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ABSTRACT 19 

Ancient documents and milestones of human history such as manuscripts and textiles are 20 

fragile and during aging undergo chemical, physical and biological deterioration. Among the different 21 

causes of damage, also human intervention plays a role since some restoration strategies proved to be 22 

transient and/or they generated further damage. Outdoor monuments undergo deterioration since they 23 

are exposed to pollution, weathering, microbial attack (giving rise to undesired pigmentation, 24 

discoloration or true dissolution, corrosion, and overall decay) as well as men-made damage (i.e. 25 

graffiti). This review article reports the best fitting strategies used to restore wall paintings, outdoor 26 

monuments, textiles and paper documents to their ancient beauty by employing “soft” bio-based 27 

approaches such as viable bacteria or suitable enzymes. 28 

 29 

 30 

Key-words: immobilized enzymes, biocleaning, caseinase, collagenase, viable bacteria, graffiti, 31 
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INTRODUCTION 34 

Artworks may undergo a number of degradation and deterioration events, which widely vary 35 

depending on the specific artifact and the environment and conditions of conservation. These 36 

parameters may be extremely different if we consider, for instance, a book conserved at controlled 37 

temperature and humidity in a library or in a museum, or a stone statue or a cathedral, which are 38 

constantly exposed to weathering, pollution, microbial colonization (extensively reviewed in Mazzoli 39 

et al. 2018), vandalism acts, etc… It is worth reminding that damaging of artworks is sometimes the 40 

effect of previous restoration interventions which underwent deterioration themselves during time, as 41 

in the case of glues applied to consolidate wall paintings or ancient textiles (Beutel et al. 2002; Ferrari 42 

et al. 2017). 43 

Cleaning and/or restoration of artworks by biotechnological approach has been performed by 44 

using enzymes or microorganisms or a combination of both strategies, depending on the specific 45 

artifact and issue (Figs. 1, 2; Table 1). Bio-based methods have a number of advantages over more 46 

consolidated techniques for artwork restoration (such as those using non-acqueous solvents, 47 

bleaching and mechanical treatments), because of their lower impact on the environment, reduced 48 

toxicity for operators and higher selectivity and safety for artworks themselves (Barbabietola et al. 49 

2016). Enzymes are generally characterized by extremely high substrate specificity which allows high 50 

selective choice depending on the “damaging material” (e.g. proteins, polysaccharides, lipids) to 51 

treat/remove. Moreover, enzymes can be chosen whose catalytic activity is optimal at the most 52 

suitable pH/T ranges for treating a certain artwork thus reducing the application time (Germinario et 53 

al. 2017). Enzymes have been used in aqueous formulations, with or without a gel as sorbent, and in 54 

ionic liquids (Hrdlickova Kuckova et al. 2014). On the other hand, the use of enzymes may be limiting 55 

because of the relatively high amounts required, their relatively high cost, the need for controlled 56 

application conditions (e.g. pH and T) and for skilled operators (Barbabietola et al. 2016). Therefore, 57 

the use of microorganisms has sometimes been preferred, for instance when very resistant or complex 58 

deposit materials (i.e. mixture of heterogeneous substances) or very extended surfaces (e.g. the 59 

surface of a cathedral) needed to be removed/treated. In addition, the use of living microorganisms is 60 

necessary in the case of complex phenomena such as calcium carbonate deposition for the 61 

bioconsolidation of stone material (Dhami et al. 2014). As compared to enzymatic strategies, the use 62 

of living microorganisms for biocleaning of artworks is certainly less expensive and may require less 63 

controlled environmental conditions, although it is generally less selective (Webster and May 2006). 64 

 65 

Biocleaning-biorestoration of paper documents and textiles 66 
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One of the most common causes of biodeterioration of ancient papers (e.g. books, documents) 67 

and textiles that are preserved in museums, libraries and archives are glues employed, with specific 68 

variations and modifications, to manufacturing or consolidating/restoring these artifacts 69 

(Barbabietola et al. 2016; Ferrari et al. 2017). In the case of paper artworks, glues have been used in 70 

manufacturing, such as for bonding and lining of prints, drawings, documents, which were mounted 71 

(partly or completely) on secondary support by means of glue spots, as well as for restoration 72 

(Barbabietola et al. 2016). As regards historical or ethnographic textiles, glues have mainly been used 73 

for restoration purposes, e.g. to fasten them to textiles or to solid (paper or wood) supports (Ahmed 74 

and Kolisis 2011). In the past, glues of either vegetal (i.e. starch) or animal (i.e. collagen and/or 75 

casein) origin have been used for these purposes (Barbabietola et al. 2016; Ferrari et al. 2017). Both 76 

animal and vegetal glues are made up of natural polymers, that is mainly proteins (i.e. collagen 77 

derived from the bones, skins, tendons and cartilage of mammalians or fish swimming bladder) or 78 

polysaccharides (i.e. amylose and amylopectin derived from different plants, such as potato, rice, 79 

corn or wheat), respectively (Barbabietola et al. 2016; Ferrari et al. 2017). Through aging, these glues 80 

undergo stiffening and thickening which may in turn generate distortions, tensions and discoloration, 81 

or form intricate layers that are very recalcitrant to being removed (Blüher et al. 1995; Gostling 1989). 82 

