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ON THE p-ADIC DENSENESS OF THE QUOTIENT SET OF A

POLYNOMIAL IMAGE

PIOTR MISKA, NADIR MURRU, AND CARLO SANNA

Abstract. The quotient set, or ratio set, of a set of integers A is defined as

R(A) := {a/b : a, b ∈ A, b 6= 0} .
We consider the case in which A is the image of Z+ under a polynomial f ∈ Z[X], and we give
some conditions under which R(A) is dense in Qp. Then, we apply these results to determine
when R(Sn

m) is dense in Qp, where Sn
m is the set of numbers of the form xn

1 + · · ·+ xn
m, with

x1, . . . , xm ≥ 0 integers. This allows us to answer a question posed in [Garcia et al., p-adic
quotient sets, Acta Arith. 179, 163–184]. We end leaving an open question.

1. Introduction

The quotient set, also known as ratio set, of a set of integers A is defined as

R(A) :=
{a
b

: a, b ∈ A, b 6= 0
}
.

The question of when R(A) is dense in R+ is a classical topic and has been studied by many
researchers (see, e.g., [1, 2, 3, 7, 8, 9, 11, 15]).

Recently, some authors approached the study of the denseness of R(A) in the field of p-adic
numbers Qp. Garcia and Luca [6] proved that the quotient set of the Fibonacci numbers
is dense in Qp, and Sanna [12] extended this result to the k-generalized Fibonacci numbers.
In [5], the denseness of R(A) in Qp is studied when A is the set of values of a Lucas sequence,
the set of positive integers which are sum of k squares, respectively k cubes, or the union of
two geometric progressions. Moreover, Miska and Sanna [10] proved that, given any partition
A1, . . . , Ak of Z+, for all prime numbers p but at most blog2 kc exceptions at least one of
R(A1), . . . , R(Ak) is dense in Qp.

In this paper, we focus on the study of the denseness of R(A) in Qp when A is the image of
Z+ under a polynomial f ∈ Z[X]. For the sake of notation, we put Rf := R(f(Z+)) for any
function f : Z → Qp. The following easy lemma provides a necessary condition under which
Rf is dense in Qp.

Lemma 1.1. Let f : Zp → Qp be a continuous function. If Rf is dense in Qp, then f has a
zero in Zp.

Proof. Since Rf is dense in Qp, there exists a sequence of integers (xn)n≥0 such that f(xn)→ 0
(in the p-adic topology) as n → ∞. By the compactness of Zp, there exists a subsequence
(xnk

)k≥0 converging to some x∞ ∈ Zp. Since f is continuous, we get f(x∞) = 0, as desired. �

Our first result is a sufficient condition under which Rf is dense in Qp. We postpone its
proof to Section 2.

Theorem 1.2. Let f : Zp → Qp be an analytic function and let z1, z2 ∈ Zp be two (not
necessarily distinct) zeros of f of multiplicities µ1, µ2, respectively. If µ1, µ2 are coprime, then
Rf is dense in Qp.

As an immediate consequence we have the following corollary.
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Corollary 1.3. If f : Zp → Qp is an analytic function with a simple zero in Zp, then Rf is
dense in Qp.

The above results make possible to completely characterize the linear and quadratic poly-
nomials f for which Rf is dense in Qp.

Proposition 1.4. Let f ∈ Z[X] be a polynomial of degree 1 or 2. Then, Rf is dense in Qp if
and only if f has a simple zero in Zp.

Proof. When f has degree 1, the thesis follows immediately from Lemma 1.1 and Corollary 1.3.
Assume f has degree 2. If f has a simple zero in Zp, then Rf is dense in Qp by Corollary 1.3.
On the other hand, if f has no simple zeros in Zp, then we have two cases. In the first case, f
has no zeros in Zp. Then, by Lemma 1.1, Rf is not dense in Qp. In the second case, f has a zero
in Zp with multiplicity 2, i.e., f(x) = a(x− z)2, for some a, z ∈ Zp with a 6= 0. Consequently,
Rf is not dense in Qp, since the p-adic valuation of each element of Rf is divisible by 2. �

For polynomials of higher degrees, we can not exploit Lemma 1.1 and Corollary 1.3 to
determine if Rf is dense in Qp. For instance, consider the case of a polynomial of degree 3
with a double root in Zp and the other root not in Zp. However, if we consider polynomials
having all their roots in Zp, then we have the following result.

Proposition 1.5. Let f ∈ Z[X] be a nonconstant polynomial splitting in Zp and of degree less
than 31. Then, Rf is not dense in Qp if and only if there exists an integer n > 1 which divides
the multiplicity of each root of f .

