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Abstract

The aim of this paper is to analyze some of the relationships between oscilla-
tion theory for linear ordinary differential equations on the real line (shortly, ODE)
and the geometry of complete Riemannian manifolds. With this motivation we
prove some new results in both directions, ranging from oscillation and nonoscil-
lation conditions for ODE’s that improve on classical criteria, to estimates in the
spectral theory of some geometric differential operator on Riemannian manifolds
with related topological and geometric applications. To keep our investigation ba-
sically self-contained we also collect some, more or less known, material which often
appears in the literature in various forms and for which we give, in some instances,
new proofs according to our specific point of view.
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Introduction

Ordinary Differential Equation (hereafter, ODE) techniques are a powerful tool
in investigating the geometry of a complete Riemannian manifold (M, 〈 , 〉), and
their importance can be hardly overestimated. For instance, the classical compari-
son and oscillation theory for g′′ −Gg = 0 is fruitful in the investigation of Jacobi
fields and related Hessian, Laplacian and volume comparison theorems for M , and
to obtain sharp extensions of the classical Bonnet-Myers compactness theorem (in
this respect, see [Gal82], [Kup86], [EO80]). As a second example, radialization
techniques lead in favourable circumstances to the study of an ordinary differential
equation to control the solutions of a given partial differential equation. In both
instances, the study of the sign of the solutions of the ODE, and the positioning of
the possible zeros, reveals to be one of the challenging problems involved. In our
work, we will be concerned with a solution z(r) of the following Cauchy problem:

(CP )

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+

z′(r) = O(1) as r ↓ 0+ , z(0+) = z0 > 0

where R+ = (0,+∞), v(r) is a non-negative function and A(r) is possibly some-
where negative but in a controlled way as we shall explain at due time. The
application of these results to the geometric problems we shall consider below leads
us to the following requests:

A(r) ∈ L∞loc(R+
0 ), where R+

0 = [0,+∞),

0 ≤ v(r) ∈ L∞loc(R+
0 ) , 1/v(r) ∈ L∞loc(R+)

v(r) is non decreasing near 0 and lim
r→0+

v(r) = 0.

For our purposes we shall look for solutions z(r) ∈ Liploc(R+
0 ), that is, locally

Lipschitz solutions. For the sake of completeness, in Section 3.1 we supply the
basic ODE material related to (CP ). To illustrate a typical framework where
the study of the solutions z of (CP ) reveals to be useful, we consider on M a
Schrödinger operator of the type L = −∆ − q(x), where q(x) ∈ L∞loc(M), and
we search for estimates for the bottom of the spectrum of L, λL1 (M), or for the
index of L, indL(M). The key problem is to discover the critical growth of q(x)
that discriminates between the various cases that may occur: clearly, this critical
growth must only depend on the geometry of M . Towards this purpose, to have
a first insight into the matter we “radialize” the problem. Suppose that we want
to prove, under suitable conditions on q, that λL1 (M) ≥ 0 or indL(M) < +∞. By
Theorems 1.33 and 1.41 below, it is enough to produce a positive, weak solution u
of ∆u + q(x)u ≤ 0 on M or outside some compact set. Suppose for convenience
that we are on a model manifold (Mg,ds

2) (see Definition 1.16 below), with metric

v



vi INTRODUCTION

given, in polar geodesic coordinates, by ds2 = dr2 + g(r)2dθ2, and let A be a
continuous, non-negative function such that q(x) ≤ A(r(x)). Then, if we search u
of the form u(x) = z(r(x)), the problem shifts to the search of a positive solution
z (say C1) of the ODE

z′′ + (m− 1)
g′

g
z′ +Az = 0 on I = [r0,+∞), r0 ≥ 0.

Multiplying by the model volume density gm−1, this can be rewritten as the Sturm-
Liouville equation

(0.1) (gm−1z′)′ +Agm−1z = 0.

As we will see in this paper, we shall require the initial conditions z(r0) = z0 > 0,
z′(r0) = 0 in order to match with the inequalities of the Laplacian comparison
theorem when we will deal with non-radial manifolds. Therefore, this leads to
investigate the qualitative properties of the solution of (CP ) with v = gm−1. If A
is sufficiently small, then z is positive on [r0,+∞). With the aid of some spectral
results that we shall recall in Section 1.3, we can infer that λL1 (M) ≥ 0 (when
r0 = 0), or that indL(M) < +∞ (when r0 > 0). Suppose now that r0 = 0 and
q(x) ≥ A(r(x)). If z has a first zero at some R, then u solves{

−Lu = ∆u+ qu ≥ 0 on BR,

u = 0 on ∂BR.

By a simple argument, λL1 (M) < 0. Indeed, by contradiction, if λL1 (M) ≥ 0 then by
the monotonicity of eigenvalues λL1 (BR) > 0. Let 0 < w be the first eigenfunction
of L on BR with Dirichlet boundary conditions, that is, w solves Lw = λL1 (BR)w
on BR, w = 0 on ∂BR. Then, integrating by parts,

0 > −λL1 (BR)

∫
BR

uw =

∫
BR

u(∆w + qw) =

∫
BR

w(∆u+ qu) ≥ 0,

a contradiction. Similarly, if z oscillates, for every r0 > 0 we can choose two
consecutive zeroes R1 < R2 of z after r0. Then, u(x) = z(r(x))χBR2

\BR1
(x) solves

∆u+ qu ≥ 0 on the annulus BR2
\BR1

, with zero boundary conditions. The above
argument leads to λL1 (M\Br0) < 0, so indL(M) = +∞ again by Theorem 1.41.
As a matter of fact, both the negativity of λL1 (M) and indL(M) = +∞ can be
obtained via radialization on each complete, non-compact Riemannian manifold by
means of the Rayleigh characterization. The idea is as follows: let v(r) be the
volume of ∂Br. By Proposition 1.6 below, in general we can only assume that v is
locally bounded, and bounded away from zero on compact subsets of R+. Suppose
that the problem (CP ) admits a solution z ∈ Liploc(R+

0 ) with a first zero R. Then,
integrating by parts, the test function φ(x) = z(r(x))χBR(x) solves∫

BR

|∇φ|2 −Aφ2 = −
∫ R

0

[
(v(s)z′(s))′ +A(s)v(s)z(s)

]
z(s)ds = 0,

whence λL1 (M) < 0 by the min-max characterization and the monotonicity of eigen-
values. Analogous computation shows that indL(M) = +∞ provided z oscillates.
This shows how spectral problems on M can be related to the central theme of our
ODE investigation.
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Developing ideas in [BR97] and [BMR09], the core of all of our ODE results
lies in the identification of an explicit critical curve χ(r), depending only on v(r),
and which gives the border line for the behavior of z(r). Roughly speaking and
considering the simplest case A(r) ≥ 0, if A(r) is much greater than χ(r) in some
region, then z(r) has a first zero, while if A(r) is not larger than χ(r) solutions
are positive on R+

0 = [0,+∞) and explicit lower bounds are provided. Using the
critical curve we will be able to obtain sharp conditions on A for the existence and
localization of a first zero of z, and for the oscillatory behavior of z. Furthermore,
the key technical ODE result of the paper will enable us to estimates the distance
between two consecutive zeros of an oscillatory solution z of (CP ) under very
general assumptions.

Besides the estimates on the spectrum of Schrödinger operators just described,
the ODE techniques that we are going to develop will enable us to get bounds
from above on the growth of the spectral radius of the Laplacian outside geodesic
balls, even when the volume growth of the manifold is faster than exponential. The
spectral results that we shall obtain, in turn, have many geometric applications in
the setting of minimal and higher order constant mean curvature hypersurfaces of
Rm, their Gauss map, minimal surfaces and the Yamabe problem, and so on. For
more information, we refer to the description of the contents of the various chapters
that we shall present in a while.

Another geometric application deserves particular attention. Indeed, in a quite
simple way our results on solutions z of (CP ) can be used to get sharp extensions
of previous compactness criteria for complete manifolds, in the spirit of the Bonnet-
Myers theorem mentioned at the beginning of this introduction. For this reason,
throughout the paper we will often shift our attention from one another of the
problems

(0.2)

(1)

{
(vz′)′ +Avz = 0 on R+,

z(0) = z0

and

(2)

{
g′′ −Gg = 0 on R+,

g(0) = 0, g′(0) = 1,

or of their counterparts with initial condition at some r0 > 0. According to the
situation, properties that we will establish for (1) will be successively rephrased for
(2), or viceversa. More precisely, we will pass from one ODE to the other in two
different ways. The first is classical and widely exploited in literature, see [Lei50]
and [Moo55], while (at least to our knowledge) the second has not been so much
considered. For instance, as we will see, this latter substitution will be the key to
prove the theorems of Chapter 4. Even more, comparisons between the two ways
will lead to interesting improvements of oscillation and nonoscillation criteria for
g′′−Gg = 0, such as those of E. Hille and Z. Nehari, in various directions. The main
geometric achievement, however, will be the extension of Calabi compactness cri-
terion for complete manifolds, [Cal67], to the case when the Ricci curvature along
geodesics γ(r) emanating from some origin is bounded by −B2rα on [r0,+∞), for
some r0 > 0, B ≥ 0 and α ≥ −2, improving on all of the results in the most recent
literature.
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In an attempt to give a unified approach to a number of apparently different
geometric problems, based on the notion of critical curve, the paper is organized as
follows.

In Chapter 1 we collect and prove some facts on the cut-locus of a point (or
more generally of a submanifold) and on the behaviour of the function vol(∂Br)
that shall determine the regularity of the coefficients in the Cauchy problem (CP ).
We then prove some basic geometric comparison results such as the Laplacian
and the Hessian comparison theorems. Their proofs will be accomplished starting
from the Ricci commutation rules for third covariant derivative, without the use of
Jacobi fields. The chapter ends with a short review of spectral theory on manifolds.
We give a full proof of some of the most important results for our investigation,
concentrating on those that, at least to our knowledge, are difficult to find in book
form.

Chapter 2 describes a number of geometric examples that are related to oscilla-
tion theory, with the purpose to show the reader instances of the interaction of this
latter with geometry. First, we discuss the relation between conjugate points and
compactness results for complete manifolds beginning with the original theorem
of Myers and proceeding with its more recent generalizations, including the well
known cornerstone of Calabi. As a matter of fact, we extend the discussion to the
case when the Ricci curvature is bounded below by a negative constant. In the
subsequent section we collect and prove a number of, by now classical, theorems on
the spectrum of the Laplacian on manifolds with a pole. Besides providing the nec-
essary background for non-specialists, these help putting some results of Chapters
4 and 6 in perspective. We then present a mild extension of a very recent result
of Bessa, Jorge and Montenegro [BJM10], which positively answers a question of
S.T. Yau on the discreteness of the spectrum of the Martin-Morales-Nadirashvili
minimal surface in R3. In the final part of the chapter we illustrate the use of spec-
tral estimates in establishing the existence of positive solutions to Yamabe-type
equations on a complete manifold, that is, equations of the form

∆u+ q(x)u− b(x)uσ = 0, q(x), b(x) ∈ C0(M), σ > 1.

The first part of Chapter 3 is devoted to the analytical results on (CP ) men-
tioned above. These include existence and uniqueness of solutions z ∈ Liploc(R+

0 ),
and a proof that the zeroes of z(r), if any, are attained at isolated point of R+. Next,
we introduce the critical curve χ(r). We provide examples of χ(r), for instance in
Euclidean and hyperbolic space, discussing some of its features. Monotonicity, com-
parison properties, and upper and lower bounds for χ are then proved in terms of
curvature requirements on the manifold. To relax geometric assumptions in subse-
quent sections of the paper, we also introduce the related modified curves χf (r),
where f is some bound for v, and χ̃(r).

Chapters 4, 5, 6 are the core of the paper. Here we present either brand new
results or new techniques to prove known facts. In Chapter 4 we investigate the
consequences of lying below the critical curve. With this we mean that the potential
A(r) in the linear term is smaller than the critical curve. In this situation solutions
of (CP ) have definite sign on R+ and we provide a lower bound estimate which
is sharp at infinity. As we explained before, these results are then used to obtain
sufficient conditions to guarantee that Schrödinger type operators L have non-
negative first eigenvalue or finite index, see for instance Theorem 4.10. In the same



INTRODUCTION ix

vein we prove a version of the Uncertainty Principle Lemma and lower bounds on
λL1 (BR), λL1 (M) and inf σess(L) (that is, the infimum of the essential spectrum of L)
on each manifold with a pole. We conclude the chapter with some applications. The
first is a comparison result for non-negative sub and supersolutions of Yamabe-type
equations. As a consequence, we characterize isometries in the group of conformal
diffeomorphisms of a complete manifold in itself. Finally, in the last section we
relate a very recent upper bound for the number of zeroes of a nontrivial solution
z(r) of (CP ) (see [EFK11]) to the critical curve. In doing so, it will be apparent
that χ is also deeply linked to Hardy-Sobolev inequalities on R+. We mention
that throughout the chapter we discuss, with a number of examples, the mutual
relationship between the critical curves χ and χ̃.

In Chapter 5 we consider the case when the potential A(r) exceeds, in an in-
tegral sense, the critical curve χ or the curve χf . First we establish a first zero
and an oscillation criterion, both in terms of the reciprocal “integral” behaviour
of A and χ, and we compare them with well known criteria in the literature such
as those of Leighton, Moore, Hille-Nehari, Calabi and others. Then we apply our
achievements to determine instability and index of Schrödinger operators. We de-
vote the second part of the chapter to applications to geometrical problems related
to minimal surfaces, higher order constant mean curvature hypersurfaces of Rm+1,
the distribution of their spherical Gauss map in Sm together with an interesting
reduction of codimension theorem. In the last two sections, we describe a simple
method to extend Calabi compactness criterion to the case of a controlled negative
bound of the Ricci curvature. For its versatility, this method can be also applied to
obtain sharp refinements of Calabi and Hille-Nehari oscillation criteria. A number
of remarks and observations spread throughout the chapter show the sharpness of
our results.

In Chapter 6 we deal with the case when A(r) is much above the critical curve
in a pointwise sense, and we focus our attention on the problem of determining
an upper bound for the difference between two consecutive zeroes of an oscillating
solution of (CP ). With an example we show that in order to use classical Sturm
type arguments to reach the desired conclusion we need the full knowledge of the
asymptotic behaviour of v(r). This is, interpreting v(r) = vol(∂Br), a strong
geometric requirement and it forces to detect a new approach to deal with the case
in which our geometric information only provide an upper bound for v(r). The
key technical tool of this chapter is Theorem 6.5: denoting with R1(%) < R2(%)
the first two consecutive zeros of z(r) after r = %, we can estimate the difference

R2(%)−R1(%). If v(r) ≤ exp{arα logβ r}, a, α > 0, β ≥ 0, this yields

R2(%)−R1(%) = O(%) as %→ +∞,

and even more, we provide an upper estimate for

lim sup
%→+∞

R2(%)

%

with an explicit constant. Further specializations of this result yield a lower bound
for the growth of the index of Schrödinger type operators and an upper bound
for the growth of the first eigenvalue of the Laplacian on the punctured manifold
M\BR extending, in this latter case, some results of Do Carmo and Zhou [CZ99]
and Brooks [Bro81]. Again, throughout the chapter attention is paid to compare
with the previous literature and to show the sharpness of our results with the aid
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of suitable counterexamples.

Acknowledgements: the authors are deeply grateful to Proff. S. Pigola and
A.G. Setti for having suggested them the paper [ER11], which leads to a defi-
nite improvement of the results of Section 5.4. Furthermore, they wish to express
their gratitude to prof. M. L. Leite and to the referee for helpful comments and
corrections, in particular regarding Section 5.5.



CHAPTER 1

The Geometric setting

The aim of this chapter is to introduce some basic, but sometimes not widely
known, material of Riemannian geometry that shall be needed in the rest of the
paper. We briefly describe the cut-locus of a submanifold K, recalling its main
properties especially relative to the distance function from K. For instance, we
deal with the regularity of v(r) = vol(∂Br), where Br is the set of points whose
distance from K is less than r. We then introduce some comparison procedures
to estimate from above and/or below Hess r and ∆r, and we conclude the chapter
with a short review of spectral theory on manifolds. Although most of the material
covered by this chapter is somehow standard, part of each section, at least to
our knowledge, is still not accessible in book form. Furthermore, in some cases a
different (and we hope clearer) presentation of known results is provided. The main
theorems of each section will be extensively used throughout the paper.

1.1. Cut-locus and volume growth function

Let (M, 〈 , 〉) be a connected, complete Riemannian manifold of dimension m ≥
2 with induced distance function d : M ×M → R+

0 , and let K ⊂M be a properly
embedded submanifold. We write dK(x) for the distance function from K, and we
denote with ∂Br the geodesic sphere centered at K, that is

∂Br =
{
x ∈M : dK(x) = r

}
.

This introductory section deals with the regularity of the volume growth function

r 7−→ vol(∂Br),

where vol stands for the (m − 1)-dimensional Hausdorff measure (see [EG92]).
Although in the next chapters we will be always concerned with the case K = {o},
o ∈M , all that we say in this section holds for any K. The analysis of the volume
growth function is deeply related to the topology and the geometry of the cut-locus
of K, cut(K). For convenience, we briefly recall the definitions and main results on
cut(K), and we refer the reader to [GHL90] and [Sak96] for the general treatment,
and to [MM03] for the study of cut(K) when K has a lower regularity. We set
π : NK → K and π : UK → K, respectively, for the normal bundle and unit normal
bundle over K, and let exp : NK → M be the normal exponential map. Since M
is complete and K is closed in M , for every x ∈ M\K there exists at least one
minimizing geodesic from K to x, and every minimizing geodesic is orthogonal to
K, that is, it is of the form exp(tv) for some v ∈ UK , t ∈ R. For every v ∈ UK , let
γv(s) = exp(sv) be the unit speed geodesic starting from K with tangent vector v.

1



2 1. THE GEOMETRIC SETTING

We say that γv is a segment on [0, t] if it is length minimizing on [0, t]. Define

ρ(v) = sup
{
t > 0 : γv is a segment on [0, t]

}
≤ +∞;

λ(v) = min
{
t > 0 : γv(t) is a focal point of K along γv

}
≤ +∞.

We recall that q = γv(t) is focal for K along γv if exp is not invertible at tv. If
ρ(v) = +∞, γv is called a ray. If ρ(v) < +∞, exp(ρ(v)v) is called the cut-point
of K along γv, and, if λ(v) < +∞, exp(λ(v)v) is the first focal point of K along
γv. If q = γv(t) is a focal point of K along γv, tv ∈ NK is called a focal vector,
and its multiplicity is by definition the dimension of ker(exp∗). A point q ∈ K is
called a focal point if it is focal along some minimizing geodesic γv. Clearly, if K is
a point this reduces to the classical definition of conjugate points. Analogously to
this latter situation, the set of focal points is discrete (Morse lemma, [Sak96]) and
a geodesic ceases to be length minimizing after the first focal point, which implies
ρ(v) ≤ λ(v) for every v ∈ UK . The regularity of ρ and λ has been investigated by
J.I. Itoh and M. Tanaka [IT01a], and Y. Li and L. Nirenberg [LN05] (see also the
recent reference [CR]). In both papers, the authors prove that ρ and λ are Lipschitz
functions on the pre-image of compact intervals, where Lipschitz continuity is with
respect to any fixed metric on UK . Furthermore, ρ and λ are continuous if (0,+∞]
is endowed with the topology having {(a,+∞] : a > 0} as neighbourhoods of +∞
(for ρ, this result goes back to M. Morse). Hence, the sets Uρ = ρ−1(R+) and
Uλ = λ−1(R+) are open subsets of UK and

eρ : v ∈ Uρ → exp(ρ(v)v) ∈M, eλ : v ∈ Uλ → exp(λ(v)v) ∈M

are Lipschitz continuous on the pre-image of compact sets. A vector v ∈ Uρ for
which ρ(v) = λ(v) is called a focal cut-vector, and eρ(v) is called a focal cut-point.
The set eρ(Uρ) is called the cut-locus of K, cut(K).

Theorem 1.1 ([Sak96], [GHL90]). Let M,K,NK , UK , ρ be as above. Then,
the following properties hold:

- (M. Morse) M is compact if and only if Uρ ≡ UK and K is compact;
- exp is a diffeomorphism between the open sets W = {tv : v ∈ UK , t ∈

(0, ρ(v))} and M\(K ∪ cut(K)), furthermore M = exp(W );
- every q ∈M\(K∪cut(K)) is joined to K by a unique minimizing geodesic,

and dK is smooth on M\(K ∪ cut(K)).
- (W. Klingenberg) if q ∈ cut(K), then either there exist at least two distinct

segments from K to q, or q is focal for K. The two possibilities do not
reciprocally exclude;

- if q ∈ cut(K) is non-focal, then there exists only a finite number of seg-
ments joining q to K.

The cut-locus of K can be subdivided into the following subsets:

- the focal cut-locus cutf (K), that is, the set of focal cut-points;
- the normal cut-locus cutn(K), consisting of the non-focal cut-points joined

to K by exactly two distinct segments;
- the anormal cut-locus cuta(K), consisting of non-focal cut-points joined

to K by at least three distinct segments.

Furthermore, we split the focal cut-locus according to the multiplicity of each focal
cut-point.



1.1. CUT-LOCUS AND VOLUME GROWTH FUNCTION 3

- the set of focal cut-points q such that whenever ρ(v)v is a focal vector,
where v ∈ e−1

ρ ({q}), the multiplicity of ρ(v)v is 1. We call it cutf1(K);

- the set of focal points q such that there exists a unit vector v ∈ e−1
ρ ({q})

such that ρ(v)v has multiplicity at least 2. We call it cutf2(K).

The structure of the non-focal part of the cut-locus has been dealt with in detail
by V. Ozols [Ozo74], and by P. Hartman [Har64a] for the 2-dimensional case.
Briefly, the normal cut-points are a smooth embedded (m−1)-submanifold without
boundary and with at most countably many connected components. Furthermore,
for every q ∈ cutn(K) there exists a neighbourhood V of q such that

cut(K) ∩ V ≡ cutn(K) ∩ V,

and cutn(K) bisects the angle between the two segments from K to q. On the pre-
image e−1

ρ (cutn(K)) the function ρ is smooth, and dvρ = 0 at some v if and only if
the two segments from K to eρ(v) meet orthogonally to cutn(K), that is, if they are
part of a unique geodesic. According to the terminology introduced by K. Grove
and K. Shiohama in [GS77], a normal cut-point q such that dρ = 0 on e−1

ρ ({q})
is called a normal critical cut-point. We agree on denoting with cutnc(K) the set
of normal critical cut-points of K. We now turn to the anormal cut-locus. Around
each anormal cut-point, the graph of cut(K) is a finite intersection of submanifolds
with boundary, and at least two of them are transverse. Furthermore, cutn(K) is
dense in a neighbourhood of each anormal cut-point ([IT98], Lemma 2). Hence,
cuta(K) is locally a subset of a finite union of submanifolds whose dimensions
do not exceed (m− 2). In particular, if m = 2 anormal cut-points are isolated, as
observed in [Har64a], Lemma 5.1. The above implies that the Hausdorff dimension
dimH(cuta(K)) is at most (m − 2), see [IT98], Lemma 3. As for the focal part,
by the Sard-Federer theorem ([Sar58] and [Fed69]) applied to exp : NK → M
the Hausdorff dimension of cutf2(K) is at most (m − 2). For the set cutf1(K)
the situation is more subtle. Around each vector v0 ∈ e−1

ρ ({q}), q ∈ cutf1(K),
by the Malgrange preparation theorem the function λ is smooth ([IT01b], Lemma
1). A clever argument ([IT98], Lemma 1) shows that the tangent space to the set
{λ(v)v : v ∈ Uλ} at λ(v0)v0 is a subset of ker(exp∗), so that the map eλ is smooth
and has rank (m − 2) in a neighbourhood of v0. Hence, again by Sard-Federer
theorem for eλ, dimH(cutf1(K)) = m− 2. To conclude,

(1.1) dimH
(
cuta(K) ∪ cutf (K)

)
≤ m− 2,

and the Hausdorff dimension of cut(K) is at most (m− 1). We mention that, with
some further work, it can be proved that dimH(cut(K)) is always an integer around
each cut-point, see [IT98]. If m = 2, since dK is Lipschitz we also deduce that

(1.2) dK
(
cuta(K) ∪ cutf (K)

)
has Lebesgue measure zero on R+ if m = 2.

