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Abstract  13 

Large volumes of precious water resources are negatively affected by nitrate contamination, and 14 

the problem of the world population’s exposure to this is becoming an even more pressing issue. 15 

To tackle this problem, the application of environmental isotopes has proven to be an effective 16 

method to identify the N origins and major transformations in different environments. In this 17 

work, nitrate (15NNO3 and 18ONO3) and boron (11B) isotope analyses performed in the last twenty 18 

years in groundwater from shallow aquifers of the Po plain area, a complex hydrogeological 19 

system of European relevance, have been compiled in a comprehensive database together with 20 

major ionic contents; these data were integrated with additional original results, targeting areas 21 

not previously examined or complementing the available information. Such data, previously 22 

interpreted on the local scale, are examined at the Po plain scale, providing an understanding of 23 

the N sources and dynamics in the shallow aquifers, and defining the most important processes 24 

governing nitrate contamination in Northern Italy. 25 

The most impacted groundwater is that hosted in the alluvial fans of the Alpine and Apennine 26 

foothills, due to a combination of high soil permeability and presence of intensive agricultural 27 

activities. Here, aquifers are characterized by fast circulation and by great water table depths. On 28 

the contrary, nitrate contamination is absent in most low plain areas, with shallow water table 29 

depths but lower soil permeability, due to the presence of denitrification processes. The 15N 30 

median values, calculated for each province, are significantly correlated with pig density. Hence, 31 

manure represents one of the main nitrate sources in groundwater from agriculture, the other 32 

being synthetic fertilizers. Isotopic compositions enriched due to denitrification are present in 33 

22% of the data, being responsible for nitrate abatement in groundwater affecting up to 70-80% 34 

of the original content.  35 

The B systematics, in such a low geogenic-B context, proved the presence in the investigated area 36 

of another anthropogenic nitrate source of civil origin (i.e. sewage). While new results on the local 37 

B sources are reported, the garnering of all groundwater data allowed us to define the range of 38 



 

 

the expected geogenic B signature (11B =+13 ±2.5‰). This contribution is a significant step 39 

forward for the use of the coupled 15N - 11B toolbox in the study area, previously limited by a 40 

poor definition of the compositional end-members. This georeferenced set of hydrochemical and 41 

isotopic data will lay the foundations for future monitoring activities and advanced data treatment 42 

or modelling. In addition, since the hydrogeological setting of the investigated area shows 43 

common features to alluvial basins located near mountain ranges, the approach and the results 44 

presented in this study serve as a reference for other study areas worldwide. 45 
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 1. Introduction 48 

In the second half of the 20th century, following the so-called “green revolution”, agriculture in 49 

developed countries significantly increased crop production and livestock, with a concomitant 50 

enhanced use of synthetic and organic matter fertilizers (Tilman et al., 2001; Galloway et al., 51 

2008). Although food availability increased, this produced diffuse pollution of nutrients in surface 52 

and groundwaters, currently representing a major environmental concern worldwide (Agren and 53 

Bosatta, 1988; Vitousek et al., 1997; Galloway et al., 2008). The resultant nitrogen accumulation 54 

on land and in waters frequently leads to the deterioration of freshwater and coastal ecosystem 55 

services, including water quality, fisheries, and amenity value.  56 

In Europe, nitrate pollution by diffuse sources was first targeted by the Nitrate Directive (European 57 

Commission, 1991), followed by the Water Framework Directive (European Commission, 2000). 58 

The Nitrates Directive aimed to protect water quality across Europe by preventing nitrates from 59 

agricultural sources, also via the designation of "Nitrate Vulnerable Zones" (NVZs). These are 60 

territories that drain into polluted waters or waters at risk of pollution and contribute to nitrate 61 

pollution. As regards groundwater resources, polluted water, or those at risk of pollution, must be 62 

identified in groundwater containing, or that could contain (unless action is taken to reverse the 63 

trend), more than 50 mg/l of nitrates. Austria, Denmark, Finland, Germany, Ireland, Lithuania, 64 

Luxembourg, Malta, the Netherlands and Slovenia have decided to provide the same level of 65 

protection to their whole territory, rather than designate NVZs.  In Italy, the Directives have led to 66 

the designation of large areas as being vulnerable to nitrate pollution, where the use of fertilizers, 67 

especially manure, was significantly restricted (170 and 340 kg N ha-1 yr-1 for NVZs and non-Nitrate 68 

Vulnerable Zones -nNVZs- respectively). Subsequently, and following the evidence collected that 69 

manure spreading might not be the only cause of nitrate contamination, the European 70 

Commission has granted Italy a derogation for the regions located in the Po plain (European 71 

Commission, 2011), allowing for an increase in manure spreading up to 250 kg N ha-1 yr-1 in NVZs, 72 

providing a higher Nitrogen Use Efficiency [NUE] of manure (i.e. the percentage of total nitrogen 73 

applied in the form of livestock manure that is available to crops in the year of application, 74 

considered to be 65% for slurry and 50% for farmyard manure). 75 



 

 

One of the major difficulties with water contamination is the identification of the corresponding 76 

source(s) of pollution, a prerequisite for properly designing appropriate actions and remediation 77 

(Bronders et al., 2012). For this purpose, the application of environmental isotopes of dissolved 78 

nitrates (i.e.δ15NNO3 and δ18ONO3) has proven to be effective in a large number of cases (e.g. 79 

Aravena et al., 1993; Panno et al., 2001; Baily et al., 2011; Matiatos, 2016). More recently, the 80 

added value of analyzing the isotopic signature of boron (11B) in association with the specific 81 

isotope signature of nitrates has been demonstrated (Seiler, 2005; Widory et al., 2004; 2005; 82 

Saccon et al., 2013; Puig et al., 2017). Strontium and sulphate isotopes are randomly also used to 83 

reinforce this multi-isotopic toolbox (Vitòria et al., 2004; Nestler et al., 2011). In addition to the 84 

classical chemical approach, the coupled use of nitrate and boron isotopes - although not yet a 85 

routine technique - is gaining interest for policymakers and water quality administrators who are 86 

interested in identifying the nitrate sources. This approach is particularly important when the NO3 87 

concentrations are higher than the threshold value defined by the Water Frame Directive (WFD; 88 

50 mg/l), which implies the definition of the poor chemical status of the quality of the water body. 89 

The need to discriminate between the different sources of pollution (i.e. sewage, animal manure, 90 

chemical fertilizer, natural soil mineralization) thus becomes crucial for any water exploitation and 91 

management (Komor, 1997; Widory, et al. 2004, 2005, 2013; Bronders et al., 2012). 92 

The rationale for a coupled use of B and N isotopes is that these elements co-migrate in the 93 

groundwater, boron being unaffected by the redox reaction that causes nitrogen transformations 94 

(mainly denitrification/nitrification). However, boron is ubiquitous in water and its concentration 95 

strongly depends on the aquifer source rock and on the extent of the exchange of water with the 96 

fine aquifer matrix (Xiao et al., 2013). Many studies based on the coupled δ15N- δ11B approach 97 

have aimed at defining a well-characterized frame of the geogenic δ11B background (Palmer and 98 

