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Abstract4

Mimimal models of coordinated behavior of populations living in the same environment5

are introduced for the cases when they either both gain by mutual interactions, or one hunts6

the other one, or finally when they compete with each other. The equilibria of the systems are7

analysed, showing that in some cases the populations may both disappear. Coexistence leads8

to global asymptotic stability for symbiotic populations, or to Hopf bifurcations for predator-9

prey systems. Finally, a new very interesting phenomenon is discovered in the competition10

case: tristability may be achieved showing that the principle of competitive exclusion fails11

in this case. Indeed either one of the competing populations may thrive, but also the case of12

populations coexistence is allowed, for the same set of parameter values.13

Keywords: predator-prey; symbiosis; competitive exclusion; group gathering; tristability;14

ecosystems.15

AMS subject classification: 92D25, 92D4016

1 Introduction17

In the almost one-century-long history of mathematical modeling of population interactions, mostly18

their individualistic behavior has been taken into account. Only relatively recently the effect of19

group defense has been explicitly modeled, [15]. A slightly different concept is herd behavior,20

introduced in [1]. In this paper we extend it to encompass more general situations. We consider21

minimal models for two populations whose intermingling may be beneficial to both of them, ben-22

eficial for one and detrimental for the other one, or harmful for both of them. The classical models23

always assume individualistic behavior of each population, see e.g. Part I of [24]. Here, we re-24

move this assumption by rather using the recently introduced concepts for mimicking the herd25

∗Corresponding author. E-mail: malayb@iitk.ac.in
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group gathering of herbivores. In fact new models of such type have been considered in [1] and in26

several other following papers e.g. [3, 4, 5, 23]. These differ quite a bit from other earlier ideas27

relying on different assumptions on the shape of the functional response, [15], or from more recent28

contributions, [16], in which starting from first principles and using the Becker and Döring equa-29

tions for group size dynamics, a functional response similar to Holling type II (HTII) is derived for30

the predators, although individuals follow a Holling type I (HTI) dynamics. The biological litera-31

ture abounds on social, herd or pack behaviour, using concepts modeled via different mathematical32

tools, e.g. graph theory or game theory, see for instance [17, 31] and the wealth of literature that is33

cited in these papers. In the framework of animals’ socialized behavior these ideas have recently34

been discussed also in [3] and carried over to ecoepidemic systems in which the disease affects the35

predators, [18], or considering several possibilities for the infected prey, that they may remain in36

the herd or be left behind, [8, 22].37

In this paper we confine ourselves only to the pure demographic situation, i.e. to models in the38

absence of the disease. The basic picture is herbivores that gather in a herd and wander grazing39

grass, assumed to be always available; when it becomes scarce, the herd moves to more favorable40

pastures. When predators are considered, we assume them also to gather in a pack, follow the41

herbivores and hunt them in a coordinate fashion. At the individual level, each individual competes42

with its similars for space, as the resource is assumed, as said above, always available. Thus, the43

logistic form for the population growth is a suitable assumption. At the population level, the44

interaction is assumed to occur, again on a one-to-one basis, only among the individuals in the two45

populations that occupy the outermost positions in each group. This is the basic distinctive feature46

of the models introduced in this paper, with respect to [1, 8, 18, 33]. In these former studies, in47

fact, only one of the two interacting populations gathers in a herd, while the other one behaves48

individualistically.49

We consider two populations, each forming a group, that interact in various ways. In particular,50

for the predator-prey case, when the predators’ pack hunts the prey some individuals generally have51

a larger benefit. They are those that either take the best (social) positions because they are stronger52

and therefore attack the prey before the other ones, obtaining a better gain, or simply those that53

get the most advantageous (spatial) positions in the community in order to get the best share of54

the prey. We assume therefore that in such case positions on the boundary of the pack have the55

best returns for the individuals that occupy them, since they are the first to fall upon the prey. The56

main idea of community behaviors for predators had been considered in [12]. Various forms of57

functional responses are derived corresponding to different assumptions in the hunting behavior,58

e.g. a ratio-dependent response function is obtained when predators are localized, i.e. the geometry59

of the pack is not changed by adding more predators to it. On the other hand, the Hassell-Varley60

function, [21], is obtained if the prey are captured in proportion to the area swept by the pack,61

which depends on its front section.62

In the present investigation, when a predator-prey interaction is considered, we examine two63

situations for the prey, namely when they behave individualistically or when they gather in herds,64

following the assumptions of [1]. In the latter situation, the most harmed prey during predators’65

hunting are those staying on the boundary of the herd.66

Here however we also extend the concept of group gathering to more general types of interac-67
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tions among populations thriving in the same environment. The cases of symbiosis and competition68

are also well-known in the literature, for the Lotka-Volterra competition system in particular see69

[34]. Again, the classical approach, in which both populations behave individualistically, will be70

replaced by more social attitudes, such as herd or pack behavior. In part this idea has been intro-71

duced in [1], but assuming that only one population behaves socially, the individuals of the other72

one live independently of each other. Thus, we extend now the analysis to the case in which both73

populations show a community behavior, both when each one of the two communities benefits74

from the interactions with the other one, as well as to the case in which the communities compete75

with each other. More specific ecological examples will be discussed below.76

The systems introduced here are intended to be minimal, in order to emphasize their outcomes77

due to the specific herd behavior assumptions made. In this idealized setting, the interactions oc-78

curring on the edge of the pack are mathematically modeled via suitable nonlinear functions of the79

populations. These nonlinearities are purposely chosen to replace the classical terms coming from80

the mass action law, containing products of the two populations. These nonlinearities represented81

by Gompertz-like interaction terms, i.e. terms in which the populations appear raised to a fixed ex-82

ponent, whose value is 1
2
. This value comes from its geometric meaning, it represents the fact that83

the perimeter of the patch occupied by the population is one-dimensional, while the patch itself is84

two-dimensional, as explained in detail below.85

The basic ideas underlying modeling herd behavior have been expounded in [1]. For the benefit86

of the reader we recall here the main steps. Consider a population that gathers together. Let P87

represent its size. If this population occupies a certain territory of size A, the number of individuals88

staying at the outskirts of the group, be it the pack or the herd, is directly related to the length of89

the perimeter of the territory occupied by the herd. Therefore its length is proportional to
√
A. We90

take the population P to be homogeneously distributed over the two-dimensional domain A. Thus91

its square root, i.e.
√
P will count the individuals on the perimeter of the territory.92

Let us assume that another population Q intermingles with the one just considered. At first,93

assume that Q behaves individualistically, the individuals do not gather in a group. We assume94

that the interactions of the latter with the former population occur mainly via the individuals in it95

living at the periphery, which are proportional to
√
P , as mentioned. Thus the interaction terms in96

this case are proportional to Q
√
P .97

Instead let us now assume that the second population Q gathers in a group and intermingles with98

P . Assuming again that the interactions of the two populations occur mainly via the individuals99

living at the periphery, in this case the interaction terms must be proportional to the subsets of the100

two populations on the edge of their respective groups and therefore will contain square root terms101

for both populations. They will thus be modeled via
√
Q
√
P .102

Further, interactions between population can be of different types. They can benefit both, in103

the case of symbiosis. Alternatively they can damage both populations, when they compete among104

themselves directly or for common resources. Finally, one population receives an advantage at105

the expense of the other one; this happens in the predator-prey situation. As a consequence, note106

that these mathematical differences involve sign changes in the corresponding interaction terms.107

With the exception that involves pack predation and individual prey, not considered in [1], we will108

concentrate on models involving both populations with individuals sticking together. In the models109

3



under scrutiny in this paper, we keep the biological setting to a minimum, in order to highlight the110

differences that this formulation entails with respect to the classical one-to-one interaction models.111

To better ecologically motivate the models, we illustrate here some possible biological exam-112

ples for each envisaged situation.113

For the predator-prey case a simple example of the two possible demographic interactions is114

provided by wolves (Canis lupus) or other carnivores hunting in packs either isolated prey or herds115

of herbivores.116

The symbiotic case can be illustrated in several ways. There are several associations between117

populations that are beneficial to both, or beneficial to one and neutral for the other one. For118

instance, in the roots of legumes, diverse microbiomes, rhizobia, nitrogen-fixing bacteria are found,119

while in alder root nodules thrive actinomycete nitrogen-fixing Frankia bacteria, [27], [29] p. 142,120

so that, mainly producing malate and succinate dicarboxylic acids, photosynthesis can occur. Fungi121

can penetrate the cortex cells of the plant’s secondary roots, thereby forming an association named122

mycorrhiza. Most of land ecosystems depend on the beneficial associations between mycorrhyzal123

fungi, that extract minerals, inorganic nitrogen and phosphorus, from the ground and the plants,124

fixing carbon from the air, [20]. The fungi may also secrete antibiotics thereby protecting the125

host plant from parasitic fungi and bacteria. It is well known, [30], that symbiotic relationships126

among fungi in arbuscular mycorrhizas involve about 80% of the plants. Note that we mention127

this example in spite of the fact that it represents a three-dimensional structure. It therefore would128

require a modification of the square root term in our model, which would become the power 2/3.129