Proof. Let µ1, . . . , µs be the multiplicities of the roots of f . If there exists an integer n > 1
dividing all µ1, . . . , µs, then f = agn, for some a ∈ Z \ {0} and g ∈ Z[X]. Consequently, Rf is
not dense in Qp, since the p-adic valuation of each element of Rf is divisible by n. Now suppose
that there exists no integer n > 1 dividing all µ1, . . . , µs. We shall prove that gcd(µi, µj) = 1
for some i, j. In this way, by Theorem 1.2, it follows that Rf is dense in Qp. For the sake of
contradiction, assume gcd(µi, µj) > 1 for all i, j. In particular, we have s ≥ 3, and that each
µi has at least two distinct prime factors. Also, at least one of µ1, . . . , µs is odd. Without
loss of generality, we can assume µ1 odd. Thus µ1 ∈ {15, 21}, and at least one of µ2, . . . , µs
is not divisible by 3. Without loss of generality, we can assume µ2 not divisible by 3. Thus
µ2 ∈ {10, 14}. Since µ3 has at least two distinct prime factors, µ3 ≥ 6 and consequently
deg f = µ1 + · · ·+ µs > 30, absurd. �

Remark 1.6. Proposition 1.5 is optimal in the sense that there exists a polynomial f ∈ Z[X]
of degree 31, splitting in Zp, with the greatest common divisor of the multiplicities of its roots
equal to 1, but such that Rf is not dense in Qp. Indeed, consider

f(X) = (X + 1)6(X + 2)10(X + 3)15.

Then, for p > 2 (respectively p = 2) the p-adic valuation of each element of f(Z+) is of the
form 6n, 10n, or 15n (respectively 10n, 6n+15, or 15n+6), for some integer n ≥ 0. Therefore,
no element of Rf has p-adic valuation equal to 1 (respectively 2), and Rf is not dense in Qp.

Remark 1.7. Using the same reasonings as in the proof of Proposition 1.5, one can prove a
slightly more general statement: Given f = gh, where g, h ∈ Z[X] are such that g splits in Zp,
1 ≤ deg g ≤ 30, and the p-adic valuation of h is constant, we have that Rf is not dense in Qp

if and only if there does not exist an integer n > 1 dividing all the multiplicities of the roots
of g.

For integers m,n ≥ 2, define the set

Snm := {xn1 + · · ·+ xnm : x1, . . . , xm ∈ Z≥0} .
The authors of [5] considered n = 2, 3 and proved the following results [5, Theorems 4.1
and 4.2]. (Actually, there is a small error, here corrected, in [5, Theorem 4.2], see Remark 1.15
below.)
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Theorem 1.8. For all prime numbers p, we have:

(a) R(S2
2) is dense in Qp if and only if p ≡ 1 (mod 4).

(b) R(S2
m) is dense in Qp for all integers m ≥ 3.

(c) R(S3
m) is dense in Qp for all integers m ≥ 2.

For all integers n, b ≥ 2, let γ(n, b) denote the smallest positive integer g such that for every
a ∈ Z the equation

(1) Xn
1 + · · ·+Xn

g ≡ a (mod b)

has a solution. Furthermore, let θ(n, b) be the smallest positive integer g such that for a = 0
the equation (1) has a solution with at least one of X1, . . . , Xg coprime with b. The quantities
γ(n, b), θ(n, b) have been studied in regard to analogs of Waring’s problem modulo p (see, e.g.,
[13, 14]).

We give an effective criterion to establish if R(Snm) is dense in Qp. We postpone its proof to
Section 3.

Theorem 1.9. Let m,n ≥ 2 be integers, let p be a prime number, and put k := νp(n).

(a) If m ≥ θ(n, p2k+1), then R(Snm) is dense in Qp.

(b) If m < θ(n, p2k+1) and (n, p) /∈ {(2, 2), (4, 2), (8, 2), (16, 2)}, then R(Snm) is not dense
in Qp.

(c) R(S2
m) is dense in Q2 if and only if m ≥ 3.

(d) R(S4
m) is dense in Q2 if and only if m ≥ 8.

(e) R(S8
m) is dense in Q2 if and only if m ≥ 16.

(f) R(S16
m ) is dense in Q2 if and only if m ≥ 64.