Swihart, 1996 and reference therein), as well as of the anthropogenic components that could 99 

represent nitrogen and boron sources (see compilation in ISOBORDAT database; Pennisi et al., 100 

2013).  101 

Numerous studies have been conducted in Northern Italy in the last decade using a variety of 102 

hydrochemical and isotopic tools to tackle the sources, the processes and the factors controlling 103 

groundwater nitrate contamination. Previous studies on N compounds in groundwater from the 104 

Po valley, carried out in the period 1975-1995, considered NH4, NO2 and NO3 molecules (e.g. 105 

Giuliano, 1995 and references therein). However, the N distribution in groundwater and its 106 

relation with other geochemical compounds often failed to unambiguously identify the nitrate 107 

source(s). Therefore, isotopic tools have started to be applied in the last twenty years, leading to a 108 

remarkable increase in produced data, nitrogen isotopes also often being associated to oxygen, 109 

hydrogen and boron isotopic systematics. As many studies were promoted by provincial or 110 

regional authorities, this copious amount of published data was generally interpreted on a  local 111 

scale and, lacking a wider perspective, did not allow us to draw general conclusions at the Po basin 112 

scale, thus being of little interest for an international audience.  113 

Although the watershed level is considered the most appropriate scale for the assessment of 114 

nutrient cycling and for the design of effective management and remedial plans (Baker and 115 



 

 

Schussler, 2007; Billen et al., 2011), nitrate pollution studies are generally local and target only 116 

limited portions of large hydrogeological systems. Therefore, the literature lacks examples of 117 

regional studies covering areas such as the one investigated here, and based on a substantial 118 

amount of isotopic data.  119 

The aim of this paper is to provide an understanding of N dynamics in the shallow aquifers of the 120 

Po plain area, representing a hydrogeological system of European relevance (WHYMAP, 2008), and 121 

with hydrogeological features common to alluvial basins located near mountain ranges worldwide. 122 

In industrialized countries, several sources may contribute to groundwater nitrate contamination, 123 

due to complex patterns of coexisting  anthropogenic activities insisting on plains (intensive 124 

agriculture and farming together with urban and industrial settlements). Here it often occurs that 125 

N inventories at the regional scale do not fully match the distribution of nitrates in groundwater, 126 

highlighting the need to take into account processes occurring below the surface and within the 127 

aquifers. In these situations, the use of an isotopic approach to apportion the contribution of the 128 

different nitrate sources to aquifer contamination and to depict the processes governing 129 

accumulation and reduction is crucial for stakeholders to implement effective management 130 

actions. To achieve this overall objective, a compilation, in a comprehensive database, of all the 131 

available hydrochemical and isotopic data, has been performed. This dataset has been integrated 132 

with some unpublished data to fill the knowledge gaps in given areas or situations. The 133 

interpretation at the watershed scale of data obtained in local scale studies of groundwater 134 

hosted in a variety of sedimentary environments allows for the definition of the more relevant 135 

processes governing nitrate contamination in Northern Italy with the objective of assisting 136 

regulators in devising remediation strategies. This comprehensive picture provides a cost-effective 137 

methodology to screen the areas where isotope analyses can be applied, drawing on generally 138 

available statistical and groundwater monitoring data.  139 

 140 

 2. Study area 141 

Northern Italy is characterized by a large alluvial valley comprising the Po and the Veneto plains, 142 

bordered by the Alpine and Apennine chains to the N and the S, respectively, and by the Adriatic 143 

sea to the E (Fig. 1). The total surface of the Po and Veneto plains is about 100,000 km2. The Po 144 

river, 675 km long, collects the water of 141 tributary rivers from both Alpine and Apennine 145 

chains, while the Adige (410 km) and the Tagliamento rivers (170 km) collect 18 relevant tributary 146 

rivers from the Eastern Alpine belt. Regions hosting significant plain areas in Northern Italy are 147 

(from W to E) Piedmont, Lombardy, Veneto, Emilia Romagna and Friuli Venezia Giulia. More than 148 

50% of the Italian Gross National Product is produced in Northern Italy, which hosts more than 20 149 

million inhabitants. About one half of total surface is devoted to agriculture and to animal 150 

breeding, including mostly cattle, pigs and chickens.  151 

The climate in the western sector is classified as temperate continental, with mean annual 152 

temperature of 13°C, cold winters (in January, mean minimum and maximum temperatures of  -153 

3° and +3°C) and hot summers (in July, mean minimum and maximum temperatures of 16° and 154 



 

 

30°C). In the eastern sector, the continental climate is less accentuated due to the effect of the 155 

Adriatic sea (Cati, 1981): the mean annual temperature is  14 °C, with mean minimum and 156 

maximum temperatures of  0° and 7°C in January, and of 19° and 27°C in July, respectively 157 

(Brancucci, 2001). Rainy periods are concentrated in spring and autumn, with mean annual rainfall 158 

in the range of 501-750 mm in the low plain and of 751-1000 mm in the high plain areas (Fratianni 159 

and Acquaotta, 2017). The relative humidity is high, due to intense evapotranspiration (Elmi et al., 160 

2013).  161 

The Po and the Veneto plains were generated during Quaternary by the dismantling of the Alpine 162 

and Apennine chains, mostly constituted by crystalline basement rocks (Western Alps), and their 163 

sedimentary (mostly marine) covers. This large sedimentary basin was significantly affected by 164 

subsidence in post-Oligocenic periods. Recent continental deposits were deposited during the 165 

Lower-Upper Pleistocene to Holocene. The total thickness of Quaternary sediments can reach 166 

about 0.5 km, being bounded at the bottom by Pliocenic sediments saturated by fossil salty waters 167 

in large parts. Coarse sediments generated by rock erosion due to tributaries of the Po river are 168 

located at the foothills of mountain belts, while finer sediments like sand, silt and clay have been 169 

transported by the Po river towards the sea. Alluvial sediments become progressively finer 170 

towards the centre of the plain and in correspondence with the river deltas along the Adriatic sea 171 

coast. A block diagram illustrating the geological and hydrogeological settings of the study area is 172 

reported in Fig. 1. 173 

 174 

 175 



 

 

 176 

Fig. 1 – Location, simplified geological and hydrogeological settings of the investigated area. 177 

Piezometric contour lines from Giuliano et al. (1998), modified. 178 

 179 

 2.1 Hydrogeological setting 180 

The aquifer system in the investigated area mostly consists of multilayer aquifers constituted by 181 

gravel and sand layered with silt and clay. The shallow aquifers are generally unconfined while the 182 

deeper aquifers are semiconfined and confined. Unconfined aquifers are usually poorly connected 183 

with underlying aquifers in the low plain areas, characterized by a greater presence of fine 184 

sediments, while evidence of the effective connections among shallow and deep aquifers are 185 

found in alluvial fan areas, characterized by coarser sediments. The thickness of this aquifer 186 

system ranges from a few dozen meters to several hundred meters. At different depths, 187 

depending on the geographic position, a fresh-salt water interface is present, separating fresh- 188 

from deeper salt-groundwaters. This is of great importance, as it corresponds to the lower 189 

boundary of freshwater aquifers that are potentially exploitable for drinking, municipal and 190 

farming purposes. 191 

The piezometric map of the shallow aquifer (Fig. 1) derives from regional studies (e.g. for the 192 

