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Abstract

The aim of this paper is to investigate the effect of awareness coverage and
delay in controlling infectious diseases. We formulate an SIS model considering
individuals’ behavioral changes due to the influences of media coverage and di-
vide the susceptible class into two subclasses: aware susceptible and unaware
susceptible. Other model variables are infected human and media campaign. It
is assumed that the rate of becoming aware (unaware), from unaware to aware
susceptible human (from aware to unaware susceptible human), is a function of
media campaign. A time delay is considered for the time that is taken by an un-
aware (aware) susceptible individual to become aware (unaware). An additional
time delay is considered due to the time lag needed in organising awareness cam-
paigns. The model exhibits two equilibria: the disease-free equilibrium and the
endemic equilibrium. The disease-free equilibrium is stable if the basic repro-
duction number is smaller than unity and the endemic equilibrium exhibits a
Hopf-bifurcation, in both delayed and non-delayed system, whenever it exists.
Analytical and numerical results prove the significance of awareness and delay
on the prevalence of infectious diseases.

Key words: Infectious disease, Awareness program, Mathematical model,
Time delay, Hopf-bifurcation.

1. Introduction

Infectious diseases are major nuisances to mankind. They cause mortality,
disability, as well as social and economic disturbance for society. Pneumonia,
Tuberculosis (TB), Diarrheal diseases (Cholera), Malaria, Measles and more
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recently HIV/AIDS etc. are the major deadly infectious diseases. Including
premature deaths and deaths of young children, in developing countries approx-
imately 11 million people die each year due to infectious diseases [1, 2, 3, 4].

At the beginning of an epidemic outbreak, the initial step to try to control
it, is to make people aware of the disease through the media and to let them
know preventive measures that can be adopted. The media coverage is obviously
not the most important factor responsible for fighting the transmission of the
infectious disease, but it is a very important issue which has to be considered
seriously. In the case of a large number of infected cases, on one hand, media
coverage may cause panic in the society, while on the other hand, it can certainly
reduce the opportunity of contact among the alerted susceptible populations,
which in turn helps to control the transmission probability and prevent the
disease from further spreading [5].

It is well known that some diseases upon recovery give permanent immunity,
e.g. influenza, measles, chickenpox, while for other ones the immunity is only
temporary, for instance gonorrhea, meningitis, tuberculosis. For a third class of
illnesses, no vaccination is yet available: malaria, dengue, chikungunya, AIDS.
In the latter case, the best control at the moment is to prevent people to become
infected. This can be obtained for instance by suitable campaigns through the
media, [6, 7].

Disease propagation in an epidemic outbreak is heavily dependent on the
people’s behavior. In Bari, South-East Italy, the cholera outbreak of 1973 has
been curbed within a few days because the local individuals implemented severe
measures to avoid its further spread. This gave rise to one of the now classical
models, the so-called Capasso-Serio epidemic model, [8], which incorporates the
individual behavior in the Monod-Haldane functional response. The infection
rate decreases with an increasing number of reported infected, as susceptibles
take stricter measures to avoid to be infected themselves, a fact that is well
known in the literature, [9, 6, 10]. The essential mean that contributed to this
change in behavior in the cholera epidemics was the information that media were
providing. Indeed, during the initial phase of the epidemics, most people and
public mass media are in general unaware of the disease, but as the awareness of
it disseminates, people respond and eventually change their behavior to reduce
their susceptibility. Media familiarizes people with the diseases and the possible
preventive means to avoid becoming infected, e.g. social distancing, wearing
protective masks, practice of better hygiene, use of preventive medicaments,
vaccination, voluntary quarantine. People aware of the danger of the epidemic
spread adopt practices to try to minimize their exposure to contagion, a fact
that may deeply influence the epidemic pattern, [11, 12].

Recent investigations have begun to introduce explicitly the role that media
campaigns possess to influence people’s behavior during epidemics outbreaks,
see for instance [13, 14, 15]. In the mathematical epidemic models, this in general
is obtained by partitioning the whole susceptible population among aware people
and those that are not knowledgeable of the proper ways to reduce the risks of
infection, [16]. However, because of the initial lag in realizing the danger of the
epidemics spread and render it public, generally the response from the people

2



is not immediate. This fact should be taken into consideration for a proper
modeling of the situation. A formulation that suitably incorporates time delays
becomes imperative in this situation. Models of this kind have been considered
in the literature, [17, 18, 19, 20]. Among the findings, the time delay between
the advertising campaigns and the moment in which people start to act deeply
influences the endemic equilibrium stability leading to periodic oscillations when
the basic reproduction number exceeds unity. The similar delay in reporting the
epidemic outbreak has been considered in [21], while a modification with the
assumption that the growth rate of aware people increases at a rate proportional
to the infective population is presented in [22]. Two delays, one in reporting of
the infected cases, and the other due to the fading away of disease awareness
after a fixed period of time are studied in [14], with the findings that an increase
in the duration of awareness reduces the equilibrium level of infected. Both time
delays can destabilize the endemic equilibrium and trigger persistent oscillations.