Indeed this is the ratio of surface area to volume in a three-dimensional situation and would replace130

the ratio perimeter to area of the two-dimensional case. In a very recent investigation, this problem131

has been addressed in its full generality, [6], allowing for a general exponent α encompassing132

also possible fractal domains. Although we could also consider the general situation in this paper,133

however, we prefer to address the square root situation only, to better illustrate the ecological134

implications without obscuring them with more complicated mathematics.135

Another instance of association beneficial to both populations is provided by bullhorn acacia136

trees harboring stinging ants among their thorns. The acacia tree provides the ants with food, its137

very sweet nectar exhudating from nectaries, its specialized structures, and the Beltian bodies,138

food nodules growing on the leaves. Ants in turn attack anything approaching the perimeter of139

their host, even killing branches of neighboring trees and removing all the vegetation around their140

tree’s trunk. Epiphytes, like orchids and other members of the pineapple family, thrive on the edge141

of stronger plants gaining better sunlight exposure, but do not assume nourishment from their host.142

In the marine world finally, the mollusc Elysia viridis (Mollusca) hosts the endosymbiont143

Codium fragile, that produces Photosynthates, while obtaining protection and inorganic nutrients,144

[32].145

In all these examples, note that the interactions occur on the perimeter of the occupied areas146

of each population, or through the surface of their leaves or roots. It makes therefore sense to147

investigate these population interactions via square root terms as explained above.148

For the case of competing populations, an example of this situation is provided by herbivores149

sharing, or better, competing, for grass in high pastures. In the Alps, during the summer season150

domestic animals like goats and cows are brought into the high pastures for feeding. These herds151
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become in close contact, but do not intermingle, with the wild herds of chamoises (Rupicapra r.152

rupicapra) and ibexes (Capra i. ibex). Thus the interactions among domestic goats and cows with153

wild herbivores, occurring at the edge of the respective herds, has negative consequences for both,154

as food is subtracted from one population to the other one, and vice versa. Note that the interactions155

are really close, so that even diseases like infectious keratoconjunctivitis can be transmitted from156

one herd to the other one, [25].157

The paper is organized as follows. The next Section presents the two predator-prey cases. Sec-158

tion 3 investigates the cases of symbiosis. Section 4 presents the competing populations, showing159

new unexpected results with respect to the corresponding classical case. A final discussion con-160

cludes the paper, comparing these findings with the classical models. The appendix contains the161

mathematical preliminaries, the analysis of the system’s equilibria and the investigation also of the162

more complex behavior of these models.163

To sum up, the novelty of this work lies in the study of predators’ pack hunting of either indi-164

vidual or herd-gathered prey, Both minimal models introduced in Section 2 are therefore new, in165

view of the presence of the square root terms for the predators. For the symbiotic and competing166

cases, again the models are new because they contain square root terms for both interaction terms.167

The findings indicate an unexpected outcome for the competition, namely tristability, which is im-168

possible for the classical case of 1-1 interactions among competing populations. This results shows169

that the principle of competitive exclusion may not hold under these “peripheral interactions” as-170

sumptions.171

2 The predator-prey cases172

In this section, we let P (t) represent the predators and Q(t) denote the prey populations as func-173

tions of time t. There are two possible different situations that can arise, when predators hunt in a174

coordinate fashion: the prey can either wander about in an isolated fashion, or can gather together175

in herds.176

In the two models that follow, the parameters bear the following meaning. The parameter r is177

the net growth rate of the Q population, with K being its environment’s carrying capacity. The178

hunting rate on the prey is denoted by the parameter q, while p denotes its reward for the predators179

and m is their natural death rate. The following systems will be considered, in which all the180

parameters are assumed to be nonnegative.181

First, the predator-prey interactions of pack–individualistic type, for a specialized predator182

dQ

dt
= r

(
1− Q

K

)
Q− q

√
PQ,

dP

dt
= −mP + p

√
PQ. (2.1)

Secondly, the pack predation–herd behavior, system, for a specialized predator183

dQ

dt
= r

(
1− Q

K

)
Q− q

√
P
√
Q,

dP

dt
= −mP + p

√
P
√
Q. (2.2)

Corresponding models for the case of generalist predators could be formulated, but are not consid-184

ered here to reduce the length of the paper.185
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If one of the two populations disappears the system reduces to one equation. In this circum-186

stance if the prey survive, they follow a logistic growth toward their carrying capacity, while if187

they vanish, the predators cannot survive. In fact when Q = 0 the equation for the predators shows188

that they exponentially decay to zero. This makes sense biologically, since these are specialistic189

predators. Thus in these two models the disappearance of both populations is a possibility. The190

equilibrium corresponding to population’s collapse is the origin. Its stability can be analysed by a191

simple expansion of the governing equations near zero, keeping only the dominant terms.192

The predator-prey case (2.1) leads to

dQ

dt
∼ rQ > 0,

dP

dt
∼ −mP < 0,

so that the origin is unstable. In the case (2.2) instead we find

dQ

dt
∼
√
Q(r

√
Q− q

√
P ),

dP

dt
∼

√
P (−m

√
P + p

√
Q)

and both populations under unfavorable circumstances may well disappear. This happens when193

√
Q√
P

< min

{
m

p
,
q

r

}
. (2.3)

2.1 Pack predation and individualistic prey behavior194

We consider now (2.1). The following results hold. Their mathematical proofs are found in Ap-195

pendix A1.1. All positive solutions of (2.1) are forward bounded. Here the coexistence equilibrium196

E
[pi]
2 can be evaluated explicitly,197

E
[pi]
2 =

(
rmK

rm+ pqK
,

r2p2K2

(rm+ pqK)2

)
, (2.4)

is clearly always feasible and it is always locally asymptotically stable. Moreover, no persistent198

oscillatory behavior is allowed and as a further consequence the coexistence equilibrium must also199

be globally asymptotically stable. In summary, for strictly positive initial conditions, the ecosystem200

populations evolve necessarily to the values given by the coordinates of E
[pi]
2 , independently of the201

state of the system that is considered as a starting value.202

2.2 Pack predation and prey herd behavior203

We focus now on (2.2), please refer to Appendix A1.2 for more details. Once again, also in this204

case all positive solutions of (2.2) are forward bounded.205

The coexistence equilibrium E
[ph]
2 has the following analytic representation206

E
[ph]
2 =

(
rm− pq

rm
K,

rm− pq

rm3
Kp2

)
(2.5)
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and it is feasible for207

rm ≥ pq. (2.6)

When it is unfeasible, the origin is then the only possible equilibrium. Both populations vanish208

also when (2.6) becomes an equality. This is further asserted by recalling the fact that in the case209

of (2.2) the origin might indeed be achievable, (2.3). Note that when locally asymptotically stable,210

the origin is also globally asymptotically stable. In addition, there is a transcritical bifurcation for211

which E
[ph]
2 emanates from the equilibrium E0 when the parameter r raises up to attain the critical212

value r∗ = pqm−1.213

The coexistence equilibrium of the system (2.2) is locally asymptotically stable if (A.17) holds;

in such case we must have

r > max

{
m,

3pq −m2

2m

}
.

But in the range
pq

m
< r < max

{
m,

3pq −m2

2m

}

we find that E
[ph]
2 is unstable. Furthermore, the ecosystem starts oscillating in a persistent manner214

around the coexistence equilibrium when the bifurcation parameter r crosses the critical value215

r = r† =
3pq −m2

2m
. (2.7)

Figure 1 shows the limit cycles for the dimensionalized model (2.2), letting the simulation run for216

long times to show that the oscillations are indeed persistent, using the Matlab integration routine217

ode23t.218

Finally, it is worthy to note an interesting phenomenon that hardly occurs in population models,219

that has already been remarked in [33, 18], namely the fact that the system (2.2) admits trajectories220

for which the prey go to extinction in finite time, if the initial conditions lie in the set221

Ξ =
{
(Q,P ) : P > 0, 1 ≥ Q ≥ exp

(
−q

r

√
P
)}

, (2.8)

We summarize the equilibria of system (2.2) in the following table.222

7



Parameter conditions E0 E
[ph]
2 Bifurcation

r < min
{
m,

pq

m

}
stable unfeasible

r < m, r∗ =
pq

m
transcritical

r > max

{
m,

3pq −m2

2m

}
unstable stable

r > m, r = r† =
3pq −m2

2m
Hopf

r > m
pq

m
< r <

3pq −m2

2m
unstable unstable

r > m
3pq −m2

2m
> r unstable unfeasible

223
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Q
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2.2
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x 10
4

2.2

2.3

2.4

2.5

2.6

Q
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4
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2.5

2.6

P

Figure 1: Left: time series of the system trajectories (2.2) up to t = 1500; Right: the same

situation, but followed for a much longer time, up to t = 15000, to show that these are really

persistent oscillations. The original parameter values are r = 0.75937, m = 0.299, p = 0.297,

q = 0.61, K = 12; The initial condition is (2.44, 2.36), with coexistence equilibrium E
[ph]
2 =

(2.4253, 2.3930). With these values we obtain e = 1.2698 and f = 0.5066 so that we are above

the dashed line, e − 2f = 0.2566 > 0 (coexistence feasibility), but below the continuous line,

0.25 + e − 3f = −1.605 × 10−5 < 0 (coexistence instability). The eigenvalues of the Jacobian

at equilibrium, 0.48 × 10−6 ± 0.1515 i, with positive real part, and the trace of the Jacobian

9.6× 10−6 > 0, also positive, both show instability.