In the case of animal glues, humidity, temperature, UV radiation and pollutants can generate protein 83 

cross-linking and/or hydrolysis/oxidation of peptide bonds, while microbial metabolism produces 84 

acid molecules and pigmented spots (Barbabietola et al. 2016). Starch glue has been commonly used 85 

for ancient textile restoration (Ahmed and Kolisis 2011; Whaap 2007). After aging, starch paste is 86 

generally found in shrunk, cracked, rigid and brittle form, which cannot provide enough adhesion for 87 

effective support. In this form, it can cause heavy damage to ancient textiles because of concomitant 88 

embrittlement, hardening, yellowness and acidity of the latter. Furthermore, starch may be a source 89 

of contamination by amylolytic fungi and bacteria that contribute to textile decay over time, especially 90 

when a suitable degree of humidity supporting microbial growth is present.  91 

Consequently, cleaning of glue residues is often a priority in the restoration of ancient paper 92 

or textile artworks. Current mechanical and chemical methods display serious drawbacks mainly 93 

related to aggressiveness towards material and/or toxicity for the restorers and/or the environment. 94 

Humidification (also called wet-cleaning) has been used to swell starch paste, however it generally 95 

needs long treatments which are unsuitable for paper or textile artifacts and is often insufficient for 96 

aged or hardened glues. Bio-based methods, i.e. the use of enzymes or microorganisms, have been 97 

shown to be a very efficient alternative in a number of cases (Ahmed and Kolisis 2011; Barbabietola 98 

et al. 2016; Ferrari et al. 2017).  99 
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 Enzymes are certainly the most frequently used method for the treatment of glue-damaged 100 

paper (Banik et al. 2003; Corbi et al. 2005; DeSantis 1983; Sandrine 2002) or textiles (mainly linen, 101 

silk and cotton fabrics, so far) (Ahmed and Kolisis 2011; Ciatti et al. 2010) and several successful 102 

examples have been reported in the literature. For instance, trypsin has been used for detaching a 103 

compact block of leaves (Wendelbo 1976). Amylases and proteases have been employed for 104 

detaching graphics from their backings (De la Chapelle 2003; Segal and Cooper 1977). Very recently 105 

enzyme extracts with protease activity isolated from marine invertebrates have been used to remove 106 

aged/altered protein glue layers from the velinatura (Japanese paper bonded by animal glue) of 107 

ancient oil on canvas or from polychrome wood (Palla et al. 2016). This proved to be a cutting–edge 108 

strategy also useful to bio-clean fragile artworks such as wax sculptures. An additional advantage of 109 

these marine invertebrate-derived extracts is their antimicrobial activity useful to control 110 

bacteria/fungi growth (Palla and Barresi 2017). It is worth noting that application of enzymes in 111 

solution is not always suitable for paper or textile artworks, since it may involve artifact flooding with 112 

excess water which favors mold and fungi colonization and growth and thus causes further damage 113 

to the artifact (Ahmed and Kolisis 2011). Actually, water-dissolved α-amylase preparations have been 114 

applied locally either in solution (Ahmed and Kolisis 2011) (Fig. 1a-c; Table 1) or as poultice (Bott 115 

1990; Chapman 1986; Shibayama and Eastop 1996) for the bio-restoration of starch-glue treated 116 

textiles. In general, the use of immobilized enzymes is preferable for these applications. Theoretically, 117 

all enzymes can be immobilized. However, it is worth reminding that the immobilization yield and 118 

the enzyme efficiency should be determined for each specific enzyme and immobilization strategy, 119 

to limit the loss of enzyme and catalytic activity. A ready-to-use poultice of amylolytic enzymes, 120 

called Albertina Kompresse, was developed by an Austrian group for removing non-swellable starch-121 

based glue from graphic artworks of albums of the “Albertina” graphic collection in Vienna (Schwarz 122 

et al. 1999). Phytagel™ was used for lowering and controlling water content in enzyme solutions 123 

(Iannucelli and Sotgiu 2009) used for cleaning -etchings depicting the Chinea of Clemente VIII, 124 

dating 1598. Gellan hydrogel-immobilized α-amylases have been developed for removing starch 125 

paste from ancient paper documents (Mazzuca et al. 2014). A gellan-immobilized bacterial α-amylase 126 

has been recently used to clean a wool shroud dating back to the Coptic period from a starch glue that 127 

had been used in the 1950s to temporary consolidate the textile (Ferrari et al. 2017) (Fig. 1d-h; Table 128 

