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Summary 

 

Background. Anti-programmed death-1 (PD-1) treatment for advanced non-small-cell lung 

cancer (NSCLC) has improved the survival of patients. However, a significant percentage of 

patients do not respond. We examined the use of DNA methylation profiles to determine the 

efficacy of anti-PD-1 treatment in stage IV NSCLC patients.  

 

Methods. We first established an epigenomic profile based on a microarray DNA methylation 

signature (EPIMMUNE) in a discovery set of 34 NSCLC tumor samples treated with 

nivolumab or pembrolizumab. The EPIMMUNE signature was validated in an independent set 

of 47 NSCLC cases. A derived DNA methylation marker was validated by a single-methylation 

assay in a validation cohort of 61 NSCLC patients. 

 

Findings. The EPIMMUNE signature in stage IV NSCLC patients treated with anti-PD-1 

agents was associated with improved progression-free survival (PFS) (hazard ratio 

[HR]=0.010, P=0.007; 95% confidence interval [CI]=3.29x10-4-0.0282) and overall survival 

(OS) (HR=0.080, P=0.001; 95% CI=0.017-0.373). The EPIMMUNE-positive signature was not 

associated with PD-L1 expression, the presence of CD8+ cells, or mutational load. 

EPIMMUNE-negative tumors were enriched in tumor-associated macrophages (TAMs), 

neutrophils (TANs), cancer-associated fibroblasts (CAFs) and senescent endothelial cells. 

The EPIMMUNE-positive signature was associated with improved PFS in a validation cohort 

(HR=0.330, P=0.006; 95% CI=0.149-0.727). The unmethylated status of T-cell differentiation 

factor forkhead box P1 (FOXP1) was associated with improved PFS (HR=0.415, P=0.006; 

95% CI=0.209-0.802) and OS (HR=0.409, P=0.009; 95% CI=0.220-0.780) in a validation 

cohort. The EPIMMUNE signature and unmethylated FOXP1 were not associated with clinical 

benefit in lung tumors that did not receive immunotherapy.  

 

Interpretation. The need to discover predictive biomarkers of response to immune 

checkpoint inhibition is now pressing. Our study shows that the epigenetic milieu of NSCLC 

tumors indicate which patients are most likely to benefit from nivolumab or pembrolizumab 

treatments. 

 

Funding. “Obra Social” La Caixa, Cellex Foundation and the Health and Science 

Departments of the Generalitat de Catalunya. 
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Research in context 

 

Evidence before this study 

There have been significant advances in the clinical care of patients with advanced non-

small-cell lung cancer (NSCLC) in recent years arising from the introduction of 

immunotherapies that target the programmed death-1 (PD-1) and programmed death-ligand 1 

(PD-L1) pathway. Several cellular, immunohistochemical, mutational and expression-based 

approaches have been proposed to predict response to immune checkpoint inhibition. 

However, our search of PubMed on April 24th 2018, limited to articles in English, but not by 

date, using the terms “non-small-cell lung cancer”, “immunotherapy”, “PD-1”, “PD-L1”, 

“nivolumab”, “pembrolizumab”, “epigenetic”, “DNA methylation, “response”, “biomarker” and 

“prediction”, yielded no studies addressing whether the presence of epigenetic signatures can 

identify responders to anti-PD-1 therapy.  

Added value of this study 

Our findings show that a particular epigenetic profile, termed EPIMMUNE, based on DNA 

methylation microarrays, is associated with improved progression-free survival and overall 

survival in stage IV NSCLC patients who received the anti-PD-1 antibodies nivolumab or 

pembrolizumab. The DNA methylation signature described reflects that the response to PD-1 

blockade occurs mainly in immunocompetent primary tumors characterized by particular 

intrinsic (cancer cell) and extrinsic (microenvironment) settings. The EPIMMUNE signature did 

not confer any clinical benefit on patients who were not treated with immunotherapy. Among 

the targets identified in the epigenomic profile, we confirmed that the determination of the 

unmethylated status of the regulatory T-cell transcription factor FOXP1 is a user-friendly 

predictor of clinical benefit for anti-PD-1 therapies in advanced NSCLC. 

Implications of all the available evidence 

This study has identified new biomarkers of clinical response to anti-PD-1 antibodies in 

NSCLC that can be determined at a global epigenomic level, or simplified at a single 

methylation locus. The approach can be easily complemented with other strategies, such as 

PD-L1 or CD8 immunostaining, or mutational load, to identify more accurately those patients 

who will experience an improved outcome upon PD-1 blockade. The study also identifies 

cellular components and signaling pathways that, were they accurately targeted, could 

strengthen the response of resistant patients to immune checkpoint inhibition. 
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Introduction 

Non-small-cell lung cancer (NSCLC) is the primary cause of cancer-associated deaths 

worldwide.1 Most patients are diagnosed with metastatic disease, and although systematic 

therapy for NSCLC has improved with the introduction of drugs targeted against actionable 

mutations, only a minority of patients carries these amenable genetic targets, and their tumors 

eventually become resistant to such treatments.2 Thus, the development of new treatments to 

improve the outcome of patients with advanced NSCLC is an unmet medical need. In this 

context, immunotherapy represents an important advance in the management of metastatic 

