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Abstract: The calculation of the full vibrational spectrum (Infrared or Raman) of very large
systems (say larger than one thousand atoms) is not only very expensive, but also of
relatively low interest, as in many (most of the) cases only a subset of modes, well
separated from the large, diffuse bands resulting from the superposition of thousands
of peaks, is used for the spectroscopic characterization of the specific system under
study. Here a fragment strategy, consisting in computing and diagonalizing a reduced
(in size) Hessian matrix centered around the zone of interest, is illustrated, and its
accuracy and efficiency documented, by comparison with the full Hessian
diagonalization (FHD) scheme. Three test cases are considered, showing different
vibrational features. They are defects in diamond: the VN3 H defect (V stands for the
vacancy), where the interesting point is the characterization of the bending and
stretching modes of H, well separated from the large band resulting from the
perturbation of the diamond manifold; the VH4 defect (four H atoms in the vacancy,
with vibrational modes related to H appearing both at high and
low wavenumbers); the I2N interstitial defect, with modes in which the N atoms are
involved, appearing at wavenumbers not far from the manifold of the perfect diamond
modes. So the three cases, apparently similar, explore three different situations of
interest for the fragment strategy: i) localized modes very well separated from the large
diamond continuous band (VN3 H); ii) modes at upper border of the large diamond
continuous band (I2N ); a case in which the modes of interest appear both as
separated from, and merged with, the large continuous band (VH4 ).
It turns out that in all cases relatively small fragments, containing from 2 to 40 atoms,
permit to reproduce with high accuracy (the difference with respect to the FHD being
always smaller than 5 cmâ1 for the wavenumbers, and a few percent for the IR
intensity) the spectral feature(s) of interest, at a computational cost that is only a small
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fraction of the one required by the FHD.

