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ABSTRACT 

Sexual dysfunction is a clinical condition due to different causes including the iatrogenic origin. For instance, 

it is well known that sexual dysfunction may occur in patients treated with antidepressants like Selective 

Serotonin Reuptake Inhibitors (SSRI). A similar side effect has been also reported during treatment with 

finasteride, an inhibitor of the enzyme 5alpha-reductase, for androgenetic alopecia. Interestingly, sexual 

dysfunction persists in both cases after drug discontinuation. These conditions have been named Post-SSRI 

Sexual Dysfunction (PSSD) and Post-Finasteride Syndrome (PFS). In particular, feeling of a lack of connection 

between the brain and penis, loss of libido and sex drive, difficulty in achieving an erection and genital 

paresthesia have been reported by patients of both conditions. It is interesting to note that the incidence of 

these diseases is probably so far underestimated and their etiopathogenesis is not sufficient explored. To this 

aim, the present review will report the state of art of these two different pathologies and discuss, on the basis 

of the role exerted by three different neuromodulators such as dopamine, serotonin and neuroactive steroids, 

whether the persistent sexual dysfunction observed could be determined by common mechanisms. 

 

KEYWORDS 
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INTRODUCTION 

Many drugs may induce sexual dysfunction during the treatment. However, finasteride [i.e., an inhibitor of the 

enzyme 5alpha-reductase (5α-R)] used to contrast the androgenetic alopecia (AGA) or some antidepressant 

drugs, such as the selective serotonin reuptake inhibitors (SSRIs), may induce sexual dysfunction also after 

the suspension of the treatment. On this basis, the existence of a Post-Finasteride Syndrome (PFS) and a 

Post-SSRI Sexual Dysfunction (PSSD) has been proposed. In the present review we will discuss the 

knowledge accumulated so far on the pathological phenotype of these two diseases, and in particular 

highlighting the possible common features on the sexual dysfunction.    

 

THE POST-FINASTERIDE SYNDROME 

Finasteride (e.g., Propecia or Proscar) is an inhibitor of 5α-R type 1 and 2, although it has higher affinity for 

the type 2 in humans [1,2]. This drug proved to be highly effective in the control of dihydrotestosterone (DHT) 

levels and the progression of benign prostatic hyperplasia (BPH), and was approved for this use in 1992. In 

1997, this inhibitor was also approved for the treatment of AGA. Finasteride at 1mg/day has been shown to 

lead to a significant reduction in the progression of the baldness and to a stimulation of new hair growth [3]. 

Dutasteride (e.g., Avodart) inhibits both 5α-R type 1 and 2 with greater potency than finasteride [4] , and has 

similar efficacy to this latter drug on BPH symptoms.  

5α-R inhibitors have generally been described as well-tolerated and relatively safe drugs, however, recent 

observations have led to a more critical re-evaluation of these concepts. Indeed, several clinical studies 

showed sexual adverse effects during finasteride or dutasteride treatment, such as erectile and ejaculatory 

dysfunction and loss of libido [5,2,6-8]. Importantly, as demonstrated in a subset of AGA patients, persistent 

sexual side effects, like for instance feeling a lack of connection between the brain and penis, loss of libido 

and sex drive, difficulty in achieving an erection, genital numbness or paresthesia etc., were reported even 

after discontinuation of the treatment [9,10,2,11-21]. To describe these and others (see below) persistent side 

effects in these patients it has been proposed the term of PFS. Examples of the incidence of some of these 

sexual symptoms self-reported by PFS patients are shown in Figs. 1-4. Data were obtained in fifty-four PFS 

patients (range of age: 23-55 years old, median 35) who used 1-1.25 mg daily of Propecia, Proscar or generic 

finasteride (range of use: 5-4050 days, median 485) and who had discontinued the treatment at least 3 months 

before filling the questionnaire (range of discontinuation: 98-4770 days, median 1360).  

In addition, AGA patients may develop depression during finasteride treatment [22,23] that, in PFS patients, 

still persists despite treatment withdrawal [24,23,22,17-19,21]. Other symptoms reported by PFS patients are: 
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reduction in self-confidence, decreased initiative and difficulty in concentration, forgetfulness or loss of short-

term memory, irritability, suicidal thoughts, anxiety, panic attack, sleep problems. In addition, in the absence 

of clinical evidence of muscular disorder or strength reduction, some of these patients also reported muscular 

stiffness and cramps, tremors, chronic fatigue, joint pain and muscular ache [25,19,26,27]. 

As a consequence of such side effects, warnings of persistent adverse sexual effects of finasteride were made 

by Swedish Medical Products Agency in 2008 and by Medicines and Healthcare Products Regulatory Agency 

of UK in 2009. In addition, in 2012, the Food and Drug Administration in USA required the finasteride labels to 

include multiple persistent side effects. However, these observations were mainly based on self-reporting of 

the symptomatology by patients. Until now, only few papers have rigorously investigated these aspects. 

