
12 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On a Class of Reversible Primitive Recursive Functions and Its Turing-Complete Extensions

Published version:

DOI:10.1007/s00354-018-0039-1

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1677880 since 2018-10-11T14:06:06Z

Noname manuscript No.
(will be inserted by the editor)

On a class of Reversible Primitive Recursive Functions

and its Turing-complete extensions

Luca Paolini · Mauro Piccolo · Luca Roversi

New Generation Computing (2018) 36:233�256
https://doi.org/10.1007/s00354-018-0039-1

Abstract Reversible computing is both forward and backward deterministic.
This means that a uniquely determined step exists from the previous com-
putational con�guration (backward determinism) to the next one (forward
determinism) and vice-versa. We present the Reversible Primitive Recursive
Functions (RPRF), a class of reversible (endo-)functions over natural numbers
which allows to capture interesting extensional aspects of reversible computa-
tion in a formalism quite close to that of classical Primitive Recursive Func-
tions. The class RPRF can express bijections over integers (not only natural
numbers), is expressive enough to admit an embedding of the Primitive Recur-
sive Functions and, of course, its evaluation is e�ective. We also extend RPRF
to obtain a new class of functions which are e�ective and Turing-complete, and
represent all Kleene's µ-recursive functions. Finally, we consider reversible re-
cursion schemes that lead outside the reversible endo-functions.

Keywords Reversible computing · Recursive permutations · Primitive
Recursive Functions · Reversible Pairing · Recursion Theory

1 Introduction

Reversible computing is probably the most classical among the unconventional
models of computing. Origins of reversible computing trace back to the study
of entropy in physical systems [5]. An introductory survey about the presence

This paper is an extended version of the paper �A Class of Reversible Primitive Recur-
sive Functions� published in the Proceedings of the 16th Italian Conference on Theoretical
Computer Science (Firenze 9�11 September 2015), edited by Pierluigi Crescenzi and Michele
Loreti (see [25]).

L. Paolini (luca.paolini@unito.it) · M. Piccolo · L. Roversi (luca.roversi@unito.it)
Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino

2 Luca Paolini et al.

Abbreviation Class of functions Total

PRF Primitive Recursive Functions X
JPRF Injective Primitive Recursive Functions X
BPRF Bijective Primitive Recursive Functions X
RPRF Reversible Primitive Recursive Functions X

µRPF µ-Recursive Partial Functions ×
µRRF µ-Reversible Recursive Partial Functions ×

Table 1 Relevant classes of functions.

of reversible aspects inside classical computing is [28]. Examples of applica-
tions of reversible computing span from software veri�cation to programming
languages, through computer architectures, operating systems, databases, ar-
ti�cial intelligence, as well as several non-classical models of computing, like
quantum computing and other formalisms for natural computing [12,8,27,26,
37,38,39].

Foundational studies on the notion of �reversible computation� have a long
tradition but they have been chie�y devoted to the thermodynamics of Turing-
machine computations [2,4,15]. A reversible Turing-machine is bi-directionally
deterministic, i.e. both forward-deterministic, like a classical Turing-machine,
and backward-deterministic. The backward-determinism allows to reverse the
computation, so to step-by-step undo what a program has done, eventually
recovering former con�gurations [2]. Systematic surveys on recursion-theoretic
aspects of the reversible computation are [2,3].

Primitive Recursive and µ-Recursive Partial Functions. The present work pro-
poses a recursion theory for reversible functions with the aim of identifying a
function algebra of numerical functions closed under speci�c schemes [29,34].

We start recalling the distinguishing aspects of µRPF, the class of Kleene's
µ-Recursive Partial Functions [17] and of PRF, the class of Primitive Recursive
Functions which µRPF is an extension of. For easy of reference, Table 1 lists
classes of functions we shall deal with.

Both µRPF and PRF balance intensional and extensional aspects. Inten-
sionally, they essentially are programming languages with an informal but un-
ambiguous semantics. Extensionally, µRPF deals with partial functions1 and
PRF with total ones.

Goals. Let us recall that the inverse f−1 of a function f is its relational reverse
de�ned by reversing its underlying relation2, viz. (y, x) ∈ f−1 if and only if

1 A relation between two sets A,B is a subset of the cartesian product A × B. A rela-
tion is functional when (a, b), (a, b′) ∈ A × B implies b = b′. A relation is injective when
(a, b), (a′, b) ∈ A× B implies a = a′. A relation is total whenever a ∈ A implies that b ∈ B
exists such that (a, b) ∈ A× B. A relation is surjective whenever b ∈ B implies that a ∈ A
exists such that (a, b) ∈ A×B. A function is a total functional relation. A partial function
is a functional relation.
2 The inverse of a partial function may not be functional. The inverse of a total function

may not be total. However, restricted (and e�ective) operation of inversion can be de�ned
also in such cases, e.g. see [22].

Reversible Partial Functions 3

(x, y) ∈ f . We aim at emphasizing the prominent computational status that
the operation of inversion can have in the reversible models of computation.
We want to set up a formalism which identi�es a su�ciently large class of
�rst-order functions whose graphs can be e�ectively inverted inside the for-
malism itself. The inversion operation that we propose in this work takes great
advantage from the compositional nature of the considered recursion-theoretic
model.

Motivations for RPRF. Identifying the right class of total functions acting as
the extensional model of reference is not immediate. Reversible Turing Ma-
chines compute injective µRPF [2,3].

This suggests to consider JPRF, the class of Injective Primitive Recursive
Functions as extensional model of reference. Unfortunately JPRF is not closed
under inversion. A function f exists such that its inverse f−1 is not in JPRF.
An example is the successor succ on natural numbers. It belongs to JPRF but
its inverse succ−1 is unde�ned on 0 and does not belong to JPRF.

Replacing the class BPRF of all Bijective Primitive Recursive Functions for
JPRF is not a solution despite BPRF is strictly smaller than JPRF:

Theorem 1 (Kuznekov [18]) There is f ∈ BPRF whose inverse f−1 does
not belong to PRF.

Proof Consider a total computable function whose rate of growth is too fast to
be primitive recursive, e.g. consider the Ackermann-like function A0(x) = 2x

and An+1(x) = An . . . An︸ ︷︷ ︸
x

(1) (see [10, Exercise 3.2. p.57]). The Normal Form

Theorem [17] ensures that a predicate T and a function U exist which are
primitive recursive and such that φi(x) = U(µy[T (i, x, y)]) for all program
index i. We follow the suggestion of [33, Exercise 5.7, p.25]. We assume that
e is the program index such that φe(x) = Ax(x). Hence, we can set g(x) =
µy[T (e, x, y)]. Certainly g grows faster than φe because U(y) ≤ y for all y.
Therefore g(x) cannot be primitive recursive, but g−1(y) is because the set of
primitive recursive functions is closed under bounded minimization. Let g−1(y)
be de�ned as (µx ≤ y)[T (e, x, y)]. The following primitive recursive function
on N is a permutation:

f(y) =

{
2g−1(y) if (∃x ≤ y)[T (e, x, y)],
1 + 2(k − 1) otherwise, where k =

∑y
j=0(∃x ≤ j)[1− T (e, x, j)]

assuming that true is represented by 0. However its inverse is not primitive
recursive because f−1(2x) = g(x) is not. ut

Corollary 1 BPRF and recursive permutations are two di�erent classes of
functions.

Since we cannot e�ectively enumerate BPRF, we might wonder if we can
enumerate the whole set of recursive permutations. Two negative results are in

4 Luca Paolini et al.

[31, Exercise 4-6, p.55]: (i) no e�ective and complete procedure can list a set
of Gödel numbers that represent; and, (ii) the group of recursive permutations
is not �nitely generated. In addition, we prove a stronger negative result: no
functional language can characterize all and only the recursive permutations.

Theorem 2 Recursive permutations cannot be recursively enumerated.

Proof Assume φ0, . . . , φn, . . . be a recursive enumeration of permutations. We
aim to �nd a recursive permutation Ψ which is not in the list.