Response to Reviewers: Dear Editor,
   Thank you for sending us the comments by the two referees, referring to our
manuscript:
   The Infrared spectrum of very large (periodic) systems. Global vs. fragment
strategies.
by
Fabien Pascale, Simone Salustro, Anna Ferrari, Michel Rerat, Philippe D’Arco and
Roberto Dovesi,
that we submitted in
Theoretical Chemistry Accounts for the Special Issue “In Memoriam of Janos Angyan”.
   We thank also the two referees for their comments, that are positive
Referee1:
This topic is interesting. The paper is well written and its publication in TCA is
recommended.
Referee2:
The manuscript and results should be published after revision for rendering it less
"promotional"
for CRYSTAL.,
but suggest improvements and corrections, that we have carefully considered and fully
taken into
account.
There is a criticism that is common to both referees concerning self-citations:
Referee1 at point 3:
more than 75 % of the references are associated with the same groups of authors.
Without minimizing the key role of these authors in developing high-level methods for
crystals, this is not necessary
and not recommended. This self-citation attitude goes up to a point that the definition of
the mass-
weighted Hessian matrix is associated with 5 references. The reviewer also thinks that
this matrix
was defined before 2004 and that other groups have proposed methods to calculate
the IR intensities of periodic systems.
Referee2:
.....and cited literature is essentially that of the CRYSTAL author group...
We perfectly agree with this criticism.
Self citations have been strongly reduced, from 34 to 11; this has been obtained by
eliminating
some paragraphs from the Computational Method section, containing many citations
providing
examples of applications.
These paragraphs are not strictly necessary for the present discussion; rather, they
were trying to
give an overall description of the features of the CRYSTAL code that, we repeat, can
be eliminated,
as this information can be found elsewhere.
This reduces the relative weight of the Computational Section with respect to the
Results section,
and then the feeling of a paper, "too promotional", as Referee2 says.
In summary, now the citations referring to the CRYSTAL authors are 11 out of 26 (then
42% in-
stead of 78%).
   A second point raised by the two referees underlines that, in front of a fully general
title, the
three examples refer only to defects in diamond:
Referee1, point 1:
the title is very general whereas the application is restricted to defect vibrations. It is
not clear
whether similar conclusions could be drawn for the "diamond" vibrations or for any
other system
so that this aspect of diamond defects should have been mentioned explicitly in the
title. This "defect" issue should also be better stressed in the conclusions.
Referee2:
...as the title seems too general because only diamond defects are addressed...
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We understand the concern of the referees about this point.
For this reason:
a) The title now contains, at the end, the following specification:
"The case of three defects in diamond."
b) A sentence has been added to the Conclusions section:
"The fragment strategy seems then quite effective, at least for the cases here
discussed (defects in
semiconductors). Its applicability and effectiveness to a larger family of systems will be
investigated in the near future."
   Additional comments by Referee1:
   Comment 2)
"fragment" strategies to describe and analyze vibrational normal modes and signatures
of large
(periodic) systems have been developed over the last decades and little is said about
alternative
approaches, including the scaled oligomer force field approach (Macromolecules, 25,
1103, 1992)
or the localization mode approach (J. Chem. Phys. 130, 084106, 2009).
We thank Referee1 for addressing our attention to the two above references, that have
now been
quoted in our Introduction, together with a more recent additional one.
A sentence has then been added in the Introduction for commenting them.
These papers are interesting and might be useful for further developments (that are in
progress) of
our scheme. For example, for the inclusion of anharmonicity in periodic system, the
localization
strategy proposed in one of these papers, might permit to further reduce the space
spanned by the
fragment. By the way, a localization strategy has been implemented in the CRYSTAL
code for the
definition of well localized Crystalline Orbitals (Zicovich-Wilson, Dovesi and Saunders,
J. Chem
Phys., 115, 9708, 2001) that might be adapted to the normal modes.
Note however that these papers refer to a different context (molecules or polymers,
whereas here
we are dealing with three dimensional compact systems and defects therein) and
different aims (in
one case: how to localize the normal modes, starting from the FULL set of modes, for a
better
understanding of the atoms involved in the motion, whereas here we aim to obtain
frequencies and
intensities of a subset of modes avoiding to compute the FULL set of modes)
   Comment 3)
analysis of Table 1 shows that the following statement "Going down to the intensities
produced
with smaller fragments, the error remains quite small" is incorrect.
For instance, in the case of the E mode of I2N , the successive IR intensities are 295
(SF), 235 (MF),
194 (LF), 151 (BF) versus 104 (FHD). Differences larger than 20% are also observed
for other
modes (for MF and beyond) and other defects, which call for a more detailed and more
accurate
analysis of the IR data. The conclusion section needs also revision along these lines.
The observation by the referee concerning the LOWEST frequency of the I2N
intensities are correct.
Note however that we clearly state nearly at the beginning of the RESULTS section:
".....This latter tool permits also to identify some of the modes that appear at the lower
extreme
of the pure diamond band; these modes (at 414 cm-1 for I2N and at 342 cm-1 for VH4
for the
S216 supercell), that have certainly a much larger collective nature, are also reported
in the table,
in order to include in the analysis also cases that are difficult or impossible to be
tackled with the
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fragment strategy (a fragment obviously cannot describe a fully delocalized mode)."
The case mentioned by Referee2 is exactly one of the two we mention in this
sentence.
We address the attention of Referee2 also to the discussion concerning the lowest
mode of VH4 ,
for which supercells as large as 1000 atoms have been used, showing that collective
modes are still
changing with dilution.
In spite of that, the mentioned sentence has been eliminated, and a softer statement
for the IR in-
tensities has been added at the end of the Conclusions section.
   Minor comments by Referee1:
the 6-31G notation should be replaced by (6)-31G for the H atom.
Done
the paragraph on Raman intensities of Section 2.3 is obsolescent since no Raman
results are re-
ported in the paper.
Probably the mentioned paragraph was not sufficiently clear, because Referee1 is
missing the point
we are trying to make. The fragment strategy is meant to permit to have frequencies,
IR and Raman
intensities of a very large system limiting the calculation in some way to a subset of
atoms. This is
possible and very natural for the construction of the Hessian and for the Berry Phase
scheme used
for the IR intensity, as both imply a large, external loop over the atoms of the fragment
rather than
over the atoms of the full unit cell.
This is not the case with the CPHF strategy adopted in CRYSTAL for computing the
Raman intensity. The analytical evaluation of the Raman intensities does not fit with
this only the atoms of
the fragment logic, in spite of its accuracy and efficiency when the Raman spectrum of
the overall
cell is computed. In other words, the cost of the Raman intensity for the fragment is the
same as
for the complete unit cell.
As mentioned in the Raman paragraph (that has been reformulated with the aim to
make this point
clearer that in the previous formulation), a different, fragment oriented strategy would
be possible,
that however has not yet been implemented.
   Additional comment by Referee2:
By the way, no link to the work of J Angyan can be found in the manuscript
Now the abstract underlines explicitly the connections with Janos Angyan work, as
correctly required by Referee2.
By the way, one of the present authors (Roberto Dovesi) gladly remembers the many
interesting
discussions with Janos in Paris, Torino, Nancy.
   We hope that in the present form our manuscript can now be accepted for publication
in Theoretical Chemistry Accounts.
Best regards,
   Fabien Pascale, on behalf of all the authors
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Dr. Fabien Pascale
Université de Lorraine - Nancy, CNRS,
Laboratoire de Physique et Chimie
Théoriques, UMR 7019
Boulevard des Aiguillettes B.P. 70239
54506 Vandœuvre-lès-Nancy, France
fabien.pascale@univ-lorraine.fr

Nancy, the 19th of September 2018

Dear Editor,

Thank you for sending us the comments by the two referees, referring to our manuscript:

The Infrared spectrum of very large (periodic) systems. Global vs. fragment strategies.
by
Fabien Pascale, Simone Salustro, Anna Ferrari, Michel Rérat, Philippe D’Arco and Roberto Dovesi,
that we submitted in
Theoretical Chemistry Accounts for the Special Issue “In Memoriam of Janos Angyan”.

We thank also the two referees for their comments, that are positive
Referee1:
This topic is interesting. The paper is well written and its publication in TCA is recommended.
Referee2:
The manuscript and results should be published after revision for rendering it less "promotional"
for CRYSTAL.,
but suggest improvements and corrections, that we have carefully considered and fully taken into
account.
There is a criticism that is common to both referees concerning self-citations:
Referee1 at point 3:
more than 75 % of the references are associated with the same groups of authors. Without minimiz-
ing the key role of these authors in developing high-level methods for crystals, this is not necessary
and not recommended. This self-citation attitude goes up to a point that the definition of the mass-
weighted Hessian matrix is associated with 5 references. The reviewer also thinks that this matrix
was defined before 2004 and that other groups have proposed methods to calculate the IR intensi-
ties of periodic systems.
Referee2:
.....and cited literature is essentially that of the CRYSTAL author group...
We perfectly agree with this criticism.
Self citations have been strongly reduced, from 34 to 11; this has been obtained by eliminating
some paragraphs from the Computational Method section, containing many citations providing
examples of applications.
These paragraphs are not strictly necessary for the present discussion; rather, they were trying to
give an overall description of the features of the CRYSTAL code that, we repeat, can be eliminated,
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as this information can be found elsewhere.
This reduces the relative weight of the Computational Section with respect to the Results section,
and then the feeling of a paper, "too promotional", as Referee2 says.
In summary, now the citations referring to the CRYSTAL authors are 11 out of 26 (then 42% in-
stead of 78%).

