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Abstract 

Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, Western 

diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced 

glycation endproducts (AGEs), which characterizes all the above disease conditions and unhealthy 

habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the 

evidence of a tumor-promoting role of RAGE, the receptor for AGEs. Here, we tested the 

hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the 

effects of the AGE Nε-carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma 

(PDA) cell lines and in a mouse model of Kras-driven PaC interbred with a bioluminescent model 

of proliferation. Tumor growth was monitored in vivo by bioluminescence imaging and confirmed 

by histology. CML promoted PDA cell growth and RAGE expression, in a concentration- and time-

dependent manner, and activation of downstream tumorigenic signaling pathways. These effects 

were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC-

prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and 

markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), 

PaC was observed in 8/11 (72.7%) of CML-treated versus 1/11 (9.1%) of vehicle-treated (Ctr) 

mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML-

treated mice, likely due to competition with soluble RAGE for binding to AGEs and/or 

compensatory upregulation of the RAGE homolog CD166/ALCAM, which favored also tumor 

spread. These findings indicate that AGEs modulate the development and progression of PaC 

through receptor-mediated mechanisms and might be responsible for the additional risk conferred 

by diabetes and other conditions characterized by increased AGE accumulation. Finally, our data 

suggest that an AGE reduction strategy, instead of RAGE inhibition, might be suitable for risk 

management and prevention of PaC. 

Key words:  pancreatic cancer, Kras mutation, advanced glycation endproducts, RAGE, diabetes, 

bioluminescence imaging. 
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Introduction 

Diabetes mellitus (DM), the prevalence of which is expected to increase dramatically in the next 

years (1), has been identified as a risk factor for a variety of malignancies, including pancreatic 

cancer (PaC) (2). The incidence of PaC continues to increase and it is predicted to become the 

second cause of cancer-related deaths in the US by 2030 (3). Since no effective therapy is available 

for the majority of patients and the 5-year survival is less than 7% (3), it is important to focus on 

prevention by eliminating risk factors  

Studies designed to unravel the mechanistic link between DM and PaC are complicated by the 

fact that type 2 DM, the most common form of DM, could promote PaC through a variety of 

factors, including hyperglycemia itself, dyslipidemia, chronic inflammation, and insulin 

resistance/hyperinsulinemia (4-8).  Recently, a tumor-promoting role has been suggested for the 

receptor for advanced glycation endproducts (RAGE), a single transmembrane receptor of the 

immunoglobulin superfamily. Ablation/blockade of this receptor was shown to slow down PaC 

development (9,10) by delaying progression of pancreatic intraepithelial neoplasia (PanIN) (10). 

Moreover, RAGE was found to regulate crosstalk between pro-survival pathways in pancreatic 

ductal adenocarcinoma (PDA) cells (11). RAGE interacts with multiple exogenous and endogenous 

ligands to induce inflammation (12) and is expressed in cell types implicated in tumor formation 

(13). As such, RAGE has been linked to cancer development/progression by facilitating the 

maintenance of a chronic inflammatory state (14) and/or promoting tumor growth (15). More 

specifically, RAGE ligation activates nuclear factor (NF)-κB, a critical transcription factor 

transducing a variety of inflammatory signals (16) and up-regulating RAGE itself, since the gene 

encoding RAGE contains functional NF-κB binding elements (17). 

The name of RAGE derives from its ability to bind the advanced glycation end-products (AGEs).  

Though a role for AGEs has been tentatively proposed to explain the increased risk of various 

cancers (including PaC) in diabetic and obese individuals (18), surprisingly, their role in pancreatic 

carcinogenesis has never been investigated (19). AGEs are a heterogeneous group of compounds 
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(20) that accumulate in tissues of aging individuals and, at an accelerated rate, in diabetic and obese 

subjects, due to several mechanisms, including increased carbohydrate and lipid substrate 

availability, oxidative and non-oxidative conditions favoring the glycation process, and impaired 

detoxification (21). In addition to endogenous production, high-temperature processed foods and 

cigarette smoking are major environmental sources of AGEs (22,23), which might therefore be 

involved in the increased PaC risk associated with dietary and smoking habits (24). Consistently 

with the involvement of the AGE-RAGE axis in human PaC, a large prospective study reported that 

plasma levels of soluble RAGE (sRAGE), a truncated circulating form acting as a decoy receptor in 

preventing RAGE activation (25), were inversely associated with risk of PaC among Finnish male 

smokers (26). 

This study aimed at investigating the tumor-promoting role of Nε-carboxymethyllysine (CML), a 

major AGE found in vivo (27) and a known RAGE ligand (28), in a well-characterized genetically-

engineered mouse model of human PaC and in PDA cell lines.  
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Materials and methods 

Study design 

The in vitro study was designed to investigate the tumor-promoting effects of  CML on PDA cell 

lines by evaluating cell growth and the main tumorigenic pathways involved in PaC promotion. A 

secondary objective was to assess whether these effects were RAGE-mediated. 

The in vivo study was designed to evaluate the effect of CML on progression of early murine 

pancreatic neoplasia. The primary and secondary endpoints were the development of invasive PaC 

and development/progression of PanINs, respectively. The number of mice was not pre-specified. 

According to the Ethics Committee recommendation, to limit the number of animals, the 

experiments were stopped when it was sufficient to confirm or reject the working hypothesis in a 

statistically and clinically meaningful manner. Biological samples were recoded by a technician 

(CC, see Acknowledgements) at the time of collection and analyzed by investigators blinded to 

group assignment. The research protocol was approved by the National Ethics Committee for 

Animal Experimentation of the Italian Minister of Health (Authorization n. 1470/2015-PR). The 

animals were housed in single cages and cared according to standards articulated in the “Animal 

Research: Reporting of In Vivo Experiments” (ARRIVE) (https://www.nc3rs.org.uk/arrive-

guidelines) guidelines. 

Cell lines 

Human MIA PaCa-2 and PANC-1 (PDA) cells (Sigma-Aldrich, St.Louis, MO, USA) and the 

normal human pancreatic duct epithelial (HPDE) cell line HPDE-E6E76c7 (H6C7) ( provided by 

Dr. Maurizio Fanciulli, Regina Elena National Cancer Institute, Rome, Italy) were maintained in 

DMEM supplemented with 10% fetal bovine serum and incubated with native human serum 

albumin (HSA, Sigma-Aldrich; vehicle, Ctr) or CML-modified HSA (1 μg/mL to 100 μg/mL, 

CML) ± the S100P-derived RAGE antagonist peptide (RAP, Calbiochem, Merck KGaA, 

Darmstadt, Germany; 10 μmol/L, daily added). CML was prepared as previously reported (21,29). 