In this study, a mathematical model is proposed to investigate the change
in prevalence of an infectious disease when an awareness program through the
media is employed. Our main aim is the study of the impact on the epidemic
outbreak of the combined action of the awareness program and the time delays.
The former is not present in [21]. In [19] an SIRS model is presented with an
infected-dependent rate in the transmission process, but no explicit modeliza-
tion of the media coverage is included. In [17] there is only one delay, also in the
infected reports in the media advertisements. Note also that awareness recruit-
ments are not constant, but rather assumed to depend on the media campaigns,
M(t) following an explicit saturation function. For us instead, this functional
dependence is not only nonlinear, as for instance in [22], but expressed via a
generic, monotonically increasing function f . Both these aspects are more real-
istic because in reality it is difficult to properly estimate these behavioral rates.
A model closer to ours is presented in [14]. The functional responses for the
media campaign are assumed of specific Holling type II form, for recruitment
of aware people, while we generalize it through the generic function f bearing
similar mathematical properties. Instead, a broader view is taken in [14] as far
as the effect of the advertisement has on the contact rate, which is expressed
by a hyperbola tending to vanish when M becomes large. In [11], the authors
consider the levels of human awareness to model the effect of awareness and
a time delay is introduced to take into account the time needed by unaware
people to become aware. They have shown the existence of a Hopf bifurcation
when the time delay parameter crosses a critical value. In the model proposed
here, we simply take this contact rate constant. Finally, the fading away of
implementing the safety measures occurs here via the generic nonlinear mono-
tonically decreasing function G instead than at a constant rate. There are two
delays also in [14], one for the time to implement the preventive measures, while
the other one involves memory fading away. In our case instead, two time delays
are also considered. The first one accounts for the time that is taken by un-
aware (aware) susceptible individuals to become aware (unaware). The second
one is considered for the organisation and implementation of awareness cam-
paigns. The endemic equilibrium exhibits a Hopf-bifurcation, in both delayed
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and non-delayed system.
The paper is organized as follows. The model is described next, followed in

Section 3 by the analysis of the system with no delay. Delays are treated in the
subsequent Section while Section 5 contains the numerical experiments. A final
discussion concludes the paper.

2. The mathematical model

Let S(t) and I(t) be the density of the susceptible and infected popula-
tions respectively at time t. Further, the total susceptible population is divided
into two subclasses: the susceptible population unaware of the disease fight-
ing means, Su and the aware susceptible population Sa. Here we stress that
“aware” does not mean “informed” of the existence of the epidemics, but also
knowledgeable of ways of avoiding disease propagation and further implementing
these prevention mechanisms. M(t) represents the amount of media campaign,
measured possibly by the time exposure to TV and radio advertising, or in the
number and size of posters placed in public areas.

As the awareness disseminates, people respond to it and eventually modify
their behavior to reduce their susceptibility. Usually, aware susceptible indi-
viduals contract the disease at a lower rate than unaware individuals. The
disease is transmitted from infected to susceptible individuals following a mass
action functional form. Also, infected individuals recover through appropriate
treatment. After recovery, a fraction p of recovered people will join the aware
susceptible class, whereas the remaining fraction 1−p = q, hopefully small, will
join the unaware class. We ignore demographic issues and assume only that
in the system there is a constant recruitment of new susceptible individuals
assumed all to be unaware of the epidemics threat, at rate π.

The model reads:

dSu

dt
= π − βSuI − αf(M)Su + λg(M)Sa − dSu + qrI

dSa

dt
= αf(M)Su − λg(M)Sa − γSaI − dSa + prI

dI

dt
= βSuI + γSaI − (d+ e+ r)I

dM

dt
= ηeI − θM, (1)

with the initial conditions:

Su(0) = S0u, Sa(0) = S0a, I(0) = I0, M(0) =M0.

In the first equation the unaware individuals are modeled. After recruitment
they may become infected at rate β, by contact with an infected individual, but
they can also listen to the advertisement campaigns and become aware, at rate
α. The modeling of the recruitment campaign is expressed by the function
f(M), discussed below. Similarly, the function g(M) models the fading away of
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disease prevention measures among the unaware people, which makes them to
return into the class of unaware at rate λ, fourth term in the first equation. The
natural mortality rate of the population is d. The last term represents the input
of successfully recovered infected individuals. Despite their previous exposure
to the disease, the latter keep on not following suitable prevention means.

The second equation models the aware population, recruited through suc-
cessful advertisements, whose correct behavior however might fade away. They
can leave this class by becoming infected by contact with a diseased individual,
at rate γ. They are exposed to natural mortality. Finally new recruitment into
this class also come from all the disease-recovered individuals that have learnt
the lesson and keep on applying preventive measures against disease propaga-
tion.

In the third equation the dynamics of the infected appears, recruited from
unaware susceptible individuals at rate β via “successful” contacts among in-
fected and from the aware class at rate γ. They disappear from this class by
dying naturally, or by disease-related causes, at rate e, or by recovering, at rate
r. Here η is the proportionality constant which governs the implementation of
awareness programs.