1). After selection of the suitable enzyme (among those commercially available) and optimization of 129 

the conditions for enzyme immobilization, the cleaning of the back of the two fragments (about 4 m² 130 

of textile) composing the tunic was completed in 160 h of work (Ferrari et al. 2017). A recent study 131 

(Barbabietola et al. 2016) has described the first attempt to bio-cleaning ancient paper from animal 132 

glue by using living bacteria (Table 1). To this aim, non-pathogenic, non-spore-forming and non-133 
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cellulolytic Ochrobactrum sp. TNS15E was used after immobilization on agar gel. This bacterial pack 134 

was used to remove glue layers from paper documents dating back to the 17-18th century. Four-hour 135 

treatment was sufficient to clean the cellulose fibers from glue, as confirmed by both colorimetric 136 

and scanning electron microscopy (SEM) analyses. 137 

Apart from paper/textile biocleaning from glue, it is worth reminding the case of aged drying-138 

oil stains on both ancient paper and textiles. During drying and aging, double bonds of unsaturated 139 

fatty acids are oxidized by oxygen in the air, giving rise to multiple products which include 140 

nonhomogeneous polymeric network of triacylglycerides which may be hard to being removed 141 

(Ahmed et al. 2010; Blüher et al. 1997). Lipases such as that of Candida cylindracea have been used 142 

to clean such aged drying-oily stains from paper documents (Blüher et al. 1997) or textiles such in 143 

the case of a coptic tunic (Ahmed et al. 2010) (Table 1).  144 

 145 

Biorestoration/biocleaning of stone artworks 146 

Durable stone (e.g. marble and/or limestone) has been used for the construction of a multitude 147 

of artworks and monuments all along the human history and all over the world including the Egyptian 148 

Pyramids, the Greek and Roman temples and theaters, the European Cathedrals and the Taj Mahal in 149 

India. Unfortunately, all of them have been suffering from progressive deterioration caused by both 150 

biotic and abiotic agents (Dhami et al. 2014). These numerous factors have led to stone dissolution, 151 

staining or color alteration, surface alteration, bio-corrosion and transformations into smaller sized 152 

crystals, etc… (Chand and Cameotra 2011). In the recent decades, microbial biofilm production, 153 

deposition of organic (such as residual hydrocarbons and other organic pollutants in dust) and 154 

inorganic compounds (formation of nitrate and sulfate alterations such as the black crusts) have been 155 

among the main deterioration events (Antonioli et al. 2005; Di Pippo et al. 2009; Fernandes 2006; 156 

Warscheid and Braams 2000). Actually, limestone mainly consists of the most stable polymorph of 157 

calcium carbonate, i.e. calcite, (with only a small content of aragonite) but is very porous and 158 

hydrophilic. This makes limestone very susceptible to water flush (especially acid rain), 159 

environmental pollutants and physical, chemical and biological (e.g. microorganisms) weathering 160 

(Dhami et al. 2014). Therefore, survival of many cultural and historical assets is in threat. One of 161 

such examples is the cave of Lascaux in southwest France which is considered the best conserved 162 

prehistorical example of human wall painting art (they are also named the paleolytic Cappella 163 

Sistina). In this site, infection of Fusarium sp. and other molds have deteriorated the floor and banks 164 

of the main chamber (Rosenbaum 2006), but also autotrophic organisms such as green algae have 165 

produced green pigments because of the intense illumination and improved CO2 availability related 166 
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to visitors (Bastian et al. 2010). Martin-Sanchez and co-workers (2012) have extensively studied the 167 

effectiveness of biocides in the cave biocleaning. Fungicides had been intensively applied to treating 168 

the cave since 2001 that were essentially targeted to remove Fusarium sp but obtained little success. 169 

In 2008, a new biocide treatment was planned due to black stains that appeared on the cave surfaces. 170 

DGGE analysis on these stains showed the presence of Ochroconis lascauxensis. This result 171 

demonstrated the ineffectiveness of the previous biocide treatments on the long time which appeared 172 

to favor colonization by other fungal strains and therefore increase fungal diversity. Later, i.e. in 173 

2010, fungal communities were quite different from those detected in 2008, since the main identified 174 

strain was a yeast belonging to the Herpotrichiellaceae family. It is clear that careful preliminary 175 

study on the possible advantages and disadvantages of applying biocides in subterranean 176 

environments is required (Martin-Sanchez et al. 2012). 177 

Many attempts have been made to fix such structural damages by application of traditional 178 

conservative treatments such as organic and inorganic chemicals (Lazzarini and Laurenzi Tabasso 179 

1986). However, these agents have been most often low effective, in spite of their aggressiveness 180 

(which, on the other side, has led the concomitant risk of further damaging the artwork). Moreover, 181 

these strategies involve the use of high amounts of solvents, which are finally discarded in the 182 

environment creating problems of sustainability (Dhami et al. 2014). Alternatively, physical 183 

treatments such as laser cleaning have been used, but at significantly higher costs (Germinario et al. 184 

