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Abstract11

The Escherichia coli cell cycle is a classic, but we are still missing some12

of its essential aspects. The reason is that our knowledge is mostly based13

on population data, and our grasp of the behavior of single cells is still very14

limited. Today, new dynamic single-cell data promise to overcome this bar-15

rier. Existing data from single cells already led to findings and hypotheses16

that challenge standard views, and opened questions that did not yet settle.17

Here, we review these recent developments and propose that a systematic18

exploration of the correlation patterns between cell cycle intervals defined19

by key molecular events measured in many single cells could lead to a quan-20

titative characterization of the cell cycle as an interplay of stochastic and21

homeostatic events.22
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1. The cell cycle is a feature of single cells.25

We might think that we know a great deal about the cell cycle of E. coli,26

and this is, to some extent, true. Certainly, the subject does not strike as27

new. The discovery of a key role of replication initiation (see Glossary)28

dates back to work from the late 1960s [1, 2], and already in the early 1990s29

the reviews arguably listed most of the molecular players that we consider30

relevant today [3].31

However, it is not difficult to convince ourselves that we are missing some32

essential aspects of the problem. The reason is that most of the informa-33

tion in our possession comes from bulk population measurements and34

indirect inference. In this Opinion piece, we would like to argue that today35

it is the right moment to revisit the problem exploting dynamic single-36

cell measurements. Such experiments require efficient imaging and cell37

segmentation-tracking methods, and are helped by microfluidic control of38

nutrient exchange. Used in combination with reporters of molecular events39

and protein expression, they may build a new basis for understanding the40

unraveling of the cell cycle. This data will be accessible in the coming years.41

And we are in for a few surprises.42

We focus here on E. coli as a model organism, where, e.g. one can43

build on the large existing molecular biology knowledge, but the range of44

applicability of this approach can be broad, extending to the cell cycle control45

in eukaryotic species, where the same problem of identifying key determinants46

emerges [4, 5, 6].47
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2. The average cell is not the typical single cell48

From the pioneers of quantitative bacterial physiology of the “Copen-49

hagen School” [7], empirical observations in terms of quantitative relations50

between physiology-related variables averaged over large populations have51

been used to infer specific control mechanisms of the cell cycle [8, 7]. The52

problem is that the average cell behaviour does not correspond necessarily to53

the typical behaviour of single cells. Therefore, models based on population54

averages have limitations, and must be revisited and tested with single-cell55

data. The classic example is the model proposed by Donachie [2] in the56

60s, stating that DNA replication is initiated at a critical mass per replica-57

tion origin. As we will discuss, although appealing and perfectly compatible58

with results from bulk growth, this model looks incompatible with recent59

single-cell measurements, supporting the assertion that multiple beliefs on60

the cell cycle ought to be re-studied on single cells. In other words, there are61

unique specific behaviors of single live cells that are obscured if we average62

everything (something to be careful about even when studying single cells).63

For the cell cycle to progress, events related to DNA replication and seg-64

regation, metabolism, growth and cell division must occur in a specific time65

order for each cell, across many divisions, i.e., along lineages of cells [9, 10],66

despite considerable molecular noise and variability of parameters. As an ex-67

ample of this hierarchy and its long-term impact, a missed septation due to68

late segregation may lead to failure of cell division, formation of a filamentous69

cell and subsequent rescue, which can be accompanied by a non-symmetric70

division, with consequences on the balance of cell size, DNA amounts and71

cell-cycle regulators observable over several generations. However, this chain72
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of events could affect a small fraction of the population, and thus it could be73

clearly observable at the level of bulk growth only in severe and unrealisti-74

cally stressful conditions. Therefore, dissecting such a cascade of errors and75

controls would be impossible without a single-cell view, since the complex76

temporal interplay of several concurrent processes and the important role of77

stochasticity are hidden by population averages78

3. From phenomenological to mechanistic models79

A clear sign that the application of high-throughput single-cell techniques80

is effective comes from recent work, which has helped characterizing the81

growth-division cycle. Such measurements have already unveiled the stochas-82

tic nature of metabolism and resulting growth [11], intriguing universal prop-83

erties of the joint distribution of cell size and interdivision times [12, 13], as84