Characterization of CML preparations by 2,4,6-trinitrobenzene sulfonic acid (TNBSA) revealed that 
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13.2±2.1% and 14.7±2.4% of total free amino groups (lysine and arginine) in CML-HSA and CML-

MSA, respectively, were modified. This rate of modification was previously found to have an 

activity to bind RAGE (28), but not scavenger receptors (30) and is comparable to that detected in 

serum proteins of diabetic patients (31).  RAGE binding to the CML-MSA preparation used in the 

in vivo studies was confirmed in a functional ELISA (Supplementary Figure 1).  The RAP 

concentration was chosen on the ground of the available literature data (9). Detailed information on 

CML preparation, characterization, and RAGE-binding activity is provided as Supporting 

Information. 

Cell viability and proliferation 

Cell viability and proliferation were evaluated by cell count using Countess® Automated Cell 

Counter (Life Technologies Carlsbad, CA, USA) and a 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT)-based cell proliferation assay (Roche Diagnostics GmbH 

Mannheim, Germany). 

RAGE and molecular targets of tumorigenic signaling pathways in PDA cells 

The mRNA expression of the genes coding for (a) RAGE; (b) CD166/ activated leukocyte cell 

adhesion molecule (ALCAM), a close structural and functional homolog of RAGE (32); (c) nuclear 

factor of activated T-cells cytoplasmic 1 (NFATC1) and serine/threonine-protein kinase Pim-1 

(PIM1), two Signal Transducer and Activator of Transcription 3 (STAT-3) downstream targets 

which have been involved in inflammation-driven PaC (33); and (d) interleukin-6 (IL-6), the 

production of which was shown to be RAGE-dependent in KC mice (10) (AGER, ALCAM, 

NFATC1, PIM1, and IL6, respectively) was assessed by real-time (RT)-PCR using a StepOne Real-

Time PCR System and the TaqMan Gene Expression assays (Applied Biosystems Monza, Italy) 

listed in Supplementary Table 1 (34,35). 

Nuclear protein extracts were obtained from cells monolayers using the Nuclear Extract Kit 

(Active Motif Corp., Carlsbad, CA, USA). Nuclear protein levels of NF-κB p65, phosphorylated 

STAT3 (p-STAT3), NFATC1, and hypoxia-inducible factor 1 (HIF-1) α, which is involved in 
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RAGE-Kras promotion of PaC (10), were assessed by Western blot (see Supplementary Table 2 for 

antibodies). The DNA-binding activity of NF-κB/p65 and HIF-1α were assessed by the TransAM 

NFkB p65 and HIF-1 Kit, respectively (Active Motif Corp.). Details on RAGE neutralization 

experiments with an anti-RAGE antibody are provided as Supporting Information. 

Transgenic animal model 

The effect of CML administration on PaC development through RAGE activation was 

investigated in genetically-engineered mice Pdx1-Cre;LSL-KrasG12D/+ (KC mice) on a C57Bl/6 

background, that develop autochthonous lethal PaC in a pattern recapitulating human PDA with 

high fidelity (36). KC mice were interbred with MITO-Luc (for mitosis luciferase) reporter mice on 

a FVB background (37,38) to obtain KC-Mito (KCM) mice (see Supporting Information). 

Five-week old KCM mice were randomly assigned to treatment with daily i.p. injections of 30 

μg of native mouse serum albumin (MSA, Ctr) or CML-modified MSA (CML) (21). At this age, 

pancreatic parenchyma is histologically normal and early-stage PanINs are rarely observed (36,38). 

The treatment dose was chosen based on our previous data showing that this injection protocol 

results in a 2-to-3 fold increase in circulating and tissues AGE levels (21,39), similar to that 

observed in experimentally diabetic mice (29,34,40,41). We subjected Ctr and CML-treated mice to 

longitudinal in vivo BLI imaging and manual palpation of the abdomen to monitor tumor 

development. Additional groups of KCM mice were treated with RAP at the dose of 100 μg/day (9) 

in addition to native MSA (Ctr+RAP) or CML-MSA (CML+RAP). 

In vivo imaging of cell proliferation in PaC 

Starting from the fifth week of age, in vivo imaging (37,38) was carried out every other week as 

previously reported (38). Briefly, 10 min after administration of D-luciferin (75 mg/kg body weight, 

i.p.; Perkin Elmer, Hopkinton, MA, USA), photon emission from the different body areas was 

acquired for 5 min and analyzed by a CCD camera (Xenogen IVIS Lumina System, Perkin Elmer). 

A specific region of interest (ROI) corresponding to the abdominal area occupied by the pancreas 

was manually selected and light emission from this ROI was evaluated with a Living Image 
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Software (Caliper Life Sciences, Perkin Elmer). Data were expressed as 

photon/second/cm2/steradiant (p/s/cm2/sr). 

Ex vivo imaging 

At the end of treatment, mice were anesthetized for the last in vivo imaging session and then 

euthanized by cervical dislocation. Pancreas was dissected and exposed to the CCD camera for 5 

minutes for photon emission assessment. 

Next, samples were partly frozen and kept at -80°C for molecular analysis and partly embedded 

in paraffin for histological analysis and immunohistochemistry (IHC). 

Pancreas histology 

At least six 4 μm-thick non-serial pancreatic sections were stained with hematoxylin and eosin, 

examined to confirm the presence of cancer or grade dysplastic ducts according to previously 

established criteria (36). 

The KCM, as well as KC mice, develop with complete penetrance ductal lesions identical to all 

three stages of human PanINs (36,42). Number of low-grade (PanIN-1A/B) and high-grade (PanIN-

2/3) dysplastic ducts were counted and expressed as a percentage of total ducts in the specimen 

(10). 

Pancreatic protein levels of RAGE and CD166/ALCAM, co-localization of RAGE with CML, 

and phosphorylation status of STAT3 

Pancreatic tissue distribution of RAGE and CD166/ALCAM was analyzed by IHC. Co-

localization of RAGE and CML was analyzed by dual label immunofluorescence, as described in 

the Supporting Information. Pancreatic protein levels of p-STAT3, RAGE, and CD166/ALCAM 

were assessed by Western blot (see Supplementary Table 2 for antibodies). 

For Western blot analysis, proteins were separated on a TGX Stain-Free Gel (Bio-Rad 

Laboratories, Hercules, California, USA), as detailed in the Supporting Information. 

Serum levels of the AGE CML, sRAGE and IL-6 
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Serum levels of CML, sRAGE, and IL-6 were assessed using ELISA kits (Cell Biolabs Inc. San 

Diego, CA, USA, for CML; R&D Systems, Minneapolis, MN, USA, for sRAGE and IL-6) (34,35). 

