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1. Introduction

In 1867, E. Beltrami [14] introduced a second order elliptic operator on Riemannian
manifolds, defined by ∆ = div ◦ grad , extending the Laplace operator on Rn, called
the Laplace-Beltrami operator. The Laplace-Beltrami operator became one of the most
important operators in Mathematics and Physics, playing a fundamental role in differential
geometry, geometric analysis, partial differential equations, probability, potential theory,
stochastic process, just to mention a few. It is in important in various differential equations
that describe physical phenomena such as the diffusion equation for the heat and fluid flow,
wave propagation, Laplace equation and minimal surfaces.

An important step towards the analysis of this operator was taken by M. Gaffney [66]
in 1954, proving that, for geodesically complete metrics, the Laplace-Beltrami operator is
essentially self-adjoint, meaning that it has a unique self-adjoint extension, denoted also by
∆, whose domain is the set of functions f ∈ L2 so that ∆f ∈ L2. If a Riemannian manifold
M is geodesically incomplete, there exist infinitely many self-adjoint extensions, but just
one whose domain lies in that of the associated quadratic form, called the Friedrichs
extension of (∆, C∞0 (M)). The spectrum of these self-adjoint extensions is formed by
all λ ∈ [0,∞) for which (∆ + λI) is not injective or the inverse operator (∆ + λI)−1 is
unbounded, see [50] for a detailed account.

The spectrum of the Laplace-Beltrami operator encodes fundamental properties of the
geometry of the underline Riemannian manifold, and has various applications highlighted
in see [15], [29], [33], [34], [49], [50], [71], [73], and also [135]. The problems involving
spectrum of the Laplace-Beltrami operator (Laplacian for short) vary in aspect, taste and
difficulty. In this manuscript we will address basic questions about the nature of the
spectrum as a by-product of the geometry of the underlining Riemannian manifold. The
content gives our trajectory in the study of the geometry of the Laplacian on manifolds
and submanifolds in the last fifteen years. Our study starts with basic estimates of the
bottom of the spectrum then progressing to questions about the whole spectrum.

We will refer to the spectrum of the Laplacian as the spectrum of Ω or M and denote
it by σ(Ω) or σ(M). It is important in our description to distinguish the types of elements
in the spectrum σ(M). The set of λ for which (∆ + λI) is not injective is the set of all
eigenvalues of σ(M) and it is called the point spectrum σp(M), while the discrete spectrum
σd(M) ⊂ σp(M) is the set of all isolated eigenvalues of finite multiplicity. The complement
of the discrete spectrum is the essential spectrum, σess(M) = σ(M) \ σd(M) and the
complement of the point spectrum is the continuous spectrum, σcont(M) = σ(M)\σp(M).
To have a glimpse of these kind of questions, see [54], [56], [61], [85], [119], [131] for
geometric conditions implying that the spectrum is purely continuous, σp(M) = ∅ or these
[8], [53], [78], [86], [87] implying the spectrum is discrete, σess(M) = ∅.
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The manuscript is organized as follows. In Section 2, we study the bottom of the
spectrum inf σ(M) of a given Riemannian manifold, in terms of geometric invariants. This
section is divided in two parts. In the first part, subsection 2.1, we introduce a geometric
and a computable, non-negative constant c(M)1 in order to give a lower bound for the
bottom of the spectrum of a Riemannian manifold M . We show that inf σ(M) ≥ c(M)2/4,
where c(M) = supX [inf divX/ sup |X|], X smooth vector fields in M , see [21]. This lower
bound allow us to obtain explicitly the Cheeger’s constant for geodesic balls in model
manifolds [24], to study foliations of spaces by constant mean curvature leaves in terms
of the bottom of the spectrum of these spaces and to prove a Haymann-Makai-Osserman
inequality for tubes around curves in Rn, see [11]. In the second part, subsection 2.5, we
extend Barta’s theorem, proved for bounded open sets, to all open subsets of Riemannian
manifolds. The main application of this generalization is a geometric lower bound of the
spectrum of minimal submanifolds in terms of the ambient sectional curvature.

Section 4 is an application of the estimates developed in Section 2 to study the spectrum
of certain Riemannian submersions. More precisely, we study the spectrum of Riemannian
submersions π : M → N with compact minimal fibers F → M . The main result is that
for a Riemannian submersion π : M → N with compact minimal fibers, each type of
the spectrum of N is contained in the respective spectrum of the total space. This is,
σp(N) ⊂ σp(M), σess(N) ⊂ σess(N) and inf σess(N) = inf σess(M), therefore M has
discrete spectrum if and only if N has discrete spectrum.

In Section 5, we consider the Calabi-Yau conjectures of minimal hypersurfaces set in
Yau’s Millennium Lectures [138], [139]. S. T. Yau, revisiting the E. Calabi conjectures
on the existence of bounded minimal hypersurfaces, [30], [44], after the Jorge-Xavier
and Nadirashvili’s counter-examples, [84], [107], proposed a new set of questions about
bounded minimal surfaces of R3. He wrote: “It is known [107] that there are complete
minimal surfaces properly immersed into the [open] ball. What is the geometry of these
surfaces? Can they be embedded? Since the curvature must tend to minus infinity, it is
important to find the precise asymptotic behaviour of these surfaces near their ends. Are
their [Laplacian] spectra discrete?”. In this chapter we give a fairly complete answer to this
question, proving that complete bounded minimal surfaces has discrete spectrum provided
the dimension of its limit set is small. Our main result applies to a number of examples
recently constructed, and is sharp.

In Section 6 is, in some sense, the opposite of Section 5. There, we investigate conditions
to guarantee that a half-line is contained in σess(M). In some instances, notably for
minimal submanifolds Mm → Nnκ of space forms, we are able to exhibit sharp conditions
to ensure that σ(M) is a half-line. These conditions might involve the density function of
M or the behavious of geodesic balls in M . Applications include the investigation of the
family of examples of complete minimal surfaces between parallel planes of Jorge-Xavier
and Rosenberg-Toubiana.

Hereafter, for a given Riemannian manifold M we write ∆: D(∆)→ L2(M) to denote
the self-adjoint extension of the Laplace-Beltrami operator if M is geodesically complete,
or otherwise the Friedrichs extension of (∆, C∞0 (M)).

2. Fundamental tone estimates

If M is compact then σ(M) = {λ1(M) < λ2(M) ≤ · · · ↗ ∞}, with the eigenvalues
repeated accordingly to their multiplicities. If ∂M = ∅ then λ1(M) = 0 and if ∂M 6= ∅
then λ1(M) > 0. To describe the spectrum of a given Riemannian manifold is a hard
problem although the spectrum in few cases is known. For instance, if Snκ,Rn,Hnκ denote

1c(M) > 0 if M is compact with non-empty boundary
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the space forms of curvature κ > 0, 0 and −κ < 0, respectively, then

(1)



σ(Rn) = [0,∞)

σ(Hnκ) =

[
(n− 1)2κ

4
,∞
)

σ(Sn1 ) = {νj = j(j + n− 1)} j = 0, 1, . . . ,∞,

while λ1(BRn(r)) = c2(n)/r2, λ1(BSn(π/2)) = n, see [33].

The bottom of the spectrum, inf σ(M) and of the essential spectrum inf σess(M) of
M can be characterized in terms of fundamental tones of open subsets Ω ⊆ M . More
precisely, inf σ(M) = λ∗(M) and inf σess(M) = supK⊂M λ∗(M \ K), K ⊂ M compact,
see [50], [53], [114, Thm.21], where the fundamental tone λ∗(Ω) of an open set Ω ⊆ M is
defined by

(2) λ∗(Ω) = inf

{∫
Ω
|∇u|2∫
Ω
u2

, u ∈ C∞0 (Ω) \ {0}
}
·

Furthermore, λ∗(M \ K) is the bottom of the spectrum of the Friedrichs extension of
(−∆, C∞0 (M \K)). If Ω is relatively compact then λ∗(Ω) = λ1(Ω) coincides with the first
Dirichlet eigenvalue λ1(Ω) of Ω, see [33].

The very basic question posed by Schoen-Yau in [125] is: what are the geometries
with positive spectrum? The positivity λ∗(M) > 0 imposes strong restrictions on the
geometry of M , for instance, M is non-parabolic, that is, it admits non-constant positive
superharmonic functions, see [71, Prop. 10.1]. The converse statement is not true. The
Euclidean space Rn is non-parabolic for n ≥ 3 and λ∗(Rn) = 0 for all n ≥ 1. Letting
V (r) = vol(BM (r)) be the volume of the geodesic ball of radius r then if V (r) ≤ p(r), for
any polynomial p(r) and r > 0 then λ∗(M) = 0, [42]. Cheng-Yau’s result was extended
by R. Brooks and then by Y. Higuchi in [29, 79]. They proved that

inf σess(M) ≤ τ2(M)

4
, where τ(M) = lim inf

r→∞

log V (r)

r

is the volume entropy. These results mentioned give interesting geometric consequences
of λ∗(M) > 0, however, it would be interesting to know how positive the bottom of the
spectrum is. In other words, give precise lower bounds for λ∗(M) in terms of geometric
invariants. For instance, the classic McKean’s Theorem [104] gives sharp lower bound for
the bottom of the spectrum of Hadamard manifolds with negative curvature.

Theorem 2.1 (McKean-[104]). Let M be a complete, simply connected, Riemannian n-
manifold with sectional curvature KM ≤ −κ < 0. The bottom of the spectrum of M is
bounded below as

λ∗(M) ≥ (n− 1)2κ

4
·

Remark 2.2.
• This lower bound is sharp since inf σ(Hnκ) = (n− 1)2κ/4.
• The curvature assumption KM ≤ −κ < 0 in Theorem 2.1 is necessary in the sense

that if there is a family of disjoint, flat geodesic balls BM (ri) with center at xi and
radii ri → ∞ them inf σ(M) = inf σess(M) = 0 regardless the sectional curvature
behaviour in M \ (∪∞i=1BM (ri)), see Definition 6.11 in Section 5.

The fundamental tone λ∗(M) of a geodesically complete Riemannian manifold M given
in (2) can be also obtained as the limit limr→∞ λ∗(BM (r)) = limλ∗(M), where BM (r) is
the geodesic ball with radius r and center at a point p. The following result is known as
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the Cheng’s Eigenvalue Comparison Theorem a local version of McKean’s Theorem, see
[39].

Theorem 2.3 (S. Y. Cheng). Let M be a Riemannian n-manifold and let BM (r) be a
normal geodesic ball of radius r. Let κ = supBM (r)K be the supremum of all the sectional

curvatures of BM (r). If κ > 0, assume further that r < π/2
√
κ. Then

(3) λ∗(BM (r)) ≥ λ∗(BMnκ (r)).

Here Mn
κ is the simply connected n-space form of constant sectional curvature κ.

A theoretical lower bound estimate for λ∗(Ω), for relatively compact open sets Ω with
smooth boundary ∂Ω was obtained by J. Cheeger, in [34]. He introduced what is now
called Cheeger’s constant h(Ω) defined by

(4) h(Ω) = inf
A⊂Ω

voln−1(∂A)

voln(A)
,

where A ⊂ Ω is connected, and proved that

(5) λ∗(Ω) ≥ h2(Ω)

4
·

Taking an exhaustion of M by relatively compact open sets {Ωi} with smooth boundaries
one readily has that λ∗(M) ≥ h2(M)/4. The relevance of Cheeger’s lower bound (5) is
that it relates the first eigenvalue λ∗(Ω) with the isoperimetric inequality (4). However,
it is difficult to give lower bounds for fundamental tones via Cheeger’s constant because
it is hardy computable. In the next subsection will introduce a constant, that can be
estimated, and used to give lower bounds for the fundamental tones of open sets. This
constant is defined in terms of divergence of vector fields and it has great flexibility in
the geometric applications. For instance, in the particular cases of geodesic balls of model
manifolds, with center at the pole, we show that our constant coincide with Cheeger’s
constant.

2.1. Lower bound estimates and geometric applications. The purpose of this
subsection is to describe a criterion for a lower bound on λ∗(Ω) in terms of possibily
non-smooth vector fields. We begin with the following

Definition 2.4. Let M be a Riemannian manifold and a vector field X ∈ L1
loc(M)

(meaning that |X| ∈ L1
loc(M)). A function g ∈ L1

loc(M) is a weak divergence of X if∫
M

φ g = −
∫
M

〈∇φ, X〉, ∀φ ∈ C∞0 (M).

There exists at most one weak divergence g ∈ L1
loc(M) for a given X ∈ L1

loc(M) and
we may write g = DivX. For C1 vector fields X the classical (strong) divergence divX
and the weak divergence DivX coincide.

Remark 2.5. Let W1,1(M) denote the space of all vector fields X ∈ L1
loc(M) possessing

weak divergence DivX. If X ∈ W1,1(M) and f ∈ C1(M) then fX ∈ W1,1(M) with

Div (fX) = 〈∇f, X〉+ f DivX.

In particular for f ∈ C∞0 (M) we have that

(6)

∫
M

Div (fX) =

∫
M

〈∇f, X〉 − 〈∇f, X〉 = 0.
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Conversely, if fX ∈ W1,1(M) for all f ∈ C∞0 (M) then X ∈ W1,1(M). In this case

Div (X) =

∞∑
i=1

Div (ξiX)

where {ξi} is a partition of unity subordinated to a locally finite covering of M by open
sets.

Remark 2.6. The gradient X = ∇ρM of the distance function ρM (x) = distM (p, x) to a
point p ∈M fails to be smooth in p and in cut(p), the cut locus of p. However, it is possible
to show that ∇ρ

M
∈ W1,1(M) provided the (n− 1)-Hausdorff measure Hn−1(cut(p)) = 0.

This justifies to work in this larger class W1,1(M) of vector fields. It is interesting to
observe that, combining work of various authors (one is referred to the account in Chapter
1 of [26]), Hn−1(cut(p)) = 0 if and only if Cut(p) consists just of focal points.

Definition 2.7. Let Ω ⊂ M be an open subset of a Riemannian manifold M . Let X (Ω)
be defined by

X (Ω) = {X ∈ W1,1(Ω) : sup
Ω
|X| <∞, inf

Ω
Div X > 0}.

Define c(Ω) by

(7) c(Ω) = sup
X∈X (Ω)

infΩ Div X

supΩ |X|
·

Our first result of this section is this following lower bound for fundamental tones of
open sets obtained in [21].

Theorem 2.8 (Bessa-Montenegro-[21]). Let Ω ⊂ be an open subset of a Riemannian
manifold M . Then

(8) λ∗(Ω) ≥ c(Ω)2

4
·

Proof. Let X ∈ X (Ω) and f ∈ C∞0 (Ω). The vector field f2X ∈ X (Ω). Computing Div f2X
we have,

Div (f2X) = 〈∇ f2, X〉+ f2Div (X)

≥ −|∇ f2| · |X|+ inf
Ω

Div X · f2(9)

≥ −2 · sup
Ω
|X| · |f | · |∇ f |+ inf

Ω
Div X · f2

Using the inequality

−2 · |f | · |∇ f | ≥ −ε · |f |2 − 1/ε · |∇ f |2

for all ε > 0, we have from (9) that

Div (f2X) ≥ sup
Ω
|X| · (−ε · |f |2 − 1

ε
· |∇ f |2) + inf

Ω
Div X · f2(10)

Integrating (10) on a normal domain O containing Ω we have that

0 =

∫
O

Div (f2X) ≥ sup
Ω
|X| ·

∫
O

(−ε |f |2 − 1

ε
|∇ f |2) + inf

Ω
Div X ·

∫
O
f2,

therefore ∫
O
|∇ f |2 ≥ ε

supΩ |X|
(inf

Ω
Div X − sup

Ω
|X| · ε)

∫
O
f2.



6 G. PACELLI BESSA, L. JORGE, L. MARI AND J. FÁBIO MONTENEGRO

Choosing ε = (infΩ Div X)/(2 supΩ |X|) we have that∫
Ω

|∇ f |2 =

∫
O
|∇ f |2 ≥

[
infΩ Div X

2 supΩ |X|

]2 ∫
O
f2 =

[
infΩ Div X

2 supΩ |X|

]2 ∫
Ω

f2.(11)

Then, by fundamental tone definition (2), inequality (11) implies that

(12) λ(Ω) ≥
(

infΩ Div X

2 supΩ |X|

)2

.

Taking, in the right hand side of (12), the supremum over all vector fields X ∈ X (Ω) we
have inequality (8). �

Remark 2.9. For relatively compact open sets with smooth boundaries, it can be shown
that c(Ω) ≤ h(Ω), where h(Ω) = infA⊂Ω Voln−1(∂A)/Voln(A) is Cheeger’s constant for Ω.
To see that, let X ∈ X (Ω) and A ⊂ Ω be a connected open subset of Ω. Then we have that

(13) inf
Ω

Div X · Voln(A) ≤
∫
A

Div X =

∫
∂A

〈X, η〉 ≤ sup
Ω
|X| · Voln−1(∂A) .

Thus,

(14)
infΩ Div X

supΩ |X|
≤ Voln−1(∂A)

Voln(A)
.

The left and right sides of inequality (14) are independent on each other. Therefore,
taking the supremum on the right hand side and infimum on the left hand side one has
that c(Ω) ≤ h(Ω). The advantage of introducing c(Ω) is the easiest computability compared
with h(Ω).

Corollary 2.10 (Cheng’s revisited). Let M be a Riemannian n-manifold and let BM (r)
be a normal geodesic ball of radius r. Let κ = supBM (r)K be the supremum of all the

sectional curvatures of BM (r). If κ > 0, assume further that r < π/2
√
κ. Then,

(15) λ∗(BN (r)) ≥



max{4n2

r2
,

[(n− 1)k coth(kr)]
2

4
}, if κ = −k2.

n2

4 r2
, if κ = 0.

[(n− 1) · kr cot(k r) + 1]
2

4r2
, if κ = k2 and r < π/2k.

2.2. Cheeger constant of model manifolds. Let h ∈ C2([0,+∞)) be positive in
(0, Rh), 0 < Rh ≤ ∞ satisfying h(0) = 0, h′(0) = 1. The n-dimensional model Mn

h is the
manifold Rn endowed with a metric whose expression, in polar coordinates (t, θ) centered
at some origin o, reads

ds2
h = dt2 + h(t)2〈 , 〉Sn−1 ,

where 〈 , 〉Sn−1 is the standard metric on the unit (n − 1)-sphere. The metric can be
extended in a C2-way if h′′(0) = 0, and smoothly if h ∈ C∞([0,+∞)) and h2j(0) = 0
for each j ∈ N, see [69]. Observe that a model Mn

h can, equivalently, be specified by
prescribing its radial sectional curvature G ∈ C∞(R+

0 ) and recovering h as the solution of{
h′′ −Gh = 0,

h(0) = 0, h′(0) = 1,
(16)

on the maximal interval (0, Rh) where h > 0.
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Remark 2.11. Denoting by G− the negative part of G, i.e. G− = max{0,−G}, then
Rg = +∞ whenever t

∫∞
t
G−(s)ds ≤ 1/4, see [26].

A model manifold enjoys the following properties:

- The Laplace-Beltrami operator on Mn
h written in polar coordinates is

(17) ∆ =
∂2

∂t
+ (n− 1)

h′

h

∂

∂t
+

1

h2
∆Sn−1 .

- The volume of the geodesic ball BMh(r) and the volume of the geodesic sphere
∂BMh(r) centered at the origin are given respectively by

Voln(BMh(r)) = ωn

∫ r

0

hn−1(s)ds and Voln−1(∂BMh(r)) = ωnh
n−1(r).

Where ωn is the volume of the unit sphere Sn−1.

The space form Mn
κ of curvature κ > 0, 0 or −κ < 0 are recovered by the choice h = Sκ,

where

(18) Sκ(t) =



sin(
√
κ t)√
κ

, if κ > 0

t, if κ = 0

sinh(
√
−κ t)√
−κ

, if κ < 0

Volumes of geodesic spheres and balls in Mn
κ will be denoted with vκ(r) and Vκ(r), respec-

tively.
Our first task is to characterize the Cheeger’s constant of models:

Theorem 2.12 (Bessa-Montenegro-[24]). Let BMh(r) be a geodesic ball centered at the
origin of a model manifold Mh then

c(BMh(r)) = h(BMh(r)).

In particular,

λ∗(BMh(r)) ≥ inf
0≤t≤r

[
Voln−1(∂BMh(t))

2Voln(BMh(t))

]2

.

Proof. Consider the function E : BMh(r)→ R defined by

(19) E(x) =

∫ r

r(x)

1

hn−1(τ)

∫ τ

0

hn−1(s)dsdτ

Observe that E is a radial function, meaning that E(x) = E(r(x)), r(x) = distMh(0, x).
This function is called the mean exit time function [71]. Letting X = −∇E we easily
compute that divX = −∆E = 1 and

|X|(t, θ) =
1

hn−1(t)

∫ t

0

hn−1(s)ds =
Vol(BMh(t))

Vol(∂BMh(t))
.
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By (4) and by (7) we have that

c(BMh(r)) ≥ 1

sup0≤t≤r
Vol(BMh(t))

Vol(∂BMh(t))

(20)

= inf
0≤t≤r

Voln−1(∂BMh(t))

Voln(BMh(t))

≥ h(BMh(r)).

However, h(BMh(r))) ≥ c(BMh(r))), as observed in Remark 2.9. This shows that

(21) c(BMh(r)) = h(BMh(r)).

�

Example 2.13. The Cheeger constants for geodesic balls in the sphere S2, Euclidean space
R2 and hyperbolic space H2 are respectively

(22)



h(BR2(r)) =
2

r
and h(R2) = 0

h(BS2(r)) =
sin(r)

1− cos(r)
and h(BS2(π/2)) = 1, h(S2) = 0

h(BH2(r)) =
sinh(r)

cosh(r)− 1
and h(H2) = 1·

It is worthy to observe that the eigenvalue estimate via Cheeger constant sometimes is
too coarse. For instance, it is well know that λ1(BS2(π/2)) = 2 and h(BS2(π/2)) = 1.

2.3. Transversally oriented foliations. Let Ω be an open set of a Riemannian
manifold M and F a codimension one transversally oriented C3-foliation. This means
that we may choose a smooth unit vector field η on M that is normal to the leaves of
F . Let HF (x) be the value of the mean curvature of the leaf F at x computed with
respect to η. Set b = infF∈F infx∈F |HF (x)|. Assume first that b > 0. This implies that
HF does not change sign. Hence, we may choose the unit vector field η in such way
that HF (x) > 0 for any x ∈ Ω. It is easy to compute divM η = n · HF . Therefore,
infΩ diverM η = n · infΩHF (x) ≥ n · b. Since |η| = 1, by (8), we have the estimate

2
√
λ∗(Ω) ≥ inf

Ω

div η

‖η‖∞
= n · inf

x∈Ω
HF (x) ≥ n · b.

This proves the following result, see [11].

Theorem 2.14 (Barbosa-Bessa-Montenegro-[11]). Let Ω be a connected open subset of
Riemannian (n + 1)-manifold M admitting a transversely oriented codimension one C2-
foliation F . Then

2
√
λ∗(Ω) ≥ n · inf

F∈F
inf
x∈F
|HF (x)|,

where HF stands for the mean curvature function of the leaf F .

This theorem has a number of consequences, stated below as corollaries. It imposes
restrictions for the existence of foliations by constant mean curvature hypersurfaces on
open sets with zero fundamental tone or on open sets with Ricci curvature bounded below,
see Corollaries 2.15 and 2.17.
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Corollary 2.15. Let F be a transversely oriented codimension one C2-foliation of a Rie-
mannian manifold M for which λ∗(M) = 0. If the leaves of F have the same constant
mean curvature then they are minimal submanifolds of M .

Remark 2.16. The class of Riemannian manifolds M with λ∗(M) = 0 is huge. Besides
the compact Riemannian manifolds, it contains all the open Riemannian manifolds with
asymptotically nonnegative Ricci curvature, see [38]. An open Riemannian manifold M
has asymptotically nonnegative Ricci curvature if RicM (x) ≥ −ψ(distM (x0, x)), for a
continuous function ψ : [0,∞)→ [0,∞) with limt→∞ ψ(t) = 0, x0 ∈M . In fact, the class
contains the Riemannian manifolds with a disjoint family of flat balls described in Remark
2.2.

In [12], Barbosa-Kenmotsu-Oshikiri considered transversally oriented codimension-one
C3-foliations F of the simply connected space form Mn

κ of curvature −κ ≤ 0. They
proved that if the leaves were complete oriented hypersurfaces with the same constant
mean curvature H ≥ (n − 1)

√
κ then H = (n − 1)

√
κ. The next result extends Barbosa-

Kenmotsu-Oshikiri’s theorem to Riemannian n-manifolds with Ricci curvature RicM ≥
−(n− 1)κ.

Corollary 2.17. Let F be a transversely oriented codimension-one C2-foliation of a com-
plete n-dimensional Riemannian manifold M with Ricci curvature RicM ≥ −(n− 1)κ, for
some κ ≥ 0. Then

i) 2
√
λ∗(Mn

κ) ≥ infF∈F infx∈F |HF (x)|, where Mn
κ is the simply connected n-space

form Mn
κ of constant curvature −κ ≤ 0.

ii) If |HF | ≥ b > 0 then (n− 1)
√
κ ≥ b.

Proof. Let BM (r) be a geodesic ball of radius r of a Riemannian Manifold M whose Ricci
curvature satisfies RicM ≥ −(n − 1)κ, and let BMnκ (r) be the geodesic ball of radius r in
the model n-manifold Mn

κ of constant sectional curvature −κ. By Cheng’s Comparison
Theorem, [38] we know that

λ∗(BM (r)) ≤ λ∗(BMnκ (r)) .

Since λ∗(M) = limr→∞ λ∗(BM (r)), it follows that λ∗(M) ≤ λ∗(Mn
κ). Thus, by Theorem

2.14 we have

inf
F∈F

inf
x∈F
|HF (x)| ≤ 2

√
λ∗(M) ≤ 2

√
λ∗(Mn

κ)

and (i) is proved. Item (ii) follows immediately by using that λ∗(Mn
κ) = (n−1)2κ/4. This

completes the proof of the corollary. �

Theorem 2.14 also has a version for scalar curvature provided the ambient manifold has
nonpositive sectional curvature.

Corollary 2.18. Let M be a Riemannian (n + 1)-manifold with nonpositive sectional
curvature KM ≤ 0 and let F be a transversely oriented codimension one C2-foliation
of a connected open set Ω ⊂ M . Suppose that the scalar curvature SF of each leaf if
nonnegative. Then √

inf S ≤ 2
√
λ∗(Ω) .