A second point raised by the two referees underlines that, in front of a fully general title, the
three examples refer only to defects in diamond:
Referee1, point 1:
the title is very general whereas the application is restricted to defect vibrations. It is not clear
whether similar conclusions could be drawn for the "diamond" vibrations or for any other system
so that this aspect of diamond defects should have been mentioned explicitly in the title. This "de-
fect" issue should also be better stressed in the conclusions.
Referee2:
...as the title seems too general because only diamond defects are addressed...
We understand the concern of the referees about this point.
For this reason:
a) The title now contains, at the end, the following specification:
"The case of three defects in diamond."
b) A sentence has been added to the Conclusions section:
"The fragment strategy seems then quite effective, at least for the cases here discussed (defects in
semiconductors). Its applicability and effectiveness to a larger family of systems will be investi-
gated in the near future."

Additional comments by Referee1:

Comment 2)
"fragment" strategies to describe and analyze vibrational normal modes and signatures of large
(periodic) systems have been developed over the last decades and little is said about alternative
approaches, including the scaled oligomer force field approach (Macromolecules, 25, 1103, 1992)
or the localization mode approach (J. Chem. Phys. 130, 084106, 2009).
We thank Referee1 for addressing our attention to the two above references, that have now been
quoted in our Introduction, together with a more recent additional one.
A sentence has then been added in the Introduction for commenting them.
These papers are interesting and might be useful for further developments (that are in progress) of
our scheme. For example, for the inclusion of anharmonicity in periodic system, the localization
strategy proposed in one of these papers, might permit to further reduce the space spanned by the
fragment. By the way, a localization strategy has been implemented in the CRYSTAL code for the
definition of well localized Crystalline Orbitals (Zicovich-Wilson, Dovesi and Saunders, J. Chem
Phys., 115, 9708, 2001) that might be adapted to the normal modes.
Note however that these papers refer to a different context (molecules or polymers, whereas here
we are dealing with three dimensional compact systems and defects therein) and different aims (in
one case: how to localize the normal modes, starting from the FULL set of modes, for a better
understanding of the atoms involved in the motion, whereas here we aim to obtain frequencies and
intensities of a subset of modes avoiding to compute the FULL set of modes)

Comment 3)
analysis of Table 1 shows that the following statement "Going down to the intensities produced
with smaller fragments, the error remains quite small" is incorrect.
For instance, in the case of the E mode of I2N , the successive IR intensities are 295 (SF), 235 (MF),
194 (LF), 151 (BF) versus 104 (FHD). Differences larger than 20% are also observed for other
modes (for MF and beyond) and other defects, which call for a more detailed and more accurate
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analysis of the IR data. The conclusion section needs also revision along these lines.
The observation by the referee concerning the LOWEST frequency of the I2N intensities are cor-
rect.
Note however that we clearly state nearly at the beginning of the RESULTS section:
".....This latter tool permits also to identify some of the modes that appear at the lower extreme
of the pure diamond band; these modes (at 414 cm−1 for I2N and at 342 cm−1 for VH4 for the
S216 supercell), that have certainly a much larger collective nature, are also reported in the table,
in order to include in the analysis also cases that are difficult or impossible to be tackled with the
fragment strategy (a fragment obviously cannot describe a fully delocalized mode)."
The case mentioned by Referee2 is exactly one of the two we mention in this sentence.
We address the attention of Referee2 also to the discussion concerning the lowest mode of VH4,
for which supercells as large as 1000 atoms have been used, showing that collective modes are still
changing with dilution.
In spite of that, the mentioned sentence has been eliminated, and a softer statement for the IR in-
tensities has been added at the end of the Conclusions section.

Minor comments by Referee1:
the 6-31G notation should be replaced by (6)-31G for the H atom.
Done
the paragraph on Raman intensities of Section 2.3 is obsolescent since no Raman results are re-
ported in the paper.
Probably the mentioned paragraph was not sufficiently clear, because Referee1 is missing the point
we are trying to make. The fragment strategy is meant to permit to have frequencies, IR and Raman
intensities of a very large system limiting the calculation in some way to a subset of atoms. This is
possible and very natural for the construction of the hessian and for the Berry Phase scheme used
for the IR intensity, as both imply a large, external loop over the atoms of the fragment rather than
over the atoms of the full unit cell.
This is not the case with the CPHF strategy adopted in CRYSTAL for computing the Raman in-
tensity. The analytical evaluation of the Raman intensities does not fit with this only the atoms of
the fragment logic, in spite of its accuracy and efficiency when the Raman spectrum of the overall
cell is computed. In other words, the cost of the Raman intensity for the fragment is the same as
for the complete unit cell.
As mentioned in the Raman paragraph (that has been reformulated with the aim to make this point
clearer that in the previous formulation), a different, fragment oriented strategy would be possible,
that however has not yet been implemented.