Basaria and coworkers [18] observed impaired sexual function, assessed by International Index of Erectile 

Function and Male Sexual Health Questionnaire, in twenty-five finasteride-users reporting persistent sexual 

dysfunction after suspension of the treatment. In addition, using PHQ-9 depression scale, Beck Depression 

Inventory and Hamilton Depression Scale 17, they showed higher depression scores. Functional MRI 

confirmed abnormalities in brain regions implicated in depression and sexual arousal, such as nucleus 

accumbens and prefrontal cortex [18]. These observations were recently confirmed by us in a cohort of sixteen 

PFS patients: ten of them showed a severe erectile dysfunction, while six patients a mild-moderate one [19]. 

In addition, we reported for the first time an objective evidence of neuropathy involving the peripheral 

neurogenic control of erection. Indeed, abnormal somatosensory evoked potentials of the pudendal nerve 

were observed in four of these PFS patients [19]. Finally, in agreement with the study by Basaria et al [18], we 

observed that eight of the PFS patients showed a DSM-IV major depressive disorder [19].  

 

THE POST-SSRI SEXUAL DYSFUNCTION 

Antidepressants are a broad class of drugs among the most prescribed. In particular, SSRIs, such as 

citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine and sertraline, represent one of the most 

efficacious medicaments with good tolerance, and, indeed, frequently prescribed. Their indication is broad, 

ranging from depression, obsessive-compulsive disorder, panic disorder, anxiety disorder and post-traumatic 

stress disorder. These medications show otherwise favorable spectrum of side effects; however, some of them 

can compromise the adherence to treatment, putting at risk the resolution of mood disorder. The most frequent 

side effects are sleeping problems, weight gain and sexual problems. Initial reports stated that less than 10% 

patients have SSRI-induced sexual dysfunction; however, the percentage raised up to 60-70% when doctors 
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specifically asked for sexual problems linked to antidepressant treatment [28,29]. Of notice, SSRI off-label 

prescriptions include premature ejaculation and paraphilias.  

Generally, medication-emergent side effects disappear after drug discontinuation. However, in some patients, 

it seems that this symptomatology may also persist after stopping the drug [30,31]. This condition, termed 

PSSD, is an often underestimated subtle compliance confused with depression or anxiety [32,33], two mood 

disorders that can cause sexual problems [34]. However, the presence of PSSD should be considered when 

patient reports that sexual compliant was not present before starting the treatment, still persists after remission 

from depression and discontinuation of the drug, and no other physical problems linked to sexual dysfunction 

are present. Sexual symptoms in PSSD include decreased libido and sex drive, weak or non-pleasurable 

orgasm, genital anesthesia, erectile dysfunction, and premature ejaculation [35,36].  

Examples of the incidence of some of these sexual symptoms self-reported by PSSD patients are shown in 

Figs. 1-4. Data were obtained in twenty-seven PSSD patients (range of age: 21-39 years old, median 28) who 

used 5-100 mg daily of different SSRIs, as citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine and 

sertraline (range of use: 1-5070 days, median 400) and who had discontinued the treatment at least 3 months 

before filling the questionnaire (range of discontinuation: 120-3240 days, median 740).  

Among them, genital anesthesia is specifically reported after SSRI use rather than in depression or anxiety 

disorder [37], and it has been proposed as a diagnostic criteria [31]. Other characteristics make difficult to 

detect PSSD. Indeed, this condition does not seem to be dependent on the SSRI used, on the dose, or on the 

indication for the prescription of the drug [30,38].  

As PSSD is still an underestimated condition, its clinical management received poor attention. The available 

therapeutic options are mainly meant for SSRI-induce sexual dysfunction. Some of them, like vardenafil or 

sildenafil (i.e., phosphodiesterase type 5 inhibitors), buspirone (i.e., a serotonin receptor type 1 agonist), 

trazodone and mirtazapine (antagonists of type 2 and type 3 serotonin receptors respectively), pramipexole 

and cabergoline (i.e., dopamine agonists) [25] have been also tried in PSSD with little success. 