3 The symbiotic model224

For the mathematical details of this section, please refer to Appendix A2. Let us denote by P (t)225

and Q(t) the sizes of two populations in consideration as functions of time t. The parameters r226
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and m are the growth rates respectively of the Q and P populations, with KQ and KP denoting227

their carrying capacities. Beneficial interaction rates between the two populations are denoted by228

the parameter q for the Q population and by p for the P ’s. The following symbiotic system is229

considered, in which all the parameters are assumed to be nonnegative:230

dQ

dt
= r

(
1− Q

KQ

)
Q+ q

√
P
√
Q,

dP

dt
= m

(
1− P

KP

)
P + p

√
P
√

Q. (3.1)

If one of the two populations disappears the system reduces to one equation and the surviving231

population tends to its own carrying capacity.232

The equilibrium corresponding to both population’s collapse is the origin. Its stability can be

analysed by a simple expansion of the governing equations near zero, keeping only the dominant

terms:
dQ

dt
∼
√
Q(r

√
Q+ q

√
P ) > 0,

dP

dt
∼

√
P (m

√
P + p

√
Q) > 0.

Thus both symbiotic populations cannot vanish.233

The investigation of the coexistence equilibrium ES
3 of both populations shows that it results234

unconditionally feasible and the system trajectories remain forward bounded. Further, populations235

cannot exhibit persistent oscillations around this point, as Hopf bifurcations are shown never to236

arise, and the system trajectories remain forward bounded. These results imply also that the co-237

existence equilibrium is globally asympotically stable. Summing up these considerations, in this238

case the ecosystem always evolves toward an equilibrium point at which both populations thrive,239

this being independent of its initial or present conditions.240

4 The competition model241

As for the symbiotic model let P (t) and Q(t) denote the populations of interest, r and m their net242

growth rates, KQ and KP their carrying capacities, q and p their competition rates. The competing243

model, where all the parameters are nonnegative, is244

dQ

dt
= r

(
1− Q

KQ

)
Q− q

√
P
√
Q,

dP

dt
= m

(
1− P

KP

)
P − p

√
P
√
Q. (4.1)

First of all, the model is ecologically well-posed in view of the fact that the positive solutions245

of (4.1) are forward bounded. Again the details are contained in Appendix A3.246

Again, if one of the two populations disappears the surviving one grows logistically to its own

carrying capacity. This ecosystem can also totally disappear, since the stability of the origin can be

analysed by a simple expansion of the governing equations near zero, keeping only the dominant

terms:
dQ

dt
∼
√
Q(r

√
Q− q

√
P ),

dP

dt
∼

√
P (m

√
P − p

√
Q).

In this case both populations may disappear, when247

m

p
<

√
Q√
P

<
q

r
. (4.2)
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The coexistence equilibria can be obtained as an intersection of cubic functions, shown in Fig-248

ure 2. Several outcomes are possible, giving rise in some cases to multiple equilibria. Specifically,249

if250

pq > rm (4.3)

no feasible coexistence equilibria exist. If251

pq < rm (4.4)

at least one feasible equilibrium exists, EC
3 = (XC

3 , Y
C
3 ). Further, in such case, three equilibria252

may exist, i.e. EC
4 , EC

3 and EC
5 , ordered for increasing values of their abscissae. The sufficient253

conditions ensuring these three equilibria to exist are254

m

p

2

3
√
3
>

√
KQ√
KP

>
q

r

3
√
3

2
(4.5)

In addition, the equilibria for which either one of the conditions255

Q <
KQ

3
, P <

KP

3
, (4.6)

hold are unstable.256

Considering Figure 2, in the case of just one equilibrium, it must have at least one coordinate257

to the left (or below) the one of the local maximum of the function. In the plot, it has the abscissa258

smaller than the one of the local maximum of the parabola with vertical axis (i.e. the function259

Y[1](X) given by (A.24) in Appendix A3). Thus when EC
3 is unique, it must be unstable. For the260

case of three equilibria, evidently EC
4 and EC

5 have either the abscissa (EC
4 ) or the height (EC

5 )261

satisfying the corresponding condition in (4.6). Hence these two equilibria must be unstable as262

well.263

In case of three equilibria, the system exhibits the following additional feature. The equilibrium264

EC
3 for which both the conditions265

Q >
KQ

3
, P >

KP

3
, (4.7)

hold is locally asymptotically stable. There is a subcritical pitchfork bifurcation: from the unstable266

EC
3 three equilibria emanate, with the equilibrium EC

3 becoming stable and the other ones being267

unstable.268

Finally, no persistent oscillations around the coexistence equilibrium can arise.269

In Figure 3 we show the behavior of the two populations in the phase plane in each of the three270

possible cases.271

4.1 Bifurcations272

In this section we describe the possible local bifurcations that can take place for the appearance273

and disappearance of interior equilibrium points through two types of local bifurcations, namely274
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Figure 2: Referring also to Figure 12, we show here the coexistence equilibria possible scenarios.

Left: for (4.3) no feasible equilibrium exists for the parameter values r = 0.9, m = 0.3, p = 0.9,

q = 0.3, Kp = 10, Kq = 10; the two dots on the axes the two possible system’s outcomes,

implying the principle of competitive exclusion. Center: (4.5), just one feasible equilibrium EC
3 ,

for the parameter values r = 0.9, m = 1.8, p = 0.9, q = 0.3, Kp = 10, Kq = 10; Here coexistence

is feasible but unstable. Right (4.4) for the parameter values r = 0.9, m = 3, p = 0.9, q = 0.3,

Kp = 10, Kq = 10; the three equilibria EC
4 , EC

3 and EC
5 are ordered left to right, for increasing

values of their abscissae; E3, the point in the middle, becomes stable, while the new arising points

to its left and right, EC
4 and EC

5 , are unstable. In all the frames, the blue continuous line denotes

the population X(τ) =
√

Q(t)K−1
Q nullcline, while the red dashed line shows the population

Y (τ) =
√
P (t)K−1

P nullcline, with variable transformations indicated in the Appendix A0.

pitchfork and saddle-node bifurcation. It is important to mention here that the proofs of desired lo-275

cal bifurcations can not be provided with the model (4.1). To prove the fulfilment of the conditions276

required for the local bifurcations, we thus rather need to consider a transformed model. In what277

follows we just describe the possible bifurcations, while the detailed proofs of their occurrence are278

provided at the appendix A5.279

We investigate first the generation of the interior equilibrium point from the trivial equilibrium280

point (0, 0) through a pitchfork bifurcation. We consider the model (4.1), fix the parameter values281

r = 0.9; KQ = 10; q = 0.3; KP = 10; p = 0.9 and let m be the bifurcation parameter. For282

m = 0.3, two non-trivial nullclines of (4.1) are tangent to each other at (0, 0) and we find at least283

one interior equilibrium point for m > 0.3. One interior equilibrium point is generated through284

a pitchfork bifurcation, another one is not relevant as its components fail to satisfy the feasibility285

condition. This pitchfork bifurcation threshold is denoted by mPF .286

We investigate first the generation of the interior equilibrium point from the trivial equilibrium287

point (0, 0) through a pitchfork bifurcation. The system (4.1) possesses only one interior equilib-288

rium point for the above mentioned parameter values in the range mPF < m < 2.059 ≡ mSN .289

It has instead three interior equilibrium points, with both components positive, for m > mSN .290

These two new interior equilibrium points are generated through a saddle-node bifurcation at291

m = 2.059 ≡ mSN . For r = 0.9, KQ = 10, q = 0.3, KP = 10, p = 0.9 and m = 2.059 = mSN ,292

we find one equilibrium point at E1(1.196374618, 8.345124260) and two coincident equilibrium293
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Figure 3: The three possible populations behaviors. Left: the origin is stable, both populations

get extinguished; achieved with parameter values r = 2, m = 2, p = 33, q = 33, Kp = 4,

Kq = 3 and 200 randomly generated initial conditions, represented by the empty red circles. Note

that this occurs also at finite time, when trajectories do not go directly to the origin, but end up

on the coordinate axes and then follow them until the origin. Center: bistability and competitive

exclusion, only one population survives; achieved with parameter values r = 0.8888, m = 0.602,

p = 0.401, q = 0.5998, Kp = 16.5, Kq = 10 and 200 randomly generated initial conditions.

