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Abstract

Hydroxyapatite (HA) and carbonated apatite (CAp) constitute the mineral part of

biological hard tissue and are key materials in dental implants and bone regeneration.

This work provides a density functional theory study of the static and dynamic prop-

erties and reactivity towards water of three families of HA and CAp surfaces, namely

the (001), (010) and (101) surfaces. For clean materials, surface energy, dipole moment

across the slab and vibrational features of the CO 2–
3 group in CAp are compared with

either the same surface property of HA, or with the bulk feature. The full substitu-

tion of OH– groups by CO 2–
3 in CAp affects water adsorption features significantly
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compared to HA. When CO 2–
3 is not directly exposed at the surface ((001) and P-rich

(010) surfaces) water binding energy is increased/decreased by less than 25% compared

to the values for the corresponding HA surfaces. For the CAp Ca-rich (010) surface, in

which the CO 2–
3 group in direct contact with water, the binding energy shows a 50% in-

crease. For both the HA and CAp (010) stoichiometric surfaces, water is spontaneously

dissociated with the resulting OH– ion shared between three surface Ca ions.

Introduction

Apatites are phosphate minerals with the general formula Ca10(PO4)6(X)n, where X stands

for a number of anions, including F– , Cl– , OH– and CO3
2−. The composition of these miner-

als is not fixed, yielding a spectrum of different structures according to substitution. Hydrox-

yapatite [Ca10(PO4)6(OH)2] (HA) and carbonated hydroxyapatite [Ca10(PO4)6−2y(OH)2−2x(CO3)x+3y]

(CHA) are the main mineral component of biological hard tissues, and have been the object

of extensive study in the field of bone regeneration and dental implants.1–5 Two different an-

ionic substitutions are originated: carbonate can replace phosphate (B-type case) or hydroxyl

groups (A-type). Mixed AB-types are also found in bone minerals.6

CHA can be seen as a derivative of HA resulting from CO3
2− incorporation. Moreover,

when CO3
2− completely replaces OH– ions in the lattice, the resulting mineral [Ca10(PO4)6(CO3)],

with a CO3
2− content of 5.82 wt%, takes the name of fully carbonated A-type apatite (herein

CAp), which is the object of this work.7–10 HA and CAp can be seen as the extremes of a

continuous range of structures with varying OH–/CO3
2− ratio, which includes biological

hard tissues, whose CO3
2− content stays in the range 2-8 wt% according to bone location

and species for mammals.11 Remarkably, while the Raman spectra of apatite in enamel are

characterized by the O−H stretching modes of the hydroxyl group in the apatitic structure,

some bone apatite has been shown to be entirely hydroxyl groups free.12 On the other hand,

the presence of trigonal-planar CO3
2− groups is clearly recognizable in the IR spectra of both

bone and enamel, indicating that HA alone is not as good a model for biological hard tissue
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as a combination of HA and CAp.

The role of the carbonate ion in hydroxyapatite has gained much interest since it has been

proven to be relevant for different pathologies of human tissues, such as dental caries13,14

and even breast cancer.15 For applications in bone tissue engineering, the design of carbon-

ate substituted hydroxyapatite ceramics is very promising16 due to the inductive effect on

osteoclastogenesis in proximity of the implant, allowing for highly resorbable biomaterials.17

Cationic substitutions are studied as well for A-type carbonated hydroxyapatite, such as

Zn-doping, reaching a chemical composition close to that of natural biological apatite.18 The

effect of carbonate concentration in controlling bone mineral morphology has been considered

and explained for the B-type carbonated hydroxyapatite in a recent combined experimen-

tal and computational work by Deymier et al.11 The authors have proposed a mechanism

elucidating how carbonate substitution affects morphology, shedding light on the key role

of carbonation. Actually, computational techniques have revealed as a fundamental tool for

these investigations, especially when related to surface processes. Indeed, a large number of

studies have applied theoretical methods to pure and substituted hydroxyapatite, both by

classical molecular dynamics19,20 and quantum-mechanical techniques.21–23

In previous works some of us have simulated extensively both bulk and surface properties

of HA,24–29 and more recently the bulk properties of CAp.30–33 The study of surfaces of

biological materials is particularly relevant as these contribute to the complex interface with

biological tissue and fluids. Even more importantly, as the main application of HA and

CAp is in bone regeneration, surface properties and reactivity are crucial to understand the

response of the biomaterial implanted in a living body.