Piedmont plain) and piezometric levels recorded by the Regional Environmental Protection 193 

Agencies (ARPAs). 194 



 

 

The groundwater flow in the unconfined aquifer is directed towards the Po River (i.e. roughly 195 

oriented N–S in the pre-alpine sector and S–N closer to the Apennines). In the central western 196 

sector, the flow is strongly controlled by the draining action of the Po river and its tributaries, 197 

whereas, in the eastern sector, the Po river is not in hydraulic connection with groundwater. 198 

The higher hydraulic gradients are registered close to the Alpine and Apennine chains in alluvial 199 

fan areas (high plain). Typical hydraulic gradients of these areas vary from 8‰ to 10‰ in 200 

Piedmont, and from 4‰ to 8‰ in the other areas of the Po and the Veneto-Friuli high plain. 201 

Lower hydraulic gradients characterize low plain aquifers along the Po river (normally ranging 202 

from 1‰ to 4‰); in the central-eastern part of the Po Valley they decrease to values of 0.2‰-203 

1‰. At the transition from the high to low plain, the decrease in the hydraulic gradient is generally 204 

associated to the emergence of typical lowland springs (fontanili) (Fig. 1) (Minelli et al. 2002; 205 

Vorlicek et al. 2004; De Luca et al. 2009, 2014; Zini et al. 2011; Balderacchi et al. 2016; Fumagalli et 206 

al. 2017). The highest hydraulic conductivity (1-10·10-3 m/s) is measured in alluvial fan areas, 207 

whereas lower values (1-10·10-5 m/s) are measured in low plain areas, although some areas 208 

characterized by relatively high permeability coefficients have been identified in the western and 209 

the central sectors of the low plain. The water level depth in shallow aquifers is highly variable in 210 

the Po plain: minimum values of 1-5 m b.g.l. are recorded in the central part of the plain, whereas 211 

closer to the Alps it may reach 30-50 m, and close to the Apennines it is set around 10 m.  212 

Shallow aquifers and aquifers located in alluvial fans are characterized by relatively high intrinsic 213 

vulnerability values, while deep aquifers and shallow aquifers characterized by fine sediments in 214 

the unsaturated zone show lower vulnerability. 215 

 216 

 2.2  Groundwater nitrate contents and infiltrability 217 

The existing relationship between the characteristics of the unsaturated zone in the subsoil and 218 

groundwater nitrate contents is shown in Fig. 2. The regional infiltrability map was developed 219 

through the joint processing of the shallow aquifer textures (gravel, sand and silt) and the 220 

thickness of the surface alteration layers and/or loess deposits (Giuliano et al., 1998). Basically, the 221 

infiltration parameter, used at regional level, facilitates the identification of those areas where it is 222 

easier for substances coming from the surface (in our case, nitrates) to be hydro-transported by 223 

recharge waters to the unconfined aquifers. 224 

The plain sector is represented in different colors according to the classification of infiltrability 225 

(very high, high, medium, low or negligible). The location of the wells periodically sampled by the 226 

ARPAs is also indicated and differentiated based on their nitrate content (lower or higher than 50 227 

mg/l, the regulatory limit for drinking water supplies). High values are observed in areas 228 

characterized by high infiltrability, mostly at the Alpine and Apennine foothills. This is of particular 229 

concern since these areas represent the recharge areas for all the Po valley aquifer systems. On 230 

the other hand, large portions of the western and central plain (e.g. South of Milan) showing high 231 

infiltrability values do not record high nitrate concentrations in groundwaters. However, it should 232 

be noted that the ARPA network also considers some wells tapping in semi-confined and confined 233 



 

 

aquifers, where the nitrate concentrations are obviously lower because of the higher protection 234 

offered by the overlying low-permeability layers. Nonetheless, in large portions of the central 235 

plain, nitrate concentrations do not exceed 50 mg/l in the unconfined aquifer (Pilla et al., 2006; 236 

Guffanti et al., 2010), indicating that the aquifer grain size (i.e. the hydraulic conductivity) and the 237 

thickness of the surface alteration layers are not the only parameters governing the contamination 238 

levels.  239 

Previous studies have indicated that nitrate concentrations in aquifers could depend on different 240 

physical-chemical processes. High nitrate contents have been found in areas with high infiltration 241 

and/or low aquifer dilution capacity. On the other hand, low nitrate contents have been observed 242 

in areas with high dilution capacity, lower infiltration rates from the surface and/or in the 243 

presence of enhanced denitrification processes (Debernardi et al. 2008; Lasagna et al. 2013; 244 

Lasagna et al. 2016b).  245 

 246 

Fig.2 - Infiltrability map of the Po, Veneto and Friuli plain (after Giuliano et al., 1998, modified). 247 

Dots represent wells periodically sampled by regional environmental protection Agencies. Black 248 

dots = nitrate concentration <50 mg/l; red dots = nitrate concentration >50 mg/l. 249 

 250 

 2.3 Nitrate Vulnerable Zones from agricultural sources 251 

The Nitrates Directive was applied in Italy by national legislation (Decree Law 152/99) and the NVZ 252 

designation was undertaken under the competence of the Regional Authorities. The first NVZ 253 

designation took place in the late nineteen-nineties, based on the results of monitoring 254 

programmes assessing nitrate concentration in surface and groundwaters, and the trophic status 255 

of surface waters, and the NVZs were enlarged in different steps between 2000 and 2011.  256 



 

 

These enlargements were performed in Italian Regions by means of different approaches, and 257 

based on multiple parameters (e.g. intrinsic vulnerability of the shallow aquifer obtained with 258 

different methods, N-surplus, and soil attenuation capacity). Consequently, these delimitations 259 

were performed with a forward-looking approach. 260 

The total designated NVZs in Piedmont, Lombardy, Veneto, Friuli Venezia Giulia and Emilia-261 

Romagna represent almost 70% of designated NVZs in Italy (Fig. 3); moreover, they represent a 262 

percentage ranging between the 50% and 60% of regional plains areas (Ministry for Environment, 263 

Land and Sea, Ministry of Agriculture, Food and Forestry Policies, regions of Piedmont, Lombardy, 264 

Veneto, Emilia-Romagna and Friuli Venezia Giulia, 2010). In the NVZs, action programmes are to 265 

be implemented by farmers on a compulsory basis, including curbs on fertilizer application 266 

(mineral and organic) and other measures at farm scale. The costs of these measures in the 267 

framework of farm economics can have a negative economic impact, especially for small farm 268 

holdings (ADAS, 2011). 269 

 270 

 271 

 272 
Fig. 3 – NVZs of Northern Italy (map elaborated with http://fate-273 

gis.jrc.ec.europa.eu/geohub/MapViewer.aspx?id=2) 274 

 275 

3. Materials and methods 276 

The compiled database is made up of hydrochemical and isotopic data, retrieved from national 277 

and international publications (Pilla et al., 2005; 2006; 2007; Lasagna et al., 2006; 2015; 2016a, 278 