NSCLC patients. The use of drugs targeting the programmed death 1 (PD-1) receptor or its 

ligand, PD-L1, as monotherapy has given rise to a manageable safety profile and notable 

clinical efficacy, with an unprecedented increase in OS, even in NSCLC patients whose 

disease progressed while receiving platinum-based chemotherapy.3-6 PD-1 blockade have 

also shown to provide clinical benefit as first line therapy in NSCLC.7,8 These findings have 

led to the approval of three drugs for patients with advanced NSCLC, two of which target PD-

1 (nivolumab and pembrolizumab) and one of which target PD-L1 (atezolizumab).3-8  

PD-1 is an immune checkpoint receptor expressed in activated B- and T-cells that, 

through binding to its PD-L1 ligand on cancer cells, inhibits T-cell activation, leading to 

immune suppression.9 Thus, activation of the PD-1 / PD-L1 pathway is one mechanism 

exploited by human malignancies, including NSCLC tumors, to evade immune system 

control.9 However, we know very little about the molecular steps involved in avoiding immune 

surveillance in cancer cells and the repertoire of immunocompetent and immunocompromised 

tumor types. For example, only 10-30% of unselected NSCLC patients respond to PD-1 

blockade by nivolumab.3,4 Studies suggest that the genetic setting of the tumor, such as one 

in which a high mutational burden generates numerous neoantigens and the expression of 

PD-L1 increase the likelihood that a patient will respond to anti-PD-1 / PD-L1.10,11 However, 

although PD-L1 expression is enriched in immunotherapy responders,10-13 the predictive 

power of PD-L1 is far from perfect. For example, only 44.8% of PD-L1-positive NSCLCs are 

responsive to pembrolizumab in a first-line setting.12 Thus, new predictive biomarkers are 

clearly necessary if we are to be able to select those PD-1 / PD-L1 blockade-responsive 

NSCLC patients who should receive immunotherapy, and to distinguish them from patients for 

whom an expensive and, to some degree, toxic drug will not produce any clinical benefit. 

For these reasons, we set out to determine whether a profile of DNA methylation, a stable 

epigenetic chemical mark critical for many cellular activities and disrupted in human 
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disease,15,16 and one that is used in the clinical management of gliomas15 and cancers of 

unknown primary,17 is able to predict the clinical response to PD-1 checkpoint blockade in 

NSCLC patients. 

 

METHODS 

Patients and samples  

Patients were eligible to enter the study as a member of either the discovery or validation 

cohort if they had a histologically proven NSCLC and had undergone tumor sampling in any 

of the participating institutions. The patients had to have been exposed to PD-1 blockade 

during the course of their disease. The samples were assembled according to the time 

shedule, first samples in the discovery cohort, later samples for the validation cohorts. The 

clinical characteristics of the NSCLC samples obtained are summarized in Table 1. Patients 

gave their informed consent to participate in the research, which had received ethical 

approval from the review board of each institution. The samples were collected after approval 

outside of any clinical trial. Tumors were collected from patients by surgical resection, CT-

guided biopsy or bronchial biopsy. The sampling had to take place when the patient was 

naïve to any anti-neoplastic treatment for advanced disease, including immunotherapy. Only 

adjuvant chemotherapy or chemotherapy associated with radiotherapy was accepted, in case 

of relapse after curative surgery or chemo-radiotherapy. Follow-up involved clinical 

examination, computed tomography scans or brain magnetic resonance imaging. Radiological 

assessments for response or progression to immunotherapy were performed according to 

institution standards, every 3 or 4 cycles. NSCLC tumor samples were studied in order of 

arrival at the centralized DNA methylation facility, once they had passed the checks for 

technical quality. 

 

Histopathological evaluation and exome sequencing  

Histology-guided tumor-type classification of NSCLCs involved review by a pathologist of the 

tumor’s morphological appearance under light microscopy, and of the immunohistochemical 

(IHC) findings. PD-L1 staining and CD8 content was evaluated as previously described.18 

Whole-exome sequencing was performed on FFPE genomic DNA using Roche’s SeqCap EX 

MedExome Enrichment Kit, following the manufacturer’s recommendations. Prepared libraries 

were sequenced in a HiSeq 2000 instrument (Illumina) with paired-end 100-base reads. 
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Samples were multiplexed to obtain a raw minimum coverage of 70X. Extended information 

can be found at Supplementary Methods. 

DNA methylation procedures and analysis 

The DNA methylation status of the discovery cohort was established using bisulfite-converted 

DNA processed by the Infinium FFPE restoration process and then hybridized on an Infinium 

MethylationEPIC Array (~850,000 CpG sites) following the manufacturer’s instructions for the 

automated processing of arrays with a liquid handler (Illumina Infinium HD Methylation Assay 

Experienced User Card, Automated Protocol 15019521 v01).19 The status of CpG methylation 

at the FOXP1 CpG site derived from the Infinium MethylationEPIC Array was determined by  

pyrosequencing analyses. Extended information can be found at Supplementary Methods. 

 

Cell enrichment quantification analysis 

The beta values for the 301 CpGs of the identified EPIMMUNE signature were used to 

evaluate its possible individual enrichment among different immune and stroma cell 

populations where DNA methylation data are available. After determining the methylation 

status for each CpG based on the responder threshold, the non-informative CpGs were 

removed, including the positions with the same methylation pattern for all the cell populations 

considered. The differences present in the methylation profile for each cell type compared 

with the responders profile were calculated. Finally a similar enrichment analysis were 

performed by grouping the cell populations by their specific lineage, including myeloid, 

lymphoid, endothelial or mesenchymal cell lineages and determined their significance through 

the use of a Wilcoxon signed rank test (pvalue < 0.05). Extended information can be found at 

Supplementary Methods. 