� Let us assume that there is m ∈ N \ {0} such that φ0(0) 6= φm(m).
We apply a classical diagonalization argument and de�ne Ψ by induction:
Ψ(0) = φm(m) and Ψ(n + 1) = min(N \ {Ψ(0), . . . , Ψ(n), φn+1(n + 1)}).
By de�nition: (i) Ψ(0) 6= φ0(0) thus Ψ 6= φ0; and, (ii) for all i ∈ N \ {0},
Ψ(i) 6= φi(i) thus Ψ 6= φi.

� Otherwise, there is d ∈ N such that for all i ∈ N, φi(i) = d. The above
diagonalization argument cannot apply. We de�ne Ψ by induction: Ψ(0) =
φ0(0) = d, Ψ(1) = φ0(2) and Ψ(m) = min(N \ {Ψ(0), . . . , Ψ(m − 1)}), for
every m ≥ 2. Since φ0 is a bijection, φ0(2) 6= φ0(1); thus, Ψ(1) 6= φ0(1)
ensures that Ψ 6= φ0. Since φi is a bijection, φi(0) 6= d for each i ≥ 1; thus,
Ψ(0) = d 6= φi(0) ensures that Ψ 6= φi (i ≥ 1). ut

Outline. The above observations led us to synthesize the class Reversible Prim-
itive Recursive Functions (RPRF) 3 (Section 2) which includes bijections only,
is closed under the e�ective meta-operation of inversion and which is PRF-
complete, i.e. every f ∈ PRF has a faithful counterpart in RPRF (Section 3).
In fact, RPRF is also PRF-sound, i.e. every f ∈ F has a faithful counterpart in
RPRF. The interested reader can refer to [25].

The new parts of this work, as compared to [25], are Sections 4 and 5.
The �rst one extends RPRF to the class µRRF which we prove is Turing-
complete. I.e. every function of µRPF has its counterpart in µRRF. The second
one discusses how to relax the constraint that forces every element in RPRF
to have identical input and output arity. Section 6 concludes the work.

Acknowledgements. We must thank editors, reviewers and Felice Cardone who
carefully read the preliminary work both commenting about its critical parts
and rising stimulating questions.

2 Reversible Primitive Recursive Functions

We introduce Reversible Primitive Recursive Functions (RPRF), a class of
total functions. RPRF operates on integers and not on natural numbers like
primitive recursive functions do. The reason is that natural numbers do not
form a group (endowed by inverses) with standard operations, as noted in

3 The name �Reversible Primitive Recursive Functions� comes from [25] in order to un-
derline its close correspondence between RPRF itself and Primitive Recursive Functions.

Reversible Partial Functions 5

[21]. Another peculiar aspect of RPRF is that it is closed under inversion in an
e�ective way.

Some preliminary steps are worth giving before formally introducing RPRF.
We use Z to denote the set of integers and N to denote the set of nat-

ural numbers4. Consider a function f : Xn → Y m where X,Y are sets and
n,m ∈ N; we say that f is arity-respecting if X = Y and n = m. For the sake
of simplicity, we restrict RPRF to arity-respecting functions so to include per-
mutations only. Finally, let �_,_� : Z2 → Z be a given computable bijection
whose de�nition details are irrelevant to our purposes5.

De�nition 1 (Base Reversible Primitive Recursive Functions) The
class of Base Reversible Primitive Recursive Functions contains the following
functions.

� Successor functions Si(x1, . . . , xi, . . . , xk) = (x1, . . . , xi + 1, . . . , xk) and
predecessor functions Pi(x1, . . . , xi, . . . , xk) = (x1, . . . , xi − 1, . . . , xk), for
every 1 ≤ i ≤ k and for every k ≥ 1.

� A �nite permutation fP`(x1, . . . , xk) = (xi1 , . . . , xik), for every k ≥ 2, where
` = i1, . . . , ik is a permutation of 1, . . . , k.

� For every k ≥ 2, the pairing functions addPair
(i,j)
h , subPair

(i,j)
h : Zk →

Zk such that 1 ≤ i < j ≤ k, 1 ≤ h ≤ k and h 6= i, j. The function

addPair
(i,j)
h is the identity on all its arguments but the one in position h

which is incremented by �xi, xj�. The function subPair
(i,j)
h is the identity

on all its arguments but for the one in position h which is decremented by

�xi, xj�. For example, addPair
(2,3)
1 (n, x, y, . . .) = (n + �x, y�, x, y, . . .) and

subPair
(2,3)
1 (n, x, y, . . .) = (n− �x, y�, x, y, . . .).

� For every k ≥ 2, the un-pairing functions addUnPair
(i,j)
h , subUnPair

(i,j)
h :

Zk → Zk such that 1 ≤ i < j ≤ k, 1 ≤ h ≤ k and h 6= i, j. The function

addUnPair
(i,j)
h is the identity on all its arguments but those ones in posi-

tions i and j. They are incremented by x and y, respectively, if �x, y� is

the argument of position h. The function subUnPair
(i,j)
h is the identity on

all arguments but those ones in positions i and j. They are decremented
by x and y, respectively, if �x, y� is the argument of position h. For in-

stance, addUnPair
(2,3)
1 (�x′, y′�, x, y, . . .) = (�x′, y′�, x + x′, y + y′, . . .) and

subUnPair
(2,3)
1 (�x′, y′�, x, y, . . .) = (�x′, y′�, x− x′, y − y′, . . .).

In this work the un-pairing functions addUnPair
(i,j)
h , subUnPair

(i,j)
h : are

crucial to represent the class PRF inside RPRF6. The main motivation to supply
un-pairing is to pack information into a single argument which becomes a store

4 We recall that N and Z are in bijection, see [6, Example 5.1].
5 The bijection �_,_� can be de�ned by composing the bijection between N ↔ Z as in

the Example 5.1 of [6] and the variant of Cantor pairing as de�ned in [13] which is a bijection
as well.
6 In fact, by anticipating the forthcoming [24], the un-pairing functions are admissible in

RPRF, i.e. we can encode them by means of the built-in functions and schemes of RPRF.

6 Luca Paolini et al.

like the following example shows:

fP2,1,3,4 ◦ subUnPair(1,4)2 ◦ addPair(1,4)2 ◦ subUnPair(2,3)1 ◦ addPair(2,3)1 (0, x2, x3, x4) =

= fP2,1,3,4 ◦ subUnPair(1,4)2 ◦ addPair(1,4)2 ◦ subUnPair(2,3)1 (�x2, x3�, x2, x3, x4)

= fP2,1,3,4 ◦ subUnPair(1,4)2 ◦ addPair(1,4)2 (�x2, x3�, 0, 0, x4)

= fP2,1,3,4 ◦ subUnPair(1,4)2 (�x2, x3�, ��x2, x3�, x4�, 0, x4)

= fP2,1,3,4(0, ��x2, x3�, x4�, 0, 0) = (��x2, x3�, x4�, 0, 0, 0)

De�nition 2 (Sequential Composition Scheme) Let j, k ≥ 1 and let

k1, . . . , kj ∈ N be such that k =
∑j
i=1 ki. Let gi : Zki −→ Zki and f : Zk −→

Zk be functional relations, where 1 ≤ i ≤ j. The sequential composition of
f with g1, . . . , gj that is ◦[f ; g1, . . . , gj](#„x 1, . . . ,

#„x j) = f(g1(
#„x 1), . . . , gj(

#„x j))
and yields a functional relation from Zk to Zk. Of course, for every 1 ≤ i ≤ n,
we assume that #„x i contains ki elements.

The composition among elements of RPRF and PRF have no major di�er-
ences. Given two functions f, g : Zk → Zk, we abbreviate ◦[f ; g] by means
of the more standard f ◦ g . Moreover, let f

...
n denote the instance of the

sequential composition that composes n occurrences of f , for any n ≥ 0.

De�nition 3 (Recursion Scheme) Let k ≥ 1 and let f, g, h : Zk −→ Zk be
functional relations. The function Reci[f, g, h] : Zk+1 → Zk+1 on f, g and h is:

Reci[f, g, h](# „x0, y,
#„z0) =

(# „x1, y,

#„z1) if y > 0 and f
...
y (# „x0,

#„z0) = (# „x1,
#„z1)

(# „x1, 0,
#„z1) if y = 0 and g(# „x0,

#„z0) = (# „x1,
#„z1)

(# „x1, y,
#„z1) if y < 0 and h

...
−y(# „x0,

#„z0) = (# „x1,
#„z1)

for every 1 ≤ i ≤ k + 1. Of course, we assume that # „x0 and # „x1 contain i − 1
elements, while #„z0 and #„z1 contain (k + 1)− i elements.