 

SEXUAL BEHAVIOR IN MEN 

The expression of sexual behavior in humans depends by many factors that are acting during the embryonic, 

postnatal and peripubertal periods. The activation of the hypothalamus-pituitary-gonadal (HPG) axis is central 

for the control of reproduction and gonadal hormones are important to drive brain sexual differentiation [39] 

and sexual behavior. However, in humans, the sexual behavior is not always and only connected with 

reproductive behavior like in rodent animal models, but it is a clearly distinct behavior that involves the sexual 
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desire [40] that starts from a sexual stimulus perceived by the sensory systems and may end (or not) in a 

sexual behavior. As discussed in many reviews (for a recent one see [41]), the sexual stimulus and the sexual 

desire arise in brain regions different from those directly controlling the sexual behavior. In particular, 

neuroimaging studies demonstrated that the prefrontal cortex, as well as the anterior cingulate area, are 

activated in both sexes, whereas the thalamus is activated in men and the caudate-pallidum system is 

activated in women [42]. 

In men, sexual desire is strictly testosterone (T) dependent and is acting at multiple levels [41]. T therapy in 

hypogonadal individuals may improve low desire and erectile dysfunction [43], whereas androgen deprivation 

therapy (as that employed in prostate cancer) induces loss of libido and erection problems [44]. The 

neurotransmitters/neuropeptides that have been demonstrated to have a role in animal models, like dopamine 

and serotonin (see below), have also an impact on man sexual behavior. As reported before, the use of 

antidepressants that interfere with the serotoninergic system may induce sexual dysfunctions and a large 

number of researches of new formulations is directed to reduce these side-effects [45]. Men affected by 

Parkinson’s disease (which is characterized by the alteration of central dopaminergic system) show frequently 

alterations of their sexual activities (e.g., hypersexuality and compulsive sexual behavior, sexual behavior with 

underlying sexual dysfunction or restless genital syndrome, erectile dysfunction and decreased libido) 

suggesting that dopamine should have in men a role similar to that demonstrated in animal models [46-48]. 

Nitric oxide (NO) is controlling, at the level of the spinal cord, ejaculation [49] and also oxytocin is implicated 

in this control [50]. 

In conclusion, even though we cannot describe in details neural circuits controlling man sexual desire, sexual 

behavior and reproductive behavior, the pharmacological studies up to now confirm the hypothesis that rodents 

and humans display similar circuits, at least to control sexual behavior. 

 

RODENT MALE SEXUAL BEHAVIOR 

To identify the basic mechanisms underlying the control of sexual behavior, many studies have been 

performed in rodents. Several factors contribute to the development of proper responses to sexual stimuli. The 

first and most obvious factor is the presence of sex chromosomes (XX in female and XY in male) and, in 

particular of the SRy gene on the Y chromosome [51] inducing the regression of the Mullerian duct (leading to 

a male genital apparatus) and of the COUP-TFII gene [52] inducing the regression of the Wolffian duct 

(inducing the female genital apparatus).  
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The correct differentiation of the gonads is the fundamental process: in fact, the gonadal hormones induce the 

differentiation of male or female phenotypic features such as, external genitalia, muscle and bone development 

[53]. Moreover, gonadal hormones act during the early postnatal period (1 week after birth in rat) inducing the 

differentiation of male and female brain circuits related to reproduction [54]. Recently, Nugent and coworkers 

[55] demonstrated that also DNA methylation plays an important role for the differentiation of hypothalamic 

circuits, thus suggesting that also epigenetic factors are involved in this process [56]. 

Brain circuits reach their full activation during the so-called puberty period, characterized by profound 

modifications of the behavior (not only related to reproduction) caused by an increase of circulating gonadal 

hormones. The full development of puberty is linked to the availability of sufficient energy reserves, it means, 

chiefly, the increase of the fat tissue, which is also modeling the external shape of the body, another sexually 

differentiate trait [57]. The adipocytes produce a peptidic hormone (i.e., the leptin), which is able to stimulate 

the hypothalamic kisspeptin-gonadotropin-releasing hormone system [58] and to induce the correct functioning 

of the HPG axis [59]. 

Gonadal hormones are therefore the most important actors to induce the brain circuits to differentiate in male 

or female direction. Alterations of the hormonal homeostasis may induce gender differences in the adult, due 

to an impairment of the correct development of neural circuits. For example, the mutation of the androgen 

receptor gene in a XY individual may induce the so-called complete androgen-insensitivity syndrome with 

female external structures and atypical internal structures (undescended testes) (for a review see [60]). In 

addition, the mutation of the CYP21A2 gene in a XX individual, induces the congenital adrenal hyperplasia 

with malformation of external genitalia, decreased fertility and increased body hair [61]. Also the exposure to 

some environmental hormone-mimetic molecules (endocrine disruptors) may determine alterations of brain 

circuits, age of puberty, sexual behavior, social behavior and fertility [62,63]. 

The behaviors associated to reproduction are dependent by a complex network of circuits that are, at the end, 

modulating both the physiology of reproduction (through the hypothalamic gonadotropin releasing hormone 

system), and all associated behaviors (i.e in female rat, the receptivity, proceptive, receptive and pacing 

behaviors, while in male rat, also the motor system and performance) [49]. 