2016b; Debernardi et al., 2008; Guffanti et al., 2010; Sacchi et al., 2013; Saccon et al., 2013; 279 

Martinelli et al., 2014a), conference proceedings (Dadomo and Martinelli, 2005; Arduini et al., 280 

http://fate-gis.jrc.ec.europa.eu/geohub/MapViewer.aspx?id=2
http://fate-gis.jrc.ec.europa.eu/geohub/MapViewer.aspx?id=2


 

 

2007; Sacchi et al., 2007; Martinelli et al., 2014b; 2014c) and unpublished reports (Provincia di 281 

Verona, 2001; ISO4, 2005). These data were all determined in water extracted from shallow 282 

aquifers during a single campaign. Only in few exceptions groundwater monitoring involved 283 

repeated sampling of the same well (Provincia di Verona, 2001; Sacchi et al., 2007; Saccon et al., 284 

2013). As in many instances this monitoring evidenced a seasonal evolution of both nitrate 285 

concentrations and isotopic compositions, all these data were treated as if they were individual  286 

measurements to avoid the issue of representativeness. Unfortunately, not all the groundwater 287 

samples have a correspondingly complete chemical analysis.  288 

All the data sources are clearly identified in Tab. S1 (Supplementary material), allowing us to refer 289 

to the publication in terms of the analytical techniques used. Nitrate isotope data were produced 290 

using the silver nitrate method (Silva et al., 2000) or the bacterial denitrification method (Sigman 291 

et al., 2001), and results are expressed in the standard 15NNO3 ‰ vs AIR and 18ONO3 ‰ vs SMOW 292 

notation. Boron isotopes were determined by MC-ICP-MS, with results expressed as 11B‰ with 293 

respect to the NBS-951 standard. The database is a compilation of results generated in different 294 

laboratories, at different times and by different techniques, and no data are available that can be 295 

used for inter-laboratory comparison. Nevertheless, isotopic compositions are always expressed 296 

with respect to international standards, and therefore, assuming that each laboratory has 297 

correctly implemented the analytical protocol, the results should, in principle, be comparable. 298 

To fill in the knowledge gaps in given areas (e.g. the Parma province in Emilia Romagna) or 299 

situations (e.g. the 11B composition of some compositional end-members), additional original 300 

analyses were also performed  and reported in Tab. S1 (Supplementary material) and Tab. 1. For 301 

these samples, nitrate isotopes were determined by IRMS at ISO4, Italy. Samples were prepared 302 

and purified according to the method described by Silva et al., 2000. Uncertainties (1) are 0.5‰ 303 

for 15NNO3 and 1‰ for 18ONO3. Boron isotope ratios in purified fractions of groundwaters were 304 

measured by MC-ICP-MS Neptune Plus at ALS Scandinavia AB, Luleå (Sweden), with an uncertainty 305 

of 0.4 to 1‰, using a combination of internal standardization and bracketing standards for 306 

instrumental mass bias correction. Boron isotopes of relevant anthropogenic sources for the study 307 

area (e.g. pig manure, sewage,  synthetic fertilizer) were determined by positive TIMS on Cs2B4O7 308 

deposited on the ion source filament with graphite and mannitol, which produces CsBO2 ions, 309 

after boron purification through ion exchange resins (Tonarini et al., 1997). Analyses were 310 

performed at CNR-IGG in Pisa (Italy) using a VG Micromass 54 E mass spectrometer with an 311 

uncertainty of 0.5‰, calculated on replicate analyses of the NBS-951 standard.  312 

The location of samples included in the database is shown in Fig. 4, with different color codes 313 

corresponding to the regions. The distribution of sampling points mostly reflects the areas where 314 

nitrate concentrations in groundwater sometimes exceeded the regulatory limits. 315 

To test the possible correlations of the isotopic composition with anthropogenic pressure 316 

indicators, data were aggregated by province and the descriptive statistical parameters were 317 

calculated (Min, Max, Mean, Median; Tab. S2 in Supplementary material). Farm census data 318 

(number of cattle, number of pigs and Utilized Agronomical Area [UAA] per province) for the year 319 



 

 

2010 were obtained from the National Statistical Institute (ISTAT, 2010), while the number of 320 

inhabitants and population density were retrieved from the ISTAT database (year 2009). 321 

 322 

 323 

Fig. 4 - Location of samples included in the hydrochemical and isotopic database. Colors 324 

correspond to the different regions. 325 

 326 

 4. Results and discussion 327 

 4.1 Groundwater hydrochemistry 328 

Previous studies have indicated that in the Po plain, most of the waters hosted in alluvial fans of 329 

the Alpine and Apennine chains show a Ca(Mg)-HCO3 facies, and  TDS ranging from 300 to 3500 330 

mg/l. Groundwaters with a Na(K)-HCO3 (TDS range=500-2700 mg/l) facies subordinately occur in 331 

the eastern part of the Po plain, characterized by fine sediments. This change in the chemical 332 

composition is due to Na-Ca exchange with clays. Ca(Mg)-SO4 groundwaters (TDS range=750-2400 333 

mg/l) occur in limited areas at the foothills of the Apennine chain and are the result of interaction 334 

between meteoric waters and evaporitic minerals of Triassic and Messinian age (Giuliano, 1995; 335 

Martinelli et al., 2014a). Na (K)-Cl groundwaters (TDS range= 1200-2000 mg/l) occur in the central 336 

and eastern part of the Po river plain. They are the result of interactions between meteoric waters 337 



 

 

and evaporitic layers formed during Quaternary transgressive episodes (Conti et al., 2000; Pilla et 338 

al., 2010; Martinelli et al., 2016).  339 

Ca(Mg)-HCO3 groundwaters and Ca(Mg)-SO4 groundwaters are hosted in unconfined and semi-340 

confined coarse sediment aquifers characterized by relatively high flow velocities (0.1-5 m/day). 341 

They are often affected by a significant nitrate contamination (50-100 mg/l) (Pilla et al., 2006; 342 

Sacchi et al., 2013; Martinelli et al., 2014c). Na(K)-HCO3 and Na(K)-Cl groundwaters are hosted in 343 

confined fine sediment aquifers characterized by low groundwater flow velocities (less than 10 344 

m/yr), which inhibit pollution phenomena.  345 

Groundwater hydrochemical data, when available in the database (Tab. S1; Supplementary 346 

material), were represented in the classical Piper diagram (Fig. 5). Most of the samples fall within 347 

the field of Ca-HCO3 facies with medium TDS values, reflecting water circulation in shallow 348 

unconfined aquifers. In areas where the marine substratum is closer to the surface (Fig. 1), the 349 

groundwater composition is affected by a contribution of Na-Cl waters.  350 

 351 

Fig.5 - Piper diagram showing the available compositions of groundwaters. 352 



 

 