Lack of interference of circulating sRAGE and RAP with CML assays, and of CML and RAP 

with sRAGE assay was verified by adding increasing concentrations of each of these ligands to 

serum prior to perform the ELISAs (Supplemental Figure 2). Details of the experimental procedure 

are provided as Supporting Information. 

Statistical analysis 

Results are expressed as mean±SD and/or percentage.  

Differences between cell types/treatments or animal groups were assessed using the Student’s t 

test or the one-way ANOVA followed by the Student-Newman-Keuls test for multiple comparisons, 

as appropriate. Differences among animal groups in PaC prevalence at 11 weeks of age were 

assessed using the Fisher's exact test to compute a P-value from a contingency table. A P-value 

<0.05 was considered significant. 

All statistical tests were performed on raw data, using SPSS 13.0 statistical software. 

  



12 
 

Results 

The AGE CML promotes PDA cell proliferation and induces RAGE up-regulation 

CML promoted proliferation of Mia PaCa-2 cells in a time- and concentration-dependent manner 

(Figure 1A-B). A dose-dependent induction of proliferation was observed also in PANC-1 cells, 

peaking at 10 μg/mL (Figure 1C), whereas HPDE cells responded only at the lowest concentration 

tested (Figure 1D). 

Induction of proliferation was accompanied by increased RAGE expression in all three cell lines 

(Figure 1A-D). Interestingly, the CML concentration range with a positive dose-response 

relationship for proliferation at 24 hrs correlated with baseline RAGE expression (Figure 1E). 

AGE/RAGE axis modulates tumorigenic pathways involved in PaC 

CML treatment increased NK-κB p65 protein level and activation (Figure 2A-B) and p-STAT3 

nuclear content (Figure 2A) and induced the transcriptional activity of the STAT3 target genes 

NFATC1 and PIM1 (Figure 2C). 

RAP treatment counteracted all the molecular events elicited by CML and completely prevented 

CML-induced proliferation of PDA cells (Figure 2D). In addition, RAP blunted CML-induced 

nuclear translocation of HIF-1α and its DNA binding activity, nuclear translocation of NFATC1, 

activation of HIF-1α, and up-regulation of IL-6 (Supplementary Figure 3A-B). Proliferation and 

NF-κB nuclear translocation induced by CML were also inhibited by an anti-RAGE antibody in 

MIA PaCa-2 culture (Supplementary Figure 4A-B). 

Expression of the RAGE homolog ALCAM (32) was not detectable (MIA PaCa-2) or at the limit 

of detectability (PANC-1) in PDA cells untreated or treated with CML or CML+RAP for 24 hrs. 

CML favors development and progression of early murine PaC 

After six weeks of CML treatment (i.e., at 11 weeks of age), more than half of KCM mice (6/11) 

showed positive abdominal imaging and ~1/4 (3/11) had a palpable abdominal mass (Figure 3A). 

At this age, only one Ctr-KCM mice showed significant abdominal photon emission 
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(Supplementary Figure 5). Therefore, to avoid loss of CML-treated KCM mice and limit the 

number of animals, the study was stopped at this time. However, since the in vivo imaging does not 

allow to clearly identify the organ/tissue contributing to the BLI signal, we performed ex vivo 

imaging of the gastrointestinal apparatus at the time of the sacrifice, which confirmed that specific 

spots of BLI signals were mainly emitted by the pancreatic mass (Figure 3B). 

At histological analysis, invasive PDA was confirmed in 8/11 (72.7%) CML-treated mice, 

compared with 1/11 (9.1%) Ctr mice (Table 1). Therefore, the majority of Ctr mice showed normal 

pancreatic architecture, though pre-invasive PanINs of various degrees were observed in all 

specimens analyzed (Figure 3C). Conversely, the majority of KCM mice treated with CML 

revealed a diffusely infiltrative PDA with well- and poorly-differentiated areas within the same 

tumor (Figure 3C-D); scattered low and high grade PanINs were also seen, especially at the tumor 

border (Figure 3E). These histological features were also observed in the pancreas from the one Ctr-

KCM mice with invasive PaC, consistently with previous reports (33,34). No liver or lung 

metastases were observed grossly or in serial sections in both groups at this age (Table 1). 

CML increases RAGE protein levels in PanINs and well-differentiated regions of invasive 

PaC of KCM mice 

IHC for RAGE distribution in pancreatic sections of CML-treated KCM mice showed intense 

staining of PanINs, but not of the surrounding acinar tissue (Figure 4A-B). A cytoplasmic granular 

RAGE positivity was also observed in cells of duct-like structures in well-differentiated regions of 

the tumor, but not in surrounding undifferentiated areas (Figure 4C). Also PanINs of Ctr-KCM 

mice were positive for RAGE, though staining intensity was fainter than in CML-treated KCM 

mice and restricted to the apical/lateral border of PanIN cells (Figure 4D). Importantly, dual 

labeling immunofluorescence analysis showed co-localization of RAGE with CML in PanINs of 

CML-treated, but not of Ctr-KCM mice (Figure 4E). 
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Western blot analysis demonstrated higher RAGE levels in pancreatic specimens of CML-treated 

mice with well-differentiated PaC (Figure 4F) and significantly increased p-STAT3 levels in CML-

treated- versus Ctr-KCM mice (Supplementary Figure 6). 

RAP delays PanIN lesion development in Ctr-KCM mice but fails to prevent CML-induced 

PaC promotion and progression 

As assessed by histological analysis, none of the ten KCM mice treated with RAP (Ctr+RAP) 

showed invasive PaC at 11 weeks of age (Table 1). However, quantitative analysis of neoplastic 

ducts showed that the number of low grade and, particularly, high grade PanIN lesions was 

significantly reduced in Ctr+RAP compared with Ctr-KCM mice (Figure 5). 

Conversely, RAP administration did not counteract the promoting effect of CML on pancreatic 

tumorigenesis, as demonstrated by the high rate (6/7 animals, 87.5%) of invasive PaC observed in 

KCM mice treated with CML+RAP (Table 1). What is more, liver and/or lung metastases were 

observed grossly and confirmed by histological examination in 3/7 mice (42.5%) (Table 1 and 

Supplementary Figure 7). 

Finally, Western blot analysis and IHC revealed a sharp increase of the protein level of the 

RAGE homolog CD166/ALCAM in mice treated with CML+RAP versus those receiving CML 

alone, but not in animals given RAP only (Figure 5D-E and Supplementary Figure 8). 