well as an effective principle where cells add, on average, a constant vol-85

ume to their initial one every cell division (sometimes called adder mech-86

anism) [14, 12, 15], which is consistent with long-term homeostasis of the87

cell-size distribution in a population. However, how the adder mechanism88

comes about molecularly remains unknown. Indeed, several phenomenologi-89

cal models can in principle reproduce the empirical observation of a constant90

average added size. For example, a “concerted” control of cell division based91

on cell size and on time [16, 13] as well as a completely different mechanism92

based on the ratio between cell surface and volume [17] can both reproduce93

this behaviour. Therefore, it is necessary to link more closely these available94

minimal phenomenological models to molecular mechanism in order to dis-95

criminate between the direct molecular controls and indirect results (which96
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may come, e.g., from physiological constraints or hidden optimization prin-97

ciples).98

4. Cell cycle intervals99
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Figure 1: Key events in the E. coli cell cycle define cell-cycle intervals subject to stochastic

variation and exerting homeostatic control. The drawing illustrates some of the key cellular

events (replication cycle, Z ring formation, septation, segregation, etc.) which may be used

to define intervals. Such events are stochastic due to intrinsic molecular noise and to cell-to-

cell variability of cellular parameters. Homeostatic control can be exerted if completion of

the interval is correlated with important events. Time-hierarchy (and eventually causality)

between events can be inferred by accumulating a large statistics of cells and consecutive

generations. Cell-cycle intervals may not span just the time between two cell divisions,

but can be defined across consecutive generations. Correlation analysis and mathematical

modeling can help linking intervals and molecular players to homeostasis of key parameters,

such as cell size and cell content.

To move our mathematical descriptions towards more specific biological100
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mechanisms, a first step is to focus the analysis on specific cell cycle events101

that have been directly linked to molecular controls. Indeed, a common way102

to describe qualitatively the progression of the cell cycle [1, 18, 19] is to103

define cell-cycle intervals (Fig. 1), by key landmark events (e.g., replica-104

tion, formation of the Z-ring, septation, etc.), and establishing their rela-105

tive timing and connection with global observables such as cell growth rate,106

size, total protein concentration, as well as with concentration of selected107

metabolic or cell-cycle proteins (e.g., a reliable reporter of the initiator pro-108

tein DnaA [20, 21]).109

Note that cell cycle intervals may span multiple consecutive generations,110

and are not necessarily defined within two consecutive divisions. For exam-111

ple, it might make sense to consider the events of completion of a successful112

segregation and onset of septation in one cycle, and link them to the event of113

replication initiation in the following one, or consider the period between ter-114

mination and initiation (typically in the next generation), where ATP-DnaA115

is supposed to increase [22, 23]. More trivially, it is well known that the116

timing of replication, the “C period”, can be longer than the interdivision117

time [1, 24], since fast-growing E. coli cells support multiple DNA replica-118

tion rounds at the same time, and thus the replication initiation in one cell119

cycle will lead to a complete chromosome in a subsequent cycle of a daughter120

or grand-daughter cell. Reporters of at least some of the key players of the121

cell-cycle are at hand, thanks to many previous studies characterizing several122

aspects of the E. coli cell cycle [25, 26, 27].123

Each measured interval may effect decisions, meaning that its completion124

is conditional to some measurable parameters (say, cell size or growth rate),125
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but at the same time carries sources of errors due to molecular noise and126

cell-to-cell variability in key parameters such as concentrations of regulators127

or metabolic enzymes. Cells adjust cell-cycle intervals to respond to specific128

needs (e.g. conditioning division to successful nucleoid segregation), creating129

a structure of statistical correlations and conditional dependencies between130

interval durations and measurable parameters. These trends allow to detect131

both the (statistical) time hierarchy of cell-cycle events, and possible homeo-132

static controls effected during one interval. They also enable the production133

of testable quantitative mathematical descriptions of the cell cycle.134

Note that this simplification needs to be handled with care. For example135

intervals might be hard to define for chromosome segregation, which is a136

multi-step process [28]. Equally, reporters of expression of cell-cycle proteins137

do not automatically define intervals, but they may be used to define them by138

their oscillations, spatial organization, or threshold values. More in general,139

protein expression and spatial distributions can be correlated with cell cycle140

progression along defined cell-cycle intervals.141

5. Studying single cells can challenge long-standing hypotheses.142

A number of recent studies have produced data that are already challeng-143

ing existing models, and highlight the importance of further investigations144

[30, 19, 29]. One example is the “licensing hypothesis” for replication initia-145