Indeed, we recall that the Hausdorff 1-measure coincides with Lebesgue measure
on R. Combining (1.1) and the fact that cutn(K) is dense around each anormal
cut-point, we deduce that

(1.3) dimH(cut(K)) < m− 1 if and only if cut(K) ≡ cutf (K).

It is easy to construct non-compact manifolds M with the property that, for
some compact submanifold K, cut(K) is non-empty and has only focal points.
For instance, if m ≥ 3, consider a j-dimensional Cartan-Hadamard manifold N ,
1 ≤ j < m − 1, let M = Sm−j × N and let K = E × {p}, where E ⊂ Sm−j is an
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equator and p ∈ N . It is worth to observe that F. Warner has given a sufficient
condition for cut(o) ≡ cutf (o) to hold on a complete, simply connected M . More
precisely, by [War67], Theorem 1.3 it is enough that, for every geodesic issuing
from o, the first focal point (if any) along γ has multiplicity at least 2.

Next, we consider the intersection of the cut-locus with geodesic spheres.

Proposition 1.2 ([GP94], Lemma 1.1). The intersection cut(K) ∩ ∂Br can
be decomposed as cutnc(K) ∪B, where dimH(B) ≤ m− 2.

Proof. Define B to be the complementary of cutnc(K) in ∂Br. Then, B is a
subset of

cutf (K) ∪ cuta(K) ∪
(

(cutn(K)\cutnc(K)) ∪ ∂Br
)
.

Observe that ∂Br is included in exp(rUK). Since dimH(cuta(K) ∪ cutf (K)) ≤
m − 2, we are left to consider A =

(
cutn(K)\cutnc(K)

)
∩ ∂Br, that is, the set

of normal, non critical cut-points q in ∂Br. For each such q, choose a sufficiently
small neighbourhood V of q such that cut(K) ∩ V contains only normal points,
exp−1(V ) = V1 ∪ V2 and V1 ∩ V2 = ∅. Let γ1, γ2 be the two segments from K to q,
where γi = exp(tvi) and ρ(vi)vi ∈ Vi. By Gauss lemma, the tangent space to the
smooth hypersurface exp(rUK ∩Vi) at q is orthogonal to γi. Since q is non critical,
the tangent space to cutn(K) is transverse to the tangent space of exp(rUK ∩ Vi)
for each i ∈ {1, 2}. Thus, up to shrinking V , it follows by transversality that locally
A∩Vi is a connected, regular (m− 2)-dimensional submanifold. Since M is second
countable, we can cover A with countably many such neighbourhoods V . Hence
dimH(A) = m− 2. This proves the proposition. �

Remark 1.3. The set of normal critical values dK(cutnc(K)) has Lebesgue
measure zero by Sard-Federer theorem. Indeed, dK(cutnc(K)) is the set of critical
values of the smooth function ρ on the open set (with countably many connected
components) e−1

ρ (cutn(K)). We note in passing that, in their celebrated paper
[GS77], K. Grove and K. Shiohama extended the definition of a critical point
to cover the case of the distance function dK , a definition that turned out to be
extremely fruitful. Recently, the Morse-Sard theorem for the distance function,
namely the assertion that the set of critical values of dK has Lebesgue measure
zero, has been proved by Itoh and Tanaka [IT01b] for manifolds M of dimension
m ≤ 4, and by L. Rifford [Rif04] for every m.

Combining with observation (1.2), we deduce the following Proposition for
complete surfaces.

Proposition 1.4 ([Har64a], Proposition 6.1). Let M be a connected, complete
surface, and let K be either a smooth, embedded, simple closed curve or a point.
Then, with the exception of a closed set Z of Lebesgue measure zero, ∂Br is a union
of finitely many smooth, simple curves, each of them possibly having a finite number
of corners.

Proof. By Remark 1.3 and observation (1.2),

dK
(
cuta(K) ∪ cutf (K) ∪ cutnc(K)

)
has Lebesgue measure zero on R+.

It is not hard to see that Z = cuta(K) ∪ cutnc(K) ∪ cutf (K) is closed. Let r0 ∈
R+\Z, and let I be a small open neighbourhood of r0 in R+\Z. Then, cut(K) ∩
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d−1
K (I), if non-empty, has only normal, non-critical cut-points, so that for every
r ∈ I and v1 ∈ e−1

ρ (cut(K) ∩ ∂Br) the graph manifold

Vρ = {ρ(v)v : v ∈ Uρ} ⊂ NK

around v1 is a smooth curve transverse to rUK . Thus, Vρ ∩ rUK , if non-empty, is
an even number of isolated points {rvj}, j = {1, . . . , 2h}, for some h > 0. Applying
the exponential map, the cut-vectors rvj meet together in pairs, and the resulting
set

∂Br = exp
({
tv ∈ NK : v ∈ Uρ, t = min{r, ρ(v)}

})
is a finite union of at most h disjoint smooth simple curves, possibly with corners
at the points of type exp(rvi) = exp(rvj), i 6= j. This concludes the proof. �

As an immediate consequence, a Gauss-Bonnet inequality holds for almost every
r ∈ R+.

Proposition 1.5. Let M be a connected, complete surface and let K be either
a smooth simple closed curve or a point. Denote with l(r) the Hausdorff 1-measure
of the sphere ∂Br centered at K, with χE(r) the Euler characteristic of Br and with
k(r) the integral over Br of the Gaussian curvature of M . Then, for almost every
r > 0,

l′(r) ≤ 2πχE(r)− k(r).

Now, we can start to describe more closely the regularity of the volume growth
function. For every fixed r, consider the inclusion ir : rUK → NK and define the
smooth map expr = exp ◦ir : rUK → M . We can endow NK with a metric ( , )
constructed in a way similar to that for the standard metric on TM (see [Car92],
p.78). Namely, for every v ∈ NK , π(v) = p ∈ K and W,Z ∈ TvNK we choose
curves α, β : I = [0, 1]→ NK such that

α(0) = β(0) = v, α′(0) = W, β′(0) = Z

and we define

(W,Z)v = 〈π∗(W ), π∗(Z)〉p + 〈∇tα,∇tβ〉p.

Then, ( , ) is independent of the chosen curves, and the submanifolds rUK , r ∈ R
are orthogonal to the geodesic rays tv, v ∈ UK , t ∈ R on common intersections.
Indeed, ( , ) can be written as

(1.4) ( , ) = i∗r( , ) + dr ⊗ dr.

Having defined the m-dimensional (respectively, (m− 1)-dimensional) Jacobian of
exp (resp. expr)

J exp = ‖
∧
m

d exp ‖, J expr = ‖
∧
m−1

d expr ‖,

where the norm is taken with respect to ( , ) (resp, i∗r( , )), the warped product
structure (1.4) implies that J expr(v) = J exp(rv) for every t ∈ R and v ∈ UK .
Let ω and ωr be the volume form of ( , ) and the induced volume form on rUK .
Then, up to the sign, ω = ωr ∧ dr. By the area formula ([EG92], Theorem 1 p.96;
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[Fed69], Theorem 3.2.3 and pp.280-282) applied to exp and to expr we deduce
that, for every locally summable function χ on NK (resp. rUK),

(1.5)

(i)

∫
NK

χ(tv)J exp(tv)ω =

∫
M

 ∑
tv∈exp−1{p}

χ(tv)

dV (p);

(ii)

∫
rUK

χ(rv)J exp(rv)ωr =

∫
M

 ∑
rv∈exp−1{p}

χ(rv)

dHm−1(p),

where dV is the Riemannian volume form of M and dHm−1 is the (m − 1)-
dimensional Hausdorff measure. We now consider a suitable χ on ν. To be sure
that the integrals are finite, we assume that K is compact. For every vector tv,
v ∈ UK , t ∈ R+

0 , we define n(v) to be the number of distinct geodesic segments
joining K to eρ(v). Let

(1.6) χt(v) = χ(tv) =


1 if t < ρ(v);

n(v)−1 if t = ρ(v);

0 if t > ρ(v).

Fix r > 0. By taking the limit as t ↑ r and t ↓ r of χ(tv) we can define also the
following functions:

χr+(v) = lim
t↓r

χ(tv) =

{
1 if r < ρ(v);

0 if r ≥ ρ(v).
χr−(v) = lim

t↑r

{
1 if r ≤ ρ(v);

0 if r > ρ(v).

Applying (1.5), (ii) to χr we obtain

(1.7)

∫
rUK

χ(rv)J exp(rv)ωr = Hm−1(∂Br) = vol(∂Br),

while using (ii) first to χt and then to χr− , with the aid of Lebesgue convergence
theorem we deduce

(1.8)

lim
t→r−

vol(∂Bt) = lim
t→r−

∫
tUK

χ(tv)J exp(tv)ωt =

∫
rUK

χ(r−v)J exp(rv)ωr

= vol(∂Br\cut(K)) +

∫
∂Br∩cut(K)

H0(exp−1{p})dHm−1(p).

This shows that the left limit of v(r) exists for every r > 0. Analogously,

(1.9) lim
t→r+

vol(∂Bt) = vol(∂Br\cut(K)).

Setting v(r) = vol(∂Br) for convenience, from (1.8) and (1.9) we get

(1.10) v(r+)− v(r−) = −
∫
∂Br∩cut(K)

H0(exp−1{p})dHm−1(p).

By Proposition 1.2, ∂Br ∩ cut(K) can be decomposed as the set of normal critical
points in ∂Br plus a set of Hausdorff dimension at most (m − 2). Hence, the
integral in (1.10) coincides with the integral over all the normal critical points in
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∂Br. Therefore,

(1.11)
v(r+)− v(r−) = −

∫
∂Br∩cutnc(K)

H0(exp−1{p})dHm−1(p)

= −2vol(∂Br ∩ cutnc(K))

It follows that v(r) jumps downward every time ∂Br meets nontrivial portions of
the normal critical cut-locus. The following proposition collects the basic properties
of the volume function that will be needed in the next chapters

Proposition 1.6. Let M be a connected, complete, non-compact Riemannian
manifold, and let K ⊂ M be a compact embedded submanifold of dimension k.
Then, v(r) = vol(∂Br) is smooth in a neighbourhood of r = 0. Furthermore,
(1.12)

(i) if k = m− 1, then v(0) = vol(K) > 0, v′(0) = 0;

(ii) if k ≤ m− 2, then v(0) = 0, v′(r) > 0 for positive r around 0;

(iii) v(r) ∈ L∞loc([0,+∞)), v(r) > 0 for r > 0, 1
v(r) ∈ L

∞
loc((0,+∞));

(iv) v(r) =
v(r+) + v(r−)

2
.

Proof. Using the normal exponential map near K and a covering argument,
by the compactness of K there exists ε > 0 such that exp : Bε(0) → Bε is a
diffeomorphism, where 0 means the set of zero vectors. Thus, for r < ε, ∂Br is
contained in the domain of normal geodesic coordinates, hence χ(tv) = 1 for every
v ∈ UK , t ∈ [0, ε) and v(r) is smooth by formula (1.7). By the divergence theorem
and coarea formula,

(1.13) v′(r) =
d

dr

(
vol(∂Br)− vol(∂Bδ)

)
=

d

dr

(∫
Br\Bδ

∆r

)
=

∫
∂Br

∆r.

As for (i), suppose first that K is orientable and that exp : Bε(0) ≈ K × (−ε, ε)→
Bε is a double collar (this is always the case if, for instance, M is orientable).
Denote with ν+ and ν− the two orientations of M . Then, for r < ε, ∂Br has two
connected components Σ+,r and Σ−,r, where the signs +,− are chosen coherently
with the orientations. Setting, for each p ∈ K, p+

r = exp(p, r) ∈ Σ+,r and p−r =
exp(p,−r) ∈ Σ−,r, by Gauss lemma ∆r(p+

r ) (resp. ∆r(p−r )) is the mean curvature
of Σ+,r (resp. Σ−,r) at p+

r (resp. p−r ). Letting r → 0+, ∆r(p±r ) → ±H, where H
is the mean curvature of K with respect to ν+. Thus, letting r → 0+ in (1.13)

v′(0) = lim
r→0+

∫
Σ+,r∪Σ−,r

∆r =

∫
K

(H −H) = 0.

The other possibilities for K (that is, K is orientable but without any double collar,
or K is non-orientable) can be dealt with in a similar manner.
To show (ii), it is enough to extend the computations in normal coordinates per-
formed in [Pet97], Section 5.6 for K = {o} to cover the case of general K. The
simple method of the author allows a clean extension. Let {xi, xα} be coordinates
on M such that {xi} are coordinates on K and {xα} are the standard coordinates
on the fibers of NK composed with the exponential map. Writing the metric as

〈 , 〉 = gijdx
i ⊗ dxj + giαdxi ⊗ dxα + gβjdx

β ⊗ dxj + gαβdxα ⊗ dxβ ,
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the Hessian of r has the following behaviour as r → 0+

(1.14) Hess r =
1

r

(
gαβdxα ⊗ dxβ − dr ⊗ dr

)
+O(1) as r → 0+.

(indeed, if K = {o} the remaining is o(1), but it is unessential). Tracing, we get

(1.15) ∆r =
m− 1− k

r
+O(1) as r → 0+.

Since k ≤ m − 2, then clearly v(0) = vol(K) = 0 and, if r is sufficiently small, by
(1.15) ∆r > 0 on ∂Br, which gives v′(r) > 0. From (1.11)

v(r) = vol(∂Br\cut(K)) + vol(∂Br ∩ cut(K))

= vol(∂Br\cut(K)) + vol(∂Br ∩ cutnc(K))

= v(r+) +
v(r−)− v(r+)

2
=
v(r+) + v(r−)

2
,

which proves assertion (iv). As for (iii), v ∈ L∞loc([0,+∞)) follows from (1.7),
since χ is bounded and the other terms vary continuously with r. Next, observe
that if we prove that 1/v ∈ L∞loc((0,+∞)), then v(r) > 0 on (0,+∞). Indeed,
assume v(r0) = 0 for some r0 ∈ (0,+∞). Then necessarily v(r+

0 ) = 0, v(r−0 ) =
2v(r0) − v(r+

0 ) = 0 and 1/v is unbounded in a neighborhood of r0. It remains to
prove that 1/v ∈ L∞loc((0,+∞)), that is, v(r) is bounded away from zero on every
compact set C disjoint from r = 0. Assume by contradiction that there exists
{rk} ⊂ C such that v(rk) → 0. By compactness, and by (iv), there exists r̃ ∈ C
such that rk # r̃ and v(r̃+) = 0. We are going to show that

(1.16) ∂Br̃ ⊆ cut(K).

Indeed, let (1.16) be false, and let q ∈ ∂Br̃\cut(K). Then, we can choose a unique
v ∈ UK such that q = eρ(v), a neighbourhood U of v in UK such that r̃ < ρ(w) for
every w ∈ U , and a neighbourhood V with compact closure of the form

V = {rw : r ∈ (r̃ − ε0, r̃ + ε0) , w ∈ U},

where ε0 > 0 is sufficiently small. On V , J exp is strictly positive, thus there exists
C > 0 independent of ε0 such that, for every v ∈ U and ε ≤ ε0,

J exp((r̃ + ε)v) ≥ CJ exp(r̃v), ωr̃+ε ≥ Cωr̃
It follows that, by (1.7), for every ε ∈ (0, ε0)

v(r̃ + ε) =

∫
(r̃+ε)UK

χ((r̃ + ε)v)J exp((r̃ + ε)v)ωr̃+ε ≥ C
∫
rUK∩V

J expωr̃.

This contradicts v(r̃+) = 0 and proves (1.16). By (1.16) we deduce that, for every
geodesic ray γv starting from K, there exists tv ≤ r such that γv(tv) ∈ cut(K),
that is, ρ(v) < +∞. Therefore, Uρ ≡ UK and, since K is compact, M is compact
by Theorem 1.1, against our assumptions. �

Corollary 1.7. In the assumptions of Proposition 1.6, v(r) has at most a
countable number of discontinuities.

Proof. Define

(1.17) Q(r) = e−1
ρ (∂Br ∩ cutnc(K)).
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By (1.11), 2vol(eρ(Q(r))) is the downward jump of v(r). The sets Q(r) are pairwise
disjoint in UK . Write | · | for the measure induced on UK by i∗1( , ). Since UK is
compact, |UK | < +∞ so that each Ai = {r ≥ 0 : |Q(r)| > 1/i}, i ∈ N, has finitely
many elements, whence A =

⋃∞
i=1Ai is at most countable. To prove the sought it

is enough to show that, if vol(eρ(Q(r))) > 0, then |Q(r)| > 0. Let r be such that
vol(eρ(Q(r))) > 0. By (1.5) and Proposition 1.2

(1.18) vol(eρ(Q(r))) =

∫
rUK

ψ(rv)J exp(rv)ωr

where ψ(rv) = 1
2 if v ∈ Q(r), 0 otherwise. Hence,

0 < vol(eρ(Q(r))) =
1

2

∫
Q(r)

J exp(rv)ωr ≤ C1

∫
Q(r)

J exp(v)ω1 ≤ C2|Q(r)|,

for some C1 = C1(r) > 0, C2 = C2(r) > 0, as desired. �

It can be shown that, if M and K are real analytic (anyway, the case K = {o} is
allowed), v(r) is continuous on R+. The result has been proved by F. Fiala [Fia41]
when M is an analytic closed curve on an analytic surface M , and by R. Grimaldi
and P. Pansu for general M and K = {o}. The argument in [GP94], Theorem 2 is
as follows: if by contradiction Z = ∂Br ∩ cutnc(K) has positive Hausdorff measure,
since eρ is locally Lipschitz e−1

ρ (Z) has positive Hausdorff measure. Moreover, from
the characterization

e−1
ρ (Z) =

{
v ∈ UK : exp(2rv) ∈ K

}
,

e−1
ρ (Z) is an analytic subset of UK . Hence, e−1

ρ (Z) ≡ UK . Consequently, M ≡
Br(K) is compact, contradicting our assumptions.

We conclude this section by recalling an integral inequality for Riemann surfaces
that extends the Gauss-Bonnet theorem. This has been addressed by [Har64a] and
[ST93]. To deal with the regularity of l(r) = vol(∂Br) when M is a complete Rie-
mann surface, the authors defined the jump function ([Har64a], equation (6.10))

(1.19) J(r) =
∑

0≤t≤r

∫
Q(t)

J exp(tv)ωt,

where Q(t) is as in (1.17) and the sum contains at most countably many elements
by Corollary 1.7. Furthermore, they defined as L(r) ([Har64a], equation (6.8))
what is in our notations l(r−). Then, they proved that L(r) + J(r) is absolutely
continuous on R+. By (1.17), (1.18) and Proposition 1.6 we deduce that

l(r) = L(r) + vol(∂Br ∩ cutnc(K)) = L(r) +
1

2

∫
Q(r)

J exp(rv)ωr.

Hence, setting

(1.20) j(r) =
∑

0≤t<r

∫
Q(t)

J exp(tv)ωt +
1

2

∫
Q(r)

J exp(rv)ωr,

j(r) shares the same properties as J(r) and L(r) + J(r) = l(r) + j(r). With the
aid of Proposition 1.5, Theorems 6.2 and Corollary 6.1 of [Har64a], together with
Theorems 2.2 and 3.2 of [ST93] can be restated as follows.
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Proposition 1.8. Let M be a connected, complete Riemann surface, and let
K be either a smooth, simple closed curve or a point. Set l(r) = vol(∂Br), and
define j as in (1.20). Then, the function

l(r) + j(r)

is absolutely continuous on R+. Furthermore, for every 0 ≤ R1 < R2

(1.21) l(R2)− l(R1) ≤
∫ R2

R1

l′(s)ds ≤ 2π

∫ R2

R1

χE(s)ds−
∫ R2

R1

k(s)ds.

1.2. Model manifolds and basic comparisons

Let (M, 〈 , 〉) denote a connected, complete Riemannian manifold of dimension
m ≥ 2, with volume element dV . For every x ∈ M , let r(x) be the distance
function from a reference origin o ∈ M . As we observed in the previous section,
r(x) is Lipschitz on M and smooth on Do = M\({o} ∪ cut(o)). We recall that o is
called a pole if cut(o) = ∅. Comparison results for the Hessian and the Laplacian of
r may be considered a first instance where an extensive use of ODE theory comes
into play. The material covered by this section is mostly contained in Section 2 of
[PRS08], which is itself motivated by the analytic approach of P. Petersen, [Pet97].
The reasoning relies on some comparisons theorems for Riccati type equations that
follow from Sturm type arguments, which we briefly recall for the convenience of
the reader.

Theorem 1.9 (Sturm arguments, [Swa68]). Let G ∈ L∞loc(R).

(1) Let g1, g2 be solutions of{
g′′1 −Gg1 ≤ 0

g1(0) = 0,
,

{
g′′2 −Gg2 ≥ 0

g2(0) = 0,
and 0 < g′1(0) ≤ g′2(0).

Let Ij = (0, Sj), j ∈ {1, 2}, be the maximal interval where gj is positive.
Then, S1 ≤ S2, g′1/g1 ≤ g′2/g2 and g1 ≤ g2 on I1. If g1(S) = g2(S) for
some S ∈ I1, then g1 ≡ g2 on [0, S).

(2) Let g1, g2 satisfy g′′1 − Gg1 ≤ 0, g′′2 − Gg2 ≥ 0 on [a, b] ⊂ R. If g2(a) =
g2(b) = 0 and g2(s) 6= 0 for each s ∈ (a, b), then either g1 has a zero in
(a, b) or g1 = kg2 on [a, b], for some k ∈ R.

Proof. (1) Let I = I1 ∩ I2. On it, we define F = g2g
′
1− g1g

′
2. Then, F (0) = 0

and F ′ ≤ 0 on I, therefore F ≤ 0 on I. It follows that, on I, (g1/g2)′ ≤ 0, hence
g′1/g1 ≤ g′2/g2. Since, by De L’Hopital theorem, (g1/g2)(0+) ≤ 1, we deduce that
g1 ≤ g2 on I, and thus S1 ≤ S2, that is, I = I1, as claimed. The equality case
follows easily from the above reasoning. To prove (2), suppose that g1 has no zeroes
in (a, b). Without loss of generality, we can assume that g1 and g2 are positive on
(a, b). Having defined F as in (1) we obtain F ′ ≤ 0. Integrating on [a, b] and using
g1 ≥ 0, g2(a) = g2(b) = 0, g′2(a) ≥ 0 and g′2(b) ≤ 0 we deduce that necessarily
F ′ ≡ 0, hence F is constant. Since F (a) ≤ 0 and F (b) ≥ 0 we deduce that F ≡ 0,
so that g1/g2 is constant on [a, b]. �

Corollary 1.10. Let G ∈ L∞loc(R), and let g1, g2 be two distinct solutions of
g′′ −Gg = 0. Then, the zeroes of g1 interlace with those of g2.