In particular, if λ∗(M) = 0 and all the leaves have the same constant non-negative scalar
curvature S ≥ 0, then S = 0.

If inf S = 0 there is nothing to prove. Thus, we assume that inf S = c > 0. Let p ∈ F
and {e1, · · · , en} be an orthonormal basis for the tangent space TpF of the leaf F ∈ F .
The Gauss equation for the plane generated by ei, ej is:

K̃(ei, ej) = K(ei, ej) + 〈B(ei, ei), B(ej , ej)〉 − |B(ei, ej)|2,
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where K̃ is the Gaussian curvature of F and K is the Gaussian curvature of the ambient
space Ω× R. Tracing on i, j gives:

S(p) =
∑
i,j

K(ei, ej) + n2H2 − ‖B‖2.

Since the sectional curvatures K ≤ 0, it follows that

S(p) ≤ n2H2 ,

and, since S ≥ c > 0 then H ≥
√
c/n > 0. By Theorem 2.14 we have that

2
√
λ∗(Ω) ≥ n inf

F∈F
inf
x∈F
|Hf (x)| ≥

√
c =
√

inf S.

This proves Corollary 2.18.

We turn to higher order mean curvatures. If ψ : N → M is an n-dimensional oriented
hypersurface of M and k1, . . . , kn are the principal curvatures at p ∈ N , then the r-th
mean curvatures Hr of ψ(N) at ψ(p) are defined by the identity

(1 + tk1)(1 + tk2) · · · (1 + tkn) = 1 +

(
n
1

)
H1 t+

(
n
2

)
H2 t

2 + · · ·
(
n
n

)
Hn t

n

for all real number t. Thus, H1 is the mean curvature of ψ, Hn is the Gauss-Kronecker
curvature. Since we always have H2

1 ≥ H2, the following version of Theorem (2.14) for the
2-nd mean curvature H2 is direct.

Corollary 2.19. Let F be a transversely oriented codimension one C2-foliation of a con-
nected open set Ω of a Riemannian manifold M . Suppose that the leaves have the 2-nd
mean curvature H2 ≥ 0. Then

2
√
λ∗(Ω) ≥ n · inf

F∈F
inf
x∈F

(HF
2 )1/2(x),

where HF
2 stands for the second mean curvature function of the leaf F . In particular,

if λ∗(M) = 0, Ω = M , and all the leaves have the same constant 2-nd mean curvature
H2 ≥ 0 then H2 = 0.

2.4. Haymann-Makai-Osserman inequality. Recall that the inradius ρ(Ω) of a
connected open set Ω of a Riemannian manifoldM is defined as ρ(Ω) = sup{r > 0; BM (r) ⊂
Ω}, where BM (r) is a geodesic ball of radius r of M . In [96], Makai proved that the fun-
damental tone λ∗(Ω) of a simply connected bounded domain Ω ⊂ R2 with inradius ρ
and smooth boundary is bounded below by λ1(Ω) ≥ 1/4ρ2. Unaware of Makai’s result,
Haymann [77] proved years later that λ1(Ω) ≥ 1/900ρ2. Osserman [112] among other
things improved Haymann’s estimate back to λ1(Ω) ≥ 1/4ρ2. Recently, Haymann-Makai-
Osserman inequality was improved by Bañuelos-Carroll in [9] to 0.6197/ρ2.

In the next result, we prove Haymann-Makai-Osserman inequality to embedded tubular
neighbourhoods of simple smooth curves in Rn with variable radius.

Theorem 2.20. Let γ : I = (α, β) ⊂ R → Rn be a simple smooth curve and Tγ(ρ(t))
be an embedded tubular neighborhood of γ with variable radius ρ(t) and smooth boundary
∂Tγ(ρ(t)). Let ρo = supt ρ(t) > 0 be its inradius. Then

(23) λ∗(Tγ(ρ(t))) ≥ (n− 1)2

4ρ2
o

·
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Consider the family of balls of Rn Bt = BRn(γ(t), ρo), t ∈ I with center at γ(t) and
radius ρo. The set {St = ∂Bt ∩ Tγ(ρ(t))} is a smooth codimension one transversally
oriented foliation of Tγ(ρ(t)) \ (Bα ∪ Bβ). Pushing the family Bt little further one can
fill Tγ(ρ(t)) with a smooth codimension one transversally oriented foliation such that the
mean curvature of the leaves is constant 1/ρo. Thus, we have by Theorem 2.14 that
λ∗(Tγ(ρ)) ≥ (n− 1)2/4ρ2.

2.5. Barta’s Theorem generalized. A simple but effective method to obtain lower
and upper bounds on the first Dirichlet eigenvalue λ1(Ω) of bounded open subsets Ω ⊂M
with piecewise smooth boundaries2 of Riemannian manifolds was obtained by J. Barta in
[13].

Theorem 2.21 (Barta). Let Ω ⊂ M be a compact subset of a Riemannian manifold M ,
with piecewise smooth non-empty boundary ∂Ω and f ∈ C2(Ω) ∩ C0(Ω) with f |Ω > 0 and
f |∂Ω = 0 and λ1(Ω) be the first Dirichlet eigenvalue of Ω. Then

(24) sup
Ω

(−∆f/f) ≥ λ1(Ω) ≥ inf
Ω

(−∆f/f).

With equality in (24) if and only if f is a first eigenfunction of Ω.

Remark 2.22.
• To obtain the lower bound for λ1(M) we may suppose only that f |∂Ω ≥ 0.
• It is hard to obtain a non-trivial upper bound for λ1(Ω) via Barta’s Theorem,

because to make a meaningful estimate when f |∂Ω = 0 one also has to have that
∆f |∂Ω = 0.

Our main result in this section is a refinement of Theorem 2.8, i.e. we give better lower
bounds for the fundamental tones of arbitrary open sets Ω in terms of divergence of smooth
vector fields X. When X = −∇ log f for a positive smooth function f |Ω > 0 then our
lower bound becomes inf(−∆f/f). This is, our result can be viewed as a generalization
of Barta’s Theorem.

Theorem 2.23 (Bessa-Montenegro-[23]). Let Ω ⊂ M be a open subset of a Riemannian
manifold. The fundamental tone λ∗(Ω) is bounded below as

(25) λ∗(Ω) ≥ sup
X∈W1,1(Ω)

{inf
Ω

(DivX − |X|2)}.

If Ω is compact with boundary then

(26) λ1(Ω) = sup
W1,1

{inf
M

(DivX − |X|2)}.

Remark 2.24. If X = −∇ log(v), for a positive smooth function of v : Ω→ R we obtain
that divX−|X|2 = −(∆v/v). Thus λ∗(Ω) ≥ infΩ(−∆v/v). In particular, if Ω is relatively
compact with boundary and v is a positive first eigenfunction then λ∗(Ω) = (−∆v/v).

Proof. The proof is a variation of the one of Theorem 2.8. Let X ∈ W1,1(Ω) and f ∈
C∞0 (Ω). The vector field f2X ∈ X (Ω). Computing Div f2X we have,

Div (f2X) = 〈∇ f2, X〉+ f2Div (X)

≥ −|∇ f2| · |X|+ Div X · f2(27)

≥ −2 · sup
Ω
|X| · |f | · |∇ f |+ Div X · f2

≥ −|∇f |2 + (Div X − |X|2) · f2

2Piecewise smooth boundary here means that there is a closed set Q ⊂ ∂M of (n−1)-Hausdorff measure
zero such that for each point q ∈ ∂M \Q there is a neighborhood of q in ∂M that is a graph of a smooth

function over the tangent space Tq∂M , see Whitney [136] pages 99-100.
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Integrating (27) on Ω we have that

0 =

∫
Ω

Div (f2X) ≥ −
∫

Ω

|∇f |2 + inf
Ω

(Div X − |X|2)

∫
Ω

f2(28)

Therefore

∫
Ω
|∇f |2∫
Ω
f2

≥ inf
Ω

(Div X − |X|2). Taking the infimum over all f ∈ C∞0 (Ω) and

the supremum over all X ∈ W1,1(Ω) implies that

λ∗(Ω) ≥ sup
X∈W1,1(Ω)

inf
Ω

(Div X − |X|2).

This proves Theorem 2.23. �

The following lemma gives sufficient conditions to a given vector field X to belong to
W1,1(Ω). Its proof can be found in [22, Lemma 3.1]

Lemma 2.25. Let Ω ⊂ M be a bounded domain in a smooth Riemannian manifold M
and F ⊂M be closed subset with (n− 1)-Hausdorff measure Hn−1(F ∩ Ω) = 0. Let X be
a vector field of class C1(Ω \ F ) ∩ L∞(Ω) such that div (X) ∈ L1(Ω). Then X ∈ W1,1(Ω)
with Div (X) = div (X) in Ω \ F .

A direct consequence of Theorem 2.23 coupled with Lemma 2.25 is that the Cheng’s
eigenvalue inequality (3) is valid for arbitrary geodesic balls BM (r) provided the (n− 1)-
Hausdorff measure Hn−1(Cut(p) ∩ BN (p, r)) = 0, where Cut(p) is the cut locus of the
center p, equivalently that Cut(p) is made just of focal points. Moreover, the equality in
(3) is achieved if and only if BM (r) is isometric to BMnκ (r).

2.6. Cheng’s eigenvalue comparison theorem revisited. For notational sim-
plicity, let Mn

κ denote the space form of curvature κ ∈ R. Using Barta’s Theorem 2.21, S.
Y. Cheng in [39] proved that

i) if the sectional curvature of M satisfies KM ≤ κ and r < min{inj(p), π/
√
κ },

(π/
√
κ =∞ if κ ≤ 0) then λ1(BM (r)) ≥ λ1(BMnκ (r));

ii) if the Ricci curvature of M satisfies RicM ≥ (n − 1)κ then the reverse inequality
λ1(BM (r)) ≤ λ1(BMnκ (r)) holds for all r > 0 .

Moreover, equality in i) or ii) holds if and only if the geodesic balls BM (r) and BMnκ (r)
are isometric, see [39]. In this section we show that (3) is valid under weaker geometric
hypotheses. Let us assume that BM (r) and BMnκ (r) are normal, within the cut locus of

their centers and let (t, θ) ∈ (0, r]× Sn−1 be geodesic coordinates for BM (r) and BMnκ (r).
Let HM (t, θ) and HMnκ (t, θ) = HMnκ (t) be the mean curvatures of the distance spheres
∂BM (t) and ∂BMnκ (t) at (t, θ) with respect to the unit vector field −∂/∂t. Then the
following version of Cheng’s Eigenvalue Comparison Theorems is true.

Theorem 2.26 (Bessa-Montenegro-[23]). If HM (s, θ) ≥ HMnκ (s) for all s ∈ (0, r] and all

θ ∈ Sn−1, then

(29) λ1(BM (r)) ≥ λ1(BMnκ (r)).

If HM (s, θ) ≤ HMnκ (s) for all s ∈ (0, r] and all θ ∈ Sn−1, then

(30) λ1(BM (r)) ≤ λ1(BMnκ (r)).

Equality in (29) or in (30) holds if and only if HM (s, θ) = HMnκ (s) for all s ∈ (0, r] and

for all θ ∈ Sn−1.

Let u : BMnκ (r)→ R be a positive first Dirichlet eigenfunction. It is well known that u
is radial function, u(t, θ) = u(t), u′(t) ≤ 0 and satisfies the following differential equation,

(31) u′′(s) + (n− 1)
Cκ
Sκ

(s)u′(s) + λ1(BMnκ (r))u(s) = 0, s ∈ [0, r]
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where Sκ(t) is defined in (18) and Cκ(t)
.
= Sκ(t)′.

Observe that u(t, θ) = u(t) also defines a smooth function on BM (r), (called trans-
planted function), with gradient ∇u = u′ ∂/∂t, where ∂/∂t is the unit vector field normal
to the distance spheres ∂BM (t) pointing outward. Therefore

(32) ∆u = div (u′
∂

∂t
) = 〈∇u′, ∂

∂t
〉+ u′div (

∂

∂t
) = u′′ + u′Trace(ξ → ∇ξ

∂

∂t
).

Here ξ → ∇ξ ∂∂t is the Weingarten map of the distance spheres. Its trace is the mean
curvature HM . By (31) and (32)) we have at any point (t, θ) of BM (r) that

−∆u

u
(t, θ) =

[
−u
′′

u
− u′

u
div (

∂

∂t
)

]
(t, θ)

(33)

=

[
(n− 1)

Cκ
Sκ

(t)−HM (t, θ)

]
u′

u
(t) + λ1(BMnκ (r)).

Observing that HMnκ = (n− 1)Cκ/Sκ we have by Barta’s Theorem (2.21) that

(34) sup
(t,θ)

[
(HMnκ −HM )

u′

u

]
+ λ1(BMnκ (r)) = sup

(t,θ)

(−∆u

u
) ≥ λ1(BM (r))

and

(35) λ1(BM (r)) ≥ inf
(t,θ)

(−∆u

u
) = inf

(t,θ)

[
(HMnκ −HM )

u′

u

]
+ λ1(BMnκ (r)).

Since u′/u ≤ 0 we have that:

• HM ≥ HMnκ ⇒ inf[(HMnκ −HM )
u′

u
] ≥ 0 and λ1(BM (r)) ≥ λ1(BMnκ (r)).

• HM ≤ HMnκ ⇒ sup[(HMnκ −HM )
u′

u
] ≤ 0 and λ1(BM (r)) ≤ λ1(BMnκ (r)).

• If λ1(BM (r)) = λ1(BMnκ(r)) we have that λ1(BM (r)) = inf
(t,θ)

(−∆u

u
). As observed

in Barta’s Theorem, the transplanted function u is a positive eigenfunction of
BM (r) and from (33) we have that

[(n− 1)
Cκ
Sκ
−HM ]

u′

u
(s) = 0

for all s ∈ [0, r]. Since u′/u < 0 in (0, r] then (n − 1)
Cκ
Sκ
−HM = 0 in (0, r]. By

continuity (n− 1)
Cκ
Sκ
−HM = 0 in [0, r].

This finishes the proof of Theorem (2.26). It is clear that using Barta’s theorem, Cheng’s
eigenvalue comparison theorem can be extended to bounded open sets. More precisely,
the following result holds.

Theorem 2.27. Let Ω ⊂ M be a bounded open subset of a Hadamard n-manifold with
sectional curvature KM ≤ κ ≤ 0. Then

λ∗(Ω) ≥ λ1(BMnκ (rΩ)),

where rΩ is the radius of Ω. This is, rΩ = infx∈Ω supy∈Ω distM (x, y).

Theorem 2.26 is just an observation on Cheng’s proof and it can be extended to a
comparison theorem with model manifolds with no extra effort, see [23, Cor. 4.1] and [65].
However it is important to show that this result above is truly an extension of Cheng’s
eigenvalue theorem.
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2.7. Examples . If the sectional curvature is bounded above KM ≤ κ, then the mean
curvature of the distance spheres HM (s, θ) ≥ HMnκ (s) and if the Ricci curvature is bounded
below RicM ≥ (n−1)κ then HM (s, θ) ≤ HMnκ (s). The converse statements are not true in
general. We will construct complete model manifolds Mn

h with radial sectional curvature
Krad

Mnh
> κ outside a compact set with mean curvatures of the distance spheres satisfying

HMnh (t, θ) ≥ HMnκ (t, θ) and with radial sectional curvature Krad
Mnh

< κ outside a compact set

with mean curvatures of the distance spheres satisfying HMnh (t, θ) ≤ HMnκ (t, θ).

Example 2.28. Let Rn = [0,∞)× Sn−1 with the metric ds2 = dt2 + f2(t)dθ2, f(0) = 0,
f ′(0) = 1, f ′′(0) = 0. Set ψκ(t) = (−f ′Sκ + fS′κ)(t), where ′ means differentiation with
respect to t. The radial sectional curvature of (Rn, ds2) is bounded above by κ if and only
if ψ′κ(t) ≤ 0. The mean curvatures of ∂BRn(t) and ∂BMnκ (t) satisfies HRn(t, θ) ≥ HMnκ (t)
if and only if ψκ(t) ≤ 0. From ψκ(t) = (−f ′Sκ + fS′κ)(t) we have that ψκ(0) = ψ′κ(0) = 0.
Observe that for t 6= 0

ψκ
S2
κ

=
−f ′Sκ + fS′κ

S2
κ

= −
(
f

Sκ

)′
Moreover, lim

t→0

ψκ
S2
κ

(t) = 0. Integrating (f/Sκ)′ between ε and t we obtain∫ t

ε

(
f

Sκ

)′
(s) ds =

f

Sκ
(t)− f

Sκ
(ε) = −

∫ t

ε

ψκ
S2
κ

(s)ds

Since limε→0
f

Sκ
(ε) = 1 we have that

(36) f(t) = Sκ(t)− Sκ(t) ·
∫ t

0

ψκ(s)/S2
κ(s)ds.

Let ψκ : [0,∞)→ R be a smooth function satisfying ψκ(0) = ψ′κ(0) = 0, ψ(t) ≤ 0, ψ′κ(t) >

0 for t > 1 and
∣∣∣∫[0,∞)

ψκ(s)/S2
κ(s)ds

∣∣∣ < ∞. This yields complete metrics ds2 = dt2 +

f2(t)dθ on Rn with radial sectional curvature K(Rn,ds2) > κ outside the ball B(Rn,ds2)(1)
and so that the distance spheres ∂B(Rn,ds2)(t) have mean curvature H(Rn,ds2)(t, θ) ≥ HMnκ (t, θ).

If ψ(t) ≥ 0, |
∫

[0,∞)
ψκ(s)/S2

κ(s)ds| < 1 and such that ψ′κ(t) < 0 for t > 1 we ob-

tain a smooth metric with sectional curvature K(Rn,ds2) < κ outside a compact set with
H(Rn,ds2)(t, θ) ≤ HMnκ (t, θ).

Remark 2.29. For metrics ds2 = dt2+f2(t)dθ2, the equality H(Rn,ds2)(t, θ) = H(Mnκ ,canκ)(t)

for all t ∈ (0, r] implies that ds2 = dt2 + S2
κdθ

2. Since

H(Rn,ds2)(t) = (n− 1)(f ′/f)(t) = (n− 1)(Cκ/Sκ)(t) = HMκ(t)

implies that ψκ(t) = 0 for all t ∈ [0, r] and by (36) f ≡ Sκ.

In a second example, we show that the rigidity in Theorem 2.26 is sharp, constructing
a smooth complete metric on R4 = [0,∞)× S3 with the following properties.

i. The set [0, r]×S3 endowed with the metrics canκ or gκ are geodesic balls of radius
r, i.e. Bcanκ(r) = ([0, r]× S3, canκ) and Bgκ(r) = ([0, r]× S3, gκ).

ii. Bcanκ(r) and Bgκ(r) are not isometric if κ 6= 0 but have the same first eigenvalue
λ1(Bcanκ(r)) = λ1(Bgκ(r)) and the same first eigenfunctions.

iii. The geodesic balls Bcanκ(r) and Bgκ(r) and their boundaries ∂Bcanκ(r), ∂Bgκ(r)
have the same volume vol(Bcanκ(r))=vol(Bgκ(r)) and vol(∂Bcanκ(r))=vol(∂Bgκ(r)).

iv. The geodesic spheres (∂B(t), canκ) and (∂B(t), gκ) have the same mean curvatures
Hgκ(t, x) = Hcanκ(t, x) = Cκ(t)/Sκ(t) for every t ∈ (0, r] and x ∈ S3.
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Example 2.30. Let {∂x, ∂y, ∂z} be a globally defined frame on S3 with [∂x, ∂y] = 2 ∂x,
[∂y, ∂z] = 2 ∂x, [∂z, ∂x] = 2 ∂y and let dx, dy and dz be its dual co-frame. Consider
the following metric ds2 = dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2, where a, b, c : [0, r] → R
are smooth functions, with a(0) = b(0) = c(0) = 0 and a′(0) = b′(0) = c′(0) = 1 and
positive in (0, r). Here dt is the dual co-frame of the radial vector field ∂t. Observe that
[∂t, ∂x] = [∂t, ∂y] = [∂t, ∂z] = 0. As mentioned before, taking a(t) = b(t) = c(t) = Sκ(t)
we obtain the standard metric canκ of constant sectional curvature κ. In our example, we
set a(t) = S2

κ(t)/t, b(t) = t, c(t) = Sκ(t), where we are assuming that r < π/
√
κ if κ > 0.

We obtain a smooth metric gκ on [0, r]×S3 that clearly is non-isometric to canκ if κ 6= 0.
For instance, computing the sectional curvatures K(∂t, ∂x), K(∂t, ∂y), K(∂t, ∂z) at the
origin we get K(∂t, ∂x) = 2κ, K(∂t, ∂y) = 0, K(∂t, ∂z) = κ. Moreover, [0, r] × S3 is the
(closed) geodesic ball of radius r centered at the origin 0 = {0} × S3 with respect to both
metrics canκ, gκ, since the function ρ : [0, r]× S3 → R given by ρ(t, x) = t is the distance
function to the origin for both metrics. The Laplace operators ∆gκ , ∆canκ of gκ and canκ
written in these coordinates, setting ∂t = ∂/∂t, ∂x = ∂/∂x, ∂y = ∂/∂y, ∂z = ∂/∂z for a
classic notation, are given by

∆gκ =
∂2

∂t2
+ (n− 1)

Cκ
Sκ

∂

∂t
+
t2

S4
κ

∂2

∂x2
+

1

t2
∂2

∂y2
+

1

S2
κ

∂2

∂z2

(37)

∆canκ =
∂2

∂t2
+ (n− 1)

Cκ
Sκ

∂

∂t
+

1

S2
κ

∂2

∂x2
+

1

S2
κ

∂2

∂y2
+

1

S2
κ

∂2

∂z2
.

Let u : Bcanκ(r) → R be a positive first eigenfunction. This means that u satisfies the
following boundary value problem

(38)

{
∆canκu+ λ1(Bcanκ(r))u = 0 in Bcanκ(r)

u = 0 on ∂Bcanκ(r).

It is well known, see [33], that u is radial, i.e. u(t, x) = u(t). From (37) we see that the
Laplace operators ∆gκ and ∆canκ coincide on the set of smooth radial functions defined
on [0, r] × S3. Thus we have ∆gκu = ∆canκu. This implies that u satisfies the following
boundary value problem

(39)

{
∆gκu+ λ1(Bcanκ(r))u = 0 in Bgκ(r)

u = 0 on ∂Bgκ(r).

This shows that u is an eigenfunction of Bgκ(r). Since u > 0, it is a first eigenfunction
and λ1(Bcanκ(r)) = λ1(Bgκ(r)) is the first eigenvalue. Moreover, the mean curvatures of
the distance spheres ∂Bgκ(t), ∂Bcanκ(t) are just ∆gκρ(t, x) = ∆canκρ(t, x) = (Cκ/Sκ)(t).

2.8. Fundamental tone estimates on minimal submanifolds. One of the im-
portant applications of Barta’s Theorem is the fundamental tones estimates of minimal
submanifolds of the space forms. The first estimate known is due to S. Y. Cheng, P. Li and
S. T. Yau in [40], where they applied Barta’s Theorem to prove the following estimates
for compact subsets of minimal submanifolds of space forms.

Theorem 2.31 (Cheng-Li-Yau). Let ϕ : M → Nnκ be an immersed m-dimensional minimal
submanifold of the n-dimensional space form of constant sectional curvature κ, and let
D ⊂ M be a C 2 compact domain. Let r = inf

p∈D sup
z∈D

distNnκ
(p, z) > 0 be the outer

radius of D. If κ > 0 suppose that r ≤ π/2
√
κ. Then

(40) λ1(D) ≥ λ1(BNmκ (r)).

Equality in (40) holds iff M is totally geodesic in Nnκ and D = BNmκ (r).



16 G. PACELLI BESSA, L. JORGE, L. MARI AND J. FÁBIO MONTENEGRO

Let us consider ϕ : M → N a minimal immersion of a complete Riemannian m-manifold
M into a Riemannian n-manifold N . Let BN (r) be a geodesic ball with radius r and
center at a point p. Assume that Hn−1(Cut(p) ∩ BN (r)) = 0 and let κ = supBN (r)K

rad

the supremum of the radial sectional curvatures along the geodesics issuing from p and
consider Ω ⊂ ϕ−1(BN (r))) a connected component. In the next result we obtain lower
estimates for the fundamental λ∗(Ω) tone of Ω and can be seen as an extension of Cheng-
Li-Yau Theorem.

Theorem 2.32 (Bessa-Montenegro-[22]). In the setting above, let us assume further that
r < π/2

√
κ if κ > 0. Then we have

(41) λ∗(Ω) ≥ λ1(BNmκ (r)),

where BNmκ (r) is the geodesic ball with radius r in the simply connected space form Nmκ of
constant sectional curvature κ. If Ω is bounded, then equality in (41) holds iff Ω = BNmκ (r).

Corollary 2.33. Let ϕ : M → N be a minimal immersion of a complete Riemannian m-
manifold M into a Riemannian n-manifold N . Assume that Hn−1(Cut(p) ∩ BN (r)) = 0
and let κ = supBN (r)K

rad the supremum of the radial sectional curvatures along the

geodesics issuing from p. If ϕ(M) ⊂ BN (r), then

(42) λ∗(Ω) ≥ λ1(BNmκ (r)).

In the last decade there has been a great development in theory of extrinsically bounded
minimal surfaces of R3 with the discovery of a wealth of examples of complete bounded
minimal surfaces, see [2], [3], [4], [63], [92], [93], [99], [100], [101], [102], [132]. In those
examples, we have that Ω = M and λ∗(M) ≥ λ1(BR2(r)) ≈ 5.78/r2.

Proof. Let v : BNmκ (r) → R be a positive first Dirichlet eigenfunction of BNmκ (r). It is
known that v is radial with v′(t) ≤ 0 and v′(t) = 0 iff t = 0. We can normalize v such that
v(0) = 1. The differential equation ∆Nmκ v(t)+λ1(BNmκ (r))v(t) = 0 is expressed in geodesic
coordinates by

(43) v′′(t) + (m− 1)
Cκ(t)

Sκ(t)
v′(t) + λ1(BNmκ (r))v(t) = 0, ∀ t ∈ [0, r].