tion [19], which, based on observations on single cells, proposes that septation146

or occurrence of cell division may license (by activating the origin or releas-147

ing an inhibitory signal) the chromosomes for the next round of replication148

initiation (and unlicensed origins cannot initiate).149
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Figure 2: Examples of insights from correlation analysis of cell-cycle intervals. A: Avail-

able data for replication initiation in single cells contradict the hypothesis of initiation

at a critical cell size (mass). The plot (data from ref. [29]) shows the cell size at repli-

cation initiation (estimated by the appearance of SeqA-GFP foci) versus the initial cell

size (estimated by cell length, cell width being constant across cells). Each circle corre-

sponds to a different cell cycle. A critical mass model (red line) would predict that the

initiation size is the same regardless of size at birth. Instead, while there is some control

on size, cells tend to be larger at initiation if they are born larger (green, squares are

binned averages of data, solid line is a linear fit). B: Septum onset time enforces size

homeostasis. The plot (data from ref.[30]) shows the septum onset time (measured by cell

shape segmentation[31]) versus the initial cell size. A pure characteristic septation time

would show no correlation with length at birth, but the existence of a correlation suggests

a correction mechanism. A recent study on perturbations of volume and surface growth

rates supports this observation [17].
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Concerning the timing of replication initiation and cell division [29],150

Donachie [2], based on population data [32, 1], proposed that DNA repli-151

cation is initiated at a critical mass per replication origin. Notably, this152

author was very aware that the critical mass hypothesis is only a sufficient153

condition to comply to the constraints imposed by the behavior of popula-154

tion averages. Other mechanisms than a critical size (mass) at initiation are155

compatible with the same constraints on population averages. The lack of156

a precise critical initiation size may be consistent with models in which the157

initiation time is set by the relative levels of DnaA bound to ADP or to158

ATP [25, 22]. In fact, theoretical descriptions that do not comply with the159

critical mass hypothesis are present in the literature. For example, a recent160

modeling study [33] argues that initiation may occur after a constant size161

has been added between consecutive initiations.162

Fluorescent labeling of replication forks has been used to start adresssing163

these questions in single cells [29, 34]. These studies indicate that the timing164

of initiation is indeed dependent on birth size, i.e., cells that are born larger165

than average initiate earlier. This supports a role for replication initiation166

in maintaining size homeostasis. A similar correlation with size size was167

observed for the D-period between termination and division [29]. Whether168

size compensation at initiation is due to a perfect critical size remains in-169

completely resolved. One study found indications that cells that are born170

larger than average initiate at sizes that are slightly larger than mean size at171

initiation across the population (Fig. 2), while the data of another study was172

found to be consistent with a constant initiation volume model [34], attribut-173

ing the observed correlation in Fig. 2A to the constraint that the initation size174
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should be larger than the initial cell size. In comparing different studies, one175

must also consider possible effects of labelling schemes: one can for instance176

label all SeqA proteins [34], or only a fraction of them [29], or use different177

labels of the replication fork, such as DnaQ [34]. In this case, the data of178

these two studies appear consistent between them and susceptible to both179

interpretations, leaving the question open to new tests and measurements.180

A second example of useful information from cell-cycle intervals at the181

single-cell level is the hypothesis of a role of septum formation in homeostasis.182

Single-cell analysis (Fig. 2) indicates that the cell cycle interval from cell183

birth to onset of septation (measured by cell segmentation) may be size-184

dependent (and hence may effect homeostasis) [30]. More recent and more185

extended results [17] have lead to speculate that septum formation may be the186

main (“rate limiting”) checkpoint in deciding cell division in most conditions.187