Additional comment by Referee2:
By the way, no link to the work of J Angyan can be found in the manuscript
Now the abstract underlines explicitly the connections with Janos Angyan’s work, as correctly re-
quired by Referee2.
By the way, one of the present authors (Roberto Dovesi) gladly remembers the many interesting
discussions with Janos in Paris, Torino, Nancy.

We hope that in the present form our manuscript can now be accepted for publication in Theo-
retical Chemistry Accounts.

Best regards,

Fabien Pascale, on behalf of all the authors
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E-mail: fabien.pascale@univ-lorraine.fr September 19,
2018
Abstract The calculation of the full vibrational spectrum
(Infrared or Raman) of very large systems (say larger than
one thousand atoms) is not only very expensive, but also of
relatively low interest, as in many (most of the) cases only a
subset of modes, well separated from the large, diffuse bands
resulting from the superposition of thousands of peaks, is
used for the spectroscopic characterization of the specific
system under study. Here a fragment strategy, consisting in
computing and diagonalizing a reduced (in size) Hessian ma-
trix centered around the zone of interest, is illustrated, and its
accuracy and efficiency documented, by comparison with the
full Hessian diagonalization (FHD) scheme. Three test cases
are considered, showing different vibrational features. They
are defects in diamond: the VN3H defect (V stands for the va-
cancy), where the interesting point is the characterization of
the bending and stretching modes of H, well separated from
the large band resulting from the perturbation of the diamond
manifold; the VH4 defect (four H atoms in the vacancy, with
vibrational modes related to H appearing both at high and
low wavenumbers); the I2N interstitial defect, with modes in
which the N atoms are involved, appearing at wavenumbers

Fabien Pascale (E-mail: fabien.pascale@univ-lorraine.fr)
Laboratoire de Physique et Chimie Théoriques, CNRS, UMR 7019.
Vandœuvre-lès-Nancy, 54506 France

Simone Salustro · Anna Maria Ferrari · Roberto Dovesi
Dipartimento di Chimica and NIS (Nanostructured Interfaces and Sur-
faces) Centre, Università di Torino, via Giuria 5, I-10125 Torino, Italy

Michel Rérat
CNRS / Université de Pau et des Pays de l’Adour, IPREM, UMR5254,
64000 Pau, France

Philippe D’Arco
Institut des Sciences de la Terre de Paris (UMR 7193 UPMC-CNRS),
UPMC, Sorbonne Universités, Paris (France)

not far from the manifold of the perfect diamond modes. So
the three cases, apparently similar, explore three different
situations of interest for the fragment strategy: i) localized
modes very well separated from the large diamond contin-
uous band (VN3H); ii) modes at upper border of the large
diamond continuous band (I2N); a case in which the modes
of interest appear both as separated from, and merged with,
the large continuous band (VH4).
It turns out that in all cases relatively small fragments, con-
taining from 2 to 40 atoms, permit to reproduce with high
accuracy (the difference with respect to the FHD being al-
ways smaller than 5 cm−1 for the wavenumbers, and a few
percent for the IR intensity) the spectral feature(s) of interest,
at a computational cost that is only a small fraction of the
one required by the FHD.

1 Introduction

The frontier separating the domains of systems that can
be treated at the quantum mechanical level, or with semi-
empirical methods or classical force fields or parametrized
molecular dynamics, is rapidly moving, thanks to the rapid
progress of hardware and (the less rapid) progress of soft-
ware. Quantum mechanical codes (see for example Refs.
[1, 2, 3, 4]), based mostly on the various flavours of DFT,
are becoming more general and more efficient in general,
although large differences exist among them with respect to
many features (one example is the degree of parallelism of
these codes). The problem of the feasibility of calculations
for very large systems and of the related numerical accuracy,
discussed here, has been a constant concern of János Ángyán,
to which this Special Issue is dedicated. János devoted to this
subject general and important publications [5]. A second area
of common interest with János is related to the performance
of hybrid functionals, that have been constantly used by the

Manuscript Click here to access/download;Manuscript;Manuscript-
TCAresub.tex
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2 Fabien Pascale et al.

present authors for many years, also when they were not very
popular in the solid state community. János published many
illuminating papers [6, 7] devoted to this subject.

In the investigation of crystalline solids, in spite of the
fact that a large fraction of the literature is still focused on
relatively simple and low-cost properties, like the band gap
and the density of states, for which a single SCF calcula-
tion is required, the interest and the computational effort is
expected to move towards more expensive (and more interest-
ing, in the authors’ opinion) observables, such as the physical
tensors (elastic, dielectric, piezoelectric, photoelastic, hyper-
polarizability) and the vibrational properties (wavenumbers,
Infrared and Raman intensities). Some of the present authors
have shown that it is possible [8], at relatively low computa-
tional cost, to obtain the full set of vibrational wavenumbers
of quite large unit cells (say 1000-3000 atoms), and with
a relatively small additional cost, to build the full IR spec-
trum of these systems. The Raman spectrum is, at this stage,
more expensive, but can be obtained for unit cells of up a
few hundredth atoms [8]. The rapid increase of the power of
supercomputers, the parallel structure of the CRYSTAL code
[9] to which we are referring to, the availability of a Multi-
Task option, are features that will permit in short to target the
vibrational spectrum of systems in the range of 10.000 atoms,
if a supercomputer is available (see for example the European
projects in this domain at http://www.prace-ri.eu/).