Groundwater TDS values in the studied area are strongly determined by mineralogical composition 353 

of the substratum, being higher in the eastern and southern parts due to the higher relative 354 

abundance of carbonates in the aquifer matrix. The relationship between groundwater TDS and 355 

nitrate contents is shown in Fig. 6. The plot evidences that the higher nitrate concentrations are 356 

often found in low TDS waters, mostly hosted in alluvial fans of the Piedmont-Lombardy plain 357 

(Fig.1). Since TDS is expected to increase with time due to mineral weathering, this could indicate 358 

a more recent recharge and a faster circulation in these aquifers. Nevertheless, also high TDS (≥ 359 

1000 mg/l) waters in the lower Lombardy and Emilia-Romagna plain show non-negligible nitrate 360 

concentrations ( 30 mg/l), confirming a contribution of present-day recharge for these waters, 361 

and suggesting that the differences in groundwater age in unconfined aquifers throughout the 362 

investigated area should be relatively small. 363 

An alternative explanation for the nitrate-TDS relationship considers that microbial oxidation of 364 

ammonium generates acidity along with nitrate in soils, that is readily buffered by the dissolution 365 

of carbonates from the aquifer matrix, if these are present (Spruill et al., 2002). The relationship 366 

between groundwater nitrate concentrations and hydrochemistry has been recently reviewed by 367 

Menció et al. (2016) who demonstrated, in aquifers characterized by different lithologies, that 368 

nitrates have an enhancing effect upon the biogeochemical processes that control water-rock 369 

interactions. This generally leads to an increase in major ions concentrations (therefore in TDS 370 

values), but also homogenizes the overall hydrochemistry despite lithological differences, and 371 

enhances or reduces the geochemical processes that control groundwater composition at 372 

equilibrium. This could be the reason why no clear correlation between nitrate and calcium 373 

contents could be observed in groundwater from the investigated area, suggesting that other 374 

natural processes may mask this relationship (e.g. cation exchange, gypsum dissolution etc.). 375 

 376 



 

 

 377 

Fig. 6 –Total Dissolved Solids vs nitrate concentrations of selected groundwaters. The higher 378 

nitrate concentrations are often found in low TDS waters (blue oval).  379 

 380 

 4.2 Nitrate sources 381 

Atmospheric deposition measured in Northern Italy accounts in average for 20-25 kg N ha-1 yr-1 382 

(Rogora et al., 2012). While this represents an important source of reactive N for surface waters, it 383 

is a minor component of the total N input to soils compared to agricultural and civil or industrial 384 

inputs (EEA, 2005), as indicated by N budgets calculated in several watersheds within the Po river 385 

basin (e.g. Bartoli et al., 2012). As most isotopic studies targeted areas with high nitrate 386 

concentrations, often located close to the Alpine and Apennine chains (Fig. 2 and Fig. 4), we can 387 

reasonably assume to a first approximation that denitrification processes are not very relevant in 388 



 

 

the study area (see also section 4.3). Therefore, the N isotopic composition should be mostly 389 

determined by the source of dissolved nitrates. 390 

The 15N values recorded in the database vary between -7.84 and +37.50‰ vs AIR (n=818). A 391 

frequency histogram (Fig. 7) shows that the more common values in groundwater range between 392 

+6 and +8‰. These values correspond to the isotopic compositions of nitrates naturally generated 393 

by the degradation of the soil organic matter (Kendall et al., 2007). Nevertheless, the nitrate 394 

concentrations recorded often largely exceed the expected natural background level (5 mg/l, 395 

Edmunds and Shand, 2008), suggesting that this isotopic value derives from anthropogenic 396 

sources, namely from the mixing between synthetic sources and organic matter-derived nitrates.  397 

 398 

 399 

Fig. 7 – Frequency histogram of 15NNO3 values in groundwater. Values on the x-axis represent the 400 

interval’s upper limit. 401 

The distribution of 15N was compared to nitrate concentrations, in order to identify the source(s) 402 

that mostly contribute to the observed contamination. Two data modes are present (evidenced by 403 

ovals in Fig. 8): one with a relatively depleted value (15N of about +2‰) corresponding to 404 

synthetic sources (i.e. fertilizers) and mostly evident in the Piedmont region, and a second, wider 405 

mode, around +8‰, displayed by samples from different regions. More interestingly, high nitrate 406 

concentrations are mostly recorded in samples with very enriched 15N, suggesting that these 407 

derive from organic matter sources. This is in contrast with the 15N distribution observed in the 408 

sole Lombardy plain (Sacchi et al., 2013), where both depleted and highly enriched values were 409 

mostly characterized by low nitrate concentrations, the former attributed to synthetic sources and 410 

the latter due to the influence of denitrification phenomena. 411 



 

 

 412 
 413 

 414 

Fig. 8 – Nitrate concentrations versus 15N values in groundwaters. Blue ovals evidence the two 415 

different modes (see text for explanation) 416 

In a pioneering study for Italy, Dadomo and Martinelli (2005) in the Piacenza province (Emilia-417 

Romagna) found a relationship between the distribution of 15N values and the location of pig 418 

farms in the area. In order to check whether a similar correlation could be observed at the basin 419 

scale, statistical parameters were calculated for each province in the investigated area (Tab. S2; 420 

Supplementary material) and compared to farm census and population data. All possible 421 

correlations between 15N values and anthropogenic pressure indicators were considered. At the 422 

basin scale, a significant correlation between the median 15N values and the number of pigs per 423 

UAA is observed (n=25; r= 0.478; p=0.015), as shown in Fig. 9, whereas no significant correlations 424 

could be observed for cattle density, cattle + pig density or population density (Tab.S2; 425 

Supplementary material). This correlation with pig density, although significant, is not very strong, 426 

due to some limitations imposed by the dataset, and by the adopted model (linear correlation 427 

rather than exponential). Nevertheless, it should be noted that the provinces with the highest pig 428 



 

 

densities (i.e. Bergamo, Brescia and Mantua) are poorly correlated with the others. This could be 429 

due, on one hand, to the low amount of available isotopic data for these provinces, but also to the 430 

fact that, if denitrification is not occurring, the 15N enrichment would be limited to the highest 431 

15N values displayed by the contamination source (for example, in the case of pig manure, limited 432 

to 16‰, according to Vitòria et al. (2008)). In other words, although the total number of pigs may 433 

increase, the 15N content may be constant if it presents the same origin. If these three provinces 434 

are eliminated from the plot, the correlation significantly improves (Fig. 9), and the correlation 435 

with the total number of pigs also becomes significant (p<0.01), whereas those with cattle or 436 

population remain non-significant. 437 

A correlation between animal husbandry, and particularly with the number of pigs, and 438 

groundwater nitrate contamination has been observed elsewhere (e.g. Aquilina et al., 2012; Boy-439 

Roura et al., 2013), and may be due to the fact that the produced type of excrement is often a 440 

slurry rather than manure (Lorimor et al., 2004; Mantovi et al., 2006; Risberg et al., 2017). 441 

Nevertheless, 15N values could also be enriched due to denitrification, a process that, in absence 442 

of 18O data, cannot be ruled out.  443 

 444 

 445 

Fig. 9 – Number of pigs per UAA versus 15N median values calculated per each province. Grey line 446 