 

Clinical statistical analysis 

Assay results were compared with patient outcomes in a double-blind manner. Median follow-

up duration was calculated by the inverse Kaplan–Meier method. The significance of the 

differences between distributions of the groups was estimated with a X2 test. Progression-free 

survival (PFS) was defined as the time from the start of anti-PD-1 treatment to the first 

occurrence of a progression event according to RECIST v1.1. or death. OS was defined as 

the time from the start of anti-PD1 treatment to death. The Kaplan–Meier method was also 

used to estimate the PFS and OS, the differences between the groups being calculated with 

the log-rank test. Hazard ratios (HRs) from univariate Cox regressions were used to 

determine the association between clinicopathological features with survival. Multivariate Cox 
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proportional hazards regression was used to identify the independent variables associated 

with PFS and OS. Extended information can be found at Supplementary Methods. 

 

Role of the funding source 

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. MD, AMC, MECC, SM, MCdM, DP and ME had access 

to raw data. The corresponding author had full access to all the data in the study and had final 

responsibility for the decision to submit for publication. 

 

RESULTS 

 

DISCOVERY COHORT 

To define an epigenomic profile associated with those NSCLC patients who would gain 

clinical benefit from anti-PD-1 treatment, we studied 142 tumoral samples before these cases 

received immunotherapy. The clinicopathological characteristics of these patients are 

summarized in Table 1. In our initial cohort (discovery cohort) we analyzed 34 NSCLC tumors 

from patients who underwent anti-PD-1 therapy by using a comprehensive microarray that 

interrogated the methylation status of around 850,000 CpG sites in the human genome.19 The 

clinicopathological characteristics of the 34 patients in the discovery cohort are summarized in 

Table 1. Patients with durable clinical benefit with PD-1 blockade (no progression event or 

death within the first six months of PD-1 blockade) were classified as “responders” (n=10) and 

patients with no durable clinical benefit with PD-1 blockade (progression event or death within 

the first six months of PD-1 blockade) were classified as “non-responders” (n=24). The anti-

PD-1-treated NSCLC patients classified as responders also showed fewer progression events 

(Fisher’s exact test; P=0.005) and deaths from the disease (Fisher’s exact test; P = 0.015) 

than non-responder patients. An ANOVA was used to rank the greatest methylation 

differences at the CpG sites (according to differences in the  values) between responders 

and non-responders. Among the 863,904 CpG sites studied, we found 301 CpG sites (0.03%) 

at which the methylation levels were significantly associated with clinical response to PD-1 

blockade in NSCLC (FDR adjusted p-value P<0.05). Table S1 describes in the detail the 

characteristics of the 301 CpG sites. The methylation status of the 301 identified CpG sites, 

hereafter referred to as the EPIMMUNE epigenetic signature, was significantly associated 

with PFS (HR=0.010, P=0.007; 95% CI=3.29x10-4-0.0282); log-rank P<10-6) and OS 

(HR=0.080, P=0.001; 95% CI=0.017-0.373; log-rank P<10-3) (Fig. 1A). The EPIMMUNE 
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negative signature was not an indicator of general poor health, but a specific biomarker of 

disease specific death in these patients (HR=0.072; P=0.001; 95% CI=0.015-0.334; log-rank 

P=0.001). The multivariate Cox regression analysis showed that the EPIMMUNE signature 

was an independent predictor for PFS (HR=0.011, P=0.009; 95% CI=3.4x10-4-0.315) and OS 

(HR=0.081; P=0.001; 95% CI=0.017-0.377) in NSCLC patients receiving PD-1 blockade 

therapy (Fig. 1B). We did not observe any association between the EPIMMUNE signature 

and any clinicopathological variable (Table S2). 

In our discovery set of NSCLC cases receiving PD-1 blockade therapy, neither PD-L1 

tumoral and stromal expression (Figure S1), nor the presence of CD8 cells in tumor or stroma 

(Figure S2) were significantly associated with PFS or OS. However, a high level of 

expression of tumoral PD-L1 was marginally associated with response according to RECIST 

criteria (Fisher’s exact test, P=0.048). Higher mutational load and its possible association with 

increased neoantigen burden has also been linked to increased sensitivity to PD-1 blockade 

in NSCLC.20 To study this event in our discovery set, we exome-sequenced 22 cases for 

which we had sufficient DNA left after the DNA methylation microarray hybridization. We 

identified a median of 183.5 nonsynonymous mutations per sample (range 74 to 970), values 

that are similar to TCGA NSCLC tumors and other published cohorts.20 We found that the 

high vs. low mutation burden groups did not differ with respect to PFS and OS (Figure S3). 

The combination of the different patterns of PD-L1 expression described here, the presence 

of CD8+ in tumor or stroma or the tumor mutational burden with the EPIMMUNE signature did 

not add extra clinical value: EPIMMUNE-positive patients generally had longer PFS and OS 

than EPIMMUNE-negative patients, irrespective of their PD-L1, CD8 status and tumor 

mutational burden (Figure S4 and Table S2).  