RAP+CML treatment reduces serum levels of sRAGE and increases CML:sRAGE ratio 

As expected, serum levels of CML were increased in KCM mice treated with CML and 

CML+RAP (Figure 6A). Conversely, serum sRAGE levels were strongly reduced by CML 

treatment, and further reduced by the combined CML+ RAP treatment (Figure 6B). As a result, the 

serum CML:sRAGE ratio (i.e., free or no sRAGE-associated CML) was higher in CML+RAP-

treated than in CML-treated KCM mice (Figure 6C). 

Consistently with a role of RAGE in IL-6 production, levels of this cytokine were increased in 

KCM mice treated with CML and were partly reduced by RAP treatment (Figure 6D).  
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Discussion 

This study provides the first experimental evidence that the AGE CML (a) modulates the activity 

of signaling pathways involved in PaC development and stimulates cell proliferation in PDA cell 

lines in a RAGE-dependent manner; and (b) accelerates progression from PanINs to invasive PaC in 

a mouse model of Kras-driven PaC. Our results also support previous data demonstrating a 

permissive role for RAGE in early pancreatic neoplasia (10) and the efficacy of RAGE 

ablation/blockade in delaying PaC development in the presence of physiological levels of AGEs 

(9,10). However, our data argue against the utility of RAGE blockade/inhibition as a therapeutic 

option in conditions characterized by increased circulating AGE levels (22,23). Instead, they 

suggest that lowering AGE formation/level, rather than RAGE blockade, might represent a targeted 

risk reduction therapy for PaC in DM and other conditions characterized by increased AGE 

accumulation. The in vitro experiments demonstrated that CML stimulates proliferation of human 

PDA cell lines through RAGE activation, thus suggesting a role for the AGE/RAGE axis in PaC 

promotion. Several lines of evidence support this interpretation. Firstly, the time- and 

concentration-dependent stimulation of cell proliferation by CML was accompanied by a parallel 

up-regulation of RAGE expression and downstream tumorigenic pathways. Secondly, RAGE 

blockade with RAP counteracted the effects of CML on cell proliferation, NF-kB activation, 

STAT3 phosphorylation and up-regulation of its target genes. Thirdly, the higher was the basal 

expression of RAGE (i.e., MIA PaCa-2 > PANC-1 > HPDE), the larger was the range of CML 

concentration with a positive dose-response relationship for cell growth. This RAGE-dependent 

heterogeneity in the cell proliferative response to different AGE levels might represent one of the 

mechanisms through which DM promotes PaC. In fact, the high concentrations of AGEs 

characterizing DM may favor proliferation of initially transformed cells, which show a high 

expression level of RAGE, as compared to non-transformed cells, exhibiting a low level of this 

receptor. 
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The in vivo studies assessing the effect of CML on early pancreatic carcinogenesis showed that 

this AGE accelerates the development of PaC in KCM mice. Although a considerably degree of 

variability exists in total PaC burden among coeval mice, at 11 weeks of age , both KC (36,42) and 

KCM (38) mice showed a substantial number of PanIN lesions (~30% of pancreatic ducts), most of 

which of low-grade, and usually no invasive lesions. Therefore, the finding of 1/11 Ctr-KCM 

mouse with PaC should be considered as an occasional observation. Conversely, the finding that 

8/11 CML-KCM mice presented with invasive PaC indicates that AGEs markedly accelerate PaC 

development. In addition, the content and distribution of RAGE protein and CML in pancreatic 

lesions strongly support the hypothesis that CML-enhanced tumorigenesis is mediated through 

RAGE expression and activation, in keeping with previous data showing that RAGE expression 

increases in parallel with progression of PanIN lesions in KC mice and is up-regulated in human 

PaC specimens (10). Moreover, the pronounced RAGE staining detected in cells of duct-like 

structures in well-differentiated regions of PaC, but not in the surrounding undifferentiated areas, 

suggests that RAGE is dispensable for subsequent steps of tumor progression. Taken together, these 

data support the hypothesis of a permissive role of RAGE for the progression of PanIN lesions to 

invasive PaC, as previously demonstrated in KC-RAGE knockout mice (10). 

According with this assumption, we were able to demonstrate that RAGE blockade with RAP 

reduced the formation and progression of PanINs in KCM mice, consistent with a previous report in 

a pancreatic orthotopic model (9). However, one of the main aims of our study was to verify the 

hypothesis that blockade of the AGE/RAGE axis might represent a targeted risk reduction therapy 

for PaC in high-risk individual such as those with metabolic disorders  and unhealthy lifestyle 

habits (2,26,43,44), who exhibit elevated circulating levels of AGEs (22,23). Contrary to our 

expectations, and at variance with data from cell culture studies and Ctr-KCM mice, RAGE 

blockade with RAP did not prevent the promoting effect of CML on pancreatic carcinogenesis and 

even favored tumor spreading and metastasis. These findings seem to argue against a role of the 

AGE-RAGE in the tumor-promoting effect of CML. However, two lines of evidence indicate they 

may have been related to two effects of RAP observed only when it was administered in mice with 
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pathological levels of  CML (CML+RAP treatment). Firstly, the CML:sRAGE ratio (i.e., free 

CML) was higher in KCM mice treated with CML+RAP than in those treated with CML alone, a 

finding which suggests that, in the presence of high circulating CML levels, RAP has competed 

with CML for binding to sRAGE, thus reducing the decoy receptor activity of this circulating form 

of RAGE generated by both alternative splicing or ectodomain shedding of full-length RAGE.  The 

resulting higher levels of free CML may have favored CML-induced tumor promotion. This 

interpretation is consistent with the concept that serum sRAGE levels represent a promising 

biomarker and therapeutic target in metabolic and neoplastic disorders (45,46). 