For each ξ ∈ TpN , |ξ| = 1, d(ξ) > 0 is the largest real number (possibly ∞) such that
geodesic γξ(t) = expp(t ξ) minimizes the distance from γξ(0) = p to γξ(t), 0 ≤ t ≤ d(ξ).
We have that BN (p, r) \ Cut(p)=expp({t ξ ∈ TpN : 0 ≤ t < min{r, d(ξ)}, |ξ|=1}). Define
u : BN (p, r) → R by u(expp(tξ)) = v(t) if t < min{r, d(ξ)} and u(rξ) = u(d(ξ)ξ) = 0.
Define ψ : Ω → R defined by ψ = u ◦ ϕ. The vector field X = −∇ logψ identified with
dϕ(X) is not smooth at F = ϕ−1(CutN (p)). By hypothesis Hm−1(Ω ∩ F ) = 0 and it
can be shown that the vector field X ∈ C1(Ω \ F ) ∩ L∞(Ω) and divX ∈ L1(Ω) thus
X ∈ W1,1(Ω), see Lemma 2.25 and by Theorem (2.23) and Remark (2.24) we have that

λ∗(Ω) ≥ inf
Ω\F

[DivX − |X|2] = inf
Ω\F

[divX − |X|2] = inf
Ω\F

[−∆ψ/ψ].

Where ∆ψ is given by the following formula, [82],

∆ψ(x) =

m∑
i=1

Hess u(ϕ(x)) (ei, ei) + 〈∇u ,
→
H〉(44)

=

m∑
i=1

Hess u(ϕ(x)) (ei, ei),

where ϕ(x) = expp(tξ),
→
H= 0 is the mean curvature vector of Ω at ϕ(x) and {e1, . . . , em}

is an orthonormal basis for Tϕ(x) Ω. Choose this basis such that e2, . . . , em are tangent
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to the distance sphere ∂BN (p, t) ⊂ N and e1 = cos(β(x)) ∂/∂t + sin(β(x)) ∂/∂θ, where
∂/∂θ ∈ [[e2, . . . em]], |∂/∂θ| = 1. From (44) we have for ϕ(x) ∈ Ω \ F that

∆ψ(x) =

m∑
i=1

Hessu(ϕ(x))(ei, ei)

= v′′(t)(1− sin2 β(x)) + v′(t) sin2 β(x) Hess(t)(∂/∂θ, ∂/∂θ)

(45)

+v′(t)

m∑
i=2

Hess(t)(ei, ei),

where t = distN (p, x). Add and subtract (
Cκ
Sκ

)(t) v′(t) sin2 β(x) and (m − 1)(
Cκ
Sκ

)(t) v′(t)

in (45) to obtain

∆ψ(x) = v′′(t) + (m− 1)
Cκ
Sκ

(t) v′(t)

+

(
Hess(t)(∂/∂θ, ∂/∂θ)− Cκ(t)

Sκ(t)

)
v′(t) sin2 β(x)(46)

+

m∑
i=2

[Hess(t)(ei, ei)−
Cκ
Sκ

(t)] v′(t) +

(
Cκ(t)

Sκ(t)
v′(t)− v′′(t)

)
sin2 β(x)

Substituting (43) into (46) we have that

−∆ψ

ψ
(x) = λ1(BNmκ (r))

−
(

Hess(t)(∂/∂θ, ∂/∂θ)− Cκ(t)

Sκ(t)

)
v′(t)

v(t)
sin2 β(x)

(47)

−
m∑
i=2

[Hess(t)(ei, ei)−
Cκ
Sκ

(t)]
v′(t)

v(t)

− 1

v(t)

(
Cκ(t)

Sκ(t)
v′(t)− v′′(t)

)
sin2 β(x).

Since the radial curvature K(x)(∂t, v) ≤ κ for all x ∈ BN (p, r) \ Cut(p) and all v ⊥
∂t with |v| ≤ 1 we have by the Hessian Comparison Theorem (see [125]) we have that
Hess (t(x))(v, v) ≥ (Cκ/Sκ)(t) for all v ⊥ ∂t, t(x) = t, x = expp(tξ). But v′(t) ≤ 0 then
we have that the second and third terms of (47) are non-negative. If the fourth term of
(47) is non-negative then we would have that

−∆ψ

ψ
(x) ≥ λ1(BNmκ (r)).

By Theorem (2.23) we have that

(48) λ∗(Ω) ≥ inf(−∆ψ

ψ
) ≥ λ1(BNmκ (r)).

This proves (41). We can see that −
(
Cκ(t)

Sκ(t)

v′(t)

v(t)
− v′′(t)

v(t)

)
sin2 β(x) ≥ 0 is equivalent to

(49) m
Cκ(t)

Sκ(t)
v′(t) + λ1(BNmκ (r))v(t) ≤ 0, t ∈ (0, r).
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To prove (49) we will assume without loss of generality that κ = −1, 0, 1. Let us consider
first the case c = 0 that presents the idea of the proof. The other two remaining cases
(κ = −1 and κ = 1) we are going to treat (quickly) with the same idea. When κ = 0 the
inequality (49) becomes

(50)
m

t
v′(t) + λ1v(t) ≤ 0, t ∈ (0, r),

where λ1 := λ1(BNmκ (r)). Let µ(t) := exp{−λ1t
2

2m
}. The functions v and µ satisfy the

following identities,

(51)

(tm−1v′(t))′ + λ1t
m−1v(t) = 0,

(tm−1µ′(t))′ + λ1t
m−1(1− λ1 t

2

m2
)µ(t) = 0.

In (51) we multiply the first identity by µ and the second by −v adding them and inte-
grating from 0 to t the resulting identity we obtain,

tm−1 v′(t)µ(t)− tm−1 v(t)µ′(t) = − λ
2
1

m2

∫ t

0

µ(t) v(t) < 0, ∀t ∈ (0, r).

Then µ(t)v′(t) < µ′(t)v(t) and this proves (50).

Assume that now that κ = −1. Inequality (49) becomes

(52) m
C−1(t)

S−1(t)
v′(t) + λ1v(t) < 0.

Set µ(t) := C−1(t)−λ1/m. The functions v and µ satisfy the the following identities

(53)

(Sm−1
−1 v′)′ + λ1S

m−1
−1 v = 0,

(Sm−1
−1 µ′)′ + λ1S

m−1
−1

(
m− 1

m
+

1

mC2
−1

− λ1

m2

S2
−1

C2
−1

)
µ = 0.

In (53) we multiply the first identity by µ and the second by −v adding them and inte-
grating from 0 to t the resulting identity we obtain

Sm−1
−1 (v′µ− µ′v) (t) +

∫ t

0

λ1S
m−1
−1

[
1

m
− 1

mC2
−1

+
λ1

m2

S2
−1

C2
−1

]
µv = 0.

The term Sm−1
−1

[
1

m
− 1

mC2
−1

+
λ1

m2

S2
−1

C2
−1

]
µv is positive (one can easily check) therefore

we have that (v′µ− µ′v)(t) < 0 for all t ∈ (0, r). This proves (52).

For κ = 1 the inequality (49) becomes the following inequality

(54) m
C1

S1
v′(t) + λ1v(t) < 0, 0 < t < π/2.

Set µ(t) := C1(t)−λ1/m, 0 < t < π/2. The functions v and µ satisfy the the following
identities

(55)

(Sm−1
1 v′)′ + λ1S

m−1
1 v = 0,

(Sm−1
1 µ′)′ − λ1S

m−1
1

(
m− 1

m
+

1

mC2
1

+
λ1

m2

S2
1

C2
1

)
µ = 0.
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In (55) we multiply the first identity by µ and the second by −v adding them and inte-
grating from 0 to t the resulting identity we obtain

Sm−1
1 (v′µ− µ′v) (t) +

∫ t

0

λ1S
m−1
1

[
2− 1

m
+

1

mC2
1

+
λ1

m2

S2
1

C2
1

]
µv = 0.

The term Sm−1
1

[
2− 1

m
+

1

mC2
1

+
λ1

m2

S2
1

C2
1

]
µv is positive thus (v′µ − µ′v)(t) < 0 for all

t ∈ (0, r). This proves (54) and thus the fourth term in (47) is non-negative. If Ω is bounded
and suppose that λ∗(Ω) = λ1(BNmκ (r)). Then first we have that ϕ(∂Ω) ⊂ ∂BN (p, r) and

second that the function ψ = u ◦ ϕ ∈ C2(Ω) by Proposition (2.21) is an eigenfunction of
Ω and thus λ∗(Ω) = −∆ψ/ψ. From (47) we have that(

Hess(t)(
∂

∂θ
,
∂

∂θ
)− Cκ(t)

Sκ(t)

)
v′(t)

v(t)
sin2 β(x) = 0,

m∑
i=2

[Hess(t)(ei, ei)−
Cκ
Sκ

(t)]
v′(t)

v(t)
= 0,

1

v(t)

(
Cc(t)

Sc(t)
v′(t)− v′′(t)

)
sin2 β(x) = 0,

for all t such that ϕ(x) = expp(tξ) ∈ Ω. This implies sin2 β(x) = 0 for all x ∈ Ω and we
have that e1(ϕ(x)) = ∂/∂t. Integrating the vector field ∂/∂t we have a minimal geodesic
(in N ∩ ϕ(Ω)) joining ϕ(x) to the center p. This imply that Ω is the geodesic ball in M
centered at ϕ−1(p) with radius r i.e. Ω = BM (ϕ−1(p), r). Since ψ is an eigenfunction with
the same eigenvalue λ1(BNm(c)(r)) we have that

(56) ∆M v(t) = ∆Nm(c) v(t), t = distN (p, ϕ(q)),∀q ∈ Ω.

Rewriting this identity (56) in geodesic coordinates we have that√
g(t, ξ)

′√
g(t, ξ)

(t, θ)v′(t) + v′′(t) = (m− 1)
Cc(t)

Sc(t)
v′(t) + v′′(t).

This imply that by Bishop Theorem Ω = BM (ϕ−1(p) and BNm(c)(r) are isometric. �

3. On discrete and essential spectrum of manifolds

The above section was devoted to produce estimates for the bottom of σ(M). In the
next sections, we investigate criteria to ensure that σ(M) is discrete (that is, a divergent
sequence of eigenvalues, each one with finite multiplicity) or not. We begin with a brief
overview of facts from spectral theory that will be used in the sequel.

Let K ⊂ M be a compact set of the same dimension as M . The Laplace-Beltrami
operator ∆ of M acting on the space C∞0 (M \K) of smooth compactly supported functions
of M \K has a self-adjoint extension, denoted by ∆′. The Decomposition Principle [53]
says that σess(M) = σess(M \K). On the other hand,

0 ≤ λ∗(M \K) = inf σ(M \K) ≤ inf σess(M \K) = σess(M),

thus µ = sup{λ∗(M \ K),K ⊂ M compact} ≤ inf σess(M). We are going to show that
inf σess(M) ≤ µ. To that we may suppose that µ < ∞, otherwise there is nothing to
prove. Let K1 ⊂ K2 ⊂ · · · be a sequence of compact sets with M = ∪∞i=1Ki. We have
that

λ∗(M) ≤ λ∗(M \K1) ≤ λ∗(M \K2) ≤ · · · → µ.



20 G. PACELLI BESSA, L. JORGE, L. MARI AND J. FÁBIO MONTENEGRO

Given ε > 0, there exists f1 ∈ C∞0 (M \K1) with ‖f1‖L2 = 1 and∫
M

|grad f1|2 ≤ λ∗(M \K1) + ε < µ+ ε.

This is 〈(−∆ − µ − ε)f1, f1〉L2 < 0. We can suppose that supp (f1) ⊂ (K2 \K1). There
exists f2 ∈ C∞0 (M \K2) with ‖f2‖L2 = 1 and∫

M

|grad f2|2 ≤ λ∗(M \K2) + ε < µ+ ε.

This is equivalent to 〈(−∆− µ− ε)f2, f2〉L2 < 0. Since supp (f1) ∩ supp (f2) = ∅ we have∫
M
f1f2 = 0. This way, we obtain an orthonormal sequence {fk} ⊂ C∞0 (M) such that

〈(−∆ − µ − ε)fk, fk〉L2 < 0. By Lemma 3.2 below we have that (−∞, µ] ∩ σess(M) 6= ∅
and inf σess(M) ≤ µ. This proves the following proposition, known as Persson’s formula.

Proposition 3.1. [114] The infimum of the essential spectrum is characterized by

(57) inf σess(M) = sup
{
λ∗(M \K) : K compact subset of M

}
.

In particular, σess(M) is empty if and only if given any compact exhaustion K1 ⊂ K2 ⊂
· · · ⊂ Kn ⊂ . . . of M , the limit lim

n→∞
λ∗(M \Kn) is infinite.

Let H be a Hilbert space and A : D ⊂H → H be a densely defined self-adjoint operator.
Given λ ∈ R, we write A ≥ λ if 〈Ax, x〉 ≥ λ‖x‖2 for all x ∈ D. By the Spectral Theorem
for (unbounded) self-adjoint operators, we have that A ≥ λ iff σ(A) ⊂ [λ,+∞). Let us
write A > −∞ if there exists λ∗ ∈ R such that A ≥ λ∗.

Lemma 3.2. Let A : D ⊂H →H be a self-adjoint operator with A > −∞, and let λ ∈ R
be fixed. Assume that for all ε > 0 there exists an infinite dimensional subspace Gε ⊂ D
such that 〈Ax, x〉 < (λ+ ε)‖x‖2 for all x ∈ Gε. Then,

σess(A) ∩ (−∞, λ] 6= ∅.

This lemma is well known, see [52] but for sake of completeness we present here its
proof. First we will show that σ(A)∩ (−∞, λ] = σ(A)∩ [λ∗, λ] 6= ∅. Take εk = 1/k, k ≥ 1.
By our hypothesis there exists xk 6= 0 such that 〈Axk, xk〉 < (λ + 1/k)‖xk‖2, and thus
σ(A)∩ [λ∗, λ+ 1/k] 6= ∅ for all k ≥ 1. Since σ(A) is closed, it follows σ(A)∩ (−∞, λ] 6= ∅.
We may suppose that σ(A)∩(−∞, λ] 6⊂ σess(A), otherwise there is nothing to prove. Thus(

σ(A) \ σess(A)
)
∩ (−∞, λ] = {λ1, . . . , λn}

is a finite set of eigenvalues of A of finite multiplicity. Denote by Hi ⊂ D the λi-eigenspace
of A, i = 1, . . . , n, and set X =

⊕
iHi ⊂ D. This is clearly an invariant subspace of A.

Since X has finite dimension, then D = X ⊕X1 where X1 = X⊥ ∩ D is also invariant by
A. Denote by A1 the restriction of A to the Hilbert space X1 which is still self-adjoint.
Clearly, σ(A1) = σ(A) \ {λ1, . . . , λn} and σess(A1) = σess(A). In particular, we have
σ(A1) ∩ (−∞, λ] ⊂ σess(A1). Using the infinite dimensionality of the space Gε, it is now
easy to see that the assumptions of our lemma hold for the operator A1, and the first part
of the proof applies to obtain σess(A) ∩ (−∞, λ] = σess(A1) ∩ (−∞, λ] 6= ∅.

4. Riemannian submersions with discrete spectrum

Given manifolds M and N , a smooth surjective map π : M → N is a submersion if the
differential dπ(q) has maximal rank for every q ∈ M . If π : M → N is a submersion,
then for all p ∈ N the inverse image Fp = π−1(p) is a smooth embedded submanifold
of M , that will be called the fiber at p. If M and N are Riemannian manifolds, then a
submersion π : M → N is called a Riemannian submersion if for all p ∈ N and all q ∈ Fp,
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the restriction of dπ(q) to the orthogonal subspace TqF⊥p is an isometry onto TpM , see.
[68, 109, 110].

An important class of examples are Riemannian homogeneous spaces G/K, where G is
a Lie group endowed with a bi-invariant Riemannian metric and K is a closed subgroup
of G, see [109] for details. The projection G → G/K is a Riemannian submersions with
totally geodesic fibers, and with fibers diffeomorphic to K. Another class of examples
can be described as the total space of Riemannian submersions with minimal fibers are
the homogeneous Riemannian 3-manifolds with isometry group of dimension four, see
[126]. This class includes the special linear group SL(2,R) endowed with a family of left
invariant metrics indexed by κ and τ (curvature of the fibers and torsion), which is the
total space of Riemannian submersions with base given by the hyperbolic spaces, and
fibers diffeomorphic to S1.

In this section, we consider Riemannian submersions π :M → N and we prove some
spectral estimates relating the (essential) spectrum of M and N . When M (and thus
also N) is compact, estimates on the eigenvalues of the Laplacian of M have been studied
in [28], under the assumption that the mean curvature vector of the fibers is basic, i.e.,
π-related to some vector field on the basis. We will consider here the non compact case,
assuming initially that the fibers are minimal. Given a Riemannian submersion π:M→N
with compact minimal fibers, we prove that

σess(M) = ∅ ⇐⇒ σess(N) = ∅,

see Theorem 4.1. This result coincides with Baider’s result, see [8], when M = X × Y is
a product manifold, Y is compact, N = X and π : X × Y → X is the projection on the
first factor. Our main result is the following theorem.

Theorem 4.1 (Bessa-Montenegro-Piccione-[25]). Let π : M → N be a Riemannian sub-
mersion with compact minimal fibers. Then

i. σess(N) ⊂ σess(M), σp(N) ⊂ σp(M), thus σ(N) ⊂ σ(M).
ii. inf σess(N) = inf σess(M). Therefore, M is discrete if and only if N is discrete.

Remark 4.2. For the inequality inf σess(M) ≤ inf σess(N) we need only the compactness
of the fibers with uniformly bounded volume, meaning that 0 < c2 ≤ vol(Fp) ≤ C2 for all
p ∈ N , see Lemma 4.8. The example of [8] shows that the assumption of minimality of the
fibers is necessary in Theorem 4.1. In fact, one has examples of Riemannian submersions
having compact fibers with discrete base and non discrete total space, or with discrete total
space but not discrete base, see Example 2.7.

4.1. Preliminaries. Given manifolds M and N , a smooth surjective map π : M → N
is a submersion if the differential dπ(q) has maximal rank for every q ∈M . If π : M → N
is a submersion, then for all p ∈ N the inverse image Fp = π−1(p) is a smooth embedded
submanifold of M , that will be called the fiber at p. If M and N are Riemannian manifolds,
then a submersion π : M → N is called a Riemannian submersion if for all p ∈ N and
all q ∈ Fp, the restriction of dπ(q) to the orthogonal subspace TqF⊥p is an isometry onto
TpM . Given p ∈ N and q ∈ Fp, a tangent vector ξ ∈ TqM is said to be vertical if it
is tangent to Fp, and it is horizontal if it belongs to the orthogonal space (TqFp)⊥. Let
D = (TF)⊥ ⊂ TM denote the smooth rank k distribution on M consisting of horizontal
vectors. The orthogonal distribution D⊥ is clearly integrable, the fibers of the submersion
being its maximal integral leaves. Given ξ ∈ TM , its horizontal and vertical components
are denoted respectively by ξh and ξv. The second fundamental form of the fibers is a
symmetric tensor SF : D⊥ ×D⊥ → D, defined by

SF (v, w) = (∇Mv W )h,
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where W is a vertical extension of w and ∇M is the Levi–Civita connection of M . In
this chapter only we will denote the gradient of a function u by gradu instead ∇u to not
confuse with the Levi-Civita connection.

For any given vector field X ∈ X(N), there exists a unique horizontal X̃ ∈ X(M) which

is π-related to X, this is, for any p ∈ N and q ∈ Fp, then dπq(X̃q) = Xp, called horizontal

lifting of X. A horizontal vector field X̃ ∈ X(M) is called basic if it is π-related to some
vector field X ∈ X(N).

If X̃ and Ỹ are basic vector fields, then these observations follows easily.

(a) gM (X̃, Ỹ ) = gN (X,Y ) ◦ π.

(b) [X̃, Ỹ ]h is basic and it is π-related to [X,Y ].

(c) (∇M
X̃
Ỹ )h is basic and it is π-related to ∇NXY ,

where ∇N is the Levi-Civita connection of gN .
Let us now consider the geometry of the fibers. First, we observe that the fibers are

totally geodesic submanifolds of M exactly when SF = 0. The mean curvature vector of
the fiber is the horizontal vector field H3 defined by

(58) H(q) = −
k∑
i=1

SF (q)(ei, ei) = −
k∑
i=1

(∇Mei ei)
h,

where (ei)
k
i=1 is a local orthonormal frame for the fiber through q. Observe that H is not

basic in general. For instance, when n = 1, i.e., when the fibers are hypersurfaces of M ,
then H is basic if and only if all the fibers have constant mean curvature. The fibers are
minimal submanifolds of M when H ≡ 0.

Besides the natural operations of lifting a vector or vector fields in N to horizontal
vectors and basic vector fields one has that functions on N can be lifted to functions on M
that are constant along the fibers. Such operations preserves the regularity of the lifted
objects. One can also (locally) lift curves in the base γ : [a, b] → N to horizontal curves
γ̃ : [a, c) → M with the same regularity as γ with arbitrary initial condition on the fiber
Fγ(a). We will need formulas relating the derivatives of π-related objects in M and N .
Let us start with divergence of vector fields.

Lemma 4.3. Let X̃∈X(M) be a basic vector field, π-related to X∈X(N). The following

relation holds between the divergence of X̃ and X at p∈N and q∈Fp.

(59)
divM (X̃)q = divN (X)p + gM (X̃q, Hq)

= divN (X)p + gN
(
dπq(X̃q),dπq(Hq)

)
.

In particular, if the fibers are minimal, then divM (X̃) = divN (X).

Formula (59) is obtained by a direct computation of the left-hand side, using a local
orthonormal frame e1, . . . , ek, ek+1, . . . , ek+n of TM , where e1, . . . , ek are basic fields. The
equality follows using equalities (a) and (c) in Subsection 4.1, and formula (58) for the
mean curvature.

Given a smooth function f : N → R, denote by f̃ = f ◦π : M → R its lifting to M . It is
easy to see that the gradient gradM f̃ of f̃ is the horizontal lifting of the gradient gradNf .

If we denote with a tilde X̃ the horizontal lifting of a vector field X ∈ X(N), then the
previous statement can be written as

(60) gradM f̃ = ˜gradNf.

3Sometimes the mean curvature vector is defined as H(q) =
∑k

i=1 SF (q)(ei, ei)
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Now, given a function u:M → R, one can define a function uav:N → R by averaging u on
each fiber

uav(p) =
1

volFp
·
∫
Fp
udFp,

where dFp is the volume element of the fiber Fp relative to the induced metric. We are
assuming that this integral is finite. As to the gradient of the averaged function uav, we
have the following lemma.

Lemma 4.4. Let p ∈ N and v ∈ TpN and denote by V the smooth normal vector field
along Fp defined by the property dπq(Vq) = v for all q ∈ Fp. Then, for any smooth function
u : M → R

(61) gN
(
gradNuav(p), v

)
=

∫
Fp

[
gM
(
gradMu, V

)
+ u·gM (H,V )

]
dFq.

A standard calculation as in the first variation formula for the volume functional of
the fibers. Notice that when u ≡ 1, then uav ≡ 1 and (61) reproduces the first variation
formula for the volume.

Observe that, in (61), the gradient gradMf need not be basic or even horizontal4. An
averaging procedure is available also to produce vector fields Xav on the base out of vector
fields X defined in the total space. If X ∈ X(M), let Xav ∈ X(N) be defined by

(Xav)p =

∫
Fp

dπq
(
Xq

)
dFp(q).

Observe that the integrand above is a function on Fp taking values in the fixed vector
space TpN . If X ∈ X(M) is a basic vector field, π-related to the vector field X∗ ∈ X(N),
then (Xav)p = vol(Fp) ·(X∗)p, where vol denotes the volume. Using the notion of averaged
field, equality (61) can be rewritten as

gradN (fav) =
(
gradMf + f ·H

)
av
.

Remark 4.5. From the above formula it follows easily that the averaged mean curvature
vector field Hav vanishes at the point p ∈ N if and only if p is a critical point of the
function z 7→ vol(Fz) in N . This happens, in particular, when the leaf Fp is minimal.
When all the fibers are minimal, or more generally when the averaged mean curvature
vector field Hav vanishes identically, then the volume of the fibers is constant.

Corollary 4.6. Let π : M → N be a Riemannian submersion with compact minimal fibers
F . Let h ∈ L2(N). If f ∈ C∞0 (M) such that fav = 0 for all q ∈ N , then

(62)

∫
M

h̃∆Mf dM = 0.

Suppose first that h is smooth. By the Divergence Theorem, Fubini’s Theorem for
Riemannian submersions and 61 we have∫

M

h̃∆Mf dM = −
∫
M

gM (gradM h̃, gradMf)dM

= −
∫
N

∫
Fq
gM (gradM h̃, gradMf)dFqdN

= −
∫
N

gN (gradNh, gradNfav)dN

= 0.

4In fact, a gradient is basic if and only if it is horizontal.
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If h ∈ L2(N) there exists a sequence of smooth functions hk ∈ C∞(N) converging to h
with respect to the L2-norm. On the other hand∣∣∣∣∫

M

h̃∆Mf dM

∣∣∣∣ =

∣∣∣∣∫
M

(h̃k − h̃)∆Mf dM

∣∣∣∣
≤

∫
M

∣∣∣h̃k − h̃∣∣∣ |∆Mf | dM

≤
(∫

M

∣∣h̃k − h̃∣∣2dM)1/2

·
(∫

M

|∆Mf |2dM
)1/2

= ‖∆Mf‖L2(M) ·

(∫
N

∫
Fq

∣∣hk − h∣∣2dFqdM)1/2

= vol(Fq)1/2 · ‖∆Mf‖L2(M) · ‖hk − h‖L2(N).

Since hk → h in L2(N) then 62 holds. Observe that we used that the volume of the
minimal fibers is constant, see Remark 4.5.

Let π : M → N be a Riemannian submersion. The Laplace-Beltrami operator ∆N in
N of a smooth function f : N → R and the Laplace-Beltrami operator ∆M in M of its
extension f̃ = f ◦ π are related by the following formula.

Lemma 4.7. Let f : N → R be a smooth function and set f̃ = f ◦ π. Then, for all p ∈ N
and all q ∈ Fp:

(63)
(∆M f̃)q = (∆Nf)p + gM

(
(gradM f̃)q, Hq

)
= (∆Nf)p + gN

(
(gradNf)p,dπq(Hq)

)
.

The proof follows easily from (59) applied to the vector fields X = gradM f̃ and to X∗ =

gradNf , using (60).

4.2. Fundamental tone of a Riemannian submersion. Let M and N be con-
nected Riemannian manifolds and π:M → N be a Riemannian submersion. Denote by
∆M and ∆N the Laplacian operator on functions of (M, gM ) and of (N, gN ) respectively.
We want to compare the fundamental tones of open subsets Ω ⊂ N with the fundamental

tones of its lifting Ω̃ = π−1(Ω).