Proof. It follows immediately from Sturm argument (2) interchanging the
role of g1 and g2. �
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Remark 1.11. As a straightforward consequence of the above Corollary, each
function g satisfying g′′ − Gg = 0 on R has the same number of zeroes, possibly
infinite. Thus the ODE g′′−Gg = 0 is oscillatory if some (hence any) solution g has
infinitely many zeroes, and nonoscillatory if some (any) solution has only finitely
many zeroes. We point out that the number of zeroes of each solution is related
to the spectral theory of −d2/ds2 + G on the real line. The interested reader can
consult [Wei87] for further study.

Next, we prove two variants of the comparison theorem for Riccati equations
that follows from Sturm type arguments.

Proposition 1.12 (Riccati comparison). Let I = [s0, S) for some −∞ < s0 <
S ≤ +∞, and let G ∈ C0(I), α > 0. Let φi ∈ AC(I), i = 1, 2 be positive solutions
respectively of the Riccati differential inequalities

φ′1 +
φ2

1

α
≤ αG, φ′2 +

φ2
2

α
≥ αG

and suppose that φ1(s0) ≤ φ2(s0). Then, φ1 ≤ φ2 on I.

Proof. The functions gi defined by

gi(s) = exp

(∫ s

s0

φi(τ)

α
dτ

)
,

satisfy g1(s0) = g2(s0), g′1(s0) ≤ g′2(s0) and

g′′1 −Gg1 ≤ 0, g′′2 −Gg2 ≥ 0.

The desired conclusion follows by applying Sturm argument. �

Proposition 1.13. Let G ∈ C0(R+
0 ) and let φi ∈ AC((0, S)), i = 1, 2, be

positive solutions respectively of the Riccati differential inequalities

φ′1 +
φ2

1

α
≤ αG, φ′2 +

φ2
2

α
≥ αG

a.e. on (0, S), for some α > 0, satisfying the asymptotic relation

(1.22) φi(s) =
βi
s

+O(1), as s→ 0+,

for some 0 < β1 ≤ β2. Assume that β1 + β2 − α ≥ 0. Then φ1 ≤ φ2 on (0, S).

Proof. The idea is the same as above. Since φ̃i = α−1φi satisfies the assump-
tions with α = 1 and βi replaced by βi/α, we may assume α = 1. Observing that
φi(s)− βi/s is integrable in a neighbourhood of zero, we set

(1.23) gi(s) = sβi exp

{∫ s

0

(
φi(τ)− βi

τ

)
dτ

}
.

Then gi(0) = 0,

(1.24) g′i = φigi ∈ AC((0, S)) and g′′1 −Gg1 ≤ 0, g′′2 −Gg2 ≥ 0.

From (1.22), g′i ∼ βisβi−1 as s→ 0+. Now, we apply Sturm argument: from (1.24)
we deduce (g1g

′
2 − g2g

′
1)′ ≥ 0. From

g1(s)g′2(s) ∼ β2s
β1+β2−1, g2(s)g′1(s) ∼ β1s

β1+β2−1 as s→ 0+,
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and the assumptions β1+β2−α ≥ 0 and 0 < β1 ≤ β2, we get lims→0+(g1g
′
2−g2g

′
1) ≥

0, hence g1g
′
2 − g2g

′
1 ≥ 0 on (0, S), that is,

φ2 =
g′2
g2
≥ g′1
g1

= φ1,

and this concludes the proof. �

The comparison theory for Riccati equations can be implemented in the matrix-
valued setting. Let E be a finite dimensional vector space endowed with an inner
product 〈 , 〉 and induced norm ‖ · ‖, and let S(E) be the space of self-adjoint
linear endomorphisms of E. We say that A ∈ S(E) satisfies A ≥ 0 if A is positive
semidefinite. Analogously, we say that A ≤ B if B−A is positive semidefinite. We
denote with I ∈ S(E) the identity transformation. The following comparison result
is due to J.H. Eschenburg and E. Heintze [EH90].

Theorem 1.14 (Matrix Riccati comparison, [EH90]). Let Ri : R+
0 → S(E),

i = 1, 2 be smooth curves, and assume that R1 ≤ R2. For each i, let Bi : (0, si)→
S(E) be a maximally defined solution of the matrix Riccati equation

B′i +B2
i = Ri.

Suppose that U = B2 − B1 can be continuously extended at s = 0 and U(0+) ≥ 0.
Then,

s1 ≤ s2 and B1 ≤ B2 on (0, s1).

Furthermore, d(s) = dim kerU(s) is non-increasing on (0, s1). In particular, if
B1(s̃) = B2(s̃), then B1 ≡ B2 on (0, s̃).

Proof. Set s0 = min{s1, s2} and observe that, on (0, s0), U = B2−B1 satisfies

(1.25) U ′ = UX +XU + S, where


S = R2 −R1 ≥ 0

X = −1

2
(B2 +B1).

We claim that X is bounded from above near s = 0. Indeed, by the Riccati equation
B′i ≤ Ri, hence for every unit vector x ∈ E the function ηi(s) = 〈Bi(s)x, x〉 satisfies
η′i ≤ 〈Ri(s)x, x〉 ≤ ‖Ri(s)‖ ≤ C, where the last inequality follows since Ri is
bounded on [0, s0]. Integrating on some [s, s̃] ⊂ (0, s0),

ηi(s) ≥ −C(s̃− s) + ηi(s̃) ≥ −Cs̃− ‖Bi(s̃)‖
independently on x. Therefore, each Bi is bounded from below as s→ 0, and thus
there exists a > 0 such that X ≤ aI near s = 0, as claimed. The solution U of
(1.25) can be computed via the method of the variation of constants. First, fix
s̃ ∈ (0, s0) and consider the solution g of the Cauchy problem{

g′ = Xg

g(s̃) = I,

where I ∈ S(E) is the identity. Then, g is nonsingular on (0, s0): indeed, its inverse
is given by the function g satisfying g′ = −gX, g(s̃) = I. The general solution U
of (1.25) is thus

(1.26) U = gV gt,

Where V : (0, s0)→ S(E) is the general solution of

V ′ = g−1S(g−1)t.



1.2. MODEL MANIFOLDS AND BASIC COMPARISONS 13

Since S ≥ 0, we deduce V ′ ≥ 0. Hence, for every fixed x ∈ E, 〈V (s)x, x〉 :
(0, s0)→ R is non-decreasing. This shows that the pointwise limit 〈V (0)x, x〉 exists,
possibly infinite. We claim that 〈V (0)x, x〉 is finite, hence V (0) can be defined by
polarization. Furthermore, we shall show that V (0) ≥ 0. Towards this aim, from
(1.26) and setting, for notational convenience, h = (g−1)t,

(1.27) 〈V x, x〉 = 〈g−1U(gt)−1x, x〉 = 〈U(g−1)tx, (g−1)tx〉 = 〈Uhx, hx〉,
so that

|〈V x, x〉| ≤ ‖U‖ · ‖hx‖2.
Since, by assumption, ‖U‖ is bounded as s→ 0, to prove that |〈V x, x〉| is bounded
in a neighbourhood of zero we shall show that so is the function f(s) = ‖h(s)x‖2.
Note that, by its very definition and the properties of g, h′ = −Xh. Hence,

f ′(s) = 2〈h′(s)x, h(s)x〉 = −2〈Xh(s)x, h(s)x〉 ≥ −2af.

By Gronwall lemma, f cannot diverge as s → 0+, as required. As a consequence,
for every sk → 0 the set {yk} = {h(sk)x} ⊂ E is bounded. By compactness, up to
a subsequence yk → y, for some y ∈ E. Therefore, by (1.27)

〈v(0)x, x〉 = lim
k
〈V (sk)x, x〉 = lim

k
〈U(sk)yk, yk〉 = 〈U(0)y, y〉 ≥ 0,

hence V (0) ≥ 0. From V ′ ≥ 0, we deduce V ≥ 0, thus by (1.26) U ≥ 0, as
desired. Since V is non-negative and non-decreasing, so is dim kerV (s). By (1.26),
dim kerV (s) = dim kerU(s) = d(s), and this concludes the proof. �

We briefly recall the procedure that yields the classical Hessian, Laplacian and
volume comparison theorems. In the notation of Section 1.2, let p ∈ Do, and let
γ : [0, r(x)] → M be the minimizing geodesic from o to p, so that r(γ(s)) = s and
∇r ◦ γ = γ′ for every s. Fix a local orthonormal coframe {ei} around p, with dual
coframe {θi}, 1 ≤ i ≤ m, so that the (1, 3)-curvature tensor is given by

Rijktθ
k ⊗ θt ⊗ θj ⊗ ei, Rijkt = 〈R(ek, et)ej , ei〉 = −〈R(ei, ej)ek, et〉

Then γ′ = ∇r = riei, dr = riθ
i and differentiating riri = 1 we obtain

(1.28) rijri = 0 that is, Hess r(∇r, ·) = 0.

A further covariant differentiation of (1.28) gives

rijkri + rijrik = 0.

By Schwarz symmetry of second derivatives of r and the Ricci commutation rules

uijk = uikj + utR
t
ijk ∀ u ∈ C3(M)

we get

0 = rijkri + rijrik = rjikri + rijrik = rjkiri + rtR
t
jikri + rijrik.

Contracting the above relation with two parallel vector fields X = Xjej , Y = Y jej
along γ and perpendicular to ∇r we obtain

0 = rjkiX
jY kri +XjY krtriR

t
jik + rijrikX

jY k.

Using Koszul notation and denoting with hess r the (1, 1) version of Hess r, the
above relation reads
(1.29)

0 = 〈∇hess r(X;∇r), Y 〉+ 〈hess (r)(X),hess (r)(Y )〉+ 〈R(X,∇r)∇r, Y 〉 = 0.
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Since hess r is self-adjoint, denoting with Rγ the self-adjoint map

(1.30) X 7→ Rγ(X) = R(X,∇r)∇r,

and with a prime the covariant differentiation along γ, (1.29) becomes

(1.31) 0 = 〈
(
(hess r)′ + (hess r)2 +Rγ

)
(X), Y 〉 = 0 ∀ X,Y ∈ ∇r⊥ parallel.

Note that, by (1.28) and the properties of the curvature tensor, both hess r and
Rγ can be thought as endomorphisms of ∇r⊥. Furthermore, for every unit vector
X ∈ ∇r⊥,

(1.32) 〈Rγ(X), X〉 = K(X ∧∇r) = Krad(X),

that is, the sectional curvature of X ∧∇r. Since X and Y are arbitrary, we have

(1.33) (hess r)′ + (hess r)2 +Rγ = 0

as a section of End(∇r⊥) along γ. By parallel translation, we can identify the fibres
of the vector bundle ∇r⊥. Indeed, if we consider an orthonormal basis {Ei} ⊂ ∇r⊥
of parallel vector fields along γ, and we denote with B = (rij), Rγ = ((Rγ)ij) the
representation of hess r|∇r⊥ and Rγ in the basis {Ei}, (1.33) becomes the matrix
Riccati equation

(1.34) B′ +B2 +Rγ = 0.

Taking into account the asymptotic relation (1.14) for K = {o}

Hess r =
1

s

(
〈 , 〉 − dr ⊗ dr

)
+ o(1) as s→ 0+,

and B satisfies

(1.35)

{
B′ +B2 +Rγ = 0 on (0, r(x)]

B(s) = s−1I + o(1) as s→ 0+.

Now, assume either

(i) : Krad ≥ −G(r) or (ii) : Krad ≤ −G(r),

for some G ∈ C0(R+
0 ). Henceforth, (i) (resp. (ii)) means that the inequality

K(Π)(x) ≥ −G(r(x)),

(resp, ≤) holds for every 2-plane Π containing ∇r. Then, by (1.32), respectively

(i) : Rγ(s) ≥ −G(s)I, (ii) : Rγ ≤ −G(s)I,

and by (1.34) this yields the following matrix Riccati inequalities:

(1.36)

case (i) :

{
B′ +B2 ≤ GI,

B(s) = s−1I + o(1) as s→ 0+;

case (ii) :

{
B′ +B2 ≥ GI,

B(s) = s−1I + o(1) as s→ 0+;
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Now, consider a solution g to{
g′′ −Gg ≥ 0

g(0) = 0, g′(0) = 1
for (i),

{
g′′ −Gg ≤ 0

g(0) = 0, g′(0) = 1
for (ii),

and assume that g is positive on some maximal interval I = (0, R0). Setting
Bg = (g′/g)I, we have that

(1.37)

case (i) :

{
B′g +B2

g ≥ GI,

Bg(s) = s−1I + o(1) as s→ 0+;

case (ii) :

{
B′g +B2

g ≤ GI,

Bg(s) = s−1I + o(1) as s→ 0+.

By the matrix Riccati Comparison 1.14, B ≤ Bg when (i) holds, and B ≥ Bg
under assumption (ii). Together with (1.28) and the definition of B this yields the
following

Theorem 1.15 (Hessian comparison). Let (M, 〈 , 〉) be a complete manifold of
dimension m. Having fixed an origin o, let r(x) be the distance function from o and
let Do = M\({o} ∪ cut(o)) be the maximal domain of normal geodesis coordinated
at o. Consider a function G ∈ C0(R+

0 ), let g be the solution of the Cauchy problem

(1.38) (i)

{
g′′ −Gg ≥ 0

g(0) = 0, g′(0) = 1,
or (ii)

{
g′′ −Gg ≤ 0

g(0) = 0, g′(0) = 1,

and let (0, R0) be the maximal interval in R+ where g > 0. Then,

(1) If the radial sectional curvature Krad satisfy

Krad(x) ≥ −G(r(x)) on BR0
(o),

then

Hess r(x) ≤ g′(r(x))

g(r(x))

(
〈 , 〉 − dr ⊗ dr

)
on Do ∩BR0(o)

in the sense of quadratic forms, where g(r) solves (i).
(2) If the radial sectional curvature Krad satisfy

Krad(x) ≤ −G(r(x)) on BR0(o),

then

Hess r(x) ≥ g′(r(x))

g(r(x))

(
〈 , 〉 − dr ⊗ dr

)
on Do ∩BR0

(o)

in the sense of quadratic forms, where g(r) solves (ii).

The above theorem and the next ones are essentially comparisons with a model
manifold in the sense of R.E. Greene and H. Wu, [GW79]. Since models will be
repeatedly used in the rest of this work, we feel convenient to recall their definition
and basic properties.
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Definition 1.16. A Riemannian manifold (Mg,ds
2) is called a model if Mg is

diffeomorphic to Rm, there exists a point o ∈ Mg such that expo : ToMg → Mg is
a diffeomorphism, the metric ds2 is radially symmetric and writes, in global polar
geodesic coordinates around o, as

ds2 = dr2 + g(r)2dθ2,

where with the symbol dθ2 we mean the standard metric on the unit sphere Sm−1,
and g ∈ C∞(R+

0 ), g > 0 on R+ satisfies the following conditions at r = 0:

g′(0) = 1, g(2k)(0) = 0 for every k = 0, 1, 2, . . . .

Here, g(j) denotes the j-iterated derivative of g.

The conditions imposed on g at r = 0 are necessary and sufficient to ensure
that ds2 can be smoothly extended in a neighbourhood of o. Typical examples
of model manifolds are Rm, for which g(r) = r, and the hyperbolic space HmB of
sectional curvature −B2 < 0, where g(r) = B−1 sinh(Br). A model manifold enjoys
the following properties (see [Pet97], Section 1.4)

- The tangential sectional curvature at x ∈ Mg, r(x) = r, is K(X ∧ Y ) =
[1− (g(r)′)2]/g(r)2 for every orthogonal pair of unit vectors X,Y ∈ ∇r⊥x .

- The radial sectional curvature at x, r(x) = r, is Krad(X) = −g′′(r)/g(r)
for every unit vector X ∈ ∇r⊥x . Consequently, the operator Rγ in (1.30)
is −g′′/gI and by (1.33)

Hess r(x) =
g′(r)

g(r)

(
ds2 − dr ⊗ dr

)
on Mg\{o}.

- The Laplacian of r at x, r(x) = r, is ∆r(x) = (m − 1)g′(r)/g(r); the
volume of the geodesic spheres and balls centered at o is, respectively,
given by

vol(∂Br) = ωm−1g(r)m−1, vol(Br) = ωm−1

∫ r

0

g(s)m−1ds,

where ωm−1 is the volume of the unit sphere Sm−1.

In what follows, we will often consider models with given radial sectional curvature
G(r) = −g′′(r)/g(r) ∈ C∞(R+

0 ). Clearly, a model (Mg,ds
2) is uniquely determined

by G once g is a solution of{
g′′ −Gg = 0 on R+

g(0) = 0, g′(0) = 1.

Before considering the Laplacian and volume comparison theorems, we spend a
few words on Jacobi tensors along geodesics, that can be easily constructed starting
from the Riccati equation for hess r. For a more detailed treatment, see [EO80].
If x, γ,Rγ , B are as in the proof of Theorem 1.15, consider the solution W of the
following problem: {

W ′ =
(
B − s−1I

)
W on [0, r(x)]

W (0) = I.

Note that, from the asymptotic properties of B in (1.35), W is well defined and
invertible on [0, r(x)]. The tensor field J(s) = sW (s) is thus invertible on (0, r(x)]
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and solves

(1.39) J ′ = BJ on (0, r(x)] and

{
J ′′ +RγJ = 0 on (0, r(x)]

J(0) = 0, J ′(0) = I.

By the linearity of (1.39), J is smooth on [0, r(x)] and can be smoothly extended on
the whole R+

0 . J is called a Jacobi tensor along the geodesic γ. It is easy to see that
J is characterized by the property that, whenever X ⊥ γ′ is a unit parallel vector
field along γ, JX ⊥ γ′ is a Jacobi field. Therefore, a point y = γ(s1) is conjugate to
o along γ if and only if J is not invertible at s1. On the maximal interval where J is

invertible, say (0, s1), we can define a function B̂ by setting B̂ = J ′J−1. Then, by

(1.39) B̂ extends B and solves the Riccati equation (1.34). Moreover, if s1 < +∞,
B cannot be defined past s1. Indeed, let X be a unit parallel vector field such that
JX(s1) = 0. Then, since JX 6≡ 0, (JX)′(s1) 6= 0. Therefore, by (1.39)

〈BJX, JX〉
|JX|2

=
〈J ′X, JX〉
|JX|2

=
1

2

d

ds
log |JX|2 → −∞ as s→ s−1 .

This means that the function hess r ◦ γ can be extended past the cut-point of o
along γ, if the cut-point is non-focal, and the maximal extension is defined on
(0, s1), where γ(s1) is the first focal point of o along γ. At γ(s1), however, hess r ◦γ
presents a singularity, and more precisely it is unbounded from below as s→ s1.

The Laplacian comparison theorem from below is simply obtained by tracing
the inequalities of the Hessian comparison Theorem 1.15, (2).

Theorem 1.17 (Laplacian comparison from below). Let (M, 〈 , 〉) be a complete
manifold of dimension m with a pole o. Consider a function G ∈ C0(R+

0 ), and let
g be the solution of the Cauchy problem

(1.40)

{
g′′ −Gg ≤ 0

g(0) = 0, g′(0) = 1.

Suppose that g > 0 on R+. Then, if

Krad(x) ≤ −G(r(x)) for every x ∈M\{o},

the inequality

(1.41) ∆r(x) ≥ (m− 1)
g′(r(x))

g(r(x))

holds pointwise on M\{o} and weakly on M .

Remark 1.18. The weak inequality is simple to show, since by (1.15) ∆r has
an integrable singularity near r = 0.

In particular, when G(r) = B2 for some B > 0 we can choose

g(r) = B−1 sinh(Br), hence ∆r(x) ≥ (m− 1)B coth
(
Br(x)

)
on M\{o}.

This last bound will be often applied in forecoming sections. However, a similar
upper estimate for ∆r holds under the weaker assumption of a lower bound on the
Ricci curvature, and even past the cut-locus, as the next theorem shows.
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Theorem 1.19 (Laplacian comparison from above). In the notations of the
previous theorem, assume that the radial Ricci curvature satisfy

(1.42) Ricc(∇r,∇r)(x) ≥ −(m− 1)G(r(x)) on Do,

for some function G ∈ C0(R+
0 ), and let g ∈ C2(R+

0 ) be a solution of

(1.43)

{
g′′ −Gg ≥ 0

g(0) = 0, g′(0) = 1.

Let (0, R0) be the maximal interval where g is positive. Then,

(1.44) Do ⊂ BR0

and the inequality

(1.45) ∆r(x) ≤ (m− 1)
g′(r(x))

g(r(x))

holds pointwise on Do and weakly on M .

Proof. Tracing (1.33) with respect to a parallel orthonormal frame {Ej} for
∇r⊥ along γ, and using that

〈(hess r)′(Ej), Ej〉 =
d

ds
〈hess r(Ej), Ej〉 =

d

ds

(
Hess r(Ej , Ej)

)
we deduce

(1.46) (∆r)′ + |Hess r|2 + Ricc(∇r,∇r) = 0.

From Newton inequality and (1.28), |Hess r|2 ≥ (∆r)2/(m − 1), and from the as-
ymptotic behaviour (1.14) and (1.42), we infer that ∆r satisfies

(1.47)


(∆r)′ +

(∆r)2

m− 1
− (m− 1)G ≤ (∆r)′ +

(∆r)2

m− 1
+ Ricc(∇r,∇r) ≤ 0,

∆r(s) =
m− 1

r
+ o(1) as s→ 0+.

Now, if g solves (1.43), h = (m− 1)g′/g is a solution of

h′ +
h2

m− 1
− (m− 1)G ≥ 0,

and we apply the Riccati comparison Proposition 1.13 to conclude the validity of
(1.45) on Do∩BR0(o). Next, we show that Do ⊂ BR0(o). A computation in normal
coordinates gives

(1.48) ∆r =
∂

∂r
log
√
g(r, θ),

where g(r, θ) is the determinant of the metric in this coordinate system. Thus,
(1.45) on Do ∩BR0(o) reads

∂

∂r
log
√
g(r, θ) ≤ (m− 1)

h′(r)

h(r)
.

Integrating and using the asymptotic behaviour in 0 we get, for each unit vector
θ ∈ ToM , √

g(r, θ) ≤ h(r)m−1 ∀ r ∈ [0,min{c(θ), R0}),
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c(θ) being the distance between o and the first cut-point along the geodesic γθ.
Since g(r, θ) > 0 on Do, we shall have R0 ≥ c(θ), that is, Do ⊂ BR0 . We are left to
show the weak inequality, that is,

(1.49) −
∫
M

〈∇r,∇ϕ〉 ≤ (m− 1)

∫
M

g′(r)

g(r)
ϕ ∀ 0 ≤ ϕ ∈ Lipc(M).

Now, observe that if ĝ solves (1.43) with the equality sign, by a Sturm type argument
and the positivity of ϕ we get

ϕ
ĝ′(r)

ĝ(r)
≤ ϕg

′(r)

g(r)
.