Conversely, the cell cycle interval defined by the timing between onset of188

septation and cell division fluctuates around a constant value, independent189

of the total interdivision time, much like the C period [30].190

In conclusion, these studies illustrate the gap of knowledge on the cell191

cycle at the single-cell level, provide first answers, and indicate the potential192

of correlating events and processes in single cells.193

6. How do cell-cycle intervals add up to produce size homeostasis194

and cell cycle control?195

Deeper knowledge of the most relevant cell-cycle intervals, reflecting key196

processes such as replication cycle and the triggering of Z-ring contraction,197

will help answering how different controls exerted during the cell cycle con-198
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tribute to achieving size homeostasis, a constant added size, and scaling199

properties of cell sizes and interdivision times. Clearly, from the biological200

viewpoint, characterizing the cell cycle is a broader aim than mere charac-201

terization of cell-size homeostasis, but understanding the link between cell-202

size distribution, metabolism and key molecular determinants may have im-203

portant implications. Taking the example of the observed constant added204

size [12, 14], one may link this behavior to a classic “initiator” model [35]205

where the key step (replication initiation) is triggered by the accumulation206

of an initiator protein to a constant copy number (not concentration), which207

is compatible with the observation that the total amount of active DnaA208

appears to be relevant for initiation timing in E. coli [25]. However, sev-209

eral processes may contribute to the decision to divide. Besides the process210

of replication initiation by DnaA [22, 23], the division triggering of the Z-211

ring [18, 36], conditioned on successful segregation [37], as well as metabolic212

cues [26, 38] and septum synthesis [17] have all been linked to cell division.213

Analysis of the concerted action of these control mechanisms should show214

whether the decision to divide is based on a single ”rate limiting” principle,215

whether different controls may be rate limiting in different conditions, or216

whether controls are active on overlapping time scales. Incidentally, none of217

the intervals defined by DNA replication appear to obey constant added size218

in slow-growing cells, but a model tuned on these cell cycle intervals does219

reproduce the overall constant added size behavior [29].220

A (complementary) possibility to explore is that observations such as the221

constant added size or the scaling of size and doubling time fluctuations could222

be the result of external constraints, such as optimization principles (e.g.,223
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for global colony growth or lineage expansion) or avoidance of detrimental224

effects (e.g., waste accumulation) acting on top of the integration of cues from225

different sources leading to cell division. These constraints may be found in226

ecology [39, 13], where ubiquitous scaling laws linking e.g. cell (body) size227

and metabolism have been observed.228

7. Concluding remarks and future perspectives.229

Perhaps the most important feature of the investigation we propose is230

that it is fully quantitative. The current challenge is to produce quantitative231

measurement of the key players and their statistics, with the ultimate goal232

of summarizing them in a mathematical equations capturing all observed233

behaviors, able to predict phenotypes at the single-cell level. This theoretical234

description will need to be predictive, as well as incorporating the sources235

of variability across cells and the sources of error correction, linked with the236

key molecular players.237

A quantification of cell cycle intervals in single cells can be complemented238

by their change in response to the external conditions, mutations, and other239

perturbations such as arresting replication, depleting DnaA, expressing un-240

necessary proteins, etc. [17, 40, 41]. For example, nutrient shifts were used241

classically to look at cell division dynamics [42, 43], but potentially can give a242

wealth of further information with contemporary techniques. A further chal-243

lenge will be to understand adaptation behavior in non-steady conditions244

and linking this dynamic behavior to the homeostatic strengths observed in245

fixed environments.246

Finally, focusing on cell cycle intervals that are closely linked to molecu-247
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lar mechanisms would give us a minimal but fully mechanistic description of248

the available data. Importantly, there are limitations. First, the mathemati-249

cal/modeling tools for linking correlation analysis to quantitative models still250

need to be fully developed. Second, correlation does not necessarily reveal251

causality. However, we believe that such road, combined with molecular bi-252

ology and biochemistry, will bring us closer to a mechanism, in comparison253

to the descriptions available today, which lack almost any insight into the254

key molecular players [15, 14, 12, 16].255
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Outstanding Questions Box260

What are the key molecular events in the cell cycle of single E. coli cells261

and how do they compromise or promote homeostasis of basic parameters262

such as cell size, protein concentration, and DNA copy number?263

264

How are metabolic signals and housekeeping events (replication, segrega-265

tion, etc.) integrated to decide when to divide?266

267

Does the observed constant added size mechanism emerge from the inte-268

gration of multiple decisions or is it the result of a single process?269
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270