Lemma 4.8. Assume that the fibers of π : M → N are compact. Let Ω be an open subset

of N , and denote by Ω̃ the open subset of M given by the inverse image π−1(Ω). Then

(64)

[
inf
p∈Ω

vol(Fp)
]
· λ∗(Ω̃) ≤

[
sup
p∈Ω

vol(Fp)
]
· λ∗(Ω).

In particular, if the fibers are minimal, then

(65) λ∗(Ω̃) ≤ λ∗(Ω).

Moreover, if inf
p∈Ω

vol(Fp) > 0 and sup
p∈Ω

vol(Fp) <∞ then

(66) inf
p∈Ω

vol(Fp) · inf σess(M) ≤ sup
p∈Ω

vol(Fp) · inf σess(N).

Proof. Let ε > 0 and choose fε ∈ C∞0 (Ω) such that

(67)

∫
Ω

∣∣gradNfε
∣∣2 < (λ∗(Ω) + ε

)∫
Ω

f2
ε .
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Consider the function f̃ε = fε ◦ π. By the assumption that the fibers of π are compact, f̃ε
has compact support in M . Using Fubini’s Theorem for submersions we have

(68)

∫
Ω̃

∣∣f̃ε∣∣2 dM =

∫
Ω

(∫
Fp

∣∣f̃ε∣∣2 dFp

)
dN =

∫
Ω

vol(Fp) · |fε
∣∣2dN.

Thus

(69)

∫
Ω̃

∣∣f̃ε∣∣2dM ≥ inf
p∈Ω

vol(Fp) ·
∫

Ω

∣∣fε∣∣2dN.

Similarly, using (60), we have∫
Ω̃

∣∣gradM f̃ε
∣∣2 =

∫
Ω̃

∣∣ ˜gradNfε
∣∣2

=

∫
Ω

(∫
Fp

∣∣ ˜gradNfε
∣∣2 dFp

)
dN(70)

=

∫
Ω

vol(Fp) ·
∣∣gradNfε

∣∣2,
thus

(71)

∫
Ω̃

∣∣gradM f̃ε
∣∣2 ≤ sup

p∈Ω
vol(Fp) ·

∫
Ω

∣∣gradNfε
∣∣2.

Using (67), (69) and (71), we then obtain

inf
p∈Ω

vol(Fp) · λ∗(Ω̃) ≤ inf
p∈Ω

vol(Fp) ·
∫

Ω̃

∣∣gradM f̃ε
∣∣2∫

Ω̃

∣∣f̃ε∣∣2
≤ sup

p∈Ω
vol(Fp) ·

∫
Ω

∣∣∣gradNfε

∣∣∣2∫
Ω
|fε|2

(72)

< sup
p∈Ω

vol(Fp) · [λ∗(Ω) + ε] .

This proves (64). If all the fibers are minimal (or more generally if the averaged mean
curvature vector field Hav vanishes identically on N , see Remark 4.5), then the volume of
the fibers is constant, and inequality (65) follows from (64). To prove the inequality (66)

we pick a compact subset K ⊂ M and set K0 = π(K) and let K̃ = π−1(K0). The set

K̃ is compact by the assumption that the fibers of π are compact. Let Ω = N \K0 and

Ω̃ = π−1(Ω) = M \ K̃. Clearly, Ω̃ ⊂ M \K and thus λ∗(Ω̃) ≥ λ∗(M \K). Hence, using
(64) we get

λ∗(M \K) ≤ λ∗(Ω̃) ≤
sup
p∈Ω

vol(Fp)

inf
p∈Ω

vol(Fp)
λ∗(Ω) ≤

sup
p∈Ω

vol(Fp)

inf
p∈Ω

vol(Fp)
inf σess(N).

Taking the supremum over all compact subset K ⊂M in the left-hand side, we obtain the
desired inequality. �

Now we will consider the case that the fibers of the submersion π : M → N are compact
and minimal.

Lemma 4.9. Let π:M→N be a Riemannian submersion with compact and minimal fibers

F . Then for every open subset Ω ⊂ N , denoting by Ω̃ the inverse image π−1(Ω), one has
that

(73) λ∗(Ω̃) = λ∗(Ω).
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Proof. In view of (65), it suffices to show the inequality λ∗(Ω̃) ≥ λ∗(Ω). To this aim, we
will use the estimate in (25). We observe initially that it suffices to prove the inequality
when Ω is bounded. Namely, the general case follows from λ∗(Ω) = limn→∞ λ∗(Ωn), by
considering an exhaustion of Ω by a sequence of bounded open subsets Ωn. Note that Ω

is bounded if and only if Ω̃ is bounded, by the compactness of the fibers. Let f be the
first eigenfunction of the problem ∆Nu+λu = 0 in Ω with Dirichlet boundary conditions,
that can be assumed to be positive in Ω.

Set X = −gradN
(

log f
)
, so that divN (X)− |X|2 = λ1(Ω) is constant in Ω. If X̃ is the

horizontal lifting of X, then clearly |X̃q| = |Xπ(q)| for all q ∈ Ω̃. Moreover, by Lemma 4.3,

since H = 0, divM (X̃)q = divN (X)π(q). Using (25), we then obtain:

λ∗(Ω̃) ≥ inf
Ω̃

[
divM (X̃)− |X̃|2

]
= inf

Ω

[
divN (X)− |X|2

]
= λ∗(Ω).

This proves Lemma (4.9). �

Corollary 4.10. Under the assumptions of Lemma 4.9 we have that σess(M) = ∅ if and
only if σess(N) = ∅. In particular, if M is a finite covering of N , then σess(M) 6= ∅ if and
only if σess(N) 6= ∅.

4.3. Proof of Theorem 4.1. The item ii. of Theorem 4.1 follows from Lemma 4.9.
For if we take a sequence of compact sets K1 ⊂ K2 ⊂ · · · with N = ∪∞i=1Ki. Likewise we

have M = ∪∞i=1K̃i, where K̃i = π−1(Ki). By the proof of (3.1) we have that inf σess(N) =

limi→∞ λ∗(N \Ki) and inf σess(M) = limi→∞ λ∗(M \ K̃i). However, λ∗(N \Ki) = λ∗(M \
K̃i), by Lemma (4.9). Before we prove item i. we need the following lemma.

Lemma 4.11. Let π : M → N be a Riemannian submersion with compact minimal fibers

F . If f ∈ L2(N) and ∆Nf ∈ L2(N) then f̃ ∈ L2(M) and ∆M f̃ = ∆̃Nf ∈ L2(M). In

other words, if f ∈ Dom(∆N ) then f̃ ∈ Dom(∆M ).

Proof. Let f̃ = f ◦ π be the lifting of f . By Fubini’s Theorem we have

∫
M

f̃2dM =

∫
N

( ∫
Fp
f2 dFp

)
dN = vol(Fp)

∫
N

f2dN <∞.

This shows that f̃ ∈ L2(M). To show that ∆M f̃ ∈ L2(M) we have to show that ∆M f̃ =

∆̃Nf . Every ϕ ∈ C∞0 (M) can be decomposed as ϕ = ϕ1 + ϕ2 where ϕ1 is constant along
the fibers F and (ϕ2)av = 0, see [28]. Moreover, ϕ1 and ϕ2 have compact support. Observe

that we can define ψ : N → R by ψ(π(p)) = ϕ1(p) so that ϕ1 = ψ̃. By Lemma 4.7 we

have that ∆Mϕ1(p) = ∆Nψ(π(p)) for every p ∈M . By Corollary 4.6
∫
M
f̃ ∆Mϕ2dM = 0,
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therefore ∫
M

f̃ ∆MϕdM =

∫
M

f̃ ∆Mϕ1dM

=

∫
N

( ∫
Fp
f ∆Mϕ1dFp

)
dN

=

∫
N

(
f ∆Nψ

∫
Fp

dFp
)
dN

= vol(Fp)
∫
N

f ∆NψdN

= vol(Fp)
∫
N

ψ∆NfdN

=

∫
N

(∫
Fp
ψ∆Nf dFp

)
dN

=

∫
M

ψ̃∆NfdM

=

∫
M

ϕ1∆̃NfdM

=

∫
M

ϕ∆̃NfdM

To show that σp(N) ⊂ σp(M) we take λ ∈ σp(N) and f ∈ L2(N) with −∆Nf = λf

in distributional sense. This implies that −̃∆Nf = λf̃ . By Lemma 4.11, −∆M f̃ = λf̃
showing that λ ∈ σp(M). To show that σess(N) ⊂ σess(M) we take µ ∈ σess(N). Then,
there exists an orthonormal sequence of functions fk ∈ Dom(∆N ) such that ‖ −∆Nfk −
µfk‖L2(N) → 0 as k →∞. By Lemma 4.11, we have that f̃k ∈ Dom(∆M ). Now

‖ −∆M f̃k − µf̃k‖2L2(M) =

∫
M

| −∆M f̃k − µf̃k|2dM

=

∫
N

∫
Fq
| −∆Nfk − µfk|2dFqdN

= vol(Fq)
∫
N

| −∆Nfk − µfk|2dN

= vol(Fq) ‖ −∆Nfk − µfk ‖2L2(N) → 0.

This shows that µ ∈ σess(M), the proof of Theorem 4.1 is concluded. �

Corollary 4.12. Let G be a Lie group endowed with a bi-invariant metric. Then, σess(G)
is empty if and only if for some (hence for any) compact subgroup K ⊂ G, the Riemannian
homogeneous space G/K has empty essential spectrum.

Apply Theorem 4.1 to the Riemannian submersion G 7→ G/K, which has minimal and
compact fibers.

Other interesting examples of applications of Theorem 4.1 arise from non compact Lie
groups. Consider the 2 × 2 special linear group SL(2,R). There exists a 2-parameter
family of left-invariant Riemannian metrics gκ,τ , with κ < 0 and τ 6= 0, for which(
SL(2,R), gκ,τ

)
→ H2

κ is a Riemannian submersion with geodesic fibers diffeomorphic

to the circle S1. An explicit description of these metrics can be found, for instance, in
[134]. Endowed with these metrics, SL(2,R) is one of the eight homogeneous Riemannian
3-geometries, as classified in [126], and its isometry group has dimension 4.
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Proposition 4.13. For all κ < 0 and τ 6= 0,

σ
(
SL(2,R), gκ,τ

)
= σess

(
SL(2,R), gκ,τ

)
=
[
−κ

4
,+∞

)
.

It is known that the spectrum σ
(
Hκ
)

= σess

(
Hκ
)

=
[
−κ

4
,+∞

)
, see [52]. By Lemma 4.9

λ∗
(
SL(2,R), gκ,τ

)
= λ∗

(
Hκ
)

= −κ
4
,

hence σ
(
SL(2,R), gκ,τ

)
⊂
[
−κ

4
,+∞

)
. On the other hand, by Theorem 4.1[

−κ
4
,+∞

)
= σess

(
Hκ
)
⊂ σess

(
SL(2,R), gκ,τ

)
.

This proves the proposition.

5. Calabi-Yau conjectures and discrete spectrum

A particularly interesting problem in Riemannian Geometry is the spectrum related
part of the Calabi-Yau conjectures on minimal hypersurfaces. The Calabi-Yau conjectures
have their origin in two problems proposed by E. Calabi in the 1960’s, about the non-
existence of complete minimal hypersurfaces of Rn subjected to certain extrinsic bounds
([30], see also [44, p. 212]).

• Calabi proposed the first conjecture as an exercise. He wrote: “Prove that any
complete minimal hypersurface in Rn must be unbounded.”

• The second problem, on the other hand, was proposed almost as an unlikely conjec-
ture. He wrote “A more ambitious conjecture is: a complete minimal hypersurface
in Rn has an unbounded projection in every (n− 2)-dimensional flat subspace.”

It is known by the work of L. Jorge-F. Xavier [84] and N. Nadirashvili [107] that both
conjectures turned out to be false. More precisely, Jorge-Xavier constructed a non-flat,
complete minimal surface lying between two parallel planes in R3, showing that the second
conjecture was false in general, whereas N. Nadirashvili constructed a bounded, complete
minimal immersion of the unit disk D into R3, contradicting the statement of the first
conjecture. In his Millennium Lectures [138], [139], S. T. Yau, revisiting the E. Calabi
conjectures on the existence of bounded minimal surfaces, [30], [44], in the light of Jorge-
Xavier and Nadirashvili’s counter-examples, [84], [107] proposed a new set of questions
about bounded minimal surfaces of R3. Among the new questions one regards the spectrum
of bounded minimal surfaces, and among them he asked whether the spectrum of bounded
minimal surfaces of R3 was discrete. Yau’s questions motivated the construction of a large
number of exotic examples of minimal surfaces in R3 that followed from Jorge-Xavier and
Nadirashvili’s methods, see [2], [3], [4], [63], [92], [93], [99], [100], [101], [102], [132].

In this section we shed light on the essential spectrum of bounded submanifolds, in
particular, the spectrum of many examples constructed after the Calabi-Yau conjectures.
The new fact we found is that the size of the limit sets of bounded immersions plays an
important role in the existence of elements in their essential spectrum. Recall that the
limit set of an isometric immersion ϕ : M → Ω ⊂ N is the set

limϕ : = {y ∈ Ω; ∃ {xn} ⊆M divergent in M, s.t. ϕ(xn)→ y in N
}
,

and that ϕ is proper in Ω if and only if limϕ ⊂ ∂Ω. We briefly recall the main sets of
examples that our main result applies.

(i.) For each convex domain Ω ⊆ R3, not necessarily bounded or smooth, Martin and
Morales constructed a complete minimal disk ϕ : D ↪→ Ω properly immersed into
Ω, see [99].
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(ii.) M. Tokuomaru [132], constructed a complete minimal annulus ϕ :A ↪→ R3 properly
immersed into the unit ball of BR3(1) ⊂3.

(iii.) Martin and Morales [100], improved the results of [99], showing that, if Ω is a
bounded, strictly convex domain of R3, with ∂Ω of class C2,α, then there exists
a complete, minimal disk properly immersed into Ω whose limit set is closed to a
prescribed Jordan curve5 on ∂Ω.

(iv.) A. Alarcon, L. Ferrer and F. Martin [3, Thm B.], extended the results of [99] and
[132]. They showed that for any convex domain Ω ⊂ R3, not necessarily bounded
or smooth, there exists a proper minimal immersion ϕ : M → Ω of a complete
non-compact surface M with arbitrary finite topology into Ω.

(v.) Ferrer, Martin and Meeks [63], improved the main results of [100], proving that
given a bounded smooth domain Ω ⊂ R3 and given any open surface M , there
exists a complete, proper, minimal immersion ϕ : M → Ω with the property that
the limit sets of different ends are disjoint, compact, connected subsets of ∂Ω. It
should be remarked that the Ferrer-Martin-Meeks’ surfaces [63] immersed into a
bounded smooth domain Ω can have either finite or infinite topology. They can
have uncountably many ends and be either orientable or non-orientable. Moreover,
the convexity of Ω is not a necessary hypothesis, although they need its smooth-
ness. In fact, one can not drop the convexity and the smoothness of Ω altogether,
see [98] for a counter-example. They also prove that for every convex open set
Ω and every non-compact, orientable surface M , there exists a complete, proper
minimal immersion ϕ : M → Ω such that limϕ ≡ ∂Ω, see [63, Prop.1].

(vi.) F. Martin and N. Nadirashvili [102], constructed complete minimal immersions
ϕ : D → R3 of the disk D ⊂ C, admitting continuous extensions ϕ : D → R3 such
that ϕ|∂D : ∂D= S1 → ϕ(S1) is an homeomorphism and ϕ(S1) is a non-rectifiable

Jordan curve of Hausdorff dimension dimH(ϕ(S1)) = 1. They also showed that
the set of Jordan curves ϕ(S1) constructed via this procedure is dense in the space
of Jordan curves of R3 with respect to the Hausdorff metric.

(vii.) Alarcon proved in [2] that for any arbitrary finite topological type there exists
a compact Riemann surface M, an open domain M ⊂ M with this topological
type and a conformal complete minimal immersion ϕ : M → R3 that admits an
extension to a continuous map ϕ : M → R3 such that ϕ|∂M is an embedding and

the Hausdorff dimension of ϕ(∂M) is 1.

We will address S. T. Yau’s question whether the spectrum of bounded minimal surfaces of
R3 is discrete or not. Bessa-Jorge-Montenegro in [19] gave a first answer to this question,
that applies to some of the examples quoted above.

Theorem 5.1 (Bessa-Jorge-Montenegro [19]). Let ϕ : M ↪→ BN (r) be a complete m-
submanifold properly immersed into a geodesic ball of a Riemannian n-manifold N , with
center at p and radius r. Let b = supKrad

N , where Krad
N are the radial sectional curvatures

along the geodesics issuing from p. Assume that r < min{injN (p), π/2
√
b}, where π/2

√
b =

+∞ if b ≤ 0. If the norm of the mean curvature vector H satisfies,

sup
M
|H| < m · Cb(r),

then M has discrete spectrum.

Here

(74) Cb(t) =


√
b cot(

√
b t), if b > 0,

1/t, if b = 0,√
−b coth(

√
−b t), if b < 0.

5A continuous embedding γ : S1 → R3.
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Theorem 5.1 is consequence of a simpler general result.

Theorem 5.2 (Bessa-Jorge-Montenegro). If f : M → [0,Λ2) is a proper, C2-smooth func-
tion satisfying

(75) lim inf
ρ(x)→∞

∆f ≥ c > 0,

then σess(M) = ∅. Here ρ(x) = distM (x, o), o ∈M .

Proof. First, recall that σess(M) = ∅ ⇔ lim
i→∞

λ∗(M \Ki) =∞ for any exhaustion sequence

of M by compact sets K1 ⊂ K2 ⊂ · · · ⊂ Ki ⊂ . . ., see Proposition 3.1. Since f is proper
the sets {Ki = f−1([0, sup f − 1/i])} form an exhaustion sequence of compact subsets of
M . We need to estimate λ∗(M \ Ki) from below. Let g : M → [0, sup f ] be a smooth
function defined by g(x) = sup f − f(x) ≥ 0. By the generalized Barta’s Theorem 2.23 we
have that

λ∗(M \Ki) ≥ inf
M\Ki

−∆g

g
= inf
M\Ki

∆f

sup f − f
≥ c

1/i
= i · c

Thus lim
i→∞

λ∗(M \Ki) =∞.
�

Proof of Theorem 5.1. It suffices to produce a proper, bounded above, non-negative, smooth
function f : M → [0,Λ2) satisfying lim inf

ρ(x)→∞
∆f ≥ c > 0. Let ϕ : M → BN (r) be a proper

isometric immersion of a complete Riemannian m-manifold into a normal geodesic ball
of radius r < min{inj(p), π/2

√
b} of a Riemannian manifold N , where p is the center of

the BN (r) and b = supBN (r)K
rad, assuming that π/2

√
b = ∞ if b ≤ 0. By the hessian

comparison theorem [69] we have that for ρN (x) = distN (p, x)

HessNρN (x)(X,X) ≥ Cb(ρN (x))
{
|X|2 − 〈X,∇ρ〉2

}
.

Define a function v : BN (r)→ R by v(y) = φb(ρ(y)), where φb : [0, r]→ R given by

(76) φb(t) =


[
1− cos(

√
b t)
]
/b, if b > 0, t < π/2

√
b,

t2/2, if b = 0,[
cosh(

√
−b t)− 1

]
/(−b), if b < 0.

Observe that φ(t) > 0 in [0, r), φb(0) = 0, φ′b(t) > 0 and φ′′b (t) − Cb(t)φ′b(t) = 0 in [0, r].
Let f : M → R defined by f = v ◦ ϕ ∈ [0, φb(r)]. The function f is smooth, non-negative,
bounded above and proper. Let us compute ∆f . Computing ∆f using Jorge-Koutrofiotis
formula [82] we have

∆f(x) =

m∑
i=1

HessNv(ϕ(x))(ei, ei) + 〈∇ v ,
m∑
i=1

α(ei, ei)〉

=

m∑
i=1

HessNv(ϕ(y))(ei, ei) + 〈∇ v , H〉.

Where {ei} is an orthonormal basis of TxM . Computing HessNv(ϕ(x))(ei, ei) we have,
setting t = ρN (ϕ(x)),

HessNv(ϕ(x))(e1, e1) = φ′′b (t)〈ei,∇ρN 〉2 + φ′b(t)HessNρN (ei, ei)

≥ φ′′b (t)〈ei,∇ρN 〉2 + φ′b(t)Cb(t)
[
1− 〈ei,∇ρN 〉2

]
= φ′b(t)Cb(t)

=

 cos(
√
b t), if b > 0,

t, if b = 0,

cosh(
√
−b t), if b < 0.

(77)
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Therefore,

∆f(x) ≥ m · φ′b(t)Cb(t)− φ′b(t) sup |H|
= φ′b(t) [m · Cb(t)− sup |H|] .

Since f is proper we have that f(x) → φb(r) when ρ(x) = dist(o, x) → ∞. Therefore
∆f(x) ≥ φ′b(t) [m · Cb(t)− sup |H|] → φ′b(r) [m · Cb(r)− sup |H|] > 0, when ρ(x) → ∞.
Set c = φ′b(r) [m · Cb(r)− sup |H|] and Theorem 5.1 is proved. �

Despite the generality of this result, the “bounding” convex domains Ω ⊂ R3 were re-
stricted to geodesic balls. Moreover, properness was used in a fundamental way such that
it cannot be modified to deal with non-proper immersions. Here we will provide a sharp,
general criterion that applies to each of the examples in (i.), ..., (vii.) and answers Yau’s
question. In Theorem 5.6, we show that the spectrum of a bounded minimal surface is dis-
crete provided its limit set has zero Hausdorff measure of order Ψ(t) = t2| log t|. Moreover,
we consider bounded immersions where the“bounding”set satisfies a weaker convexity no-
tion. On the other hand, the universal covering of Tokuomaru bounded properly immersed
minimal annulus ϕ : A→ R3, item (ii) [132], has limit set with Hausdorff dimension 2 and
by Theorem 6.13 it has essential spectrum not empty.

Definition 5.3. An open subset Ω ⊂ Nn with smooth C2-boundary is strictly j-convex,
j ∈ {1, . . . , n − 1}, if for every q ∈ ∂Ω, the ordered eigenvalues ξ1(q) ≤ · · · ≤ ξn−1(q) of
the second fundamental form α of the boundary ∂Ω at q with respect to the unit normal
vector field ν pointing towards Ω satisfies ξ1(q) + . . . + ξj(q) > 0. If for all q ∈ ∂Ω and
some constant c > 0, the eigenvalues satisfy ξ1(q) + . . .+ ξj(q) ≥ c, then we say that Ω is
strictly j-convex with constant c.

A result of J. Hadamard [76], states that if a compact immersed hypersurface M ⊂ Rn
has positive definite second fundamental form at all p ∈ M , then M is embedded as the
boundary M = ∂Ω of a strictly convex body Ω. In other words, a compact 1-convex subset
Ω ⊂ Rn is a convex body in the sense that any two points in Ω can be joined by a segment
contained in Ω. The classical notions of convexity and mean convexity are respectively
1-convexity and (n − 1)-convexity. The following example due to Jorge-Tomi [83] shows
that a set can be 2-convex without being 1-convex. Let

Tn(r1, r2) = {(z, w) ∈ R2 × Rn−2 : (|z| − r2)2 + |w|2 ≤ r2
1}, 0 < r1 < r2

be the solid torus homeomorphic to S1×Bn−1, where Bn−1 is the unit ball of Rn−1. It was
shown in [83] that Tn is 2-convex whenever this relation r1 ≤ r2/2 is satisfied. Regarding
these notions of j-convexity, we shall show that strictly j-convexity of an open set Ω with
constant c > 0 and C3-smooth boundary ∂Ω is equivalent to the existence of suitable
j-subharmonic C2-function f : Ω→ R, see Lemma 5.13 for details.

Definition 5.4. Let Ω ⊂ N be a bounded open set in a Riemannian manifold. For a given
r > 0 let Tr(Ω) = {y ∈ N : distN (y,Ω) ≤ r} be the closed tube around Ω and let

(78) b = sup{KN (z), z ∈ Tdiam(Ω)(Ω)}.

For each y ∈ Ω define r(y) = min{injN (y), π/2
√
b}, where π/2

√
b is replaced by +∞ if

b ≤ 0. Set rΩ = infy∈Ω r(y). A bounded domain Ω ⊂ N is said to be totally regular if
diamN (Ω) < rΩ .

Example 5.5. Any bounded domain Ω ⊂ N of a Hadamard manifold is totally regular.
On the other hand, Ω ⊂ Sn(1) is totally regular if and only if diamSn(1)(Ω) < π/2.
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For b ∈ R, define the function µb : [0,∞)→ R by

(79) µb(t) =


1√
b

tan(
√
bt), if b > 0

t, if b = 0
1√
−b

tanh(
√
−bt), if b < 0

See [105, Chapter 4] for the definition of generalized Hausdorff measures or simply the
Ψ-Hausdorff measures HΨ, where Ψ: [0,∞) → [0,∞) is a continuous function. Our first
result in this section is the following theorem that gives sufficient conditions on the size of
the limit set of a bounded submanifold for its spectrum to be discrete.

Theorem 5.6 (Bessa-Jorge-Mari-[17]). Let ϕ : M → N be an isometric immersion of a
Riemannian m-manifold M into a Riemannian n-manifold N with mean curvature vector
H. Let us suppose that ϕ(M) ⊂ Ω, is a bounded, totally regular, open subset of N and let
b be as in (78) and µb as defined in (79). Assume that

(80) ‖H‖L∞(M) <
m− 1

m · µb(diam(Ω))
·

Define θ =
[
m− 1−m · µb(diam(Ω)) · ‖H‖L∞(M)

]
> 0 and Ψ ∈ C0([0,∞) given by

(81) Ψ(t) =


t2, if θ > 1

t2| log t|, if θ = 1

tθ+1, if θ ∈ (0, 1).

If one of the following conditions holds

(1) limϕ ∩ ∂Ω = ∅ and HΨ(limϕ) = 0,
(2) limϕ ∩ ∂Ω 6= ∅, HΨ(limϕ ∩ Ω) = 0, Ω is strictly m-convex with constant c > 0,

∂Ω is of class C3, and the mean curvature vector H satisfies the further restriction

(82) ‖H‖L∞(M) <
c

m
,

then the spectrum of −∆ is discrete.

We shall make few comments about Theorem 5.6.