Secondly, the protein levels of the RAGE homolog CD166/ALCAM (32) were higher in PaC 

specimens from KCM mice treated with CML+RAP than in those receiving only CML (and also 

those treated with RAP only). This finding suggests that, again only in the presence of high 

circulating levels of  CML, RAGE blockade has resulted in AGE-induced up-regulation of 

CD166/ALCAM and/or favored the clonal expansion of PaC cells expressing this RAGE homolog 

(32). The finding that neither CML nor CML+RAP treatments of PDA cells for 24 hrs were able to 

modify basal ALCAM mRNA expression indicates that this is a gradual process involving in vivo 

tumor heterogeneity and clone selection. This interpretation is consistent with the observation that 

CD166/ALCAM shares with RAGE some endogenous ligands and is compensatory up-regulated 

after genetic deletion of its counterpart (32). In addition, it is supported by the finding that increased 

tumor levels of CD166/ALCAM in KCM mice treated with CML+RAP were associated with tumor 

spread, in keeping with the notions that this RAGE homolog is typically restricted to subsets of 

cells involved in dynamic growth and migration (47) and is an independent prognostic marker for 

poor survival and early tumor relapse in PaC (48). However, the findings in mice treated with 

CML+RAP should be confirmed in mice knockout for RAGE treated with CML, though, in our 

hands, RAP treatment provided similar protective effects to those induced by RAGE ablation in 

mice not treated with CML (10). Another limitation of our study is the lack of use of analytical 

techniques to confirm data on CML serum levels obtained by ELISA, though immunological and 

analytical methods were shown to produce comparable results in similar conditions (49). 
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In summary, our data demonstrate that the AGE/RAGE axis modulates PaC development in a 

genetically-engineered mouse model of the disease, as shown by the acceleration of PanIN 

progression to PaC and the concurrent up-regulation of RAGE expression induced by the AGE 

CML. This finding provides a conceivable molecular mechanism to explain the increased risk of 

PaC conferred by DM and other conditions of increased AGE accumulation. However, RAGE 

blockade with RAP was ineffective, if any, in protecting from CML-induced promotion of 

tumorigenesis, likely due to competition with sRAGE for binding to AGEs and compensatory up-

regulation of CD166/ALCAM and/or clonal expansion of tumor cells expressing this RAGE 

homolog. Taken together, these results suggest that an AGE reduction strategy might be more 

suitable than RAGE blockade to reduce the PaC risk associated with DM, obesity, western diet and 

tobacco smoking. 
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Table 1.  Pancreatic cancer (PaC) prevalence rate in KCM mice treated with MSA (Ctr), CML-

modified MSA (CML), MSA plus RAP (Ctr+RAP) and CML plus RAP (CML+RAP) after 6 weeks 

of treatment (11 weeks of age). 

 
Treatment PaC 

N/tot 
PaC 
% 

P value Metastasis 
N/tot 

Ctr 1/11 9.1 — 0/11 

CML 8/11 72.7 0.00752 0/11 

Ctr+RAP 0/10 0 1 0/10 

CML+RAP 6/7 85.7 0.00245 3/7 
2 liver and 1 lung 

 

KCM = LSL-KrasG12D/+;Pdx-1-Cre;MITO; MSA = mouse serum albumin; CML = Nε-

carboxymethyllysine; RAP = RAGE antagonist peptide. N/tot = number of cases/total number of 

mice. P value = two-tailed P value for the difference in PaC rate vs. Ctr mice obtained from the 

Fisher's exact test. 

  



28 
 

Figure legends 

Figure 1. CML induces PDA cell proliferation and RAGE up-regulation in a concentration- 

and time-dependent manner. Concentration (A) and time dependent (B) cell proliferation and 

RAGE expression in Mia PaCa-2 cells exposed to native HSA (Ctr) or CML-modified HSA (CML). 

Time dependent cell proliferation and RAGE expression in PANC-1 (C) and HPDE (D) exposed to 

10 μg/ml of HSA or CML for 24 hrs, and relative representative images. Basal RAGE mRNA 

expression levels in Mia PaCa-2, PANC-1 and HPDE cells, as assessed by qRT-PCR (E). n = 5 

wells per condition. Post-hoc multiple comparison: *P<0.01 vs. HSA; †P<0.001 vs. Mia PaCa-2; 

#P<0.001 vs. PANC-1. Dashed double arrow = range of CML concentration with a positive dose-

response relationship for cell proliferation at 24 hrs. 

Figure 2.  CML activates the NF-κB/STAT3/Pim1/NFAT axis through RAGE signaling in 

PDA cell lines. Western blot for p65 NF-κB subunit and p-STAT3 protein expression in Mia PaCa-

2 cells exposed to native HSA (Ctr), CML-modified HSA (CML) or CML+RAP at the 

concentration indicated for 24 and 48 hrs and relative band densitometry analysis from three 

separate experiments (A). NF-κB/p65 activity of the nuclear extracts assessed by ELISA (B). PIM1 

and NFATC1 mRNA expression (C) and cell proliferation (D) in MIA PaCa-2 cells exposed to 50 

μg/ml of HSA or CML, and 50 μg/ml of CML plus RAP 10 μmol/L for 24 hrs; n = 3 wells per 

condition. Post-hoc multiple comparison: *P< 0.01 vs. HSA; †P< 0.001 vs CML. 

Figure 3. BLI and pancreatic histological analysis in Ctr and CML-treated KCM mice. In vivo 

(A, total body) and ex vivo (B, middle part of the gastrointestinal tract including the pancreas) BLI 

from a Ctr, tumor-free KCM mouse, and a CML-treated KCM mouse with invasive PaC, as 

assessed by histology. Different light emissions are highlighted with pseudo-colors based on the 

reported pseudo color scale, expressed in units of photon/second/cm2/steradian (p/s/cm2/sr). The 

corresponding histology of pancreatic sections stained with H&E (C): ten of eleven Ctr-KCM mice 

show normal pancreas histology of both acinar and islet (is) compartments, though PanINs (arrow) 
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of various degree were detected in all specimens analyzed (C, Ctr). The histological analysis of the 

pancreas from the majority (eight of eleven) of CML-treated KCM mice demonstrated a diffusely 

infiltrative adenocarcinoma (C, CML) with well (D, to the right of the dashed line) and poorly 

differentiated (D, to the left of the dashed line) regions within the same tumor. Scattered low and 

high grade PanINs (arrows) are recognizable, especially at the junction between normal acini (right 

part of panel E) and invasive PaC (left part of panel E). Scale bar = 100µm. 

Figure 4. RAGE protein levels and tissue distribution and co-localization with CML in Ctr 

and CML-treated KCM mice. Intense positive staining for RAGE in PanINs (arrows) of CML-

treated KCM mice (A); at higher magnification, intense positive staining on apical surface of 

columnar epithelial cells is observed, although a strong cytoplasmic granular positivity can also be 

appreciated (B). RAGE staining is also detectable in cells of duct-like structures in well-

differentiated regions of the tumor (C), but not in surrounding undifferentiated areas (asterisks). 