Therefore, it is enough to show (1.49) when g solves (1.43) with the equality sign.
Let Eo be the star-shaped domain of the normal coordinates in ToM . Then, Eo
can be exhausted by an increasing family of smooth star-shaped domains {Ej}. Let
Ωj = expo(Ej) and denote with νj the outward pointing unit normal to ∂Ωj . Note
that

⋃
j Ωj differs from M by the zero measure set cut(o). Consider a decreasing

sequence {εj} converging to zero such that Bε1(o) ⊂ Do, and set Bj = Bεj (o).
Then, for every 0 ≤ ϕ ∈ Lipc(M), since Bj is regular,

−
∫
M

〈∇r,∇ϕ〉 = − lim
j→+∞

∫
Ωj\Bj

〈∇r,∇ϕ〉

= lim
j→+∞

[
−
∫
∂Ωj

ϕ〈∇r, νj〉+

∫
∂Bj

ϕ+

∫
Ωj\Bj

ϕ∆r

]
.

Since Ωj is star-shaped, 〈∇r, νj〉 ≥ 0 on ∂Ωj . Letting ε→ 0, the integral over ∂Bj
vanishes and we deduce, using also (1.45) on Ωj\Bj ⊂ Do,

−
∫
M

〈∇r,∇ϕ〉 ≤ lim sup
j→+∞

∫
Ωj\Bj

ϕ∆r ≤ (m− 1) lim sup
j→+∞

∫
Ωj\Bj

g′(r)

g(r)
ϕ.

Since g′/g ∼ 1/r as r → 0, the singularity in r = 0 is integrable. It remains to
show that the limit of the RHS exists. This requires a little care. We define

Uj = {x ∈ Ωj\Bj : g′(r(x)) ≥ 0} , Vj = {x ∈ Ωj\Bj : g′(r(x)) < 0} ,

And we note that both {Uj} and {Vj} are increasing sequences. We split the RHS
as the sum of an integral over Uj and an integral over Vj . Clearly, by the monotone
converge theorem, both integrals have a limit as r → +∞. Thus, it is enough
to show that the integral over Uj has a finite limit. Let BR be a geodesic ball
containing suppϕ, and let B > 0 be sufficiently large that G(r) ≥ −B2 on BR. We
consider the function

g̃(r) =
1

B
sinh(Br), which solves

{
g̃′′ −B2g̃ = 0;

g̃(0) = 0, g̃′(0) = 1.

By Sturm argument we get

g′(r)

g(r)
≤ B coth(Br) on (0, R),

hence ∫
Uj

g′(r)

g(r)
ϕ ≤ B

∫
Uj

ϕ coth(Br) ≤ B
∫
M

ϕ coth(Br) < +∞.
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Concluding,

−
∫
M

〈∇r,∇ϕ〉 ≤ (m− 1) lim
j→+∞

∫
Ωj\Bj

g′(r)

g(r)
ϕ = (m− 1)

∫
M

g′(r)

g(r)
ϕ,

and the theorem is proved. �

Remark 1.20. The analytic approach for the Hessian and the Laplacian com-
parison theorems is extremely flexible and can be easily adapted to the more general
diffusion type operator

(1.50) LDu =
1

D
div(D∇u) 0 < D ∈ C2(M), u ∈ C2(M)

on weighted manifolds (M, 〈 , 〉, DdV ). In this situation, the interplay with geome-
try is described through lower bounds on the modified Bakry-Emery Ricci tensor,
which allows to prove a comparison result for LDr analogous to that of Theorem
1.19. There is, nevertheless, a subtle difference with the case of the Laplacian.
Indeed, the asymptotic ∆r ∼ (m− 1)/r + o(1) as r → 0 is trivially replaced with

LDr ∼
m− 1

r
+O(1),

but the Riccati inequality analogous to (1.47) is

(1.51) (LDr)
′ +

(LDr)
2

n− 1
− (n− 1)G ≤ 0,

for some n > m coming from the definition of the modified Bakry-Emery Ricci
tensor (see [MRS10] for details). A solution of (1.51) with the equality sign is
h = (n− 1)g′/g, where g solves g′′ −Gg = 0, g(0) = 0, g′(0) = 1. Clearly,

h(r) ∼ n− 1

r
+ o(1) as r → 0+.

However, the Riccati comparison Proposition 1.13 can be applied with

n− 1 = α = β2 > β1 = m− 1,

and the rest follows the same lines as those described above. Although, in many
instances, the next results can be generalized to include diffusion type operators,
to avoid unessential technicalities no further consideration will be made. The inter-
ested reader can consult the recent [MRS10], Section 2, and the references therein.

Due to the important role played by the solutions g(r) of g′′−Gg = 0, we need
some sufficient condition to guarantee that g > 0 on R+. The next proposition is a
sharpened version of a criterion due to A. Kneser, see [Car92], p.241, and will be
proved in Remark 4.8 and generalized in Theorem 5.44.

Proposition 1.21. Let G ∈ C0(R+
0 ) be such that

(1.52) G− ∈ L1(R+), s

∫ +∞

s

G−(σ)dσ ≤ 1

4
on R+.

Then, every solution of

(1.53)

{
g′′ −Gg ≥ 0 on R+

0 ,

g(0) = 0, g′(0) = 1
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is positive and increasing on R+. If furthermore

(1.54) G(s) ≥ − 1

4s2
on R+,

then g(s) ≥ C
√
s log s on [s1,+∞), for some s1 > 0 and some positive constant

C = C(s1).

Remark 1.22. Hereafter, the next example will be repeatedly used. For every
B ∈ [0, 1/2], the Cauchy problem associated to the Euler equation g′′ +

B2

(1 + s)2
g = 0,

g(0) = 0, g′(0) = 1,

has the explicit, positive solution

g(s) =


√

1 + s log(1 + s) if B = 1/2;

1√
1− 4B2

(
(1 + s)B

′′
− (1 + s)1−B′′

)
if B ∈ [0, 1/2),

where

B′′ =
1 +
√

1− 4B2

2
∈ (1/2, 1]

(see also [Swa68], p.45). For B = 1/2, this example shows that, under assumption
(1.54), the inequality g(s) ≥ C

√
s log s is sharp.

An application of the above Proposition and of the Laplacian comparison The-
orem 1.17 yields the following

Corollary 1.23. Let (M, 〈 , 〉) be a complete, non-compact Riemannian man-
ifold with a pole o and radial sectional curvature satisfying

Krad(x) ≤ −G(r(x)) on M\{o},
where G ∈ C0(R+

0 ) is such that

G− ∈ L1(+∞), and r

∫ +∞

r

G−(σ)dσ ≤ 1

4
on R+

0 .

Then, ∆r > 0 on M\{o}.

Integrating the Laplacian comparison inequalities from below and above we
obtain the Bishop-Gromov volume comparisons. We state the estimate from above.

Theorem 1.24. In the notations of Theorem 1.15, assume that the radial Ricci
curvature satisfies

(1.55) Ricc(∇r,∇r)(x) ≥ −(m− 1)G(r(x)) on Do,

for some function G ∈ C0(R+
0 ), and let g ∈ C2(R+

0 ) be a solution of

(1.56)

{
g′′ −Gg ≥ 0

g(0) = 0, g′(0) = 1,

positive on some maximal interval (0, R0). Then, the functions

(1.57) r 7−→ vol(∂Br)

g(r)m−1



22 1. THE GEOMETRIC SETTING

and

(1.58) r 7−→ vol(Br)∫ r
0
g(s)m−1ds

are non-increasing a.e, respectively non-increasing, on (0, R0), and

(1.59) vol(∂Br) ≤ ωm−1g(r)m−1, vol(Br) ≤ ωm−1

∫ r

0

g(s)m−1ds

on (0, R0), where ωm−1 is the volume of the unit (m− 1)-sphere in Rm.

Proof. We fix 0 < r < R < R0. For any ε > 0, we apply inequality (1.49) to
the radial cut-off function

(1.60) ϕε (x) = ρε (r (x)) g(r(x))−m+1

where ρε is the piecewise linear function

(1.61) ρε (s) =



0 if s ∈ [0, r)

(s− r)/ε if s ∈ [r, r + ε)

1 if s ∈ [r + ε,R− ε)

(R− s)/ε if s ∈ [R− ε,R)

0 if s ∈ [R,∞).

Simplifying, we get

1

ε

∫
BR\BR−ε

g (r(x))
−m+1 ≤ 1

ε

∫
Br+ε\Br

g (r(x))
−m+1

.

Using the co-area formula we deduce that

1

ε

∫ R

R−ε
vol(∂Bs)g(s)−m+1ds ≤ 1

ε

∫ r+ε

r

vol(∂Bs)g(s)−m+1ds

and, letting ε→ 0,

(1.62)
vol(∂BR)

g(R)m−1
≤ vol(∂Br)

g(r)m−1

for a.e. 0 < r < R < R0. Statement (1.58) follows from the first and the coarea for-
mula, since, as observed in Section 4 of [CGT82], for general real valued functions
f (r) ≥ 0, g (r) > 0,

if r → f(r)

g(r)
is decreasing, then r →

∫ r
0
f∫ r

0
g

is decreasing.

Integrating the asymptotic ∆r ∼ (m− 1)/r + o(1) on ∂Br we deduce

(1.63) vol(∂Br) ∼ ωm−1r
m−1

which, together with (1.57), proves (1.59). �

As the above proof and Theorem 1.17 show, the control from below on vol(∂Br)
and the related reversed monotonicity formula require an upper bound on the radial
sectional curvatures and are valid only for regular geodesic balls, that is, geodesic
balls contained in the domain of normal coordinates. For particular G(r), explicit
solutions g of (1.43) can be provided, and will be repeatedly used in the next
sections. The reader can find such g’s in the proof of Theorems 3.16 and 3.18. For
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this reason, here we limit ourselves to state the estimates with no proof. For the
case α = −2 of the upper bounds, we suggest the reader to consult also [CGT82],
Theorem 4.9.

Proposition 1.25 ([PRS08], Proposition 2.1). Let (M, 〈 , 〉) be a complete
Riemannian manifold of dimension m ≥ 2, with radial Ricci curvature satisfying

(1.64) Ricc(∇r,∇r)(x) ≥ −(m− 1)2B2
(

1 + r(x)2
)α/2

on Do,

for some B > 0, α ≥ −2. Then, for r ≥ 1 there exists a constant C > 0 such that

vol(∂Br) ≤ C


exp

{
2B(m−1)

2+α (1 + r)1+α
2

}
if α ≥ 0;

r−
α(m−1)

4 exp
{

2B(m−1)
2+α r1+α

2

}
if α ∈ (−2, 0);

r(m−1)B′ if α = −2,

Where B′ = (1 +
√

1 + 4B2)/2.

Proposition 1.26. Let (M, 〈 , 〉) be a complete Riemannian manifold of di-
mension m ≥ 2, with a pole o and radial sectional curvature satisfying

(1.65) Krad(x) ≤ −B2
(

1 + r(x)2
)α/2

on M\{o},

for some B > 0, α ≥ −2. Then, for r ≥ 1 there exists a constant C > 0 such that

vol(∂Br) ≥ C


r−

α(m−1)
4 exp

{
2B(m−1)

2+α r1+α
2

}
if α ≥ 0;

exp
{

2B(m−1)
2+α (1 + r)1+α

2

}
if α ∈ (−2, 0);

r(m−1)B′ if α = −2,

where B′ = (1 +
√

1 + 4B2)/2.

By using the solutions g described in Remark 1.22, we can easily state volume
comparison theorems under curvature bounds of the type

Ricc(∇r,∇r)(x) ≥ (m− 1)
B2(

1 + r(x)
)2 , resp. Krad(x) ≤ B2(

1 + r(x)
)2 ,

for some B ∈ (0, 1/2]. The reason of the appearance of the constant 1/2 will be
clarified in later sections.

1.3. Some spectral theory on manifolds

Since in the sequel we will be concerned with spectral arguments for some
elliptic operators, we recall a few constructions and results. We assume that the
reader is familiar with the basics of spectral theory on Hilbert spaces, for which
we refer to the book of T. Kato [Kat95] and to the encyclopedic treatise of M.
Reed and B. Simon, especially [RS80], Chapter VIII and [RS75], Chapter X.
The main source for this section is the concise but detailed account in [PRS08],
Section 3, and we suggest the reader to consult the references therein for further
insight. Let (M, 〈 , 〉) be a Riemannian manifold; let A : Γ(TM) → Γ(TM) be a
symmetric endomorphism such that A is positive definite at every point of M , and
let q(x) ∈ L∞loc(M). The regularity A ∈ C1,α

loc , for some α ∈ (0, 1), suffices for our
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purposes. However, in our applications A will always be smooth. In what follows,
we shall be concerned with complex vector fields, and we agree on using the same
symbol A to denote also the quadratic form defined by A(X,Y ) = 〈AX,Y 〉 for each
X,Y ∈ Γ(TMC). Consider the differential operator L : C∞c (M) → C∞c (M) given
by

(1.66) Lu = −div(A∇u)− q(x)u ∀u ∈ C∞c (M).

For convenience, we shall think of L as acting on complex-valued functions. Since
A is symmetric, L is a symmetric linear operator on L2(M) endowed with the inner
product

(u, v)L2 =

∫
M

uv̄, ∀ u, v ∈ L2(M),

where integration is with respect to the volume measure. Thus, by standard spectral
theory, L is closable. Denote with L∗ its adjoint, which by construction is closed
on its domain

D(L∗) =
{
u ∈ L2(M) : Lu ∈ L2(M) as a distribution

}
.

By elliptic regularity of ultra-weak solutions (see [Agm10]), if u ∈ D(L∗) then
u ∈ H2

loc(M), so that

(1.67) D(L∗) =
{
u ∈ H2

loc(M) ∩ L2(M) : Lu ∈ L2(M)
}
.

Since A is real on real vector fields, it is easy to deduce that u ∈ ker(L∗ + i) if and
only if ū ∈ ker(L∗ − i). This shows that the deficiency indices d± = dim ker(L∗ ±
i) are equal, thus by spectral theory L always admits at least one self-adjoint
extension. We recall that the self-adjoint extension is unique if and only if L is
essentially self-adjoint, equivalently if L∗ = L∗∗, and in this case L∗ is the self-
adjoint extension of L.

Let Ω be any open, relatively compact domain of M with Lipschitz bound-
ary, and define L|Ω as the operator L on C∞c (Ω). Indeed, Lipschitz regularity
of the boundary is basically required in order to have the validity of the Rellich-
Kondrachov compactness theorem, see [EG92]. As in (1.67),

(1.68) D(L∗|Ω) =
{
u ∈ H2

loc(Ω) ∩ L2(Ω) : Lu ∈ L2(Ω) as a distribution
}
.

From (L|Ωu, u) ≥ −‖q‖L∞(Ω)‖u‖L2 , L|Ω is bounded from below. The quadratic
form associated to L|Ω is

Q|Ω : C∞c (Ω)× C∞c (Ω) −→ C

u, v −→ (Lu, v)L2 =

∫
Ω

[
A(∇u,∇v̄) + quv̄

]
.

Since q ∈ L∞loc and A is locally equivalent to 〈 , 〉, there exist positive constants

C1, C̃1, C2, C̃2 such that

(1.69) C1‖u‖2H1 ≤ C̃1‖∇u‖2L2 ≤ Q|Ω(u, u) + C̃2‖u‖2L2 ≤ C2‖u‖2H1 ,

where the first inequality is the Poincarè inequality on Ω ([LS84], Corollary 1.1).

The norm induced by Q|Ω + C̃2( , )L2 is therefore the H1 norm, whence the clo-

sure QΩ of Q|Ω is defined on H1
0 (Ω) ×H1

0 (Ω). By standard theory, the Friedrichs
extension LΩ of L|Ω is the self-adjoint extension of L|Ω whose domain is
(1.70)

D(LΩ) =
{
u ∈ H1

0 (Ω) : ∃w ∈ L2(Ω) satisfying QΩ(u, φ) = (w, φ)L2 ∀φ ∈ H1
0 (Ω)

}
,
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the image of u ∈ D(LΩ) being given by LΩu = w. We can also consider the next
bounded, C-linear operator:

(1.71) TΩ : (H1
0 (Ω), ‖ · ‖H1) −→ H−1(Ω), by setting TΩu = QΩ(u, ·),

H−1(Ω) being the dual of H1
0 (Ω) endowed with its operator norm. This is called the

weak extension of L|Ω, often called the extension in the sense of quadratic forms.

By (1.70), TΩ applied to u ∈ D(LΩ) gives rise to the functional (LΩu, ·) ∈ H−1(Ω),
whence u ∈ H1

0 (Ω) belongs to D(LΩ) if and only if TΩu ∈ L2(Ω) ≤ H−1(Ω). If λ ∈
R is sufficiently large, QΩ + λ( , )L2 is continuous and coercive on H1

0 (Ω)×H1
0 (Ω).

Lax-Milgram theorem gives that

(1.72) QΩ(u, ·) + λ(u, ·)L2 = < f, · >,

as an equality in H−1(Ω), has a unique solution u ∈ H1
0 (Ω) for each fixed f ∈

H−1(Ω). Combining (1.71) and (1.72), by the open mapping theorem the operator

TΩ + λ : (H1
0 (Ω), ‖ · ‖H1) −→ H−1(Ω)

is a C-linear homeomorphism. Therefore,

(1.73) L2(Ω) ↪→ H−1(Ω)
(TΩ+λ)−1

−→ H1
0 (Ω) ↪→ L2(Ω)

is a compact map, being the composition of continuous maps with the inclusion

(H1
0 (Ω), ‖ · ‖H1) ↪→ L2(Ω),

which is compact by Rellich-Kondrachov theorem (here the requirement ∂Ω being
of Lipschitz class is essential, see [EG92], Section 4.6). We still denote (1.73) with
(TΩ + λ)−1. By the symmetry of A, (TΩ + λ)−1 is self-adjoint, and the spectral
theorem gives the existence of a sequence of (positive) eigenvalues {σ−1

k }, each

counted with its finite multiplicity, such that σ−1
k → 0+. If {uk} ⊂ L2(Ω) is the

corresponding complete orthonormal set of eigenfunctions in L2(Ω),

(1.74) (TΩ + λ)−1uk = σ−1
k uk, that is, (TΩ + λ)uk = σkuk.

Setting λLk (Ω) = σk − λ, we have thus

(1.75) TΩuk = λLk (Ω)uk ∈ L2(Ω) ≤ H−1(Ω)

in the sense of quadratic forms. By definition, {uk} ⊂ D(LΩ), and (1.74) also
implies the equality L|Ωuk = λLk (Ω)uk in the distributional sense, as we have

(1.76) < L|Ωuk, φ >= (uk, L|Ωφ)L2 = QΩ(uk, φ) = λLk (Ω)(uk, φ)L2

for each φ ∈ C∞c (Ω), where the first equality is by definition, and the second one
follows integrating by parts. Combining with (1.68) we deduce that {uk} ⊂ D(L∗|Ω),

whence D(L∗|Ω) contains an L2 orthonormal basis made up of eigenfunctions. By

Theorem 3.2 of [PRS08], L∗|Ω is essentially self-adjoint on its domain. Being L∗|Ω
closed by construction, L∗|Ω = L∗∗|Ω is self-adjoint, or equivalently (L|Ω, C

∞
c (Ω)) is

essentially self-adjoint. Since L∗∗Ω is the closure of (LΩ, C
∞
c (Ω)) in the graph norm,

we can say that
(1.77)
∀ u ∈ D(L∗Ω) ∃ {uj} ⊂ C∞c (Ω) such that ‖uj−u‖L2 → 0, ‖Luj−Lu‖L2 → 0

as j → +∞.
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Remark 1.27. By Theorem 1.1 of [Tol84], uk ∈ C1,β
loc (Ω). The classical interior

regularity uk ∈ C2,α
loc (Ω), for some α ∈ (0, 1), is attained provided that q ∈ C0,α

loc (Ω).

Summarizing, for relatively compact, open sets Ω with Lipschitz boundary
LΩ ≡ L∗|Ω is the unique self-adjoint extension of L|Ω and, again by Theorem 3.2 of

[PRS08], its spectrum consists of the divergent sequence {λLk (Ω)}. An applications
of the Poincaré-Polya min-max theorem (see [PRS08], Theorem 3.7 and [Dav95],
Theorems 4.5.1, 4.5.2, 4.5.3) gives the characterization
(1.78)

λLk (Ω) = inf
Vk ≤ D(LΩ)

dim(Vk) = k

(
sup

06=u∈Vk

(LΩu, u)L2

‖u‖2L2

)
= inf

Vk ≤ D(LΩ)

dim(Vk) = k

(
sup

06=u∈Vk

QΩ(u, u)

‖u‖2L2

)
,

where the last equality follows from the construction of LΩ, and where D(LΩ) can
be substituted by any core for the quadratic form QΩ, that is, every dense subspace
of (H1

0 (Ω), ‖ · ‖H1). In particular, we can use C∞c (Ω), Lip0(Ω), H1
0 (Ω). Splitting

into real and imaginary parts, it is easy to see that, in (1.78), we can restrict
ourselves to consider real-valued functions u. It is worth to point out that there
is also a complementary max-min principle for λLk (Ω), originating from the works
of H. Weyl and of R. Courant, D. Hilbert. The relationship between the min-max
and the max-min characterizations, together with historical references, is worked
out in detail, for instance, in the paper of W. Stenger [Ste70].

We conclude this short account for LΩ by remarking that each stationary point
u ∈ H1

0 (Ω) of the functional φ 7→ QΩ(φ, φ) satisfies the Euler-Lagrange equations(
QΩ − λL1 (Ω)( , )

)
(u, φ) = 0 for every φ ∈ H1

0 (Ω),

that is, from (1.71), u must be a weak solution of LΩu = λL1 (Ω)u (this is classically
called Courant minimum principle).

Remark 1.28. Let u be a real valued eigenfunction of L relative to the first

eigenvalue λL1 (Ω). As we have observed, u ∈ C1,β
loc (Ω) ∩ H1

0 (Ω). It is well known
that u has constant sign on Ω, and thus λL1 (Ω) is a simple eigenvalue. We briefly
recall how to prove that. Assume by contradiction that u changes sign on Ω. Then,
u+ and u− are nonzero Lip0(Ω) functions, each vanishing on some open subset of
Ω. Applying the weak definition of Lu = λL1 (Ω)u to the test functions u+, and
using the min-max definition of λL1 (Ω) we get

0 =
(
QΩ − λL1 (Ω)( , )

)
(u, u+) ≡

(
QΩ − λL1 (Ω)( , )

)
(u+, u+) ≥ 0,

thus u+ is a minimum of the Rayleigh quotient. Analogously, we can prove that
also u− is a minimum. Hence, by Courant minimum principle u+ and u− are
both eigenfunctions, each vanishing on some nonempty open subset of Ω. This
contradicts the unique continuation property ([Aro57] and [PRS08], Appendix
A). Up to changing the sign, this shows that u ≥ 0 on Ω. The stronger u > 0
follows from the strong maximum principle, see [GT98], p.35. As a consequence,
λL1 (Ω) is a simple eigenvalue, for if not there should be a plane π ⊂ L2(Ω) consisting
of eigenfunctions for λL1 (Ω), and we could find an eigenfunction u2 ⊥ u, which is
impossible since both u, u2 have constant sign. The interested reader should consult
Chapter 1 of [Cha84] for related discussions.
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By the domain monotonicity of eigenvalues (see [Sma65], [Sma67]) or, as
well, by the unique continuation property ([Aro57] and [PRS08], Appendix A),
λLk (Ω) ≥ λLk (Ω′) whenever Ω ⊂ Ω′, and strict inequality holds if Ω′\Ω has nonempty
interior.
We define the index of LΩ, indL(Ω), as

(1.79) indL(Ω) = sup

{
dimV :

V ≤ D(LΩ), dimV <∞,

(LΩu, u)L2 < 0 ∀ 0 6= u ∈ V

}
,

and we observe that we can substitute V ≤ D(LΩ) with subspaces V of any core
for QΩ contained in D(LΩ). By the previous discussion, indL(Ω) coincides with the
number of negative eigenvalues, thus indL(Ω) <∞ and increases when Ω grows.