Right: tristability, either one population only survives, or the other one, or both together; achieved

with parameter values r = 0.7895, m = 0.7885, p = 0.225, q = 0.2085, Kp = 12, Kq = 10 and

200 randomly generated initial conditions. The green full dots, two on the two coordinate axis and

one in the first quadrant represent instead the stable equilibria.

points E∗(7.681094754, 3.717334465). The pitchfork and saddle-node bifurcation scenario are294

shown in Fig. 4 (left).295

Depending upon the magnitude of the parameters, we can observe the occurrence of two con-296

secutive saddle-node bifurcations. As a result we obtain one coexisting equilibrium point for two297

disjoint sets of parameter values and in between we find three interior equilibria. To make this298

idea more clear, we choose r = 0.5; KQ = 10; q = 0.3; KP = 6; p = 0.9 and let m be the299

bifurcation parameter as before. Here the relevant thresholds are mPF = 0.54, mSN1
= 2.427,300

mSN2
= 2.7. We find a unique interior equilibrium point when mPF < m < mSN1

and c > cSN2
.301

Two more interior equilibrium points are generated through the first saddle-node bifurcation thresh-302

old at m = mSN1
and again disappear through the second saddle-node bifurcation at m = mSN2

.303

These bifurcation scenarios are presented in Fig. 4 (right).304

5 Discussion305

5.1 Comparison with the classical cases306

5.1.1 The predator-prey ecosystems307

In order to compare these results quantitatively, we consider also the classical model with logistic308

correction. This is needed because if we rescale it, since it does not contain the square root terms,309
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Figure 4: Left: Bifurcation diagram showing the generation of first interior equilibrium point

through pitchfork bifurcation followed by the generation of two more interior equilibria through

saddle-node bifurcation. Parameter values: r = 0.9, KQ = 10, q = 0.3, KP = 10, p = 0.9. Right:

Bifurcation diagram showing the generation of first interior equilibrium point through pitchfork

bifurcation followed by the generation and subsequent disappearance of two interior equilibria

through two consecutive saddle-node bifurcations. Here the parameter values are r = 0.5, KQ =
10, q = 0.3, KP = 6, p = 0.9.

we would find a different adimensionalization, rendering the comparison difficult. Thus we rather310

return to the original formulations also for (2.1) and (2.2).311

The dimensional form of the coexistence equilibria of the two models (2.1) and (2.2) are (2.4)

and (2.5). The dimensional form of the coexistence equilibrium of the classical Lotka-Volterra

with logistic correction and of the predator-prey model with individualistic hunting and prey herd

behavior, [1], instead are respectively

C∗ ≡
(
m

p
,
r

q

(
1− m

pK

))
, Ẽ2 =

(
m2

p2
,
mr

pq

(
1− m2

p2K

))
.

At these points, the prey equilibrium values depend only on the system parameters m and p, i.e.312

the predators’ mortality and predation efficiency. Thus they are independent of their own reproduc-313

tive capabilities and of the environment carrying capacity. Further, when the predators’ hunting314

efficiency is larger than the predators’ own mortality, i.e. m < p, the equilibrium prey value is315

much lower if they gather in herds, i.e. in Ẽ2, while on the contrary the predators attain instead316

higher values, again at Ẽ2. Conversely, when m > p the prey grouping together, Ẽ2, allows higher317

equilibrium numbers than for their individualistic behavior; the predators instead settle at lower318

values if the prey use a defensive strategy, Ẽ2, and higher ones with individualistic prey behavior,319

at C∗.320

For (2.1) and (2.2), i.e. with coordinated hunting, the equilibrium values involve also the prey321

own intrinsic characteristics. In particular for (2.2) the ratio of the predators’ hunting efficiency p322

versus the square of their mortality m determines if the predators at equilibrium will be more than323

the prey, see E
[ph]
2 .324

A similar result possibly extends for the model of pack hunting coupled with loose, i.e. individ-325

13



ualistically behaving, prey, (2.1), but at E
[pi]
2 the predators population at equilibrium contains the326

prey population squared and in principle the latter may not exceed 1, so that the conclusion would327

not be immediate. Indeed, at the equilibria E
[pi]
2 and E

[ph]
2 , the prey populations are the multiplica-328

tion of the fractions in the brackets, always smaller than 1, by the carrying capacity K, which may329

or not be large. The result could indeed give a population smaller than 1. This in principle is not330

a contradiction, because the population need not necessarily be counted by individuals, but rather331

its size could be measured by the weight of its biomass.332

5.1.2 The symbiotic ecosystem333

We now try to understand how socialization may possibly boost the mutual benefit of the system’s334

populations.335

The symbiotic model has always a stable coexistence equilibrium, while in the classical model336

the corresponding point ÊS
3 could be unfeasible, and in such case the trajectories will be un-337

bounded. This is biologically questionable, in view of the limited amount of resources available,338

However, it shows that in this situation the one-to-one relationship among individuals of different339

populations may lead to higher benefits for both of them, than the case in which interactions occur340

only through the marginal areas of contact among them.341

Considering instead only parameters choices where ÊS
3 is feasible, we compare the resulting342

populations levels for the new and the classical model. Taking for both cases r = 3, m = 3,343

KQ = 6, KP = 7, q = 0.3, and p = 0.5, the behaviors are shown in Figure 5. Starting from the344

same initial conditions, different equilibria are reached.
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Figure 5: Left: time series of the symbiotic systems (A.19), red continuous, and (3.1), dashed blue,

trajectories: top frame Q, bottom frame P ; Right: phase plane for classical (A.19) and new (3.1)

symbiotic model. Parameter values: r = 3, m = 3, KQ = 6, KP = 7, q = 0.3, and p = 0.5.

Trajectories originate from the same initial condition (5, 20). The full green dots represent the final

equilibrium values.
345

Clearly the population level is higher in the classical model. The numerical values we obtained346

are Q = 6.66, P = 8.06 for the herd model and Q = 33.99, P = 46.69 for the classical model.347
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This makes sense, since in symbiotic models the benefit comes from the mutual interactions348

between populations. If the latter are scattered in the environment it is more likely for each in-349

dividual of one population to get in contact with one of the other. On the other hand, when herd350

behaviour is exhibited, only individuals on the outskirts interact with the other population and as351

a consequence the innermost individuals receive less benefit since they hardly have the chance to352

meet the other population.353

5.1.3 The competition ecosystem354

While the classical case exhibits the principle of competitive exclusion, here, instead, we have355

found that in the presence of community behavior of both populations, the same occurs, but there356

is another possibility, namely tristability. When the conditions arise, the coexistence equilibrium357

may be present together with the equilibria in which one population vanishes. Therefore the sys-358

tem’s outcome is once more determined by the initial conditions, but this time the phase plane359

is partitioned into three basins of attractions, corresponding each to one of the possible equilib-360

ria. It would be interesting to compute explicitly the boundary of each one of them. For this task361

state-of-the-art approximation theoretic algorithms have been devised, [9, 10, 11, 13, 14].362

We now compare the population levels when a coexistence equilibrium is stable in both clas-363

sical and new model. Considering the parameters r = 2, m = 3, KQ = 6, KP = 8, q = 0.2 and364

p = 0.09, with suitable initial conditions, the behavior of the two models is shown in Figure 6.365

From the same initial conditions, trajectories of the two models evolve toward different equilibria.366

The population levels are thus higher in the herd model, at QC = 6.26 and PC = 9.17 while for
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Figure 6: Left: time series of the systems trajectories; Right: phase plane for classical and new

competition model. Parameter values: r = 0.8, m = 0.5, p = 0.05, q = 0.07, Kp = 10, Kq = 7.

Both trajectories originate from the same initial condition (10, 10). The full green dots represent

the equilibrium points.