2017). Furthermore, all these treatments have short duration effects thus requiring repeated 185 

interventions with relevant economic issues for public and private conservation agencies. Overall, 186 

conventional treatment methods have therefore proved to be unsatisfactory. 187 

The shortcomings of conventional strategies have encouraged research in new conservation 188 

and remediation strategies based on biological methods (Fernandes 2006). As for the treatment of 189 

other type of artifacts, bio-based restoration approaches for stone materials are characterized by lower 190 

cost, toxicity and aggressiveness towards the artworks (Germinario et al. 2017). As described in the 191 

following sections, bio-based methods have been used to remove different degradation products from 192 

stone monuments, wall paintings, and marble statues (Germinario et al. 2017), including deposits of 193 

environmental pollutants (Margesin et al. 2011) and synthetic polymers present in adhesives 194 

(Giordano et al. 2018) as well as in paints used by graffiti writers (Sanmartin et al. 2014) (Fig. 2; 195 

Table 1). In addition, biocleaning has been performed on stone artworks suffering from inaccurate or 196 

aged restoration intervention (Beutel et al. 2002; Antonioli et al. 2005) (Fig. 2; Table 1). 197 

 198 

Removal of sulfate and nitrate alterations 199 
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One of the most important causes of decay of calcareous stones is the conversion of calcium 200 

carbonate into calcium sulfate (gypsum) mainly caused by acid rains (i.e. containing significant 201 

amounts of sulfuric and nitric acid) (Ranalli et al. 1997). For instance, the genesis of “gypsum crusts” 202 

on the surface of such porous material can engender following fractures of the underlying stone. 203 

When calcium sulfate salts are accumulated together with atmospheric particles (pollen, dust, spores, 204 

small particles of smog) the so called “black crusts” are formed (Fig. 2a). For the removal of sulfates 205 

from artistic stoneworks, procedures based on the use of sulfate-reducing bacteria have been reported. 206 

Different bacterial strains of the genus Desulfovibrio (e.g. D. desulfuricans and D. vulgaris) (either 207 

pure or in mixed cultures) have been applied under anaerobic conditions to marble samples directly 208 

or after adhesion to a sepiolite matrix (Ranalli et al. 1997). The use of sepiolite promoted sulfate 209 

removal on both simulated samples and real marble statue artifacts. On the latter, 81 % sulfate 210 

removal was obtained after 36 h treatment (Ranalli et al. 1997). Actually, D. desulfuricans (Ranalli 211 

et al. 1997) and D. vulgaris (Ranalli et al. 1997; Cappitelli et al. 2007a; Alfano et al. 2011) have been 212 

widely employed in restoration/removal of sulfate crusts from other artifacts (Table 1). Use of 213 

biotechnological cleaning on durable stone monuments can sometimes comply with multiple types 214 

of deterioration such as described by Cappitelli et al. (2007b). In this study, the sulfate-reducing 215 

bacterium D. vulgaris subsp. vulgaris ATCC 29579 was employed to remove the black crust found 216 

on marble of the Milan Cathedral (Italy). Compared to chemical cleaning (i.e. ammonium carbonate-217 

EDTA) strategy, the microbial-catalyzed approach resulted in more homogeneous removal of the 218 

deposits and higher preservation of the original surface (Cappitelli et al. 2007b) (Table 1). Both 219 

chemical and biological treatments converted gypsum (i.e. calcium sulfate) to calcite (i.e. calcium 220 

carbonate), allowing consolidation. However, the chemical strategy also formed undesirable sodium 221 

sulfate while the use of D. vulgaris did not (Cappitelli et al. 2007b). Nonetheless, biological removal 222 

of sulfates may require quite long application periods, depending on the thickness of the crust. A 223 

recent study has demonstrated that this period can be greatly shortened and general efficiency of 224 

biocleaning can be significantly improved by combining the use of sulfate-reducing bacteria with a 225 

non-biological strategy, e.g. the use of a non-ionic detergent (Troiano et al. 2013) (Fig. 2a, b; Table 226 

1). This combined strategy shortened application times of about 38-70 % depending on the specific 227 

artifact to be cleaned (Troiano et al. 2013). 228 

Another consequence of acid rains (and of the action of living microorganisms) is the deposit 229 

of calcium nitrate salts on stone buildings and wall paintings (Dhami et al. 2014). Here, again, 230 

pollution increases the presence of various nitrogen oxides in the atmosphere that in turn may react 231 

with rain water and form nitrous and, more abundantly, nitric acid which then reacts with stone and 232 

replaces calcium carbonate with calcium nitrate (Dhami et al. 2014). Different strains of 233 
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Pseudomonas spp. have been recently applied for removing calcium nitrate salts from two stone 234 

monuments. Agar-entrapped Pseudomonas stutzeri DSMZ 5190 has been used for the biocleaning of 235 

nitrate efflorescence from wall paintings located in the lunettes of the central vault of the Santos 236 