We now turn to the description of L on C∞c (M). First, the essential self-
adjointness of (L,C∞c (M)) is not automatic. Suppose that L is bounded from
below on C∞c (M), that is, there exists c ∈ R such that

(1.80) (Lu, u)L2 ≥ c‖u‖2L2 ∀u ∈ C∞c (M).

Then, we have the next sufficient condition for complete Riemannian manifolds,
compare also with [Che73], [Kat74] and [Str83].

Proposition 1.29. Let M be a complete Riemannian manifold, and let r(x)
be the distance function from a fixed origin o. Assume that L is bounded from below
on C∞c (M) and that

(1.81) lim inf
r→+∞

‖A‖L∞(Br)

r
< +∞, where ‖A‖L∞(Br) = sup

x∈Br
|A|(x)

and |A|(x) is the Hilbert-Schmidt norm of A at x. Then, (L,C∞c (M)) is essentially
self-adjoint.

Remark 1.30. The above Proposition can be obtained, with minor modifica-
tions, from Theorem 3.12 of [PRS08]. Indeed, the requirement (1.81) allows to
follow the proof step by step up to the desired conclusion. Se also the recent [Mar]
for a mild generalization.

Remark 1.31. Note that (1.81) is met, for instance, when A ≡ Id, that is, for
the Schrödinger operator L = −∆− q(x). For the sake of completeness, even if we
do not address the problem here, we mention that the essential self-adjointness of
−∆− q(x) on C∞c (M), when q has well-behaved singularities, has been proved for
instance in [DG97] and [Agm85].

In general, for arbitrary non-compact Riemannian manifolds L may fail to be
essentially self-adjoint on C∞c (M), even when L is bounded from below. In this
case, L has infinitely many self-adjoint extensions. In what follows, when L is
bounded from below, we agree on considering always the Friedrichs extension LM ,
that is, the self-adjoint extension of L associated to the closure of the quadratic
form

(1.82)

Q : C∞c (M)× C∞c (M) −→ C

u, v −→ (Lu, v)L2 =

∫
M

[
A(∇u,∇v̄) + quv̄

]
,
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with respect to the norm ‖ · ‖Q induced by the inner product Q+ (1− c)( , )L2 on
C∞c (M), where c is as in (1.80). It turns out that
(1.83)

D(LM ) =
{
u ∈ C∞c (M)

‖·‖Q
: ∃w ∈ L2(M) s.t. Q(u, φ) = (w, φ)L2 ∀φ ∈ C∞c (M)

}
,

For such u, LMu = w.

Remark 1.32. From (1.83) it is easy to see that D(LM ) ⊂ H2
loc(M). Indeed,

fix any Ω b U bM and ψ ∈ C∞c (U) such that ψ = 1 on Ω. For u ∈ D(LM ), clearly
ψu ∈ D(LU ). Since L is essentially self-adjoint on C∞c (U), D(LU ) ≡ D(L∗|U ), hence

by the definition (1.68) and regularity of distributional solutions, ψu ∈ H2
loc(U),

thus u ∈ H2(Ω). By the arbitrariness of Ω, u ∈ H2
loc(M), as claimed.

When L is bounded from below on C∞c (M), the min-max prnciple ([PRS08],
Theorem 3.7) can be applied to give the variational characterization of the discrete
part below the bottom of the essential spectrum σess(LM ). Having defined

(1.84) λLk (M) = inf
Vk ≤ D(LM )

dim(Vk) = k

(
sup

06=u∈Vk

Q(u, u)

‖u‖2L2

)
,

one of the following three cases occur:

- σess(LM ) = ∅. In this case, {λLk (M)} consists of all the eigenvalues of
LM , written in increasing order and repeated according to multiplicity,
and λLk (M)→ +∞ as k → +∞;

- σess(LM ) 6= ∅, and there exists C ∈ R such that λLk (M) < C for every k
and λLk (M)→ C. Then, inf σess(LM ) = C, σ(LM )∩ (−∞, C) = {λLk (M)}
and each λLk (M) is an eigenvalue;

- σess(LM ) 6= ∅, and there exists C ∈ R such that λLk (M) < C for every
k ∈ {1, . . . , N} and λLk (M) = C for every k > N . Then, inf σess(LM ) = C,
σ(LM ) ∩ (−∞, C) = {λLk (M)}Nk=1 and each λLk (M), 1 ≤ k ≤ N , is an
eigenvalue.

Again, in (1.84), D(LM ) can be substituted with C∞c (M), Lipc(M) or any other core
for Q. As for (1.78), it is enough to evaluate the Rayleigh quotients on real-valued
u, and for this reason hereafter we consider every function space as consisting only
of real-valued functions. Combining (1.78) and the monotonicity of eigenvalues, we
have

λL1 (M) = inf
{
λL1 (Ω) : Ω ⊂M is a relatively compact domain

}
= lim

j→+∞
λL1 (Ωj),

where {Ωj} is any exhaustion of M by means of increasing, relatively compact
domains with Lipschitz boundary. Moreover, if (L,C∞c (M)) is bounded from below,

(1.85) λLk (M) = lim
j→+∞

λLk (Ωj) ∀ k ≥ 1.

Indeed, if we denote with δk the RHS of (1.85), by the min-max λLk (M) ≤ δk. To
prove the converse, fix ε > 0. Since C∞c (M) is a core for the Friedrichs extension,
there exists a subspace Vk ≤ C∞c (M) such that

(1.86) sup
06=u∈Vk

Q(u, u)

‖u‖2L2

≤ λLk (M) + ε.
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Since Vk ⊂ C∞c (M) is finite dimensional, there exists a large compact set Ω such
that Vk ≤ C∞c (Ω). If j is sufficiently large that Ω ⊂ Ωj , by the min-max and (1.86)
we get λLk (Ωj) ≤ λLk (Ω) ≤ λLk (M) + ε, and the sought follows letting j → +∞ by
the arbitrariness of ε.
For future use, for every subset Z ⊂M we define the “first eigenvalue” of L on Z,
λL1 (Z) as follows:

λL1 (Z) = sup
{
λL1 (Ω) : Z ⊂ Ω and Ω is an open set

}
.

The following theorems are taken from works of D. Fischer-Colbrie [FC85], D.
Fischer-Colbrie and R. Schoen, [FCS80], W.F. Moss and J. Piepenbrink [MP78]
and P. Bèrard, M.P. Do Carmo and W. Santos [BCS97], and have been collected,
in a slightly generalized form, in [PRS08]. Most of the results also appeared
in the paper of S. Agmon [Agm85], where further attention has been paid to
the regularity of q. With the exception of [MP78], all the papers consider the
prototype Schrödinger operator L = −∆− q(x). However, the proofs use only local
arguments and can be rephrased, verbatim, for more general elliptic operators such
as, for instance, those coming from the Newton tensors of an isometrically immersed
oriented hypersurface. For details, see Section 5.5, where we shall use the result
below in this generality.

Theorem 1.33 ([FCS80], [MP78] and [PRS08], Lemma 3.10). Let Ω be an
open set of a Riemannian manifold (M, 〈 , 〉), with possibly non-compact closure,
and let q ∈ L∞loc(Ω). The following facts are equivalent:

(i) There exists w ∈ C1(Ω), w > 0 which solves Lw = 0 weakly on Ω;
(ii) There exists w ∈ H1

loc(Ω), w ≥ 0, w 6≡ 0 which solves Lw ≥ 0 weakly on
Ω;

(iii) λL1 (Ω) ≥ 0.

Definition 1.34. When λL1 (Ω) ≥ 0, we say that L is stable on Ω.

Remark 1.35. We stress that no connectedness of Ω is required. Indeed, the
domain monotonicity of eigenvalues allows us to work on each connected component
separately.

Remark 1.36. Indeed, w ∈ C1,β
loc (Ω), for some β ∈ [0, 1). If q ∈ C0,α

loc (Ω),

α ∈ (0, 1), then w ∈ C2,α
loc (Ω) is a classical solution of Lw = 0.

Corollary 1.37 ([BCS97], Prop. 1 and [PRS08], Theorem 3.12). Let
(M, 〈 , 〉) be a Riemannian manifold. The following statements are equivalent:

(i) L is bounded from below on C∞c (M);
(ii) For every relatively compact open set Ω, L is bounded from below on

C∞c (M\Ω);
(iii) There exists a relatively compact set Ω such that L is bounded from below

on C∞c (M\Ω).

The following theorem is often called the decomposition principle, and origi-
nates from a work of H. Donnelly and P. Li [LD79]. The characterization of the
bottom of the essential spectrum is due to A. Persson in the previous paper [Per60].
We shall remark that the proofs in [BCS97] and [PRS08] require not only that L
is bounded from below, but also that (L,C∞c (M)) is essentially self-adjoint. This
condition, automatic if M is complete and L = −∆ − q(x), turns out to be quite
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restrictive for geometrically relevant operators L whose principal part is, for exam-
ple, a Newton operator (see Section 5.5). Indeed, for those L condition (1.81) in
not automatically satisfied. However, refining the proof in [PRS08], in the recent
[Mar] the author has observed that both the completeness assumption on M and
the essential self-adjointness of (L,C∞c (M)) are, in fact, unnecessary.

Theorem 1.38 ([BCS97], Prop. 2, [PRS08], Theorem 3.15 and [Mar]).
Assume that L is bounded from below on C∞c (M). Then, for every Ω bM ,

(1.87) σess(LM ) ≡ σess(LM\Ω).

Moreover, for every exhaustion {Ωj} ↑M ,

(1.88)

inf σess(LM ) = sup
ΩbM

(
inf σ(LM\Ω)

)
= sup

ΩbM

(
λL1 (M\Ω)

)
= lim

j→+∞

(
λL1 (M\Ωj)

)
= lim

j→+∞

(
inf

06=u∈C∞c (M\Ωj)

Q(u, u)

‖u‖2L2

)
.

The definition of the (spectral) index follows (1.79), that is, indL(M) is the
dimension, possibly infinite, of the spectral projection P(−∞,0)L

2(M):

(1.89) indL(M) = sup

{
dimV :

V ≤ D(LM ), dimV <∞,

(LMu, u)L2 < 0 ∀ 0 6= u ∈ V

}
.

Where any core forQ can replaceD(LM ). Our last task is to explore the relationship
between indL(M) and the index of L on relatively compact domains. We define the

Morse index, ĩndL(M), as

ĩndL(M) = sup
ΩbM

indL(Ω).

Clearly, by the monotonicity of eigenvalues, ĩndL(M) = limj→+∞ indL(Ωj) for
every exhaustion {Ωj}.

Lemma 1.39. indL(M) = ĩndL(M), possibly with infinite values.

Proof. Let n be such that ĩndL(M) ≥ n. Then, there exists Ω b M such
that indL(Ω) ≥ n. Since LΩ is essentially self-adjoint on C∞c (Ω), we can find V ≤
C∞c (Ω), dimV = n, such that Q is negative definite on V . From C∞c (Ω) ≤ D(LM ),

indL(M) ≥ n and this shows that indL(M) ≥ ĩndL(M). To prove the reversed
inequality, we shall need the property that C∞c (M) is a core for the Friedrichs
extension LM . Indeed, in this case D(L) can be replaced with C∞c (M) and the proof
follows the same lines as before. For each finite dimensional V ≤ C∞c (M) where Q
is negative definite, up to taking Ω sufficiently large to contain the support of a basis
of V we obtain V ≤ C∞c (Ω). Using the definitions, indL(M) ≤ supΩbM indL(Ω) =

ĩndL(M). �

The next theorem is a celebrated result of W. Allegretto, D. Fischer-Colbrie,
R. Gulliver and I.M. Glazman, see also [PRS08], Lemma 3.16. We stress that,
as for the above results, the proof for L = −∆ − q(x) can be repeated, almost
word-by-word, for general L.



1.3. SOME SPECTRAL THEORY ON MANIFOLDS 31

Theorem 1.40 ([All74], [FC85], [Gul88], [Gla65] pp.158-159). Let (M, 〈 , 〉)
be a Riemannian manifold, and assume that ĩndL(M) < +∞. Then, there exists
an open, relatively compact set Ω such that λL1 (M\Ω) ≥ 0, that is, the Friedrichs
extension LM\Ω is non-negative.

Proof. The proof is substantially that of [FC85], up to removing the com-
pleteness assumption. Let {Ωj} ↑ M be a smooth exhaustion of M by means of
open, relatively compact smooth domains. If λL1 (Ωj) ≥ 0 for every j, we are done
by setting Ω = ∅, otherwise there exists some j such that λL1 (Ωj) < 0. Without loss
of generality, we can assume j = 1. Since (L,C∞c (Ω1)) is essentially self-adjoint, we
can choose φ1 ∈ C∞c (Ω1) such that (Lφ1, φ1)L2 < 0. Now we consider the annuli
Aj = Ωj\Ω1. If, for every j, λL1 (Aj) ≥ 0 we are done by setting Ω = Ω1, otherwise
there exists j (say j = 2) such that λL1 (Aj) < 0. We choose φ2 ∈ C∞c (A2) such that
(Lφ2, φ2)L2 < 0, and we note that the supports of φ1 and φ2 are disjoint subsets of
Ω2 since Ω1 and A2 are. Repeating the argument on the annuli Ωj\Ω2 and so on,
we can find linearly independent functions {φi} that make the Rayleigh quotient

negative. Since ĩndL(M) < +∞, there are only finitely many φi, say n, hence
λL1 (Ωj\Ωn) ≥ 0 for every j > n. Letting j → +∞ we deduce the claim. �

The problem whether stability outside some compact set Ω, that is,

λL1 (M\Ω) ≥ 0

is equivalent to indL(M) < +∞ has been affirmatively solved, in Euclidean setting,
by J. Piepenbrink in [Pie74b], [Pie74a], [Pie77] under the growth requirement
(1.81). Recently, the result has been given a new, different proof by B. Devyver,
[Dev] for complete manifolds and for operators with A = Id. The interested reader
should also consult [RS78], Chapter 15 and Theorem RSK in [AK]. Here, accord-
ing to [Mar], we present a generalization of Piepenbrink and Devyver’s results.
Next theorem shall also be compared with Proposition 2 of [FC85].

Theorem 1.41. Let (M, 〈 , 〉) be a Riemannian manifold, and let (L,C∞c (M))
be as in (1.66). Then, the following statements are equivalent:

(i) L is bounded from below on C∞c (M) and there exists a relatively compact
set Ω such that L is stable on M\Ω;

(ii) There exists a C1 function w > 0, defined outside some relatively compact
set Ω, such that Lw = 0 weakly on M\Ω;

(iii) There exists a H1
loc function w ≥ 0, w 6≡ 0, defined a.e. outside some

relatively compact set Ω, such that Lw ≥ 0 weakly on M\Ω;

(iv) ĩndL(M) < +∞;
(v) L is bounded from below on C∞c (M) and its Friedrichs extension LM

satisfies indL(M) < +∞, dim ker(LM ) < +∞;

Moreover, if any of the conditions holds, indL(M) = ĩndL(M).

Proof. (v) ⇒ (iv). If (v) holds, by Proposition 1.39 ĩndL(M) = indL(M) <
+∞, and this proves both (iv) and the last statement.
(i)⇔ (ii)⇔ (iii) is Theorem 1.33, together with Remark 1.35 and Corollary 1.37.
(iv) ⇒ (i). By Theorem 1.40, L is stable outside some Ω b M , and thus by
Proposition 1.37 L is bounded from below on C∞c (M), as required.
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(i)⇒ (v). We basically follow the ideas in [Pie74a], Theorem 4.1. If (i) holds, let
w ∈ C1(M\Ω) be the weak solution of Lw = 0 given by (i)⇔ (ii), that is,

(1.90)

∫
M

A(∇w,∇φ) =

∫
M

qwφ for every φ ∈ Lipc(M\Ω),

where Lipc(M\Ω) can be substituted by its closure in the norm induced by the
quadratic form Q in (1.82) restricted to C∞c (M\Ω) × C∞c (M\Ω). In particular,
(1.90) holds for any φ ∈ D(LM\Ω). Fix a relatively compact domain with smooth

boundary Ω′ such that Ω b Ω′, and let ε < dist(Ω,M\Ω′)/2 be sufficiently small
that the function dist(·,M\Ω′) is smooth on Bε(M\Ω′). Denote with ν the outward
pointing unit normal to ∂Ω′. Consider the Lipschitz functions

ϕε(x) =


0 if dist(x,M\Ω′) ≥ ε;
1

ε
[ε− dist(x,M\Ω′)] if dist(x,M\Ω′) ∈ (0, ε)

1 if x ∈ Ω′

and an arbitrary η ∈ D(LM ). We recall that, by Remark 1.32, η ∈ H2
loc(M). Then,

applying (1.90) to the test function φ = ηϕε ∈ D(LM\Ω), letting ε → 0 and using

the coarea formula ([EG92], Theorem 2 p.117) we deduce

(1.91)

∫
M\Ω′

A(∇w,∇η) +

∫
∂Ω′

A(∇w, ν)ηdσ =

∫
M\Ω′

qwη, ∀ η ∈ D(LM ),

where, in the integral on ∂Ω′, dσ is the (m − 1)-dimensional Hausdorff measure,
and the integrand is meant to be in the trace sense. Up to renaming, we write Ω
instead of Ω′. Fix u ∈ D(LM ), and apply (1.91) to η = u2/w to obtain
(1.92)

2

∫
M\Ω

u

w
A(∇w,∇u)−

∫
M\Ω

u2

w2
A(∇w,∇w) +

∫
∂Ω

A(∇w, ν)
u2

w
dσ =

∫
M\Ω

qu2.

From
(1.93)

0 ≤ A
(
∇
( u
w

)
,∇
( u
w

))
=

1

w2
A(∇u,∇u) +

u2

w4
A(∇w,∇w)− 2

u

w3
A(∇w,∇u),

Multiplying the last equality by w2, integrating and inserting into (1.92) we get

(1.94)

∫
M\Ω

[
A(∇u,∇u)− qu2

]
≥ −

∫
∂Ω

u2

w
A(∇w, ν)dσ.

Next, we consider u on Ω. Let Q be the following quadratic form:

Q(φ, φ) =

∫
Ω

[
A(∇φ,∇φ)− qφ2

]
−
∫
∂Ω

1

w
A(∇w, ν)φ2dσ ∀ φ ∈ C∞(Ω).

Since q, A ∈ L∞(Ω) and w ∈ C1(∂Ω), Q is bounded from below on C∞(Ω) and
its closure is on H1(Ω) × H1(Ω). By elliptic regularity up to the boundary, the
solution u of the Euler-Lagrange equations

0 = Q(u, φ) =

∫
Ω

[
A(∇u,∇φ)− quφ

]
−
∫
∂Ω

1

w
A(∇w, ν)uφdσ ∀ φ ∈ H1(Ω).
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is in H2(Ω). Integrating by parts, u solves{
Lu = 0 on Ω,

A(∇u, ν)−
[
A(∇ logw, ν)

]
u = 0.

Let {σk} be the set of min-max levels of the self-adjoint extension of (L,C∞(Ω))
associated to the closure of Q. We claim that σk → +∞, so that there is no essential
spectrum. This follows from a standard compactness argument that we now recall.
Since A is uniformly elliptic on Ω, there exists a constant c > 0 such that

|Q(φ, φ)| ≥ c‖∇φ‖2L2(Ω) − ‖q‖L∞(Ω)‖φ‖2L2(Ω) − ‖A(∇ logw, ν)‖L∞(∂Ω) ‖φ‖
2
L2(∂Ω).

The trace theorem ([EG92], p.134) and Young inequality imply that, for some

positive constants C̃, C with C = C(ε),

‖φ‖2L2(∂Ω) ≤
∫

Ω

|∇φ||φ|+ C̃‖φ‖2L2(Ω) ≤ ε‖∇φ‖
2
L2(Ω) + C‖φ‖2L2(Ω).

Inserting into the above inequality and choosing ε sufficiently small, we deduce
that, for some constant C > 0,

(1.95) |Q(φ, φ)| ≥ c

2
‖∇φ‖2L2(Ω) − C‖φ‖

2
L2(Ω) ∀ φ ∈ H1(Ω).

Assume by contradiction that σk → σ, for some σ ∈ R, and let {vk} ⊂ H2(Ω)
be the associated set of orthogonal eigenfunctions, normalized in L2-norm. Then
by (1.95) {vk} should be bounded in H1 norm, and by Rellich-Kondrachov theo-
rem some subsequence of {vk} should converges in L2(Ω), which contradicts the
orthonormality. Therefore, we can consider the greatest index k1 such that σk1

< 0,
and the greatest index k2 ≥ k1 such that σk2

= 0. Define

V− =< v1, . . . , vk1 >⊂ L2(Ω), V0 =< vk1+1, . . . , vk2 >⊂ L2(Ω)

and V = V− + V0. Note that these subspaces are contained in H2(Ω). By the
min-max characterization, for every nonzero u ∈ H2(Ω), u ⊥ V we deduce
(1.96)

0 < σk2+1‖u‖2L2(Ω) ≤ Q(u, u) =

∫
Ω

[
A(∇u,∇u)− qu2

]
−
∫
∂Ω

1

w
A(∇w, ν)u2dσ.

Extending each vk to be zero outside Ω, and summing up (1.94) and (1.96) we
obtain
(1.97)

(LMu, u)L2 =

∫
M

[
A(∇u,∇u)−qu2

] { ≥ 0 ∀ u ∈ D(LM ) ∩ V ⊥− ,

≥ σk2+1‖u‖2L2(Ω) ∀ u ∈ D(LM ) ∩ V ⊥.

It is now easy to deduce that

(1.98) (1) ind(LM ) ≤ k1, (2) dim ker(LM ) ≤ k2.

For the ease of completeness we give a detailed proof of it. For each given r-
dimensional subspace F ≤ D(LM ), denote with {fi} a chosen basis for F , and with
F|Ω the subspace of L2(Ω) obtained by restricting each function f ∈ F to Ω. We
first address inequality (1). Suppose thus that Q is negative definite on F . We claim
that {fi} is still a basis when restricted to Ω. Indeed, assume by contradiction that
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f = λifi is a non-zero linear combination which is identically zero on Ω. Then,
since the trace of f on ∂Ω is zero, by (1.94)

(LMf, f)L2 = Q(f, f) ≡
∫
M\Ω

[
A(∇f,∇f)− qf2

]
≥ 0,

which contradicts the fact that Q is negative definite on F . To prove (1), we show
that r ≤ k1. Suppose by contradiction that r > k1. Then, since F|Ω is still r-

dimensional, there exists a nonzero f ∈ F|Ω ∩ V ⊥− . Writing f = λifi, f ∈ D(LM )
and, by (1.97), (LMf, f)L2 ≥ 0, contradicting the fact that Q is negative definite
on F .
In a similar way, we prove (2). Let thus F be an r-dimensional subspace of ker(LM ).
We first show that F|Ω is still r-dimensional by verifying that {fi} restricted to Ω is

still a basis. Indeed, if this is not so, let f = λifi is a non-zero linear combination
which is identically zero on Ω. Again by (1.94) and since f ∈ ker(LM ) we deduce

0 = (LMf, f)L2 = Q(f, f) ≡
∫
M\Ω

[
A(∇f,∇f)− qf2

]
≥ 0.