367

the classic model we find Q̃C = 2.26 and P̃C = 7.74. This is not surprising for the same reasons368

for which the opposite behavior occurs in the symbiotic models. In herd models, only individuals369

at the outskirts meet individual of the other species. This means that individuals at the centre of370
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the flock here receive less harm from the competition. On the contrary, in the classic model, indi-371

viduals of the two populations are mixed together, so that the whole populations are harmed by the372

competition.373

5.2 Conclusions374

We have presented four models for non-classical population interactions, in that the populations375

involved in some way exhibit a socialized way of living. This investigation completes the one376

undertaken in [1], in that all the situations that are possible in terms of individualistic or gathering377

populations behavior are now analysed. The models missing in [1] are presented here: we allow378

predators to hunt in packs, as well as both intermingling populations to gather together, in the two379

cases of symbiosis and competition, so that they interact not on an individualistic basis, but rather380

is some coordinate fashion.381

The newly introduced symbiotic model on a qualitative basis behaves like the classical one.382

The populations settle always at the coexistence equilibrium. Only, their levels are quantitatively383

smaller than in the classical case since the mutually beneficial interactions in the new model are384

somewhat reduced.385

For predator-prey interactions in the presence of predators’ pack hunting, we may have the prey386

behave in herds or individualistically. The most prominent discrepancy between these two cases387

is the fact that both populations may disappear, under specific unfortunate conditions, when the388

prey use a defensive coordinate strategy. This does not happen instead if they move loose in the389

environment, i.e. exhibit individualistic behavior, since they attain a coexistence equilibrium. This390

finding is quite counterintuitive, because it could imply that the defensive mechanism is ineffective.391

But an interpretation could be provided, since herds are more easily encountered by predators in392

their wanderings than individuals who can more easily hide in the terrain configuration. Once the393

prey herds are completely wiped out, the predators also will disappear, since they are assumed not394

to be generalist, i.e. their only food source is the prey under consideration. Ecosystem extinction395

has also been rarely observed in the model without pack predation, [33]. The system with prey396

herd behavior also shows limit cycles, i.e. the populations can coexist also through persistent397

oscillations, not only at a stable equilibrium, which instead is the only possible system’s outcome398

for the model with individualistic prey. A similar result had been discovered earlier in case of399

individualistic predators hunting, [1], constituting the major difference between the prey group400

defense model with uncoordinated predation and the classical predator-prey system. Finally, on401

the quantitative side, the coexistence population values for these two models with pack hunting402

differ, but without specific informations on the parameter values it is not possible to assess which403

system will provide higher population values.404

The competition system presented here allows again the extinction of both populations, under405

unfavorable circumstances, while this never happens for the classical model. Ecosystem disap-406

pearance occurs when (4.2) holds, a condition that in the nondimensional model is equivalent to407

a > bc, (5.1)

as stated in Proposition 15. When the competition system thrives, it does at higher levels for both408
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populations than those achieved in the classical model. Thus in this case populations coordinated409

behavior boosts their respective sizes, in case the system parameters are in the range for which410

coexistence occurs.411

But the major finding in this context of social behavior among all possible populations behav-412

ior is found for the competition case. Indeed the system in suitable conditions can show the phe-413

nomenon of competitive exclusion as the classical model does, but in addition we have discovered414

that both populations can thrive, together with the situations predicted by the competitive exclusion415

principle. In other words, we have found that the rather simple model (4.1) (or in nondimensional416

form (A.8)) may exhibit tristability, see once more the right picture in Figure 3. This appears to be417

a novel and quite interesting finding further characterizing the systems with socialized behaviors.418

The authors do not know of any other simple related model with such behavior.419
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Appendix510

.1511

A0 - Preliminary results512

A0.1 - Extinction in finite time513

Proposition 1. The system (2.2) admits trajectories for which the prey go to extinction in finite514

time, if their initial conditions lie in the set (2.8).515

Proof. We follow with suitable modifications the argument exposed in [33]. From the second516

equation in (2.2) we get the differential inequality517

dP

dt
≥ −mP (A.1)

from which P (t) ≥ P̂ (t) = P0 exp(−mt), where the function P̂ (t) denotes the solution of the518

differential equation corresponding to (A.1), with P̂ (0) = P (0). From the first equation in (2.2)519

we have further520

dQ

dt
≤ rQ− q

√
P
√
Q ≤ rQ− q

√
P̂
√

Q. (A.2)

Let Q̂(t) denote the solution of the differential equation obtained from (A.2) using the rightmost521

term, with Q̂(0) = Q(0). It follows that Q(t) ≤ Q̂(t). Using the integrating factor W (t) =522

Q̂(t) exp(−rt), we obtain523

√
W (t) =

√
W (0)− q

√
P (0)

m+ r
h(t), h(t) =

[
1− exp

(
−m+ r

2
t

)]
, (A.3)

with finite extinction time t∗ obtained by setting W (t∗) = 0, observing that W (0) = Q̂(0) = Q(0):

t∗ = − 2

m+ r
ln

(
1− m+ r

q

√
Q(0)

P (0)

)
.

The function h(t) in (A.3) is an increasing function of t with h(0) = 0, h(∞) = 1, so that there is524

a t∗ for which W (t∗) = Q̂(t∗) = 0 if and only if525

√
W (0) <

q
√
P (0)

m+ r
. (A.4)

Since W (0) = Q(0), we have Q̂(t∗) = 0 if the following inequality for the initial conditions of the

trajectories is satisfied, √
P (0) >

m+ r

q

√
W (0),

from which the set Ξ given in (2.8) is immediately obtained.526

20



A0.2 - Models simplification527

As remarked in [1], singularities could arise in the system’s Jacobian when one or both populations528

vanish. This may cause difficulties in the analysis, so that we reformulate the model to avoid them.529

For the predator-prey cases rescaling for the model (2.1) is obtained through530

X =
Q

K
, Y =

q
√
P

m
, τ = mt,

and defining the new parameters531

b =
r

m
, c =

pqK

2m2
.

The adimensionalized system for the pack predation–individual prey model can thus be written as532

dX

dτ
= b (1−X)X −XY,

dY

dτ
= −1

2
Y + cX, (A.5)

while in the absence of predators, the system reduces just to the first equation. In this case, easily,533

the prey follow a logistic growth, toward the adimensionalized carrying capacity X1 = 1.534

For (2.2) we have instead

X =

√
Q

K
, Y =

q

2m

√
P

K
, τ = mt.

Define now the adimensionalized parameters

e =
r

2m
, f =

pq

4m2
.

The adimensionalized system for Y > 0 for the pack predation–prey herd ecosystem becomes535

finally536

dX

dτ
= e(1−X2)X − Y,

dY

dτ
= −1

2
Y + fX. (A.6)

For both models (3.1) and (4.1) we instead define new variables as follows

X(τ) =

√
Q(t)

KQ

, Y (τ) =

√
P (t)

KP

, τ = t
q
√
KP

2
√
KQ

,

as well as new adimensionalized parameters

a =
KQ

KP

p

q
, b =

r
√

KQ

q
√
KP

, c =
m
√
KQ

q
√
KP

.

The adimensionalized systems read, for the symbiotic case (3.1)537

dX

dτ
= b(1−X2)X + Y,

dY

dτ
= c(1− Y 2)Y + aX, (A.7)
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while for the competing situation (4.1) we find538

dX

dτ
= b(1−X2)X − Y,

dY

dτ
= c(1− Y 2)Y − aX. (A.8)

All the new adimensionalized parameters are combinations of the old nonnegative parameters539

r, m, p, q, K; as a consequence, they must be nonnegative as well.540

Remark 2. Note that these reformulated group behavior models need a special care in treating541

vanishing populations, because in eliminating the singularity we divide by X and Y , except for X542

in the case (A.5). Therefore all the simplified models (A.7)-(A.6) hold for strictly positive popula-543

tions. If one population vanishes, no information can be gathered by the latter, we rather have to544

turn to the original formulations (3.1)-(4.1).545

For the later analysis of the equilibria stability it is imperative to consider the Jacobians of these546

systems. We find the following matrices respectively, for the predator-prey cases, the Jacobian of547

(A.5) is548

JPP1 ≡
(

b− 2bX − Y −X
c −1

2

)
, (A.9)

while the one for (A.6) reads549

JPP2 ≡
(

e(1− 3X2) −1
f −1

2

)
. (A.10)

Considering the symbiotic and competing situations, for (A.7) we find550

JS ≡
(

b(1− 3X2) 1
a c(1− 3Y 2)

)
(A.11)

and for (A.8) we have551

JC ≡
(

b(1− 3X2) −1
−a c(1− 3Y 2)

)
. (A.12)

A1 - Analysis of predator-prey ecosystems552

A1.1 - Pack predation and individualistic prey behavior553

Proposition 3. All positive solutions of the pack predation-individual prey system (A.5) are for-554

ward bounded.555

Proof. Introducing the environment total population, Z(τ) = X(τ) + Y (τ) and summing the556

equations in (A.5), we have557

dZ

dτ
= −1

2
Y + cX + bX − bX2 −XY = −1

2
Z +

(
c+ b+

1

2
− bX − Y

)
X.
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Take the maximum of the parabola in X on the right hand side, to obtain558

dZ

dτ
+

1

2
Z ≤

(
c+ b+

1

2
− bX

)
X ≤

(
c+ b+ 1

2

)2

4b
≡ M̄.

The above differential inequality leads to

Z(τ) ≤ Z(0)e−
1

2
τ + 2M̄

(
1− e−

1

2
τ
)
≤ max

{
Z(0), M̄

}
= M.