= all data; black line = excluding the Bergamo (BG), Brescia (BS) and Mantua (MN) provinces. 447 

448 



 

 

 4.3 Processes affecting nitrate contents 449 

The 18ONO3 values recorded in the database vary between +1.08 and +25.5‰ vs SMOW (n=412). A 450 

frequency histogram (Fig. 10) shows that the more common values in groundwater range between 451 

+4 and +10‰.  452 

 453 

Fig. 10 – Frequency histogram of 18ONO3 values in groundwater. Values on the x-axis represent the 454 

interval’s upper limit. 455 

 456 

Results were plotted on the classical 18ONO3 vs 15NNO3 diagram (Fig.11), reporting the expected 457 

range of isotopic composition for the different sources. These were derived from the literature 458 

(Clark and Fritz, 1997; Kendall et al., 2007), and confirmed by some 15NNO3 values determined 459 

locally and reported in Saccon et al. (2013) and Sacchi et al. (2013). The lowest values of 18ONO3 of 460 

the potential sources are calculated, considering that in the nitrate molecule one oxygen atom is 461 

provided by atmospheric oxygen (18OO2≈+23.5‰) and two are provided by the water molecule 462 

(Kendall et al., 2007). Since the isotopic composition of precipitation falling on the plain sector 463 

ranges between -6 and -9‰ in 18OH2O (Longinelli and Selmo, 2003), a fully equilibrated nitrate 464 

should then range between +1.83 and +3.83‰ in 18ONO3.  465 

Two sets of samples characterized by enriched 18ONO3 can be observed in Fig. 11, one close to the 466 

compositional field of synthetic fertilizers, and one related to denitrification processes. The first 467 

set, compatible with the nitrification of synthetic fertilizers, accounts for a relatively low number 468 

of samples. This process produces nitrates that maintain the atmospheric  15NN2 signal (see 469 

discussion in the previous section 4.2), but are progressively more depleted in 18ONO3 due to the 470 



 

 

incorporation of oxygen from the water molecules. Nevertheless, the 18ONO3 is slightly more 471 

enriched than expected for a full equilibration with 18OH2O. This enrichment is often observed in 472 

microbially-produced nitrate, and is attributed to many possible reasons (e.g. nitrification 473 

occurring in the soil, where the isotopic composition of the available water may be slightly 474 

enriched by evaporation), although the issue is still being debated (Kendall et al., 2007). The 475 

presence of isotopic compositions attributable to nitrification of synthetic fertilizers, although not 476 

so frequent, indicates a fast transfer of nitrates to groundwater, with a low residence time in soils, 477 

thus confirming for these cases the high permeability, infiltrability and intrinsic vulnerability of the 478 

aquifer.  479 

On the other hand, isotopic compositions enriched due to denitrification are present in a relatively 480 

larger number of samples (≈ 90, corresponding to about 22% of the available data). According to 481 

Fig. 11, samples plot between two lines with a 0.5 18O/15N slope, one with more enriched 482 

18ONO3 values, originating from synthetic fertilizers, and the second from manure and septic 483 

system effluents. Hence, as both these nitrate sources are present in the area, they are both prone 484 

to denitrification when favorable environmental conditions are present. The observed isotopic 485 

enrichment (Fig. 11) allows for the consideration of denitrification as being responsible for nitrate 486 

abatement in groundwater affecting up to 70-80% of the original content, depending on the initial 487 

isotopic composition and the enrichment factor used (Kendall et al., 2007; Sacchi et al., 2013).  488 

Denitrification was mostly reported in the lower plain of Piedmont and Lombardy (Pilla et al., 489 

2005; Pilla et al., 2007; Debernardi et al. 2008; Guffanti et al., 2010; Sacchi et al., 2013; Lasagna et 490 

al. 2016b). Studies indicate that, under different soil and crop types, denitrification occurs when 491 

the water table is shallow, within 5 m from the surface, allowing the establishment of reducing 492 

conditions at shallow depths. This can occur naturally in low permeability soils, or as a 493 

consequence of flood irrigation adopted in rice cultivation. In other cases, denitrification was 494 

observed in shallow aquifers characterized by a low-permeability unsaturated zone. In Piedmont, a 495 

high denitrification rate was reported in areas with a shallow aquifer of limited thickness (e.g. 496 

Poirino Plateau) characterized by low permeability and low dilution degree. In this case, the 497 

nitrate input is not diluted in the aquifer, and high nitrate concentrations (even higher than 100 498 

mg/l) are present in groundwater, despite the denitrification process.  499 

Indirect evidence for ongoing denitrification can be obtained with hydrochemical tools, as these 500 

waters often contain detectable dissolved Fe and Mn contents. Both these metals are geogenic in 501 

origin (Maffei et al., 2005), as they derive from the dissolution of Fe(II)-Mn(II)-bearing minerals or 502 

the reduction of Fe-Mn oxyhydroxides present in the sediments. In the redox reaction sequence, 503 

O2 reduces before nitrate which again is followed by reduction of Mn-oxides and by reduction of 504 

Fe-oxides (Appelo and Postma, 2005). Therefore, the presence of nitrates and of Fe/Mn is 505 

mutually exclusive. In the lower Lombardy plain, Sacchi et al. (2013) mapped groundwater samples 506 

with Fe and Mn concentrations above 100 and 50 μg/l respectively, as metals above these 507 

concentrations may be taken as indicators of reducing environments (McMahon and Chapelle, 508 

2008; Wendland et al., 2008), and compared the distribution with that of nitrates. They concluded 509 

that in the low plain unconfined aquifers, the input of nitrates from the surface must have been 510 



 

 

reduced by denitrification due to the presence of an anoxic environment. In other Regions (e.g. 511 

Veneto and Emilia Romagna) little isotopic evidence of the presence of denitrification is reported. 512 

This is due, on the one hand, to the lack of 18ONO3 values for these areas. On the other, it should 513 

be noted that most isotopic studies targeted areas with high nitrate concentrations, often located 514 

close to the Alpine and Apennine chains (Fig. 2 and Fig. 4); thus, the lower Veneto plain and the 515 

higher Emilia-Romagna plain have not been assessed. Nevertheless, the presence of dissolved Fe 516 

and Mn, often associated to NH4
+ and As, is documented in unconfined aquifers of the low plain 517 

throughout the investigated area (e.g. Maffei et al., 2005). Therefore, based on the available 518 

hydrochemical and isotopic evidence (e.g. Rotiroti et al., 2014, 2017; Giambastiani et al., 2016; 519 

Petrini et al., 2014; Castaldelli et al., 2013; Carraro et al., 2013), the absence of nitrates in 520 

groundwater from the central Po plain can be reasonably ascribed to denitrification, whereas the 521 

main factor promoting this permanent loss of reactive nitrogen is the shallowness of the water 522 

table. 523 

 524 

Fig. 11 - 18ONO3 vs 15NNO3 values in groundwater. Compositional fields and nitrification-525 

denitrification trends from Sacchi et al. (2013), modified after Clark and Fritz (1997).  526 

 527 

 4.4 Insights provided by B isotopes 528 

Compared to the consolidated application of 15N to contamination studies, the associated use of 529 