The EPIMMUNE signature identified here for predicting PD-1 blockade response in 

NSCLC involves factors that are intrinsic and extrinsic to the tumor cells.10 Tumor cell-intrinsic 

factors involved in immunotherapy sensitivity include cancer cell-specific changes associated 

with a variety of oncogenic, tumor suppressor and DNA repair pathways,10  that affect how the 

immune system reacts to a given tumor. Here we have used the available DNA methylation 

patterns in NSCLC cell lines21 to identify the epigenetic events associated with pure 

transformed lung cells. In our cases, the EPIMMUNE profile characteristic of NSCLC patients 

who respond to anti-PD-1 treatment showed: inhibition of -catenin signaling, targeting genes 

such as the serine/threonine kinase SGK2 and the cyclic nucleotide phosphodiesterase 

PDE10A; deficient DNA repair, exemplified by oxidative DNA damage repair glycosylase 
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MUTYH; and activation of the interferon-gamma (IFN-) response, affecting the leucine-rich 

repeat-containing protein NLRC3, among others (Table S3).  

Alternatively, tumor cell-extrinsic mechanisms that lead to immunoresponse include 

elements other than the cancer cells, including other cellular lineages that are present in the 

primary tumor.10 Taking advantage of the available DNA methylation profiles of particular cell 

populations (Table S4), we have identified cell lineages enriched in our EPIMMUNE signature  

(Table S5). The carefully dissected DNA methylation patterns of the T-cell, B-cell and myeloid 

lineages available from the International Human Epigenome Consortium (IHEC)22 and other 

databases (https://www.ncbi.nlm.nih.gov/geo/ and https://www.ncbi.nlm.nih.gov/sra) allow the 

molecular dissection of various immune classes in our set of NSCLCs. We observed that the 

EPIMMUNE-negative signature that characterizes the lack of response to PD-1 blockade 

identifies NSCLC tumors with an enrichment of cell populations derived from the myeloid 

lineage in comparison with the over-representation of the lymphoid lineage in the 

EPIMMUNE-positive group (Wilcoxon test, P<0.001). EPIMMUNE-negative tumors were 

particularly enriched in tumor-associated macrophages (TAMs) (Wilcoxon test, P<0.001) and 

tumor-associated neutrophils (TANs) (Wilcoxon test, P<0.001). These observations are 

consistent with the proposed role of both cell populations as key contributors to resistance to 

anti-tumor immunotherapeutic approaches.9 Conversely, the tumors of EPIMMUNE-positive 

NSCLC patients were enriched in the lymphoid lineage, particularly CD4+ α/ß T-cells with the 

capacity to produce IFN- 23 (Wilcoxon test, P<0.001), CD8+ α/ß central memory T-cells that 

represent an important fraction of the tumor-reactive T-cells24 (Wilcoxon test, P<0.001), and 

natural killer (NK) cells (Wilcoxon test, P<0.001) that mediate the anti-tumor responses 

without prior sensitization or recognition of specific tumor antigens.25 As part of this extrinsic 

epigenetic signature, we also assessed the presence of two cellular types that are present in 

the tumoral microenvironment: cancer-associated fibroblasts (CAFs) and endothelial cells.9 

For CAFs, taking advantage of our recent dissection of the DNA methylation profile of these 

cells in NSCLCs,26 we were able to determine that the EPIMMUNE-negative signature also 

identifies NSCLC tumors that are enriched in CAFs (Wilcoxon test, P<0.001), an observation 

that is consistent with the proposed role of these cells as contributors to immunotherapy 

resistance.27 Using the available DNA methylation profiles for the various subclasses of 

endothelial cells,22,28 we observed that EPIMMUNE-negative tumors were enriched in 

endothelial cells with a senescence phenotype characterized by diminished proliferation, 

migration and spreading capacity, and a large number of progenitor endothelial cells 

(Wilcoxon test, P<0.001).29 This profile describes a hypoxic microenvironment associated with 
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the overexpression of immunosuppressive cytokines such as vascular endothelial growth 

factor (VEGF).30 Conversely, the EPIMMUNE-positive tumors presented more normally 

activated endothelial cells, which can contribute to the successful recruitment of immune 

effector cells. 

VALIDATION COHORTS 

Once we had identified the EPIMMUNE signature as being a predictor of response to PD-

1 blockade in the discovery set of stage IV NSCLCs, we examined whether the characterized 

DNA methylation profile was also able to discriminate clinical outcome in an independent 

validation set of advanced NSCLC cases treated with anti-PD-1 therapies. Thus, using the 

same DNA methylation microarray platform, we interrogated 47 additional NSCLC specimens 

from patients who received nivolumab or pembrolizumab. The clinicopathological 

characteristics of the patients in this validation cohort are listed in Table 1. We found that the 

EPIMMUNE-positive signature was also associated with improved PFS in the studied 

validation cohort of NSCLC cases receiving anti-PD-1 therapy (HR=0.330, P=0.006; 95% 

CI=0.149-0.727; log-rank P=0.004) (Fig. 2A). A trend between the EPIMMUNE-positive 

signature and improved OS was also observed (HR=0.458, P=0.068; 95% CI=0.197-1.061; 

log-rank P=0.060) (Fig. S5); a trait that it was also observed for the EPIMMUNE negative 

signature and disease specific death (HR=0.465; P=0.079; 95% CI=0.198-1.092; log-rank 

P=0.048) (Fig. S5). The presence of the EPIMMUNE-positive signature in the validation 

cohort was enriched in those patients without tumor progression (5 of 7, 71%), whereas 

EPIMMUNE-negative cases frequently experienced tumor progression (31 of 40, 78%) 

(Fisher’s exact test; P=0.018).  Multivariate Cox regression analysis showed that the 

EPIMMUNE signature was an independent predictor of PFS (HR=0.336, P=0.007; 95% 

CI=0.151-0.747) in the interrogated validation cohort of NSCLC cases treated with anti-PD-1 

therapy (Fig. 2B). We did not observe any association between the EPIMMUNE signature 

and any clinicopathological variable (Table S2). 