Therefore, inequality in (1.94) must be an equality. In particular, (1.93) must be
an equality, and being A positive definite necessarily f = Cw for some positive
constant C. This is a contradiction since the trace of f on ∂Ω is zero while w
is positive and continuous on ∂Ω. Next, suppose by contradiction that r > k2.
Then, since F|Ω is still r-dimensional, there exists a nonzero f ∈ F|Ω∩V ⊥. Writing

f = λifi, f ∈ ker(LM ) and, by (1.97),

0 = (LMf, f)L2 ≥ σk2+1‖f‖2L2(Ω),

which implies that f is identically zero on Ω. Now, we proceed as above to show that
f = Cw for some positive constant C, which gives the desired contradiction. �

Remark 1.42. The above theorem has the immediate consequence that the
finiteness of indL(M) is a stable property under compactly supported variations of
the potential q(x).



CHAPTER 2

Some geometric examples related to oscillation
theory

The purpose of this section is to describe some geometric problems where the
study of the oscillations of a suitable ODE has an important role. In Section 2.1,
we discuss an ODE approach to compactness results for Riemannian manifolds in
the spirit of the classical Bonnet-Myers theorem [Mye41]. Then, in Section 2.2 we
show how very similar techniques can be used to get information on the spectrum of
the Laplacian on a complete, non-compact manifold M . In fact, we can even obtain
spectral estimates by analyzing smooth maps, in particular isometric immersions,
from M to some manifold N , and in Section 2.3 we discuss a prototype example.
As observed in the Introduction, the ODE approach has important applications
in the spectral theory of Schrödinger operators. In turn, spectral assumptions are
often used to obtain existence or non-existence of solutions of semilinear PDE. In
this respect, the Yamabe problem is very well suited to describe this interplay, that
we analyze in Section 2.4 below.

2.1. Conjugate points and Myers type compactness results

With the appearance of the classical Bonnet-Myers theorem, [Mye41], on the
compactness of a complete manifold under an appropriate Ricci curvature condition,
an entire field of research rose to clarify the interplay between curvature, Jacobi
fields and conjugate points. This relationship has been investigated by many au-
thors, notably E. Calabi [Cal67], J. Cheeger, M. Gromov and M. Taylor [CGT82]
and, more recently, for instance by J.H. Eschenburg and J.J. O’Sullivan [EO80], G.
Galloway [Gal82] and D. Kupeli [Kup86]. In particular, these latter have shown
that the original Bonnet-Myers problem can be shifted to the analysis of the so-
lutions g of the ODE g′′ − Gg = 0, for a suitable function G related to geometry.
On the other hand, the above ODE has been the subject of an intensive indepen-
dent research in the last century (for an account, see [Swa68], [Har64b]), and
the possibility of exploiting these available analytical results has highly improved
the original conclusions of Bonnet and Myers. To briefly explain this approach, we
begin with deriving Myers theorem from the Laplacian comparison Theorem 1.19.
Let M be complete and assume that

Ricc(∇r,∇r) ≥ −(m− 1)G(r).

Then, by (1.44) the domain Do of the normal coordinates is a subset of BR0
, where

R0 ≤ +∞ is the first zero of any solution g of

(2.1)

{
g′′ −Gg ≥ 0,

g(0) = 0, g′(0) = 1.

35
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If R0 < +∞, since Do = M we deduce that M is bounded. Since M is complete,
it is compact and the diameter of M does not exceed 2R0. This is the case, for
instance, when G(r) = −B2 for some B > 0, that is,

(2.2) Ricc(∇r,∇r)(x) ≥ (m− 1)B2,

for which we can choose g(r) = B−1 sin(Br) and M is compact with diameter at
most 2π/B. Therefore, if

(2.3) Ricc ≥ (m− 1)B2〈 , 〉
we recover the classical Bonnet-Myers theorem [Mye41]. The improvement from
diam(M) ≤ 2π/B to the sharp diam(M) ≤ π/B comes from the fact that (2.3) is
independent of the point o. The above discussion shows, following the way outlined
by Galloway in [Gal82], that we can prove compactness of M via Theorem 1.19
without making use of Morse index techniques. There is, however, a technical
unpleasant restriction in the approach we have just described, that is, the bound
G(r) is independent of the geodesics emanating from o. For this reason, we pause
to reproduce the reasoning in [Gal82].

Theorem 2.1 ([Gal82], Lemma 1). Let (M, 〈 , 〉) be a complete Riemannian
manifold of dimension m ≥ 2. Assume that, for some origin o and for every unit
speed geodesic γ : R+

0 →M emanating from o, the solution g of

(2.4)

 g′′ +
Ricc(γ′, γ′)(s)

m− 1
g = 0,

g(0) = 0, g′(0) = 1

has a first zero. Then, M is compact with finite fundamental group.

The main step of the proof is the following well known lemma. We report the
nice argument in [PRRS11] that avoids the use of variational arguments.

Lemma 2.2 ([PRRS11], Lemma 8.2). Let (M, 〈 , 〉) be a complete Riemannian
manifold of dimension m ≥ 2, and let γ : [0, r0] → M be a unit speed geodesic
starting from o and ending at q = γ(r0). If γ is length minimizing on [0, r0], then
for every h ∈ Lip([0, r0]) such that h(0) = h(r0) = 0 we have

(2.5)

∫ r0

0

(h′(s))2ds−
∫ r0

0

(
Ricc(γ′, γ′)(s)

m− 1

)
h2(s)ds ≥ 0

Proof. First, assume that q is not the cut-point for o along γ, so that the
distance function r is smooth. Using Newton inequality |Hess (r)|2 ≥ (∆r)2/(m−1)
in (1.46) we deduce that, along γ,

(2.6) (∆r)′ +
(∆r)2

m− 1
+ Ricc(γ′, γ′) ≤ 0.

Fix 0 < ε < r0. Multiplying by h2 and integrating on (ε, r0] we get∫ r0

ε

h2(∆r)′ds+

∫ r0

ε

(
h2(∆r)2

m− 1
+ Ricc(γ′, γ′)h2

)
ds ≤ 0.

By the asymptotic behaviour of ∆r in (1.47), h2(ε)(∆r)(ε)→ 0 as ε→ 0+. Hence,
integrating by parts the first term and letting ε→ 0+ we deduce

(2.7)

∫ r0

0

(
h2(∆r)2

m− 1
+ Ricc(γ′, γ′)h2

)
ds ≤

∫ r0

0

2hh′(∆r)ds.
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By Young inequality, the integrand on the RHS can be rearranged as follows:

2hh′(∆r) ≤ h2(∆r)2

m− 1
+ (m− 1)(h′)2,

and inserting into (2.7) we obtain (2.5). Now, assume that q is a cut-point for o
along γ, and use Calabi trick. Let ε > 0 be small and define

oε = γ(ε), rε(x) = d(x, oε), γε : [0, r0 − ε]→M, γε(s) = γ(ε+ s).

Then, q is not a cut-point of oε along γε, so that (2.6) holds for rε, γε. Consider a
Lipschitz function h with compact support in (0, r0), and set hε(r) = h(r+ ε). We
choose ε to be sufficiently small that hε(0) = 0. Multiply (2.6) for h2

ε and integrate
on [δ, r0 − ε], for some small δ > 0 to deduce∫ r0−ε

δ

h2
ε(∆rε)

′ds+

∫ r0−ε

δ

(
h2
ε(∆rε)

2

m− 1
+ Ricc(γ′ε, γ

′
ε)h

2
ε

)
ds ≤ 0.

By the asymptotic behaviour of ∆rε near rε = 0, and since hε(0) = 0, we can
integrate by parts and let δ → 0 as above to get∫ r0−ε

0

(
h2
ε(∆rε)

2

m− 1
+ Ricc(γ′ε, γ

′
ε)h

2
ε

)
ds ≤

∫ r0−ε

0

2hεh
′
ε(∆rε)ds

≤
∫ r0−ε

0

(
h2
ε(∆rε)

2

m− 1
+ (m− 1)(h′ε)

2

)
ds,

hence ∫ r0−ε

0

(h′ε(s))
2ds−

∫ r0−ε

0

(
Ricc(γ′ε, γ

′
ε)(s)

m− 1

)
h2
ε(s)ds ≥ 0.

It is enough to change variables to recover (2.5) for every Lipschitz h with compact
support in (0, r0). A density argument gives (2.5) for every h ∈ Lip([0, r0]) with
zero boundary conditions. �

Remark 2.3. The above proof basically reflects the 1-dimensional case of the
implication (ii)⇒ (iii) in Theorem 1.33 (see the proof of Theorem 1 of [FCS80]).
Indeed, (2.5) is equivalent to say

(2.8) λL1 ([0, r0]) ≥ 0, where L = − d2

ds2
− Ricc(γ′, γ′)(s)

m− 1
.

On the other hand, if ∆r satisfies (2.6) on some segment γ|[0,r0], by (1.15) the
function

u(s) = s exp

{∫ s

0

(
∆r ◦ γ(σ)

m− 1
− 1

σ

)
dσ

}
is well defined, positive on (0, r0) and solves Lu ≥ 0, see also Proposition 1.13.

Proof of Theorem 2.1. If (2.4) admits a (smooth) solution g such that g
has a first zero at some r0 > 0, then g solves

0 = (Lg, g)L2 =

∫ r0

0

(g′(s))2ds−
∫ r0

0

(
Ricc(γ′, γ′)(s)

m− 1

)
g2(s)ds,

where L is as in (2.8). Therefore, by the min-max principle λL1 ([0, r0]) ≤ 0, and
by monotonicity of eigenvalues λL1 ([0, r1]) < 0 for every r1 > 0. The above lemma
implies that γ is not length minimizing after r0, so that there exists a cut-point
(in fact, a conjugate point) of o along γ. Since this happens for every γ, M is
compact by Theorem 1.1. The argument above can be repeated verbatim for the
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Riemannian universal covering M̃ → M to show that M̃ is compact. Hence, the
fundamental group of M is finite. �

The “converse” of the above statement comes from an application of the matrix
Riccati comparison.

Proposition 2.4. Let (M, 〈 , 〉) be a Riemannian manifold of dimension m ≥
2, and let γ : R+

0 → M be a unit speed geodesic emanating from some origin o.
Denote with Krad(s) the radial sectional curvature at γ(s), and assume that

(2.9) Krad(s) ≤ −G(s).

If the solution g of

(2.10)

{
g′′ −Gg = 0

g(0) = 0, g′(0) = 1

is positive on R+, then there is no conjugate point to o along γ. If M is complete
and this happens for every γ emanating from o, then o has no conjugate points and
expo is a covering map.

Proof. Let (0, s1) be the maximal interval such that o is free of conjugate
points on (0, s1). Assume by contradiction that s1 < +∞. By the discussion in
Section 1.2, the Jacobi tensor J along γ has nontrivial kernel at s1, and the function
B = J ′J−1 is unbounded from below as s → s−1 . Note that B solves, in a parallel
orthonormal frame along γ,

(2.11)

{
B′ +B2 +Rγ = 0 on (0, s1)

B(s) = s−1I + o(1) as s→ 0+.

and Rγ is defined as in (1.30). By (2.9) and (1.32), Rγ ≤ −G(s)I. Setting, in a
parallel orthonormal frame along γ, Bg = (g′/g)I, Bg solves{

B′g +B2
g = GI ≤ −Rγ on R+

Bg(s) = s−1I + o(1) as s→ 0.

By the matrix Riccati Comparison 1.14, B ≥ Bg as a quadratic form. Hence, since
Bg is defined on the whole R+, B cannot be unbounded from below as s → s−0 ,
contradiction. �

Remark 2.5. The above proposition can indeed be proved as a direct appli-
cation of the Rauch comparison theorem ([Car92], p. 215). It should be observed
that Rauch theorem, however, is not a straightforward consequence of the sole
matrix Riccati comparison, but it also requires the Index lemma ([Car92], p.212).

Next corollary follows from Proposition 1.21.

Corollary 2.6. Let (M, 〈 , 〉) be a complete, connected Riemannian manifold
of dimension m ≥ 2. Assume that, along some unit speed geodesic γ : R+

0 → M ,
the radial sectional curvature Kγ(s) satisfy

(2.12) (Kγ)+ ∈ L1(R+), s

∫ +∞

s

(Kγ)+(s) ≤ 1

4
.

Then, there exists no conjugate point to γ(0) along γ. Moreover, if (2.12) holds
for every ray emanating from some o ∈ M , then o has no conjugate points and
expo : ToM →M is a covering map.
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The existence of a first zero of a solution g of either (2.1) or (2.4) can be
guaranteed, for instance, by classical oscillation results. Among the various criteria,
that of Hille-Nehari is one of the finest, see [Swa68], p.45. For the convenience of
the reader, we recall here this result in the simple form given by E. Hille, [Hil48].

Theorem 2.7 ([Swa68], p.45 and [Hil48], Theorem 5 and Corollary 1). Let
K ∈ C0(R)∩L1(+∞) be non-negative, and consider the ODE g′′+Kg = 0. Denote
with k(s), k∗ and k∗ respectively the quantities

k(s) = s

∫ +∞

s

K(σ)dσ, k∗ = lim inf
s→+∞

k(s), k∗ = lim sup
s→+∞

k(s).

Then,

- If the ODE is nonoscillatory, then necessarily k∗ ≤ 1
4 and k∗ ≤ 1.

- If k(s) ≤ 1
4 for s large enough, in particular if k∗ < 1/4, then the ODE is

nonoscillatory.

As a consequence, k∗ >
1
4 is a sufficient condition for the equation to be oscillatory.

Remark 2.8. If K 6∈ L1(+∞), the result applies with k∗ = k∗ = +∞, and the
equation g′′+Kg = 0 is oscillatory. This case is due to W.B. Fite [Fit18]. Note the
strict analogy with condition (1.52) for the positivity of g, although the techniques
used in [Hil48] to prove Theorem 2.7 are different from those of Proposition 1.21.

There are two main questions that, at the best of our knowledge, are still
almost unanswered. The first regards the search of conditions in finite form for
the existence of a first zero, that is, conditions involving the potential K only in a
compact interval. The second is how to deal with possibly negative K. In this last
direction, the first instance of a result that allows K to change sign is due to W.
Ambrose [Amb57] and A. Wintner [Win49] (consult also [Gui92], Corollaries 3.5
and 3.6 for a different proof and a generalization). This was extended by R. Moore
[Moo55] to the following

Theorem 2.9 ([Moo55], Theorem 2). Let K ∈ C0(R). Equation g′′+Kg = 0
is oscillatory provided that, for some λ ∈ [0, 1), there exists

(2.13) lim
s→+∞

∫ s

0

σλK(σ)dσ = +∞,

Setting λ = 0 in Moore statement we recover Ambrose-Wintner theorem, which
improves on Fite theorem quoted in Remark 2.8. As Remark 1.22 shows, the result
is false if λ = 1.

Moore result, although sharp from many points of view, requires that the neg-
ative part of K is, loosely speaking, globally smaller than the positive part. This
is the essence of the existence of the limit in (2.13). In Chapter 5, in a slightly dif-
ferent context, we will prove an oscillation result that allows K to have a relevant
non-positive part. In particular, see Section 5.2 for a detailed discussion.

We shift our attention to the first problem. A striking result in this direction
is due to E. Calabi [Cal67]. Since the techniques are very close to those presented
in Section 2.2, we provide a complete proof of the next

Theorem 2.10 ([Cal67], Theorems 1 and 2). Let (M, 〈 , 〉) be a complete Rie-
mannian manifold of dimension m, and assume that Ricc ≥ 0 on M . For each unit
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speed geodesic γ, define

(2.14) Kγ(s) =
Ricc(γ′, γ′)(s)

m− 1
.

Suppose that, for every γ issuing from some origin o, there exists 0 < a < b (possibly
depending on γ) such that

(2.15)

∫ b

a

√
Kγ(σ)dσ >

{(
1 +

1

2
log

b

a

)2

− 1

}1/2

.

Then, M is compact with finite fundamental group. In particular this happens if,
for every γ,

(2.16) lim sup
s→+∞

(∫ s

0

√
Kγ(σ)dσ − 1

2
log s

)
= +∞.

Proof. By Theorem 2.1, it is enough to prove that a solution g of

(2.17)

{
g′′ +Kγg = 0 on R+

g(0) = 0, g′(0) = 1

has a first zero. Suppose by contradiction that g > 0 on R+. Then, φ = g′/g solves{
φ′ + φ2 = −Kγ ≤ 0 on R+

φ(s) = 1
s +O(1) as s→ 0+.

Set t = t(s) = es and define w(s) on the whole R by means of

(2.18) φ(t) = e−s
(
w(s) +

1

2

)
.

Then, w(s) solves

w′ + w2 ≤ 1

4
on R.

We claim that w(s) ∈ [−1/2, 1/2] on R. Indeed, suppose by contradiction that, for
some s0 ∈ R, w(s0) < −1/2. Let ψc be the general solution of ψ′c + ψ2

c = B2 on R,
where c ∈ R is a parameter and B > 0. Depending on the initial data (i.d.), the
expression of ψc is given by

(2.19) ψc(s) =


B coth

(
B(s− c)

)
if the i.d. is < −B or > B,

±B if the i.d. is ±B,

B tanh
(
B(s− c)

)
if the i.d. is in (−B,B).

Set B = 1/2. Since w(s0) < −1/2, we can choose c sufficiently large that the
function

ψc =
1

2
coth

(
s− c

2

)
satisfies w(s0) ≤ ψc(s0) < −1

2
.

By the Riccati comparison 1.12, w ≤ ψc on [s0,+∞), and since ψc → −∞ as
s→ c− this contradicts the fact that w is defined on R. The case w(s0) > 1/2 can
be treated similarly.
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Choose now 0 < a < b, and set a′ = log a, b′ = log b. Then, changing variables
according to σ = σ(ξ) = eξ we get

(2.20)

∫ b

a

√
Kγ(σ)dσ =

∫ b

a

√
−φ′(σ)− φ2(σ)dσ =

∫ b′

a′

√
−w′(ξ)− w2(ξ) +

1

4
dξ.

On the other hand, using Cauchy-Schwarz inequality, w ∈ [−1/2, 1/2] and the
definition of a′, b′ we deduce
(2.21)(∫ b′

a′

√
−w′(ξ)− w2(ξ) +

1

4
dξ

)2

≤ (b′ − a′)
∫ b′

a′

(
−w′(ξ)− w2(ξ) +

1

4

)
dξ

≤ (b′ − a′)
[∣∣− w(b′) + w(a′)

∣∣+ 1
4 (b′ − a′)

]
≤

[
1
2 (b′ − a′) + 1

]2 − 1

=
[

1
2 log b

a + 1
]2 − 1.

Combining (2.20) and (2.21) we contradict the assumption (2.15). That (2.16)
implies (2.15) is immediate. �

Remark 2.11. The conclusions of Theorem 2 of [Cal67] are slightly more
general than those presented above. Using this improved form, one can easily get
that under condition (2.16) the solution g of (2.17) indeed oscillates. In the next
sections, we shall call (2.16) the Calabi oscillation criterion.

In the subsequent years, it seems to the authors that no substantial new achieve-
ments have appeared besides the very recent result in [MRV], which we are going
to describe in a moment. Nevertheless, it shall be observed that the problem
of obtaining Myers type compactness theorems under the presence of a suitably
small amount of negative Ricci curvature has already been a flourishing field of
research, for which we refer the reader to [Wu91], [ER91], [RY94] and the refer-
ences therein. The techniques employed in these papers are of various nature and
go much beyond the purpose of the present work, in particular neither of them relies
on oscillation type results for a linear ODE. We stress that, however, the method
in [Wu91] via Jacobi fields is indeed closely related to our approach. Getting back
to [MRV], P. Mastrolia, M. Rimoldi and G. Veronelli have followed the ideas on
the proof of Calabi result to give the first condition in finite form for the existence
of a first zero of g′′ + Kg = 0 when K is only assumed to satisfy K ≥ −B2, for
some B ≥ 0. Applied to the compactness problem for Riemannian manifolds, their
inequality improves on the application of Nehari condition ([Neh57], p.432 (8)),
which requires K ≥ 0. As we will see in the next section, the techniques used for
Theorems 2.10 and 2.12 will also be a key tool in estimating the essential spectrum
of the Laplacian. We state the result in [MRV] in geometric form.

Theorem 2.12 ([MRV], Theorem 5). Let (M, 〈 , 〉) be a complete Riemannian
manifold of dimension m ≥ 1 satisfying

(2.22) Ricc ≥ −(m− 1)B2〈 , 〉,

for some B ≥ 0. For every unit speed geodesic γ issuing from o ∈ M , let Kγ be
as in (2.14). Suppose that, for each such a γ, there exist 0 < a < b and λ 6= 1 for
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which either

(2.23)

∫ b

a

sKγ(s)ds > B

{
b+ a

e2Ba + 1

e2Ba − 1

}
+

1

4
log

(
b

a

)
or

(2.24)

∫ b

a

sλKγ(s)ds > B

{
bλ + aλ

e2Ba + 1

e2Ba − 1

}
+

λ2

4(1− λ)

{
aλ−1 − bλ−1

}
holds (if B = 0, this has to be intended in a limit sense). Then, M is compact with
finite fundamental group.

Proof. Again, we prove that a solution g of (2.17) has a first zero. Suppose
by contradiction that g > 0 on R+. Then, setting φ = g′/g, by assumption (2.22)
φ solves {

φ′ + φ2 = −Kγ ≤ B2 on R+

φ(s) = 1
s +O(1) as s→ 0+.

We compare φ with the general solution ψc of ψ′c +ψ2
c = B2 given by (2.19). From

Proposition 1.13 with the choices α = 1, G = B2, h1 = φ and h2 = ψ0 we deduce

φ(s) ≤ ψ0(s) = B coth(Bs) = B
e2Bs + 1

e2Bs − 1
on R+.

Moreover, with the same technique used in the proof of Theorem 2.10 to show that
w(s) ∈ [−1/2, 1/2], we get the bound φ ≥ −B on R+. Now, consider the case
λ 6= 1, and choose any 0 < a < b. Integrating by parts and using the estimate on
φ we deduce∫ b

a

sλKγ(s)ds =

∫ b

a

sλ
(
− φ′(s)− φ2(s)

)
ds

=

∫ b

a

[
−(sλφ(s))′ − sλ

(
φ(s)− λ

2s

)2

+
λ2

4
sλ−2

]
ds

≤ −bλφ(b) + aλφ(a) +
λ2

4(λ− 1)

(
bλ−1 − aλ−1

)
≤

[
bλB + aλψ0(a)

]
+

λ2

4(λ− 1)

(
bλ−1 − aλ−1

)
,

contradicting assumption (2.24), as desired. The case λ = 1 is analogous, and
B = 0 follows by taking the limit as B → 0. �

Remark 2.13. With a slight improvement of the above technique, one can
also give an upper bound for the diameter of M . For details, we refer the reader to
[MRV], Remark 18.

The method developed in Theorems 2.10 and 2.12 seems to be hardly general-
izable to cover, for instance, the case

(2.25) K(s) ≥ −B2(1 + s2)α/2, B ≥ 0, α ≥ −2,

mainly because of the lack of a manageable form of the general solution of ψ′c+ψ
2
c =

B2(1 + r2)α/2. For this reason, a different approach shall be adopted. Note that,
when α > 0, (2.25) allows a lower bound that diverges as s → +∞; therefore,
proving the existence of zeroes of g when K satisfies (2.25) will lead to a nontrivial
improvement of Theorems 2.10 and 2.12.