Finally, faint staining for RAGE is also seen in PanINs (arrows) of Ctr-KCM mice (D). Scale bar = 

100µm. Dual label immunofluorescence analysis shows positive staining for CML (green) and co-

localization (yellow in the merged image) with RAGE (red) in PanIN lesions of CML-treated KCM 

mice. Conversely, in PanINs of Ctr-KCM mice CML is only barely detectable, whereas RAGE 

positivity, albeit fainter, is observable at the cell borders. Corresponding light microscopy images 

(H&E staining) have been included. Blue = DAPI (E). Representative Western blot (lower box) for 

RAGE protein expression in three tumor-free Ctr and three CML-treated KCM mice showing well-

differentiated PaC at the histological examination (F); the upper box shows the acquisition of total 

protein content after Stain-Free gel exposure to ultraviolet light and protein transfer onto a 

nitrocellulose membrane. 

Figure 5. PanINs in Ctr and Ctr+RAP KCM mice, and CD166/ALCAM protein levels in Ctr 

and CML-KCM mice treated or untreated with RAP. Percentages of normal (ND) and 

neoplastic ducts (LG and HG) by grade in ten Ctr (excluding the only Ctr mouse with PaC), and ten 

RAP-treated KCM mice (A). LG (low grade) = PainIN-1A plus 1B lesions; HG (high grade) = 
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PainIN 2 plus 3 lesions. Two-tailed test: *P< 0.001 vs. Ctr.  Examples of HG PanINs-2 and 3 from 

a Ctr-KCM mouse (B): PanIN-2 lesion (left) with papillary architecture, revealing moderate loss of 

polarity, nuclear crowding and atypia; PanIN-3 lesion (right) shows more severe nuclear atypia, loss 

of polarity and budding off of small clusters of epithelial cells (arrow) into the lumen of the duct. 

Examples of LG PanINs-1A and 1B from a RAP-treated KCM mouse (C): three PanINs-1A 

(arrowheads) with a flat epithelial pattern, composed of tall columnar cells with basally located 

nuclei and abundant mucin content; PanIN-1B lesion (arrow) has similar cytological features but 

reveals a papillary/pseudostratified architecture. Representative Western blot for CD166/ALCAM 

in Ctr, CML, CML+RAP and Ctr+RAP-treated KCM mice and relative band densitometry analysis 

from seven mice per group (D). Normalization of the protein input was performed using the Stain-

Free technology: after ultraviolet exposure of Stain-Free gel, proteins were transferred onto a 

nitrocellulose membrane and ultraviolet light-induced tryptophan fluorescence from the entire lane 

(i.e., total protein content) was measured; Stain-Free membrane for Western blot normalization is 

shown in Supplementary Fig. 5. CD166/ALCAM staining pattern in PaC from CML and 

CML+RAP-treated KCM mice (E); note the intense staining for CD166/ALCAM in the clusters of 

cells floating into the lumen of the duct-like structures (arrow) of CML+RAP-treated mice. Cells of 

surrounding undifferentiated areas were also positive for CD166/ALCAM (asterisk).  Scale bar = 

100µm. Post-hoc multiple comparison: *p<0.01 or **p<0.001 vs. Ctr; †p<0.01 vs. CML. 

Figure 6. Serum levels of the AGE CML, sRAGE and IL-6. Serum levels of CML (A) and 

sRAGE (B), ratio of serum levels of AGEs to sRAGE (C) and IL-6 serum levels (D) in Ctr (n0 11), 

CML (n=11) and CML+RAP-treated (n=7) KCM mice. Post-hoc multiple comparison: *P< 0.01 

and **P<0.001 vs. Ctr; †P<0.05 and ††P<0.01 vs. CML. 
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Supplementary Methods 

Reference numbers refer to the main text list 

In vitro studies 

Preparation and characterization of Nε-(Carboxymethyl)Lysine (CML)-modified serum albumin 

CML was prepared as previously reported [21,29]. Briefly, 175 mg human (HSA) or mouse (MSA) 

serum albumin (Sigma-Aldrich, St.Louis, MO, USA) were incubated in 1 ml of 0.2 M phosphate 

buffer, pH 7.8, containing 0.15 M glyoxylic acid (Sigma-Aldrich) and 0.45 M sodium 

cyanoborohydrate (Acros Organics, Morris Plains, NJ, USA) for 24 h at 37°C. Preparations of 

CML-modified albumin were extensively dialyzed versus phosphate-buffered saline (PBS) for 48 h 

using Cellu Sep H1 tubular membranes MWCO 15,000 (Orange Scientific, Braine l’Alleud, 

Belgium) purified several times through endotoxin-removing columns High Capacity Endotoxin 

Removal Spin Column, (Thermo Scientific, Rockford, IL, USA), passed through 22 μm filters, and 

assessed for endotoxin content by the Limulus amoebocyte lysate test kit (Sigma-Aldrich). Protein 

concentration was assessed by the Bradford assay (Bio-Rad, Hercules, CA, USA). The extent of 

murine (MSA) and human (HSA) lysine modification was determined by employment of 2,4,6-

trinitrobenzenesulfonic acid (TNBSA) (Thermo Fisher Scientific, Waltham, MA, USA), according 

to manufacturer’s instructions. Briefly, 250μl of TNBSA solution were added to 500 μl of each 

sample. After incubation at 37°C for two hours, the reaction was terminated by adding 250 μl of 

10% SDS and 125 μl of 1N HCl followed by measurement of absorbance at 420 nm. The standard 

curve generated by unmodified HSA or MSA was used as the calibration standard.  

 

RAGE neutralization 

In order to evaluate the actual contribution of advanced glycation endproducts receptor (RAGE) in 

the cellular effects induced by CML-modified albumin, cells were treated with an anti-RAGE 

antibody to neutralize the RAGE receptors prior to CML challenge. The immunologic strategy was 

preferred to the RNA interference one because RNA-mediated gene silencing may induce non-

specific or off-target effects such as NF-κB activation, which in turn may affect tumor cell survival 
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[50]. Briefly, MiaPaCa2 cells were incubated for one hour with 10 μg/mL anti-RAGE antibody 

(PA5-24787, Thermo Fisher Scientific) directed to the V domain of the N-terminal region of 

RAGE, which is the extracellular domain involved in RAGE ligation by CML [28], or 10 μg/mL 

IgG isotype control (#10500C Thermo Fisher Scientific). Then, cells were treated with 50 μg/ml 

CML for 24 h prior to evaluate cell proliferation by cell count and the DNA-binding activity of NF-

κB/p65 by the TransAM NFkB p65 kit (Active Motif Corp., Carlsbad, CA, USA). Each condition 

was done in triplicate, and the experiment was repeated 3 times. 