Despite we call it �recursive�, Reci[f, g, h] is not de�ned in terms of itself.
We call it that way for two reasons. One is that �recursive� refers to e�ective
computational processes. The other is that RPRF and PRF turns out to be
equivalent The above scheme Reci[f, g, h] iteratively applies one of the three
parameters f, g, h ∈ RPRF as many times as the value of the argument in
position i if xi 6= 0. Otherwise, if xi = 0, it applies g once. The termination
of the scheme is thus immediate. The value of xi cannot be argument of the
iterated function: it reappears untouched as part of the result. Of course the
i-th argument can be negative. We take into account this case by using its
absolute value for driving the iteration.

De�nition 4 (Reversible Primitive Recursive functions) The set RPRF
of Reversible Primitive Recursive functions is the least class of functions which
contains the Base Primitive Recursive Functions (De�nition 1) and is closed
under the sequential composition scheme (De�nition 2) and the recursion
scheme (De�nition 3.)

Reversible Partial Functions 7

Lemma 1 All functions in RPRF are total.

Proof Every function which belongs to the Base Reversible Primitive Recursive
Functions is total. The composition of total functions is total. The recursion
scheme is also de�ned as compositions of total functions. So, the claim follows.
ut

It is worth introducing some notation to simplify De�nition 5 here below
which gives an e�ective inversion maps from RPRF to RPRF.

� For every k ∈ N, the identity Idk(#„x) = #„x is the permutation that does not
exchange any of its k arguments. When clear, we omit the superscript.

� Let fi : Zki −→ Zki and let #„x i contain ki elements for every 1 ≤ i ≤ n.
The parallel composition of f1, . . . , fn from Zk1+···+kn to Zk1+···+kn is (f1 ‖
. . . ‖ fn)(#„x 1, . . . ,

#„xn) = Idk1+···+kn(f1(
#„x 1), . . . , fn(

#„xn)).

De�nition 5 The map r : RPRF→ RPRF is de�ned inductively as follows:

� r(Si) = Pi and r(Pi) = Si;
� r(fP`) is the unique �nite permutation fP`′ that inverts fP`, for any per-

mutation fP`;
� r(◦[f ; g1, . . . , gj]) = ◦[(r(g1) ‖ . . . ‖r(gn));r(f)];

� r(addPair
(i,j)
h) = subPair

(i,j)
h and r(subPair

(i,j)
h) = addPair

(i,j)
h ;

� r(addUnPair
(i,j)
h) = subUnPair

(i,j)
h and r(subUnPair

(i,j)
h) = addUnPair

(i,j)
h ;

� r(Reci[f, g, h]) = Reci[r(f),r(g),r(h)].

The next theorem show that the r is actually an inverter in the sense of
[11], namely a map associating each function to its inverse.

Theorem 3 (RPRF is closed under inversion) If f : Zk → Zk is a RPRF
then, f(#„x) = #„y if and only if r(f)(#„y) = #„x .

Proof The proof is by induction on the De�nition 5. ut

Corollary 2 Each RPRF is a bijective function on Zk, for some k ∈ N.

Theorem 3 technically justi�es why RPRF works on Z instead of N. If the
issue is to de�ne a theory of computable reversible functions, the restriction
to N and to a class of functions where the predecessor cannot be a primitive
function looks arti�cial. This position, which we share with [21], will be re-
inforced by the coming sections, where we show that RPRF is complete with
respect to PRF which means that we are developing a theory of computable
functions which are reversible.

2.1 Expressiveness of RPRF

We show the expressiveness of RPRF and how Bennett's method [4] �ts into
it. Let k ∈ N.

8 Luca Paolini et al.

� Let inc : Z2+k → Z2+k be de�ned as Rec2[S1, Id,P1], that is inc(n, x, . . .) =
(n+x, x, . . .). The function incij : Z2+k → Z2+k generalizes inc by involving
the values of the arguments in position i and j, provided that i 6= j and
1 ≤ i, j ≤ 2 + k. The �rst one drives the iteration. The value of the latter
gets added to the value of the �rst as follows:

incij(

j−1︷ ︸︸ ︷
. . .︸︷︷︸
i−1

, n, . . ., x, . . .) = (

j−1︷ ︸︸ ︷
. . .︸︷︷︸
i−1

, n, . . ., x+ n, . . .) .

If j < i then we can de�ne incij as Rec
i[Sj , Id,Pj]. If i < j then we can de�ne

incij as Rec
i[Sj−1, Id,Pj−1] because xi is hidden by recursion (cf. De�nition

4). We remark that if xi is negative then we subtract it from x.
� The function decij : Z2+k → Z2+k involves the values of the arguments in

position i and j, provided that i 6= j and 1 ≤ i, j ≤ 2 + k. The �rst one
drives the iteration. The value of the latter gets subtracted from the value
of the �rst as follows:

decij(

j−1︷ ︸︸ ︷
. . .︸︷︷︸
i−1

, n, . . ., x, . . .) = (

j−1︷ ︸︸ ︷
. . .︸︷︷︸
i−1

, n, . . ., x− n, . . .) .

If j < i then we de�ne decij as Rec
i[Pj , Id,Sj], otherwise Rec

i[Pj−1, Id,Sj−1].

Remark that r(decij) = incij .

� The function negij : Z2+k → Z2+k involves the values of the arguments in
position i and j, provided that i 6= j, 1 ≤ i and j ≤ 2 + k. The function
inverts the sign of the argument i, while the j argument serves as an ancilla.
If i < j then fP...,j,...,i,... ◦ incij ◦ dec

j
i ◦ inc

i
j so that:

negji (

j−1︷ ︸︸ ︷
. . .︸︷︷︸
i−1

, xi, . . ., xj , . . .) = (

j−1︷ ︸︸ ︷
. . .︸︷︷︸
i−1

,−xi, . . ., xj , . . .) .

The case j < i is similar. We note that subPair
(i,j)
h and addPair

(i,j)
h are

interde�nable; for instance, addPair
(i,j)
h = negih◦subPair

(i,j)
h ◦negih. Likewise,

subUnPair
(i,j)
h and addUnPair

(i,j)
h are interde�nable.

� If sum : Z3+k → Z3+k is de�ned as inc31 ◦ inc21 then sum(n, x1, x2, . . .) =
(n + x1 + x2, x1, x2, . . .). Moreover, r(sum)(n, x1, x2, . . .) = (n − x1 −
x2, x1, x2, . . .). The natural generalization under the same pattern as incij

and decij is sum
(i,j)
h : Z3+k → Z3+k which adds the arguments of position

i and j to the one of position h, provided that i, j, h are pairwise distinct
and 1 ≤ i, j, h ≤ 2 + k. For example, sum(9, 5,−3) = (11, 5,−3). Generally
speaking, the sum of two numbers needs an argument initialized to zero.
This is the typical side-e�ect of representing an inherently non-reversible
function by a reversible one. To avoid such a side e�ect, [4] uses a third
tape and [36] uses some input-constant.

Reversible Partial Functions 9

� By de�nition, mult : Z3+k → Z3+k is Rec3[inc21, Id, dec
2
1] such that:

mult(n, x1, x2, . . .) = (n+ x1 + . . .+ x1︸ ︷︷ ︸
x2

, x1, x2, . . .)

r(mult)(n, x1, x2, . . .) = (n− (x1 + . . .+ x1︸ ︷︷ ︸
x2

), x1, x2, . . .) .

Its generalization mult
(i,j)
h : Z3+k → Z3+k is:

mult
(i,j)
h (

j−1︷ ︸︸ ︷
i−1︷ ︸︸ ︷

. . .︸︷︷︸
h−1

, n, . . ., x1, . . ., x2, . . .) = (

j−1︷ ︸︸ ︷
i−1︷ ︸︸ ︷

. . .︸︷︷︸
h−1

, n+ x1 + . . .+ x1︸ ︷︷ ︸
x2

, . . ., x1, . . ., x2, . . .) .