The aim of this work is to model the structural and vibrational properties of three families

of CAp surfaces, (001), (010) and (101), and compare them with the corresponding HA ones,

the ultimate goal being to assess how does carbonate substitution affect the properties of the

material. Concerning surface reactivity, a first computational exploration has been carried

out, again comparing HA and CAp, by considering the reactivity of (001) and (010) surfaces
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towards water molecules. The reactivity of the (101) surface is more complex compared to

the other surfaces as we showed29 that for HA, up to two water molecules are dissociatively

chemisorbed. As we are interested in the limit of very low H2O coverage, the (101) surface

will be considered in future work when dealing with the comparison between HA and CAp

at water monolayer.

Computational methods

Static calculations

Static calculations were performed with a development version of the CRYSTAL14 code,

using the hybrid B3LYP functional.34,35 With B3LYP we are not taking dispersive (London)

interactions into account. This is fully justified particularly for a comparative study like

the present one, as we recently showed that its role when dealing with water adsorption at

HA surfaces is not crucial, as the interaction is dominated by charge-dipole interaction, well

accounted for by plain B3LYP.29 The all-electron Gaussian basis set, already used in previous

related works, is as follows: 86-511G(2d) for calcium, 85-21G(d) for phosphorus, 6-31G(d)

for oxygen and 6-21G(d) for carbon.30–32 This methodology has already been applied to the

study of mixed A-type and B-type carbonated hydroxyapatite surfaces by Ulian et al. 22

Truncation criteria for the Coulomb and Hartree-Fock exchange series were set to 10−6

(ITOL1, ITOL2, ITOL3, ITOL4) and 10−16 (ITOL5). Geometry optimization was carried

out keeping the unit cell parameters fixed to optimum bulk values, and surface energies were

not corrected for the basis set superposition error to ensure continuity with the previous works

on hydroxyapatite. A sample SCF section of the CRYSTAL input employed is reported in

the supporting information.

The Hamiltonian matrix was diagonalized at 10 k-points in the first Brilloiun zone. Model

surfaces were constructed using the slab model, yielding a series of thin films of definite

thickness, which will be described in detail in the next section. This, in combination with
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the use of a Gaussian type basis set, allows the construction of two-dimensional models

where the direction perpendicular to the slab surface is truly non-periodic (no replicas).

The interaction energies presented for water molecules physisorbed on surfaces include the

counterpoise correction for the basis set superposition error.36,37 Harmonic frequencies were

computed for the carbonate group only, considered as an independent fragment within the

structure.

Molecular dynamics simulations

DFT molecular dynamics simulations were performed using the CP2K package, version

2.6.2.38,39 Periodic molecular dynamics simulations of selected surface models were performed

in the NVT (isothermal) ensemble. In order to avoid unphysical interactions between ad-

jacent replicas along the non-periodic direction (z ), the simulation box was set with a 50

Å height along z. The largest model taken into account in these simulations is ∼ 24 Å thick,

which leaves at least a ∼ 26 Å distance between replicas, enough to prevent any interac-

tion. The calculations were performed in Gamma-point. The PBE functional was employed,

with a Gaussian split-valence double zeta basis set with polarization functions for valence

electrons, and the Goedecker-Teter-Hutter pseudopotentials for core electrons.40,41 Alongside

the Gaussian basis set, CP2K uses an auxiliary plane wave basis set for which the cutoff was

set to 400 Ry. A CSVR (Canonical Sampling through Velocity Rescaling) thermostat with

a time constant of 25 fs was employed to control the temperature of the simulation, which

was set to 300 K.42 Sample force evaluation and molecular dynamics blocks of the CP2K

inputs are reported in the ESI.
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Results and discussion

CAp (001), (010) and (101) surface models

With the optimized CAp bulk32 as the starting point (Figure S1 of ESI), three types of

surface models were cut. These are identified by the (hkl) crystal planes defining the cutting

direction, as reported in Figure 1. The corresponding CIF files are available in the ESI.

As highlighted by the orientation of CO 2–
3 ions, the three cuts expose different atomistic

terminations.

Figure 1: Cutting direction of the bulk of CAp yielding the surface models of this work, with
indication of the orientation of carbonate ions. The dotted line defines in all cases the cut
direction (z).