• We remark that in item 2, the Hausdorff measure of limϕ ∩ ∂Ω does not need to
be zero. In particular, the examples of Ferrer, Martin, Meeks [63] of complete,
proper minimal immersions ϕ : M → Ω such that limϕ ≡ ∂Ω ⊂ R3 have discrete
spectrum, provided Ω is strictly 2-convex. One illustrative example is the 2-convex
solid torus T2(r1, r2), r1 ≤ r2/2 described in [83]. If M is any open surface, then
there exists a complete, proper minimal immersion ϕ : M → T2(r1, r2), [63, Prop.
1], such that limϕ ≡ ∂T2(r1, r2), hence by Theorem 5.6, item 2, its spectrum is
discrete.
• Our definition of Ω being totally regular implies that µb(diam(Ω)) > 0 thus (80) is

meaningful, where b = sup{KN (z), z ∈ Tdiam(Ω)(Ω)}. However, if one knows only
an upper bound for the sectional curvatures b0 > b instead, then Theorem 5.6 is
still valid, provided µb0(diam(Ω)) > 0.
• The case that limϕ ∩ Ω = ∅ is equivalent to the properness of ϕ in Ω, therefore

the statement of Theorem 5.6 extends, (in many aspects), the main result of [19].
• Theorem 5.6 also applies to non-orientable manifolds M . In fact, its proof can be

applied to the two-sheeted oriented covering of M yielding the same conclusions.
• The Riemannian manifold M may be geodesically incomplete and the statement

regards the spectrum of the Friedrichs extension of ∆: C∞c (M)→ C∞c (M).
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The minimal surfaces in the examples (i.), (ii.), (iii.) and (iv.) are properly immersed
in 1-convex domains Ω of R3, whereas the minimal surfaces in (v.) are properly immersed
in smooth domains Ω. In those examples limϕ ∩ Ω = ∅ thus HΨ(limϕ ∩ Ω) = 0. The
examples in (vi.) and (vii.) are bounded and limϕ is a non-rectifiable Jordan curve of
Hausdorff dimension 1. Thus HΨ(limϕ ∩ Ω) = 0 for Ψ(t) = t2| log(t)|. By Theorem 5.6,
all of those examples of (i.), (ii.), (iii.), (iv.), (v.), (vi).) and (vii.) have discrete spectrum,
provided Ω is bounded strictly 2-convex with C3-boundary. That can be summarized in
the following corollary as follows.

Corollary 5.7. Let ϕ : Mm → Nn be a minimal m-submanifold, possibly incomplete,
immersed into a bounded open m-convex subset Ω of a Hadamard manifold with constant
c > 0. Suppose that ∂Ω is C3-smooth and Ψ(t) = t2 if m ≥ 3 and Ψ(t) = t2| log(t)| if
m = 2. If HΨ(limϕ ∩ Ω) = 0, then the spectrum of −∆ is discrete. In particular, those
minimal surfaces constructed in (i.), (ii.), (iii), (iv.), (v.), (vi.) and (vii.) have discrete
spectrum provided Ω is bounded, strictly 2-convex with C3-boundary.

Remark 5.8. The hypothesis concerning the measure of the limit set limϕ in Theorem

5.6 is sharp. Consider a bounded, complete proper minimal annulus ϕ : M → BR3

1 (0)
as in [132] with limϕ ∩ Ω = ∅, thus with discrete spectrum by Theorem 5.6 or [19,

Thm.1]. Considering the universal cover π : M̃ → M and setting φ = ϕ ◦ π : M̃ → R3

one has a bounded, complete minimal surface with non-empty essential spectrum. In

fact, if π : (M̃, π∗ds2) → (M, ds2) is an infinite sheeted covering then the induced met-
ric π∗ds2 satisfies the“ball property”, see Definition 6.11, therefore the essential spectrum

of (M̃, π∗ds2) is non-empty, regardless the spectrum of (M,ds2). Observe that the im-

mersed submanifold have the same image ϕ(M) = φ(M̃) however, their limit sets are

different, limϕ 6= limφ = φ(M) and Theorem 5.6 could not be applied since the Hausdorff

dimension dimH(limφ ∩BR3

1 (0)) ≥ 2.

5.1. Proof of Theorem 5.6.

5.1.1. Preliminaries. We will denote by ϕ : M → N an isometric immersion of a complete
Riemannian m-manifold M into a Riemannian n-manifold N. The Levi-Civita connections
of N and M are denoted by ∇ and ∇ respectively. The second fundamental form α =
∇dϕ⊥ and mean curvature vector H = trα/m. The gradient of a function g : N → R, is
denoted by ∇g whereas ∇(g ◦ ϕ) = (∇g)> is the gradient of g ◦ ϕ, the restriction of g to
M . The hessian of g is denoted by ∇dg and the hessian ∇d(g ◦ ϕ) of g ◦ ϕ are related by

(83) ∇d(g ◦ ϕ) = ∇dg + 〈∇dϕ⊥,∇g〉.
The symbol BNr (x) denotes the geodesic ball of N centered at x ∈ N with radius r.

However the unit ball BR2

1 (0) of R2, will be denoted by D. Similarly, for X ⊂ N the
symbol TNr (X), called the tube of radius r around X, denotes the open set of points
(in N) whose distance from X is less than r. Finally, denote by R+ = (0,+∞) and
R+

0 = [0,+∞).

5.1.2. Carathéodory’s Construction. In this section we shall review the notion of gen-
eralized Ψ-Hausdorff measures. Here, we do follow the elegant exposition of P. Mattila, in
[105, Chap.4].

Definition 5.9 (Carathéodory’s Construction). Let X be a metric space, J a family of
subsets of X and ζ ≥ 0 a non-negative function on J . Make the following assumptions.

1. For every δ > 0 there are E1, E2, . . . ,∈ J such that X =
⋃∞
i=1Ei and diam(Ei) ≤

δ.
2. For all δ > 0 there is E ∈ J such that ζ(E) ≤ δ and diam(E) ≤ δ.
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For 0 < δ ≤ ∞ and A ⊂ X we define

ζ
δ
(A) = inf

{ ∞∑
i=1

ζ(Ei) : A ⊂
∞⋃
i=1

Ei, diam(Ei) ≤ δ, Ei ∈ J

}
.

It is easy to see that ζ
δ
(A) ≤ ζ

ε
(A) whenever 0 < ε < δ ≤ ∞. Therefore,

Hζ(A) = lim
δ→0

ζ
δ
(A) = sup

δ>0
ζ
δ
(A)

defines the generalized ζ-Hausdorff measure Hζ .

In this construction, let X be a complete Riemannian manifold M and let J be the fam-
ily of Borel subsets ofM . Let Ψ: [0,∞)→ [0,∞) a continuous function such that Ψ(0) = 0.
The Ψ-Hausdorff measure is defined by HΨ(A) = Hζ(A) where ζ(A) = Ψ(diam(A)) and it
is Borel regular, see [105, Thm. 4.2]. Taking J = {open subsets of M} instead of the Borel
sets and the same Ψ, the generalized Hausdorf measures obtained by the Carathéodory
construction coincides, i.e they are the same Ψ-Hausdorff measureHΨ, see [105, Thm. 4.4].
The choice Ψ(t) = tβ , for some fixed β > 0, gives the standard β-dimensional Hausdorff
measure Htβ = Hβ .

Remark 5.10. If J is the family of geodesic balls of M , the resulting measure HΨ does
not coincide, in general, with generalized Hausdorff measure HΨ, see [105, Chap. 5].
However, if for some constant c > 0 the following inequality holds Ψ(2t) ≤ c · Ψ(t), then
HΨ ≤ HΨ ≤ cHΨ.

The first inequality HΨ ≤ HΨ is obvious from the definition. To prove HΨ ≤ cHΨ

we proceed as follows. Since every open set Ej is contained in a ball BMrj (xj) of radius

rj = diam(Ej), we have that for every covering {Ej} of A ⊆M with diam(Ej) < δ that

+∞∑
i=1

Ψ
(
diam(Ej)

)
≥ 1

c
·

+∞∑
i=1

Ψ
(
2diam(Ej)

)
=

1

c
·

+∞∑
i=1

Ψ
(
diam(BMrj (xj))

)
.

Taking the infimum, in the right hand-side, with respect to all covering {BMrj (xj)} by balls
of diameter less than 2δ and taking the infimum in the left hand side with respect of Ei
we have ζδ ≤ c · ζδ, (ζ = Ψ(diam). Letting δ ↓ 0 we obtain the desired HΨ ≤ cHΨ.

5.1.3. Strategy of proof of Theorem 5.6. Let M be a Riemannian manifold. To show
that −∆ has discrete spectrum we rely on the well known characterization (84) of the
essential spectrum, see [53], [114, Thm. 2.1], and Barta’s eigenvalue lower bound, see [13],
[22]. This characterization relates the infimum inf σess(−∆) of the essential spectrum of
−∆ to the fundamental tone of the complements of compact sets. This is,

(84) inf σess(−∆) = sup
K⊂M

λ∗(M\K),

where K is compact and λ∗(M\K) is the bottom of the spectrum of the Friedrichs exten-
sion of (−∆, C∞c (M\K)), given by

λ∗(M\K) = inf

{∫
M\K |∇u|

2∫
M\K u

2
, 0 6= u ∈ C∞0 (M\K)

}
.

On the other hand, Barta inequality gives a lower bound for λ∗(M\K) via positive func-
tions, this is

(85) λ∗(M\K) ≥ inf
M\K

−∆w

w
for every 0 < w ∈ C2(M\K).
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To prove that −∆ has discrete spectrum or equivalently, to prove that inf σess(−∆) =
+∞, it is enough to find, for each small ε > 0, a compact set Kε ⊂ M and a function
0 < wε ∈ C2(M \Kε) such that

(86)
−∆wε
wε

≥ c(ε) on M\Kε,

where c(ε) → +∞ as ε → 0. Each wε will be constructed as a sum of suitable strictly
positive superharmonic functions, depending on a good covering of limϕ by balls.

5.1.4. Main lemma. Let ϕ : M → N be an isometric immersion of a complete Riemannian
m-manifold M into a Riemannian n-manifold N , with mean curvature vector H. Let us
suppose that ϕ(M)⊂Ω, is a bounded, totally regular subset and let b = sup{KN (z), z ∈
Tdiam(Ω)(Ω)}. Fix ā > 0 such that (log(ā))2 > log(diam(Ω)) and if b > 0, suppose in

addition that ā ≤ min{π/3
√
b, π/2(1 + θ)

√
b}. Recalling that

θ =
[
m− 1−m · µb(diam(Ω)) · ‖H‖L∞(M)

]
we have the following lemma.

Lemma 5.11 (Main Lemma). For each a∈(0, ā/3] and x∈Ω so that ϕ(M) ⊂ BNdiam(Ω)(x)

if θ > 0 there exists u ∈ C∞(M) satisfying these three conditions.

i. u ≥ 0 and u(p) = 0 if and only if ϕ(p) = x.
ii. ∆u ≥ θ/3 on ϕ−1(BNa (x)) if ϕ−1(BNa (x)) 6= ∅.
iii. ∆u ≥ 0 on M .
iv.

‖u‖L∞(M) ≤


Ca2, if θ > 1

Ca2| log a|, if θ = 1

Caθ+1, if 0 < θ < 1,

where C is a positive constant depending on m, diam(Ω), ‖H‖L∞(M).

Proof. Fix x ∈ Ω such that ϕ(M) ⊂ BNdiam(Ω)(x) ⊂ BNrΩ(x). Thus, the distance function

ρ(y) = distN (x, y) is smooth (except at y = x) and the geodesic ball BNdiam(Ω)(x) is 1-

convex. In fact, by the hessian comparison theorem, [69],

(87) ∇dρ ≥ h′(ρ)

h(ρ)

(
〈 , 〉 − dρ⊗ dρ

)
.

where h : [0,∞)→ [0,∞) given by

h(t) =



1√
b

sin(
√
bt), if b > 0

t, if b = 0

1√
−b

sinh(
√
−bt), if b < 0.

Let f ∈ C2(N) be defined by f(y) = g(ρ(y)) for some g ∈ C2(R+
0 ) that will be chosen

later. The chain rule applied to the composition f ◦ ϕ ∈ C2(M) implies that

∇d(f ◦ ϕ) = ∇df(dϕ,dϕ) + df(∇dϕ⊥).

where ∇,∇ are the connections of M and N respectively and ∇dϕ⊥ is the second funda-
mental form of the immersion. Let {ei, eα} be a local Darboux frame along ϕ, with {ei}
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tangent to M . Tracing the above equality, it yields

(88) ∆(f ◦ ϕ) =

m∑
j=1

∇df(ej , ej) +mdf(H).

On the other hand

∇df = g′′(ρ)dρ⊗ dρ+ g′(ρ)∇dρ.

If g′ ≥ 0 and by (87)

(89) ∇df ≥ g′(ρ)h′(ρ)

h(ρ)

(
〈 , 〉 − dρ⊗ dρ

)
+ g′′(ρ)dρ⊗ dρ.

Using |dρ| = 1 and by (89)

m∑
j=1

∇df(ej , ej) +mdf(H) =
g′h′

h

(
m−

m∑
j=1

dρ(ej)
2
)

+ g′′
m∑
j=1

dρ(ej)
2

+mg′dρ(H)

≥ g′h′

h

(
m−

m∑
j=1

dρ(ej)
2 −m h

h′
‖H‖

)
+ g′′

m∑
j=1

dρ(ej)
2(90)

≥ g′h′

h

( =θ︷ ︸︸ ︷
m−1−mµb(diam(Ω))‖H‖L∞(M)

)
+g′′

m∑
j=1

dρ(ej)
2.

=
g′h′

h
θ + g′′

m∑
j=1

dρ(ej)
2.

In other words,

(91) ∆(f ◦ ϕ) ≥ g′h′

h
θ + g′′

m∑
j=1

dρ(ej)
2.

Define ω : [0,∞)→ R by

ω(t) =

 (1− t

3a(1 + θ)
)(θ + 1)h′(t), if t ≤ 3a(1 + θ)

0, if t ≥ 3a(1 + θ),

where 3a ≤ ā. Setting

(92) g(t) =

∫ t

0

1

h(s)θ

[∫ s

0

h(σ)θω(σ)dσ

]
ds.

We have that g is solution of

(93) g′(t)
h′(t)

h(t)
θ + g′′(t) = ω(t).

It is easy to show that g ∈ C2([0,∞)). From (93) we have that if t ≤ 3a(1 + θ), then
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g′′(t) = ω(t)− θh′(t)

h(t)1+θ(t)

∫ t

0

(1− s

3a(1 + θ)
)

d

ds
(h1+θ(s))ds,

= ω(t)− θh′(t) +
θh′(t)

h(θ+1)(t)

∫ t

0

s

3a
hθ(s)h′(s)ds(94)

= (1− t

3a
)h′(t) +

θh′(t)

h(θ+1)(t)

∫ t

0

s

3a
hθ(s)h′(s)ds.

From (94) we have that g′′(t) ≥ 0 if t ≤ 3a. Moreover, h′(t) ≥ 1/2 if t ≤ 3a. Then at any
x′ ∈ ϕ−1(BNa (x)) we have from (91)

∆f ◦ ϕ(x′) ≥ g′h′

h
θ + g′′

m∑
j=1

dρ(ej)
2.

≥ g′(ρ(ϕ(x)))
h′

h
ρ(ϕ(x))θ,

≥ (1− ρ(ϕ(x))

3a(1 + θ)
)θh′(ρ(ϕ(x)))(95)

≥ 1

2
(1− ρ(ϕ(x))

3a(1 + θ)
)θ

≥ θ

3
.

Decompose

M = {y ∈M : g′′(ρ(ϕ(y))) ≥ 0} ∪ {y ∈M : g′′(ρ(ϕ(y))) < 0} = A ∪B.

We have that inequality (95) shows that if x′ ∈ A then ∆f ◦ϕ(x) ≥ 0. On the other hand,
at any point x′ ∈ B we have by (91) and by the fact that

|∇ρ|2 = 1 =

m∑
j=1

dρ(ej)
2 +

n∑
α=m+1

dρ(eα)2 ≥
m∑
j=1

dρ(ej)
2,

that

∆f ◦ ϕ(x) ≥

g′h′
h
θ + g′′

m∑
j=1

dρ(ej)
2

 ,
≥ g′

h′

h
θ + g′′

≥ ω(96)

≥ 0.

Observe that

(97)

∫ t

0

h(s)θω(s)ds ≤

 h(t)1+θ, if 0 ≤ t ≤ 3a(1 + θ)

h(t1)1+θ, if t > t1 = 3a(1 + θ).

Taking in account that c1 · t ≤ h(t) ≤ c2 · t, t ∈ [0,diam(Ω)] for some positive constants
c1, c2, we have the following upper bounds for g.
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If 0 ≤ t ≤ t1 = 3a(1 + θ),

g(t) =

∫ t

0

1

h(s)θ

[∫ s

0

h(σ)θω(σ)dσ

]
ds

≤
∫ t

0

h(s)ds.(98)

≤ c2
(t1)2

2
= 9 · c2 ·

(1 + θ)2

2
· a2.

If t ≥ t1 = 3a(1 + θ),

g(t) =

∫ a

0

1

h(s)θ

[∫ s

0

h(σ)θω(σ)dσ

]
ds+

∫ t

a

1

h(s)θ

[∫ t1

0

h(σ)θω(σ)dσ

]
ds

≤
∫ a

0

h(s)ds+ h1+θ(t1)

∫ t

a

1

h(s)θ
ds

≤ c2
2
· a2 +

c
(1+θ)
2 (3a(1 + θ))(1+θ)

c1

∫ t

a

1

sθ
ds

= c3 · a2 + c4 · a(θ+1)

∫ t

a

1

sθ
ds

≤ c3 · a2 + c4 · a(θ+1)



a1−θ

θ − 1
, if θ > 1

c5 · | ln a|, if θ = 1

t1−θ

1− θ
≤ diam(Ω)1−θ

1− θ
, if 0 < θ < 1.

We can deduce from (98) and (99) that there exists a positive constant C depending on
m,diam(Ω), b and ‖H‖L∞(M) such that

(99) ‖g‖L∞([0,diam(Ω)]) ≤


Ca2, if θ > 1

Ca2| log a|, if θ = 1

Caθ+1, if θ ∈ (0, 1).

Taking u = f ◦ ϕ : Mm → R we have that

• By construction u(p) = 0 if and only if ϕ(p) = x.
• By (95) and (97) we have ∆u ≥ θ/3 on ϕ−1(BNa (x)) and ∆u ≥ 0 on M , respec-

tively.
• By (99) we have

‖u‖L∞(M) ≤ ‖f‖L∞(ϕ−1(BN
diam(Ω)

(x))) = ‖g‖L∞([0,diam(Ω)]).

This proves Lemma 5.11. �

5.1.5. Strictly m-convex domains. A strictly m-convex domain Ω with constant c > 0
is related to the existence of strictly m-subharmonic functions on Ω.

Definition 5.12. A C2-function φ : Ω→ R is said to be strictly m-subharmonic with
constant c > 0 if λ1(p) ≤ λ2(p) ≤ · · · ≤ λn(p) are the ordered eigenvalues of the hessian
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∇dφ(p), then there exists an ε > 0 such that λ1(p) + · · ·+ λm(p) ≥ c, ∀p ∈ TNε (∂Ω)={y ∈ N:distN (y, ∂Ω) ≤ ε}

λ1(p) + · · ·+ λm(p) ≥ 0, ∀p ∈ Ω.

Let Ω ⊂ N be a strictly m-convex domain of N with constant c > 0 and Γ = ∂Ω of
class C3. Let t : N → R be the oriented distance function to Γ with orientation outward
Ω. This is,

(100) t(y) =

 −distN (y, ∂Ω), if y ∈ Ω

distN (y, ∂Ω), if y ∈ N \ Ω.

The oriented distance t(y) is Lipschitz in N and of class C2 in a tubular neighborhood
TNε0 (∂Ω) for some ε0. Let αs be the shape operator of the parallel hypersurface Γs = t−1(s),

|s| ≤ ε0 with respect to the normal vector field −∇t. At each point of Γs there is an
orthonormal bases of TΓs such that αs is diagonalized

αs = diag
(
ξs1, ξ

s
2, . . . , ξ

s
n−1

)
,

where ξs1 ≤ ξs2 ≤ . . . ≤ ξsn−1. By the uniform continuity of each ξsj and the compactness of

TNε0 (∂Ω), for each δ ∈ (0, 1) one can choose ε0 small enough to have

ξs1(y) + · · ·+ ξsm(y) ≥ δc

∀y ∈ TNε0 (∂Ω). Let ε1 be a positive number so that

(101) ε1 < min
{

1, ε0, ‖αs‖−1
L∞(TNε0

(∂Ω))

}
·

Define Φε : N → R, 0 < ε < ε1/2, by

(102) Φε(y) =


−2ε, if t(y) ≤ −2ε

2ε

[(
t(y)

2ε
+ 1

)3

− 1

]
, if t(y) ≥ −2ε.

The function Φε is Lipschitz inN and C2 in the tubular neighborhood TNε0 (Ω) = t−1 ((−∞, ε0]).

For t(y) ≤ ε0, we can compute the gradient and the hessian of Φε as follows.

∇Φε(y) =


0, if t(y) ≤ −2ε

3

(
t(y)

2ε
+ 1

)2

∇t(y), if −2ε ≤ t(y) ≤ ε0.

∇dΦε(y)(X,Y ) =



0, if t(y) ≤ −2ε

3

(
t(y)

2ε
+ 1

)2

∇dt(y)(X,Y ),

if −2ε ≤ t(y) ≤ ε0
+

3

ε

(
t(y)

2ε
+ 1

)
X(t)Y (t).

Writing ∇dΦε(y)(X,Y ) = 〈S(X), Y 〉, for an appropriate symmetric endomorphism
S : TN → TN , we have that for −2ε ≤ t(y) ≤ 2ε, S(y) can be represented by a diagonal
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matrix,

S(y)=diag

(
3

(
t(y)

2ε
+ 1

)2

ξt1(y), ..., 3

(
t(y)

2ε
+ 1

)2

ξtn−1(y),
3

ε

(
t(y)

2ε
+ 1

))
Since

3

(
t(y)

2ε
+ 1

)2

ξtj(y)− 3

ε

(
t(y)

2ε
+ 1

)
= 3

(
t(y)

2ε
+ 1

)[(
t(y)

2ε
+ 1

)
ξtj(y)− 1

ε

]
≤ 6

[
2ξtj −

1

ε1

]
≤ 12

(
ξtj(y)− 2‖αt‖L∞(TNε0

(∂Ω))

)
≤ 0.

We obtain λ1 ≤ λ2 ≤ · · · ≤ λn, λj = 3
(
t
2ε + 1

)
ξtj , j = 1, . . . n− 1, λn(y) =

3

ε

(
t(y)

2ε
+ 1

)
with S = diag (λ1, λ2, . . . λn). By Lemma 2.3 of [83], we have that for any subspace
V ⊂ TyN , y ∈ TN2ε (∂Ω) and 1 ≤ dimV = m ≤ n− 1 that

Trace
(
∇dΦε(y)|V

)
≥ λ1(y) + · · ·+ λm(y)

≥ 3

(
t(y)

2ε
+ 1

)2 [
ξ
t(y)
1 + · · ·+ ξt(y)

m

]
(103)

≥ 3

(
t(y)

2ε
+ 1

)2

δc.

Then

• If t(y) ≤ 2ε, we obtain that, Trace(∇dΦε(y)|V ) ≥ 0 and

• for |t(y)| ≤ ε(1−
√
δ), we obtain,

Trace
(
∇dΦε(y)|V

)
≥ 3(1 +

√
δ)2δc/4.

This proves the following lemma.

Lemma 5.13. Let Ω be a strictly m-convex, 1 ≤ m ≤ n− 1, with constant c > 0. There
exists a Lipschitz function Φε : N → R, that is C2 in T2ε(Ω), where 2ε < ε1, ε1 is a positive
number depending on the geometry of ∂Ω, see (101), and such that

1. Φ−1
ε ((−∞, 0)) = Ω, Φ−1

ε (0) = ∂Ω.
2. |Φε| ≤ 2ε in Ω.

3. Trace
(
∇dΦε(y)|V

)
≥ 3(1 +

√
δ)2δc/4, for |t(y)| ≤ ε(1−

√
δ) and any m-subspace

V ⊂ TyN .

4. Trace
(
∇dΦε(y)|V

)
≥ 0, in Ω for any m-subspace V ⊂ TyN .

In other words, Φε is strictly m-subharmonic function with constant 3(1 +
√
δ)2δc/4.

We will need the following lemma for the proof of Theorem 5.6.

Lemma 5.14. Let ϕ : Mm → Nn be an isometric immersion such that there exists a
bounded, totally regular, strictly m-convex domain Ω ⊂ N with constant c > 0 and C3-
boundary ∂Ω such that ϕ(M) ⊂ Ω, HΨ(limϕ ∩ Ω) = 0 and

(104) ‖H‖L∞(M) < min{ m− 1

m · µb(diam(Ω))
,
c

m
}·

Take δ ∈ (0, 1) such that

‖H‖L∞(M) <
δ2c

m
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and let ε < ε1/2 as above in Lemma 5.13. Then the function u : Mm → R given by
u = Φε ◦ ϕ, where Φε is also given in Lemma 5.13, satisfies

(1) |u(x)| ≤ 2ε for all x ∈M .
(2) ∆u(x) ≥ 0 for all x ∈M .

(3) ∆u(x) ≥ Cδ, if |t(ϕ(x))| ≤ ε(1−
√
δ), where Cδ = 3c · δ · (1− δ) · (1 +

√
δ)2/4.

(4) ϕ(M) ∩ ∂Ω = ∅.

Proof. Taking u = Φε ◦ ϕ the item 1. holds by the item 2. of Lemma 5.13 and the fact
that ϕ(M) ⊂ Ω. On the other hand, we have by (103)

∆u(x) = Trace
(
∇dΦε|Tϕ(x)M

)
+ < ∇Φε,mH >

≥ 3

(
t(ϕ(x))

2ε
+ 1

)2

δc− 3

(
t(ϕ(x))

2ε
+ 1

)2

δ2c(105)

= 3

(
t(ϕ(x))

2ε
+ 1

)2

δc(1− δ)

≥ 0.