It adds the product between the i-th and the j arguments to the argument

of position h. We de�ne it as mult
(i,j)
h = Recj [incih, Id, dec

i
h], provided that

1 ≤ h < i < j ≤ 3 + k.

� Let square : Z3+k → Z3+k be de�ned as dec23 ◦ mult
(2,3)
1 ◦ inc23, therefore

square(0, x, 0, . . .) = (x2, x, 0, . . .). We emphasize that the square operator
rests on the assumption that a zero-valued argument (the third one) is
available.

The following examples introduce functions deliberately de�ned to behave
like the identity on negative inputs. This simpli�es their de�nition but leave
them general enough to represent various interesting functions. We can ob-
tain such a behavioral asymmetry by exploiting the branching mechanism of
Rec−[_,_,_] that allows to determine the sign of one of its arguments.

� The (total) predecessor restricted to positive numbers totalNatPred : Z2+k →
Z2+k is de�ned as S2◦Rec2[S1, Id, Id]◦P2. The sub-term Rec2[S1, Id, Id]mod-
i�es the �rst argument only if the result of P2 is negative. Finally, S2 re-
stores the second argument. The de�ned function ensures that if x ≥ 0, then
totalNatPred(0, x, . . .) = ((x �− 1), x, . . .), otherwise totalNatPred(0, x, . . .) =
(0, x, . . .).

� The (total) subtraction restricted to positive numbers totalNatMinus :
Z3+k → Z3+k is inc32 ◦ Rec

2[S1, Id, Id] ◦ dec32 (with dec de�ned as above),
that is totalNatMinus(0, x1, x2, . . .) = ((x1 �− x2), x1, x2, . . .).

� The factorial is fact : Z7+k → Z7+k such that fact(0, x, 0, 0, 0, z, 0, . . .) =
(x!, x, 0, 0, z′, 0 . . .), for every x ≥ 0. The 6th argument can be thought of as
a sort of trash-bin that assures we obtain an injective function. We proceed
as follows:

� Let `1,3 swap its �rst and third arguments. Let `4,5 swap its fourth and
�fth arguments. Let `2,7 swap its second and seventh arguments. They
are the identity elsewhere.

10 Luca Paolini et al.

� Then clean3 is fP`4,5 ◦ subUnPair
(3,5)
4 ◦ addPair(3,5)4 such that:

clean3(x1, x2, x3, 0, x5, . . .) =

= fP`4,5 ◦ subUnPair
(3,5)
4 (x1, x2, x3, �x3, x5�, x5, . . .)

= fP`4,5(x1, x2, 0, �x3, x5�, 0, . . .)

= (x1, x2, 0, 0, �x3, x5�, . . .) .

Recall that the recursion hides an argument. So, for the sake of sim-
plicity, we use the seventh argument to drive the iteration.

� So, we can conclude that fact is Rec7[P2◦clean3◦mult
(2,3)
1 ◦fP`1,3 , Id, Id]◦

inc27 ◦ S1.

3 Primitive Recursive functions and RPRF

We recall a possible de�nition of the class of Primitive Recursive Functions
(PRF) [6,23].

De�nition 6 (Basic Primitive Recursive Functions) The function con-
stantly equal to 0, i.e. such that 0(#„x) = 0, the successor such that S(x) = x+1
and the projections such that πki (x1, . . . , xk) = xi for all k ≥ i ≥ 1 are the
basic Primitive Recursive Functions.

De�nition 7 (Composition scheme) Let g1, . . . , gm : Nn → N and h :
Nm → N be total functions. The composition scheme is f(x1, . . . , xn) =
h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) from Nn to N.

De�nition 8 (Recursion scheme) Let g : Nn → N and h : Nn+2 → N be
total functions. The recursion scheme is:

f(x1, . . . , xn, 0) = g(x1, . . . , xn)

f(x1, . . . , xn, y + 1) = h(f(x1, . . . , xn, y), x1, . . . , xn, y)

from Nn+1 to N.

The above scheme is often called primitive recursion schema, since it catches
a limited form of recursion [29].

De�nition 9 (Primitive Recursive Functions) The Primitive Recursive
Functions is the least class of functions which contains the basic Primitive
Recursive Functions of De�nition 6 and which is closed under the composition
scheme of De�nition 7 and the recursion scheme of De�nition 8.

We are interested to prove that PRF and RPRF are reciprocally inter-
de�nable. We refer the reader to [25] for the detailed de�nition of a map
from every function of RPRF to a function of PRF that simulates it.

Reversible Partial Functions 11

3.1 From PRF to RPRF

For any f ∈ PRF, we show how to de�ne a corresponding function in RPRF
which, suitably restricted in domain and range, extensionally behaves as f , of
course, exploiting that N ⊆ Z. Using the terminology that [3,38] advocate we
obtain the injectivization of f ∈ PRF into RPRF by forwarding its input as
part of the output.

De�nition 10 (RPRF-de�nable functions) A function f : Nk → N is
RPRFkh-de�nable (for h ≥ 3) whenever a function inRPRF(f) : Zk+h → Zk+h
in RPRF exists such that, for all x1, . . . , xk, z ∈ N, if f(x1, . . . , xk) = y then:

inRPRF(f)(0, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−2

, z) = (y, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−2

, z′) ,

for some z′ ∈ N.

We write inRPRF(f) ∈ RPRFkh to denote that inRPRF(f) represents f which
is RPRFkh-de�nable. Some remarks on De�nition 10 are in order. Extensionally,
every inRPRF(f) behaves as an identity on all its arguments, but on the �rst and
the last ones. This means that every argument with position 2 ≤ i ≤ k+h− 1
reappears as part of the output even though its value can be altered in the
course of the computation. The last argument, with position k + h, plays the
role of a waste bin that we shall operate on, as it was a stack. The �rst argu-
ment, which conventionally carries the value 0, balances the presence of the
output f(x1, . . . , xk) of the function we encode. The �rst argument makes the
input and the output arities equal. We observe that whenever the arguments
x1, . . . , xk of De�nition 10 are non-negative the value of y in inRPRF(f) is
non-negative.

Lemma 2 (Weakening) Let h ≥ 3. For every f : Nk → N, if f is RPRFkh-
de�nable, then f is also RPRFkh+1-de�nable.

Lemma 2 holds because, if f : Nk → N is de�ned by inRPRF(f) ∈ RPRFkh for
some h ≥ 3 thenr(fP`)◦(inRPRF(f) ‖ Id)◦fP`, where ` = 1, . . . , k+h+1, k+h,
represents f in RPRFkh+1. We remark that r(fP`) = fP`.

The two following functions of RPRF show why we consider the last argu-
ment, and the last output of a given inRPRF() a sort of waste bin which we
use as a stack.

De�nition 11 (Push and pop) For any n ∈ N such that n ≥ 3, let ` =

1, . . . , n, n−1. We denote pushi the term fP` ◦ subUnPair(i,n)n−1 ◦addPair
(i,n)
n−1 that

de�nes the following map:

pushi(. . . , xi−1, xi, xi+1, . . . , 0, xn) = (. . . , xi−1, 0, xi+1, . . . , 0, �xi, xn�) ,

i.e. pushi is the identity everywhere but on both its i-th and last arguments.

Symmetrically, we denote popi the term subPair
(i,n)
n−1 ◦ addUnPair

(i,n)
n−1 ◦ fP` that

de�nes the following map:

popi(. . . , xi−1, 0, xi+1, . . . , 0,�xi, xn�) = (. . . , xi−1, xi, xi+1, . . . , 0, xn) ,

12 Luca Paolini et al.

i.e. popi is the identity everywhere but on both its i-th and last arguments.

The proof of the next theorem proposes a reversibilization (in accordance
with the terminology in [3,38]) of primitive recursive functions.

Theorem 4 Every f ∈ PRF is RPRF-de�nable.

The proof of Theorem 4 is by induction on the de�nition of f ∈ PRF. For the
sake of simplicity, we present some of its cases in an exempli�ed form.

� Let f be 0 : Nk → N for some �xed k. We de�ne inRPRF(0) = Idk+3, whose
arity is k+ 3, such that inRPRF(0)(0, x1, . . . , xk, 0, y) = (0, x1, . . . , xk, 0, y).
This means that 0 is RPRFk3-de�nable.