Note that the positive quadrant is positively invariant for (A.5). Indeed, the open positive Y559

axis is an orbit of system (A.5), thus it cannot be crossed by other system trajectories. The axis560

Y = 0 from the second equation instead repels trajectories. Because the total population is for-561

ward bounded, and in view of the fact that the positive quadrant is positively invariant, also each562

individual population X and Y is forward bounded as well.563

Proposition 4. The coexistence equilibrium E
[pi]
2 (2.4) of the system (2.1) is always locally asymp-564

totically stable.565

Proof. If JPP1
2 denotes the Jacobian matrix (A.9) evaluated at E

[pi]
2 , the Routh-Hurwitz criterion566

gives567

det(JPP1
2 ) = −1

2
b+

b2 + 2bc

b+ 2c
=

1

2
b > 0, tr(JPP1

2 ) = −1

2
+b−2b2 + 2bc

b+ 2c
= −2b2 + 2c+ b

2(b+ 2c)
< 0.

(A.13)

Both conditions hold so that the eigenvalues have negative real part and E
[pi]
2 is always a stable568

equilibrium.569

Remark 5. For (A.5) Hopf bifurcations cannot arise at coexistence, since in (A.13) tr(JPP1
2 ) < 0570

is a strict inequality.571

Proposition 6. The coexistence equilibrium E
[pi]
2 of the pack predation-individual prey system572

(A.5) is also globally asymptotically stable in the open positive quadrant.573

Proof. We know already that the open positive quadrant is positively invariant and the solutions574

are forward bounded. Note further that by Dulac’s criterion, no limit cycles can arise. Take indeed575

g(X, Y ) = (XY )−1, to get576

∂

∂X

[
g(X, Y )

dX

dτ

]
+

∂

∂Y

[
g(X, Y )

dY

dτ

]
=

∂

∂X

[
b(1−X)

1

Y
− 1

]
+

∂

∂Y

[
− 1

2X
+

c

Y

]

= − b

Y
− c

Y 2
< 0.

By the Poincaré-Bendixson theorem, global stability follows.577

The phase plane picture also supports these conclusions as well, Figure 7.578
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Figure 7: Phase plane sketch of the model (2.1) with parameters values b = 2, c = 0.3, corre-

sponding to the original parameter values r = 0.6, m = 0.3, p = 0.0072, q = 1.5, K = 5. Blue

continuous line: population X nullcline; red dashed line: population Y nullcline.

A1.2 - Analysis of pack predation and prey herd behavior579

Proposition 7. All positive solutions of the pack hunting-prey herd behavior system (A.6) are580

forward bounded.581

Proof. First of all, for an arbitrary k ≥ 0, we have from the first equation in (A.6):582

dX

dτ
+ kX ≤ (e+ k)X − eX3 = ϕ(X) ≤ ϕm, ϕm = ϕ(Xm), Xm =

√
e+ k

3e
,

from which

X(τ) ≤ max
{
X(0), ϕmk

−1
}
= X̃.

Then from the second equation in (A.6) solving the differential inequality we obtain the estimate583

dY

dτ
≤ −1

2
Y + fX̃, Y (τ) ≤ Y (0)e−

1

2
τ +2fX̃(1− e−

1

2
τ ) ≤ max

{
Y (0), 2fX̃

}
= Ỹ . (A.14)

Furthermore, from the second equation (A.6) the trajectories are repelled away from the X axis.

Recalling that (A.6) holds for X 6= 0, using (A.14) in the first equation of (A.6), we can bound X
only with a possibly negative value:

dX

dt
≥ −eX3 − Ỹ X(t) ≥

(
et+X(0)−2

)− 1

2 − 3

√
Ỹ

3
.

In this case, as discussed in Remark 1, if X drops to the value 0, (A.6) is not valid and we need584

to return to the original formulation (2.2). But for the latter as remarked in [33], on the Y axis585

the differential system does not satisfy the Lipschitz condition, so that uniqueness of the solutions586
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is lost. Technically, there are solutions that drift into the negative X half plane. We need to587

understand that they are not biological, and replace them by trajectories moving downwards along588

the Y axis to the origin. The ecosystem collapses in finite time, as also remarked in [18, 22, 2].589

In view of the fact that the ecosystem may disappear in finite time, [18, 22, 2], recall also the590

set Ξ given in (2.8), we investigate the stability of the origin in (A.6) as well.591

Proposition 8. The origin Ê0 and coexistence Ê
[ph]
2 are the equilibria of the pack hunting-prey592

herd behavior system (A.6), with population values and feasibility condition given by593

Ê
[ph]
2 =

(
X̂

[ph]
2 , Ŷ

[ph]
2

)
, X̂

[ph]
2 =

√
1− 2

f

e
, Ŷ

[ph]
2 = 2fX̂

[ph]
2 ; e ≥ 2f. (A.15)

There is a transcritical bifurcation with Ê
[ph]
2 emanating from Ê0 when the parameter e raises up594

to attain the critical value e∗ = 2f .595

Proof. The first part of the statement is easy. The characteristic polynomial at the origin Ê0 is

λ2 +

(
1

2
− e

)
λ+ f − 1

2
e = 0.

The Routh-Hurwitz stability conditions for the origin Ê0 then become596

2f > e, e <
1

2
. (A.16)

The second claim follows comparing the first inequality in (A.16) with the feasibility condition in597

(A.15). In fact, at e∗ the origin becomes unstable, while instead Ê
[ph]
2 becomes feasible.598

Proposition 9. For the pack hunting-prey herd behavior system (A.6), the equilibrium Ê0 when599

locally asymptotically stable, namely the conditions (A.16) hold, is also globally asymptotically600

stable in the open positive quadrant.601

Proof. Since the open positive quadrant is positively invariant and the solutions there forward602

bounded, using Dulac’s criterion as follows, the existence of cycles is ruled out. This time take603

g(X, Y ) = 1, to get in this case604

∂

∂X

[
g(X, Y )

dX

dτ

]
+

∂

∂Y

[
g(X, Y )

dY

dτ

]
=

∂

∂X

[
e(1−X2)X − Y

]
+

∂

∂Y

[
−1

2
Y + fX

]

= e− 3eX2 − 1

2
< 0,

in view of the second local stability condition of the origin, (A.16). Ê0 must also be globally605

asymptotically stable by the Poincaré-Bendixson theorem.606
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Proposition 10. The coexistence equilibrium Ê
[ph]
2 of the system (A.6) is a locally asymptotically607

stable equilibrium if608

tr(ĴPP2
2 ) = −2e+ 6f − 1

2
< 0. (A.17)

If e > max
{

1
2
, 3f − 1

4

}
(A.17) holds. But if 2f < e < 3f − 1

4
(A.17) is not true and Ê

[ph]
2 is609

unstable.610

Proof. Let the Jacobian evaluated at Ê
[ph]
2 be denoted by ĴPP2

2 . The Routh-Hurwitz conditions are611

now det(JPP2
2 ) = e − 2f > 0, which always holds if the feasibility condition (A.15) is strictly612

satisfied, and (A.17). If the latter holds then Ê
[ph]
2 is stable.613

Figures 8 and 9 illustrate geometrically the two situations in which Ê
[ph]
2 is feasible and when614

it is unfeasible. The different possible ecosystem outcomes in the parameter space, corresponding615

to the various situations of (A.17), are shown in Figure 10.616

Figure 8: Nullclines of system (A.6) with

e ≥ 2f , both Ê0 and Ê
[ph]
2 exist. Parameter

values: e = 2, f = 0.2, r = 0.5, m = 0.125,

p = 0.5, q = 0.025, K = 10. Blue continu-

ous line: population X nullcline; red dashed

line: population Y nullcline. The full dot

indicates the stable equilibrium Ê
[ph]
2 .

Figure 9: Nullclines of system (A.6) with

e < 2f , Ê
[ph]
2 is unfeasible. Parameter val-

ues: e = 2, f = 2.0, r = 0.5, m = 0.125,

p = 0.5, q = 0.25, K = 10. Blue continu-

ous line: population X nullcline; red dashed

line: population Y nullcline. The full dot

indicates the stable equilibrium Ê0.

Proposition 11. The the pack hunting-prey herd behavior system (A.6) admits a Hopf bifurcation617

at the coexistence equilibrium Ê
[ph]
2 when the bifurcation parameter e crosses the critical value e†618

that corresponds to r† given in (2.7).619

e† = 3f − 1

4
. (A.18)
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Proof. In addition to the transcritical bifurcation of Proposition 8, we show now that special param-620

eters combinations originate Hopf bifurcations near Ê
[ph]
2 . Recall that purely imaginary eigenvalues621

are needed, and this occurs when the trace of the Jacobian vanishes. Thus (A.17) must become an622

equality and the constant term in the characteristic equation is positive, det(ĴPP2
2 ) = e− 2f > 0.623

But the latter holds from (A.15).624

Thus the solutions of the system start oscillating in a persistent manner around the coexistence625

equilibrium when the bifurcation parameter e crosses the critical value e†, (A.18). This result is626

observed in Figure 10, where the thick straight line indicates the critical parameter values.627
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Figure 10: Region of the f − e parameter space in which the coexistence equilibrium of (A.6) is

stable.