Example 1.10. Let us consider the denseness of R(S6
m) in Q11. In order to apply Theorem 1.9,

we have to compute θ(6, 11). The nonzero sixth powers modulo 11 are 1, 3, 4, 5, and 9. Hence,
the minimum positive integer g such that the equation X6

1 + · · · + X6
g ≡ 0 (mod 11) has a

solution, with at least one of X1, . . . , Xg not divisible by 11, is θ(6, 11) = 3. Consequently, by
points (a) and (b) of Theorem 1.9, we have that R(S6

m) is dense in Q11 if and only if m ≥ 3.

Example 1.11. Let us consider the denseness of R(S10
m ) in Q2. In order to apply Theorem 1.9,

we have to compute θ(10, 8). We have x10 ≡ 1 (mod 8) for each odd integer x. Hence, it
follows easily that θ(10, 8) = 8. Consequently, by points (a) and (b) of Theorem 1.9, we have
that R(S10

m ) is dense in Q2 if and only if m ≥ 8.

For m = 2, we have the following corollary.

Corollary 1.12. Let n ≥ 2 be an integer, let p be a prime number, and put k = νp(n). Then

R(Sn2 ) is dense in Qp if and only if −1 is an nth power modulo p2k+1. In particular, R(Sn2 ) is
dense in Qp whenever n is odd.

Proof. First, assume p = 2 and n ∈ {2, 4, 8, 16}. Then, it can be easily checked that −1 is not
an nth power modulo p2k+1. By Theorem 1.8, R(S2

2) is not dense in Qp and, since Sn2 ⊆ S2
2 ,

we get that R(Sn2 ) is not dense in Qp. Now assume (n, p) /∈ {(2, 2), (4, 2), (8, 2), (16, 2)}. By
Theorem 1.9, we have that R(Sn2 ) is dense in Qp if and only if there exist integers 0 ≤ x1, x2 <
p2k+1, not both divisible by p, such that xn1 + xn2 is divisible by p2k+1. It easy to see that this
last condition is equivalent to the −1 being an nth power modulo p2k+1. �

In [5, Problem 4.3] it is asked about the denseness in Qp of R(S4
m) and R(S5

m). From
Corollary 1.12, we have that R(S5

m) is dense in Qp for all integers m ≥ 2 and prime numbers
p. Regarding R(S4

m), the situation is more complicated. Theorem 1.9(d) already covers the
case p = 2. For p > 2 we have the following result.
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Theorem 1.13. For all prime numbers p > 2, we have:

(a) R(S4
2) is dense in Qp if and only if p ≡ 1 (mod 8).

(b) R(S4
3) is dense in Qp if and only if p 6= 5, 29.

(c) R(S4
4) is dense in Qp if and only if p 6= 5.

(d) R(S4
m) is dense in Qp for all integers m ≥ 5.

Proof. By Corollary 1.12, R(S4
2) is dense in Qp if and only if −1 is a fourth power modulo p. In

turn, this is well known to be equivalent to p ≡ 1 (mod 8). Hence, (a) is proved. Substituting
a = −1 into (1), the bound θ(n, b) ≤ γ(n, b) + 1 follows. From [13, Theorem 3′], we have
that γ(4, p) = 2 for all prime numbers p > 41. Hence, θ(4, p) ≤ 3 for all prime numbers
p > 41. Then, a computation shows that θ(4, p) ≤ 3 for all prime numbers p 6= 5, 29. Precisely,
θ(4, 5) = 5 and θ(4, 29) = 4. Now the claims (b), (c), and (d) follow from Theorem 1.9. �

We leave the following general question to the readers.

Question 1.14. Given a prime number p and a polynomial f ∈ Z[X], is there an effective
criterion to establish if Rf is dense in Qp? What about multivariate polynomials?

Remark 1.15. In [5, Theorem 4.2] it is stated that R(S3
2) is not dense in Q3. This is not

correct, since R(S3
2) is dense in Q3 in light of Corollary 1.12. The mistake in the proof of [5,

Theorems 4.2] is when, at point (b2), it is asserted that: “If x/y ∈ R(S3
2) is sufficiently close to

3 in Q3, then ν3(x) = ν3(y)+1. Without loss of generality, we may suppose that ν3(x) = 1 and
ν3(y) = 0.” This is not true, because if y is the sum of two cubes, then there is no guarantee

that y/3ν3(y) is still the sum of two cubes. For instance, if y = 13 + 53 then y/3ν3(y) = 14 is
not the sum of two cubes.

Notation. For each prime number p, let νp denote the usual p-adic valuation, with the con-
vention νp(0) := +∞. For integers a and m > 0, we write (a mod m) for the unique integer
r ∈ ]−b/2, b/2] such that a− r is divisible by m.