� Let f be πki : Nk → N for some �xed k. We de�ne inRPRF(π
k
i) = inci+1

1 such
that inRPRF(π

k
i)(0, x1, . . . , xk, 0, y) = (0 + xi, x1, . . . , xk, 0, y), where inci+1

1

is the one de�ned in Section 2.1. So projections are RPRFk3-de�nable.
� Let f be S : N→ N. We de�ne inRPRF(S) = S1 ◦ inc21 with arity 1 + 3 such

that inRPRF(S)(0, x1, 0, y) = S1(0 + x1, x1, 0, y) = (x1 + 1, x1, 0, y). So, the
PRF-successor is RPRF1

3-de�nable.
� Let f : Nk → N be a PRF de�ned as f(#„x) = h(g1(

#„x), . . . , gm(#„x)) where
h : Nm → N, gi : Nk → N are PRF. By induction hypothesis: (i) h is
RPRFmlh -de�nable, for some lh; and (ii) gi is RPRFkli-de�nable for some li,
with 1 ≤ i ≤ m. Let l = max{l1, l2, l3, lh} and l′ = 3+m·(k+l) so that both
inRPRF(g1), inRPRF(g2), inRPRF(g3) ∈ RPRFkl and inRPRF(h) ∈ RPRFml′−m
exist.
Our goal is to de�ne inRPRF(f) ∈ RPRFkl′ that represents f .
For the sake of simplicity, we focus on the details of the case with m = 3,
k = 2 and l = 3. It shows all the technical problems.
1. We are looking for inRPRF(f) ∈ RPRF2

18. By De�nition 10 we expect an
input 0, x1, x2, 0, . . . , 0︸ ︷︷ ︸

15

, 0, z with 20 arguments.

2. We want to arrange the arguments for Id3 ‖ inRPRF(g1) ‖ inRPRF(g2) ‖
inRPRF(g3) ‖ Id2 in Z20 → Z20 because inRPRF(g1), inRPRF(g2), inRPRF(g3) ∈
RPRF2

3. So, we apply the next RPRF-functions. This means that inc215 ◦
inc210 ◦ inc25 produces:

0, x1, x2, 0, x1, 0, 0, 0︸ ︷︷ ︸
5

, 0, x1, 0, 0, 0︸ ︷︷ ︸
5

, 0, x1, 0, 0, 0︸ ︷︷ ︸
5

, 0, z

while inc316 ◦ inc311 ◦ inc36 produces:

0, x1, x2, 0, x1, x2, 0, 0︸ ︷︷ ︸
5

, 0, x1, x2, 0, 0︸ ︷︷ ︸
5

, 0, x1, x2, 0, 0︸ ︷︷ ︸
5

, 0, z .

3. The application of Id3 ‖ inRPRF(g1) ‖ inRPRF(g2) ‖ inRPRF(g3) ‖ Id2

yields the following tuple with twenty elements:

0, x1, x2, g1(x1, x2), x1, x2, 0, z1︸ ︷︷ ︸
5

,

g2(x1, x2), x1, x2, 0, z2︸ ︷︷ ︸
5

, g3(x1, x2), x1, x2, 0, z3︸ ︷︷ ︸
5

, 0, z .

Reversible Partial Functions 13

4. Now, we arrange the arguments which we apply Id2 ‖ inRPRF(h) where
inRPRF(h) ∈ RPRF3

15 to. We push the useless values on the �stack�, we
erase copies of x1, x2 and we suitably permute arguments. For doing
this, let z∗ denote �z1, �z2, �z3, z���. Then, the composition push18 ◦
push13 ◦ push8 produces:

0, x1, x2, g1(x1, x2), x1, x2, 0, 0︸ ︷︷ ︸
5

,

g2(x1, x2), x1, x2, 0, 0︸ ︷︷ ︸
5

, g3(x1, x2), x1, x2, 0, 0︸ ︷︷ ︸
5

, 0, z∗

and dec316 ◦ dec
2
15 ◦ dec

3
11 ◦ dec

2
10 ◦ dec

3
6 ◦ dec

2
5 produces:

0, x1, x2, g1(x1, x2), 0, 0, 0, 0︸ ︷︷ ︸
5

,

g2(x1, x2), 0, 0, 0, 0︸ ︷︷ ︸
5

, g3(x1, x2), 0, 0, 0, 0︸ ︷︷ ︸
5

, 0, z∗

and a suitable �nite permutation fP`2 produces:

x1, x2, 0, g1(x1, x2), g2(x1, x2), g3(x1, x2),

0, . . . , 0︸ ︷︷ ︸
12

, 0, �z1, �z2, �z3, z��� .

5. Applying Id2 ‖ inRPRF(h) we get:

x1, x2, f(x1, x2), g1(x1, x2), g2(x1, x2), g3(x1, x2), 0, . . . , 0︸ ︷︷ ︸
12

, 0, z4

because f(x1, x2) = h(g1(x1, x2), g2(x1, x2), g3(x1, x2)).
6. Applying push4 ◦ push5 ◦ push6 pushes g1(x1, x2), g2(x1, x2), g3(x1, x2)

on the �stack�.
7. The last step is permuting f(x1, x2) with the �rst two arguments, get-

ting to f(x1, x2), x1, x2, 0, . . . , 0︸ ︷︷ ︸
15

, 0, z5 which satis�es De�nition 10. This

means that f is RPRF2
18-de�nable.

� Let f : Nk+1 → N be the PRF de�ned as f(#„x , 0) = g(#„x) and f(#„x , y+1) =
h(f(#„x , y), #„x , y), where h : Nk+2 → N and g : Nk → N.
By the inductive hypothesis, h is RPRFk+2

lh
-de�nable and g is RPRFklg -

de�nable. Let l = max{lg, 3+lh} so that inRPRF(g) ∈ RPRFkl and inRPRF(h) ∈
RPRFk+2

l−3 exist.

We aim at building a inRPRF(f) ∈ RPRFk+1
l .

For the sake of simplicity, we discuss the details of the case with k = 2,
lg = 3 and lh = 5 which shows all the technical problems. We remind that
the evaluation of the PRF function f(−→x , n) starts by evaluating g(−→x) and
proceeds by iteratively applying h as many times as n.

14 Luca Paolini et al.

1. We are looking for inRPRF(f) ∈ RPRF3
8 thus, by De�nition 10, we would

expect an input of the shape 0, x1, x2, y, 0, 0, 0, 0, 0, 0, z containing 11
arguments.

2. We want to arrange the arguments for Id1 ‖ inRPRF(g) that, belongs
to Z11 → Z11 because inRPRF(g) ∈ RPRF2

8. Thus, we apply a suitable
�nite permutation pre�xing y to the remaining argument-list.

3. The application of Id1 ‖ inRPRF(g) produces y, g(x1, x2), x1, x2, 0, 0, 0, 0, 0, 0, z.
4. The more tricky point is the simulation of the primitive-recursion by

means of the reversible-recursion.
We move an argument from position 5 to position 2 (by means of a
�nite permutation), obtaining y, 0, g(x1, x2), x1, x2, 0, 0, 0, 0, 0, z. Since
we want to use y to drive the recursion, we need to de�ne an auxiliary
function h∗ : Z10 → Z10 making Rec1[h∗, Id10, Id10] our recursive block.
We remark that y (i.e. the �rst argument) is excluded by the argument-
list provided to h∗ by De�nition 4. Thus, the argument-list supplied to
h∗ is 0, g(x1, x2), x1, x2, 0, 0, 0, 0, 0, z containing 10 values.
The main issue for getting to the de�nition of inRPRF(f) is that each ap-
plication of h∗ requires an argument-list which carries the information
about how many times h∗ has already been applied. The value zero of
position 5, which we increment at each step, provides such an informa-
tion to h∗. Additionally, at each recursive step, we push the previous
result (in position 2) and, �nally, we permute the �rst two positions
of the argument-list (i.e. we put a zero in the position 1 and we make
the new intermediary result available) by using a suitable �nite permu-
tation fP`3 . Formally, we de�ne h∗ as fP`3 ◦ push2 ◦ S5 ◦ inRPRF(h), so
that

h∗(0, f(x1, x2, n), x1, x2, n, 0, 0, 0, 0, z) =

= fP`3 ◦ push2 ◦ Si(f(x1, x2, n+ 1), f(x1, x2, n), x1, x2, n, 0, 0, 0, 0, z)

= fP`3 ◦ push2(f(x1, x2, n+ 1), f(x1, x2, n), x1, x2, n+ 1, 0, 0, 0, 0, z)

= fP`3(f(x1, x2, n+ 1), 0, x1, x2, n+ 1, 0, 0, 0, 0,�f(x1, x2, n), z�)

= (0, f(x1, x2, n+ 1), x1, x2, n+ 1, 0, 0, 0, 0, �f(x1, x2, n), z�)

which is ready for the next recursive step. Notice that h∗ does not
adhere to De�nition 10 because of its �fth argument, so h∗ does not
de�ne a PRF function. However, it is su�cient that the inRPRF(f) (we
want de�ne) adhere to De�nition 10.