A3 - Analysis of the symbiotic model628

The classical case629

The results of the classical case,630

dQ

dt
= r

(
1− Q

KQ

)
Q+ qPQ,

dP

dt
= m

(
1− P

KP

)
P + pPQ, (A.19)

are summarized in [1]. Extensions of classical symbiotic systems have been recently investigated,

to models incorporating diseases [19], or to food chains, [7]. In short, the three equilibria in which

at least one population vanishes are unstable, ÊS
0 = (0, 0), ÊS

1 = (KQ, 0) and ÊS
2 = (0, KP ). The

coexistence equilibrium

ÊS
3 =

(
KQm(r + pKP )

rm− pqKPKQ

,
KP r(m+ qKQ)

rm− pqKPKQ

)
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is unconditionally stable when feasible, i.e. rm < pqKPKQ. Note that if ÊS
3 is unfeasible the631

trajectories are unbounded, which is biologically scarcely possible in view of the environment’s632

limited resources.633

The herd behavior case634

Looking for the coexistence equilibria, solving for Y the first equation in (A.7) and substituting

into the second one, we are led to the ninth degree equation

X[a− bc(1−X2)(1− b2X6 + 2b2X4 − b2X2)] = 0.

Factoring out X , the remaining equation is a quartic in X2, but still with cumbersome analytic635

solutions. However, we can turn to a graphical analysis of the system of equations originated by636

(A.7). The coexistence equilibrium will be the intersection of the two cubic functions,637

Ys(X) = bX(X2 − 1), Xs(Y ) =
c

a
Y (Y 2 − 1), (A.20)

obtained from the equilibrium equations of (A.7).638

Proposition 12. The coexistence equilibrium of the symbiotic system (A.7) is unique and always639

feasible.640

Proof. The two cubic functions (A.20) intersect the axes corresponding to their domains at three641

fixed points, 0 and ±1. Further, from the largest positive root, they raise up to infinity. Since their642

domains are on orthogonal axes, it follows that there always exists a unique positive equilibrium.643

644

A typical situation is shown in Figure 11 for a choice of hypothetical parameter values. Note645

that in this case, there are nine intersections among the two curves Ys and Xs. For other situations,646

some of the intersections in the second and fourth quadrant may disappear. But the origin and647

the ones in the first and third quadrants exist always. The intersection in the first quadrant is648

feasible, leading to the coexistence equilibrium ES
3 = (XS

3 , Y
S
3 ). The positive solutions of (A.7)649

are forward bounded, as can easily be seen by drawing the system’s trajectories, a claim that is also650

mathematically rigorously proven in Proposition 14 below.651

Proposition 13. No Hopf bifurcations can arise at the coexistence equilibrium of the symbiotic652

system (A.7).653

Proof. To have Hopf bifurcations, we need purely imaginary eigenvalues. This occurs when the654

trace of the Jacobian vanishes and simultaneously the determinant is positive, i.e.655

b(1− 3X2) + c(1− 3Y 2) = 0, b(1− 3X2)c(1− 3Y 2)− a > 0. (A.21)

It can be easily seen that solving for b from the first condition and substituting into the second one,

we find

a < −c2(1− 3Y 2)2 < 0,

which is a contradiction.656
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Figure 11: Nullclines of equations system from (A.7). The X nullcline corresponds to the blue

continuous curve Y = Ys(X), conversely The Y nullcline corresponds to the red dashed function

X = Xs(Y ). The phase plane of interest is obviously only the set {(X, Y ) : X ≥ 0, Y ≥ 0}. The

figure is obtained for the following parameter values a = 0.6, b = 2.9, c = 1.7, r = 2.9, m = 1.7,

p = 0.6, q = 1, KP = 10, KQ = 10.

Proposition 14. The positive solutions of (A.7) are forward bounded. Its coexistence equilibrium657

ES
3 is globally asympotically stable.658

Proof. We follow the outline of [1]. It is enough to take a large enough box B in the first quadrant659

that contains the coexistence equilibrium.660

On the vertical and on the horizontal sides we show that the dynamical system’s flow enters661

into the box. Indeed, take a point Û = (X̂, Ŷ ) in the phase plane, with X̂ > XS
3 , Ŷ > Y S

3 and662

lying below the isocline X ′ = 0 and above the isocline Y ′ = 0, thus for which the inequalities663

X < Xs and Y < Ys hold. It identifies the rectangle B in the phase plane, with opposite vertex664

given by the origin, which is a positively invariant set for the model (A.7). In fact on its vertical665

side Y = Ŷ we have Y ′ < 0 while instead X ′ < 0 on the horizontal line X = X̂ , showing that the666

flow of (A.7) enters into B on these sides.667

The axes cannot be crossed, on biological grounds, and mathematically, because both axes668

indeed repel the trajectories. Note that in the original situation, however, the square root singularity669

in (3.1) prevents the right hand side of the dynamical system to be Lipschitz continuous when the670

corresponding population vanishes, so that the assumption for the uniqueness theorem fails on the671

axes. But as mentioned in the model formulation, we understand that the differential equations hold672

only in the interior of the first quadrant, on the coordinate axes they are replaced by corresponding673

equations in which the vanishing population is removed and whose behavior has already been674

discussed, leading to equilibria on these axes, either the carrying capacities or the origin.675

Thus B is a positively invariant set, from which the first claim follows. By the Poincaré-676
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Bendixson theorem, since there are no limit cycles by Proposition 13, the coexistence equilibrium677

must be globally asymptotically stable.678

A4 - Analysis of the competition model679

5.2.1 The classical competition model680

The classical competition model,681

dQ

dt
= r

(
1− Q

KQ

)
Q− qPQ,

dP

dt
= m

(
1− P

KP

)
P − pPQ, (A.22)

shows under suitable circumstances the competitive exclusion principle. Thus, only one population682

survives, while the other one is wiped out. The system’s outcome depends only on its initial683

conditions, so that if the system has population values lying in the attracting set of one of the684

equilibria, the dynamics will be drawn to it unless the environmental conditions, i.e. the parameters685

in the model, abruptely change.686

5.2.2 The herds competition system687

Although the coexistence equilibria of the competition ecosystem (A.8) could be written as the688

roots of the following quartic equation in X2,689

cb3X8 − 3cb3X6 + 3cb3X4 − cb(b2 + 1)X2 − a+ cb = 0, (A.23)

we prefer once more to address the issue by geometrical means since it gives a better interpretation,690

treating the problem as an intersection of cubic functions,691

Y[1](X) = b(1−X2)X, X[2](Y ) =
c

a
(1− Y 2)Y. (A.24)

Proposition 15. No feasible coexistence equilibria for the competing ecosystem (A.8) exist if (5.1)692

holds. Conversely, at least one feasible equilibrium exists, EC
3 = (XC

3 , Y
C
3 ). Further, in such case,693

b > 3
√
3

2
and c > 3

√
3

2
a are sufficient conditions for three equilibria to exist, i.e. EC

4 , EC
3 and EC

5 ,694

ordered for increasing values of their abscissae.695

Proof. Depending on the behavior of the cubic functions (A.24), there could be either three inter-696

sections (the origin and one each in the second and fourth quadrants) or five (the previous ones and697

one more in the first and third quadrants), or nine. The latter configuration is graphically shown698

in Figure 12. The feasible coexistence equilibria are just the intersections in the first quadrant.699

Note that no intersections in the first quadrant exist when the slopes at the origin of the two cubic700

functions (A.24) satisfy the inequality Y ′
[1](0) < Y ′

[2](0), the latter denoting of course the inverse701

function of X[2](Y ). This condition, rephrased in terms of the parameters, becomes (5.1).702

Thus, for a > cb there is at most one real positive root, the one corresponding to the intersection703

in the fourth quadrant, that is however not feasible, and no intersection exists in the first quadrant,704

see the left frame in Figure 2. Thus no coexistence equilibrium arises.705
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Figure 12: Graphical solution of equations system from (A.8) for the functions Y[1](X) and

X[2](Y ). Parameter values: a = 0.6, b = 2.9, c = 1.7, r = 2.9, m = 1.7, p = 0.6, q = 1,

Kp = 10, Kq = 10. Blue continuous line: population X nullcline; red dashed line: population Y
nullcline.