However, a question might be raised about the need of a
complete determination of the vibrational spectrum of sys-
tems of such dimensions, in particular for comparing IR and
Raman spectra. Ten thousand atoms generate three times
more vibrational modes, that would generate a continuous
band in many part of the explored wavenumber range. Such a
continuum band is essentially useless from the point of view
of the characterization of the system (obviously this is not
the case for the thermodynamic properties).

This approach is based on the hypothesis that all the
modes of interest (usually separated in energy from the large
band(s) characterizing the huge system), are local in charac-
ter, so that the vibrational eigenvectors involve only atoms
within a given radius from the center of the zone of interest
(in the present examples: the point defect region).
The problem of the partition of the very expensive calcula-
tion of frequencies and IR intensities of very large molecular
systems (and polymers, in some cases) has been tackled in
recent years in a series of publications [10, 11, 12], that are
however formulated along lines that differ from the present
ones. One additional major difference is that the present
scheme is applicable to three dimensional periodic defective
solids.
The fragment strategy should not be confused with the cluster
approach, in which from the beginning a subset of atoms is
extracted from the whole (infinite) system. In this latter case
many problems (border termination, saturation, loss of the

infinite nature of the system) make the model more delicate
and doubtful (see for example Ref.[13]).
The accuracy and efficiency of the fragment scheme is dis-
cussed by comparison with the full Hessian diagonalization
(FHD) scheme with reference to three cases. They all refer
to defects in diamond, for which one of the crucial variables
is the dilution of the defect in the infinite solid. The defects
are investigated with supercells (a periodic replica of a large
unit cell containing the defect at the center); the larger is
the supercell, the smaller is the concentration of the defect
and the lateral interaction among defects. The first defect is
VN3H [14] (V stands for the vacancy, surrounded by three
N and one C atoms; the latter is saturated with a H atom);
here the interest is in the characterization of the bending and
stretching modes of the hydrogen atom, that are well sep-
arated from the large band resulting from the perturbation
of the diamond manifold; the second is the I2N interstitial
defect [15], with the modes generated by the two nitrogen
atoms appearing at wavenumbers not far from the manifold
of perfect diamond; the third is VH4 [16] (four H atoms in
the vacancy), with vibrational modes related to H appearing
both at high and low wavenumbers.
All the discussed cases show that relatively small fragments,
containing from say 2 (in the limiting case of the CH stretch-
ing) to 40 atoms, permit to reproduce with high accuracy (the
difference with respect to the FHD being always smaller than
5 cm−1) the spectral feature(s) of interest, at a computational
cost that is only a small fraction of the one required by FHD .
The structure of the paper is the following: in section 2 the
adopted model and the computational parameters are defined.
In section 3 the IR vibrational spectrum (wavenumbers and
intensities) obtained with fragments of increasing size are
compared with the ones obtained from the diagonalization of
the complete Hessian of the system (FHD). In section 4 the
cost of the various steps of the calculation for the two strate-
gies are compared. Finally, in section 5, some conclusions
are drawn.

2 Computational Methods

Calculations have been performed by using the B3LYP global
hybrid functional [17, 18] as implemented in the CRYSTAL

program [1].
An all electron basis set of Gaussian-type functions has

been adopted (Pople’s 6-21G [19]) for carbon and nitrogen
atomic species; the exponent of the most diffuse sp shell is
0.23 (C) and 0.30 (N) Bohr−2. The (6)-31G basis set [20] has
been used for hydrogen. In order to simulate the presence of
a vacancy in the defective structure, a complete removal of
the atom of interest (nucleus, electrons, basis set) has been
performed.

The Coulomb and exchange infinite lattice series are
controlled by five parameters, Ti, which have been set to 8

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



The Infrared spectrum of very large (periodic) systems. Global vs. fragment strategies. The case of three defects in diamond. 3

a) b) c) 

Fig. 1 Conventional cell of diamond where the defective site is shown. Nitrogen is blue, hydrogen is white. Local fragments for VN3H (a), I2N
(b) and VH4 (c) systems are indicated. The small fragment (SF) involves atoms not highlighted; the medium fragment (MF) involves also atoms
highlighted in green; the large fragment (LF) includes also atoms highlighted in yellow. The number of atoms included are 2, 5 and 17 in (a), 2, 6
and 18 in (b) and 4, 8 and 20 in (c). The big fragment (BF), not shown in the figure, includes one further set of neighbors, for a total number of 41
for VN3H, 42 for I2N and 44 for VH4.

Fig. 2 B3LYP simulated IR spectra of the VN3H (left), I2N (center) and VH4 (right) defects obtained with the FHD (top) and the fragment (bottom)
strategies. The big fragment, BF, has been used. Values refer to the S216 supercell.

(T1-T4) and 16 (T5). The convergence threshold on energy
for the self-consistent-field (SCF) procedure has been set
to 10−8 hartree for structural optimizations, and to 10−10

hartree for vibration frequency calculations.