This proves item 2. If |t(ϕ(x))| ≤ ε(1−
√
δ) we get

∆u(x) ≥ 3

4
(1 +

√
δ)2(1− δ)δc(106)

and that proves item 3. If there exists a x ∈ ϕ−1(ϕ(M) ∩ ∂Ω) then ∆u(x) > 0 by (105).
On the other hand u has a maximum at x therefore ∆u(x) ≤ 0 a contradiction. This
proves item 4 and finishes the proof of Lemma 5.14. �

5.1.6. End of the proof of Theorem 5.6. Theorem 5.6 states that if ϕ : M → N is an
isometric immersion of a Riemannian m-manifold M into a Riemannian n-manifold N
with mean curvature vector H such that ϕ(M) ⊂ Ω, is a bounded, totally regular, open
subset of N and let b be as in (78) and µb as defined in (79). Assume that

(107) ‖H‖L∞(M) <
m− 1

m · µb(diam(Ω))
·

Define θ =
[
m− 1−m · µb(diam(Ω)) · ‖H‖L∞(M)

]
> 0 and Ψ ∈ C0([0,∞) given by

(108) Ψ(t) =


t2, if θ > 1

t2| log t|, if θ = 1

tθ+1, if θ ∈ (0, 1).

If one of the following conditions holds

(1) limϕ ∩ ∂Ω = ∅ and HΨ(limϕ) = 0,
(2) limϕ ∩ ∂Ω 6= ∅, HΨ(limϕ ∩ Ω) = 0, Ω is strictly m-convex with constant c > 0,

∂Ω is of class C3, and the mean curvature vector H satisfies the further restriction

(109) ‖H‖L∞(M) <
c

m
,

then the spectrum of −∆ is discrete. To prove this result we proceed as follows.
Let ϕ:M → N be an isometric immersion of a Riemannian m-manifold M into a

Riemannian n-manifold N with mean curvature vector H. Suppose that ϕ(M) ⊂ Ω
for a bounded totally regular subset Ω. Let b = sup{KN (z), z ∈ Tdiam(Ω)(Ω)} and
‖H‖L∞(M) < (m − 1)/m · µb(diam(Ω)). First we will prove Theorem 5.6 under the as-
sumptions of item 1. Suppose that HΨ(limϕ) = 0. Choose a positive number ā > 0 such

that (log(ā))2 > log(diam(Ω)) and if b > 0 take ā ≤ min{π/3
√
b, π/2(1 + θ)

√
b}, where

θ = m− 1−mµ(diam(Ω))‖H‖L∞(M).
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Observe that Ω ⊂ BNdiam(Ω)(x0) for x0 ∈ Ω. Then choose r1 � diam(Ω) such that the 2r1-

tubular neighborhood T2r1(limϕ) ⊂ BNdiam(Ω)(x0). Fix ε ∈ (0, r1). Since HΨ(limϕ) = 0

and Remark 5.10, there is a > 0 and a countable covering of limϕ by geodesic balls
Bj = BNaj (yj) ⊂ N of radius 2aj ≤ a ≤ min{r1, ā/3} such that

(110) limϕ ⊂
⋃
j

Bj and

∣∣∣∣∣∣
∑
j

Ψ(2aj)

∣∣∣∣∣∣ < ε.

Since limϕ is compact we can extract a finite sub-covering {Bj}kj=1 of limϕ such that
(110) holds, and each Bj ⊂ T2r1(limϕ) for all j = 1, . . . , k. Applying Lemma 5.11, we
construct, for every j = 1, . . . , k, a function uj : M → R such that

(111)


uj ≥ 0, uj(p) = 0 if and only if ϕ(p) = yj ,

‖uj‖L∞(M) ≤ CΨ(2aj),

∆uj ≥ 0 on M, ∆uj ≥ θ/3 on ϕ−1(Bj),

where C is positive constant depending on m,diam(Ω), ‖H‖L∞(M).

Let w1 =
∑k1

j=1(2‖uj‖L∞ − uj) > 0. By the boundedness of ϕ(M) the set

Kε = M \ ϕ−1
( k1⋃
j=1

Bj

)
is compact in M . Now, by (2.21) the fundamental tone

λ∗(M \Kε) ≥ inf
M\Kε

(−∆
M
w

1

w
1

)·

Let q ∈M \Kε then ϕ(q) ∈
⋃k1

j=1Bj . Let j′ be so that ϕ(q) ∈ Bj′ . Then ∆Muj′(q) ≥
θ/3 and ∆Muj(q) ≥ 0 for all other j′s. Therefore,

(112)

−∆w1

w
1

(q) ≥
∑
j ∆

M
u
j
(q)

2
∑
j ‖uj‖L∞

≥
∆
M
u
j′ (q)

2C
∑
j Ψ(2aj)

≥ θ

6Cε
.

Here C = C(m,R1, ‖H‖L∞(M)). This shows that λ∗(M \Kε) ≥
θ

6Cε
for each ε ∈ (0, r1).

Therefore λ∗(M \Kε)→ +∞ if ε→ 0 and proves item 1.

To prove item 2. we recall that we have an isometric immersion ϕ : Mm → Nn of a
Riemannian manifold M into a Riemannian manifold N with mean curvature vector H
such that ϕ(M) ⊂ Ω, a totally regular, strictly m-convex domain with constant c > 0
and C3-boundary ∂Ω and Ψ-Hausdorff measure HΨ(limϕ ∩ Ω) = 0. The mean curvature
vector is assumed to satisfy ‖H‖

L∞(M)
< min{(m − 1)/m · µb(diam(Ω)), c/m}. We may

assume that limϕ ∩ ∂Ω 6= ∅, otherwise we can apply item 1. By Lemma 5.14, there exist
positive numbers δ = δ(ϕ), Cδ > 0 and ε1 = ε1(Ω) such that for any ε < ε1/2, there exists
a C2 function u : M → R, such that

1. u−1(−∞, 0)) = M .
2. |u(x)| ≤ 2ε in M .
3. ∆u(x) ≥ 0 for all x ∈M.
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4. ∆u(x) ≥ Cδ, if ϕ(x) ∈ Tε(1−√δ)(∂Ω).

Fix one ε, 0 < ε < ε1/2 and set K = limϕ\Tε(1−√δ)(∂Ω). We have K ⊂ limϕ∩Ω compact

HΨ(K) = 0. By the first part of this proof we have finite functions uj : M → R and balls

Bj ⊂ Ω (covering K) such that (110) and (111) holds. Take w
1

=
∑k1

j=1(2‖uj‖L∞−uj) > 0

(related to K) and u : M → R given by Lemma 5.14. Define ω : M → R by

ω(x) = ω1(x) + ε− u(x), x ∈M
and

Kε = M \ ϕ−1
(

(∪kj=1Bj) ∪ Tε(1−√δ)(∂Ω)
)

The set Kε is compact and for x ∈M \Kε we get

−∆ω ≥ c0 = min{θ
3
, Cδ} > 0.

Since 0 < ω(x) < (2C + 3)ε, x ∈M, we get

−∆ω

ω
≥ c0

(2C + 3)ε
.

Then λ∗(M \Kε)→∞ if ε→ 0 what proves item 2.

6. Nonempty essential spectrum

As a counterpart of Theorem 5.6, in this section we study conditions under which the
essential spectrum σess(M) is nonempty, and in particular when it contains (or coincides
with) a half-line [c,+∞). The problem captured the attention of researchers since the
seventies, and generated a vast literature which we barely touch in this survey. The
importance of this investigation has been highlighted, for instance, in S.T. Yau’s lectures
[140]. We first made a brief account of the state of the art in the intrinsic case, and
then we move to the case of immersed submanifolds, where we describe in detail our main
contributions.

To begin with, we recall that the well-known Weyl’s characterization for the spectrum
implies the following

Lemma 6.1. [50, Lemma 4.1.2] A number λ ∈ R lies in σ(M) if and only if there exists
a sequence of nonzero functions uj ∈ Dom(−∆) such that

(113) ‖∆uj + λuj‖2 = o
(
‖uj‖2

)
as j → +∞.

As already underlined, characterizations of the whole σ(M) are known only in few
special cases. Among them the space forms Mm

κ of curvature −κ ≤ 0, for which

(114) σ(Mm
κ ) =

[
(m− 1)2κ

4
,+∞

)
.

Hereafter, given a complete Riemannian manifold Mm, with ρ(x) we denote the distance
of x from a fixed reference origin o ∈M . The approach to guarantee that σ(M) = [c,+∞),
for some c ≥ 0, usually splits into two parts.

1) The first one is to show that inf σ(M) ≥ c and, if c > 0, it requires in general
binding conditions such as those guaranteeing the Laplacian comparison from be-
low for ∆ρ. In particular, it requires o to be a pole for M . For instance, see [104],
[22].

2) The second one is to produce a sequence of approximating eigenfunctions like in
lemma 6.1 for each λ > c. This step is accomplished by considering radial functions
of compact support, and, at least in the first results on the topic like the one in
[52], uses the comparison theorems on both sides for ∆ρ. Therefore, the method
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needs both a pinching on the sectional curvature and, again, the smoothness of ρ,
that is, that o is a pole of M (see [52], [62], [141], [90] and Corollary 2.17 in [26]).

The prototype example of the above technique is H. Donnelly’s result in [52], which states
that σ(Mm) ≡ σ(Nmκ ) provided that o is a pole and Krad(x)→ κ ≤ 0 as ρ(x)→ +∞.

Taking into account that the pole requirement is a severe restriction, since then various
efforts were made to weaken both the curvature and the topological assumptions, and
especially criteria to guarantee that a half-line [c,+∞) belongs to σ(M) (actually, to
σess(M)) have been extensively investigated. We remark that the decomposition principle
by Donnelly-Li [53] states that the essential spectrum just depends on the geometry of
M outside a compact set, thus 2) is expected to require just conditions at infinity on
M . For instance, as observed in [88, 89] the need for a pole can be replaced by the
existence of a relatively compact, mean convex, smooth open set Ω such that the normal
exponential map realizes a global diffeomorphism ∂Ω × R+

0 → M\Ω. Conditions of this
kind seem, however, unavoidable for the the techniques in the aforementioned papers to
work. However, curvature assumptions to establish Step 2 can be drastically weakened:
in [89], H. Kumura was able to replace the two-sided pinching on the sectional curvature
with a combination of a lower bound on a suitably weighted volume and an Lp-bound on
the Ricci curvature.

From another perspective, in [106] the authors considered a class of complete manifolds
where an assumption like Donnelly’s one in [52] is given just in a non-compact “drop-like”
region Ω ⊂M . Under suitable conditions on the metric and on the spike of the drop, they
showed that σess(M) contains a half-line [c,+∞), for an explicit c. This applies to show
that, for instance, a horoball Ω ⊂ Hn has the same spectrum6 of the whole Hm.

When the distance function (from a point, or from ∂Ω) is not smooth, radial functions
in general cannot belong to dom(−∆). However, one can produce “radial” eigenfunctions
of the form uj = ψj(γ) provided that there exists an exhaustion γ ∈ C2(M\Ω) with
properties that mimic those of a good distance function at infinity. General function-
theoretic criteria in this spirit were developed by H. Donnelly [55] (c = 0), and K.D.
Elworthy and F-Y. Wang [60] (c > 0). In particular, as a corollary of the main criterion
in [55], a manifold with Ric ≥ 0 and maximal volume growth (that is, vol(Br) ≥ Drm for
some D > 0) satisfies σ(M) = [0,+∞). It is important to observe that no pole assumption
is required in Donnelly’s paper and, as far as we know, it is the first result of this kind
in the literature. Since then, major recent improvements have been made in a series of
papers ([130], [137], [95], [32]), whose guiding idea is to replace the L2-norm in (113) with
the L1-norm. The starting point is the following result of K.T. Sturm:

Theorem 6.2 ([130]). Let M be a complete non-compact manifold with Ric ≥ −K for
some K ≥ 0. If the volume of M grows uniformly subexponentially7, then the Lp-spectra8

are the same for all p ∈ [1,+∞].

As first pointed out in [137], the key fact here is that in the computation of the L1

spectrum one can effectively use smoothed distance functions to construct a sequence
{uj} that satisfy ‖∆uj + λuj‖1 = o(‖uj‖1) as j → +∞. In this way, in [137], [95] the
authors proved the following striking

6Here, σ(M) for incomplete M is defined as the spectrum of the Friedrichs extension of (−∆, C∞
c (M)).

7We say that the volume grows uniformly subexponentially if for each ε > 0 there exists Cε > 0 such

that

vol
(
Br(x)

)
≤ Cεe

εrvol
(
B1(x)

)
∀x ∈M.

8Denoting with ∆2 the Laplace operator on L2, the semigroup et∆2 extends to a strongly continuous
contraction semigroup Tp on Lp(M) for all p ∈ [1,+∞). By definition, the Lp-spectrum is the spectrum

of the generator ∆p of Tp, and ∆∞ is the adjoint of ∆1.
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Theorem 6.3 ([137, 95]). Let M be complete and suppose that

(115) lim inf
ρ(x)→+∞

Ricx = 0

in the sense of quadratic forms. Then, σ(M) = [0,+∞).

Besides on [55], this result improves on [90] and [62] (see also Corollary 2.17 in [26]),
where M was assumed to have a pole. Further refinements of (115) have been given in
[32].
In some instances, the uniformity of the subexponential volume growth in Theorem 6.2
is quite difficult to check. This is the case of gradient Ricci solitons or of proper self-
shrinkers of the mean curvature flow in Rn, for which partial results in [95] suggest that
σ(M) = [0,+∞). In [32], N. Charalambous and Z. Lu proved an important generalization
of Weyl’s criterion that allowed them to deal with these relevant examples:

Theorem 6.4. Let M be a complete manifold, and fix λ ∈ R+
0 . If there exists a sequence

{uj} ⊂ dom(−∆) such that

‖uj‖∞ · ‖∆uj + λuj‖1 = o
(
‖uj‖22

)
as j → +∞,

then λ ∈ σ(M).

We observe that dom(−∆) and σ(M) are referred to the L2-spectrum. This criterion
is quite flexible: it allows, for example, to replace (115) by the weaker conditions

lim inf
ρ(x)→+∞

Ric(∇ρ,∇ρ) ≥ 0 and

either vol(M) = +∞ or lim
r→+∞

− log(vol(M)\vol(Br))

r
= 0

where ρ(x) is the distance from some origin o and x 6∈ Cut(o). As another relevant
application, we quote the following beautiful result by L. Silvares [128], that improves on
[32, 95]. We recall that a weighted manifold (M, g, f) is a Riemannian manifold (M, g)
endowed with a reference function f , and that its Bakry-Emery Ricci tensor is defined as

Ricf = Ric + Hessf.

Theorem 6.5. [128] Let (M, g, f) be a complete weighted manifold. If Ricf ≥ 1
2 and

|∇f |2 ≤ f , then σ(M) = [0,+∞).

Remark 6.6. For weighted manifolds, similar question can be asked for the spectrum of
the drifted Laplacian ∆f = ∆−〈∇f,∇·〉, and the situation is quite different from that for
∆. Interesting results can be found in [128, 43].

A typical case when the assumptions in Theorem 6.5 are met is that of shrinking Ricci
solitons, for which up to rescaling g and translating f , Ricf = 1

2 and |∇f |2 ≤ f . Therefore,
the spectrum of a complete, shrinking Ricci soliton is [0,+∞), as shown in [32] (and, under
a further growth condition on f , in [95]).

Another class of manifolds that share a great similarity with shrinking Ricci solitons is
the class of self-shrinkers for the mean curvature flow. We recall that X : Mm → Rn is
called a self-shrinker if its mean curvature vector satisfies

H = −X
⊥

2

X⊥ being the orthogonal component of the position vector. If X is proper, the function
f = |X|2/4 is a proper exhaustion satisfying |∇f |2 ≤ f . Although it is not true that
Ricf ≥ 1

2 , nevertheless one can still prove the following result:

Theorem 6.7. [127] If M → Rn is a properly immersed self-shrinker for the mean cur-
vature flow, then σ(M) = [0,+∞).
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In all of the examples, the fact that σ(M) = [0,+∞) depends on the existence of an
exhaustion γ such that |∆γ| and |∇γ|2− 1 are suitably small in an integral sense, coupled
with a subexponential growth of V (r) = vol({γ ≤ r}) (if V (∞) = ∞) or otherwise
a subexponential decay of V (∞) − V (r), in the spirit of Donnelly and Elworthy-Wang’s
criteria (and its L1-versions in [32]). In the lack of subexponential volume growth, without
the pole assumption very few is known, and is still the subject of an active area of research.
It has been conjectured in [32] that if M is complete with vol(M) = +∞, condition
Ric ≥ −K for some K > 0 imply that the essential spectrum is [c,+∞), for some c ≥ 0.
Note that the requirement vol(M) = +∞ is needed in view of the examples constructed
by J. Lott in [94]9. However, very recently, in [124] the authors showed that the above
conjecture is false. More precisely, they proved the following beautiful:

Theorem 6.8. Let (M, g0) be a complete, noncompact Riemannian manifold, and let
n ∈ N. If g0 has bounded curvature and positive injectivity radius, there is a metric g on
M such that (M, g) has bounded curvature, positive injectivity radius and, for the Laplacian
of the metric g, σess(M) has at least n gaps.

In particular, Riemannian coverings (M, g0) of compact manifolds satisfy the assump-
tions of the theorem. In view of this result, one can ask whether the gaps stay below some
fixed threshold. We are tempted to suggest the following

Conjecture 6.9. Let M be a complete manifold with Ric ≥ −(m − 1)κ for some κ > 0.
If vol(M) = +∞, then

σess(M) ⊃
[

(m− 1)2κ

4
,+∞

)
.

6.1. Immersed submanifolds, I: the ball property. We now move to investigate
more closely the spectrum of isometrically immersed submanifolds, in particular minimal
ones. As in the case of shrinking Ricci solitons and self-shrinkers, it may happen that
σ(M) = [0,+∞) even without a good control on the curvature. Another example, which
we think to be quite curious, is that of graphs, for which we have the following recent
result:

Theorem 6.10 (Matos-Montenegro [103]). The spectrum of any complete smooth graph
over a domain Ω ⊂ Rm is [0,+∞).

Note that no assumption is required on the graph function. In particular, if Ω 6= Rm,
the graph may oscillate fastly when approaching ∂Ω. Another examples for which σ(M) =
[0,+∞) but no reasonable control on the curvature is available are described in (7.1), and
are a consequence of a simple but flexible criterion, called the ball property, which we now
describe. We begin with the following

Definition 6.11. A Riemannian manifold M has the ball property if there exists R > 0
and a collection of disjoint balls {BMR (xj)}+∞j=1 of radius R centered at xj such that for

some constants C > 0, δ ∈ (0, 1), possibly depending on R,

(116) Vol
(
BMδR(xj)

)
≥ C−1Vol

(
BMR (xj)

)
∀ j ∈ N.

Observe that (116) is not a doubling condition since it needs to hold only along the
sequence {xj} and the constant C may depend on R. The importance of the ball property
is that its validity implies that the essential spectrum is nonempty.

9The volume condition was absent in the original formulation of the conjecture in [32], but was pointed

out to us by the authors themselves after they discovered J. Lott’s paper.
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Theorem 6.12 (Bessa-Jorge-Mari-[17]). If a Riemannian manifold has the ball property
(with parameters R, δ, C), then

(117) inf σess(−∆) ≤ C

R2(1− δ)2
·

The well-known Bishop-Gromov volume comparison theorem, see [27], [75], [115], shows
that any complete non-compact Riemannian m-manifold M with Ricci curvature bounded
from below has the ball property, therefore it has non-empty essential spectrum. This
was known to H. Donnelly, that proved sharp results in the class of manifolds with Ricci
curvature bounded below. Donnelly showed that the essential spectrum of a complete
non-compact Riemannian m-manifold M with Ricci curvature RicM ≥ −(m− 1)c2 > −∞
intersects the interval [0, (m− 1)2c2/4], [52, Thm. 3.1]. However, there exist examples of
complete non-compact Riemannian manifolds with the ball property and inf Ric = −∞.
For instance, the examples of Jorge-Xavier of minimal surfaces between two parallel planes
that have Ricci curvature satisfying inf Ric = −∞, see [20], [120] and some of them have
the ball property and therefore have non-empty essential spectrum. H. Rosenberg and E.
Toubiana, in [121], constructed a complete minimal annulus between two parallel planes
of R3 such that the immersion is proper in the slab. The Jorge, Xavier’s and Rosenberg,
Toubiana’s examples are constructed with a flexible method depending on a chosen set of
parameters and we will show that, depending on this choice of parameters, the spectrum
of the complete minimal surfaces immersed in the slab can be the half-line [0,∞).

Other examples of manifolds with the ball property are, for instance, the non-proper
submanifolds with locally bounded geometry. An isometric immersion ϕ : M → N is said
to have locally bounded geometry if for each compact set W ⊂ N there is a constant
Λ = Λ(W ) such that

‖αϕ‖L∞(ϕ−1(W )) ≤ Λ.

Here αϕ is the second fundamental form of the immersion ϕ.
To complete this section about the ball property we will prove the following result about

the spectrum of non-proper submanifolds with locally bounded geometry.

Theorem 6.13 (Bessa-Jorge-Mari-[17]). Let ϕ : M → N be an isometric immersion with
locally bounded geometry of an open Riemannian m-manifold M into a complete Riemann-
ian n-manifold N . If the immersion is non-proper, then M has the ball property. Thus,
it has non empty essential spectrum.

6.2. Proof of Theorem 6.12. In this section we show that the ball property, introduced
in Definition 6.11, implies the existence of elements in the essential spectrum of −∆. Let
M be a Riemannian manifold with the ball property, this is, there exists R > 0 and a
collection of disjoint balls {BMR (xj)}∞j=1 such that for some constants C > 0 and δ ∈ (0, 1)
the inequalities

vol(BMδR(xj)) ≥ C−1vol(BMR (xj)), j = 1, 2, . . .

hold. For each j, define the compactly supported, Lipschitz function φj(x) = ζ(ρj(x)),
where ρj(x) = dist(x, xj) and

(118) ζ(t) =


1, if t ≤ δR.

R− t
R(1− δ)

, if t ∈ [δR,R] .

0, if t ≥ R.
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Observe that |ζ ′| ≤ 1

R(1− δ)
· By the ball property (116),

Iλ(φj , φj) =

∫
BMR (xj)

|∇φj |2 − λ
∫
BMR (xj)

φ2
j

≤ Vol(BMR (xj))

R2(1− δ)2
− λvol

(
BMδR(xj)

)
(119)

≤ Vol(BMR (xj))

(
1

R2(1− δ)2
− λC−1

)
< 0,

provided that λ > C/(R2(1− δ)2).
Since {φj} span an infinite-dimensional subspace of the domain of −∆, the Friedrichs

extension of the operator −(∆ + λ) has infinite index, or equivalently, −∆ has infinite
eigenvalues below λ, for each λ > C/(R(1−δ))2. By the Min-Max Theorem, see [52, Prop.
2.1 & 2.2 ], [116, Section 3], the inequality inf σess(−∆) ≤ C/(R(1− δ))2 follows.

Remark 6.14. In virtue of the well known Bishop-Gromov volume comparison theo-
rem, [27], [75], [115], all Riemannian n-manifolds M with Ricci curvature bounded below
RicM ≥ −(n − 1)k2 has the ball property. In fact, if we denote by Volκ(r) the volume
of a geodesic ball of radius r in the hyperbolic space Hnκ of constant sectional curvature
κ. By the Bishop-Gromov volume comparison theorem, the ratio Vol(Br(xj))/Volκ(r) is
non-increasing on [0, R]. Hence, for each δ > 0

Vol
(
BMδR(xj)

)
≥ Volκ(δR)

Volκ(R)
Vol
(
BMR (xj)

)
= C(δ,R)−1Vol

(
BMR (xj)

)
.

7. Jorge-Xavier & Rosenberg-Toubiana minimal surfaces

We will need to give a brief description of the complete minimal surfaces between two
parallel planes, constructed by Jorge-Xavier in [84]. They constructed complete minimal
immersions of the disk ϕ : D → R3 with R3, ϕ(M) ⊂ {(x, y, z) ∈ R3 : |z| < 1}. Let
{Dn ⊂ D} be a sequence of closed disks centered at the origin such that Dn ⊂ int(Dn+1),
∪Dn = D. Let Kn ⊂ Dn be a compact set so that Kn∩Dn−1 = ∅ and Dn\Kn is connected
as in the figure 1. below.

Fig. 1. The compact sets Kn.

By Runge’s Theorem, [80, p. 96], there exists a holomorphic function h : D→ C such that
|h− cn| < 1 on Kn, for each n. Letting g = eh and f = e−h and setting

φ = (f(1− g2)/2, i · f(1 + g2)/2, fg),

by the Weierstrass representation, one has that ϕ = Re
∫
φ : D → R3 is a minimal surface

with bounded third coordinate. Let rn denote the Euclidean distance between the inner
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and the outer circle of Kn and for each n choose a constant cn such that

(120)

+∞∑
n even

rne
cn−1 = +∞,

+∞∑
n odd

rne
cn−1 = +∞.

Condition (120) implies that this minimal surface is complete.
The induced metric ds2 by this minimal immersion is conformal to the Euclidean metric

|dz|2 given by ds2 = λ2|dz|2, where

(121) λ(z) =
1

2

(
|eh(z)|+ |e−h(z)|

)
.

The choice of the compact subsets Kn ⊂ Dn with width rn and the set of constants cn
satisfying (120) and yielding a complete minimal surface of R3 between two parallel planes
is what we are calling a choice of parameters, ({(rn, cn)}), in Jorge-Xavier’s construction.
We should give a brief description of Rosenberg-Toubiana construction of a complete
minimal annulus properly immersed into a slab of R3, see details in [121]. They start
considering a labyrinth in the annulus

A(1/c, c) = {z ∈ C : 1/c < |z| < c}, c > 1

composed by compact sets Kn contained in the annulus A(1, c) and compact sets Ln =
{1/z : −z ∈ Kn} contained in the annulus A(1/c, 1) as in the figure 2. below. The compact
sets Ln are converging to the boundary |z| = 1/c and the compact sets Kn are converging
to the boundary |z| = c.

They needed two non-vanishing holomorphic functions f, g : A(1/c, c) → C, in order
to construct a minimal surface via Weierstrass representation formula, so that the result-
ing minimal surface is geodesically complete and properly immersed into a slab. They
construct f and g satisfying f(z) · g(z) = 1/z where |g(z) − e2cn | < 1 on Kn and
|g(z)− e−2cn | < 1 on Ln, where {cn} is a sequence of positive numbers such that

∞∑
n

rne
2cn =∞,

∞∑
n

sne
2cn =∞

and rn and sn are the width of Kn and Ln respectively. The induced metric by the
immersion on the annulus A(1/c, c) is ds2 = λ2|dz|2 where

λ =
1

2|z|

(
1

|g(z)|
+ |g(z)|

)
.