To better analyse the situation, we apply Descartes’ rule of signs to (A.23). There are three sign706

variations, since the first four coefficients have alternating signs. The last one must be positive,707

because having already ruled out the case (5.1), we are left with a < cb. Descartes’ rule shows708

that in this case there are at most 4 real positive roots. Recall that these roots correspond to the709

abscissae of the intersections of the curves (A.24). As discussed above we know that one positive710

root corresponds to the intersection that always exists in the fourth quadrant, Figure 12. This711

root must then be excluded. As a consequence in this case we have just one or three coexistence712

equilibria, see the center and right frames in Figure 2.713

Sufficient conditions for three versus one equilibria to exist is that the cubic functions (A.24)

have maximum Y -coordinate and X-coordinate respectively in the first quadrant greater than 1.

This happens when both the following conditions hold

b >
3
√
3

2
, c >

3
√
3

2
a.

714

Proposition 16. The positive solutions of the competing system (A.8) are forward bounded.715

Proof. Observe that X decreases when Y ≤ bX(1 − X2) and similarly Y decreases for X ≤716

ca−1Y (1 − Y 2). This in the phase plane corresponds to having the flow entering a suitable box717

ΩC with one corner in the origin and the opposite one ΩC
B = (XB, YB) of size large enough to718

contain the vertices of the cubics in all cases of Figure 2. Thus we can take XB ≥ max{1, XV },719

YB ≥ max{1, YV }, where XV and YV denote respectively the relative maxima heights of the720

cubics. Once more, as found for the pack predation–prey herd behavior model (A.6), here both721

axes are not solutions of the system (A.8), but considerations along the lines of those exposed in722
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Proposition 8, in addition to the findings of [18, 22, 2] indicating ecosystem collapse in finite time723

in suitable circumstances, can be used. We omit the details.724

Proposition 17. The coexistence equilibria of the competing system (A.8) for which either one of725

the conditions hold726

X <

√
3

3
, Y <

√
3

3
, (A.25)

namely EC
k , k = 4, 5, are unstable.727

Proof. If both (A.25) hold, the first Routh-Hurwitz condition applied to (A.12) is728

trJC = b(1− 3X2) + c(1− 3Y 2) < 0. (A.26)

But for the assumptions (A.25) it cannot be satisfied. If only one of (A.25) is satisfied, say the first729

one, from the condition on the trace we obtain b < −c(1− 3Y 2)(1− 3X2)−1 and substituting into730

the determinant, we have the estimate det JC = b(1−3X2)c(1−3Y 2)−a < −c2(1−3Y 2)2−a < 0731

so that the second Routh-Hurwitz condition is not satisfied. Hence the claim.732

Proposition 18. The equilibrium EC
3 for which both the following conditions hold733

X >

√
3

3
, Y >

√
3

3
(A.27)

is stable.734

Proof. The Routh-Hurwitz condition (A.26) easily holds. The second one applied to (A.12) re-

quires

det JC = b(1− 3X2)c(1− 3Y 2)− a > 0.

Observe that the slope of Y[1](X) is negative at X = 1. Hence for the abscissa of EC
3 we must have735

X3 < 1. Similarly Y3 < 1, using the slope of X[2](Y ) at Y = 1. It follows that b(1− 3X2) > −2b,736

c(1 − 3Y 2) > −2c. Thus in turn det JC > 4bc − a. Since we are in the case a < bc, det JC > 0737

follows.738

Remark 19. Upon returning to the original variables, conditions (A.25) and (A.27) respectively739

become (4.6) and (4.7) .740

Remark 20. There is thus a subcritical pitchfork bifurcation for which from the unstable EC
3 three741

equilibria arise, with the equilibrium EC
3 becoming stable and the other ones being unstable.742

Remark 21. No Hopf bifurcations arise in this model as they do not in the symbiotic one. Using the743

same technique as in the proof of Proposition 14, the condition on the trace becomes an equality,744

so that by solving it for b we get b = −c(1 − 3Y 2)(1 − 3X2)−1. Substituting into the second745

Routh-Hurwitz condition det JC > 0, we obtain the contradiction −c2(1− 3Y 2)2 − a > 0.746
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A5 - Proof of bifurcations747

For the proofs, we follow the approach and the notations of [28]. To prove that the transversality

conditions are satisfied by the model (4.1) at the pitchfork and saddle-node bifurcation thresholds

respectively, using the original model (4.1), the calculations cannot be performed because they

need the first and second order partial derivatives of
√
P and

√
Q with respect to P and Q evaluated

at (0, 0). We therefore need to work on the suitably modified dimensionless version. For this

purpose, we use the transformations

x(σ) =

√
Q(t)

KQ

, y(σ) =

√
P (t)

KP

, σ = t
q

2

√
KP

KQ

and obtain the following transformed system748

dx

dσ
= b(1− x2)x− y,

dy

dσ
= c(1− y2)y − ax, (A.28)

where

a =
KQp

KP q
, b =

r
√

KQ

q
√
KP

, b =
r
√

KQ

q
√
KP

.

A5.1 - Proof of the pitchfork bifurcation749

Using the parameter transformations and the parameter values r = 0.9, KQ = 10, q = 0.3,750

KP = 10, p = 0.9, mPF = 0.3 we obtain a = 3, b = 3 and cPF = 1 as the pitchfork bifurcation751

threshold. To verify the transversality conditions for the pitchfork bifurcation we first calculate the752

Jacobian matrix for the system (A.28) around (0, 0) at the threshold cPF = 1, and find753

A =

[
3 −1
−3 1

]
.

The eigenvectors corresponding to the zero eigenvalues of the matrix A and At are given by v =754

[1, 3]t and w = [1, 1]t respectively. Letf = [f1, f2]
t, with f1 = b(1−x2)x−y, f2 = c(1−y2)y−ax.755

We can now perform the following calculations:756

fc =

[
∂f1
∂c
∂f2
∂c

]
=

[
0

y(1− y2)

]
≡
[
F1

F2

]
, Dfc =

[
∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

]
=

[
0 0
0 1− 3y2

]
.

We further obtain757

wtfc((0, 0), cPF ) = [1, 1]

[
0
0

]
= 0,

758

wt [Dfc((0, 0), cPF )v] = [1, 1]

[
0 0
0 1

] [
1
3

]
= 3 6= 0.
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Further,759

∂2f1
∂x2

= −6bx,
∂2f1
∂x∂y

= 0,
∂2f1
∂y2

= 0,
∂2f2
∂x2

= 0,
∂2f2
∂x∂y

= 0,
∂2f2
∂y2

= −6cy,

and hence760

wt
[
D2f((0, 0), cPF )(v, v)

]
= wt

[
∂2f1
∂x2 v

2
1 + 2 ∂2f1

∂x∂y
v1v2 +

∂2f1
∂y2

v22
∂2f2
∂x2 v

2
1 + 2 ∂2f2

∂x∂y
v1v2 +

∂2f2
∂y2

v22

]

x=0,x=0,c=cPF

= 0.

Similarly we find761

wt
[
D3f((0, 0), cPF )(v, v, v)

]
= wt

[
∂3f1
∂x3 v

3
1 + 3 ∂3f1

∂x2∂y
v21v2 + 3 ∂3f1

∂x∂y2
v1v

2
2 +

∂3f1
∂y3

v32
∂3f2
∂x3 v

3
1 + 3 ∂3f2

∂x2∂y
v21v2 + 3 ∂3f2

∂x∂y2
v1v

2
2 +

∂3f2
∂y3

v32

]

x=0,y=0,c=cPF

,

= [1, 1]t
[
(−18).13 + 3.0.12.3 + 3.0.1.32 + 0.33

0.13 + 3.0.12.3 + 3.0.1.32 + (−6).33

]
= −180 6= 0.

Hence the transversality conditions for the pitchfork bifurcation are satisfied.762

A5.2 - Proof of the saddle-node bifurcation763

For a = 3, b = 3 and c = 6.8639 we find an equilibrium point E1(0.3459, 0.9135) and two764

coincident equilibrium points E∗(0.8767, 0.6087). The system (A.28) undergoes a saddle-node765

bifurcation at E∗. Calculating the Jacobian matrix for (A.28) at E∗, we obtain766

B =

[
−3.917 −1
−3 −0.7659

]
.

The eigenvectors corresponding to the zero eigenvalues of B and Bt are given by are [0.269, −1.0536]t767

and [0.6612, −0.8633]t respectively.768

Now we can proceed with the calculations:769

wtfc(E∗, cSN) = [0.6612, −0.8633]

[
0

0.3832

]
= −.3308 6= 0,

770

wt
[
D2f(E∗, cSN)(v, v)

]
=

[
0.6612
−0.8633

]t [ −6.3.(0.8767).(0.269)2 + 2.0.v1v2 + 0.v22
0.v21 + 2.0.v1v2 − 6.(6.8639).(0.6087).(−1.054)2

]

= 23.2681 6= 0.

Hence both the transversality conditions for the saddle-node bifurcation are satisfied.771
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