 

In vitro analysis of the binding of RAGE to immobilized CML-MSA 

To confirm RAGE binding to the CML-MSA preparation, we measured its binding ability in a 

functional ELISA, as previously reported by Rao et al [51]. Polyvinyl 96-well plates were coated 

with 0.5 µg/well of CML-MSA or native MSA as negative control. Next, 50 µl of 0.25, 0.5 and 1 

nM recombinant mouse RAGE provided as standard with the ELISA kit for sRAGE (#893192, 

R&D Systems, Minneapolis, MN, USA) were added to each CML-MSA or native MSA-coated 

well and incubated at 37°C for 1 h. To detect bound RAGE, 50 µl of the polyclonal antibody 

specific for mouse RAGE conjugated to horseradish peroxidase provided with the same kit 

(#893191, R&D Systems) was added to each well and the mixture was incubated for 1 h at room 

temperature. Color reagent A (#895000, R&D Systems) and B (#895001, R&D Systems) were 

added, reaction stopped with stop solution (#895174, R&D Systems) and the colorimetric reaction 

was evaluated by reading absorbance at 450 nm using an automated microplate reader (Varioskan 

Lux, Thermo Fischer Scientific). 

 

In vivo studies 

Generation of the transgenic animal model 

The LSL-KrasG12D/+ lineage was maintained in the heterozygous state. Mice were screened by PCR 

using tail DNA amplified by specific primers to the Lox-P cassette flanking mutated KrasG12D/+, 

wild type Kras, Cre recombinase and MITO genes (Supplementary Table S3). 



41 
 

In the MITO-Luc mouse, an artificial minimal promoter derived from the cyclin B2 gene and 

induced by NF-Y drives the expression of the luciferase reporter specifically in proliferating cells, 

which may therefore be localized by a bioluminescence imaging (BLI)-based screen [37,38]. We 

have previously shown that KCM mice develop pre-invasive (PanIN) and invasive ductal PaC with 

the same penetrance, latency and histological features as those described for KC mice [38]. 

 

RAGE and CML pancreatic tissue distribution  

Pancreatic tissue distribution and co-localization of RAGE and CML were evaluated 

immunohistochemically [29,52] by dual label immunofluorescence [52] using a goat polyclonal 

antibody to amino acids 42-59 of human RAGE (ab7764, Abcam, Cambridge, UK ), and a mouse 

monoclonal antibody against CML (ab27685, Abcam), as primary antibodies. Then, an Alexa 

Fluor®594 chicken anti-goat IgG H&L (Invitrogen, Carlsbad, CA, USA) and a DyLight®488 anti-

mouse IgG H&L (Vector Labs, Burlingame, CA, USA) were used as secondary antibodies (52). 

Sections were analyzed at a fluorescence microscope (Zeiss AXIO A1), equipped with an Axiocam 

503 color camera (Carl Zeiss Italy, Milan, Italy). 

 

TGX Stain-Free technology for total protein measurement 

For Western blot analysis, proteins were separated on a TGX Stain-Free Gel (Bio-Rad laboratories) 

and activated by a 2 min ultraviolet exposure using the ChemiDoc XRS+ Imager (Bio-Rad 

laboratories). After protein transfer, membranes were imaged for Stain-Free staining and total 

proteins in each lane were quantified using the ImageLab 5.2 software (Bio-Rad laboratories) and 

normalized using Stain-Free technology (Bio-Rad laboratories). This approach was preferred to the 

use of an internal standard due to the poor reliability of housekeeping proteins, which showed 

significant variations, especially between samples with and without invasive neoplastic disease. 

 

Validation of ELISA kits for the determination of sRAGE and CML serum levels 
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In order to verify whether the presence of CML in the assay system could affect sRAGE data 

obtained by ELISA, CML-MSA was added to pooled serum from three Ctr mice at a final 

concentration of 300, 600, or 900 ng/ml prior to assess sRAGE level with mouse sRAGE ELISA kit 

(R&D Systems). The same pooled serum with equal volume of PBS added was used as control. The 

same procedure was used to evaluate the potential interference of the RAGE antagonist peptide 

(RAP) with sRAGE data. In this case, RAP (Calbiochem, Merck KGaA, Darmstadt, Germany) was 

added to pooled serum at a final concentration of 5, 10, or15 μM. The range of final concentrations 

of CML-MSA was comparable to that of CML serum levels detected in CML-treated KCM mice, 

whereas that of RAP comprised the concentration used in the in vitro experiments (10 μM), which 

was shown to be able to block RAGE activity. We also verified whether the presence of sRAGE or 

RAP in the CML assay system could affect CML data obtained by ELISA. For this purpose, RAGE 

(#893192, R&D Systems) or RAP were added to pooled serum from three CML mice prior to 

assessing CML levels with CML ELISA kit (R&D Systems). The final concentration of RAGE was 

100, 300, or 600 pg/ml, i.e., within the range of circulating RAGE levels detected in mice. The final 

concentration of RAP was 5, 10, or15 μM, as reported above. The same pooled serum with equal 

volume of PBS added was used as control. 
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Table S1.  TaqMan Gene Expression assays 

 

Target Assay 

AGER Hs00153957_m1 

ALCAM Hs00977641_m1  

NFATC1 Hs00542678_m1  

PIM1 Hs01065498_m1  

IL6 Hs00174131_m1 

 

AGER = receptor for advanced glycation endproducts; ALCAM = activated leukocyte cell adhesion 

molecule; NFATC1 = nuclear factor of activated T-cells cytoplasmic 1; PIM1 = serine/threonine-

protein kinase Pim-1; IL6 = interleukin-6. 
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Table S2.  Antibodies used in Western blot and IHC studies. 

Target Antibody Catalog Nr. Supplier 

Primary    

NF-κB subunit 

p65 

mouse monoclonal F-6 SC8008 Santa Cruz  Biotechnology, Dallas, 

TX, USA 

(p)STAT3 rabbit polyclonal 9131S Cell Signaling Technology, Danvers, 

MA, USA 

STAT3 rabbit monoclonal 

79D7 

4904 Cell Signaling Technology, Danvers, 

MA, USA 

NFATC1 mouse monoclonal MAB3209 Abnova, Taipei City, Taiwan 

HIF-1α rabbit monoclonal ab51608 Abcam, Cambridge, UK 

RAGE (IHC) goat polyclonal ab7764 Abcam, Cambridge, UK 

RAGE (WB) rabbit polyclonal PA5-24787 Thermo Fisher Scientific, Waltham, 

MA, USA 

CML goat polyclonal ab27685 Abcam, Cambridge, UK 

CD166/ALCAM 

(WB & IHC) 

rabbit monoclonal 

EPR2759(2) 

ab1092015 Abcam, Cambridge, UK 

Secondary    

HIF-1α, RAGE 

(WB), CD166/ 

ALCAM (WB) 