Having identified the EPIMMUNE signature as being a predictor of response to PD-1 

blockade in the discovery and validation sets of NSCLCs, we investigated whether the 

epigenomic profile obtained was also present in other NSCLC cohorts, such as those 

contributed by TCGA. Most of the available DNA methylation data from this malignancy are 

derived from a previous DNA methylation microarray of lower resolution, which interrogates 

approximately 450,000 CpG sites31 and contains 146 of the 301 CpGs (48%) of the 

EPIMMUNE signature. Importantly, this reduced epigenetic profile, which we call EPIMMUNE-
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TCGA, was still able to predict clinical response, PFS (HR=0.124, P<0.001; 95% CI=0.043-

0.356; log-rank P<10-5) and OS (HR=0.293, P=0.026; 95% CI=0.100-0.863; log-rank 

P=0.019) in our discovery set of NSCLCs treated with anti-PD-1 therapies (Fig. 3A). The 

EPIMMUNE-TCGA negative signature did not indicate overall poor health, but particularly 

disease specific death in the discovery cohort (HR=0.210; P=0.009; 95% CI=0.065-0.682; log-

rank P=0.005). The EPIMMUNE-TCGA signature was not associated with clinical outcome in 

the validation cohort (Fig. S6). Remarkably, for NSCLC cancer patients who did not receive 

immunotherapy, such as those included in TCGA projects (https://cancergenome.nih.gov/), 

we found that the EPIMMUNE-TCGA signature was not associated with OS (HR=0.989, 

P=0.967; 95% CI=0.587-1.665; log-rank P=0.927) (Fig. 3B). These results reinforce the role 

of the observed epigenomic profile, not as a general factor of improved outcome, but as a 

particular predictive biomarker of response to anti-PD-1 therapies. 

Having selected the sites that were associated with known genes from the 301 CpGs in 

the EPIMMUNE signature (191 CpGs, 63%), we sought to validate the best single DNA 

methylation marker that could predict response to PD-1 blockade therapy in NSCLC patients. 

The top gene according to a CpG of the EPIMMUNE signature located in a regulatory region 

with the highest ANOVA value and greatest CpG methylation difference between PD-1 

blockade responders and non-responders in the discovery cohort (Table S1), with additional 

biological plausibility, was the T-cell-related forkhead box P1 (FOXP1) transcription factor.32,33 

The unmethylated status of FOXP1 has been associated with quiescent naïve CD4+ T-

cells,32,33 so it is reasonable to speculate that the release of the PD-1/PD-L1 

immunosuppression axis through the use of the anti-PD-1 antibody will allow the activation of 

these naïve T-cells, an event that has already been linked to FOXP1 hypermethylation.32,33 

FOXP1 unmethylated status was associated with extended PFS in the studied discovery 

cohort (HR=0.423, P=0.032; 95% CI=0.192-0.928; log-rank P=0.027) (Fig. 4A), but not with 

OS (Fig. S7). The Cox multivariate regression model showed that FOXP1 methylation status 

was an independent prognostic factor of PFS in the discovery cohort (HR=0.364; P=0.015; 

95% CI=0.161 to 0.822) (Fig. 4B). The combination of the PD-L1 and CD8 status or tumor 

mutational burden did not improve the prediction of anti-PD-1 response provided by FOXP1 

unmethylated status alone (Figure S8). FOXP1 unmethylated status also was associated with 

extended OS in the microarray validation cohort (HR=0.486, P=0.045; 95% CI=0.239-0.987; 

log-rank P=0.041) (Fig. 4C), but not with PFS (Fig. S7). The Cox multivariate regression 

model showed that FOXP1 methylation status was an independent prognostic factor of PFS 

in the discovery cohort (HR=.; P=.; 95% CI=. to .) (Fig. 4D).  
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Once we had determined that FOXP1 unmethylation was associated with improved PFS 

in the discovery cohort, we sought to validate the DNA methylation marker in an additional 

independent validation cohort of 61 NSCLC patients who received PD-1 blockade therapy. 

The clinicopathological characteristics of the 61 patients in this validation cohort are listed in 

Table 1. The CpG methylation levels at the described sites were analyzed by pyrosequencing 

to test a more affordable and large-scale, user-friendly approach. We found that FOXP1 

unmethylated status was also significantly associated with PFS following anti-PD-1 treatment 

in the validation cohort of NSCLC samples analyzed by pyrosequencing (HR=0.415, P=0.006; 

95% CI=0.209-0.802; log-rank P=0.005) (Fig. 5A). The presence of FOXP1 hypomethylation 

was also significantly associated with OS (HR=0.409, P=0.009; 95% CI=0.220-0.780; log-rank 

P=0.007) (Fig. 5A). FOXP1 hypomethylation was also associated with disease specific death 

(HR=0.322; P=0.003; 95% CI=0.152-0.0683; log-rank P=0.002). According to the multivariate 