On Kn we have

(122) e2cn ≥
(

1 +
e2cn

2

)
≥ λ ≥ 1

2|c|
(
e2cn − 1

)
The choice of parameters {(rn, cn)} in Jorge-Xavier’s construction or {(rn, sn, cn)} in
Rosenberg-Toubiana’s construction gives information about the essential spectrum of the
resulting surfaces. In the next result, set λn := supz∈Kn λ(z).

Theorem 7.1 (Bessa-Jorge-Mari-[17]). Let ϕ : Ω→ R3 be either Jorge-Xavier’s or Rosenberg-
Toubiana’s10 complete minimal surface immersed into the slab with defining parameters
{(rn, cn)} or {(rn, sn, cn)}. If lim supλnrn = ∞, then σess(−∆) = [0,∞). And if
lim supλnrn > 0, then ϕ(D) or ϕ(A(1/c, c)) has the ball property, therefore σess(−∆) 6= ∅.

At points z ∈ Kn we have e1+cn ≥ λ(z) ≥ 1
2e
cn−1, therefore

ecn+1 ≥ λn ≥ ecn/2e.

10Whether Ω = D or Ω = A(1/c, c)).
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If cn = − log(r2
n) we have that the parameters {(rn, cn)} satisfies (120) and λnrn =

1/(2ern). Thus lim supλnrn =∞ yielding a complete minimal surface between two parallel
planes with spectrum σ(−∆) = [0,∞). In the original construction in [84], Jorge-Xavier
choose cn = − log rn that yields e ≥ rnλn ≥ 1/2e and the resulting minimal surfaces has
nonempty essential spectrum.

7.1. Application of the ball property to minimal surfaces in the slab. In this
section we will show that, for a suitable choice of their defining parameters, the Jorge-
Xavier and Rosenberg-Toubiana complete minimal surfaces immersed into slabs of R3

have the ball property. Denoting by ϕ : D → {(x1, x2, x3) : |x3| < 1} and ϕ : A(1/c/c) →
{(x1, x2, x3 : 1/c < x3 < c} with parameters {(rn, cn)}, {(rn, sn, cn)} respectively, the
examples of Jorge-Xavier and Rosenberg-Toubiana, we shall show that with the choice
cn = − log(r2

n), we have that 0 = inf σess(−∆) in both surfaces. The induced metric
ds2 in Jorge-Xavier minimal immersion is conformal to the Euclidean metric |dz|2. More
precisely, ds2 = λ2|dz|2, where

λ =
1

2

(
|eh|+ |e−h|

)
.

At points of Kn,

e1+cn ≥ λ ≥ 1

2
ecn−1,

thus,

e2+2cn |dz|2 ≥ ds2 = λ2|dz|2 ≥ 1

4
e2cn−2|dz|2.

Choosing cn = − log(r2
n) and letting In be the segment of the real axis that crosses Kn

one has that the length `(In) of this segment in the metric ds2 has the following lower and
upper bound

e2

r4
n

≥ `(In) ≥ rnecn−1 ≥ e−1

rn
.

Let pn be the center of the In and denote by Bds2

R (pn) and B
|dz|2
R (pn) the geodesic balls

of radius R and center pn with respect to the metric ds2 and the metric |dz|2 respectively.

Giving R > 0, there exists n
R

such that for all n ≥ n
R

the geodesic ball Bds2

R (pn) ⊂ Kn

for all n ≥ nR. Indeed, since rn → 0 as n → ∞, just choose n
R

be such that rn
R
≤ e−1

3R .
Moreover, these inclusions

B
|dz|2
R/(e1+cn )(pn) ⊂ Bds2

R (pn) ⊂ B|dz|
2

2R/(ecn−1)(pn)

holds. Therefore, for δ ∈ (0, 1), we have

volds2(Bds2

δR (pn)) ≥ volds2(B
|dz|2
δR/(e1+cn )(pn))

≥ 1

4
e2cn−2vol|dz|2(B

|dz|2
δR/(e1+cn )(pn))(123)

=
1

4e4
vol|dz|2(B

|dz|2
δR (pn)),

and

volds2(Bds2

R (pn)) ≤ volds2(B
|dz|2
2R/(ecn−1)(pn))

≤ e2cn+2vol|dz|2(B
|dz|2
2R/(ecn−1)(pn))(124)

= 4e4vol|dz|2(B
|dz|2
R (pn)).
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From (123) and (124) we have

(125) volds2(Bds2

δR (pn)) ≥ δ2

e10
· volds2(Bds2

R (pn)).

This shows that Jorge-Xavier minimal surfaces with those choices of cn above has the ball
property, (along the sequence pn, for n ≥ nR), with parameters R, δ and C = e10/δ2. By
Theorem 6.12,

inf σess(−∆) ≤ C

R2(1− δ)2
·

Letting R→∞, we conclude that 0 ∈ σess(−∆).
Likewise, the induced metric in the Rosenberg-Toubiana’s complete minimal annulus

properly immersed into a slab of R3 is λ2|dz|2, where λ =
1

2|z|

(
1

|g(z)|
+ |g(z)|

)
. On Kn

we have

e2cn ≥
(

1 +
e2cn

2

)
≥ λ ≥ 1

2|c|
(
e2cn − 1

)
.

Letting In be the segment of the real axis crossing Kn and pn the middle point of In
we have that the geodesic ball (in the metric ds2) with radius R > 0 and center pn is
contained in Kn, for sufficiently large n,

Bds2

R (pn) ⊂ Kn.

Moreover,

B
|dz|2

1
e2cn

R
(pn) ⊂ Bds2

R (pn) ⊂ B|dz|
2

2|c|
e2cn−1

R
(pn).

Thus

volds2(Bds2

δR (pn)) ≥ volds2(B
|dz|2

1
e2cn

δR
(pn)) ≥ (e2cn − 1)2

4|c|2e4cn
vol|dz|2(B

|dz|2
δR (pn))

and

volds2(Bds2

R (pn)) ≤ volds2(B
|dz|2

2|c|
e2cn−1

R
(pn)) ≤ 4|c|2e4cn

(e2cn − 1)2
vol|dz|2(B

|dz|2
R (pn)).

Therefore, for n so that 1− rn ≥ 2/3 we have

volds2(Bds2

δR (pn)) ≥ δ2

81|c|4
volds2(Bds2

R (pn)).

This shows that Rosenberg-Toubiana minimal surfaces with those choices of cn have the
ball property, (along the sequence pn), with parameters R, δ and C = 81|c|4/δ2. By
Theorem 6.12,

inf σess(−∆) ≤ C

R2(1− δ)2
·

Again, letting R→∞, we conclude that 0 ∈ σess(−∆). This finishes the proof.

We conclude this section calling the attention to an example of a bounded minimal
surface ϕ : M → R3 with dimH(ϕ(M)) = 3, which is not a covering and σess(−∆) 6= ∅.
P. Andrade [7], constructed a complete minimal immersion ϕ : C → R3 with bounded

curvature with the property that ϕ(C) was an unbounded subset of the Euclidean space

R3 with vol3(ϕ(C)) = ∞. In other words, he constructed a dense complete minimal
surface with bounded curvature thus, with the ball property. However, the restriction
of the parametrization of Andrade’s surface to a strip U = {z ∈ C: |Re z| < 1}, yields
a bounded, simply-connected minimal immersion with the ball property and dense in a
bounded subset of R3. To give more details, we will keep Andrade’s notation, thus, here
and only here, H will be a holomorphic function.
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Example 7.2. Choose r1, r2 > 0 such that r1/r2 is irrational and r1/r2 < 1, and set

d = r2 − r1. Define the map χ : C → R3 = C × R, χ(z) = (L(z) − H(z), h(z)), for the
following choice of holomorphic functions L,H and harmonic function h,

L(z) = (r1 − r2)ez, H(z) = −de

(
r1
r2
−1
)
z
, and

h(z) = 4
(

d
r2

)1/2 ∣∣∣ r2r1 ∣∣∣ |r2 − r1|<
(
ie

r1
2r2

z
)
,

where < means the real part. Then, a straightforward computation gives that

|L′(z)|+ |H ′(z)| > 0, L′H ′ =

(
∂h

∂z

)2

on C,

the necessary and sufficient conditions on χ to be a conformal minimal immersion of C
in R3. Restricting χ to the region U = {u + iv : |u| < 1}, we get a bounded, simply
connected minimal immersion ϕ = χ|U . For each fixed u ∈ (−1, 1), ϕ(u + iv) is a dense

immersed trochoid in the cylinder Γu =
[
Bs1(u)\Bs2(u)

]
× (−l(u), l(u)), where s1, s2, l are

explicit functions of u depending on r1 and r2. Therefore, limϕ is dense in the open
subset

⋃
u∈(−1,1) Γu of R3, which gives dimH(limϕ) = 3. Moreover, the induced metric

ds2 satisfies

(126)

ds2 = (|L′|+ |H ′|)2 |dz|2

=

(
|r2 − r1|eu + de

(
r1
r2
−1
)
u
)2

|dz|2

≥ 4(r2 − r1)2|dz|2.

Considering zk = 2ik ∈ U , each of the unit balls B
|dz|2
1 (zk) ⊆ U in the metric |dz|2

contains a ball BR(zk) in the metric ds2 of radius at least R = 2|r2 − r1|. Since the
sectional curvature of χ satisfies

K = −c1
(
e

(
1− r1

4r2

)
u

+ c2e

(
3r1
4r2
−1
)
u
)−4

,

for some positive constants c1, c2, and 1 − r1
4r2

and 3r1
4r2
− 1 have opposite signs, then χ

has globally bounded curvature. In particular, {BR(zk)} is a collection of disjoint balls in
(U,ds2) with uniformly bounded sectional curvature, therefore, σess(−∆) 6= ∅ on (U,ds2),
by Theorem 6.12 and Remark 6.14.

7.2. Proof of Theorem 6.13. Consider a non-proper isometric immersion ϕ : M →
N with locally bounded geometry of a complete Riemannian manifold into a complete
Riemannian manifold N . We are going to show that there exists a sequence {xj} ⊂ M a
radius R, a constant C > 0 and δ ∈ (0, 1) such that

volM (BMδR(xj)) ≥ C−1volM (BMR (xj)).

In other words, M has the ball property. Let y0 ∈ limϕ and let W ⊂ N be a compact
subset with y0 ∈ int(W ). Let Λ0 = Λ0(W ) be such that ‖αϕ‖L∞(ϕ−1(W )) ≤ Λ0. The
Gauss equation and the upper bound supW |KN | <∞ of the sectional curvatures of N on
W gives a positive number b0 > 0 such that

sup
x∈ϕ−1(W )

|KM (x)| ≤ 2Λ2
0 + sup

W
|KN | ≤ b0,

where KM are the sectional curvatures of M . Therefore, each connected component U ⊂
ϕ−1(W ) has sectional curvatures uniformly bounded |KU | ≤ b0. Set

(127) 2r0 = min{iW , (2Λ0)−1, b
−1/2
0 · cot−1(1/(2

√
b0)),distN (y0, N \W )},
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where i
W

= inf{injN (x), x ∈W}. Let B0 = BNr0(y0) be the closure of the geodesic ball of N
with radius r0 and center y0. There exists a sequence of points qj ∈M , qj →∞ in M such
that ϕ(qj)→ y0 in N . Passing to a subsequence if necessary, we may assume that qj ∈ B0

and qj 6= qj′ if j 6= j′. Define ρy0
: N → R by ρy0

(z) = distN (y0, z)
2/2, z ∈ N. Since

r0 < injN (y0), the function z → ρy0(z) ∈ C2 if ρy0(z) ≤ r0. If we let db0(x) = distN(b0)(0, x)
be the distance to a origin 0 in a simply connected n-space form Nn(b0) of constant sectional
curvature b0 then by the hessian comparison theorem we obtain

Hessρy0
(z)(Y, Y ) ≥ Hess

1

2
db0(p0, p)

2(Y ′, Y ′)

≥
√
b0 cot(

√
b0 r0)|Y ′|2(128)

≥ 1

2
|Y |2,

where dN (y0, z) = db0(p0, p) ≤ r0, |Y | = |Y ′|, Y ⊥ ∇ρy and Y ′ ⊥ ∇db0 . We need part of
the following result that might have interest in its own.

Lemma 7.3. Let r ≤ r0/8. Then

i. For each x ∈ ϕ−1(B0) we have injM (x) > r0.

ii. Let Uj be a connected component of ϕ−1(BN4r(y0)) containing qj, then

distN (ϕ(z1), ϕ(z2)) ≤ distM (z1, z2) ≤ 2distN (ϕ(z1), ϕ(z2)), ∀ z1, z2 ∈ U.

Thus the map ϕ|Uj : Uj → N is an embedding.

iii. Take xj ∈ Uj such that distN (y0, ϕ(xj)) = distN (y0, ϕ(Uj)). If j is large enough
then BM3r (xj) ⊂ Uj ⊂ BM10r(xj).

Proof. Let x ∈ ϕ−1(B0). Suppose that distM (x, cutM (x)) < r0. Let z ∈ cutM (x) such
that distM (x, z) = distM (x, cutM (x)). By (127), z is not conjugated to x, thus, there are
two distinct minimal geodesics γ1 and γ2 joining x to z, making a geodesic loop γ = γ1∪γ2

based at x, [37, Lemma 5.6]. Since r0 > distM (x, z) ≥ distN (ϕ(x), ϕ(z)), the closed curve
ϕ(γ) is the region in N where ρy0 is C2. The function h(s) = ρy0(ϕ(γ(t))) has a maximum
at s = injM (x), however

h′′(s) = ∇dρy0
(dϕγ′,dϕγ′) + 〈∇ρy0

, α(γ′, γ′)〉
≥ 1/2− r0Λ0(129)

≥ 1/4, 0 ≤ s ≤ 2injM (x).

This contradiction proves item (i). To prove (ii), let Uj ⊂ ϕ−1(BN4r(y0)) be a connected
component containing qj . Let z1, z2 ∈ Uj and y1 = ϕ(z1) and y2 = ϕ(z2). Let γ(s),
s ∈ [0,distM (z1, z2)] be a minimal geodesic in M joining z1 to z2. We may assume without
loss of generality that distN (y0, y1) ≤ distN (y0, y2). Observe that we have ρy0

(ϕ(γ(s))) ≤
ρy0(y2) for all s. Otherwise, s 7→ ρy0(ϕ(γ(s))) has a maximum at some interior point
s0 ∈ (0,distM (z1, z2)) and distN (y0, ϕι(γ(s0))) < r0. Taking the second derivative at this
point of maximum and we get a contradiction, as above, and that proves our assertion.
Moreover, s 7→ ρy1

(ϕ(γ(s))) is of class at least C2. It is clear that (ρy1
(ϕι(γ(s))))

′′ ≥ 1/4
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for all s ∈ [0, t = distM (z1, z2)]. Then

dist2
N (y1, y2)

2
= ρy1(ϕ(γ(t)))

= ρy1
(ϕ(γ(0))) + tρy1

(ϕ(γ(s)))′|s=0

+

∫ 1

0

(1− s) (ρy1
(ϕ(γ(st))))

′′
ds

≥ t2

4

∫ 1

0

(1− s)ds

=
t2

8
·

It follows that distM (z1, z2) ≤ 2distN (ϕ(z1), ϕ(z2)). To prove item iii. pick xj ∈ Uj
such that distN (y0, ϕ(xj)) = distN (y0, ϕ(Uj)). We may choose j large enough so that
distN (y0, ϕ(xj)) < r. Let x ∈ BM3r (xj). Then

distN (ϕ(x), y0) ≤ distN (ϕ(x), ϕ(xj)) + distN (ϕ(xj), y)

< distM (x, xj) + r

≤ 4r.

On the other hand, let x ∈ U then we have distM (xj , x) ≤ 2distN (ϕ(xj), ϕ(x)) and
2distN (ϕ(xj), ϕ(x)) ≤ 2 [distN (ϕ(xj), y0) + distN (y0, ϕ(x))] ≤ 10r.

By the Lemma 7.3, there exists a sequence xj ∈M such that

BM3r (xj) ⊂ Uj ⊂ BM10r(xj), ∀j.

Observe that distN (qj , y0) ≥ distN (ϕ(xj), y0)→ 0 as j →∞ and then y0 ∈ limϕ. There-
fore passing to a subsequence we have that xj 6= xj+k for all k ≥ 1. Recall that the
sectional curvatures of Uj are bounded below KUj ≥ −b0. Let Nm(−b0) the simply con-
nected space form of constant sectional curvature −b0. Choose any δ ∈ (0, 1). By the
Bishop-Gromov volume comparison theorem we have

Vol
(
BMδ3r(xj)

)
≥

Vol
(
B

Nm(−b0)
δ3r

)
Vol
(
B

Nm(−b0)
3r

)Vol
(
BM3r (xj)

)
= C(b0,m, δ, 3r)

−1Vol
(
BM3r (xj)

)
.

This shows that M has the ball property with respect to the parameters {xj}, R = 3r,

C−1 = Vol
(
B

Nm(−b0)
δ3r

)
/Vol

(
B

Nm(−b0)
3r

)
and any δ ∈ (0, 1). Since 3r ∈ (0, 3r0/8) and

δ ∈ (0, 1) we have by Theorem 6.12 (taking δ = 1/2) that

inf σess(−∆) ≤ 256

9r2
0

·
Vol
(
B

Nm(−b0)
3r

)
Vol
(
B

Nm(−b0)
δ3r/2

) ·
�

7.3. Proof of Theorem 7.1. To prove Theorem 7.1 we will apply the following propo-
sition derived from the Spectral Theorem, see details in [52, Prop.2], [67, pp. 13-15]. Let
M be a Riemannian manifold.

Proposition 7.4. A necessary and sufficient condition for (η − ε, η + ε) ∩ σess(−∆) 6= ∅
is that there exists an infinite dimensional subspace Gε ⊂ D(−∆) of the domain of −∆,
for which ‖(∆ + ηI)ψ‖L2(M) < ε‖ψ‖L2(M), ψ ∈ Gε.
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To show that η ≥ 0 belongs to σess(−∆) we need to take a sequence υn → 0 as n→∞
and a sequence of functions ψn ∈ C∞0 (M) satisfying ‖(∆ + ηI)ψn‖L2(M) < υn‖ψn‖L2(M)

with suppψn ∩ suppψn′ = ∅ if n 6= n′.
Consider a sequence of compact subsets Kn ⊂ Dn with Euclidean width rn → 0 as

n → ∞ and the set of constants cn satisfying (120) in Jorge-Xavier’s or Rosenberg-
Toubiana’s construction. The induced metric on the minimal surface is conformal to the
Euclidean metric |dz|2 on the disk D, this is ds2 = λ2|dz|2. Set λn = supKn λ(z) and
ζn = λn/(infKn λ(z)) so that λn/ζn ≤ λ ≤ λn in Kn. Let In be the segment of the real
axis that crosses Kn. The length `ds2(In) of In in the metric ds2 has the following lower
and upper bound

λnrn
ζn
≤ `ds2(In) ≤ λnrn.

Let pn be the center of the In and denote by Bds2

t (pn) and B
|dz|2
t (pn) the geodesic balls of

radius t and center pn with respect to the metrics ds2 and |dz|2 respectively. Denote by

∆|dz|
2

and by dx, respectively the Laplace operator and the Lebesgue measure of R2 with

respect to the metric |dz|2 and denote by ∆ds2 and by λ2dx the Laplace operator and the

Riemannian measure on M with respect to the metric ds2. The Laplace operators ∆|dz|
2

and ∆ds2 are related, on D, by ∆ds2 = 1
λ2 ∆|dz|

2

. Given η > 0 and f ∈ C∞0 (B
|dz|2
rn (pn)) be

a smooth function with compact support in B
|dz|2
rn (pn) ⊂ Kn to be chosen later. We have

that

‖∆ds2f + ηf‖2L2(M) =

∫
B
|dz|2
rn (pn)

(
1

λ2
∆|dz|

2

f + ηf

)2

λ2dx

=

∫
B
|dz|2
rn (pn)

1

λ2
(∆|dz|

2

f)2dx+ η2

∫
B
|dz|2
rn (pn)

f2λ2dx

+ 2η

∫
B
|dz|2
rn (pn)

f∆|dz|
2

fdx

≤
∫
B
|dz|2
rn (pn)

ε2n
λ2
n

(
∆|dz|

2

f
)2

dx

+ η2ζ2
n

∫
B
|dz|2
rn (pn)

f2λ2
ndx(130)

+2ηζ2
n

∫
B
|dz|2
rn (pn)

f∆|dz|
2

fdx

+ 2η(ζ2
n − 1)

∫
B
|dz|2
rn (pn)

|∇|dz|
2

f |2dx

= ζ2
n

∫
B
|dz|2
rn (pn)

(
1

λ2
n

∆|dz|
2

f + ηf

)2

λ2
ndx

+ 2η(ζ2
n − 1)

∫
B
|dz|2
rn (pn)

|∇|dz|
2

f |2dx.

Let us consider the ball B
|dz|2
λnrn

(pn) = pn + B
|dz|2
λnrn

(0) ⊂ R2 of radius λnrn and center

pn and the map ξ : B
|dz|2
λnrn

(pn) → B
|dz|2
rn (pn) given by ξ(pn + x) = pn + x/λn and define

h : B
|dz|2
λnrn

(pn)→ R by h = f ◦ ξ. We have that ∆|dz|
2

h = ∆|dz|
2

f(ξ)/λ2
n and the Jacobian

J(ξ)(x) = 1/λ2
n. Making the change of variables x = ξ(y) we have that

•
∫
B
|dz|2
rn (pn)

(
1
λ2
n

∆|dz|
2

f + ηf
)2

λ2
ndx =

∫
B
|dz|2
λnrn

(pn)

(
∆|dz|

2

h+ ηh
)2

dx.
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•
∫
B
|dz|2
rn (pn)

|∇|dz|2f |2dx =
∫
B
|dz|2
λnrn

(pn)
|∇|dz|2h|2dx.

Thus from (130) and the change of variable above we have the following inequality

(131)

‖∆ds2f + ηf‖L2(M) ≤ ζn‖∆|dz|
2

h+ ηh‖
L2(B

|dz|2
λnrn

(pn))

+
√

2η(ζ2
n − 1)‖∇|dz|2h‖

L2(B
|dz|2
λnrn

(pn))
,

where f : B
|dz|2
rn (pn) ⊂ Kn → R, h = f ◦ ξ : B

|dz|2
λnrn

(pn) → R defined by h(pn + x) =

f(pn+x/λn). Observe that f = h◦ ξ−1 : B
|dz|2
rn (pn)→ R so that f(pn+x) = h(pn+λnx),

x ∈ B|dz|
2

rn (0).

Therefore, given h ∈ C∞0 (B
|dz|2
λnrn

(pn)) we obtain f ∈ C∞0 (B
|dz|2
rn (pn)) and vice-versa,

satisfying inequality (131).

Since σ(−∆|dz|
2

) = σess(−∆|dz|
2

) = [0,∞), given a positive number η > 0 we have

that η ∈ σess(−∆|dz|
2

) . Therefore for each δ > 0 there exists, (by Proposition 7.4),
h ∈ C∞0 (R2) such that

(132) ‖∆|dz|
2

h+ ηh‖L2(R2) < δ‖h‖L2(R2).

Suppose that lim supn→∞ rnλn = ∞. Then there exists n0 such that for all n ≥ n0 the

ball B
|dz|2
λnrn

(pn) contains the support of h since for large n we have 1 ≤ en < 2 and the

length `ds2(In) ≥ λnrn/ζn →∞. For this function h ∈ C∞0 (B
|dz|2
λnrn

(pn)) we have

•
∫
B
|dz|2
λnrn

(pn)

|∇|dz|
2

h|2dx ≤ µ1(n)

∫
B
|dz|2
λnrn

(pn)

h2dy, where µ1(n) is the first Dirichlet

eigenvalue of the ball B
|dz|2
λnrn

(pn).

• Letting f(pn + x) = h(pn + λnx) ∈ C∞0 (B
|dz|2
rn (pn)) we have∫

B
|dz|2
λnrn

(pn)

h2dy =

∫
B
|dz|2
rn (pn)

λ2
nf

2dx

≤ 4

∫
B
|dz|2
rn (pn)

f2λ2dx(133)

= 4‖f‖2L2(M),

since λn ≤ 2λ.
• Putting together these information we have∫

B
|dz|2
λnrn

(pn)

|∇|dz|
2

h|2dx ≤ 4‖f‖2L2(M).

From inequality (131) we have then

‖∆ds2f + ηf‖L2(M) ≤
(

2ζnδ + 2
√

2η(ζ2
n − 1)µ1(n)

)
‖f‖L2(M).

We are ready to conclude that each η > 0 belongs to σess(−∆ds2). Consider a sequence
of positive numbers υi → 0. For each i, choose n such that 2

√
2η(ε2ni − 1)µ1(ni) < υi/2.

This n exists since µ1(n) = λ1(B
|dz|2
λnrn

(pn)) = c/(λnrn)2 → 0 and εn → 1 as n→∞. Take

δ < υi/4 and choose hi ∈ C∞0 (R2) such that (131) holds and choosing ni large enough so

that supphi ⊂ B|dz|
2

λnirni
(pn). Then the function fi associated to hi satisfies

‖∆ds2fi + ηfi‖L2(M) < υi‖fi‖L2(M).
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It is clear that we can choose the family hi with support in different balls. All that shows

that η ∈ σess(−∆ds2). To finish the proof of Theorems 7.1 we need to address the case
that lim sup rnλn > 0. Observe that in Kn we have that

λn
ζn
≤ λ ≤ λn.

This implies that, in Kn, (
λn
ζn

)2

|dz|2 ≤ ds2 ≤ λ2
n|dz|2.

From this point on, is easy to see that (D,ds2) or (A(1/c, c),ds2) has the ball property,
see details in the application the subsection 7.1. Thus σess(ds

2) 6= ∅. This finishes the
proof of Theorem 7.1.

7.4. Immersed submanifolds, II: density and spectrum. Hereafter, we will consider
proper (hence, complete), minimal immersions ϕ : Mm → Nnκ in a space form Nnκ of
curvature −κ ≤ 0. Our main concern is to describe a characterization of the whole σ(M),
due to [91], which is free from curvature or topological conditions on M . It is known by [41]
and [22], see Theorem 2.32, that for a minimal immersion ϕ : Mm → Nnκ the fundamental
tone λ∗(M) = inf σ(M) is at least that of Nmκ , i.e.,

(134) inf σ(M) ≥ (m− 1)2κ

4
.