Cutting the bulk along the (001) and (101) directions four slabs were constructed, with

different thickness corresponding to 1, 2, 4 and 6 bulk unit cells. (Figures S2 to S6 of

ESI). Cutting along the (010) direction, on the other hand, yields three types of surfaces: a

stoichiometric one (S, Ca/P ratio 1.67), and two non-stoichiometric ones, P-rich (PR, Ca/P

ratio 1.62) and Ca-rich (CaR, Ca/P ratio 1.71) respectively (Figure S7 and S8 of ESI). Non-
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stoichiometric means that the formula unit of the slab unit cell cannot be expressed as an

integer multiple of the bulk unit cell, resulting in a different composition (bulk Ca/P ratio

1.67). For the S surface, a bilayer was cut. With the aim of constructing non-stoichiometric

slabs of similar thickness, a PR model was constructed including two CO 2–
3 ions in the

unit cell, and a CaR one with three CO 2–
3 ions. Figure 2 reports the Wulff construction

of HA (space group P63, Figure 2a) and CAp (space group P3̄, Figure 2b), in which the

computed morphologies resulted from the surface energy values calculated as described in

the methodology section.

(a) HA (b) CAp

Figure 2: Wulff construction of HA and CAp.

In the following sections, the properties of these three surfaces will be presented. Since

an important geometrical reorganization is expected after the cut, slab models have been

optimized relaxing atomic position, but keeping cell parameters fixed to bulk values. In

order to assess the modifications brought by surface cutting, the harmonic frequencies of

CO 2–
3 ions were computed. In particular, the shift between slab and bulk values of the

two asymmetric stretching frequencies of CO 2–
3 (Figure 3) can bring information on the

surrounding of carbonate in the different surface models.
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Figure 3: Asymmetric stretching modes of the carbonate ion.

(001) and (101) surfaces

Four models of (001) were built, with thickness ranging from 1 to 6 bulk unit cells. Figure

4a reports the optimized geometry of one of these models, the tetralayer. As highlighted,

the heavy geometrical reorganization at the surface is reflected in the spatial arrangment of

CO 2–
3 . Indeed, CO 2–

3 ions closer to the slab faces (labelled E) are rotated compared to the

bulk orientation, which is maintained by the internal carbonates (labelled I). This rotation,

which is of ∼ 46◦ independently of slab thickness (see Figure S9 of ESI), confirms that CO 2–
3

is an extremely mobile group within the material.

With the aim of understanding how carbonate substitution affects the properties of the

material, we compared CAp (001) surfaces with the corresponding HA ones. In particular,

surface energy and dipole moments have been taken into account. Surface energy has been

computed according to eq. 1.
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(a) (001) surface (b) (101) surface

Figure 4: Top and side view of the optimized CAp (001) and (101) surfaces, with labeling
of the CO 2–

3 groups according to their position perpendicular to the cutting direction. E
identifies external and I internal CO 2–

3 groups. The dotted lines separate the internal zones
from the external ones.

Esurf =
EsN −N · Ebulk

2A
(1)

where EsN , N , Ebulk and A are the energy of the slab unit cell, thickness of the slab model

expressed as number of bulk unit cells, the bulk unit cell energy and the slab unit cell area

respectively. Since cell parameters were not optimized, the value of A is constant for all

(001) slab models. Surface energy converges rapidly to a value of 0.90 J m-2 (see Figure S10

of ESI), which is higher than the value of 0.75 J m-2 for hydroxyapatite at B3LYP level and

with a slightly more extended basis for the oxygen atoms (511111-411G(d)) compared to the

present one.29 As the Esurf datum for hydroxyapatite refers only to the (001) tetra-layer slab

this does not allow to compare the surface property evolution of CAp with slab thickness. To
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that purpose, we resort to data computed for the HA (001) surface using a pseudo-potential

for the core electrons of Ca ions and double zeta quality basis set for the other atoms as

reported in Table 1 (please note that we refer to the value computed for the optimized HA

(001) slab as reported in Table 3 under the "Relaxed" header of Reference.27)

Table 1 reports a comparison of HA and CAp in terms of thickness and dipole moment of

(001) surface models. While carbonate substitution does not essentially affect surface thick-

ness, it increases significantly the dipole moment, both before and after geometry relaxation.