2.2. THE SPECTRUM OF THE LAPLACIAN ON COMPLETE MANIFOLDS 43

In Section 5.1, we will generalize Calabi oscillation criterion (2.16) for g′′+Kg = 0
to the case when K has only to satisfy K(s) ≥ −B2sα, for some α ≥ −2 and
s sufficiently large. Furthermore, under the mild requirement (2.25), we will also
provide a condition in finite form for the existence of a first zero of g. When α = 0,
this condition does not overlap neither with (2.15) nor with (2.24). As we will see in
Section 5.6, the negative part of the potential K has a peculiar role. In substance,
it enters the problem as some sort of weight for the manifold.

2.2. The spectrum of the Laplacian on complete manifolds

The study of the relations between the spectrum of −∆ on complete, non-
compact manifolds and the geometric data (e.g. curvatures, volume growth) has
been the core of an active area of research for the last four decades. Among the
various interesting problems, a basic question concerns the characterization of the
discrete and the continuous part of σ(−∆). For this purpose, estimates on ∆r are
useful, so that the ODE theory of Riccati and linear equations naturally comes
into play. To introduce the argument, we give here a brief presentation of some
of the principal results in the literature that shall be useful in the sequel, and we
concentrate on proofs whenever the approach is close to the spirit of this paper.
In the next chapters, we shall apply our techniques and results to recover and,
possibly, to generalize some of the theorems described in this section.

We begin with the following simple estimate appearing in [Bro81] and [RRV97].

Proposition 2.14. Let (M, 〈 , 〉) be a complete Riemannnian manifold with a
pole o, and let r(x) be the distance function from o. Suppose that ∆r ≥ 0 on M .
Then,

(2.26) λ−∆
1 (M) ≥ 1

4
inf
M

(
∆r
)2
, inf σess(−∆) ≥ 1

4
lim inf
r(x)→+∞

(
∆r(x)

)2

.

Proof. Let Ω ⊂ M be a open set. By the first Green formula we deduce, for
every smooth domain D b Ω,

(2.27) vol(D) inf
Ω

∆r ≤
∫
D

∆r =

∫
∂D

〈∇r, ν〉 ≤ vol(∂D).

Hence, indicating with c(Ω) the Cheeger constant of Ω, by Cheeger inequality,
[Che70], and the assumption ∆r ≥ 0 we get

(2.28) λ−∆
1 (Ω) ≥ c(Ω)2

4
=

1

4

(
inf
DbΩ

vol(∂D)

vol(D)

)2

≥ 1

4

(
inf
Ω

∆r
)2

.

The first inequality in (2.26) follow by choosing Ω = M , while for the second
inequality we consider Ω = M\Br, we let r → +∞ and we use Theorem 1.38. �

Remark 2.15. Clearly, in estimating inf σess(−∆) it is enough to assume ∆r ≥
0 only outside some compact set. A sufficient condition for ∆r > 0 to hold on
M\{o} has been provided by Corollary 1.23.

The characterization of the essential spectrum has been studied by many au-
thors, notably H. Donnelly [Don81b], H. Donnelly and P. Li [LD79], J.F. Escobar
and A. Freire [EF92], J. Li [Li94] and H. Kumura [Kum97], [Kum05]. The next
Theorem, due to Donnelly, has been refined by Kumura. The proof below is a
simplified version of that appearing in [Kum97].
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Theorem 2.16 ([Kum97], Theorem 1.2 and [Don81b]). Let (M, 〈 , 〉) be a
complete, non-compact Riemannian manifold with a pole o. Suppose that ∆r(x)→ c
as r(x)→ +∞, for some c ∈ R+

0 . Then, σess(−∆) = [c2/4,+∞).

Proof. Since σess(−∆) ⊂ R+
0 is closed, applying Proposition 2.14 and Remark

2.15, it is enough to show that each λ > c2/4 is in the essential spectrum of −∆.
To do so, we shall exhibit a characteristic sequence for λ, that will be obtained
by comparing M with a suitable sequence of manifolds (Mk,ds

2
k). Since M has a

pole, we can consider global geodesic coordinates (r, θ), where with the symbols θ,
Ωθ we respectively denote a local coordinate system and the volume form of Sm−1,
m = dim(M). Let ω = ω(r, θ) be the volume density, that is, the volume element
of M can be expressed as dV = ωdr ∧ Ωθ. Define

λc =

(
λ− c2

4

)−1/2

.

First, we construct inductively a sequence {uk} ⊂ Lipc(M) close to a characteristic
one for λ. Fix k > 0. For each rk > 0, to be specified later, consider the interval
Ik = [rk, rk + 2πλc]. Define Mk to be [rk,+∞) × Sm−1 equipped with the metric
ds2
k given, in polar coordinates (ρ, θ), by

ds2
k = dρ2 + ωk(ρ, θ)

2
m−1 dθ2,

with ωk(ρ, θ) = exp
{
c(ρ − rk)

}
ω(rk, θ) the volume density of Mk, and let dVk =

ωkdρ ∧ Ωθ be the volume form. A computation shows that the function

zk(ρ) = exp

{
−c(ρ− rk)

2

}
sin

(
ρ− rk
λc

)
,

satisfies z′′k + cz′k = −λzk on [rk,+∞). Hence, wk(ρ, θ) = zk(ρ) is a solution of
∆wk + λwk = 0 on Mk. From the assumption ∆r → c as r(x)→ +∞, for every k
we can suppose that rk is chosen in such a way that

(2.29) |∆r(x)− c| < 1

k
on M\Brk .

Using (1.48), we deduce that

c− 1

k
≤ ∂rω

ω
≤ c+

1

k

and integrating on [rk, ρ] ⊂ Ik we get

ω(rk, θ) exp

{(
c− 1

k

)
(ρ− rk)

}
≤ ω(ρ, θ) ≤ ω(rk, θ) exp

{(
c+

1

k

)
(ρ− rk)

}
.

Using the definition of ωk(ρ, θ) and the fact that ρ−rk ≤ |Ik| = 2πλc, the following
inequalities hold:

ωk(ρ, θ) exp

{
−2πλc

k

}
≤ ω(ρ, θ) ≤ ωk(ρ, θ) exp

{
2πλc
k

}
.

Up to choosing k sufficiently large, we have therefore

(2.30)
1

2
ωk ≤ ω ≤ 2ωk on Ik × Sm−1.

Define uk(x) = zk(r(x))χAk , where χAk is the characteristic function of the annulus
Ak = Ik × Sm−1 ⊂ M . For notational convenience, we agree on denoting with Ak
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also the annulus Ik × Sm−1 ⊂ Mk. From the properties of zk, (2.29) and Green
formula on Mk we deduce that

‖∆uk + λuk‖2L2(Ak) =

∫
Ak

|z′′k + z′k∆r + λzk|2dV ≤
∫
Ak

|z′k|2|∆r − c|2ωdr ∧ Ωθ

≤ 2

k2

∫
Ak

|z′k|2ωkdr ∧ Ωθ =
2

k2

∫
Ak

|∇wk|2dVk

= − 2

k2

∫
Ak

wk∆wkdVk =
2λ

k2

∫
Ak

w2
kdVk

≤ 4λ

k2

∫
Ak

z2
kωdr ∧ Ωθ =

4λ

k2
‖uk‖2L2(Ak)

Normalizing uk in L2, we have that

(2.31) ‖uk‖L2 = 1, while ‖∆uk + λuk‖L2(Ak) ≤
4λ

k2
→ 0 as k → +∞.

Observe that, up to choosing rk sufficiently large, we can suppose that the support
of uk is disjoint from that of u1, . . . , uk−1. Now, we approximate uk. Since −∆
is essentially self-adjoint on C∞c (Ak), for every fixed k, by (1.77), there exists
{uk,j}j ⊂ C∞c (Ak) such that uk,j → uk in L2 and ∆uk,j → ∆uk in L2. By (2.31)
and a Cantor diagonal argument, the functions vk = uk,k have pairwise disjoint
support and satisfy, for some C > 0,

{vk} ⊂ C∞c (M), ‖vk‖L2 ≥ C, ‖∆vk + λvk‖L2 → 0 as k → +∞,

that is, {vk} is the required characteristic sequence for λ. �

Very recently, in [Kum05] the author points out that, for property σess(−∆) ⊂
[c2/4,+∞) to hold, the requirement ∆r → c as r(x) → +∞ can be weakened.
Indeed, up to the mild further requirements vol(M) = +∞ and ∆r ≥ −ĉ outside
some compact set, for some constant ĉ > 0, it is enough that

(2.32) ‖∆r − c‖L2(M\Br) → 0 as r → +∞.

Via the Petersen-Wei method in [PW97], (2.32) is granted by an Lp control of the
type

1

vol(Br)

∫
Br

(
c2

m− 1
− Ricc(∇r,∇r)

)p
+

dV −→ 0 as r → +∞,

for some p > m/2. Since the techniques used to prove this interesting result are
somehow beyond the scope of the present paper, we will not elaborate on this
subject. The condition ∆r → c of Proposition 2.16 can be achieved via Riccati
comparisons, under suitable control on the radial sectional or Ricci curvatures.
This is the content of the following Corollary that collects some results of most
of the authors cited above. The technique of the proofs follows the same type of
argument of Theorem 2.12.

Corollary 2.17. Let (M, 〈 , 〉) be a manifold with a pole o.

(i) ([Don81b]) Let Krad satisfies Krad(x) ≤ −G(r(x)), for some G ∈ C0(R+
0 )

such that

(2.33) G− ∈ L1(+∞), r

∫ +∞

r

G−(σ)dσ ≤ 1

4
on R+

0 ,
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and suppose that Krad(x)→ −B2 as r(x)→ +∞, for some B ≥ 0. Then,

σess(−∆) =

[
B2(m− 1)2

4
,+∞

)
.

(ii) ([LD79]) Let Krad and G(r) satisfy the assumptions of item (i). If
Krad(x)→ −∞ as x diverges, then −∆ has discrete spectrum.

(iii) ([Li94], [Kum97], [EF92]) Suppose that the Ricci curvature satisfies

Ricc(∇r,∇r) ≥ −(m− 1)G(r),

for some 0 ≤ G(r)→ 0 as r → +∞. Then, σess(−∆) = R+
0 .

Proof. (i) By Theorem 2.16, it is enough to show that ∆r → (m − 1)B as
r → +∞. Without loss of generality, we can assume that −G(r) is the supremum of
the radial sectional curvatures at point x ∈ ∂Br. Define −Gi(r) to be the infimum
of the radial sectional curvatures of points x ∈ ∂Br. By definition, for every x ∈M ,
X ∈ ∇r⊥x

−Gi(r(x)) ≤ Krad(X) ≤ −G(r(x)) on R+
0 ,

and Gi, G → B2 as r → +∞. By Proposition 1.21, and by Sturm argument, it
follows that the solutions gi, g of{

g′′ −Gg = 0

g(0) = 0, g′(0) = 1

{
g′′i −Gigi = 0

gi(0) = 0, g′i(0) = 1

are positive and increasing on R+, hence φ = (m − 1)g′/g, φi = (m − 1)g′i/gi are
positive solutions of

φ′ +
φ2

m− 1
= (m− 1)G, φ′i +

φ2
i

m− 1
= (m− 1)Gi.

By the Laplacian comparison Theorems 1.17 and 1.19 we deduce that

(2.34) (0 <) φ(r(x)) ≤ ∆r(x) ≤ φi(r(x)) on R+.

To prove that ∆r(x) → (m − 1)B as r(x) → +∞, it is enough to show that
φ, φi → (m − 1)B as r → +∞. For convenience, we consider η = φ/(m − 1),
ηi = φi/(m− 1), and we prove that η, ηi → B. Note that

η′ + η2 = G, η′i + η2
i = Gi, η ≤ ηi.

We deal with the case B > 0, the case B = 0 being analogous. For every ε > 0
small enough, let rε be such that G,Gi ∈ (−(B + ε)2,−(B − ε)2) on M\Brε . Set
for convenience Bε = B − ε, Bε = B + ε, and denote with ψ, ψi the solutions of
the following Cauchy problems on [rε,+∞):

(2.35)

{
ψ′ + ψ2 = (Bε)

2

ψ(rε) = η(rε)

{
ψ′i + ψ2

i = (Bε)2

ψi(rε) = ηi(rε)

Then, by the Riccati comparison 1.12, we get ψ ≤ η and ηi ≤ ψi on [rε,+∞).
Taking into account the form of the general solution (2.19) of the ODE ψ′+ψ2 = B2,
and observing that the initial conditions η(rε), ηi(rε) are positive numbers, we get
the chain of inequalities

(2.36)

Bε = lim
s→+∞

ψ(s) ≤ lim inf
s→+∞

η(s) ≤ lim sup
s→+∞

η(s)

≤ lim inf
s→+∞

ηi(s) ≤ lim sup
s→+∞

ηi(s) ≤ lim
s→+∞

ψi(s) = Bε.



2.2. THE SPECTRUM OF THE LAPLACIAN ON COMPLETE MANIFOLDS 47

The claim η, ηi → B as s→ +∞ is proved letting ε→ 0.
(ii) By Proposition 2.14 and the min-max theorem, it is enough to prove that
∆r(x) → +∞ as r(x) → +∞. Let G, g, φ, η be as in the proof of item (i). As
already observed, by assumption (2.33) the function g is positive and increasing,
and by (2.34)

∆r ≥ φ(r) = (m− 1)η(r),

where η is a positive solution of η′+η2 = G. We prove that η diverges as r → +∞.
By the assumption Krad → −∞, for every B > 0 we can choose rB > 0 sufficiently
large that G ≥ B2 on [rB ,+∞). Comparing η with a solution of ψ′ + ψ2 = B2 in
(2.19) with the initial condition ψ(rB) = η(rB) > 0 we deduce that ψ ≤ η, thus

lim inf
r→+∞

η(r) ≥ lim
r→+∞

ψ(r) = B,

and the sought follows letting B → +∞.
(iii) By Theorem 2.16, it is enough to prove that ∆r → 0 as r → +∞. By the
Laplacian comparison Theorem 1.19

∆r ≤ (m− 1)g′(r)/g(r) = (m− 1)η(r),

where η(r) solves η′ + η2 = G. Fix ε > 0, and let rε > 0 be such that G ∈ [0, ε2)
on [rε,+∞). Let γ : R+

0 →M be a ray issuing from o, and define

(2.37) uγ(s) =
∆r ◦ γ(s)

m− 1

By the Riccati comparison 1.12, formula (1.47), and Ricc(∇r,∇r) ≥ −(m − 1)ε2

on [rε,+∞), we get that uγ ≤ ψγ on [rε,+∞), where ψγ solves

(2.38)

{
ψ′γ + ψ2

γ = ε2 on [rε,+∞)

ψγ(rε) = ∆r(γ(rε)).

We claim that uγ(s) ≥ −ε on [rε,+∞). Indeed, if by contradiction uγ(r1) <
−ε for some r1 > rε, then by (2.19) (with ε replacing B) the solution of (2.38)
with initial condition ψγ(r1) = u(r1) tends to −∞ in finite time. Thus, from the
Riccati comparison, this contradicts the fact that uγ is defined on [rε,+∞). By
the arbitrariness of γ, ∆r ≥ −(m − 1)ε on [rε,+∞). Next, again by the Riccati
comparison 1.12, η ≤ ψ, where ψ is a solution of

(2.39)

{
ψ′ + ψ2 = ε2 on [rε,+∞)

ψ(rε) = η(rε).

Since η(rε) ≥ −ε, the explicit solution ψ of (2.39) tends either to ε (if η(rε) > −ε)
or to −ε (if η(rε) = −ε). Summarizing, we have showed that, on M\Brε

−ε ≤ ∆r(x) ≤ (m− 1)η(r)→ ε or − ε as r → +∞,

and ∆r → 0 follows by the arbitrariness of ε. �

Remark 2.18. It is interesting to observe that, for (iii), the assumption (2.33)
is not needed. As a matter of fact, this requirement only guarantees that the lower
bound φ in (2.34) is positive. By Riccati comparison and the explicit formula (2.19),
φ > 0 is enough to ensure that ψ in (2.35) tends to Bε and not to −Bε as r diverges.
This allows to conclude that ∆r → (m− 1)B by (2.36). Loosely speaking, if B = 0
we have no gap between Bε and −Bε, so there is no need of (2.33).
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Remark 2.19. We stress that there exist explicit conditions which are both
necessary and sufficient to ensure the discreteness of the spectrum of ∆ on a mani-
fold. Such conditions are the results of various approaches, whose ideas are generally
unrelated to those described in this paper. For this reason, without any further
mention we refer the interested reader to [Kle88] and [CM11] for a detailed insight.

Next, we spend a few words about the discrete spectrum. When σess(−∆) 6= ∅,
we can ask whether σdisc(−∆) is empty or not. A celebrated theorem of S.T. Yau
[Yau76] states that a complete manifold with infinite volume does not support any
non-zero L2 harmonic function, i.e. the eigenspace associated to the zero eigenvalue
is trivial. Furthermore, if vol(M) < +∞, the space of L2 harmonic functions is the
1-dimensional space of constants. For eigenvalues λ > 0, either in the discrete or in
the essential spectrum, things are much more complicated. Among the techniques
developed to prove non-existence of L2 eigenfunctions of −∆ related to λ > 0,
Rellich type integral identities turned out to be extremely useful. We suggest the
interested reader to consult [EF92], [DG92], [Don81a], [Don90], [Esc85] and the
references therein. The next theorem collects some of the results in these papers.

Theorem 2.20. Let (M, 〈 , 〉) be a manifold with a pole o.

(i) ([Kum02]) Suppose that the radial sectional curvatures satisfy

−1− α

r(x)
≤ Krad(x) ≤ −1 +

β(1− β)

r(x)
on M\{o}.

For some α ≥ 0, β ∈ [0, 1] such that 2− (m− 1)α− (m+ 1)β > 0. Then,
there exist no L2 eigenfunctions related to eigenvalues λ whenever

λ ≥
(

(m− 1)

2− (m− 1)α− (m+ 1)β

)2

.

(ii) ([DG97], Theorem 3.9 and [Esc85]) If M = (Mg,ds
2) is a model with

radial sectional curvature satisfying either

(i) Krad ≥ 0 or (ii) Krad ≤ 0 and K ′rad ≥ 0,

then there exist no L2 eigenfunctions related to positive eigenvalues.

Remark 2.21. Observe that Theorem 2.20 and Corollary 2.17 jointly describe
the whole spectrum of Rm and of hyperbolic space, HmB , of sectional curvature −B2.

Remark 2.22. We mention that integral identities can be extended to analyze
the operator −∆ on the space of L2 p-forms. For further insight, see [RS01] and
the references therein.

We conclude this section by giving an account of upper estimates for λ−∆
1 (M)

and inf σess(−∆), which have been deeply investigated by many authors since the
‘70s. In their pioneering work [CY75], S.Y. Cheng and S.T. Yau proved, among
many other things, that a manifold M with at most polynomial volume growth
satisfies λ∆

1 (M) = 0 ([CY75], Proposition 9). This is the case, for instance, of
Euclidean space Rm and of any manifold of finite volume. A few years later, M.A.
Pinsky [Pin81] turned his attention on Cartan-Hadamard manifolds, that is, simply
connected manifolds of non-positive sectional curvature. He showed that if, for some
B ≥ 0, Krad → −B2 sufficiently fast, then λ−∆

1 (M) ≤ (m − 1)2B2/4. His proof
relies on comparison techniques for ODE in a way similar to that used in Corollary
2.17. A first important extension is due to M.E. Gage [Gag80] and H. Donnelly
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[Don81b], who weakened the conditions by only requiring the completeness of M
and

Ricc ≥ −(m− 1)B2〈 , 〉.
However, as shown by R. Brooks [Bro81] and M.E. Taylor [Tay89], sharp upper

bounds for λ−∆
1 (M) and inf σess(−∆) can be obtained by only imposing growth

condition on the volume of geodesic balls. Adapting Brooks technique, Y. Higuchi
in [Hig01] extended his result by proving

Theorem 2.23. Let (M, 〈 , 〉) be a complete Riemannian manifold. Then,

(i) ([Bro81], [Tay89], [Hig01]). If vol(M) = +∞, then

(2.40) inf σess(−∆) ≤ a2

4
, where a = lim inf

r→+∞

log vol(Br)

r
.

(ii) ([Bro84], [Hig01]). If vol(M) < +∞, then

inf σess(−∆) ≤ a2

4
, where a = lim inf

r→+∞

[
−1

r
log
(

vol(M)− vol(Br)
)]

Note that the results of Pinsky and Gage can be derived from this theorem
and the volume comparison Theorem 1.25. Moreover, (2.40) and Persson formula
(1.88) imply that

λ−∆
1 (M\BR) ≤ a2

4
for every R ≥ 0.

In particular, if vol(Br) is subexponential and vol(M) = +∞, then λ−∆
1 (M) =

inf σess(−∆) = 0.

Remark 2.24. On the contrary, if vol(M) < +∞ it is easy to construct man-

ifolds where 0 = λ−∆
1 (M) < inf σess(−∆), so that, by the min-max principle, the

discrete spectrum is non-empty. For instance, we quote the following example of
M.P. Do Carmo and D. Zhou [CZ99]. Let M = (Mg,ds

2) be a model manifold
whose defining function g satisfies

g(r) =

{
r if r ∈ [0, 1]

e−r if r ∈ [2,+∞).

Then, vol(M) < +∞, hence λ−∆
1 (M) = 0 by Cheng-Yau theorem. Furthermore, by

Theorem 2.23, inf σess(−∆) ≤ (m − 1)2/4. We prove that equality holds. Indeed,
for every h ∈ R the function u(x) = ehr(x) satisfies ∆u = (h2−(m−1)h)u on M\B2.
The minimum of the coefficient of u in the RHS is attained when h = (m − 1)/2.
In this case,

∆u+
(m− 1)2

4
u = 0 on M\B2.

applying a result of J. Barta [Bar37], extended to non-compact domains by Cheng
and Yau [CY75] and H. Alencar and Do Carmo [AC93], we get

λ−∆
1 (M\B2) ≥ sup

u ∈ C2(M\B2)
u > 0

[
inf
M\B2

(
−∆u

u

)]
≥ (m− 1)2

4
,

so that, combining with Persson formula (1.88) and the above upper bound for
inf σess(−∆) we deduce inf σess(−∆) = (m− 1)2/4.
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It is interesting to see what happens if the volume growth of the manifold is
faster than exponential, that is, if vol(∂Br) � exp{arα} for some α > 1. In general,
there exists no essential spectrum and one may ask what is the rate of growth of
λ−∆

1 (M\BR) as an increasing function of R. We will address this problem in
Chapter 6, where we will also give a proof of (a weaker version of) Theorem 2.23.
We observe that the bounds that we will obtain could have interesting applications,
for instance, in estimating the volume growth of the Martin-Morales-Nadirashvili
minimal surface, see the next section. In Chapter 4, we will recover some of the
estimates from below with a different approach based on the critical curve of a
manifold, that will be introduced in Section 3.2. As we will see, lower bounds will
be the consequence of a non-Euclidean extension of the Hardy-Poincarè inequality

(2.41)
(m− 2)2

4

∫
Rm

u2

|x|2
≤
∫
Rm
|∇u|2,

where m ≥ 3 and u ∈ H1(Rm), usually called the uncertainty principle lemma. The
link between the estimates in this section and those that we shall present reveals
to be nontrivial, and will be subject of investigation.