HRP-conjugated goat 

anti-rabbit 

P0448 Agilent/Dako, Santa Clara, CA, 

USA 

NF-κB subunit 

p65, NFATC1 

HRP-conjugated goat 

anti-mouse HRP 

conjugated 

P0447 Agilent/Dako, Santa Clara, CA, 

USA 

RAGE (IHC/IP) Biotinylated rabbit anti-

goat IgG 

ab6740 Abcam, Cambridge, UK 

CD166/ALCAM 

(IHC) 

Biotinylated goat anti-

rabbit IgG 

E0432 Agilent/Dako, Santa Clara, CA, 

USA 

RAGE (IHC/IF) Alexa Fluor® 594 

chicken anti-goat IgG 

A-21468 Invitrogen, Carlsbad, CA, USA 

CML  DyLight®488 horse 

anti-goat IgG 

DI-3088 Vector Laboratories, Burlingame, 

CA, USA 

 

WB = Western blot; IHC = immunohistochemistry; NF-κB = nuclear factor-κB; p-STAT3 = 
phosphorylated Signal Transducer and Activator of Transcription 3; NFATC1 = nuclear factor of 
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activated T-cells cytoplasmic 1; HIF-1 = hypoxia-inducible factor 1; RAGE = receptor for advanced 
glycation endproducts; CML = Nε-carboxymethyl lysine; ALCAM = activated leukocyte cell 
adhesion molecule; IP = immunoperoxidase; IF = immunofluorescence. 
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Table S3.  Primers for genotyping. 

 
Gene Oligonucleotide Primer 

Kras Oligonucleotide 1: 

Oligonucleotide 2: 

Oligonucleotide 3: 

5’-GTCTTTCCCCAGCACAGTGC; 

5’-CTCTTGCCTACGCCACCAGCTC; 

5’-AGCTAGCCACCATGGCTTGAGTAAGTCTGCA. 

Pdx-1-

Cre 

Oligonucleotide up: 

Oligonucleotide 

down: 

5’-ATGCTTCTGTCCGTTTGCCG; 

5’-TGAGTGAACGAACCTGGTCG. 

MITO Oligonucleotide up: 

Oligonucleotide 

down: 

5’-

TGTAGACAAGGAAACAACAAAGCCTGGTGGCC; 

5’-GGCGTCTTCCATTTTACCAACAGTACCGG. 
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Supplementary Figures 

Figure S1. Analysis of the binding of RAGE to immobilized CML-MSA in a functional ELISA. 50 

µl of 0.25, 0.5 and 1 nM of mouse RAGE/Fc chimera were added to wells coated with 0.5 µg of 

CML-MSA or native MSA and incubated at 37°C for 1 h. RAGE bound immobilized CML-MSA in 

a dose-dependent manner, at variance with native MSA. Data are means±SD of triplicate wells for 

each concentration of mouse RAGE/Fc chimera. Two-tailed test: *P< 0.001 vs. MSA.  

  



48 
 

Figure S2. Validation of the ELISA kits for the determination of sRAGE and CML serum levels. 

Data on serum sRAGE (A,B) levels detected by ELISA in pooled serum from three Ctr mice were 

not affected by the addition of increasing amounts of CML (A) or RAP (B) in the assay system. 

Likewise, serum CML levels (C,D) detected by ELISA in pooled serum from three CML mice were 

not affected by the addition of increasing amounts of sRAGE (C) or RAP (D). Data are means±SD 

of triplicate wells per condition. 
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Figure S3. HIF-1α and NFATc1 nuclear protein levels, HIF-1α DNA-binding activity and IL-6 

mRNA expression in Mia PaCa-2 cells. (A) Representative Western blot for NFATc1 and HIF-1α 

nuclear protein levels in Mia PaCa-2 cells exposed to native HSA (Ctr), CML-modified HSA 

(CML) or CML+RAP at the concentration indicated for 24 h and relative band densitometry 

analysis from three separate experiments. (B) ELISA for DNA-binding activity of HIF-1α and IL6 

mRNA expression  in Mia PaCa-2 cells exposed to 50 µg/ml of HSA or CML, and 50 µg/ml CML 

plus 10 μmol/L of RAP for 24 h. Nuclear extract from HeLa cells treated with CoCl2 is provided as 

positive control for HIF-1 activation by the manufacturer. Data represent three separate 

experiments. Post-hoc multiple comparison: *P< 0.05, **P<0.01 and ***P<0.001 vs. HSA; 

†P<0.05 ††P<0.01 and †††P<0.001 vs. CML. 
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Figure S4. Activation of NF-κB/p65 and PDA cell proliferation induced by CML is dependent on 

interaction with RAGE. (A) NF-κB/p65 activity of the nuclear extracts assessed by ELISA  and (B) 

cell proliferation  in MIA PaCa-2 cells incubated for one hour with 10 μg/mL anti-RAGE antibody 

or 10 μg/mL IgG isotype control and exposed to 50 μg/ml of CML for 24h; n = 3 wells per 

condition. Post-hoc multiple comparison: *P<0.001 vs. HSA; †P< 0.01 vs CML + IgG control. 
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Figure S5. In vivo BLI signal quantification in 11-week-old Ctr and CML-treated mice. Box plots 

represent in vivo BLI signal quantification in Ctr (n=11) and CML-treated (n=11) KCM mice. Data 

were expressed as photon/second/cm2/steradiant (p/s/cm2/sr). 
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Figure S6. Pancreatic protein levels of phospho (p)-STAT3. Representative Western blot for 

STAT3 protein phosphorylation in three Ctr and three CML-treated KCM mice and relative band 

densitometry analysis from five mice per group. The membrane used for RAGE detection was 

reprobed with anti-STAT 3 antibody after stripping. Therefore, normalization for total protein 

content was performed on the same Stain-Free gel (upper box) used for RAGE normalization (see 

Figure 4E). The lower boxes show acquisition of the immunoreactive p-STAT3 and total STAT3 

bands. Two-tailed test: *P< 0.001 vs. Ctr. 
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Figure S7. Liver and lung metastasis in KCM mice treated with CML+RAP. (A) A large, well 

differentiated liver metastasis. Cells were arranged in ductal-like structures (arrows). CV = central 

vein. (B) Lung, undifferentiated metastasis surrounded by dashed line. Scale bar = 100µm 

.  
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Figure S8. Stain-free membrane image for protein loading normalization relative to 

CD166/ALCAM Western blot. Acquisition of total protein content after Stain-Free gel exposure to 

ultraviolet light and protein transfer onto a nitrocellulose membrane for CD166/ALCAM Western 

blot normalization (see Figure 5D). 

 