2. Proof of Theorem 1.2

We have to prove that for all r ∈ Qp and u > 0 there exist x1, x2 ∈ Z+ such that f(x2) 6= 0
and

νp

(
f(x1)

f(x2)
− r
)
> u.

Clearly, since Q∗p is dense in Qp, it is enough to consider r 6= 0. Furthermore, since Z+ is dense
in Zp and f is continuous, we can assume, less restrictively, x1, x2 ∈ Zp. By hypothesis, for
i = 1, 2, we have f(X) = (X − zi)µigi(X), where gi : Zp → Qp is an analytic function such

that gi(zi) 6= 0. Put xi := yip
ki + zi, for i = 1, 2, where y1, y2 ∈ Zp \ {0} and k1, k2 ∈ Z+

will be chosen later. Without loss of generality, we can assume νp(g1(z1)) ≤ νp(g2(z2)). Thus,
setting G := g2(z2)/g1(z1), we have G ∈ Zp \ {0}. Since g1, g2 are continuous, for sufficiently
large k1, k2 we have

(2) νp

(
G · g1(x1)

g2(x2)
− 1

)
> u− νp(r),

In particular, it is implicit that g(x2) 6= 0 and consequently f(x2) 6= 0. We fix k1, k2 such that

k1µ1 − k2µ2 = νp(r),

and (2) holds. This is possible thanks to the condition gcd(µ1, µ2) = 1. Indeed, by Bézout’s
lemma, the quantity k1µ1 − k2µ2 can be equal to any integer with k1 and k2 arbitrarily large
(if k1µ1 − k2µ2 = a, then (k1 +Kµ2)µ1 − (k2 +Kµ1)µ2 = a, for any integer K).

Again by Bézout’s lemma, there exist integers h1, h2 ≥ 0 such that h1µ1 − h2µ2 = 1. We
set yi = shi , for i = 1, 2, where s := p−νp(r)rG. Note that y1, y2 ∈ Zp \ {0}, as required.
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Hence, we have

f(x1)

f(x2)
=

(x1 − z1)µ1
(x2 − z2)µ2

· g1(x1)
g2(x2)

= pk1µ1−k2µ2 · y
µ1
1

yµ22
· g1(x1)
g2(x2)

= pνp(r) · sh1µ1−h2µ2 · g1(x1)
g2(x2)

= pνp(r) · s · g1(x1)
g2(x2)

= rG · g1(x1)
g2(x2)

,

so that, recalling (2), we get

νp

(
f(x1)

f(x2)
− r
)

= νp

(
r

(
G · g1(x1)

g2(x2)
− 1

))
> u,

as desired.

3. Proof of Theorem 1.9

(a) Suppose that there exist integers 0 ≤ x1, . . . , xm < p2k+1, not all divisible by p, such
that xn1 + · · ·+xnm is divisible by p2k+1. Up to reordering x1, . . . , xm, we can assume that p - x1.
Put f(X) = Xn + xn2 + · · ·+ xnm, so that f ′(X) = nXn−1. In particular, all the roots of f are
simple. Since p - x1, we have

νp(f(x1)) ≥ 2k + 1 > 2k = 2νp(f
′(x1)),

so that, by Hensel’s lemma [4, Ch. 4, Lemma 3.1], f has a simple root in Zp. Hence, by
Corollary 1.3, Rf is dense in Qp. Clearly, Rf ⊆ R(Snm), so that R(Snm) is dense in Qp.

(b) Suppose that there are no integers x1, . . . , xm as before, and that

(3) (n, p) /∈ {(2, 2), (4, 2), (8, 2), (16, 2)}.
We shall prove that 4k+1 < n. For the sake of contradiction, suppose 4k+1 ≥ n. Since n ≥ 2,
we have k ≥ 1. Also, we have 4k+ 1 ≥ pk, which implies p ≤ 5. Now, taking into account (3),
it can be readily checked that

(n, p) ∈ {(3, 3), (9, 3), (5, 5)}.
But 33 |(13+83), 35 |(19+269), and 53 |(15+245), contradicting the nonexistence of x1, . . . , xm.

Let y1, . . . , ym ≥ 0 be integers, not all equal to zero. Put µ := min{νp(yi) : i = 1, . . . ,m},
I := {i : νp(yi) = µ}, and J := {1, . . . ,m} \ I. Also, put zi := yi/p

µ for i ∈ I, so that zi is an
integer not divisible by p. The nonexistence of x1, . . . , xm implies that

(4) νp

(∑
i∈I

zni

)
≤ 2k.