Juanes church in Valencia, Spain (Bosch-Roig et al. 2013) (Fig. 2c-e; Table 1). The chosen strategy 237 

proved to be extremely efficient allowing to remove 92 % of the precipitates in 90 minutes. 238 

Pseudomonas pseudocaligenes KF707 has been used to remove nitrate salts from the tuff stone 239 

surfaces of the 12th century Matera Cathedral, Italy (Alfano et al. 2011) (Table 1). Here, carbogel-240 

entrapped bacteria were applied to the Cathedral walls and allowed quick removal of the surface 241 

nitrate deposits, since 55 % of the nitrate salts were “cleaned” after 24 h. 242 

 243 

Bioconsolidation 244 

Apart from interventions aimed at removing superficial deposits and/or crust from stone 245 

monuments, the use of calcifying bacteria offers a chance to consolidate decayed building structures 246 

and materials. This application, sometimes also called microbial geotechnology (intending microbial-247 

based technology for civil structures) actually mimics nature since many carbonate rocks have been 248 

cemented by carbonate precipitation induced by microorganisms during Earth geological cycles. This 249 

relatively novel and environmental-friendly technology has been studied for at least 20 years and has 250 

already been used for protecting and/or restoring different decayed construction materials/artifacts 251 

(Dhami et al. 2012; 2013). 252 

Calcium carbonate precipitation is a chemical process (described by equation 1) which is 253 

influenced by four main factors, i.e. calcium concentration, amount of dissolved inorganic carbon 254 

(DIC), availability of nucleation sites and pH (Hammes and Verstraete 2002).  255 

𝐸𝑞. 1                                             𝐶𝑎2+ +  𝐶𝑂3
2−  ↔ 𝐶𝑎𝐶𝑂3 256 

𝐸𝑞. 2                                    𝐾𝑆𝑃,𝐶𝑎𝑙𝑐𝑖𝑡𝑒,25°𝐶  =  [𝐶𝑎2+] [𝐶𝑂3
2−]  = 4.8 × 10−9  257 

Calcium carbonate precipitation occurs when the product of concentrations of Ca2+ and CO3
2- is 258 

higher than the solubility product (KSP) of calcium carbonate (Eq. 2). However, the amounts of CO3
2- 259 

in a given system depends on both the amount of DIC (which in turn depends on several parameters 260 

such as temperature and partial pressure of carbon dioxide) and pH. Because of the high number of 261 

parameters that may contribute to control calcium carbonate precipitation, different bacteria, isolated 262 

from different habitats, are able to create local micro-environments that induce such phenomenon 263 

(Hamilton 2003) (Fig. 3). The four main groups of microorganisms that may influence calcification 264 

are: (i) photosynthetic organisms such as cyanobacteria and algae, (ii) sulfate reducing bacteria 265 



10 
 

responsible for dissimilatory reduction of sulfates, (iii) organisms utilizing organic acids, and (iv) 266 

organisms that are involved in nitrogen cycle either by ammonification of amino acids/nitrate 267 

reduction or hydrolysis of urea (Stocks-Fischer et al. 1999; Hammes and Verstraete 2002; Jargeat et 268 

al. 2003) (For an exhaustive review please refer to the study of Dhami et al. 2014). The precipitation 269 

of carbonates by bacteria through urea hydrolysis is the most straightforward and easily controlled 270 

mechanism of microbial induced calcium carbonate precipitation since it produces high amounts of 271 

carbonates and an alkaline environment (Dhami et al. 2014). Boquet et al. (1973) firstly demonstrated 272 

the precipitation of calcium carbonate by soil bacteria under laboratory conditions (Fig. 3). At that 273 

time, several Bacillus spp. and Pseudomonas aeruginosa were shown to form calcite crystals. In 274 

1990, Adolphe et al. patented the concept of using calcifying microorganisms to treat artificial 275 

surfaces and founded the “Calcite Bioconcept” company. However, the first in situ application of 276 

bioconsolidation was carried out in Thouars (France) on the tower of the Saint Médard Church by 277 

using Bacillus cereus only in 1993 (Le Metayer-Levrel et al. 1999) (Table 1). Although this 278 

application was judged as successful, some drawbacks were: the need to regularly repeat the treatment 279 

(for instance, each 10 years); the presence of natural pigments in the nutritional medium of B. cereus 280 

which co-precipitated with calcium carbonate thus giving the new stone layer a light persistent 281 

coloring; the formation of endospores and a thin biofilm of Bacillus sp. For these reasons, Rodriguez-282 

Navarro et al. (2003) proposed to replace Bacillus sp. with a Gram-negative, non-pathogenic soil 283 

bacterium, i.e. Myxococcus xanthus. Tiano et al. (1999) studied the effect of Micrococcus spp. and 284 