The equation for the media campaign is assumed to model the fact that
these advertisements grow with the report of increasing disease-induced deaths,
and fade away at rate θ.

In the model, f(M) is an increasing function of M with f(0) = 0 and
sup f(M) = 1. The memory fading and/or carelessness for which aware people
stop taking preventive measure for simplicity is taken as g(M) = 1 − f(M).
Therefore, g(M) is a decreasing function of M with g(0) = 1 and inf g(M) = 0.

The delay model considers the fact that between the moment an advertising
is seen or heard and the moment in which people act accordingly, there is a
lag τ1, due to a “pondering” time to take the decision to follow the preventive
measures. Further, there is a need of time to organize the media campaign after
the disease-induced deaths reports, modeled by the variable τ2.

The delay model is then:

dSu

dt
= π − βSuI − αf(M(t− τ1))Su + λg(M)Sa − dSu + qrI

dSa

dt
= αf(M(t− τ1))Su − λg(M)Sa − γSaI − dSa + prI

dI

dt
= βSuI + γSaI − (d+ e+ r)I

dM

dt
= ηeI(t− τ2)− θM, (2)

with the initial conditions:

Su(φ) = S0u > 0, Sa(φ) = S0a > 0, I(φ) = I0 > 0,M(φ) =M0 > 0, (3)

where φ ∈ (−τ, 0], and τ = max{τ1, τ2}.
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For later use, let us rewrite (2) in the following compact form,

dX

dt
= P (X), X = (x1, x2, x3, x4)

T , P = (P1, P2, P3, P4)
T , (4)

where Pi’s represent the right hand sides of (2).

2.1. Positive invariance
Biologically, positivity for a population implies its survival. We have the

following result.

Theorem 2.1. All the solution of (2) with initial conditions (3) are positive.

Proof. Using the lemma in [23, 24], the solution of the system (2) exists in
the region R

4
+ and all solutions remain non-negative for all t > 0. Indeed,

it is easy to check in system (4) that whenever choosing X(φ) ∈ R+ such
that Su = 0, Sa = 0, I = 0,M = 0, it follows Pi(X)|xi=0,X∈R4

+

≥ 0, with

x1(t) = Su(t), x2(t) = Sa(t), x3(t) = I(t), x4(t) =M(t).
Now, using the lemma in [23], and the theorem in [24], any solution of (1)

with X(φ) ∈ C, say X(t) = X(t,X(φ)), satisfies X(φ) ∈ R4
+ for all t ≥ 0.

Hence the solution of the system (2) exists in the region R4
+ and all components

remain non-negative for all t > 0. Therefore, the positive cone R4
+ is an invariant

region.

For the analysis of model (1), the region of attraction is given by the set:

B =
{

(Su, Sa, I,M) ∈ R4
+ : 0 ≤ Su + Sa + I ≤

π

d
, 0 ≤M ≤

ηeπ

θd

}

. (5)

This result implies that all the populations in the model are bounded for all
times, which biologically implies robustness of the model.

3. Equilibria analysis

System (1) has two equilibria, the disease-free equilibrium, E0(S
0
u, 0, 0, 0)

with S0
u = πd−1 and the endemic equilibrium, E∗(S∗

u, S
∗
a , I

∗,M∗). Note that
in the absence of the disease, also the precautious behavior of the population
disappears, S0

a = 0. For the populations at coexistence level, we find

S∗
u =

(d+ e+ qr)γI∗ + (d+ e+ r)[γg(M∗) + d]

β(γI∗ + λg(M∗) + d) + αf(M∗)γ
, (6)

S∗
a =

(d+ e+ r)αf(M∗) + βprI∗

β(γI∗ + λg(M∗) + d) + αf(M∗)γ
, I∗ =

θM∗

eη
.

and M∗ is a positive, real root of the following equation:

F (M) = π
[

β
{

γ
θM

ηe
+ λg(M) + d

}

+ αf(M)γ
]

(7)

−
[θβM

eη
+ αf(M) + d

]

(d+ e+ r)
[

γ
θM

ηe
+ γg(M) + d

]

+λg(M)
[

(d+ e+ r)αf(M) + βpr
θM

ηe

]

+
qrθM

eη
= 0.