Therefore, since 2k < n, we have

νp

(∑
i∈I

yni

)
= µn+ νp

(∑
i∈I

zni

)
≤ µn+ 2k < (µ+ 1)n ≤ νp

∑
j∈J

ynj

 ,

and consequently

νp(y
n
1 + · · ·+ ynm) = νp

(∑
i∈I

yni

)
= µn+ νp

(∑
i∈I

zni

)
,

which in turn, by (4), implies that

(νp(y
n
1 + · · ·+ ynm) mod n) ∈ {0, . . . , 2k}.

Thus, for each a ∈ R(Snm) \ {0} we have

(νp(a) mod n) ∈ {−2k, . . . , 2k},
that is, the p-adic valuations of the nonzero elements of R(Snm) belong to at most 4k + 1
residue classes modulo n. Since 4k+ 1 < n, at least one residue class modulo n is missing and,
a fortiori, R(Snm) is not dense in Qp.
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(c) The claim follows immediately from Theorem 1.8.
From now on, assume n = 2k, with k ∈ {2, 3, 4}. Let Tnm be the topological closure of Snm in

Q2. Clearly, we have

Tnm = {xn1 + · · ·+ xnm : x1, . . . , xm ∈ Z2} .

It is a standard exercise showing that the nonzero nth powers of Z∗2 are exactly the elements
of the form 1 + 4ny, with y ∈ Z2. As a consequence,

Tn1 = {2nv(1 + 4ny) : v ∈ Z≥0, y ∈ Z2} ∪ {0}.

Let v1, v2 ≥ 0, j ≥ 1 be integers and y1, y2 ∈ Z2. If v1 = v2, then

2nv1(j + 4ny1) + 2nv2(1 + 4ny2) = 2nv1(j + 1 + 4nz),

where z := y1 + y2 ∈ Z2. If v1 < v2, then

2nv1(j + 4ny1) + 2nv2(1 + 4ny2) = 2nv1(j + 4nz),

where z := y1 + 2n(v2−v1)−k−2(1 + 4ny2) ∈ Z2, since n = 2k ≥ k + 2. If v1 > v2, then

2nv1(j + 4ny1) + 2nv2(1 + 4ny2) = 2nv2(1 + 4nz),

where z := 2n(v1−v2)−k−2(j + 4ny1) + y2 ∈ Z2, again since n ≥ k + 2.
Therefore, it follows easily by induction on m that

(5) Tnm = {2nv(j + 4ny) : v ∈ Z≥0, j ∈ {1, . . . ,m}, y ∈ Z2} ∪ {0}.

(d) On the one hand, using (5), it can be checked quickly that 15 /∈ R(T 4
7 ). Hence, R(S4

7) is
not dense in Q2. On the other hand, we have

24v+r(1 + 2y) =
24v(8 + 16y)

24·0(23−r + 16 · 0)
∈ R(T 4

8 ),

for all v ∈ Z≥0, r ∈ {0, 1, 2, 3}, and y ∈ Z2. Hence, Zp ⊆ R(T 4
8 ) and, since R(T 4

8 ) is closed by
inversion, we get that R(T 4

8 ) = Qp. Thus R(S4
8) is dense in Qp.

(e) On the one hand, by (5), the 2-adic valuation of each nonzero element of T 8
15 is congruent

to 0, 1, 2, or 3 modulo 8. Hence, R(T 8
15) contains no element with 2-adic valuation equal to 4,

and consequently R(S8
15) is not dense in Q2. On the other hand, we have

28v+r(1 + 2y) =
28v(16 + 32y)

28·0(24−r + 32 · 0)
∈ R(T 8

16)

and

28v+r+4(1 + 2y) =
28(v+1)(2r + 32 · 0)

28·0(16 + 32 −y1+2y )
∈ R(T 8

16)

for all v ∈ Z≥0, r ∈ {0, 1, 2, 3, 4}, and y ∈ Z2. Hence, Zp ⊆ R(T 8
16) and, since R(T 8

16) is closed
by inversion, we get that R(T 8

16) = Qp. Thus R(S8
16) is dense in Qp.

(f) On the one hand, by (5), the 2-adic valuation of each nonzero element of T 16
63 is congruent

to 0, 1, 2, 3, 4, or 5 modulo 16. Hence, R(T 16
63 ) contains no element with 2-adic valuation

equal to 6, and consequently R(S16
63) is not dense in Q2. On the other hand, 29 divides

516 + 116 + · · ·+ 116 (63 times 116). Hence, by point (a), we get that R(S16
64) is dense in Q2.
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