11B represents a promising but still subordinated tool, as testified by the very few data available 530 



 

 

in the database of the studied area (both for B concentrations and isotopic compositions), 531 

compared to the large set of nitrate isotope data.  532 

Currently, boron concentration values recorded in the database range between b.d.l. to 672 g/l, 533 

and 11B values vary between -1.4 and +36.3‰ vs NBS-951 (n=27). A frequency histogram for the 534 

isotopic compositions (Fig. 12) shows the non-normal distribution of the data, with two 535 

populations characterized by different isotopic compositions, one around +10‰ and a second 536 

around +22‰. Comparing this distribution of 11B signatures to that recorded in Italian 537 

groundwaters (Pennisi et al., 2013), the value of +10‰ can be considered near to the mean 538 

geogenic value (+8.2 ‰) that characterizes the Italian alluvial aquifers. On the contrary, the higher 539 

11B mode value (+22‰) clearly evidences inputs either of a sea water or of an animal manure 540 

component, both characterized by 11B-enriched signatures (Palmer and Swihart, 1996; Widory et 541 

al., 2005).  542 

 543 

Fig. 12 – Frequency histogram of 11B values in groundwater. Values on the x-axis represent the 544 

interval’s upper limit. 545 

Together with the need to increase the number of values in the database, the application of the B 546 

systematics in the study area is challenged by the poor definition of the compositional end-547 

members, both in terms of natural background and of potential sources of contamination. The 548 

application of the coupled 15N - 11B toolbox needs to identify the isotopic signature/s of the 549 

anthropogenic sources related to the given study site under investigation. As an example, boron in 550 

liquid animal manure reflects the boron signature of food and its fractionation eventually 551 

occurring from ingestion to the excretion pathway (i.e. urine). For piggery, a significant role in the 552 

pig manure signature can be played by the origin (marine versus non-marine) of the salt (NaCl with 553 



 

 

1% boron) supplied with feeding. While concentrations and isotopic compositions of contaminants 554 

are reported for given sites in France and the USA (see ISOBORDAT “Contaminants” database and 555 

references therein), B isotope data on sewage, manure or fertilizer are at present lacking In Italy.  556 

As an original contribution of this work we report new data on the main products used in the 557 

agricultural sector in Emilia Romagna (Tab. 1). The values obtained for synthetic fertilizers, sewage 558 

water and pig manure are within the ranges defined in the literature for these substances (Widory 559 

et al., 2004, 2005; Tirez et al., 2010). 560 

 561 

Sample Name 11B‰ vs NBS-951 r.s.d (‰) 

1 Boric acid -13.5 0.4 

2 Colemanite -12.8 0.4 

3 Colemanite 40 -8.1 0.27 

4 Borax pentahydrate -0.3 0.45 

5 Ulexite -3.5 0.44 

6 Nitrophoska Blu Spezial 0.3 0.56 

7 Sewage treatment plant (Sassuolo) 8.2 0.56 

8 Pig manure 13.9 0.5 

9 NaCl Italkali (B=1%) 31.8 0.45 

 562 

Tab. 1 – Isotopic composition of anthropogenic boron sources in the Emilia Romagna region. 563 

Samples 1 to 5 are compounds utilized in the ceramics industry in the Reggio Emilia and Modena 564 

provinces; sample 6 is an industrial fertilizer frequently used in the Po Valley; sample 7 is the 565 

outflow of a sewage treatment plant located in Sassuolo (Modena province); sample 8 is the dry 566 

residue of pig manure collected in the Reggio Emilia area; sample 9 is halite used in pig breeding. 567 

In the highly impacted areas of the Alpine foothills of Lombardy, Sacchi et al. (2013) produced the 568 

first coupled data on B and N in groundwaters with the aim of discriminating the contamination 569 

from agriculture and contamination from civil origin. The authors selected samples where the 570 

isotopic composition of dissolved nitrates fell in the field of contamination from mixed or 571 

anthropogenic organic matter sources, or in the field of denitrification; two waste waters from 572 

sewage treatment plants were also analysed, whereas the isotopic composition of the other 573 

contaminant sources was taken from the literature. In Lombardy, boron concentrations ranged 574 

from 20 to 540 g/l (displayed as 1/B in Fig. 13) and 11B values from -1.4‰ to +26.2‰. The 575 

sample with the lowest B concentration had a 11B of +14.6‰, and was assumed to be the 576 

geogenic, “uncontaminated” end-member. With the increase of B concentrations, a group of 577 

samples shifted towards both more depleted 11B values, suggesting contamination from sewage 578 



 

 

and/or fertilizers (Seiler et al., 2005; Widory et al., 2005). Conversely, in other samples, an increase 579 

in both the B concentration and isotopic composition was observed with respect to the geogenic 580 

end-member, attributed  to a contribution of anthropogenic boron sourced from animal manure 581 

(Widory et al., 2004; 2005). An increase in the geogenic boron concentration controlled by 582 

increasing water-rock interaction, was also evidenced by the lack of any significant shift in the 11B 583 

signature of water respect to the un-polluted signature in some Po basin samples (Fig. 13). By 584 

comparison, samples from the Emilia Romagna and Veneto regions show a lower range of 11B but 585 

higher B concentrations, suggesting a higher contribution of either sewage or synthetic fertilizers. 586 

587 
Fig. 13 - 11B vs 1/B plot of groundwater from Northern Italy (full dots: yellow = Friuli V.G.; orange 588 

= Lombardy; red = Emilia Romagna), and literature data from low geogenic-B environments 589 

(empty symbols: green squares = Komor, 1997; blue circles = Widory et al., 2004; yellow triangles 590 

= Widory et al., 2005; blue diamonds = Seiler, 2005; red squares = Puig et al., 2017). 11B 591 

compositional ranges of contaminants after Widory et al., 2004, 2005; Tirez et al., 2010; range for 592 

rainwater from the ISOBORDAT database (Pennisi et al., 2013). Boron concentration in mg/l. 593 

In Fig 13, data from the investigated area are compared to literature data from studies where the 594 

15N - 11B tool was applied in low geogenic-B environments. A large  isotopic variation of almost 595 

50‰ is associated to a boron concentration range of 10 – 1000 g/l. Three end-members are 596 

distinguished, most of the samples resulting from a mixing between these sources. The high boron 597 

samples span over the whole range of 11B, and mainly concentrate in the area were the “sewage” 598 

and “manure” isotopic signatures overlap. Fig. 13 also identifies a trend in literature data starting 599 

from low boron – high 11B composition (+40‰), indicating a boron enrichment in groundwater 600 

that occurs following the infiltration of meteoric water of marine origin.  The decrease in 11B 601 

associated to the increase in B concentrations points to the two main anthropogenic boron 602 



 

 

sources - animal manure and wastewater - recognized in the literature (Widory et al., 2004, 2005; 603 