Cox regression analysis, FOXP1 unmethylated status was an independent predictor of PFS 

(HR=0.442, P=0.016; 95% CI=0.228-0.858) and OS (HR=0.457, P=0.028; 95% CI=0.227-

0.918) (Fig. 5B). Finally, we also established that FOXP1 methylation status was not 

associated with OS (HR=0.980, P=0.889; 95% CI=0.736-1.305; log-rank P=0.889) in the 

TCGA NSCLC cancer patients who have not received immunotherapy (Fig. 5C). Interestingly, 

because RNA sequencing data are available for the TCGA samples, we were able to show 

that FOXP1 hypermethylation was associated with transcript downregulation (Fig. S9), 

suggesting the possible use in future studies of immunohistochemistry approaches to 

evaluate the role of FOXP1 in anti-PD1 response prediction. These findings imply that FOXP1 

epigenetic status is not an overall prognostic factor in NSCLC, but a specific biomarker 

predicting PD-1 blockade response.  

 

DISCUSSION 

The widespread use of monoclonal antibodies to target immune checkpoints, such as PD-

1, PD-L1, and the cytotoxic T-lymphocyte antigen 4 (CTLA-4), has markedly improved the 

outcome of patients with advanced cancer.9,10 However, despite the overall significant impact 

on their prognosis, a substantial percentage of patients do not receive any clinical benefit. 

This means that, from the patients’ point of view, they may suffer adverse reactions but no 

positive response, while from a healthcare policy perspective, expensive drugs are 

administered that are not sufficiently cost-effective. Thus, it is essential for medical oncology 

to find biomarkers that will predict the response to immune checkpoint molecules. Current 

proposed biomarkers of response to PD-1 blockade include expression of particular proteins, 
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RNA transcription profiles, characteristic mutational landscapes, intratumoral cell type 

composition and immunoscores based on the expression of relevant genes.9,10 However, 

even for the most commonly used biomarker of response, PD-L1 staining, there are 

significant exceptions for responders and non-responders.13 In our case, the small size of our 

discovery cohort, although afforded the ability to identify a classifier, could explain having not 

observed an association of PD-L1 and clinical outcome. Interestingly, a survival benefit 

associated with the combination of pembrolizumab and chemotherapy have been observed in 

all subgroups of PD-L1 tumor proportion scores, however, the greatest relative benefit was 

found in those tumors with a PD-L1 tumor proportion score of 50% or greater.34 The 

EPIMMUNE signature described here provides another step towards filling the gap in our 

knowledge, as is demanded by the more modern and precise approaches of today’s cancer 

medicine. Importantly for clinical praxis, the demonstrable feasibility of moving from the “omic” 

approach to a sensitive pyrosequencing PCR-based assay for the FOXP1 biomarker could 

simplify the process and reduce the costs of the analysis allowing a more affordable large-

scale approaches. Furthermore, the methylation microarray technique requires double 

amount of DNA than the pyrosequencing strategy,  further facilitating the use of the latest in 

the scarce biological material of these patients, which is also in great demand for other tests. 

The EPIMMUNE signature identified here has a value beyond its ability to predict the 

response to PD-1 blockade, whereby it also provides biological explanations of the intimate 

cellular networks involved in determining immune-checkpoint inhibition. The epigenetic profile 

observed in NSCLC patients who, following anti-PD-1 therapy, have no substantive clinical 

response, is characteristic of tumors that are enriched in a particular immune 

microenvironment characterized by an enrichment in myeloid lineage-derived cells, such as 

tumor-associated macrophages (TAMs) and neutrophils. These PD-1 blockade-resistant 

tumors are also enriched in cancer-associated fibroblasts (CAFs) and senescent endothelial 

cells. Interestingly from a clinical practice standpoint, the presence of cell populations 

associated with the EPIMMUNE negative signature, such as of TAMs, TANs, CAFs and 

senescent endothelial cells, can also be assessed by immunohistochemistry.10 The epigenetic 

setting of NSCLC patients who do not respond to the PD-1 blockade described here is 

therefore compatible with the so-called immunologically “cold” or immuno-ignorant tumors, 

and identifies cases in which interventions to transform them into “hot” or more 

immunosensitive tumors can be examined.10 There is a wide spectrum of drugs that have the 

potential to elicit a stronger immune response, particularly in the scenario described here, in 

which NSCLC patients who do not respond to PD-1 blockade exhibit exaggerated TAM and 
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CAF activity and an immunosuppressive endothelial milieu. For example, the specific 

inhibition of the macrophage-associated phosphoinositide 3-kinase (PI3K- or the blockade 

of the receptor of colony-stimulating factor 1 (CSF-1R), that it is under clinical trials to test its 

combination with immune checkpoint blockade. In addition, CAFs can be targeted to increase 

the response of the EPIMMUNE-negative tumors to PD-1 blockade, inhibiting the CAF 

recruitment-associated chemokine (C-X-C motif) ligand 12 (CXCL12) or the focal adhesion 

kinase (FAK).27 Finally, targeting endothelial cells, the normalization of the tumor vasculature 

by the use of antiangiogenic agents, which enhances the infiltration of CD4+ T and CD8+ 

cells and blocks myeloid-derived suppressor cell function,30 is a very attractive therapeutic 

approach. Preliminary findings suggest that blocking angiogenesis, for example, by using 

bevacizumab or ramucirumab, increases the efficacy of immune checkpoint inhibitors.35  