6



This can be recast in the form L = V with

L(M) = π
[

β
{

γ
θM

ηe
+ λg(M) + d

}

+ αf(M)γ
]

(8)

+λg(M)
[

(d+ e+ r)αf(M) + βpr
θM

ηe

]

+
qrθM

eη
= L1(M)M + L0(M),

V(M) =
[θβM

eη
+ αf(M) + d

]

(d+ e+ r)
[

γ
θM

ηe
+ γg(M) + d

]

= V2(M)M2 + V1(M)M + V0(M),

Since 0 ≤ f(M), g(M) ≤ 1, let us define the following curves that bound from
below and from above the previous ones and do not depend on the nonlinear
functions f and g:

L−(M) = L−

1 M + L−

0 , L−

1 =
θ

ηe
[βγπ + qr] , L−

0 = βπd, (9)

L+(M) = L+
1 M + L+

0 , L+
1 = L−

1 + λ
θ

ηe
βpr,

L+
0 = L−

0 + π
[

βλ+ αγ
]

+ αλ(d+ e+ r)

V−(M) = V −

2 M
2 + V −

1 M + V −

0 , V −

0 = d2(d+ e+ r),

V −

1 =
θ

eη
(β + γ)d(d+ e+ r), V −

2 =
θ2βγ

e2η2
(d+ e+ r)

V+(M) = V +
2 M

2 + V +
1 M + V +

0 , V +
1 = V −

1 +
γθ

eη
[α+ γ](d+ e+ r),

V +
0 = V −

0 + (d+ e+ r)[αγ + d(α+ γ)], V +
2 = V −

2 .

These pairs of curves define two stripes in the M − R plane, that contain the
original curves, i.e.

L− ≤ L ≤ L+, V− ≤ V ≤ V+. (10)

Further L is a straight line with both positive slope and height at the origin
and V is a convex quadratic, with also positive slope and height at the origin.
Thus L± and V± inherit these properties. If we require V +

0 ≤ L−

0 , it follows
that these four curves intersect at four points, that together with L−, L+, V−

and V+ delimit a compact set Γ. In view of the bounds (10), it follows that
L and V must intersect in Γ at a positive abscissa M∗ and therefore ensure
an intersection so that the existence of E∗ in the first quadrant is guaranteed.
Explicitly, the sufficient condition becomes

βπd ≥ (α+ d)(d+ γ)(d+ e+ r). (11)

Alternatively, in view of these considerations, the two curves will meet also
if their points for M = 0 are interlaced, namely L(0) > V(0), i.e. the following
condition holds:

βπ(λ+ d) ≥ d(d+ γ)(d+ e+ r). (12)
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4. Stability analysis

In this section we analyze the model (2) without and with delay. We also
derive the stability conditions for the equilibrium E∗ as well as the conditions
for Hopf-bifurcation.

4.1. Stability analysis without delay (i.e. τ1 = τ2 = 0)

The Jacobian matrix V = [Vij ] of (1) at any generic equilibrium point is:

V =





















−βI − αf(M)− d λg(M) − βSu + qr V14

αf(M) V22 pr − γSa V24

βI γI V33 0

0 0 ηe −θ





















,

with

V14 = −αf ′(M)Su + λg′(M)Sa, V22 = −λg(M)− d− γI,

V24 = αf ′(M)Su − λg′(M)Sa, V33 = βSu + γSa − (d+ e+ r).

At the disease-free equilibrium E0, the characteristic equation of the Jaco-
bian matrix has only negative eigenvalues if

βπ − d(d+ e+ r) < 0. (13)

Let

R0 =
βπ

d(d+ e+ r)

be the basic reproduction number. Then the above result can be rewritten as

Theorem 4.1. The system is stable at E0 if R0 < 1 and unstable for R0 > 1,
consequently, a transcritical bifurcation occurs at R0 = 1.

Remark Note that even if R0 < 1, and the disease-free state is stable, it
is still possible to have a feasible endemic steady state, provided that R0 >

d−2(α + d)(d + γ), compare with (11) or (12). This situation gives rise to a
backward bifurcation and is very well-known to possibly occur in the literature,
[25].

At E∗ the characteristic equation is given by:

D(ρ) = ρ4 + σ1ρ
3 + σ2ρ

2 + σ3ρ+ σ4 = 0, (14)
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where

σ1 = −[V ∗
11 + V ∗

22 + V ∗
44], (15)

σ2 = V ∗
11V

∗
22 − V ∗

12V
∗
21 − V ∗

13V
∗
31 − V ∗

23V
∗
32 + V ∗

11V
∗
44 + V ∗

22V
∗
44,

σ3 = V ∗
12V

∗
21V

∗
44 − V ∗

11V
∗
22V

∗
44 + V ∗

13V
∗
31V

∗
44 + V ∗

23V
∗
32V

∗
44 − V ∗

14V
∗
31V

∗
43

+V ∗
14V

∗
32V

∗
43 + V ∗

13V
∗
22V

∗
31 − V ∗

12V
∗
23V

∗
31 − V ∗

13V
∗
21V

∗
32 + V ∗

11V
∗
23V

∗
32,

σ4 = V ∗
12V

∗
14V

∗
31V

∗
43 + V ∗

14V
∗
22V

∗
31V

∗
43 − V ∗

11V
∗
14V

∗
32V

∗
43 − V ∗

14V
∗
21V

∗
32V

∗
43

−V ∗
13V

∗
22V

∗
31V

∗
44 + V ∗

12V
∗
23V

∗
31V

∗
44 + V ∗

13V
∗
21V

∗
32V

∗
44 − V ∗

11V
∗
23V

∗
32V

∗
44,

with V ∗
ik = Vik(E

∗), i, k = 1, . . . , 4.
Here σ1 > 0, so according to the Routh-Hurwitz criterion, all the eigenvalues

of the Jacobian matrix at E∗ are negative or have negative real part if:

σ4 > 0, σ1σ2 − σ3 > 0, (σ1σ2 − σ3)σ3 − σ2
1σ4 > 0. (16)

In summary we can state the following result.