This marked difference can be attributed the carbonate ion, which has high mobility and

whose spatial arrangements lead to multiple energetically equivalent minima.32

Table 1: Thickness τ (Å) and surface energy Esurf for relaxed CAp and HA surfaces, and
dipole moment µ (D) across the slab for unrelaxed and relaxed HA and CAp (001) surfaces.
Data for HA taken from Ref.27

n. layers τ Esurf µ-CAp µ-HA
CAp HA CAp HA Unrelaxed Relaxed Unrelaxed Relaxed

1 6.9 6.6 0.92 - 0.64 -0.14 - -
2 13.8 13.2 0.90 1.04 1.27 0.03 0.38 0.02
4 27.5 27.0 0.90 1.05 2.51 0.16 0.39 0.07
6 41.3 40.4 0.90 1.05 3.75 0.64 0.41 0.13

Similar properties are observed for surface (101) (Figure 4b). As already reported for

HA, the (101) surface cut from the bulk exhibits channel anions (OH– in HA and CO 2–
3 in

CAp) running diagonally across the slab model, resulting in a high dipole moment.26 Recon-

struction of this surface involves important reorientation of these anions, yielding values of

dipole moment that are higher than those of the (001) surface, as shown in Table 2. These

results have been compared with those of the (101) HA bilayer: a thickness of 12.05 Å, very

similar to the CAp bilayer, a surface energy of 1.65 J m-2, significantly higher than that of

CAp, and a dipole moment that vanishes with surface relaxation, unlike what reported for

CAp.29 The latter represents an important difference between the two materials: in HA the

dipole moment across the slab vanishes owing to a rotation of the terminal exposed hydroxyl

groups of the slab, which assume a spatial configuration that is essentially perpendicular
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to that of the remaining internal OH– groups and effectively cancel out the dipole moment

generated by the internal hydroxyls. This cannot take place in CAp owing to the nature of

A-type substitution: when a single CO 2–
3 group replaces two OH– ones, the terminal groups

are no longer completely exposed to the surface, and thus their geometrical reorganization

is hindered by the surrounding groups and is much less effective in vanishing the dipole

moment.

Table 2: Thickness τ (Å), dipole moment µ (D) and surface energy Esurf (J m-2) of the
relaxed (101) and CAp surface.

n. layers τ Esurf µ
1 6.3 1.04 0.01
2 11.9 1.02 -0.21
4 22.3 1.05 -1.75
6 33.1 1.04 -2.08

(010) surfaces

Three models of (010) surface were constructed, the difference between them lying in the

type of cut. If the bulk of CAp is oriented perpendicular to the (010) direction (Figure

5), two types of layers can be recognized: A-type layers, Ca3(PO4)3, and B-type layers,

Ca4(PO4)2CO3, in such a way that the bulk structure is a repetition of the ABB unit

(Ca10(PO4)6(CO3)), corresponding to the unit cell. The ABA termination yields a stoichio-

metric surface, the BAA a P rich one, and the AAB a Ca rich one (Figure 5).
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Figure 5: Cuts yielding the three models of (010) surface, stoichiometric (S), P rich (PR)
and Ca rich (CaR).

Concerning surface energy, for the stoichiometric slab eq. 1 can be applied, yielding a

value of 1.07 J m-2 to be compared with the value of 1.34 J m-2 computed for the stoi-

chiometric HA (100) surface.29 Evaluation of surface energies of non-stoichiometric slabs is

more complex, as it involves modification of eq. 1 to account for the layers that the model

lacks or has in excess compared to the stoichiometric one. By applying the same procedure

already followed by some of us for the corresponding hydroxyapatite surfaces,29 once that

the chemical potential of the A-type layer (µA) is known, surface energies can be computed

according to the following equations.

Esurf (CaR) =
ECaR + 2 · µA − 3 · Ebulk

2A
(2)

Esurf (PR) =
EPR − 2 · µA − 2 · Ebulk

2A
(3)

To evaluate µA, two reference systems are employed:

i) A first value, µ1, can be computed from the decomposition of CAp into calcium phosphate

and calcium carbonate:
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Ca10(PO4)6(CO3) → CaCO3 + 3[Ca3(PO4)2]

µ1 =
1

3
[ECAp − ECaCO3 ] (4)

Where E is the electronic energy per formula unit.

ii) A second value, µ2, can be computed from the most stable form of calcium phosphate,

β-tricalcium phosphate (β-TCP):

µ2 = Eβ−TCP (5)

µ1 and µ2 values define the window of stability of (010) non-stoichiometric surfaces, according

to:

µ1 < µA < µ2 (6)

Indeed, if µA < µ1, the surface decomposes into CaCO3 and Ca3(PO4)2. If, on the other

hand, µA > µ2, precipitation of β-TCP prevents surface formation.

Limiting values of surface energies computed with µ1 and µ2 are reported in Table 3.