5. The application of Rec1[h∗, Id10, Id10] to y, 0, g(x1, x2), x1, x2, 0, 0, 0, 0, 0, z,
produces y, 0, f(x1, x2, y), x1, x2, y, 0, 0, 0, 0, z

′ for some z′.
6. We can conclude by eliding a copy of y by applying dec61 and then

by applying a suitable �nite permutation which moves the �rst two
arguments just before the last one. Hence, f is RPRF2

18-de�nable. ut

Reversible Partial Functions 15

4 Unbounded minimization

In the thirties Kleene extends the class of primitive recursive functions with
a minimization operator so introducing the class µRPF of µ-Recursive Partial
Functions [17,23,33] which corresponds to the class of functions that Turing
machines can compute. The de�nition of µRPF that we adhere to follows:

De�nition 12 (µ-scheme) Let g : Nk+1 → N be any partial function. The µ-
scheme on g is µz[g(z, x1, . . . , xk) = 0]. It stands for the least natural number
n such that:

� g(n, x1, . . . , xk) = 0;
� for all m ∈ {0, . . . , n− 1}, g(m,x1, . . . , xk) is de�ned and not equal to 0.

If no such an n exists, then µz[g(z, x1, . . . , xk) = 0] is unde�ned.

De�nition 13 (µ-Recursive Partial Functions) The class µRPF of µ-
Recursive Partial Functions is the least class of partial functions which contains
the basic Primitive Recursive Functions of De�nition 6 and which is closed un-
der the composition scheme (De�nition 7) the recursion scheme (De�nition 8)
and the µ-scheme (De�nition 12).

We remark that De�nition 13 builds the elements in the class µRPF by
using any of the schemes we have recalled in De�nition 7, 8 and 12 following
[6,23,33]. Such a freedom to combine composition, recursion and µ-schemes
is not necessary because the Normal Form Theorem on µRPF by Kleene says
that we can reformulate every function in µRPF as a composition of a primitive
recursive function, of the µ-scheme and of another primitive recursive function.

It is worth to remark that in [20,30] we �nd that the closure of any class of
single-valued recursive bijective, i.e. total, functions by means of the µ-scheme
yields a class of recursive bijective (total) functions closed under inversion.
From that result, in principle, it might not be immediate to adapt the µ-
scheme in order to use it on the class RPRF to generate all the partial injective
functions. Luckily, RPRF is not a standard class of recursive functions. The
functions of RPRF have Z and not N as their domain and co-domain; moreover,
every function of RPRF is not single-valued. These two �anomalies� allow to
get partial functions.

De�nition 14 (µ-Reversible scheme) Let g : Zk+1 → Zk+1 be any partial
function where k ∈ N. The following schemes addµ+(g), subµ+(g), addµ−(g) and
subµ−(g) denote functions from Zk+1 to Zk+1 which are the identity on all
arguments but the �rst one:

� addµ+(g)(z, x1, . . . , xk) = (z + n, x1, . . . , xk) and subµ+(g)(z, x1, . . . , xk) =
(z − n, x1, . . . , xk) whenever:
• g(n, x1, . . . , xk) = (0, yn1 , . . . , y

n
k);

• g(m,x1, . . . , xk) = (ym0 , y
m
1 , . . . , y

m
k) is de�ned and ym0 6= 0, for all m ∈

{0, . . . , n− 1};

16 Luca Paolini et al.

� addµ−(g)(z, x1, . . . , xk) = (z + n, x1, . . . , xk) and subµ−(g)(z, x1, . . . , xk) =
(z − n, x1, . . . , xk) whenever:
• g(−n, x1, . . . , xk) = (0, yn1 , . . . , y

n
k);

• g(−m,x1, . . . , xk) = (ym0 , y
m
1 , . . . , y

m
k) is de�ned and ym0 6= 0, for all

m ∈ {0, . . . , n− 1}.

For every addµ+(g), subµ+(g), addµ−(g) and subµ−(g) if the value n cannot exist
for the given x1, . . . , xk, then they are unde�ned.

Both g and the corresponding µ-reversible scheme of De�nition 14 have the
same arity. The application of g hides the �rst argument which gets instanti-
ated by integer values, until, eventually, the one we are looking for occurs.

We de�ne µRRF by extending RPRF as expected.

De�nition 15 (µ-Reversible Recursive Partial Functions) The class
µRRF of µ-Reversible Recursive Partial Functions is the least class which con-
tains the base Reversible Primitive Recursive functions of De�nition 1 and
which is closed under the sequential composition scheme (De�nition 2), the
iteration scheme (De�nition 3) and the µ-Reversible scheme (De�nition 14).

We overload r from PRF to PRF of De�nition 5 to a function from µRRF
to µRRF.

De�nition 16 Let g : Zk+1 → Zk+1 be a µRRF-function. The function r :
µRRF → µRRF is the extension of the namesake function in De�nition 5 by
the following clauses:

� r(addµ+(g)) = subµ+(g) and r(subµ+(g)) = addµ+(g);
� r(addµ−(g)) = subµ−(g) and r(subµ−(g)) = addµ−(g).

Theorem 5 (µRRF is closed under inversion) If f : Zk+1 → Zk+1 is a
µRRF then, f(#„x) = #„y if and only if r(f)(#„y) = #„x .

Proof The proof is by induction on r : µRRF→ µRRF. ut

Corollary 3 Each µRRF is an injective partial function on Zk+1 (a.k.a. in-
jective endorelation), for some k ∈ N.

From [25] we know that the class of RPRF-functions is computable because
an embedding from RPRF to PRF exists. Of course µRRF cannot embed into
PRF because of the unbounded search that the µ-reversible scheme requires.
Therefore, µRRF strictly extends RPRF.

Theorem 6 µRRF contains only e�ective (reversible) functions, viz. all its
functions can be simulated on reversible Turing machines.

Reversible Partial Functions 17

4.1 Turing-Completeness

We here focus on how to encode µRPF into µRRF functions. Aiming at the
Turing completeness of µRRF we need to extend the notion of de�nability of
De�nition 10 to consider partial functions.

De�nition 17 (µRRF-de�nable functions) A partial function f : Nk → N
in µRPF is µRRFkh-de�nable (for h ≥ 3) if and only if inµRRF(f) : Zk+h → Zk+h
exists in µRRF such that, for all 0, x1, . . . , xk, z ∈ N:

� z′ ∈ N exists such that:

inµRRF(f)(0, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−2

, z) = (y, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−2

, z′)

whenever f(x1, . . . , xk) = y and
� inµRRF(f)(0, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸

h−2

, z) is unde�ned whenever f(x1, . . . , xk) is

unde�ned.

We write �µRRF-de�nable� to abbreviate �µRRFkh-de�nable�, for some given
k, h ∈ N, when possible.

Clearly Lemma 2 can be extended from RPRF-de�nable functions to µRRF-
de�nable functions, providing a reversibilization of the whole language.

Theorem 7 Every f ∈ µRPF is µRRF-de�nable.

Proof We show that every f de�ned as in De�nition 13 is µRRF-de�nable. The
proof is by structural induction on the de�nition of f .