Proposition 1. The coexistence equilibrium point E∗ is stable if the conditions
(16) are satisfied.

4.1.1. Hopf-Bifurcation Analysis

At E0, in view of the strict inequality in the condition (13), the quadratic
will not possess purely imaginary eigenvalues, hence there is no possibility of oc-
currence of Hopf-bifurcations at this equilibrium point. For the endemic equilib-
rium E∗ we consider the Hopf-bifurcation as a function of the generic parameter
κ ∈ R.

Let Ψ : (0,∞) → R be the following continuously differentiable function of
κ:

Ψ(κ) := σ1(κ)σ2(κ)σ3(κ)− σ2
3(κ)− σ4(κ)σ

2
1(κ).

Then for the occurrence of a supercritical Hopf-bifurcation, there should exist
a κ∗ ∈ (0,∞) in the spectrum σ(κ) = {ρ : D(ρ) = 0} of the characteristic
equation, at which a pair of complex eigenvalues ρ(κ∗), ρ̄(κ∗) ∈ σ(κ) satisfy

Reρ(κ∗) = 0, Imρ(κ∗) = ω0 > 0,

along with the transversality condition

dRe(ρj(κ))

dκ
|κ=κ∗ 6= 0, j = 1, 2. (17)

Furthermore, all other eigenvalues must have negative real parts.

Theorem 4.2. The endemic equilibrium E∗ of the system (2) undergoes a Hopf
bifurcation at κ = κ∗ ∈ (0,∞) if and only if

σ2(κ
∗) > 0, σ3(κ

∗) > 0, σ4(κ
∗) > 0, σ1(κ

∗)σ2(κ
∗)− σ3(κ

∗) > 0,

Ψ(κ∗) = 0, and σ3
1σ

′
2σ3(σ1 − 3σ3) 6= (σ2σ

2
1 − 2σ2

3)(σ
′
3σ

2
1 − σ′

1σ
2
3).

(18)
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Moreover, at κ = κ∗, the characteristic equation has a pair of purely imaginary
eigenvalues, and the other two have negative real parts. Here, primes denote the
differentiation with respect to κ.

Proof. By the condition Ψ(κ∗) = 0, the characteristic equation can be written
as

(

ρ2 +
σ3

σ1

)(

ρ2 + σ1ρ+
σ1σ4

σ3

)

= 0.

Let its four roots in the complex domain be denoted by ρi, (i=1,2,3,4) with the
pair of purely imaginary roots at κ = κ∗ being ρ1 = ρ̄2, then we have

ρ3 + ρ4 = −σ1, ω2
0 + ρ3ρ4 = σ2, ω2

0(ρ3 + ρ4) = −σ3, ω2
0ρ3ρ4 = σ4, (19)

where ω0 = Imρ1(κ
∗). By dividing the third and the first equations in (19),

we find ω0 =
√

σ3σ
−1
1 . Now, if ρ3 and ρ4 are complex conjugate, from (19), it

follows that 2Reρ3 = −σ1; if they are real roots, then by (14) and (19) ρ3 < 0
and ρ4 < 0. To complete the discussion, it remains to verify the transversality
condition.

Now, we shall verify the transversality condition (17). Substituting ρj(κ) =
χ(κ)± iν(κ), into (14) and differentiating, we have

K(κ)χ′(κ)− L(κ)ν′(κ) +M(κ) = 0, L(κ)χ′(κ) +K(κ)ν′(κ) +N(κ) = 0, (20)

where

K(κ) = 4χ3 − 12χν2 + 3σ1(χ
2 − ν2) + 2σ2χ+ σ3,

L(κ) = 12χ2ν + 6σ1χν − 4χ3 + 2σ2χ,

M(κ) = σ1χ
3 − 3σ′

1χν
2 + σ′

2(χ
2 − ν2) + σ′

3χ,

N(κ) = 3σ′
1χ

2ν − σ′
1ν

3 + 2σ′
2χν + σ′

3χ.

Solving (20) for χ′(κ∗) we have

[

dRe(ρj(κ))

dκ

]

κ=κ∗

= χ′(κ)κ=κ∗ = −
L(κ∗)N(κ∗) +K(κ∗)M(κ∗)

K2(κ∗) + L2(κ∗)

=
σ3
1σ

′
2σ3(σ1 − 3σ3)− 2(σ2σ

2
1 − 2σ2

3)(σ
′
3σ

2
1 − σ′

1σ
2
3)

σ4
1(σ1 − 3σ3)2 + 4(σ2σ2

1 − 2σ2
3)

2
> 0

which holds in view of (18). Thus the transversality conditions holds and con-
sequently a Hopf bifurcation occurs at κ = κ∗.