The DFT exchange-correlation contribution and its gra-
dient are evaluated by numerical integration over the unit
cell volume. The generation of the integration grid points
in CRYSTAL is based on an atomic partition method, origi-
nally developed by Becke [21] for molecules and furtherly
extended to periodic systems. Within this scheme the unit
cell is partitioned into atomic volumes centered on the nuclei,
where each point is associated to a weight. Radial and angular
points for the integration grid are generated through Gauss-

Legendre radial quadrature and Lebedev two-dimensional
angular point distributions. The choice of a suitable grid is
crucial both for numerical accuracy and need of computa-
tional resources. In this study the default [22] pruned grid
with 75 radial and 974 angular points has been used, whose
accuracy can be measured by comparing the integrated charge
density of Ni= 1294.030 for the VH4 supercell containing
216 atoms, with the total number of 1294 electrons in the
unit cell. As anticipated before, a periodic supercell approach
is used in order to simulate different defect concentrations. In
this work two cubic supercells have been considered, contain-
ing respectively 64 (S64) and 216 (S216) atoms. A Γ -centered
Pack-Monkhorst grid [23] for sampling the reciprocal space
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4 Fabien Pascale et al.

has been used, consisting of 4×4×4=64 (S64) and 2×2×2=8
(S216) k-points in the First Brillouin Zone.

2.1 Harmonic frequencies and the IR spectra

Frequencies at the Γ point are obtained within the harmonic
approximation by diagonalising the mass-weighted Hessian
matrix, W , whose elements are defined as

WΓ

αi,β j =
H0

αi,β j√
Mα Mβ

with H0
αi,β j =

(
∂ 2E

∂u0
αi∂u0

β j

)
, (1)

where Mα and Mβ are the masses of atoms associated with
the i and j atomic coordinates.

Energy first derivatives with respect to the atomic posi-
tions, vα, j = ∂E

/
∂uα, j, are calculated analytically for all the

uα, j coordinates (E is the total energy, uα, j is the displace-
ment coordinate with respect to the equilibrium, α labels the
atoms), whereas second derivatives at u = 0 are calculated
numerically using a single displacement along each coordi-
nate (the central point and one point on the right side of the
parabola):[

∂vα j

∂uβ i

]
≈

vα j(0, . . . ,uβ i, . . .)− vα j(0, . . . ,0, . . .)
uβ i

(2)

Previous calculations [24] have shown that in bulk systems
the influence of both u and N is very small (less than 1
cm−1) when H atoms are not present. For the C-H, N-H
and O-H stretching modes anharmonicity is very large [25].
In the present discussion, however, as we are interested in
the wavenumber difference between the FHD and fragment
approaches, the amount of anharmonicity is irrelevant, as
frequencies are evaluated in exactly the same way for the two
schemes.

In order to limit the frequency calculations only to a
moiety of the system, the FRAGMENT option, available in the
CRYSTAL code, has been used. It permits to select the atoms
to be considered in the construction of the reduced Hessian
in equations 1 and 2. With reference to the diamond unit
cell reported in the first panel of Figure 1, in this work four
different fragments of increasing size have been considered.
The smallest fragment (SF) (see Figure 1) includes only the
atoms involved in the defect, not highlighted in the figure.
The medium (MF), large (LF) and big (BF) fragments (the
latter is not reported in the figure) , include the first (4 atoms),
second (12) and third (24) shells of neighbors of the defect.

2.2 The Berry phase scheme for the IR intensity

IR intensities have been evaluated by using a computational
scheme [26] based on the Berry Phase [27]. The derivatives

of the dipole moment with respect to the cartesian coordinates
of the unit cell atoms are evaluated numerically, through a
scheme similar the the one used for the numerical derivative
of the gradient for obtaining the Hessian matrix (see equation
2). It is on the basis of this similarity that it is possible to
adopt a fragment strategy for the evaluation of the IR inten-
sity. The crucial step, that consists in evaluating the Berry
phase difference between the reference geometry and the one
in which one atom has been displaced along x, y or z, can be
limited to the subset of atoms belonging to the fragment.
As regards Raman intensities, only an analytical scheme is
available at present in the CRYSTAL code, that does not fit
the atoms of the fragment only logic described above. This
means that the costs of the Raman intensity for the complete
unit cell and for the fragment are the same, with no advan-
tages then for the latter.
Schemes implying the numerical derivative of the polarizabil-
ity (evaluated through the CPHF algorithm) with respect to
the cartesian coordinates of the atoms (as in equations 2) are
possible, that would permit to extend the fragment strategy
also to Raman intensities. As they are not yet implemented
in the code, in the following the fragment strategy will be
documented for frequencies and IR intensities only.

3 Results

Let us summarize the situation of the IR and Raman spectra
for the various cases here considered. The starting point is
the perfect IR diamond spectrum, that is completely flat in
the full wavenumber range, for symmetry reasons. The corre-
sponding Raman spectrum shows a single peak at 1332 cm−1