Values for HA are taken from ref.29 and indicate that HA and CAp have a very similar

behavior, suggesting that carbonate substitution does not affect significantly the surface

energy.

Table 3: (010) Surface energies of HA and CAp in J m-2 and dipole moment µ (D) of CAp.

Esurf (µ1) Esurf (µ2) µ
Surface HA CAp HA CAp CAp
CaR 0.99 1.11 1.14 1.17 -0.12
PR 1.12 1.04 0.99 0.98 0.87

While for the P rich termination CO 2–
3 ions are buried below two A-type layers, for the

Ca rich termination they are located in the outmost layer. The stoichiometric surface, in

turn, involves an intermediate situation between the two non-stoichiometric ones with an

Esurf of 1.07 J m-2, very close to those reported in Table 3.
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Surface vibrational features

As already anticipated, we focused exclusively on the CO 2–
3 features computed in the har-

monic approximation. This approximation of the carbonate group as independent within

the lattice is justified by its extreme mobility.32 The different local environment perceived

by the carbonate ions in the three situations is reflected in the vibrational frequencies re-

ported in Table 4. Carbonates are classified according to their distance from the two faces

of slab models. E stands for external, and indicates the two CO 2–
3 groups closer to these

faces, while I, which stands for internal, refers to CO 2–
3 ions that are buried inside the slab

(Figure 4).

Table 4: Asymmetric stretching frequencies of CO 2–
3 in the models of (001), (010) and (101)

CAp surfaces. Values of ν3a and ν3b are reported as differences relative to bulk values (ν3a,bulk

= 1516 cm-1, ν3b,bulk = 1602 cm-1, ν3a − ν3b = 86 cm-1). E stands for external CO 2–
3 , I for

internal. Multiple entries in the same cell correspond to different carbonate groups in the
same position (external or internal) along the non-periodic direction. For the (001) and (101)
surfaces results are given as a function of the number of layers. Concerning (010) surfaces,
the models of S and PR present two CO 2–

3 groups only, which are therefore labelled as
external being the ones closer to the vacuum. In the CaR model, three CO 2–

3 groups are
present, the two most exposed being labeled as E and the internal one as I.

Surface 1 2 4 6 8 Surface 1 2 4 6
E ν3a − ν3a,bulk (001) 12 -34/-24 -30/-21 -21/-29 -27/-21 (101) -163 -99/-5 -118/-170 -122/-4
E ν3b − ν3b,bulk (001) -28 -34/-31 -26/-32 -33/-26 -24/-30 (101) 108 24/-45 55/-90 51/35
E ν3b − ν3a (001) 46 100/78 90/74 74/89 87/75 (101) 357 209/46 259/166 259/125
I ν3a − ν3a,bulk (001) - - 7/10 13/16 12/18 (101) - - -90/18 4/7
I ν3b − ν3b,bulk (001) - - 0/1 -4/-1 -3/1 (101) - - -95/-8 -12/2
I ν3b − ν3a (001) - - 77/78 69/69 67/79 (101) - - 81/69 81/81

Surface Surface Surface Surface
E ν3a − ν3a,bulk (010)S -96/-69 (010)CaR -114/-113 (010)PR 16/5 I ν3a − ν3a,bulk (010)CaR 2
E ν3b − ν3b,bulk (010)S 14/2 (010)CaR 31/20 (010)PR 11/4 I ν3b − ν3b,bulk (010)CaR -5
E ν3b − ν3a (010)S 196/157 (010)CaR 230/220 (010)PR 81/81 I ν3b − ν3a (010)CaR 78

For the (001) surface, results indicate that external CO 2–
3 groups undergo a ∼ 27 cm-1

bathochromic shift compared to bulk values, while internal ones yield values closer to bulk

ones. This is an interesting result, considering that in our (001) models CO 2–
3 ions are not

fully exposed, but protected by a layer of phosphate and calcium ions. This indicates that

the stretching frequencies are sensitive enough to be used as probes for surface structure.

The only exception to this trend is offered by the monolayer, that shows a hypsochromic

shift for ν3a. This peculiar behavior may be attributed to the extreme thinness of this model,
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which is not representative of the real surface structure.