Moreover, as a corollary of [88] and [18], [16], if the second fundamental form II satisfies
the decay estimate

(135)

lim
ρ(x)→+∞

ρ(x)|II(x)| = 0 if κ = 0

lim
ρ(x)→+∞

|II(x)| = 0 if κ > 0

(ρ(x) being the intrinsic distance with respect to some fixed origin o ∈ M), then M has
the same spectrum that a totally geodesic submanifold Mm

κ ⊂ Nnκ, that is,

(136) σ(M) =

[
(m− 1)2κ

4
,+∞

)
.

According to [5], [108], (135) is ensured when M has finite total curvature, that is, when

(137)

∫
M

|II|m < +∞.

Remark 7.5. A characterization of the essential spectrum, similar to (136), also holds
for submanifolds of the hyperbolic space Hnκ with constant (normalized) mean curvature
H <

√
κ. There, condition (137) is replaced by the finiteness of the Lm-norm of the

traceless second fundamental form. For deepening, see [31].

Since condition (135) is a binding requirement, needing a pointwise control of the second
fundamental form, the search for more manageable conditions lead the authors of [91] to
investigate the growth of the density function

(138) Θ(r)
.
=

vol(M ∩Br)
Vκ(r)

,

where Br indicates a geodesic ball of radius r in Nnκ centered at some fixed ō ∈ Nnκ, and
Vκ(r) is the volume of a geodesic ball of radius r in Nmκ . By classical result (see [129, 6]),
Θ(r) is monotone increasing, and we will say that M has finite density if

Θ(+∞)
.
= lim
r→+∞

Θ(r) < +∞.
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In the ambient space Rn, it is known by Chern-Osserman’s inequalities that (137) imply
the finiteness of Θ(+∞) ([45, 46, 5]). By [91], the same is true in the hyperbolic space Hnκ,
although the Chern-Osserman’s inequality was known just for surfaces in Hnκ, see [35, 36].

The main result in [91] characterizes σ(M) when the density of M grows subexponen-
tially (respectively, sub-polynomially) along a sequence. Condition (139) below is very
much in the spirit of a classical growth requirement due to R. Brooks [29] and Y. Higuchi
[79] to bound from above the infimum of the essential spectrum of −∆. We feel remarkable
that just a volume growth condition along a sequence can characterize the whole spectrum.
For this to hold, minimality enters in a crucial and subtle way via (an improved version
of) the monotonicity formula. Note that, by standard estimates, (139) below is weaker
than (135).

Theorem 7.6. [Lima-Mari-Montenegro-Vieira [91]] Let ϕ : Mm → Nnκ be a minimal
properly immersed submanifold in a space form of curvature −κ ≤ 0. If either

(139)

Nnκ = Hnκ and lim inf
s→+∞

log Θ(s)

s
= 0, or

Nnκ = Rn and lim inf
s→+∞

log Θ(s)

log s
= 0.

then

(140) σ(M) =

[
(m− 1)2κ

4
,+∞

)
.

The above theorem is well suited for minimal submanifolds constructed via Geometric
Measure Theory since, typically, their existence is guaranteed by controlling the density
function Θ(r). As an important example, Theorem 7.6 applies to all solutions of Plateau’s
problem at infinity Mm → Hnκ constructed in [6], provided that they are smooth. Indeed,
because of their construction, Θ(+∞) < +∞ (see [6], part [A] at p. 485) and they are
proper (it can also be deduced as a consequence of Θ(+∞) < +∞, see [91]). By standard
regularity theory, smoothness of Mm is automatic if m ≤ 6.

Corollary 7.7. Let Σ ⊂ ∂∞Hnκ be a closed, integral (m − 1) current in the boundary at
infinity of Hnκ such that, for some neighbourhood U ⊂ Hnk of supp(Σ), Σ does not bound
in U , and let Mm ↪→ Hnκ be the solution of Plateau’s problem at infinity constructed in [6]
for Σ. If M is smooth, then (140) holds.

An interesting fact of Corollary 7.7 is that M is not required to be regular up to ∂∞Hnκ,
in particular it might have infinite total curvature. In this respect, we observe that if M be
C2 up to ∂∞Hnκ, then M would have finite total curvature. By deep regularity results, this
is the case if, for instance, Mm → Hm+1

κ is a smooth hypersurface that solves Plateau’s
problem for Σ, and Σ is a C2,α (for α > 0), embedded compact hypersurface of ∂∞Hm+1

κ .
See Appendix 1 in [91] for details.

We sketch the strategy of the proof of Theorem 7.6. In view of (134), it is enough to
show that each λ > (m − 1)2κ/4 lies in σ(M). To construct the sequence as in Lemma
6.1, a key step is to couple the volume growth requirement (139) with a sharpened form of
the monotonicity formula for minimal submanifolds, which improves on the classical ones
in [129, 6].

Notation
We denote with ∇,Hess ,∆ the connection, the Riemannian Hessian and the Laplace-
Beltrami operator on Mm, while quantities related to Nnκ will be marked with a bar. For
instance, ∇̄,dist,Hess will identify the connection, the distance function and the Hessian
in Nnκ. Let ρ̄(x) = dist(x, ō) be the distance function from a fixed origin ō, and let
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r = ρ̄ ◦ϕ : M → R be its restriction to M . We will indicate with Γs the extrinsic geodesic
spheres restricted to M : Γs

.
= {x ∈M ; r(x) = s}.

For κ ≥ 0, let vκ, Vκ denote the volume function, respectively, of geodesic spheres and
balls in the space form of sectional curvature −κ and dimension m, i.e.,

(141) vκ(s) = ωm−1Sκ(s)m−1, Vκ(s) =

∫ s

0

vκ(σ)dσ,

where ωm−1 is the volume of the unit sphere Sm−1. We define the flux J(s) of ∇r over
the extrinsic sphere Γs:

(142) J(s)
.
=

1

vκ(s)

∫
Γs

|∇r|.

We first observe that minimal submanifolds of space forms of non-positive curvature
enjoy the following corollary of the coarea’s formula: for each f ∈ L1({t ≤ r ≤ s}),

(143)

∫
{t≤r≤s}

f dx =

∫ s

t

[∫
Γσ

f

|∇r|

]
dσ.

This depends on a transversality lemma which follows from the fact that spheres in Nnk have
definite second fundamental form, see [91] for details. The basic lemma is the following
improvement of the monotonicity formula:

Proposition 7.8 (The monotonicity formulae). If ϕ : Mm → Nnκ is minimal, proper and
−κ ≤ 0, then J(s) coincides a.e. with a non-decreasing function, and J(s) ≥ Θ(s) a.e. on
R+. As a consequence, Θ(s) is non-decreasing.

Remark 7.9. To the best of our knowledge, the monotonicity of J(s) has first been shown,
in the Euclidean setting, in a paper by V. Tkachev [133].

Proof. Observe that J(s) coincides, for regular values of r(x), with the absolutely contin-
uous function

J̄(s) =
1

v(r)

∫
{r≤s}

∆r.

Applying (143) with f = ∆r we get

(144) vκ(s)J̄(s)
.
=

∫
{r≤s}

∆r ≡
∫ s

0

[∫
Γσ

∆r

|∇r|

]
dσ

Consider

(145) f(s) =

∫ s

0

Vκ(σ)

vκ(σ)
dσ =

∫ s

0

1

vκ(σ)

[∫ σ

0

vκ(τ)dτ

]
dσ

which is a C2 solution of

f ′′ +
v′κ
vκ
f ′ = 1 on R+, f(0) = 0, f ′(0) = 0,

and define ψ(x) = f(r(x)) ∈ C2(M). A computation usign the Hessian comparison
theorem shows that ∆ψ ≥ 1 on M . Integrating on {r ∈ [t, s]}, t, s regular values, and
using the divergence theorem we get

(146)
Vκ(s)

vκ(s)

∫
Γs

|∇r| − Vκ(t)

vκ(t)

∫
Γt

|∇r| ≥ vol
(
{t ≤ r ≤ s}

)
.

By the definition of J(s), J̄(s) and Θ(s), rearranging we get

Vκ(s)
[
J̄(s)−Θ(s)

]
≥ Vκ(t)

[
J̄(t)−Θ(t)

]
.

Since all the quantities involved are continuous, the above relation extends to all t, s ∈ R+,
which proves the monotonicity of Vκ[J̄−Θ]. Letting t→ 0 we then deduce that J̄(s) ≥ Θ(s)
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on R+, as required. Using that v(s)J(s) ≤ (V (s)Θ(s))′ for regular s, we deduce that Θ(s) is
non-decreasing. The monotonicity of J̄ is not used here, and we refer to [91] for details. �

8. Proof of Theorem 1

Let Mm → Nnκ be minimal, proper. By [41] and [22], the bottom of σ(M) satisfies

(147) inf σ(M) ≥ (m− 1)2κ

4
.

To complete the proof of the theorem, since σ(M) is closed it is sufficient to show that
each λ > (m− 1)2κ/4 lies in σ(M).

Set for convenience β
.
=
√
λ− (m− 1)2κ/4 and, for 0 ≤ t < s, let At,s denote the

extrinsic annulus

At,s
.
=
{
x ∈M : r(x) ∈ [t, s]

}
.

Define the weighted measure dµκ
.
= vκ(r)−1dx on {r ≥ 1}. Hereafter, we will always

restrict to this set. Consider

(148) ψ(s)
.
=

eiβs√
vκ(s)

, which solves ψ′′ + ψ′
v′κ
vκ

+ λψ = a(s)ψ,

where

(149) a(s)
.
=

(m− 1)2κ

4
+

1

4

(
v′κ(s)

vκ(s)

)2

− 1

2

v′′κ(s)

vκ(s)
→ 0

as s→ +∞. Fix R > 1 large such that Θ(R) > 0, and t, s, S such that

R+ 1 < t < s < S − 1,

and let η ∈ C∞c (R) be a cut-off function satisfying

0 ≤ η ≤ 1, η ≡ 0 outside of (t− 1, S), η ≡ 1 on (t, s),

|η′|+ |η′′| ≤ C0 on [t− 1, s], |η′|+ |η′′| ≤ C0

S−s on [s, S]

for some absolute constant C0 (the last relation is possible since S − s ≥ 1). The value S
will be chosen later in dependence of s. Set ut,s

.
= η(r)ψ(r) ∈ C∞c (M). Then, by (148),

∆ut,s + λut,s = (η′′ψ + 2η′ψ′ + ηψ′′)|∇r|2 + (η′ψ + ηψ′)∆r + ληψ

=

(
η′′ψ + 2η′ψ′ − v′κ

vκ
ηψ′ − ληψ + aηψ

)
(|∇r|2 − 1) + aηψ

+(η′ψ + ηψ′)

(
∆r − v′κ

vκ

)
+

(
η′′ψ + 2η′ψ′ + η′ψ

v′κ
vκ

)
.

Using that there exists an absolute constant c for which |ψ|+ |ψ′| ≤ c/√vκ, the following
inequality holds:

‖∆ut,s + λut,s‖22 ≤ C

(∫
At−1,S

[
(1− |∇r|2)2 +

(
∆r − v′κ

vκ

)2

+ a(r)2

]
dµκ

+
µκ(As,S)

(S − s)2
+ µκ(At−1,t)

)
,
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for some suitable C depending on c, C0. Since ‖ut,s‖22 ≥ µκ(At,s) and (1 − |∇r|2)2 ≤
1− |∇r|2, we obtain
(150)

‖∆ut,s + λut,s‖22
‖ut,s‖22

≤ C

(
1

µκ(At,s)

∫
At−1,S

[
1− |∇r|2 +

(
∆r − v′κ

vκ

)2

+ a(r)2

]
dµκ

+
1

(S − s)2

µκ(As,S)

µκ(At,s)
+
µκ(At−1,t)

µκ(At,s)

)
Next, by the expression of ∆r we deduce

(151)

(
∆r − v′κ

vκ

)2

+ 1− |∇r|2 + a(r)2 ≤
[
v′κ
vκ

1− |∇r|2

m− 1

]2

+1− |∇r|2 + a(r)2

≤ C
(

1− |∇r|2 + a(r)2
)

Set

F (t)
.
= sup
σ∈[t−1,+∞)

[a(σ)2],

and note that F (t)→ 0 monotonically as t→ +∞. Integrating (151) we get the existence
of C > 0 independent of s, t such that

(152)

∫
At−1,S

[(
∆r − v′κ

vκ

)2

+ 1− |∇r|2 + a(r)2

]
dµκ

≤ C

(
F (t)

∫
At−1,S

1

vκ(r)
+

∫
At−1,S

1− |∇r|2

vκ(r)

)
.

Using the coarea’s formula, for each 0 ≤ a < b

(153) µκ(Aa,b) =

∫
Aa,b

1

vκ(r)
=

∫ b

a

J
[
1 + T

]
,

∫
Aa,b

1− |∇r|2

vκ(r)
=

∫ b

a

JT,

where J is the flux in (142), and

T (s)
.
=

∫
Γs
|∇r|−1∫

Γs
|∇r|

− 1

Summarizing, in view of (152) and (153) we deduce from (150) the following inequalities:

(154)

‖∆ut,s + λut,s‖22
‖ut,s‖22

≤ C

(
1∫ s

t
J
[
1 + T

] [F (t)

∫ S

t−1

J
[
1 + T

]
+

∫ S

t−1

JT

]

+

∫ S
s
J
[
1 + T

]
(S − s)2

∫ s
t
J
[
1 + T

] +

∫ t
t−1

J
[
1 + T

]∫ s
t
J
[
1 + T

] ) .
= Q(t, s).

If we can guarantee that

(155) lim inf
t→+∞

lim inf
s→+∞

‖∆ut,s + λut,s‖22
‖ut,s‖22

= 0,

then we are able to construct a sequence of approximating eigenfunctions for λ as follows:
fix ε > 0. By (155) there exists a divergent sequence {ti} such that, for i ≥ iε,

lim inf
s→+∞

‖∆uti,s + λuti,s‖22
‖uti,s‖22

< ε/2.
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For i = iε, pick then a sequence {sj} realizing the liminf. For j ≥ jε(iε, ε)

(156) ‖∆uti,sj + λuti,sj‖22 < ε‖uti,sj‖22,

Writing uε
.
= utiε ,sjε , by (156) from the set {uε} we can extract a sequence of approximat-

ing eigenfunctions for λ, concluding the proof that λ ∈ σ(M). To show (155), by (154) it
is enough to prove that

(157) lim inf
t→+∞

lim inf
s→+∞

Q(t, s) = 0.

Suppose, by contradiction, that (157) were not true. Then, there exists a constant δ > 0
such that, for each t ≥ tδ, lim infs→+∞Q(t, s) ≥ 2δ, and thus for t ≥ tδ and s ≥ sδ(t)

(158) F (t)

∫ S

t−1

J
[
1 + T

]
+

∫ S

t−1

JT +

∫ S

s

J
[
1 + T

]
(S − s)2

+

∫ t

t−1

J
[
1 + T

]
≥ δ

∫ s

t

J
[
1 + T

]
,

and rearranging

(159) (F (t) + 1)

∫ S

t−1

J
[
1 +T

]
−
∫ S

t−1

J +

∫ S

s

J
[
1 + T

]
(S − s)2

+

∫ t

t−1

J
[
1 +T

]
≥ δ

∫ s

t

J
[
1 +T

]
.

We rewrite the above integrals in order to make Θ(s) appear. Integrating by parts and
using again the coarea’s formula,
(160)∫ b

a

J
[
1 + T

]
=

∫
Aa,b

1

vκ(r)
=

∫ b

a

1

vκ(σ)

[∫
Γσ

1

|∇r|

]
dσ =

∫ b

a

(
Vκ(σ)Θ(σ)

)′
vκ(σ)

dσ

=
Vκ(b)

vκ(b)
Θ(b)− Vκ(a)

vκ(a)
Θ(a) +

∫ b

a

Vκv
′
κ

v2
κ

Θ.

To deal with the term containing the integral of J alone in (159), we use the inequality
J(s) ≥ Θ(s) coming from the monotonicity formulae in Proposition 7.8. This passage is
crucial for us to conclude. Inserting (160) and J ≥ Θ into (159) we get

(161)

(F (t) + 1)
Vκ(S)

vκ(S)
Θ(S)− (F (t) + 1)

Vκ(t− 1)

vκ(t− 1)
Θ(t− 1) + (F (t) + 1)

∫ S

t−1

Vκv
′
κ

v2
κ

Θ

−
∫ S

t−1

Θ +
1

(S − s)2

[
Vκ(S)

vκ(S)
Θ(S)− Vκ(s)

vκ(s)
Θ(s) +

∫ S

s

Vκv
′
κ

v2
κ

Θ

]
+
Vκ(t)

vκ(t)
Θ(t)

−Vκ(t− 1)

vκ(t− 1)
Θ(t− 1) +

∫ t

t−1

Vκv
′
κ

v2
κ

Θ

≥ δ
Vκ(s)

vκ(s)
Θ(s)− δ Vκ(t)

vκ(t)
Θ(t) + δ

∫ s

t

Vκv
′
κ

v2
κ

Θ.

The idea to reach the desired contradiction is to prove that, as a consequence of (161),

(162)

∫ S

t−1

Θ

(hence, Θ(S)) must grow faster as S → +∞ than the bound in (139). To do so, we need
to simplify (161) in order to find a suitable differential inequality for (162).
We first observe that, both for κ > 0 and for κ = 0, there exists an absolute constant ĉ
such that ĉ−1 ≤ Vκv′κ/v2

κ ≤ ĉ on [1,+∞). Furthermore, by the monotonicity of Θ,

(163)

∫ S

s

Vκv
′
κ

v2
κ

Θ ≤ ĉ(S − s)Θ(S).
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Next, we deal with the two terms in the left-hand side of (161) that involve (162):

(F (t) + 1)

∫ S

t−1

Vκv
′
κ

v2
κ

Θ−
∫ S

t−1

Θ = F (t)

∫ S

t−1

Vκv
′
κ

v2
κ

Θ +

∫ S

t−1

Vκv
′
κ − v2

κ

v2
κ

Θ

≤ ĉF (t)

∫ S

t−1

Θ +

∫ S

t−1

Vκv
′
κ − v2

κ

v2
κ

Θ.

The key point is the following relation:

(164)
Vκ(s)v′κ(s)− vκ(s)2

vκ(s)2

{
= −1/m if κ = 0;

→ 0 as s→ +∞, if κ > 0.

Define

ω(t)
.
= sup

[t−1,+∞)

Vκv
′
κ − v2

κ

v2
κ

, χ(t)
.
= ĉF (t) + ω(t).

Again by the monotonicity of Θ,

(165)

(F (t) + 1)

∫ S

t−1

Vκv
′
κ

v2
κ

Θ−
∫ S

t−1

Θ ≤
[
ĉF (t) + ω(t)

] ∫ S

t−1

Θ = χ(t)

∫ S

t−1

Θ

≤ χ(t)Θ(t) + χ(t)

∫ S

t

Θ.

For simplicity, hereafter we collect all the terms independent of s in a function that we
call h(t), which may vary from line to line. Inserting (163) and (165) into (161) we infer

(166)

[(
F (t) + 1 +

1

(S − s)2

)
Vκ(S)

vκ(S)
+

ĉ

S − s

]
Θ(S) + χ(t)

∫ S

t

Θ

≥ h(t) +

(
δ +

1

(S − s)2

)
Vκ(s)

vκ(s)
Θ(s) + δĉ−1

∫ s

t

Θ.

Summing δĉ−1(S−s)Θ(S) to the two sides of the above inequality, using the monotonicity
of Θ and getting rid of the term containing Θ(s) we obtain

(167)

[(
F (t) + 1 +

1

(S − s)2

)
Vκ(S)

vκ(S)
+

ĉ

S − s
+ δĉ−1(S − s)

]
Θ(S) + χ(t)

∫ S

t

Θ

≥ h(t) + δĉ−1

∫ S

t

Θ.

Using (164), the definition of χ(t) and the properties of ω(t), F (t), we can choose tδ
sufficiently large to guarantee that

(168) δĉ−1 − χ(t) ≥ cκ
.
=


1
m + δĉ−1

2 if κ = 0,

δĉ−1

2 if κ > 0,

hence

(169)

[(
F (t) + 1 +

1

(S − s)2

)
Vκ(S)

vκ(S)
+

ĉ

S − s
+ δĉ−1(S − s)

]
Θ(S) ≥ h(t) + cκ

∫ S

t

Θ.

We now specify S(s) depending on whether κ > 0 or κ = 0.

The case κ > 0.
We choose S

.
= s + 1. In view of the fact that Vκ/vκ is bounded above on R+, (169)

becomes

(170) c̄Θ(s+ 1) ≥ h(t) + cκ

∫ s+1

t

Θ ≥ cκ
2

∫ s+1

t

Θ,
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for some c̄ independent of t, s. Note that the last inequality is satisfied provided s ≥ sδ(t)
is chosen to be sufficiently large, since the monotonicity of Θ implies that Θ 6∈ L1(R+).
Integrating and using again the monotonicity of Θ, we get

(s+ 1− t)Θ(s+ 1) ≥
∫ s+1

t

Θ ≥
[∫ s0+1

t

Θ

]
exp

{cκ
2c̄

(s− s0)
}
,

hence Θ(s) grows exponentially. Ultimately, this contradicts our assumption (139).

The case κ = 0.
We choose S

.
= s+

√
s. Since Vκ(S)/vκ(S) = S/m, from (169) we infer

(171)

[(
F (t) + 1 +

1

s

)
S

m
+

ĉ√
s

+ δĉ−1
√
s

]
Θ(S) ≥ h(t) + cκ

∫ S

t

Θ.

Using the expression of cκ and the fact that F (t) → 0, up to choosing tδ and then sδ(t)
large enough we can ensure the validity of the following inequality:[(

F (t) + 1 +
1

s

)
S

m
+

ĉ√
s

+ δĉ−1
√
s

]
<

[
1

m
+
δĉ−1

4

]
S =

[
cκ −

δĉ−1

4

]
S

for t ≥ tδ and s ≥ sδ(t). Plugging into (169), and using that Θ 6∈ L1(R+),

SΘ(S) ≥ h(t) +
cκ

cκ − δĉ−1/4

∫ S

t

Θ ≥ (1 + ε)

∫ S

t

Θ,

for a suitable ε > 0 independent of t, S, and provided that S ≥ sδ(t) is large enough.
Integrating and using again the monotonicity of Θ,

SΘ(S) ≥ (S − t)Θ(S) ≥
∫ S

t

Θ ≥

[∫ S0

t

Θ

](
S

S0

)1+ε

,

hence Θ(S) grows polynomially at least with power ε, contradicting (139).
Concluding, both for κ > 0 and for κ = 0 assuming (158) leads to a contradiction with
our assumption (139), hence (155) holds, as required.
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[119] F. Rellich, Über das asymptotische Verhalten der Lsungen von ∆u + λu = 0 in unendlichen

Gebieten. (German) Jber. Deutsch. Math. Verein. 53, (1943). 57–65.

[120] H. Rosenberg, Intersection of minimal surfaces of bounded curvature. Bull. Sci. Math. 125 (2)
(2001), 161–168.

[121] H. Rosenberg, E. Toubiana, A cylindrical type complete minimal surface in the slab of R3. Bull.

Sci. Math. (2 ) 111, no. 3, (1987), 241–245.
[122] A. Ros, One-sided complete stable minimal surfaces., J. Diff. Geom. 74 (2006), 69–92.

[123] R. Schoen, Estimates for stable minimal surfaces in three dimensional manifolds. Seminar on

minimal submanifolds, 111–126, Ann. of Math. Stud., 103, Princeton Univ. Press, Princeton, NJ,
(1983).

[124] R. Schoen, H. Tran, Complete manifolds with bounded curvature and spectral gaps. Avalable at

arXiv:1510.05046.
[125] R. Schoen and S. T. Yau, Lectures on differential geometry. Conference Proceedings and Lecture

Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994. v+235 pp. ISBN:
1-57146-012-8.

[126] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (5) (1983), 401–487.
[127] R. S. Sena, R.S., a note on the spectrum of self-shrinkers. Preprint.
[128] L. Silvares, On the essential spectrum of the Laplacian and the drifted Laplacian. J. Funct. Anal.

266, (2014) no. 6, 3906–3936.

[129] Simon, L., Lectures on geometric measure theory. Proceedings of the Centre for Mathematical
Analysis, Australian National University, 3. Australian National University, Centre for Mathemat-

ical Analysis, Canberra. vii+272 pp (1983)
[130] K. T. Sturm, On the Lp-spectrum of uniformly elliptic operators on Riemannian manifolds. J.

Funct. Anal. 118, (1993), no. 2, 442-453.

[131] T. Tayoshi, On the spectrum of the Laplace-Beltrami operator on noncompact surface, Proc. Japan

Acad. 47, (1971), 579–585.
[132] M. Tokuomaru, Complete minimal cylinders properly immersed in the unit ball. Kyushu J. math.

61 (2007), no. 2, 373–394, MR2362891, Zbl 1143.53010.
[133] V. G. Tkachev, Finiteness of the number of ends of minimal submanifolds in Euclidean space.

Manuscripta Math. 82, (1994), 313–330.



SPECTRUM ESTIMATES AND APPLICATIONS TO GEOMETRY 69

[134] F. Torralbo, Rotationally invariant constant mean curvature surfaces in homogeneus 3-manifolds,
Differential Geom. Appl. 28 no. 5 (2010), 593–607.

[135] A. Wetzler, Y. Aflalo, A. Dubrovina and R. Kimmel, The Laplace-Beltrami Operator: A Ubiquitous

Tool for Image and Shape Processing. Mathematical Morphology and Its Applications to Signal
and Image Processing Lecture Notes in Computer Science Volume 7883, 2013, 302–316

[136] H. Whitney, Geometric Integration Theory. Princeton Mathematical Series, 1957, xv+387 pp.,

Princeton University Press, Princeton, N. J., 1957.
[137] J.Wang, The spectrum of the Laplacian on a manifold of nonnegative Ricci curvature. Math. Res.

Lett. 4, (1997) no. 4, 473–479.
[138] S. T. Yau, Review of Geometry and Analysis. Kodaira’s issue. Asian J. Math. 4 (2000), 235–278.

[139] S. T. Yau, Review of Geometry and Analysis. Mathematics: frontier and perspectives. Amer. Math.

Soc. Providence. RI. (2000), 353–401.
[140] S.T. Yau, Nonlinear analysis in geometry. Monographies de L’Enseignement Mathmatique [Mono-

graphs of L’Enseignement Mathmatique], 33. Srie des Confrences de l’Union Mathmatique Interna-

tionale [Lecture Series of the International Mathematics Union], 8. L’Enseignement Mathmatique,
Geneva, 54 pp (1986).

[141] D. Zhou, Essential spectrum of the Laplacian on manifolds of nonnegative curvature. Int. Math.

Res. Not. (1994), no. 5, 209 ff.