In male rat, the most important structures are the medial preoptic area (MPOA) and the bed nucleus of the 

stria terminalis (BST), expressing both estrogen (ER) and androgen (AR) receptors. In these brain areas, T 

has a major role to activate the male sexual behavior [64]. 

Brain and spinal centers involved in the control of sexual behavior are therefore under the control of gonadal 

hormones in adulthood and also for their development and maturation. However, several neurotransmitters 
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(e.g., serotonin and dopamine) and neuropeptides (e.g., oxytocin) may modulate the activity of these gonadal 

hormone-dependent circuits and influence the expression of different aspects of sexual behavior. 

 

DOPAMINE and MALE SEXUAL BEHAVIOR 

Many experimental studies, as well as clinical observations in individuals affected by Parkinson's disease, 

indicate that dopamine modulate male sexual behavior [65]. Administration of L-DOPA or dopamine receptors’ 

agonist facilitates male rat sexual behavior (stimulating ejaculation and decreasing latency), whereas 

administration of dopamine receptors antagonist inhibits sexual behavior and reduces premature ejaculation 

in man (for a review see [66]).  

Dopaminergic neurons are present in many brain locations and the hypothalamic centers controlling sexual 

behavior receive dopaminergic inputs from several extra- and intra-hypothalamic groups (for a description of 

the catecholaminergic system in mouse see [67]). The so-called incerto-hypothalamic system arises from the 

A13 (zona incerta), the A14 (periventricular hypothalamus), and the A15 group (anteroventral periventricular 

nucleus) and projects, among the others, to the MPOA, the parvocellular part of the paraventricular nucleus 

(PVN), and the periaqueductal grey [68,69], regions that are implicated in the control of erection and 

ejaculation, as well as in sexual motivation [70]. Thus the dopaminergic incerto-hypothalamic system seems 

to be the major regulating pathway for the modulation of sexual behavior. 

The copulatory behavior implies also the control of motor activity and, in this context, a second dopaminergic 

system should be implicated, the nigrostriatal system, with cell bodies located in the mesencephalic A9 group 

(substantia nigra) projecting to basal ganglia [71]. However, experimental data about the importance of this 

system in the control of male sexual behavior are contradictory. In fact, the infusion of agonist (apomorphine) 

or antagonist (haloperidol) of dopamine receptors in the striatum had no [72] or very limited [73] effects on 

copulatory behavior.  

A third pathway is implicated: the dopaminergic mesolimbic system that originates from the mesencephalic 

A10 group (area ventralis tegmentalis, AVT) and projects mainly to the nucleus accumbens [71]. This pathway 

is part of the reward circuit. Dopamine extracellular levels, measured through in vivo microdialisis, increase in 

the nucleus accumbens during copulation and decrease during the post-ejaculation phase [74]. Lesions of the 

AVT determined the increase of the post-ejaculatory phase, with no effects on the other phases [75]. Infusion 

of agonist of dopamine receptors in the nucleus accumbens affected the motor performance, but not the 

motivation [72,76], and also lesions of this nucleus affect male sexual behavior [77]. 
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Summarizing, the dopaminergic system is deeply involved in the control of male sexual behavior with its rostral 

groups [A13 (zona incerta), A15 (area ventralis periventricularis), A10 (AVT) and A9 (substantia nigra)]. The 

mesencephalic dopaminergic neurons are chiefly under the control of T via ARs or, to a minor extent, estradiol 

via ERβ [78,79]. The hypothalamic dopaminergic neurons are chiefly under the control of ERα [80], and 

dopamine may cooperate with the kisspeptin system, but in a still unknown way [81]. 

Lesions of the MPOA impaired male sexual behavior in several species of mammals, birds, reptiles and fishes 

(reviewed by [82]). Thus, the action of dopamine on male sexual behavior is chiefly determined by its release 

at the level of MPOA, as demonstrated by many studies including the use of agonist and antagonist of 

dopamine receptors (reviewed by [83]). The release of dopamine within the MPOA is regulated by the gaseous 

neurotransmitter NO produced through the action of the enzyme NO synthase (NOS) [84]. The MPOA shows 

a large sexually dimorphic population of NOS positive neurons [85]; the expression of this enzyme depends 

by T, through its aromatization in estradiol (reviewed by [86]). NOS positive neurons of the MPOA can be 

directly regulated by gonadal hormones, in fact, both ERα and AR are present in these neurons [87]. In 

agreement, orchidectomy produces an increase of intracellular dopamine content coupled with a decrease in 

its release, due to the lack of NOS production mediated by the decrease in T levels [70]. A number of studies 

have determined that NO release in the MPOA is mediated also by glutamate signaling, and glutamate (N-

methyl-D-aspartate, NMDA) receptors are present in NOS positive neurons (reviewed by [84]). The major 

sources of glutamatergic afferences to the MPOA are the medial amygdala, the BST, and the lateral septum 

[88]; the first two nuclei are part of the accessory olfactory pathway that send chemosensory information to 

the MPOA to regulate male sexual behavior [84].  