While CO 2–
3 groups of the (010) P rich slab present a signature frequency that is es-

sentially identical to that of bulk carbonates, CO 2–
3 ions of the Ca rich surface present

bathochromic shifts larger than 100 cm-1 for ν3a compared to bulk values, highlighting the

lesser spatial constraint of groups exposed to the surface. The same effect, although less

pronounced, is observed for the stoichiometric (010) surface. Furthermore, it is interesting

to notice that the two signature vibrational frequencies are affected differently by exposure

to the surface.

The (101) surface shows a markedly higher frequency shift of external CO 2–
3 ions to

that of the (001) surface. This is attributed to the different position of these groups, which

are fully exposed in the (101) surface, and thus in a chemical environment that is very

different from the bulk one. It also interesting to stress how the two modes are not affected

by exposure to the surface to the same extent, with mode ν3a undergoing more significant

variations than mode ν3b. This difference is explained when looking at the vibrational mode

within the surface structure (Figure 6).

(a) ν3a (b) ν3b

Figure 6: ν3a and ν3b stretching modes of (101) surface CO 2–
3 ions. Arrows represent the

vibrational mode.

Mode ν3a (Figure 6a) involves an outward atomic displacement, pointing at the empty

space of the non-periodic direction and with negligible interactions with other groups of

the surface. On the contrary, mode ν3b (Figure 6b) has an important out-of-plane bending
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contribution, pointing towards the interior of the surface model, which is constrained by

the lower groups of the slab model. These variations, which are dependent on the chemical

environment of CO 2–
3 and on its orientation within the apatite channel, are only represen-

tative of a specific atomic configuration, and only an average over all possible configurations

is expected to be representative of the behavior of real CAp surfaces.

Water reactivity at the (001) and (010) surfaces

This sections compares the properties of water adsorption at zero-coverage limiting value

(one water molecule per surface unit cell) of the (001) and (010) stoichiometric surfaces of

HA and CAp, leaving aside the (101) one. As already anticipated, this choice was dictated

by the fact that the HA (101) surface is highly reactive towards water adsorption and their

properties cannot be described well at low water coverage.29 For this reason, water adsorption

at the (101) CAp surface was not considered here and will be addressed in detail in future

work.

As we are considering an extremely low water coverage, the following results provide

only a preliminary overview of water reactivity at the CAp surfaces and cannot therefore

considered representative of the behavior of the surface in a biological environment, which

involves a much higher level of complexity and will be addressed elsewhere.

Static simulations

In order to rationalize the presentation of results, surface calcium ions are labeled as shown

in Figures 7a, 7c and 8, according to what reported by Corno et al. 25,43 These cations are

directly involved in water adsorption through electrostatic interactions with the oxygen atom

of water, while phosphate groups can interact with the hydrogen atoms, either accepting the

proton resulting from the water O−H bond cleavage, or just by forming an hydrogen bond

with the water molecule.

Previous studies by Corno and coworkers analyzed the evolution of water adsorption on
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HA surfaces as a function of water loading.25,29 On hydroxyapatite stoichiometric (001) sur-

faces, water molecules are physisorbed at the Ca1 site (Figure 7a), with an interaction energy

of -102 kJ mol-1 per water molecule (see B3LYP ∆EC values of Table 2 in Ref29). A similar

behavior was observed for CAp, with an interaction energy of -119 kJ mol-1 (Figure 7b). In-

terestingly, the present value is definitely higher than the value of 86 kJ mol-1 computed by

Ulian et al. 23 for water adsorbed on the Ca ion of the mixed AB defective apatite. As in the

hydroxyapatite case, phosphate groups are involved in the binding interaction via hydrogen

bonds. This confirms, in agreement with CO 2–
3 vibrational results, that as far as surface

(001) is concerned, carbonate substitution does not affect significantly surface properties.

Ca3 ions (Figure 7a) are known to be only weak interaction sites for water in HA,29 and

were therefore not considered in this study.

17



(a) HA (001): labeling of Ca ions. (b) CAp (001): physisorption on Ca1.

(c) HA (010) S: labeling of Ca ions. (d) CAp (010) S: physisorption on Ca2.

Figure 7: Physisorption of one water molecule at the (001) and (010) stoichiometric surfaces
of CAp, top view.