(experimental value; the calculated peak with the present
basis set and functional is at 1317 cm−1).
When the vacancy is inserted (VN3H and VH4) and the sym-
metry is reduced (VN3H and I2N), many pure diamond IR
peaks, that are forbidden in the perfect system, become visi-
ble, and form a large band spanning from about 400 to 1330
cm−1. The defect modes, that appear above this upper limit
as isolated peaks, are reported in Table 1. These modes are
easily identified as they appear above 1330 cm−1. This at-
tribution is confirmed by looking at the graphical animation
of the modes, shown at http://www.crystal.unito.it.
This latter tool permits also to identify some of the modes that
appear at the lower extreme of the pure diamond band; these
modes (at 414 cm−1 for I2N and at 342 cm−1 for VH4 for the
S216 supercell), that have certainly a much larger collective
nature, are also reported in the table, in order to include in
the analysis also cases that are difficult or impossible to be
tackled with the fragment strategy (a fragment obviously can-
not describe a fully delocalized mode). Table 1 reports then
3 modes for VN3H (the 3 degrees of freedom of the H atom),
6 modes for I2N (the six modes of the two N atoms) and the
12 modes of the 4 H atoms.
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The Infrared spectrum of very large (periodic) systems. Global vs. fragment strategies. The case of three defects in diamond. 5

Table 1 B3LYP wavenumbers (in cm−1) and IR intensities (in km/mol) as obtained for small (SF), medium (MF), large (LF) and big (BF) fragments
extracted from the S64 and S216 supercells. For comparison, frequencies obtained through the full Hessian diagonalization (FHD) are reported.

System Supercell IrRep SF MF LF BF FHD
ν I ν I ν I ν I ν I

VN3H

64 E 1415 249 1416 251 1452 213 1459 202 1460 206
A1 3250 612 3250 619 3250 619 3250 619 3250 619

216 E 1411 240 1411 243 1447 206 1454 194 1455 194
A1 3262 601 3262 608 3262 608 3262 608 3262 608

I2N

64

E 509 298 467 236 422 195 394 141 396 173
B2 906 34 1301 53 1330 46 1339 40 1349 34
E 1139 173 1415 363 1416 355 1420 352 1422 347

A1 1751 0 1757 0 1761 0 1761 0 1761 0

216

E 513 295 471 235 426 194 402 151 414 104
B2 909 34 1306 50 1337 43 1347 36 1355 33
E 1146 179 1425 371 1425 362 1430 358 1431 352

A1 1763 0 1768 0 1773 0 1773 0 1773 0

VH4

64

T1 861 0 750 0 494 0 412 0 352 0
E 1320 0 1331 0 1387 0 1398 0 1400 0
T2 1382 233 1423 285 1478 244 1486 233 1488 231
T2 3853 14 3974 4 3974 4 3974 4 3974 4
A1 4199 0 4276 0 4276 0 4276 0 4276 0

216

T1 853 0 749 0 496 0 422 0 342 0
E 1322 0 1333 0 1389 0 1399 0 1402 0
T2 1387 240 1428 292 1484 252 1492 239 1493 237
T2 3868 12 3989 3 3989 3 3989 3 3989 3
A1 4221 0 4298 0 4298 0 4298 0 4298 0

Let us consider first the VN3H case. The Table 1 shows
that the stretching (A1) and bending (E) modes of H blue shift
by 12 and red shift by 5 cm−1, respectively, when the dilution
of the defect increases (supercells S64 and S216, respectively).
So probably only at S512 or S1000 the interaction of modes
belonging to different cells falls below 1-2 cm−1 . Working
now at fixed defect concentration, the Table 1 shows that the
fragment wavenumbers coincide with the FHD ones for the
stretching already for the SF case. The bending mode is less
localized, and requires a larger fragment: the difference with
respect to FHD, that is as large as 45 cm−1 at the SF level,
reduces to 8 and 1 cm−1 at the LF (17 atoms) and BF (41
atoms) level. The trend is the same for S64 and S216.
The pattern is similar for the three modes of I2N at 1773, 1431
and 1355 cm−1 (S216 supercell; also in this case the trend is
the same for S64); these modes are well localized and above
the diamond large band. As regards the E mode at 414 cm−1

(S216), the convergence of the various fragments is slower
but satisfactory (LF and BF are at 426 and 402 cm−1, in both
case within 12 cm−1 of the FHD value)
The VH4 case behaves very similarly to the other two cases.
The four H stretching are very localized, and the MF results
(8 atoms, the 4 H and the 4 C to which they are connected)
already coincide with the FHD data. For the five bending

modes above 1300 cm−1 (E and T2 symmetry) it is necessary
to reach the BF for reducing the difference to 3 cm−1. The
mode at very low wavenumber is much more delocalized; it
decreases from 853 to 749 to 496 and finally to 422 in going
from SF to BF. This value remains however about 80 cm−1

larger than the FHD result for S216.
It is instructive to consider supercells larger than S216 for
analyzing the dependence of the defect modes on the defect-
defect interaction. Data for S512 and S1000 have been col-
lected (see reference [16], and unpublished results), The A1
stretching breathing in phase mode of the four H atoms in-
troduces a relatively large perturbation, so that some further
shift is observed (4298, 4306 and 4309 for S216, S512 and
S1000). For the other high wavenumber modes, the difference
between S216, S500 and S1000 is 7 and 2 (T2 stretching), 2
and 1 (T2 bending) and 1 and 0 cm−1 (E bending). The low-
est frequency of the full set of modes of the supercell, on
the contrary, changes from 342 (S216) to 289 (S512) to 236
(S1000) cm−1, confirming its collective, very diffuse nature.
If it continues to change also for concentrations described by
supercells as large as S512 and S1000, it cannot obviously be
described accurately with any fragment of one of these cells.
Let us consider now the IR intensities. As they depend on the
eigenvectors, whereas the wavenumbers are the eigenvalues,
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one would expect that the effect of the perturbation (i.e. the
propagation from the center of the defect) is larger for the
former than for the latter. Actually, the FHD intensities turn
out to be very well reproduced from the fragments in most of
the cases.
In the VN3H case, the difference between the BF and FHD
intensities is 4/206 for the E mode and 0/619 km/mol for the
A1 mode, that is smaller than 2 % ( S64 supercell; it goes to
zero for both the A1 and E modes in S216).
For I2N and the S64 supercell, the most intense peak at 1422
cm−1 shows a BF intensity of 352 km/mol, to be compared to
347 from FHD (1% error). The difference is larger for much
less intense peaks (6 km/mol for the mode at 1349 cm−1, 40
vs 34 km/mol). For the low frequency and very diffuse mode
at 396 cm−1, as expected, the difference is much larger (141
vs 173 km/mol, 18 % difference).
The VH4 behavior is similar to the one of the other two de-
fects: the intensity of the only IR active mode, at 1488 cm−1