 

SEROTONIN and MALE SEXUAL BEHAVIOR 

Serotonin (5-HT) is involved in the inhibition of rat sexual behavior. In fact, earlier studies including p-

Chlorophenylalanine-induced 5-HT depletion [89], or lesions of raphe nuclei, where serotonin cell bodies are 

chiefly clustered [90], have shown a facilitation of sexual behavior, whereas, administration of 5-HT, 5-HT 

precursors or drugs stimulating the release of 5-HT inhibits sexual behavior (for reviews see [91,70]). 

According with this view, in man, the use of antidepressants interfering with the serotoninergic system 

(enhancing the serotonin action) as SSRIs or the serotonin transporter inhibitors, induces sexual dysfunctions 

[45].  

The dorsal part of the raphe nucleus (DRN) seems to be largely implicated in the innervation of limbic and 

forebrain structures [92]; therefore it has been considered an important region to explore the link among 
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gonadal hormones, serotonin and sexual behavior. Detailed immunohistochemical studies, performed in rat 

and mouse, demonstrated the presence of ERα and ERβ within the DRN serotoninergic neurons of both sexes, 

whereas the ARs are visible only in males in neurons adjacent to 5-HT elements [93]. In male macaques, 

androgens (T and DHT) stimulate the serotonin neurons in the DRN in an aromatase-independent way [94]. 

Gonadal hormones' receptors distribution in macaques is similar to that observed in rodents: about the 40% 

of serotonin cells of the DRN contain ERα or ERβ, whereas ARs are expressed in neighboring neurons [95]. 

In conclusion, the serotonin action on sexual behavior is mediated by the action of gonadal hormones at the 

level of DRN: a direct action of estrogens is mediated by the expression of ERα and ERβ within the 5-HT 

neurons, whereas the androgens are probably acting via local androgen-dependent circuits of the DRN. 

 

NEUROACTIVE STEROIDS 

Steroids affecting nervous function are not only produced by the endocrine glands (gonads and adrenal 

cortex), but also by nervous system (neurosteroids). Both pools of steroids are included in the family of 

neuroactive steroids (i.e. steroids able to interact with nervous structures) [96]. Therefore, they are important 

physiological modulators of the nervous function in the adult brain, and are not only involved in the 

neuroendocrine control of reproduction [97-99] but they also exert an homeostatic control of brain function, 

regulating synaptic plasticity [100,101], cytoskeletal proteins and the morphology of neurons and astrocytes 

[102,103], adult neurogenesis [104,105], myelination process [106,96,107], and cognition [100,101]. 

Neuroactive steroids’ family includes pregnenolone (PREG), dehydroepiandrosterone (DHEA), progesterone 

(PROG) and T. Importantly, PROG and T are metabolized by 5α-R, into dihydroprogesterone (DHP) and DHT 

respectively. Actually three 5α-R isozymes, defined as type 1, 2 and 3, have been identified in the brain 

[108,109]. DHP and DHT are then further converted by the action of 3α- (3α-HSOR) or 3β-hydroxysteroid 

oxidoreductase (3β-HSOR) into further metabolites. In particular DHP is converted into 

tetrahydroprogesterone (THP) or isopregnanolone while DHT is converted into 5α-androstane-3α,17β-diol (3α-

diol) or 5α-androstane-3β,17β-diol (3β-diol). In addition, T is also converted into 17β-estradiol (17β-E) by the 

action of the enzyme aromatase. These enzymatic steps exert an important role in the mechanism of action 

of neuroactive steroids, since active metabolites of these molecules exert their effects by a variety of 

mechanisms, including the activation of classical steroid receptors, such as PR, AR and ERs, or by binding to 

membrane receptors (i.e. non-classical steroid receptors), like, for instance, γ-aminobutyric acid type A 

(GABA-A) and GABA-B receptors, glutamate NMDA receptor, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and kainate subunits, sigma 1 receptor, membrane estrogen receptors, G 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

 11 

protein-coupled estrogen receptor 1, membrane PROG receptors, the progesterone membrane receptor 

component 1, pregnane X receptor [96,110-113]. For example, the first metabolite of PROG, DHP, interacts 

with PR (as its substrate), but the subsequent metabolites, THP and isopregnanolone, modulate the activity of 

GABA-A receptor [114,115]. In case of T metabolites, DHT interacts, as T, with AR, but the subsequent 

metabolites, 3α-diol and 3β-diol, act by different mechanisms. 3α-diol is a GABA-A receptor agonist, whereas 

3β-diol is an ERβ agonist [115,116]. The important role of these 5α-reduced metabolites is suggested by the 

observation that their levels are modified in several experimental models of neurodegenerative and psychiatric 

disorders and their treatment exert important neuroprotective effects [117,107,118,119].  