4.2. Analysis of the system with delays

In this section, the local stability of the delayed system (2) is studied around
the coexisting equilibrium point only. Without loss of generality we assume E∗

to be the endemic equilibrium point of the system (2). The expressions of
S∗
u, S

∗
a , I

∗,M∗ have already been obtained in (6), (7). We are now interested
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in the local asymptotic stability of the endemic steady state E∗ for the delayed
system.

Linearizing the system (2) about E∗, we get

dX

dt
= JX(t) +GX(t− τ1) +HX(t− τ2), (21)

where J = [Jij ], G = [Gij ], H = [Hij ] are the following 4× 4 matrices:

J =





















−βI∗ − αf(M∗)− d λg(M∗) −βS∗
u + (1− p)r λg′(M∗)S∗

a

αf(M∗) J22 pr − γS∗
a −λg′(M∗)S∗

a

βI∗ γI∗ J33 0

0 0 0 −θ





















,

with J22 = −λg(M∗)− d− γI∗, J33 = βS∗
u + γS∗

a − (d+ e+ r) = 0, from (1),

H =





















0 0 0 −αf ′(M∗)S∗
u

0 0 0 αf ′(M∗)S∗
u

0 0 0 0

0 0 0 0





















, G =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 ηe 0









.

The characteristic equation of system (2) is

△(ξ) =| ξI − J − e−ξτ1G− e−ξτ2H |= 0.

This equation can be written as

ψ(ξ, τ1, τ2) = ξ4 + a1ξ
3 + a2ξ

2 + a3ξ + a4 + e−ξ(τ1+τ2)[b1ξ + b2] = 0. (22)

where

a1 = −[J11 + J22 + J44],

a2 = J11J22 − J12J21 + J11J44 + J22J44 + J13J31 − J32J23,

a3 = J31J13J44 − J11J22J44 + J44J21J12

−J12J31J23 + J13J31J22 + J32J23J44,

a4 = J44[J31(J12J23 − J22J13)− J32(J11J23 − J21J13)],

b1 = J32H24G43 + J31G43H14, (23)

b2 = J31G43(J22H14 − J12H24) + J32G43(J11H24 − J21H14),
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4.2.1. Delay length and Hopf bifurcations

The coexisting equilibrium point E∗ will be LAS if all the roots of the
corresponding characteristic equation (22) are negative or have negative real
parts. The classical Routh-Hurwitz criterion cannot be used to investigate the
stability of the system as the equation (22) is a transcendental equation in ξ.
The following cases may arise.

Case I: τ1 = 0, τ2 > 0
The characteristic equation becomes

ψ(ξ, τ) = ξ4 + a1ξ
3 + a2ξ

2 + a3ξ + a4 + e−ξτ2 [b1ξ + b2] = 0, (24)

A necessary condition for stability changes of E∗ is that the characteristic equa-
tion (24) has purely imaginary solutions. Let iθ, θ ∈ R, be a root of equation
(24). We then get

b1 sin θτ2 + b2 cos θτ2 = −θ4 + a2θ
2 − a4 (25)

b1 cos θτ2 − b2 sin θτ2 = a1θ
3 − a3θ (26)

Squaring and adding the above two equations, and substituting θ2 = l we obtain

l4 + ω1l
3 + ω2l

2 + ω3l + ω4 = 0. (27)

Here

ω1 = a1
2 − 2a2, ω2 = a22 + 2a4 − 2a1a3,

ω3 = −2a2a4 + a23 − b21, ω4 = a24 − (b21 + b22).

The roots of equation (27) have negative real parts if and only if the Routh-
Hurwitz criterion is satisfied. In such case (24) does not have purely imaginary
roots. Thus, we summarize the results in the following proposition.

Proposition 2. Suppose that the system without delay is stable. The endemic
equilibrium E∗ is LAS for all τ2 > 0 if the following conditions are satisfied:

ω1 > 0, ω4 > 0, ω1ω2 − ω3 > 0, (ω1ω2 − ω3)ω3 − ω2
1ω4 > 0.

If ω4 < 0 holds then equation (27) will admit at least one positive root.
If θ20 is the minimum positive root of (27), then θ will be a purely imaginary
root, ±iθ0 corresponding to the delay τ2. By Butler’s lemma, [26], the endemic
equilibrium E∗ remains stable for τ2 < τ∗2 . We now evaluate the critical value
of τ2 for which the delayed system (22) remains stable.

From equation (25),

τ∗2 =
1

θ0
cos−1

[

b2(−θ
4
0 + a2θ

2
0 − a4) + b1a1θ

3
0

b21 + b22

]

+
2πn

θ0
, n = 0, 1, 2, 3, . . .

From the above analysis the following theorem follows.
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Theorem 4.3. If ω4 < 0 is satisfied then the steady state E∗ is LAS for τ2 < τ∗2
and becomes unstable for τ2 > τ∗2 . Furthermore, the system will undergo a Hopf-
bifurcation at E∗ when τ2 = τ∗2 provided 4θ60 +A1θ

4
0 +A2θ

2
0 +A3 > 0, where

A1 = 3a1 − 6a2, A2 = 2a2 + 4a4 − 4a1a3, A3 = a23 − 2a2a4 − b21.