(S64), is 233 for BF and 231 km/mol for FHD , the difference
being as small as 1%.
The above comments remain essentially unaltered when com-
paring the various fragments with the FHD obtained with
S216. It should be noticed that also with the very cheap MF
the agreement with FHD is very satisfactory.
Figure 2 compares the FHD (top) and fragment (bottom, BF)
spectra obtained with the largest supercell S216 for the three
defects. The quantitative agreement, evident from Table 1
for the high wavenumbers, is here visually evident. Also the
overall structure of the spectrum is well reproduced.

4 The cost of the calculation

We can now consider the cost of the calculation in the Frag-
ment and FHD cases. The cost can be split in three parts:

– The Optimization step. Here the cost is the same for the
two cases, as they differ only at the level of the construc-
tion of the Hessian matrix. The cost of this step is usually
a small fraction of the overall cost, in particular when
the system has some symmetry, that is fully exploited in
CRYSTAL.

– The construction of the Hessian in the FHD strategy im-
plies to perform, in the most general case, 3·N·(SCF+G)
calculations (G stands for gradient), where N is the num-
ber of atoms. If the system has some point symmetry, this
number can drastically reduce: for example in the case of
the three diamond defects and of the S216 supercell, this
number reduces from about 3·216 = 648 to 125 (VN3H),
102 ( I2N) and 41 (VH4), thanks to the symmetry, that is
C3v, D2d and Td for the 3 cases.
However this reduced number of SCF+G calculations
is performed with essentially no symmetry, as the dis-
placement of one atom reduces in most of the cases the

symmetry to P1.
So this turns out to be by far the expensive step, due to
this loss of symmetry (we recall that symmetry is fully
exploited in the CRYSTAL code, and that the cost of the
SCF+G calculation is inversely proportional to the num-
ber of point symmetry operators).
When the fragment option is used, this step of the cal-
culation costs 3·M·(SCF+G), where M is the number of
atoms in the fragment. As an example, for the 4 different
fragments (SF, MF, LF and BF) of the I2N defect, and that
contain 2, 6, 18 and 42 atoms respectively, the number of
SCF+G calculations (6, 18, 54 and 126 without symmetry
exploitation) reduces to 2, 4, 9 and 19. If however the
reference cell would be S512 or S1000, say, the number
of SCF+G calculations with fragment would remain the
same (obviously the cost of each SCF+G is now larger,
being the cell larger), whereas the number of SCF+G of
FHD would increase by a factor 2 and 4. Table 1 shows
that quite small fragments are sufficient in most of the
cases, indicating then that the saving factor obtained by
using the fragment option can be as large as two orders
of magnitude or more.

– The calculation of the IR intensities through the Berry
phase scheme is very fast. Let us consider for example
the VH4 defect, S64 (then 67 atoms in the cell), for which
a total of 16 SCF+G displacements must be performed.
At each one of these steps, the Berry phase must be
evaluated. When running on 32 cores, the cost of the
SCF+G is about 700 seconds, and the cost of the Berry
phase calculation is just 7 seconds (1% of the total). For
the S216 case (then 219 atoms, about 3.4 times larger
than S64 in number of atoms), one SCF+G calculation
for a displacement costs 2500 seconds, and the Berry
phase just 16 seconds, less than 1%. The real bottle-neck
becomes the memory occupation for systems with more
than, say, 500 atoms, and this would require restructuring
the algorithm, that will be the next implementation.

5 Conclusions

In the characterization of large unit cell systems, containing
hundreds or thousands of atoms, through the IR spectra, the
construction of the full Hessian matrix is not only extremely
expensive, but also not very useful, as the fingerprints of the
system, if any, are related to specific functional groups. It
has been shown here that a fragment strategy, consisting in
computing a Hessian matrix involving only a subset of atoms
around the functional group of interest, permits to limit the
cost of the calculation to an amount that is independent from
the size of the real system, at variance with respect to the
full Hessian diagonalization FHD scheme that grows rapidly
with the system size. The three examples considered here
document that also relatively small subsets of atoms (say less
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than 40) reproduce the wavenumbers with a negligible error
when compared with the FHD scheme. Also the IR intensities
are well reproduced, with differences in percentage never
larger than 10% for the high frequency modes.
The fragment strategy seems then quite effective, at least
for the cases here discussed (defects in semiconductors). Its
applicability and effectiveness to a larger family of systems
will be investigated in the near future.
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