Thus, the blockage of the enzyme 5α-R may have important negative consequences for nervous function. 

Indeed, as reported above, important side effects have been ascertained after treatment with inhibitors of this 

enzyme.  

 

ETIOPATHOGENESIS OF PFS 

During the last few years some observations have tried to investigate the etiopathogenesis of PFS. In 

particular, we have focused our attention on neuroactive steroids because i) they are important key regulators 

of the nervous functions, ii) some of these molecules, like for instance THP, isopregnanolone and 3α-diol are 

able to modulate GABA-A receptor and iii) altered levels in plasma and cerebrospinal fluid (CSF) of GABA as 

well as of neuroactive steroids are associated with depression in several human studies [117,107,118-120]. 

Moreover, a subset of post-finasteride patients with persistent symptomatology showed a decline in their 

alcohol consumption [121]. This is very interesting, because a relationship between GABAergic neuroactive 

steroids and ethanol consumption is well ascertained [122].  

Therefore, in three different studies assessing three [26], seven [27] and fourteen [19] PFS patients, we have 

evaluated the plasma and CSF levels of different neuroactive steroids by liquid chromatography-tandem mass 

spectrometry. Data obtained indicate that finasteride treatment has broad consequences on the levels of these 

molecules in plasma and particularly in CSF [26,27,19]. For instance, in our last study (performed in a larger 

group of patients, n= 14) we observed a decrease of PREG, PROG, DHP, DHT and 17β-E and an increase of 

DHEA, T and 3α-diol in the CSF of PFS patients in comparison to the levels observed in healthy patients [19]. 

It is important to note that the changes observed in the last study [19] showed small differences in comparison 

to the previous ones [26,27]. This, together with the presence of a heterogeneous symptomatology, suggests 

that PFS patients are not a homogenous pathological group. Therefore, a clearer definition of the clinical 

phenotype of the PFS patients is needed for future studies in order to better correlate the clinical phenotype 
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with the changes in neuroactive steroids. Similarly, in male rats exposed to a chronic treatment with finasteride 

(i.e., 20 days) and after its withdrawal (i.e., one month) we observed an alteration of neuroactive steroid levels 

not only in plasma and CSF, but also in the central nervous system areas such as cerebral cortex, cerebellum 

and hippocampus [123]. Interestingly, some of the examined neuroactive steroids are differently altered in 

plasma vs CSF and vs brain areas. In addition, these alterations are different depending on the specific brain 

areas. Furthermore, not only the levels of neuroactive steroids but also the expression of their receptors, like 

for instance AR and ERs or some subunits of the GABA-A receptors, are altered in these experimental 

conditions. For instance, an upregulation of AR occurred in rat cerebral cortex both after the chronic treatment 

than at the withdrawal [123]. That is particularly interesting, because an upregulation of this steroid receptor 

also occurred in the prostate of patients treated with finasteride for BPH [124] as well as in the prepuce of AGA 

patients showing persistent side effects [125]. 

Other factors, in addition to neuroactive steroids, have been proposed to explain the pathogenesis of this 

syndrome as, for instance, alterations of dopaminergic signaling [126]. Indeed, as demonstrated in animal 

models, finasteride treatment was able to impair the signaling of dopamine (i.e., that is involved in the 

regulation of sex drive, as described above) [127,128]. In addition, it has been proposed that sexual side 

effects, at least during the finasteride treatment, are related with lateralization process of the brain, 

predominantly occurring in right-handed patients [129,130]. Furthermore, pre-existing familial mental health 

condition has been considered in PFS patients. Indeed, as reported in a recent study, more than half of the 

150 patients considered had a pre-existing medically confirmed psychiatric diagnosis [131].  