Proof. We need to prove the last conditions only. Now, differentiating (24) with
respect to τ2 we get:

dτ2

dξ
=

4ξ3 + 3a1ξ
2 + 2a2ξ + a3

b1ξ2 + b2
eξτ2 +

b1

b1ξ2 + b2ξ
−
τ2

ξ
.

Now, using the relation (25) one can obtain:

sgn

[

d(Reξ)

dτ2

]

τ2=τ∗

2

= sgn

[

Re

(

dξ

dτ2

)−1
]

ξ=iθ0

,

= sgn

[

4θ60 +A1θ
4
0 +A2θ

2
0 +A3

b1θ
2
0 + b22

]

(28)

and the latter is positive if 4θ60 + A1θ
4
0 + A2θ

2
0 + A3 > 0 i.e. the transversality

condition holds and the system undergoes Hopf bifurcation at τ2 = τ∗2 .

Case II: When τ1 > 0, τ2 = 0
The analysis is similar to Case I and is therefore given without proof by the
following theorem.

Theorem 4.4. If the system without delay is asymptotically stable, then the
steady state E∗ is LAS for τ1 < τ∗1 and becomes unstable for τ1 > τ∗1 . Further-
more, the system will undergo a Hopf-bifurcation at E∗ when τ1 = τ∗1 provided

[

d(Reξ)

dτ1

]

τ1=τ∗

1

> 0.

Case III: When τ1 > 0, τ2 > 0
This analysis is complicated and it is difficult to obtain information on the
nature of the eigenvalues and the conditions for occurrence of stability switches.
But we can investigate the nature of the eigenvalues at the endemic state with
the traceDDE package in Matlab which allows us to find the characteristic roots
and region of stability [27]. We provide the result without proof in the following
theorem.

Theorem 4.5. Suppose that the non-delayed system is asymptotically stable.
Now, if ω4 < 0 holds then there exists a τ∗ such that the steady state E∗ is LAS
for τ1 + τ2 < τ∗, and becomes unstable for τ1 + τ2 > τ∗. Furthermore, E∗ will
undergo a Hopf-bifurcation when τ1 + τ2 = τ∗, provided that

[

d(Reξ)

dτ

]

τ=τ∗

> 0.
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Table 1: List of parameters used in numerical simulations and their references.

Parameter Definition Value Unit

π Constant recruitment rate 30 person day−1

β Disease transmission rate 0.00025 day−1

α Maximum rate of awareness 0.02 day−1

from unaware to aware human
λ Maximum rate of transfer rate 0.0002 day−1

of people from aware to unaware
d Susceptible class natural death rate 0.005 day−1

e Additional death rate due to infection 0.02 day−1

η Proportionality constant 0.02 –
γ Contacts among infected 0.000002 day−1

and from the aware class
θ Depletion rate of awareness program 0.05 day−1

due to ineffectiveness

5. Numerical Simulations

In this section, numerical simulations are performed to investigate the dy-
namics of the system and to support the findings of the theoretical findings. To
carry out the numerical simulations on the epidemic models we need to make a
specific choice for the function f , here taken as f(M) =M(1 +M)−1.

The dynamic behavior of the system has been observed for different values
of the two delays τ1 and τ2, in order also to assess its global dynamic behavior.
Numerical simulations are performed to examine the disease spread at first with
no time delay and subsequently with time delays. The parameters values used
are obtained from [12, 17, 28, 29].

5.1. Numerical simulations of un-delayed system

Figure 1 to Figure 5 contain the numerical results of the un-delayed system.
The set of parameters are given in Table 1. The time series solution of the
system without delay is plotted in Figure 1 with the parameters values as given
in Table 1.

Here, R0 > 1 and the conditions given in (15) are satisfied, thus the endemic
equilibrium is LAS. The phase portrait of the infective population, the unaware
population and the cumulative density of awareness programs, not shown, have
the property that all the trajectories initiating inside the region of attraction
approach the equilibrium values. This indicates the nonlinear stability of the
coexistence equilibrium (M∗, S∗

u, I
∗) in the M − Su − I population subspace.

The bifurcation diagram of the system without delay is shown in Figure 2 as
function of the parameter η. For lower values of η the system is stable, but above
the threshold value η∗ the system loses its stability and periodic solutions arise
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through Hopf-bifurcation. The system with no delay shows periodic oscillations
for η = 0.1 in the plane (see Figure 3) where other parameter values are the
same as in Figure 1. But this oscillation depends on the immigration rate π and
on the disease contact rate β.

In Figure 4, the stability region of E∗ in η − β and η − π parameter spaces
is shown. From Figure 4(a), if β increases then the critical value of η∗ increases
and from Figure 4(b), the periodic oscillation will disappear for some higher
values of immigration rate, π.