Bacillus subtilis on Pietra di Lecce bioclastic limestone. Variations in the kind of bacteria used and 285 

the methods for bacterial cell delivery to the stone surface have been tested by different Authors with 286 

variable success (Daskalakis et al. 2014; Dhami et al. 2014; Helmi et al. 2016; Micallef et al. 2016). 287 

Recently, the use of indigenous calcifying bacteria for re-inoculation of stone monuments has been 288 

proposed as an alternative strategy for bioconsolidation (Jroundi et al. 2017). However, 289 

microbiologically driven calcification remains more complex than chemical methods, since microbial 290 

activity depends on many factors such as temperature, pH, concentrations of donors and acceptors of 291 

electrons and concentration and diffusion rates of nutrients and catabolites. Hence, the use of 292 

microbial calcification at large scales has not been always encouraged since it may be hard to manage 293 

(Dhami et at. 2014). Also the cost of media required for bacterial growth may be a significant 294 

economic limit of this approach (Achal et al. 2009; 2010).  295 

 296 

Biorestoration of wall paintings 297 
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As previously mentioned, also stone artworks may suffer from inaccurate or aged restoration 298 

strategies. This was the case of two wall paintings covered by animal glue layers during restoration 299 

interventions which have been restored using different bio-based approaches as described by Beutel 300 

et al. (2002) and Antonioli et al. (2005), respectively (Table 1; Fig. 2). The first study concerns 301 

medieval wall paintings called “Falcon hunt-meeting of the living and the dead” located in St. 302 

Alexander church in Wildeshausen, Germany. These paintings were suffering from severe peeling 303 

off from the roughcast surface (Beutel et al. 2002) (Table 1). Actually, this is a common problem of 304 

wall paintings in medieval churches of the Northern Europe since they have long been treated by 305 

application of casein layers to stabilize them (Beutel et al. 2002). As for other glue-like matrices, 306 

aging in addition to climate effects causes progressive hardening and stiffening of casein layers thus 307 

causing an even more drastic peeling off of the painted parts from the surface (Beutel et al. 2002). 308 

This problem was fixed by removing aged casein layers through application of a selected microbial 309 

serine-protease (Alcalase 2.5 DX-L). The enzyme was covalently immobilized onto an epoxide-310 

functionalized cellulose acetate membrane (Beutel et al. 2002). By 2D fluorescence monitoring of 311 

the tryptophan exposed by casein hydrolysis, it could be estimated that 30-minute treatment was 312 

sufficient for substantial removal of the casein layers from the mural painting. 313 

The case of “Conversion of S. Efisio and battle” fresco by Spinello Aretino at the monumental 314 

Cemetery of Pisa (Italy) was even more complicated (Fig. 2f, g; Table 1). Because of weathering and 315 

other environmental aging, this fresco needed to be restored and for this purpose it was removed from 316 

the wall surface by using the tear-off technique in the 1980s. Firstly, the fresco was covered with a 317 

gauze that was sticked by applying an animal glue (mixed with high concentrations of formaldehyde, 318 

as antimicrobial agent). Once the glue had been hardened, the fresco was detached from the wall. 319 

Unfortunately, the fresco was then forgotten until 2000s in a storeroom, so that, traditional application 320 

of protease mixtures were unable to remove the gauze (Antonioli et al. 2005). Because of the long 321 

time of storage, it is likely that the presence of formaldehyde had promoted the formation of a resistant 322 

net of cross-linked proteinaceous material, which was very recalcitrant to protease catalysis. 323 

However, the selection of a bacterial strain (i.e. Pseudomonas stutzeri) able to grow on chips of 324 

insoluble glue harvested from the “clothed” fresco (and hence possessing the right collagenase 325 

enzymes), finally helped to solve the problem. Actually, it was then possible to use this bacterial 326 

strain (i.e. cotton strips impregnated with live Pseudomonas stutzeri were applied) directly on the 327 

fresco and completely degrade the glue layer and remove the cloth from the fresco after only 12 hour 328 

treatment (Fig. 2f, g). 329 

 330 
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Biocleaning of graffiti and synthetic adhesives 331 

Stone monuments are not only aggressed by atmospheric events or microorganisms but, 332 

unfortunately, also by vandalism acts, including painting by unauthorized graffiti. Graffiti materials 333 

have a complex chemical composition that comprises synthetic polymers such as acrylics, alkyds and 334 

nitrocellulose, and several additives (Germinario et al. 2017). Quick removal of graffiti is an 335 

important issue, since the fresher the graffiti, the easier is their removal. Here again, bio-based 336 

(through enzymes or microorganisms) removal of synthetic materials is an emerging strategy which 337 

has already shown good results in a number of cases. 338 

One of the first examples of acrylic material removal by means of bio-based approach has 339 

been described by Bellucci et al. (1999). Here, a lipase has been used to eliminate aged acrylic 340 