Tirez et al., 2010). In this context, the newly defined isotopic signature of uncontaminated water 604 

from the Po alluvial aquifers (11B = +13 ± 2.5‰) appears to be dominated by rainwater non-605 

marine in origin or already modified during rock interaction.  606 

Finally, Fig. 14 shows the 11B vs 15NNO3 plot of samples from the study area compared to other 607 

literature data obtained in groundwater from low geogenic-B environments. The compositional 608 

fields of the contaminants are represented as grey boxes (Widory et al., 2004, 2005; Tirez et al., 609 

2010), and the red box evidences the compositional field defined for uncontaminated water from 610 

the Po alluvial aquifers. The plot confirms that both sewage and animal manure contribute to the 611 

nitrate pollution in the study area, as already indicated by Sacchi et al. (2013). Although isotopic 612 

data suggest that cattle manure is more concerned than pig manure as nitrate supplier to 613 

groundwater, this information partially contradicts the results obtained from animal husbandry 614 

data crossed with N isotopic data (see par. 4.2). Therefore, given the important implications for 615 

the agricultural sector, the unequivocal identification of the nitrate contamination sources in the 616 

study area still requires a better definition of the isotopic compositions of animal manure applied 617 

to agricultural fields, and the coupling of isotopic and farm census data .  618 

 619 

Fig. 14 - 11B vs 15N plot of groundwater from Northern Italy (full dots: orange = Lombardy; red = 620 

Emilia Romagna: blue = Veneto), and literature data from low geogenic-B environments (empty 621 

symbols: green squares = Komor, 1997; blue circles = Widory et al., 2004; yellow triangles = 622 

Widory et al., 2005; blue diamonds = Seiler, 2005; red squares = Puig et al., 2017). 11B and 15N 623 

compositional ranges: SF = synthetic fertilizers; Sew = sewage; CM = cattle manure; PM = pig 624 

manure (after Widory et al., 2004, 2005; Tirez et al., 2010). The red box corresponds to the 625 

compositional field defined for uncontaminated water from the Po alluvial aquifers. 626 



 

 

 5. Conclusions 627 

In the last twenty years a remarkable number of nitrate isotopic data, often associated to oxygen, 628 

hydrogen and boron isotopic systematics have been produced in the Po plain area, mostly in local 629 

investigations. In this work, all the available nitrate (15NNO3 and 18ONO3) and boron (11B) isotopic 630 

data, together with the hydrochemical composition, if available, were compiled in a 631 

comprehensive database, and some additional analyses were performed to fill the knowledge gaps 632 

in given areas or situations. Such an integration of data obtained in the groundwater hosted in a 633 

variety of sedimentary environments has allowed for their interpretation in a wider perspective, 634 

both providing an understanding of the N sources and dynamics in the shallow aquifers at the Po 635 

basin scale, and defining the more relevant processes governing nitrate contamination in Northern 636 

Italy. The conclusions of this work seek to assist regulators in devising sustainable management 637 

and remediation strategies.  638 

In the investigated area, the most impacted groundwater is that hosted in the alluvial fans of the 639 

Alpine and Apennine foothills. This is due to a combination of high soil permeability and presence 640 

of intensive agricultural activities. Aquifers in these areas are characterized by fast circulation and 641 

by great depths of the water table. This finding indicates that, while the input of nitrates in these 642 

areas has led to present-day high concentrations, groundwater contamination would be quickly 643 

remediated if the N excess input were reduced. In addition, it is worth stressing that, in the study 644 

area, the general assumption that the deeper the water table, the higher the groundwater 645 

protection from contamination, is not verified. On the contrary, nitrate contamination is absent in 646 

most low plain areas, where the water table is shallow but soil permeability is lower. This is due to 647 

the presence of environmental conditions favourable to denitrification processes, as also indicated 648 

by other hydrochemical parameters (Fe, Mn, NH4
+). While this is the general case in low plain 649 

areas, in certain cases (e.g. Poirino Plateau in Piedmont), denitrification, although present, is not 650 

sufficient to fully abate nitrates because of the high input coupled to the low dilution potential of 651 

the aquifer.  652 

As the 15N median values are significantly correlated at the basin scale with pig farming, manure 653 

spreading represents one of the main nitrate sources in groundwater from agriculture, the other 654 

being synthetic fertilizers. Based on this evidence, pig manure management should be carefully re-655 

evaluated and should be favoured in the low plain areas deprived of nitrates in groundwater, since 656 

the local hydrogeological setting allows nitrates to be metabolized in the environment with few 657 

consequences for the water resources.  658 

Despite the relatively low number of available B isotope data, this systematics has provided 659 

interesting results in terms of nitrate contamination origin in such a low geogenic-B context. 660 

Indeed, it has proved the presence of another anthropogenic nitrate source, of civil origin, that is 661 

sewage in the study area. The garnering of all the data has allowed us to define the range of the 662 

expected geogenic B signature, and new results on the local B sources have been produced. This is 663 

a significant step forward for the use of the coupled 15N - 11B toolbox, as the application of the B 664 

systematics in the study area was previously limited by a poor definition of the compositional end-665 

members, both in terms of natural background and of potential contamination sources. To further 666 



 

 

enhance the application of this isotopic systematics, when sampling for nitrate isotopes, it would 667 

be advisable to collect and set aside a water aliquot (< 250 ml of untreated sample) that can be 668 

used for B isotope determinations even years later, should the investigation require it. 669 

This georeferenced set of hydrochemical and isotopic data will lay the foundations  for future 670 

monitoring activities and allow for an exploitation of already existing data from a different 671 

perspective, e.g. by advanced data treatment or modelling. Since the hydrogeological setting is 672 

similar throughout the Po and Veneto plains (Fig. 1 and Fig. 2), and shows common features to 673 

alluvial basins located near mountain ranges, the conceptual model of nitrate circulation and the 674 

processes affecting nitrate concentrations revealed by this study can be reasonably extrapolated 675 

to other areas of the watershed not yet investigated with isotopic tools, and serve as a reference 676 

for other study areas worldwide. In addition, based on the results of this study, different 677 

management options could be considered by decision-makers to reduce the impact of nutrients 678 

on water bodies. These relate to i) the amount of fertilizers used in agriculture, for example by 679 

tailoring their use to the actual crop needs. This option has already been adopted in municipalities 680 

declared as NVZ in order to obtain the derogation to the Nitrate Directive (European Commission, 681 

2012); ii) the type of fertilizer used and the timing of application. This management option should 682 

balance the advantages and disadvantages of the use of manure and synthetic fertilizers in 683 

agricultural areas characterized by different soil permeabilities and agronomical practices; iii) the 684 

amount of water used for irrigation, in order to prevent the leaching of nutrients to the subsurface 685 

and increase their residence time in the soil; iv) the civil sources of N, for example by connecting 686 

isolated households to sewer pipes, checking the integrity of the sewage network and remediating 687 

leaching septic tanks. 688 
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sotterranee del settore di pianura dell’Oltrepò Pavese (pianura lombarda meridionale). Giornale di 894 

Geologia Applicata, 59-74 895 

Pilla, G., Torrese, P., Bersan M., 2010. Application of hydrochemical and preliminary geophysical 896 

surveys within the study of the saltwater uprising occurring in the Oltrepò Pavese plain aquifer. 897 
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