As for the stoichiometric (S) (010) surface, water reactivity on HA has been characterized

in detail in a previous work,25 with results indicating clearly that Ca1 (Figure 7c) is the only

site promoting adsorption of water in molecular form. On Ca2 and Ca3 type ions, water

dissociates in a barrierless manner, and the final configuration involves sharing of the OH–

anion between three adjacent calcium ions and protonation of a nearby phosphate. The lack

of dissociation on Ca1 has been attributed just to this OH– sharing feature, which cannot

be achieved on Ca1 because the latter does not have another cation nearby to be involved

in the sharing.25

For the S (010) surface, a similar behavior is expected for HA and CAp. This assumption

is based on the observation that the channel ion (OH– in HA and CO 2–
3 in CAp) is not
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involved in the dissociation, at least in this first stage (Figure 7c). Our static calculations,

however, located a series of minima for CAp corresponding to physisorbed water, interacting

not only with Ca1, but also with Ca2 (Figure 7d). To verify if this difference from HA is

real or just an artefact, we performed short molecular dynamics simulations to study the

adsorption of water on (010) CAp surfaces, reported in the next section.

Concerning HA (010) non-stoichiometric surfaces, previous studies showed that water

is physisorbed on both, with an interaction energy of -102.6 kJ mol-1 on the Ca-rich and

of -135.4 kJ mol-1 on the P-rich surface (see B3LYP ∆EC values of Table 2 in Ref29). A

similar behavior was observed for CAp, with water being physisorbed through electrostatic

interactions between the oxygen of water and calcium ions, and hydrogen bonds involving

phosphate groups. Concerning the Ca-rich surface, we located two minima, shown in Figure

8a and 8b. In the first of these structures water is almost equally shared between two

adjacent calcium ions, Ca1 and Ca2, with an interaction energy of -80.4 kJ mol-1. The

second structure also presents a sharing, this time between Ca1 and Ca3. In this case,

however, the Ca−O distance for Ca1 is significantly shorter than that of Ca3, resulting in

an interaction energy of -152.2 kJ mol-1. This higher value is not surprinsing because Ca1

is the most exposed among the calcium ions, and thus provides the strongest electrostatic

contribution to the adsorption. An interesting feature of this surface is that it exposes

the carbonate ion, providing a structure that is essentially different from the corresponding

one of HA. In Figure 8b it is shown that the carbonate group is directly involved in water

adsorption acting as a hydrogen bond acceptor. Overall, CAp seems to provide a stronger

binding interaction than HA (-152.2 kJ mol-1 vs -102.6 kJ mol-1).
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(a) Ca1-O 2.67 Ca-O 2.60 (b) Ca1-O 2.37 Ca3-O 2.56

(c) Ca1-O 2.36 (d) Ca2-O 2.41 (e) Ca3-O 2.41

Figure 8: Physisorption of one water molecule at the (010) non-stoichiometic surfaces of
CAp, top view. Panel (a) and (b) for the Ca-rich and (c) to (e) for the P-rich surface.
Distances in Å.

Conversely, in the HA and CAp P-rich surface, the channel ion (CO 2–
3 or OH– ) is buried

below two A-type layers, and therefore cannot be involved directly in water adsorption. The

three CAp structures reported in Figures 8c, 8d and 8e confirm this hypothesis, showing

the formation of a network of hydrogen bonds between water and phosphate groups. The

computed interaction energy for the most stable (Figure 8e) is -115.0 kJ mol-1, lower than

the value of -135.4 kJ mol-1 reported for HA.29

20



Molecular dynamics simulations for water at CAp S (010)

We ran molecular dynamics simulations to elucidate the complex potential energy surface

causing water dissociation on the S (010) surface. As reported in Figure 9, three 10 ps

dynamics simulations were run on systems composed of the optimized CAp S (010) surface

and one water molecule, with the molecule initially placed on each of three reactive calcium

ions (Ca2A, Ca2B and Ca3). Figures 9a, 9b and 9c indicate that, independently of the initial

configuration, within 10 ps the system evolves to a structure in which the water molecule

is cleaved into a proton and an hydroxyl anion. The proton is transferred to an adjacent

phosphate group (highlighted with the symbol w), while the hydroxyl occupies the center of

the triangle defined by the three calcium ions. In this configuration, all three calcium ions,

Ca2A, Ca2B and Ca3 concur in stabilizing the negative charge of the hydroxyl.