Finally, the epigenetic landscape of the NSCLC patients determined in this study could, 

by itself, also be a target for therapies. The DNA methylation marks studied here and the 

histone modifications can be reverted by the use of epigenetic drugs that facilitate the 

conversion from a “cold” tumor microenvironment to an immunoresponsive one. In this regard, 

demethylating agents enhance chemokine production by T helper 1 (TH1)-type T-cells and T-

cell trafficking into the tumor, providing better responses to immunotherapies in preclinical 

models.36,37 Most importantly, DNA demethylating agents and other epigenetic drugs, such as 

histone deacetylase inhibitors, have been clinically approved for use in the treatment of some 

subtypes of leukemias and lymphomas.15 This has facilitated the inclusion of these agents, in 

combination with immune checkpoint inhibitors, in several Phase II and III clinical trials in lung 

cancer (NCT02638090 and NCT01928576) and other solid tumor types (NCT03264404, 

NCT03182894 and NCT02816021). 

In conclusion, we report that the establishment of DNA methylation profiles in NSCLC 

tumor samples constitutes a predictive tool for selecting patients who stand to gain clinical 

benefit from anti-PD-1 therapy. The EPIMMUNE signature identified here, at the single-locus 

level and at the more comprehensive genomic level, provides insight into the immune 

molecular and cellular milieu of primary tumor specimens, which is a critical microenvironment 

for determining the response to immune checkpoint inhibitors. Our findings also warrant 

follow-up studies to check their ability to predict tumoral response to drugs targeting other 

immune-related proteins, such as PD-L1 and CTLA-4. Although further prospective clinical 

studies are needed to establish its true value, the epigenetic biomarkers identified herein 

could be helpful for selecting those patients for whom immunotherapy or strategies acting on 



16 
 

specific intratumoral cell subpopulations could be assessed in cancer-type-specific studies 

and basket clinical trials.  
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Figure Legends 

Figure 1. DNA methylation predictive signature (EPIMMUNE) association with progression-

free survival (PFS) and overall survival (OS) in a discovery cohort of NSCLC patients treated 

with anti-PD-1 therapy. (A) Kaplan–Meier analysis of PFS (left) and OS (right) in the 34 

NSCLC patients according to the EPIMMUNE signature, defined by the methylation status of 

the 301 CpG sites [EPIMMUNE-positive (+) signature]. P is calculated using the log-rank 

function. Univariate Cox regression analysis is represented as the hazard ratio (HR) with a 

95% confidence interval (95% CI). Values of P<0.05 are considered to be statistically 

significant. The number of events is shown from 5 to 25 months for both groups. (B) PFS and 

OS multivariate Cox regression analysis, illustrated as a forest plot, taking into account 

various clinical parameters in the discovery cohort of NSCLC patients treated with anti-PD-1 

agents. Values of P are those corresponding to HRs, with a 95% CI, associated with anti-PD-

1 treatment. Covariates with an associated value of P<0.05 were considered to be 

independent prognostic factors of PD-1 blockade outcome. 

 

Figure 2. EPIMMUNE signature analysis in validation cohort of NSCLC patients treated with 

anti-PD-1 agents. (A) Kaplan–Meier analysis of PFS in the 47 NSCLC patients by 

EPIMMUNE signature, defined by the methylation status of the 301 CpG sites [EPIMMUNE-

positive (+) signature]. P is calculated using the log-rank function. Univariate Cox regression 

analysis is represented by the hazard ratio (HR) with a 95% confidence interval (95% CI). 

Values of P<0.05 are considered statistically significant. The number of events from 10 to 40 

months is shown for both groups. (B) PFS multivariate Cox regression analysis, represented 

as a forest plot, taking into account clinical characteristics in the validation cohort of NSCLC 

patients treated with anti-PD-1 agents. Values of P correspond to HRs, with 95% CIs, 

associated with anti-PD-1 treatment. Covariates with an associated value of P<0.05 are 

considered as independent prognostic factors of PD-1 blockade outcome. 

 

Figure 3. Kaplan–Meier estimates of clinical outcome with respect to the presence of the 

EPIMMUNE-TCGA signature in patients with NSCLC. (A) Kaplan–Meier estimates of PFS 

(left) and OS (right) with respect to the presence of the EPIMMUNE-TCGA signature in the 

discovery cohort of NSCLC patients who received anti-PD-1 treatment. (B) Kaplan–Meier 

estimates of OS with respect to the presence of the EPIMMUNE-TCGA signature in NSCLC 
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patients available from the TCGA database. None of these patients received anti-PD-1 

treatment. 

 

Figure 4. Survival analysis estimates of clinical outcome with respect to FOXP1 methylation 

status in NSCLC microarray discovery and validation cohorts. (A) Kaplan–Meier estimates of 

PFS with respect to FOXP1 methylation status in the discovery cohort of NSCLC patients who 

received anti-PD-1 treatment. (B) PFS multivariate Cox regression analysis, represented by a 

forest plot, taking into account the various clinical characteristics of the discovery cohort of 

NSCLC patients treated with anti-PD-1 agents. (C) Kaplan–Meier estimates of OS with 

respect to FOXP1 methylation status in the microarray validation cohort of NSCLC patients 

who received anti-PD-1 treatment. (D) OS multivariate Cox regression analysis, represented 

by a forest plot, taking into account the various clinical characteristics of the microarray 

validation cohort of NSCLC patients treated with anti-PD-1 agents.  