� The �rst part of the proof closely mimics the proof of Theorem 4. By
following De�nition 17, we check that if f(x1, . . . , xk) is unde�ned, then
inµRRF(f)(x0, x1, . . . , xk, 0, . . . , 0, z) is unde�ned as well. In most of the
cases f and inµRRF(f) are both total. So the above implication is true.
In the remaining cases, it is su�cient to remark that the composition is
unde�ned whenever at least one of its arguments is. The same holds for
the recursion scheme because it unfolds to a sequence of compositions.

� The proof is complete once shown that every function in µRPF, whose
de�nition relies on some occurrences of the µ-scheme of De�nition 12,
has its counterpart in µRRF. Let g : Nk+1 → N be in µRPF and let
µn[g(n, x1, . . . , xk) = 0] be the function that we must show to be in µRRF.
By induction, inµRRF(g) ∈ µRRFk+1

h for some h ≥ 3.
By De�nition 17, we can apply inµRRF(g) : Zk+1+h → Zk+1+h to a list
of arguments having shape (0,m, x1, . . . , xk︸ ︷︷ ︸

k+1

, 0, . . . , 0︸ ︷︷ ︸
h−2

, z) because, we search

for a n ∈ N such that:
• inµRRF(g)(0, n, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸

h−2

, z) = (0, n, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−2

, z′), and

18 Luca Paolini et al.

• inµRRF(g)(0,m, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−2

, z) = (zm,m, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−2

, z′)

is de�ned with zm 6= 0, for every m ∈ {0, . . . , n− 1}.

Let fP` be the following permutation:
fP`(n, x1, . . . , xk, x

′
1, . . . , x

′
h−2, z) = (x′h−2, n, x1, . . . , xk, x

′
1, . . . , x

′
h−3, z).

We can then search for n ∈ N such that:
• (inµRRF(g)◦fP`)(n, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸

h−1

, z) = (0, n, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−2

, z′),

and
• (inµRRF(g)◦fP`)(m,x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸

h−1

, z) = (zm,m, x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−2

, z′)

with zm 6= 0, for every m ∈ {0, . . . , n− 1}.

Finally, we let inµRRF(µn[g(n, x1, . . . , xk) = 0]) be addµ+(inµRRF(g) ◦ fP`)
which is µRRFk+1

h+1-de�nable because, if µn[g(n, x1, . . . , xk) = 0] is de�ned,
then:

inµRRF(µn[g(n, x1, . . . , xk+1) = 0])(0, x1 . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−1

, z)

= (µn[g(n, x1, . . . , xk+1) = 0], x1, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
h−1

, z′) . ut

5 Variants of µRRF

In this section, we �rst discuss how to relax the structural constraint which
forces the equality between the input and the output arity of every f ∈ µRRF.
We shall exploit the well-known existence of bijections from Z to Z2.

In the second part, we show that we do not harm the reversibility of any
function f ∈ µRRF if we hide both its i-th argument and the corresponding
i-th output, provided that the value of the i-th argument remains constant
going from the input to the output of f , i.e. if the computation of the results
that f supplies is clean [38].

5.1 Pairing maps in µRRF

We here extend µRRF to µRRF′ whose reversible functions can have di�erent
input and output arities.

Reversible Partial Functions 19

De�nition 18 For every 1 ≤ i ≤ k, let joini : Zk+1 → Zk and spliti : Zk →
Zk+1 be total recursive functions such that:

joini(x1, . . . , xi−1, xi, xi+1, xi+2, . . . , xk+1) =

(x1, . . . , xi−1, �xi, xi+1�, xi+2, . . . , xk+1)

spliti(x1, . . . , xi−1, �x
′′
i , x
′
i�, xi+1, . . . , xk+1) =

(x1, . . . , xi−1, x
′
i, x
′′
i , xi+1, . . . , xk+1) .

Once �xed i, joini and spliti are mutually inverse. i.e. their composition is
the identity.

De�nition 19 The class µRRF′ is the least class which contains the base
Reversible Primitive Recursive functions of De�nition 1, the functions joini :
Zk+1 → Zk and spliti : Zk → Zk+1, for every 1 ≤ i ≤ k, and which is closed
under the sequential composition scheme (De�nition 2), the iteration scheme
(De�nition 3) and the µ-Reversible scheme (De�nition 14).

Let �_,_� : Z2 → Z be a bijection such that:

�0, 0� = 0 . (1)

The constraint (1) holds true for common pairing maps [35]. If it is true, we
can adapt De�nition 17 to µRRF′ by removing the h − 2 occurrences of the
value 0 used as ancillae because we can generate as many copies of 0 as we
need, starting from a single 0 and applying spliti. Symmetrically, we can reduce
an arbitrary number of occurrences of 0 to a single 0 by means of joini.

Of course, the function r : µRRF → µRRF extends to a namesake r :
µRRF′ → µRRF′.

De�nition 20 The inductive clauses that de�ne r : µRRF′ → µRRF′ are the
ones that de�ne r : µRRF→ µRRF of De�nition 16 plus the clauses:

r(joini) = spliti ,

r(spliti) = joini .

Theorem 8 For every f ∈ µRRF′, we have that r(f) ∈ µRRF′.

5.2 Hiding and Uncovering

We show how extend our reversible functions by allowing the hiding of constant
arguments of any given f ∈ µRRF.

De�nition 21 Let f : Zk+1 → Zk+1 be in µRRF. For every 1 ≤ i ≤ k+1, let
hidei(f) : Zk → Zk be such that hidei(f)(x1, . . . , xk) = (y1, . . . , yk) whenever:

f(x1, . . . , xi, 0, xi+1, . . . , xk+1) is de�ned, and

f(x1, . . . , xi, 0, xi+1, . . . , xk+1) = (y1, . . . , yi, 0, yi+1, . . . , yk+1) .

20 Luca Paolini et al.

No loss of information follows from the application of hidei(f) because the
information it hides is the single value 0. In particular, the implementation
of hidei(f) in a reversible Turing machine is trivial and commonly used. It
corresponds to forget that some portion of the tape is �rst used and then
emptied [2,3]. The natural counterpart of hidei is in the next de�nition.

De�nition 22 Let g : Zk → Zk be in µRRF. For every 1 ≤ i ≤ k, let
uncoveri(g) : Zk+1 → Zk+1 be such that:

uncoveri(g)(x1, . . . , xi, 0, xi+1, . . . , xk+1) = (y1, . . . , yi, 0, yi+1, . . . , yk+1)

whenever g(x1, . . . , xk) = (y1, . . . , yk).

We remark that uncoveri somewhat internalizes the Weakening Lemma 2.

De�nition 23 The class µRRF′′ is the least class which contains the base
Reversible Primitive Recursive functions of De�nition 1, the function hidei :
Zk → Zk, for every 1 ≤ i ≤ k + 1, the function uncoverj : Zk+1 → Zk+1, for
every 1 ≤ j ≤ k, and which is closed under the sequential composition scheme
(De�nition 2), the iteration scheme (De�nition 3) and the µ-Reversible scheme
(De�nition 14).

The function r : µRRF → µRRF extends to a namesake r : µRRF′′ →
µRRF′′ as follows.

De�nition 24 The inductive clauses that de�ne r : µRRF′′ → µRRF′′ are
those ones that de�ne r : µRRF→ µRRF of De�nition 16 plus the clauses:

r(hidei(g)) = hidei(r(g))

r(uncoveri(g)) = uncoveri(r(g))

which hold for every g : Zk+1 → Zk+1 in µRRF.

Theorem 9 For every f ∈ µRRF′′, we have that rf ∈ µRRF′′.

6 Conclusions

This work naturally extends [25] where we introduce the class RPRF of (total)
Reversible Primitive Recursive Functions. Coherently with the classical recur-
sion theory, we here introduce the Turing-complete analogous of µRPF in the
setting of reversible computations, i.e. µRRF.

On the foundational side, we have some future goals.

� One is to consider a set of base reversible functions smaller than the one
De�nition 1 identi�es. Then, it is possible to ask if RPRF built-in pairing
and un-pairing are strictly necessary. The forthcoming work [24] shows
that pairing and un-pairing are, in fact, de�nable in the language with a
reduced set of base reversible functions.