TRENDS BOX271

[900 characters / 3-5 bullet points]272

The cell cycle is stochastic due to intrinsic cellular noise, affecting decision-273

making related to key steps (initiation of replication, chromosome segrega-274

tion, Z-ring contraction, septation ...)275

276

Recent high-throughput single-cell measurements of growing E. coli show277

a constant average added size between consecutive cell divisions.278

279

Similar measurements allowing the full stochastic unraveling of the E. coli280

cell cycle will likely become available in the coming years.281

282

These data will open new perspectives and challenge classic views, start-283

ing from the long-standing hypothesis that a critical mass per origin triggers284

replication initiation.285

286
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GLOSSARY287

Adder mechanism: The hypothesized mechanism by which E. coli cells288

tend to add a constant volume or mass to the initial size to decide the moment289

of cell division. This mechanism enforces size homeostasis [14, 12]290

Cell-cycle interval: Defined here as the period of time between two key291

events in the cell cycle (Fig. 1). For example, three cell-cycle intervals are292

classically defined with respect to DNA replication: the B,C,D sperated by293

replication initiation and the end of replication.294

DnaA: ATP-ase protein that accumulates in its active ATP-bound form295

to a threshold value during the cell cycle inducing DNA melting by binding296

cooperatively to the origin(s) and thus triggering initiation of DNA replica-297

tion [22].298

Homeostasis: The process through which single cells control key vari-299

ables (such as size, concentrations) in order to ensure their stability along300

lineages. There is, in general, a difference between homeostasis in fixed con-301

ditions and the average response to a perturbation.302

Population measurements: Measurements of average quantities over303

large cell populations. Most of growth-related laws in bacterial physiology304

are based on such measurements [8], typically for exponentially growing pop-305

ulations. For example, the typical population estimate of the average cell size306

consists in a measurement of optical density divided by a cell count [7].307

Replication initiation: The start of DNA replication, defining the308

end of the B period in bacteria, and corresponding to the G1/S transition in309

mammalian cells.310

Segregation: The process of disentanglement and separation of dupli-311
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cated chromosomes necessary to ensure a chromosome copy to each daughter312

cell.313

Septation: Formation of a cell wall that constricts the cell (approxi-314

mately in the middle for symmetrically dividing bacteria like E. coli) and315

leads to new cell poles.316

Single-cell measurements: Experiments following dynamically many317

cells with single-cell resolution, monitoring size, shape and fluorescent probes,318

and allowing to quantify the cell-to-cell variability and correlations.319

Stochasticity: In the context of cell cycle events, represents the ten-320

dency of cell-cycle progression to be different in each individual cell, due to321

values of internal variables (e.g. key protein amounts or concentrations) and322

molecular noise. As a consequence, mathematical models have to describe323

the cell-cycle progression as a stochastic process, typically representing the324

interplay of cell-to-cell variability and homeostatic control.325
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Outstanding Questions Box 
 

 What are the key molecular events in the cell cycle of single E. coli cells  and how do they compromise  or 
promote homeostasis of basic parameters such  as cell size, protein concentration, and DNA copy number? 

 
 How are metabolic signals and housekeeping events (replication, segregation, etc.) integrated to decide when to 

divide? 
 

 Does the observed constant added size mechanism emerge from the integration of multiple decisions or is it the 
result of a single process? 

 



time and size at key events
across generations

division i

replication initiation i

z-ring formation i

completed segregation i

septation i

division i+1

replication initiation i+1

growth dynamics

...

end of replication i

   B 

   C 

   D

interval start  

e
lo

n
g

a
ti

o
n
  

size at start

a
d

d
e
d

 s
iz

e
 

single-cell 
data 

correlation
 analysis 

modelling / inference 
of candidate mechanisms 

interval end  



2 3
Length at birth (µm)

2

3

Le
ng

th
 a

t 
in

iti
at

io
n 

( µ
m

)

Constant
Data
Linear fit
Data means

AA B

2 3
Length at birth (µm)

5

10

15

S
e

p
tu

m
o

n
s
e

t 
tim

e
 (

s
) Data

Linear fit



Trends Box 

 

 

 The cell cycle is stochastic due to intrinsic cellular noise, affecting decision- 

making related to key steps (initiation of replication, chromosome segrega-tion, Z-ring contraction, 

septation ...) 

 

 

 Recent high-throughput single-cell measurements of growing E. coli show 

 a constant average added size between consecutive cell divisions. 

 

 

 Similar measurements allowing the full stochastic unraveling of the E. coli
cell cycle will likely become available in the coming years.

 

 

 These data will open new perspectives and challenge classic views, starting from the long-

standing hypothesis that a critical mass per origin triggers 

 replication initiation. 

 