 

Figure 5. Survival analysis estimates of clinical outcome with respect to FOXP1 methylation 

status in NSCLC pyrosequencing validation cohort and TCGA samples. (A) Kaplan–Meier 

estimates for PFS (left) and OS (right) with respect to FOXP1 methylation status by 

pyrosequencing analysis in the validation cohort of NSCLC patients who underwent PD-1 

blockade therapy. (B) PFS and OS multivariate Cox regression analysis, represented by a 

forest plot, taking into account the clinical characteristics of the validation cohort of NSCLC 

patients treated with anti-PD-1 agents. Values of P<0.05 are considered to be statistically 

significant. In multivariate analyses, significant covariates are considered independent 

prognostic factors of PD-1 blockade outcome. (C) Kaplan–Meier estimates of OS with respect 

to FOXP1 methylation status in the NSCLC cohort from TCGA database. 

 

Tables 

Table 1. Clinical characteristics of discovery and validation NSCLC cohorts, and efficacy of 

anti-PD-1 therapy. 
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Table 1. Clinical characteristics of  discovery and validation NSCLC cohorts and efficacy of anti-PD-1 therapy 

Characteristics  

NSCLC cohorts 

Discovery cohort 
EPIMMUNE 

Validation cohort 
EPIMMUNE 

Validation cohort 
FOXP1 methylation status 

 
(N = 34) (N = 47) (N = 61) 

Age (years) - Median [range] 61 [40 - 80] 62 [38 - 99] 63 [43 - 79] 

Gender - Frequency (%) 
  

 
Male 29 (85%) 34 (72%) 44 (72%) 

Female 5 (15%) 13 (28%) 17 (28%) 

ECOG performance status score - Frequency (%) 
  

 

ECOG 0-1  25 (74%) 40 (87%) 49 (80%) 

ECOG 2 or more 9 (26%) 5 (11%) 9 (15%) 

Unknown 0 (0%) 2 (2%) 3 (5%) 

Smoking history - Frequency (%) 
  

 

Current or Former smoker 31 (91%) 37 (79%) 57 (93%) 

Never smoker 3 (9%) 6 (13%) 4 (7%) 
Unknown 0 (0%) 4 (8%) 0 (0%) 

Disease stage at diagnosis - Frequency (%) 
  

 
II or III 10 (30%) 10 (21%) 11 (18%) 

IV 24 (70%) 36 (77%) 59 (79%) 
Unknown 0 (0%) 1 (2%) 2 (3%) 

Histology at diagnosis - Frequency (%) 
  

 

Adenocarcinoma 28 (82%) 33 (70%) 45 (74%) 

Squamous cell carcinoma  6 (18%) 7 (15%) 15 (25%) 

Others 0 (0%) 3 (6%) 1 (1%) 

Unknown 0 (0%) 4 (9%) 0 (0%) 

Brain metastases - Frequency (%) 

  
 

Yes 14 (41%) 8 (17%) 8 (13%) 
No 20 (59%) 36 (77%) 43 (71%) 

Unknown - 3 (6%) 10 (16%) 
Type of sample - Frequency (%) 

  
 

Biopsy or cytology 16 (47%) 37 (79%) 47 (77%) 

Surgical resection 18 (53%) 10 (21%) 14 (23%) 

Previous chemotherapy treatment - Frequency (%) 
  

 

Cisplatin-based 15 (44%) 28 (60%) 17 (28%) 

Carboplatin-based 17 (50%) 9 (19%) 40 (66%) 

Others 0 (0%) 6 (13%) 0 (0%) 

No previous treatment 0 (0%) 1 (2%) 2 (3%) 

Unknown 2 (6%) 3 (6%) 2 (3%) 

Type of anti-PD-1 agent - Frequency (%) 

  
 

Nivolumab 33 (97%) 44 (94%) 57 (93%) 

Pembrolizumab 1 (3%) 3 (6%) 4 (7%) 

Line of PD-1 blockade - Frequency (%) 
  

 
First 0 (0%) 7 (15%) 2 (3%) 

Second 24 (70%) 30 (64%) 35 (57%) 
Third 7 (21%) 6 (13%) 16 (26%) 

Further lines 3 (9%) 4 (8%) 8 (14%) 

Clinical benefit to PD-1 blockade - Frequency (%) 

  
 

Durable clinical benefit 10 (29%) 16 (34%) 25 (41%) 
No clinical benefit 24 (71%) 31 (66%) 36 (59%) 

Response to PD-1 blockade (RECIST)- Frequency (%) 
  

 

Complete response 0 (0%) 1 (2%) 0 (0%) 
 Partial response 8 (23%) 8 (17%) 15 (25%) 

Stable disease 3 (9%) 10 (21%) 16 (26%) 

Progressive disease 22 (65%) 22 (47%) 28 (46%) 
Not evaluable 1 (3%) 6 (13%) 2 (3%) 

PFS since PD-1 blockade (months) - Median [range] 2.131 [0.426 - 24.163] 2.704 [0.030 – 41.39] 3.800 [0.200 - 22.670] 

OS since PD-1 blockade (months) - Median [range] 8.459 [0.918 - 24.590] 6.429 [0.030 – 48.16] 7.770 [0.850 – 30.00] 

   
 

Abbreviations: ECOG = Eastern Cooperative Oncology Group; OS= Overall survival;  PFS = Progression-free survival 
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