Reversible Partial Functions 21

� Another one is to further check the theoretical relevance of RPRF. We
wonder about the existence of Tr in RPRF, the analogous of Kleene's pred-
icate T. The aim of looking for Tr is to prove a normalization theorem like
the one that holds for µRPF [23,33]. This would amount to prove that
every g ∈ µRRF can be described by means of the application of a �rst
RPRF-function to a unique application of a recursion scheme to a further
RPRF-function.

� More ambitiously we can think of extending the compositional nature of
our recursion-theoretic characterizations of reversible functions in order to
encompass higher order functions and functional programming languages.
Starting points could be [1,9,7,26,19,16].

We also have at least a pair of pragmatic future goals.

� We aim at comparing the programming styles that our computational
model supplies with those ones available inside Reversible Turing Machines
as in [2,3] and other reversible programming languages [37,38].

� Another interesting issue is to �nd a more friendly notation for functions
that have multiple outputs and therefore do not lend easily to a linear rep-
resentation for composition. A natural approach should consider the many
graphical formalisms for representing morphisms in monoidal categories,
like the string diagrams described, for example, in [32].

Related Papers. The reversible programming language SRL is in [21]. Its pro-
grams represent total functions only. The characterization of the class of func-
tions that SRL represents is till open. Our conjecture is that SRL would become
equivalent to RPRF only once extended with stack-like data-types.

A language equivalent to µRPF is in [14]. It provides invertible partial
recursive functions on natural numbers and not on integers. Working those
functions on natural numbers, they necessarily depend on a speci�c represen-
tation of integers to encode the predecessor of µRPF. We see this as a useless
restriction.

References

1. S. Abramsky. A structural approach to reversible computation. Theoretical Computer
Science, 347(3):441�464, Dec. 2005.

2. H. B. Axelsen and R. Glück. What do reversible programs compute? In 14th Interna-
tional Conference on Foundations of Software Science and Computational Structures,
volume 6604 of Lecture Notes in Computer Science, pages 42�56. Springer, 2011.

3. H. B. Axelsen and R. Glück. On reversible Turing machines and their function univer-
sality. Acta Informatica, 53(5):509�543, Aug 2016.

4. C. H. Bennett. Logical reversibility of computation. IBM J. Res. Develop., 17:525�532,
1973.

5. C. H. Bennett. Notes on the history of reversible computation. IBM J. Res. Dev.,
32(1):16�23, Jan. 1988.

6. N. Cutland. Computability: An Introduction to Recursive Function Theory. Cambridge
University Press, 1980.

7. V. Danos and L. Regnier. Reversible, irreversible and optimal λ-machines. Theoretical
Computer Science, 227(1):79 � 97, 1999.

22 Luca Paolini et al.

8. A. De Vos. Reversible Computing: Fundamentals, Quantum Computing, and Applica-
tions. Wiley-VCH, 2010.

9. A. Di Pierro, C. Hankin, and H. Wiklicky. Reversible combinatory logic. Mathematical.
Structures in Comp. Sci., 16(4):621�637, Aug. 2006.

10. G. Dowek. Proofs and Algorithms: An Introduction to Logic and Computability.
Springer Publishing Company, Incorporated, 1st edition, 2011.

11. R. Glück and M. Kawabe. Revisiting an automatic program inverter for lisp. SIGPLAN
Not., 40(5):8�17, May 2005.

12. D. Gries. The Science of Programming. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1st edition, 1987.

13. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

14. G. Jacopini and P. Mentrasti. Generation of invertible functions. Theoretical Computer
Science, 66(3):289�297, 1989.

15. G. Jacopini, P. Mentrasti, and G. Sontacchi. Reversible Turing machines and polynomial
time reversibly computable functions. SIAM J. Discrete Math., 3(2):241�254, 1990.

16. R. P. James and A. Sabry. Information e�ects. In Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 73�84, 2012.

17. S. Kleene. Introduction to Metamathematics. Bibliotheca Mathematica. Wolters-
Noordho�, 1952.

18. A. V. Kuznecov. On primitive recursive functions of large oscillation. Doklady Akademii
Nauk SSSR, 71:233�236, 1950. In Russian.

19. I. Mackie. The geometry of interaction machine. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '95,
pages 198�208, New York, NY, USA, 1995. ACM.

20. A. I. Mal'cev. Algorithms and recursive functions. Wolters-Noordho�, 1970. Translated
from the �rst Russian ed. by Leo F. Boron, with the collaboration of Luis E. Sanchis,
John Stillwell and Kiyoshi Iseki.

21. A. B. Matos. Linear programs in a simple reversible language. Theoretical Computer
Science, 290(3):2063�2074, 2003.

22. J. McCarthy. The inversion of functions de�ned by Turing machines. In C. Shannon
and J. McCarthy, editors, Automata Studies, Annals of Mathematical Studies, 34, pages
177�181. Princeton University Press, 1956.

23. P. Odifreddi. Classical recursion theory: the theory of functions and sets of natural
numbers. Studies in logic and the foundations of mathematics. North-Holland, 1989.

24. L. Paolini, M. Piccolo, and R. Luca. A class of recursive permutations which is prim-
itive recursive complete. Technical report, Rapporto dell'Università di Torino, 2017.
Submitted to TCS.

25. L. Paolini, M. Piccolo, and L. Roversi. A class of reversible primitive recursive func-
tions. Electronic Notes in Theoretical Computer Science, 322:227�242, 2016. Elsevier,
Netherlands.

26. L. Paolini, M. Piccolo, and L. Roversi. A certi�ed study of a reversible programming
language. In T. Uustalu, editor, TYPES 2015 postproceedings, volume 69 of LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2017.

27. L. Paolini and M. Zorzi. qPCF: a language for quantum circuit computations. In
T. Gopal, G. Jäger, and S. Steila, editors, 14th Annual Conference on Theory and
Applications of Models of Computation, volume 10185 of Lecture Notes in Computer
Science, pages 455�469. Springer, Germany, 2017.

28. K. S. Perumalla. Introduction to Reversible Computing. Chapman & Hall/CRC Com-
putational Science. Taylor & Francis, 2013.

29. R. Péter. Recursive functions. Academic Press, 1967.
30. J. Robinson. General recursive functions. Proceedings of the American Mathematical

Society, pages 703�718, 1950.
31. H. Rogers. Theory of Recursive Functions and E�ective Computability. McGraw-Hill

series in higher mathematics. McGraw-Hill, 1967.
32. P. Selinger. A Survey of Graphical Languages for Monoidal Categories, pages 289�355.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

Reversible Partial Functions 23

33. R. Soare. Recursively Enumerable Sets and Degrees: A Study of Computable Functions
and Computably Generated Sets. Perspectives in Mathematical Logic. Springer, 1987.

34. R. I. Soare. Chapter 1 - The History and Concept of Computability. In E. R. Gri�or,
editor, Handbook of Computability Theory, volume 140 of Studies in Logic and the
Foundations of Mathematics, pages 3 � 36. Elsevier, 1999.

35. M. P. Szudzik. The rosenberg-strong pairing function. CoRR, abs/1706.04129, 2017.
36. T. To�oli. Reversible computing. In J. W. de Bakker and J. van Leeuwen, editors, Au-

tomata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The Nether-
land, July 14-18, 1980, Proceedings, volume 85 of Lecture Notes in Computer Science,
pages 632�644. Springer, 1980.

37. T. Yokoyama, H. B. Axelsen, and R. Glück. Principles of a reversible programming
language. In A. Ramírez, G. Bilardi, and M. Gschwind, editors, Proceedings of the 5th
Conference on Computing Frontiers, 2008, Ischia, Italy, May 5-7, 2008, pages 43�54.
ACM, 2008.

38. T. Yokoyama, H. B. Axelsen, and R. Glück. Fundamentals of reversible �owchart lan-
guages. Theoretical Computer Science, 611:87 � 115, 2016.

39. M. Zorzi. On quantum lambda calculi: a foundational perspective. Mathematical Struc-
tures in Computer Science, 26(7):1107�1195, 2016.

	Introduction
	Reversible Primitive Recursive Functions
	Primitive Recursive functions and RPRF
	Unbounded minimization
	Variants of RRF
	Conclusions