ParaloidB72 resin from a 15th century tempera painting on panel and a 19th century oil painting on 341 

canvas. In both artworks, the presence of surface layers containing ParaloidB72 was the result of 342 

previous restoration interventions occurred in the early 1970s and in the 1980s, respectively (Bellucci 343 

et al. 1999). Cleaning was likely achieved via hydrolysis of the ester groups of the acrylate and 344 

methacrylate units contained in the synthetic resin leading to free carboxylic acid groups. This 345 

reaction therefore generated more hydrophilic products which facilitated acrylic resin removal by 346 

aqueous cleaning systems (Bellucci et al. 1999). Bio-based removal of acrylic materials is particularly 347 

advantageous for treating painting where the use of traditional methods, e.g. organic solvents, would 348 

likely remove also original paint layers. However, the same approach can be employed also to treat 349 

stone materials. For instance, Germinario et al. (2017) tested different lipases in oil-in-water micro-350 

emulsions for the removal of acrylic marker pen inks from unglazed ceramic surfaces. Very recently, 351 

Palla and co-workers (2017) successfully detached a canvas layer glued by the same acrylic 352 

ParaloidB72 resin to a mosaic sample by applying a gelled (3% Klucel G) enzymatic solution with 353 

esterase activity. The bio-removal was very fast, only 40 minutes at room temperature (Palla et al. 354 

2017). The same research group also reported the removal of adhesive-tape glue residues present on 355 

specific areas of an acrylic paint on canvas. They used a microemulsion of Velvesil Plus® (a 356 

surfactant used in the cosmetic field) containing an esterase derived by a marine organism that proved 357 

to be active even at a temperature lower than 30°C (whereas most commercially available enzymes 358 

have an optimum temperature of 37°C) (Palla et al. 2016). These authors demonstrated that the 359 

enzymatic solution can be merged into the Velvesil Plus® gel (without any negative effect on enzyme 360 

activity) and easily applied to remove the undesired layers. The contact between enzyme and the layer 361 

to be removed was obtained by gently moving the microemulsion, by a soft-brush for 5 minutes 362 

(Giordano et al. 2018). As regards the use of living microorganisms, D. desulfuricans has proved able 363 
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to degrade nitrocellulose-based paints (Giacomucci et al. 2012), while the use of different bacterial 364 

strains has been tested for the bio-cleaning of acrylic polymers used in the restoration field (Troiano 365 

et al. 2014). 366 

CONCLUSION 367 

This report demonstrates that it is possible to face cultural heritage damage due to aging, 368 

weathering, pollution or wrong restoration interventions by using bacteria or purified enzymes 369 

suitably immobilized to contain the risk of employing aqueous solutions. Among the wide range of 370 

enzymes commercially available those displaying a good catalytic activity at low temperatures (lower 371 

than 30°C) are very promising since they can be applied also to fragile items. The microbial world as 372 

well as the marine environment seem to be good candidates to be explored for finding such enzymes. 373 

This field is promising also to find, in the future, a solution to contain microbial deterioration (Mazzoli 374 

et al. 2018) thus avoiding the use of acids, solvents and surfactants (dangerous for the artworks, the 375 

art restorers and the environment) for instance by using enzyme- or bacteriocin-mediated bacterial 376 

competition. In this case, the safety and effectiveness of the microorganisms employed is mandatory 377 

and the need for control and analysis before and after treatments strongly recommended. 378 

Interdisciplinary approaches and collaborations between art conservators and biotechnologists, 379 

biochemists and microbiologists is the essential requisite to preserve objects that state the immense 380 

creativity of artists and the high value of human history. 381 
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Figure Legends 

Fig. 1. Biocleaning of ancient textiles from starch glue. Pictures refer to biocleaning of a historical 

carpet dating back to the Ottoman period and exhibited in the museum of the Faculty of Applied Arts, 

Helwan University, Egypt (a, b, c) (modified from Ahmed and Kolisis 2011) and a coptic tunic dating 

back to the 5-6th century A.D. and exposed at the Egyptian Museum, Turin, Italy (d, e, f, g, h) 

(modified from Ferrari et al. 2017). b, c Detail of the carpet before (b) and after (c) the α-amylase 

treatment. e-h, Details of the Coptic tunic before (e, g) and after (f, h) the α-amylase treatment.  

 

Fig. 2. Biorestoration of stone monuments. a, b, Detail of a marble statue dedicate in 1921 by Lina 

Arpesani to the poetess Anna Zuccari and located in the Monumental Cemetery of Milan (Italy). The 

black crusts (a) affecting the statue were cleaned (b) by using sulfate-reducing Desulfovibrio vulgaris 

(modified from Troiano et al. 2013). c, d, e Cleaning of the wall painting in the lunette of the Santos 

Juanes church, Valencia, Spain from nitrate salt efflorescence by means of agar gel-entrapped 

Pseudomonas stutzeri. Pictures represent the fresco area before (c), during (d) and after biocleaning 

(modified from Bosch-Roig et al. 2013). f, e biorestoration of the Spinello Aretino fresco “Conversion 

of S. Efisio and battle” in the Monumental Cementery of Pisa (Italy). f For animal glue removal. 