The B3LYP interaction energy calculated by full optimization of a frame of this molecular

dynamics simulation yields a value of -186 kJ mol-1, lower than the value of -245 reported

for HA and higher than those reported for the non-stoichiometric surfaces.25 It is hard to

explain the relevant decrease of the adsorption energy moving from HA S (010) to the

corresponding CAp surface. One reason may be the different local electric field exerted by

CO 2–
3 compared to OH– , which decreases the ionic character of the Ca ions coordinating

the OH– group resulting from water cleavage. The other reason may be the increased steric

hindrance of CO 2–
3 compared to OH– , which blocks the optimal geometry relaxation of the

protonated PO 3–
4 group.
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(a) CAp (010): Ca2A (b) CAp (010): Ca2B

(c) CAp (010): Ca3 (d) HA (010): Ca3

Figure 9: Molecular dynamics simulations of one water molecule on the stoichiometric (010)
surface of HA and CAp. Green: Ca2 ions, purple: Ca3 ion.

To complete the dyamic picture, an analogous simulation has been run on the corre-

sponding HA system. As shown in Figure 9d, the same reaction is observed within the same

short time, yielding an equivalent symmetric configuration of the hydroxyl resulting from

water cleavage; again, the hydroxyl ion is equidistant from Ca2A, Ca2B and Ca3. This in-

dicates that carbonation does not partecipate directly this stage of water cleavage, and has

an indirect influence mainly on the phosphate groups that accept the proton left by water.

A more detailed analysis of interatomic distances along the molecular dynamics is reported

in the ESI, Figures S11-S16.
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Conclusions

In this work we compared some of the properties and reactivity of fully carbonated A-

type carbonated apatite (CAp) surfaces, with those of hydroxyapatite (HA) as a reference.

The A-type system envisages two OH- groups of the HA unit cell being substituted by one

CO 2–
3 . The resulting CAp shows around 6 wt% of carbonate content in line with the 2-8

wt% experimental datum for mammals bones. We adopted the hybrid B3LYP functional

together with Gaussian-type basis functions, already adopted from previous works Ref29),

to ensure proper comparability along different simulations involving the HA system.

We focused on the (001), (010) (both stoichiometric and non-stoichiometric) and (101)

surfaces of HA and CAp systems, simulated within the finite slab model. The three classes of

surfaces, exhibit quite different arrangments of the CO 2–
3 groups within the slab as well as

their exposure at the surfaces. The CO 2–
3 group is localized in slightly different orientations

within each surface slab due to its flat structure and rather high mobility in the former OH-

channel. This, in turn, imparts a relatively small dipole moments across the slabs, in all

cases larger than those computed for the corresponding HA surfaces. Nevertheless, surface

energies for CAp are close to those for HA, but for the (001) case, in which CAp shows a

higher value.

The vibrational features of the CO 2–
3 group in the CAp surfaces are compared to the

bulk features, to elucidate the effect of surface cut on the carbonate stretching vibrational

frequencies. We found the stretching features of CO 2–
3 to be sensitive to the local environ-

ment and map the position within the slab, the most buried ones resembling those of the

CO 2–
3 in the bulk crystal. A measure of the perturbation induced by the surface is the dif-

ference between the symmetric/antisymmetric CO 2–
3 stretching compared to that of CO 2–

3

in the bulk crystal, amounting to 86 cm-1. For the external CO 2–
3 group at the (001) CAp

surface, it converges rapidly to the bulk value with the number of slab layers. For the (101)

surface the value is as high as 260 cm-1, revealing a rather asymmetric environment of the

surface CO 2–
3 compared to the bulk. This is also the case for both the stoichiometric and

23



Ca-rich (010) surfaces, the latter exhibiting higher deviations. For the P-rich (010) surface,

the shift almost coincides with that of the bulk, as CO 2–
3 groups are buried within the

framework of atoms even when close to the surface.

We probed the differences in surface features of CAp and HA by water adsorption at

almost zero water coverage (one H2O molecule per surface unit cell), in a first investigation

of surface hydration. However preliminary, these result represent the first step towards the

understanding of the behavior of carbonate apatite surfaces in a biological environment. We

found water to be adsorbed on the same Ca ion sites as in HA. The comparison revealed a

17% increase in the binding energy of water at the CAp (001) surface. The CAp Ca-rich and

P-rich (010) surfaces exhibit higher (50% increase)/lower(-20% decrease) interaction energies

than HA, showing CO 2–
3 to significantly affect water adsorption, particularly for the Ca-rich

case in which the carbonate is exposed at the surface. Both HA and CAp stoichiometric

(010) surfaces react with water barrierlessly, with a 25% decrease in the interaction energy of

CAp compared to HA. The final structural outcome is, however, very close to that observed

at the HA (010) surface. Future work should address the case of higher water loading to

reveal whether the local effects found at very low coverage will affect the water monolayer

adsorption features.
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