5.2. Numerical simulations of delayed system

For the system with time delays, steady state E∗ is asymptotically stable
for τ1 = 15, τ2 = 0 (Figure 5). This indicates that sometimes the number of
infective will be high and sometimes low and it may be difficult to make the
forecasts regarding the size of epidemic. The system takes more time to settle
to a stable state than the system with no delay.

In Figure 6, the trajectories of the system populations are plotted. Periodic
sustained oscillations are observed for τ1 = 75. Figure 7 shows that the critical
value of delay τ1 depends on η. Similarly periodic oscillations for the delay
τ2 = 78 can be observed (not shown). Figure 7 shows the that critical value of
delay τ1 i.e. τ∗1 depends on η (shown in Figure 7(a)) and that of τ2 depends on α
(shown in Figure 7(b)). In Figure 8, stability of E∗ of the multi-delayed system
in the τ1 − τ2 plane is shown. The critical value τ∗1 is clearly seen to depend on
τ2 and vice versa. In Figure 9, for the pair τ1 = 30, τ2 = 48 periodic solutions
are observed. In Figure 10, using traceDDE, we plot the roots of characteristic
equation (22). A pair of purely imaginary roots observed for τ = 30, τ2 = 48.

6. Discussion and Conclusion

Media are widely acknowledged as a key tool for influencing people behavior
towards the disease to devise proper policies for controlling the epidemic. Aware-
ness programs through media make people aware about the disease and instruct
them on how to take various precautions (e.g. taking preventive medicine, vacci-
nation, social distancing etc.), to reduce their chances of being infected. Aware-
ness among the human population thus may profoundly influence the pattern of
disease spread and more importantly it helps in reducing the rate of infection.

In this paper, the effect of awareness programs and time delays on the disease
dynamics of infectious diseases are considered. The main assumption regards the
awareness or unawareness rate, which is taken as a function of media campaign.
The existence and stability criteria of the disease-free and of the endemic equi-
libria have been derived in terms of the basic reproduction number, R0. When
R0 is less than unity, disease remains endemic in the system, whereas for R0

above unity, the disease cannot persist in the system and is therefore eradicated.
Furthermore this indicates a transcritical bifurcation occurrence at R0 = 1.

Our study suggests that if we increase the rate of implementation of aware-
ness program through the media, the number of infected individuals decline and
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the system remains stable. This occurs up to a threshold value of the awareness
program implementation. Above that threshold the system becomes unstable
and triggers the onset of persistent oscillations. The danger of the latter is well-
known in ecology, as while the populations are at the bottom of the troughs,
erratic perturbations of the environmental conditions, through climatic changes
for instance, may push some of these populations to vanish, with consequent rel-
evant effects on the whole ecosystem. Similar considerations hold for epidemic
issues as those considered in the present case. The constant immigration rate
may be one of the possible causes of such outcomes. In particular, for a mod-
erate range of value of immigration rate the system shows unstable dynamics,
while for lower and higher values the system settles to a stable behavior.
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Figure 1: The time series solution of the system with no delay is plotted using the parameter
given in Table 1. The system is stable.

Figure 2: The system populations oscillations are plotted as function of η, with R0 > 1
and β = 0.00025. Here, steady state values of all populations are plotted together with the
minimum/maximum of the periodic solution when it exists.
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Figure 3: The system populations are plotted taking η = 0.1 > η∗, other parameters as in
Table 1.
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Figure 4: The stability region is shown (a) in η− β plane, (b)in η− π plane. The colour code
denotes max[Re(ρ)] whenever the endemic steady state is feasible. Other parameter values
are as in Table 1. Here, recall that ρ denotes the characteristic root of equation (13).
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Figure 5: The time series solution of the system for τ1 = 15 is plotted and the endemic state
is LAS.
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Figure 6: The time series solution of the system for τ1 = 75 is plotted using the parameter as
given in Table 1 and periodic solution is observed.

21



(a)

τ1

η
R

e
 ρ

m
a

x

0.01 0.1 0.15
0

20

40

60

80

100

-0.03

0

0.03

0.07

(b)

τ2

α

R
e

 ρ
m

a
x

0.01 0.05 0.1 0.15
0

20

40

60

80

100

-0.05

-0.02

0

0.03

0.05

Figure 7: The stability region is shown: (a) in τ1 − η plane taking, (b) in α − τ2 plane,
whenever the endemic steady state is feasible, other parameter values are as in Table 1. τ1
The colour code denotes max[Re(ρ)] whenever the endemic steady state is feasible.
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Figure 8: The stability region is shown in τ1 − τ2 plane, whenever the endemic steady state
is feasible, other parameter values are as in Table 1. The colour code denotes max[Re(ρ)]
whenever the endemic steady state is feasible.
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Figure 9: The time series solution of the system for τ1 = 30, τ2 = 48 is plotted and periodic
solution is observed.
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Figure 10: The characteristic roots are plotted: (a) for τ1 = 30, τ2 = 48 and (b) for τ1 =
10, τ2 = 70.
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