Cotton strips impregnated with live Pseudomonas stutzeri were applied leading to fresco biocleaning 

(g) (modified from Antonioli et al. 2005) 

 

Fig. 3. Calcifying bacteria. Colonies of 6 different strains of Bacillus sphaericus and Bacillus lentus 

on agar plates during calcium carbonate deposition are shown (Dick et al. 2006). 
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Table 1. Some of the most significant examples of biorestoration/biocleaning of artworks described in the present study. 

Type of 

artwork 

Specific artwork (specimen) Historical period of 

the specimen 

Issue Biorestoration/biocleaning 

strategy 

Reference 

Paper Graphic artworks from albums (Graphic 

Collection Albertina, Vienna, Austria) 

XIX century A.D. Removal of aged 

starch glue 

Gel-entrapped α-amylase Schwarz et 

al. 1999 

Paper Paper documents of the Genoese Republic 

(Central Institute for Graphic Arts, Rome, 

Italy) 

XVII-XVIII 

century A.D. 

Removal of aged 

animal glue 

Agar-immobilized 

Ochrobactrum sp. TNS15E 

Barbabietola 

et al. 2016 

Textile Coptic tunic (Greek-Roman Museum, 

Alexandria, Egypt) 

 Removal of aged 

oily stains 

Lipase from Candida 

cylindracea 

Ahmed et al. 

2010 

Textile Carpet (Museum of the Faculty of Applied 

Arts, Helwan University, Egypt) 

Ottoman period Removal of aged 

starch glue 

α-amylase from Aspergillus 

oryzae 

Ahmed and 

Kolisis 2011 

Textile Coptic tunic (Egyptian Museum, Turin, 

Italy) 

V-VI century A.D. Removal of aged 

starch glue 

Gellan immobilized α-

amylase from Bacillus sp. 

Ferrari et al. 

2017 

Stone 

monument 

Milan Cathedral (Italy) XV century A.D. Removal of black 

crust 

Sulfate-reducing 

Desulfovibrio vulgaris 

ATCC 29579 

Cappitelli et 

al. 2007b 

Stone 

monument 

Florence Cathedral (Italy) XV century A.D. Removal of black 

crust 

Carbogel-entrapped sulfate-

reducing Desulfovibrio 

vulgaris ATCC 29579 

Gioventù et 

al. 2011 

Stone 

monument 

Matera Cathedral (Italy) XII century A.D. Removal of 

nitrate and 

sulphate crusts 

Carbogel entrapped nitrate-

reducing Pseudomonas 

pseudoalcaligenes KF707 

and sulfate-reducing 

Desulfovibrio vulgaris 

ATCC 29579 

Alfano et al. 

2011 

Stone 

monument 

Stone column and marble statue, 

Monumental Cemetery (Milan, Italy) 

XX century A.D. Removal of black 

crust  

Desulfovibrio vulgaris 

ATCC 29579 plus non-ionic 

detergent 

Troiano et al. 

2013 
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Stone 

monument 

Saint Médard Church, (Thouard, France) XII century A.D. Limestone 

bioconsolidation 

Bacillus cereus Le Metayer 

et al. 1999 

Wall 

paintings 

Wall paintings of the lunettes of the central 

vault, Santos Juanes church (Valencia, 

Spain) 

XVII-XVIII 

century A.D. 

Removal of 

calcium nitrate 

salt efflorescence 

Agar-entrapped 

Pseudomonas stutzeri 

DSMZ 5190 

Bosch-Roig 

et al. 2013 

Wall 

paintings 

Falcon hunt-Meeting of the living and the 

dead, St. Alexander church (Wildeshauen, 

Germany) 

XIV century A.D. Removal of aged 

casein layers 

Covalently immobilized 

protease (Alcalase 2.5 DX-

L) 

Beutel et al. 

2002 

Wall 

paintings 

Conversion of S. Efisio and battle by 

Spinello Aretino, Monumental Cemetery 

(Pisa, Italy) 

XIV century A.D. Removal of aged 

formaldehyde-

reated animal glue 

Cotton strips impregnated 

with Pseudomonas stutzeri 

A29 

Antonioli et 

al. 2005 

Painting 

on panel 

The Visitation with St. Joseph, St. Zacharias 

and Four Angels 

XV century A.D. Removal of 

acrylic resin 

Lipase from Candida 

cylindracea 

Bellucci et 

al. 1999 

Painting 

on canvas 

Portrait of a man XIX century A.D. Removal of 

acrylic resin 

Lipase from Candida 

cylindracea 

Bellucci et 

al. 1999 
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