 

ETIOPATHOGENESIS OF PSSD   

The pathological mechanisms behind PSSD and the mechanisms causing the persistence of sexual side 

effects in SSRI users are still almost unknown, therefore different hypothesis have been proposed. One of 

them suggests a central origin of the complaint, linking the serotoninergic inhibitory activity on mesolimbic 

dopamine release related to the control of sexual behavior. As explained before, dopamine facilitates sexual 

motivation and sexual behavior [70,132]. SSRI medications, whose mechanism of action is the inhibition of 

the reuptake of serotonin hence producing increased levels of this neurotransmitter at synaptic level, also 

produce desensitization of serotonin autoreceptors. This, in turn, leads to an increase of serotonin release, 

which represents the goal for an antidepressant treatment. On the other hand, more serotonin could imply 

more inhibition of dopamine release, with adverse effects for the sexual response. Imaging studies further 

support the hypothesis of a link among serotonin and dopamine to explain PSSD. In fact, functional magnetic 
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resonance imaging and positron emission tomography reported that, in the treatment of depression, SSRIs 

specifically modulate brain regions (i.e., orbitofrontal regions, dorsolateral prefrontal cortex and ventral 

striatum) and networks involved in sexual behavior, helping to explain the negative symptoms associated to 

SSRI-treatment (for a review see [133]). Moreover, studying healthy volunteers taking SSRIs to evaluate 

cerebral activation in response to erotic video clips, in comparison to control population, Abler and colleagues 

observed an enhanced activation of the orbitofrontal cortex, deputed to active cognitive control, in SSRI-treated 

subjects [134]. This effect is positive in the contest of depression management, but may negatively impact in 

one of the circuit involved in sexual behavior. In general, they observed that areas involved in different phase 

of sexual functioning and in the reward system were affected by SSRI treatment [134,135]. These latter 

studies, even if conduct on healthy subjects, strength the concept of dopamine and serotonin involvement in 

the development of sexual dysfunction under SSRI medications. 

Other hypotheses, however, have been proposed. Starting from the observation that not all SSRI users 

develop sexual dysfunctions, a personal predisposition, linked to genetic variants, has been postulated [136]. 

Indeed, Perlis and coworkers found some genetic polymorphisms in genes related to glutamatergic system of 

depressed patients treated with citalopram and reporting sexual problems, that correlate to decreased libido 

and difficulties in achieving erections and orgasms [136].  

Another possible explanation for the symptomatology could relies into serotonin neurotoxicity. Indeed, 3,4-

methylenedioxymethamphetamine (e.g., ecstasy), that stimulates serotonin release and inhibits its reuptake, 

produces axonal damage leading to persistent sexual alterations [37]. 

Furthermore, Safarinejad reported endocrine abnormalities in the hypothalamic-pituitary-testis axis of 

depressed patients taking SSRIs, compared to controls [137]. Interestingly, a worse profile was found in 

depressed patients reporting sexual problems in comparison to patients not reporting them [137]. Moreover, 

other endocrine dysfunctions could be proposed. For example, hyperprolactinemia [137] was observed after 

SSRI use and that could lead to sexual impairment. In addition, in vitro studies demonstrate that SSRIs may 

inhibit dopamine release through both serotonin dependent and independent actions, thus in turn promoting 

prolactin secretion [138]. 

Besides these considerations, the big challenge in the understanding PSSD conditions is related to its 

persistence. With this regard, epigenetic mechanisms have been proposed [139]. Altered levels of histone 

deacetylases have been detected in different brain areas deputed to the control of cognition and sexual 

behavior [139]. These alterations, in turn, produce persistent downregulation of 5HT receptor type 1A, that has 

been linked to the regulation of sexual motivation [140]. 
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CONCLUSIONS AND PERSPECTIVES 

As reported in the present review a persistent sexual dysfunction is a feature shared by PFS and PSSD. This 

common aspect could be casual or rather be determined by common mechanisms that, once detected, could 

be useful to understand the pathophysiology and to possibly design therapeutic strategies for these conditions. 

In particular, as described above, neuroactive steroids, serotonin and dopamine are variably interconnected 

with PSSD and PFS (Figure 5). Indeed, dopamine is the neurotransmitter involved in the major pathways of 

sexual behavior, such as sexual motivation, erection and ejaculation, reward and motor functions. Dopamine 

is under the inhibitory tone of serotonin, whereas neuroactive steroids integrate, among the others, peripheral 

and central stimuli to control dopamine circuits. 

The role exerted by these three signals (i.e., neuroactive steroids, serotonin and dopamine) in PFS and PSSD 

has been partially considered so far. Indeed, in case of PFS, only neuroactive steroids have been assessed 

in patients [26,27,19] and in the animal model [123]. Data so far obtained indicate that neuroactive steroid 

levels are affected both in periphery (i.e., plasma and CSF) and in the brain. However, whether this impairment 

is due to peripheral steroidogenesis and/or neurosteroidogenesis is still unrevealed. In addition, while 

serotonin signaling has been never considered, and alteration of dopaminergic pathways has been proposed 

[126]. However, whether this impairment still occurs after the discontinuation of finasteride (i.e., in the PFS 

condition) is still unclear. Furthermore, modulation of dopamine and serotonin release after neuroactive steroid 

treatment or alteration of peripheral steroid production (i.e., gonadectomy) has been demonstrated in different 

experimental models [141]. These effects are specific for the steroid and the brain region considered. However, 

how perturbations in neurosteroidogenesis occurring in PFS could impact serotonin or dopamine networks 

controlling sexual behavior are still to be evaluated. 

