performed rapidly, is cheap, quantitative, reliable and a reproducible measure of decline in 
ALS.151 Similarly different measures exist for respiratory function, including vital capacity, sniff 
nasal inspiratory pressure and maximal inspiratory pressure. Differences of opinion exist on 
which is the best measure and all are commonly used.   
Although muscle strength and respiratory function are informative markers, they do not 
represent early changes in ALS. Clinical weakness only becomes apparent after a substantial 
number of motor neurons are lost and is initially compensated for by reinnervation. Respiratory 
dysfunction develops late in the disease in most patients. Therefore more accurate biomarkers 
of disease progression are urgently needed. Moreover, considering ALS affects lower and upper 
motor neurons, but also other brain areas (e.g. frontal and temporal lobes), different 
biomarkers might be required for different aspects of the disease.152 
- LMN biomarkers: LMN loss prior to the development of clinical weakness can be assessed 
using different electrodiagnostic methods.153 Nerve conduction studies show that the 
compound muscle action potential (CMAP) amplitude declines over time and is sensitive to 
disease progression. The CMAP amplitude is however also influenced by reinnervation and 
therefore does not allow quantification of LMN loss. Motor unit estimation (MUNE)154 and 
Motor Unit Index (MUNIX)155 are neurophysiological methods that aim to estimate the number 
of remaining motor units innervating a muscle by dividing the maximal CMAP by the average 
surface single motor unit action potential or from the inference pattern on surface EMG and 
maximal CMAP at different grades of voluntary muscle contraction. The advantage of MUNE 
and MUNIX is that they provide an estimation of the number of motor units, although it must 
be noted that these results are highly correlated with the CMAP. Other potential biomarkers for 
LMN loss under investigation include nerve excitability, electrical impedance myography and 
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muscle ultra-sound. 156-158 All techniques have their own pros and cons with regards to 
reproducibility, availability and complexity. Currently there is no single preferred method. 
- UMN biomarkers: Transcranial magnetic stimulation (TMS) is a non-imaging based technique 
that can be used to measure UMN dysfunction. A magnetic coil is used to excite neurons in the 
underlying motor cortex and subsequently motor evoked potentials are recorded over a 
contralateral hand muscle. TMS improves the sensitivity of ALS diagnosis, but has the 
disadvantage that it is technically challenging in patients with severe hand muscle atrophy.165  
- Imaging biomarkers: UMN loss may be difficult to detect clinically as it may be masked by 
LMN loss and validated clinical UMN scores are lacking. Other measures are therefore 
desirable. Different imaging techniques have been widely applied to study UMN loss. MRI is 
able to distinguish ALS cases from mimics and healthy controls at group level, and some studies 
suggest that cortical thinning of the primary motor cortex is a sensitive diagnostic marker at 
individual patient level.159,160 A recent meta-analysis on DT MRI diagnostic accuracy in ALS 
reported a pooled sensitivity of 65% and specificity of 67%.161Also resting state fMRI studies in 
ALS seem to have a good sensitivity and specificity when assessed by machine learning 
methodologies.162  
A role of 18F-FDG-PET as a diagnostic biomarker was suggested by two recent large studies that 
showed motor and extra-motor hypometabolism as well as of hypermetabolism in brainstem 
and medial temporal cortex with an overall accuracy in discriminating ALS patients from 
controls of 93%.163,164  
- Wet biomarkers: Blood or CSF biomarkers would be equally attractive and at present the most 
interesting candidates are neurofilaments, which are major structural proteins in neurons that 
are released following neuronal damage. CSF neurofilament light chain (NfL) and 
phosphorylated heavy chain levels have a good sensitivity (77% and 83%) and specificity (85% 
and 77%) in differentiating ALS from mimics and show moderate correlation with 
progression.169 Serum NfL have >90% sensitivity and specificity in separating ALS patients from 
healthy controls, but data on comparison with ALS mimics are not available.170 Moreover, the 
immunoreactivity to plasma neurofilament light chain changes are related to ALS clinical 
staging, indicating that this biomarker may be also sensitive to disease progression.171  
- Biomarkers of disease progression: Longitudinal measurements of cognition and behaviour 
could potentially detect changes over time and therefore serve as a marker for spread of the 
disease to other brain areas (frontal and temporal lobes). Considering aggregation of TDP-43 is 
the pathological hallmark of ALS, it stands to the reason that being able to image this in-vivo, as 
is possible with amyloid and Tau, could be a powerful biomarker for all aspects of the 
disease.166 At present this is not possible, but efforts are underway. 
Although all of the techniques mentioned show promise, they all require equipment, time, 
expertise and/or substantial resources. The ideal biomarker should be possible to measure 
simply and reliably. A potential approach to this end is to assess disease progression through 
staging, which would allow the use of time from one stage to another instead of time to death 
as an outcome measure. Several staging systems exist and indeed correlate with existing 
measures such as the ALS-FRS-R.167,168  
 
Conclusions 
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We now recognize that ALS is a heterogeneous syndrome that shares pathobiological features 
with FTD. The rapid pace of gene discovery has facilitated the study of the molecular biology of 
ALS. There are now many different genetic models of ALS and studying these has uncovered 
many new potential therapeutic targets. There is a sense of optimism in the field that this 
progress will lead to the so urgently needed treatment for ALS. 
 
Search strategy and selection criteria 
We searched Pubmed and Google Scholar (1966, to April 2016) and the Cochrane Library using 
the search terms “amyotrophic lateral sclerosis” or “motor neuron disease” or “frontotemporal 
dementia” in combination with “diagnosis”, “epidemiology”, “frontotemporal dementia”, 
“imaging”, “neurophysiology”, “management”, “genetics”, “biomarkers”, “treatment”, 
“C9orf72”, and “neuroprotection”. Further articles were included from reference lists and review 
articles. Abstracts and reports from relevant meetings were also included. The final reference 
list was generated on the basis of originality and relevance to the topics covered in this Seminar. 
Emphasis was placed on publications from the past 5 years, but did not exclude commonly 
referenced and highly regarded older publications. 
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