As mentioned above, PSSD is a condition occurring after a pharmacological intervention, on a pre-existing 

mood disorder substrate. The association among depression, SSRIs and sexual dysfunction has been 

proposed. For instance, the increased serotoninergic tone due to SSRI medicaments is supposed to inhibit 

the dopaminergic activation of sexual functions, leading to sexual problems. In addition, also an involvement 

of neuroactive steroid signaling could be supposed. Depression, anxiety, schizophrenia and other mental 

diseases present impaired levels of neuroactive steroids in plasma and CSF of patients, as well as in brain 

areas of experimental models [142]. Furthermore, successful pharmacological interventions (like with SSRIs) 

are able to improve neuroactive steroid levels [143], suggesting a link also between SSRIs and 

neurosteroidogenesis. However, assessment of neuroactive steroid levels in plasma and/or CSF of PSSD 

patients or in brain regions of an animal model mimicking this clinical condition has not be performed so far. 
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In agreement with a possible role of peripheral steroidogenesis, Safarinejad reported that plasma 

gonadotropins (luteinizing hormone and follicle-stimulating hormone) and T levels were significantly decreased 

in SSRI-treated depressed patients reporting sexual dysfunctions in comparison to SSRI-treated depressed 

patients not reporting this symptomatology [137]. These findings indicate that production of steroid hormones 

and the control of the HPG axis could be impaired during the SSRI treatment. Therefore, this possibility could 

be proposed also for PSSD patients. To this aim, future studies should be addressed to evaluate the role of 

peripheral steroidogenesis, neurosteroidogenesis and their interaction with dopaminergic pathways. 

Finally, the finding that both PFS and PSSD, and consequently the persistent sexual dysfunction observed, 

occurred only in a limited number of patients may suggest possible epigenetic mechanisms. This hypothesis 

has been poorly considered so far, therefore future experiments should be addressed to explore these 

important aspects on synthesis and signaling of neuroactive steroids, dopamine and serotonin. 

In conclusion, the negative sexual symptomatology reported by PFS and PSSD patients could have similar 

mechanisms based on an altered crossover among dopaminergic, serotoninergic and neuroactive steroid 

pathways (Figure 5). However, to fully support this hypothesis, more detailed studies should be performed in 

PFS and PSSD patients as well as in their related experimental models. 
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Legends to Figures 

Figure 1. Incidence of a lack of connection between the brain and penis self-reported by Post-Finasteride 

Syndrome (PFS) or Post-SSRI Sexual Dysfunction (PSSD) patients. Pie charts represent patients, expressed 

as percentage, reporting the frequency (blue: never; orange: sometimes; grey: often; yellow: always) of this 

symptom before the treatment (pre-treatment), during the treatment and at interview time (i.e., at least three 

months after drug discontinuation; for further details, see text). 

 

Figure 2. Incidence of the loss of libido and sex drive self-reported by Post-Finasteride Syndrome (PFS) or 

Post-SSRI Sexual Dysfunction (PSSD). Pie charts represent patients, expressed as percentage, reporting the 

frequency (blue: never; orange: sometimes; grey: often; yellow: always) of these symptoms before the 

treatment (pre-treatment), during the treatment and at interview time (i.e., at least three months after drug 

discontinuation; for further details, see text). 

 

Figure 3. Incidence of the difficulty in achieving an erection self-reported by Post-Finasteride Syndrome (PFS) 

or Post-SSRI Sexual Dysfunction (PSSD). Pie charts represent patients, expressed as percentage, reporting 

the frequency (blue: never; orange: sometimes; grey: often; yellow: always) of this symptom before the 

treatment (pre-treatment), during the treatment and at interview time (i.e., at least three months after drug 

discontinuation; for further details, see text). 

 

Figure 4. Incidence of genital numbness or paresthesia self-reported by Post-Finasteride Syndrome (PFS) or 

Post-SSRI Sexual Dysfunction (PSSD). Pie charts represent patients, expressed as percentage, reporting the 

frequency (blue: never; orange: sometimes; grey: often; yellow: always) of these symptoms before the 

treatment (pre-treatment), during the treatment and at interview time (i.e., at least three months after drug 

discontinuation; for further details, see text). 

 

Figure 5. A working hypothesis for sexual dysfunction observed in Post-Finasteride Syndrome (PFS) and 

Post-SSRI Sexual Dysfunction (PSSD) patients: the impairment of signals, as neuroactive steroids, dopamine 

and serotonin, and their interactions involved in the control of male sexual behavior. 
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