2.3. Spectral estimates and immersions

The min-max characterization of eigenvalues, Persson formula (1.88) for the
infimum of the essential spectrum, together with Barta inequality [Bar37] and its
extensions ([CY75], [AC93], [BM07]), are particularly useful when M is an iso-
metrically immersed submanifold of some ambient space N . Next example, a mild
generalization of a very recent result of G.P. Bessa, L.P. Jorge and J.F. Montenegro
[BJM10], is instructive. In this paper, the authors addressed a question of S.T.
Yau [Yau00]: is the spectrum of −∆ on the Nadirashvili minimal surface discrete?
We recall that the Nadirashvili minimal surface, [Nad96], is the first example of a
complete, minimal immersion in R3 with bounded image. Unfortunately, it is not
known whether the Nadirashvili minimal surface is properly immersed or not (we
recall that a map ϕ : B → D is proper if the pre-image of every compact subset of
D is compact in B); this is one of the reasons why the tricky construction via the
Enneper-Weiestrass representation has been further refined by F. Martin and S.
Morales in [MM05], [MM06]. In this way they exhibit, for every convex domain
D ⊂ R3 a complete, proper, minimal immersion from the unit disk B ⊂ C into
D. Martin-Morales highly nontrivial improvement on Nadirashvili construction is
called in [BJM10] the Martin-Morales-Nadirashvili minimal surface. Note that
both Nadirashvili and Martin-Morales-Nadirashvili examples, however, cannot be
embeddings. In fact, embedded minimal surfaces of R3 must be unbounded, as
showed by T. Colding and W. Minicozzi [CM05]. In their paper, Bessa, Jorge
and Montenegro succeeded in proving that the spectrum of −∆ of the Martin-
Morales-Nadirashvili surface must be discrete ([BJM10], Theorem 1.2). As it will
be apparent, the properness assumption is essential for their argument to work.
Here we use their method to deal with a mildly more general situation. To state
the theorem, we first need some definitions and preliminary computations.

Suppose that (Nn, 〈 , 〉N ), (Qq, 〈 , 〉Q) are two complete Riemannian manifolds
of dimension, respectively, n and q, let 0 < f ∈ C∞(N) and let N ×f Q be
a warped product of N and Q, that is, the product manifold N × Q with metric
〈〈 , 〉〉 = 〈 , 〉N+f2〈 , 〉Q. Denote with ‖·‖ the norm induced by 〈〈 , 〉〉 on T (N×fQ),
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and with ∇ the connection of N . Let iN , iQ be the standard inclusions of N ,
respectively Q, into N ×f Q, and let πN , πQ be the projections of N ×f Q onto its
components. We fix the index notation

r, s, t ∈ {1, . . . , n}, α, β, γ ∈ {n+ 1, . . . , n+ q}, a, b, c ∈ {1, . . . , n+ q}.

Consider a local frame {Er} in a neighbourhood of a point of N , its dual coframe
{ωs} and the connection forms {ωrs}. Similarly, let {Eα, ωβ , ωαβ } locally describe

the geometry of Q. Then, a local orthonormal coframe {ψa} for N ×f Q is given by
setting ψr = ωr, ψα = fωα. Accordingly, the dual frame {ξa} is given by ξr = Er,
ξα = Eα/f . An inspection of the structure equations of N , Q and N ×f Q shows
that the connection forms {ψab } of N ×f Q are given by

(2.42) ψrs = ωrs , ψαβ = ωαβ , ψαr = frω
α =

fr
f
ψα,

where df = frω
r. For future use, we need to compute the Hessian of a smooth

function h on M×fQ. Let {hab} be the components of Hessh in the basis {ψa⊗ψb}.
Towards this purpose, let dh = hrψ

r + hαψ
α. We agree to denote with a subscript

N , respectively Q, the projection of T (N ×f Q) onto the subbundles generated by
{ξr}, respectively {ξα}, so that, for instance,

dNh = hrψ
r ≡ d(h ◦ iN ), dQh = hαψ

α ≡ d(h ◦ iQ),

where the equivalences hold up to obvious identifications. Decomposing the expres-
sion for the covariant derivative

hraψ
a = dhr − hsψsr − hαψαr , hβaψ

a = dhβ − hsψsβ − hαψαβ
along the basis ψr, ψα, and using (2.42) we get
(2.43)

(i) hrs = ξs(hr)− htωtr(ξs) = EsEr(h)− Et(h)ωtr(Es) = (NHessh)rs

(ii) hrα = ξα(hr)−
hαfr
f

= ξr(hα) = hαr

(iii) hαβ =
hsfs
f

δαβ + ξβ(hα)− hγωγα(ξβ),

where NHessh is the Hessian of the function h ◦ iN ∈ C∞(N). In order to make
the Hessian of h ◦ iQ to appear in the third equation, we write d(h ◦ iQ) = hαω

α.

From d(h ◦ iQ) = dQh = hαψ
α we deduce hα = fhα. The coefficients of QHessh in

the basis ωα ⊗ ωβ are given by the expression

(QHessh)αβ = Eβ(hα)− hγωγα(Eβ).

Taking into account that Eα(f) = 0 for every α, we can rewrite (2.43), (iii) as

hαβ =
hsfs
f

δαβ +
Eβ
f

(
hα
f

)
− hγ

f
ωγα

(
Eβ
f

)
=
hsfs
f

δαβ +
1

f2
(QHessh)αβ

Let now ϕ : Mm → N ×f Q be a smooth map, and define u = h ◦ϕ. Our next task
is to compute the Hessian of u. With the index convention i, j, k ∈ {1, . . . ,m}, let
{ei, θj , θij} be a local description of the geometry of M . Then, the differential dϕ,

its Hilbert-Schmidt norm ‖dϕ‖2, the generalized second fundamental form ∇dϕ
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and the tension field τ(ϕ) are given by

dϕ = ϕai θ
i ⊗ ξa, ‖dϕ‖2 = ϕai ϕ

a
i ,

∇dϕ = ϕaijθ
j ⊗ θi ⊗ ξa, where

ϕaijθ
j = dϕai − ϕaj θ

j
i + ϕbiψ

a
b ,

τ(ϕ) = ϕaiiξa.

From the chain rule, we have

Hessu = Hessh(dϕ⊗ dϕ) + dh ◦ ∇dϕ,

hence, taking traces,

(2.44) ∆u =
∑
i

Hessh(dϕ(ei),dϕ(ei)) + dh(τ(ϕ)).

Suppose now that h is a function that only depends on the points of N , so that the
mixed terms hrα vanish. Then, the first term in the RHS of (2.44) can be written
as

hrsϕ
r
iϕ

s
i + hαβϕ

α
i ϕ

β
i = (NHessh)rsϕ

s
iϕ

r
i +

hsfs
f

ϕαi ϕ
α
i .

Consequently, we can rewrite (2.44) as follows:
(2.45)

∆u =
∑
i

(NHessh)(dNϕ(ei),dNϕ(ei)) + 〈∇h,∇ log f〉N‖dQϕ‖2 + 〈∇h, τN (ϕ)〉

Next, let k ∈ R, and let snk be the solution of the Cauchy problem{
sn′′k + ksnk = 0

snk(0) = 0, sn′k(0) = 1
,

that is,

snk(r) =


sin(
√
kr)/
√
k if k > 0,

r if k = 0,

sinh(
√
−kr)/

√
−k if k < 0.

Define cnk(r) = sn′k(r). We are ready to state

Theorem 2.25. Let N ×f Q be a warped product as above. Let ρ(x) be the
distance function on N from a reference origin p, and let BR0 ⊂ N be a geodesic ball
centered at p of radius R0. Define k ∈ R to be an upper bound of the radial sectional
curvatures at points of BR0 . If k > 0, we restrict to the case R0 < π/(2

√
k).

Let Mm be a non-compact Riemannian manifold, possibly non complete, and let
ϕ : M → Nn ×f Qq be a smooth map whose image lies in the cylindrical region
BR0

×Q. Assume that the following properties hold:

(2.46)

(i) ϕ−1(BR ×Q) is relatively compact for every R < R0;

(ii) lim inf
x→∞

‖dNϕ(x)‖2 ≥ A > 0, lim sup
x→∞

‖dQϕ(x)‖2 ≤ B < +∞.

If

(2.47) lim sup
x→∞

‖τ(ϕ)(x)‖ < A
cnk(R0)

snk(R0)
−B

∥∥|∇ log f |
∥∥
C0(∂BR0

)
,

then −∆ on M has only discrete spectrum.
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Proof. For R ∈ (0, R0), let ΩR = ϕ−1(BR×Q). By (i), {ΩR} is an exhaustion
of M by relatively compact domains. Let j0 ∈ N be sufficiently large and, for every
j ≥ j0, let Rj , Ωj be such that
(2.48)

‖dNϕ‖2 ≥ Aj = A− 1

j
> 0, ‖dQϕ‖2 ≤ Bj = B +

1

j
on M\ΩRj = M\Ωj

Clearly, we can assume Rj ↑ R0. Set also Dj = BR0\BRj . Define, for r ∈ (0, R0)

ink(r) =

∫ R0

r

snk(s)ds,

and consider the function h : N ×f Q→ R given by h(x, y) = ink(ρ(x)). From the
Hessian comparison Theorem 1.15, and since ink is decreasing, we deduce

NHessh = in′′k(dρ⊗ dρ) + in′k(NHess ρ)

≤ −cnk(dρ⊗ dρ)− snk
cnk
snk

(
〈 , 〉N − dρ⊗ dρ

)
= −cnk〈 , 〉N .

By formula (2.45), the Laplacian of u = h ◦ ϕ is bounded as follows:

(2.49)

∆u ≤ −cnk‖dNϕ‖2 + snk|∇ log f |‖dQϕ‖2 + snk‖τ(ϕ)‖

= −snk

(
cnk
snk
‖dNϕ‖2 + |∇ log f |‖dQϕ‖2 + ‖τ(ϕ)‖

)
By (2.47) and by (2.48), if j is sufficiently large and x ∈M\Ωj we get

(2.50)
cnk(R0)

snk(R0)
Aj −

∥∥|∇ log f |
∥∥
C0(Dj)

Bj − ‖τ(ϕ)‖ ≥ c,

for some c > 0 independent of j. Therefore, since cnk/snk is decreasing (on

(0, π/(2
√
k)), if k > 0), (2.49) implies

(2.51) ∆u ≤ −c · snk ≤ −c · snk(Rj).

Therefore, an application of Barta inequality, together with (2.51) gives

(2.52) λ−∆
1 (M\Ωj) ≥ inf

M\Ωj

(
−∆u

u

)
≥ c snk(Rj)

ink(Rj)
,

and letting j → +∞ with the aid of Persson formula (1.88) we deduce

inf σess(−∆) ≥ lim
j→+∞

c
snk(Rj)

ink(Rj)
= +∞.

By the min-max characterization, −∆ has only discrete spectrum. �

Remark 2.26. We observe that, loosely speaking, property (i) in (2.46) requires
that ϕ(x) tends to the boundary of the cylinder uniformly as x diverges in M .

The next corollaries are immediate consequences of the above theorem. We
first consider the particular case when ϕ is an isometric immersion. As usual, we
denote with II the second fundamental form ∇dϕ, and with H the mean curvature
vector, normalized according to mH = τ(ϕ) = Tr(II).
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Corollary 2.27 ([BJM10], Theorem 4.1). In the assumptions of the above
theorem, let

ϕ : Mm → BR0
×f Qq ⊂ Nn ×f Qq

be an isometric immersion satisfying property (i) of (2.46), and assume that m > q.
If

(2.53) lim sup
x→∞

‖H(x)‖ < (m− q)
m

cnk(R0)

snk(R0)
− q

m

∥∥|∇ log f |
∥∥
C0(∂BR0

)
,

then −∆ on M has only discrete spectrum. In particular, if ϕ is minimal and f|∂BR0

satisfies ∥∥|∇ log f |
∥∥
C0(∂BR0

)
<

(m− q)
q

cnk(R0)

snk(R0)
,

then, the spectrum of −∆ on M is discrete.

Proof. We only prove the first part of the statement, the second being an
immediate consequence. Since ϕ is isometric, {dϕ(ei)} is an orthonormal set, hence
‖dNϕ‖2 + ‖dQϕ‖2 = ‖dϕ‖2 = m,

‖dQϕ‖2 = ϕαi ϕ
α
i =

∑
α

(∑
i

〈〈dϕ(ei), Eα〉〉

)
≤
∑
α

1 = q,

and thus ‖dNϕ‖2 ≥ m − q. Inserting (m − q) and q in place of A,B in (2.47) we
reach the desired conclusion. �

Corollary 2.28. Let M be a Riemannian manifold such that there exists a
proper harmonic map ϕ into some relatively compact ball BR0

⊂ Nn. Denote with
k an upper bound for the radial sectional curvatures of points of BR0

. If k > 0,

assume furthermore that R0 < π/(2
√
k). Then, if ‖dϕ‖2 ≥ C > 0 outside some

compact set, the spectrum of −∆ on M is discrete.

Proof. Roughly speaking, it is enough to get rid of Q and f in Theorem
2.25. Indeed, the computations and the steps of the proof can be straightfor-
wardly rephrased in this slightly different setting, and by the harmonicity assump-
tion τ(ϕ) = 0 the conclusion follows easily. �

As a particular case of Corollary 2.28, we recover

Corollary 2.29 ([BJM10], Theorem 1.2). The Martin-Morales-Nadirashvili
minimal surface has discrete spectrum.

.

2.4. Spectral estimates and nonlinear PDE

Spectral theory is intimately related to existence and non-existence results for
semilinear elliptic equations. To justify this claim, we consider as a prototype
example the classical Yamabe problem. Let (M, 〈 , 〉) be a Riemannian manifold
with dimension m ≥ 3, volume form dV and scalar curvature s, and let

(2.54) 〈̃ , 〉 = u
4

m−2 〈 , 〉, 0 < u ∈ C∞(M)
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be a (pointwise) conformal deformation of the metric. Adding a tilde to geometric

quantities referring to (M, 〈̃ , 〉), dṼ = u2m/(m−2)dV . A computation shows that
the scalar curvatures are related by Yamabe equation

(2.55) ∆u− s(x)

cm
u+

s̃(x)

cm
u
m+2
m−2 = 0, where cm =

4(m− 1)

m− 2

(see [Kaz85]). The existence of a conformal deformation of the metric with assigned
scalar curvature s̃ is equivalent to the solvability of (2.55) with u > 0. Set L =

−∆ + s/cm, L̃ = −∆̃ + s̃/cm. L is usually called the conformal Laplacian of M .
From the transformation law for ∆ under a conformal change of the metric, that
is,

∆̃φ = u−
4

m−2 ∆φ+ 2u−
m+2
m−2 〈∇u,∇φ〉 ∀ φ ∈ C2(M),

the following relations hold for every φ ∈ Lipc(M) (respectively, φ ∈ C2(M)):

(2.56)

∫
M

˜|∇̃φ|2dṼ +

∫
M

s̃

cm
φ2dṼ =

∫
M

|∇(uφ)|2dV −
∫
M

s

cm
(uφ)2dV,

L̃φ = u−
m+2
m−2L(uφ).

From this and the variational characterization (1.78), the signs of λLk (Ω) and λ̃L̃k (Ω)
coincide for every Ω b M . Spectral assumptions on L such as stability, either
global or outside a compact set, are thus conformal invariants. As a consequence,
it is expected that the sign of λL1 (M), for instance, be relevant for existence or
nonexistence of positive solutions u of (2.55). This is indeed true for a wider class
of nonlinearities. As an example we consider the following theorem, which combines
the method of sub-supersolutions as described in [AO85], [AO88] with ideas in
[BRS98a], [RRV94], [RRV97]. This has been further extended in [PRS10] to
the present.

Theorem 2.30. Let (M, 〈 , 〉) be a non-compact Riemannian manifold of di-

mension m ≥ 2, and let q(x), b(x) ∈ C0,µ
loc (M), µ ∈ (0, 1]. Let b(x) ≥ 0 on M and

strictly positive outside a compact set. Having set

B0 = {x ∈M : b(x) = 0} ,

assume that λL1 (B0) > 0, where L = −∆− q(x). Suppose furthermore that

λL1 (M) < 0.

Then, for every σ > 1, the equation

(2.57) ∆u+ q(x)u− b(x)uσ = 0

possesses a minimal and a maximal (possibly coinciding) positive C2,µ
loc solutions.

Remark 2.31. Since the first eigenvalue of −∆ on Br grows like r−2 as r → 0,
for each q(x) ∈ L∞loc(M) we have λL1 (Br) > 0 provided r is sufficiently small. One
may therefore think that the condition λL1 (B0) > 0 expresses the fact that B0 is
“small”, at least in a spectral sense.

For the convenience of the reader, we divide the proof into several steps. The
first is a simple comparison.
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Proposition 2.32. Let Ω ⊂M be a bounded domain with Lipschitz boundary.
Assume that q(x), b(x) ∈ C0(Ω) and that b(x) ≥ 0. Let u, v ∈ C2(Ω) ∩ C0(Ω) be
solutions on Ω of

(2.58)
∆u+ q(x)u− b(x)uσ ≤ 0;

∆v + q(x)v − b(x)vσ ≥ 0.

With v ≥ 0, u > 0 and σ ≥ 1. If v ≤ u on ∂Ω then v ≤ u on Ω.

Proof. The proof is modelled on that of the generalized maximum principle,
see [PW84]. Set w = v/u. A computation using (2.58) shows

∆w ≥ b(x)
(
vσ−1 − uσ−1

)
w − 2〈∇w,∇ log v〉.

If, by contradiction, v > u somewhere on Ω, let ε be sufficiently small that

Ωε = {x ∈ Ω : w(x) > 1 + ε} 6= ∅.
Since v ≥ u and b(x) ≥ 0 on Ωε,

∆w + 2〈∇w,∇ log v〉 ≥ 0 on Ωε.

From w = 1 + ε on ∂Ωε, applying the maximum principle we deduce w ≤ 1 + ε on
Ωε, contradicting Ωε 6= ∅. �

Next, we state and prove a mild improvement of an original result of P. Li, L.F.
Tam and D. Yang [LTD98].

Proposition 2.33. Let q(x), b(x) ∈ C0,µ
loc (M), µ ∈ (0, 1], b(x) ≥ 0 and sup-

pose that B0 is compact. Let Ω be a relatively compact open domain with smooth
boundary containing B0. If

(2.59) ∆u+ q(x)u− b(x)uσ = 0, σ > 1

has a positive weak supersolution u ∈ H1(Ω) ∩ L∞loc(Ω), then λL1 (B0) ≥ 0. Con-

versely, if λL1 (B0) > 0, then (2.59) has a positive supersolution u ∈ C2,µ(Ω).

Proof. Suppose u ∈ H1(Ω)∩L∞loc(Ω) is a positive weak supersolution of (2.59)
on Ω and, by contradiction, assume that λL1 (B0) = −a, for some a > 0. Then, by
the definition of λL1 (B0) we can find a sequence of open sets with smooth boundaries
Ωi, i ∈ N, such that

Ωi+1 b Ωi b Ω,

+∞⋂
i=1

Ωi = B0,

and, increasingly, λi = λL1 (Ωi)→ −a as i→ +∞. Corresponding to λi, there exists
a C2,µ positive eigenfunction vi such that

(2.60)

{
∆vi + q(x)vi = −λivi on Ωi,

vi > 0 on Ωi, vi = 0 on ∂Ωi.

Note that, since vi > 0, on Ωi,

(2.61)
∂vi
∂ν
≤ 0,

ν being the outward pointing unit normal to ∂Ωi. Using Green formula and the
fact that u > 0 solves ∆u+ q(x)u ≤ b(x)uσ weakly on Ωi we get

0 ≥
∫
∂Ωi

u
∂vi
∂ν

=

∫
Ωi

u∆vi +

∫
Ωi

〈∇vi,∇u〉 ≥
∫

Ωi

−viu
(
λi + b(x)uσ−1

)
,
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that is,

(2.62)

∫
Ωi

uvi
(
λi + b(x)uσ−1

)
≥ 0.

Since Ωi ↓ B0 and u ∈ L∞loc(Ω), using both the continuity of b(x) and λi → −a < 0
for i sufficiently large we contradict (2.62).
To prove the converse, assume λL1 (B0) > 0. Let Λ,Λ′ be open sets with smooth
boundary such that

B0 ⊂ Λ′ b Λ b Ω and λL1 (Λ) > 0.

Let u1 be a solution of

(2.63)

{
∆u1 + q(x)u1 = −λL1 (Λ)u1 on Λ,

u1 = 0 on ∂Λ.

By elliptic regularity up to the boundary, u1 ∈ C2,µ(Λ) ([GT98], Theorem 6.6)
and, by Remark 1.28, u1 > 0 on Λ. Since b(x) > 0 on Ω\Λ′, we can define

(2.64) β = inf
Ω\Λ′

b > 0.

We claim that a sufficiently large positive constant u2 is a supersolution of (2.59)
on Ω\Λ′. Towards this aim we let

(2.65) A = sup
Ω\Λ′

q.

Note that A < +∞ since Ω has compact closure. Then we have

∆u2 + q(x)u2 − b(x)uσ2 = u2

[
q(x)− b(x)uσ−1

2

]
≤ u2

[
A− βuσ−1

2

]
≤ 0

provided u2 ≥ (A/β)1/(σ−1). Let now ψ ∈ C∞c (Λ) be a smooth cut-off function
such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on Λ′. Fix a positive constant γ and define

u = γ
(
ψu1 + (1− ψ)u2

)
∈ C2,µ(Ω)

Then, on Λ′, where u ≡ γu1, we have

∆u+ q(x)u− b(x)uσ = −
[
λL1 (Λ) + b(x)(γu1)σ−1

]
γu1 ≤ 0

irrespectively of the value of γ > 0. Moreover, on Ω\Λ, where u ≡ γu2, we get

∆u+ q(x)u− b(x)uσ = γ
[
q(x)u2 − b(x)uσ2γ

σ−1
]
.

Now, for γ ≥ 1 and since b > 0 on Ω\Λ, we deduce b(x)γσ ≥ b(x)γ, so that

∆u+ q(x)u− b(x)uσ ≤ γ [∆u2 + q(x)u2 − b(x)uσ2 ] ≤ 0

because of our choice of u2. It remains to analyze the situation on Λ\Λ′. On this
set

(2.66) (∆ + q(x))
(
ψu1 + (1− ψ)u2

)
≤ C,

for some C > 0 sufficiently large. Now, since b(x) > 0 on Λ\Λ′,

(2.67) inf
Λ\Λ′

b(x)
(
ψu1 + (1− ψ)u2

)σ
> C−1
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up to enlarging C further. Therefore, on Λ\Λ′ we have

∆u+ q(x)u− b(x)uσ = γ (∆ + q(x))
(
ψu1 + (1− ψ)u2

)
−b(x)γσ

(
ψu1 + (1− ψ)u2

)σ
≤ γ

(
C − γσ−1C−1

)
≤ 0

up to choosing γ ≥ C2/(σ−1). Thus, u is a supersolution on Ω whenever γ ≥
max{1, C2/(σ−1)}. �

Next, we proceed to construct solutions on relatively compact domains.

Lemma 2.34. Let q(x), b(x) ∈ C0,µ
loc (M), µ ∈ (0, 1], b(x) ≥ 0 and suppose that

B0 is compact and satisfies λL1 (B0) > 0. Let Ω be a relatively compact open domain
with smooth boundary such that B0 b Ω. Fix n ∈ (0,+∞). Then, there exists
u ∈ C2,µ(Ω) which solves the problem

(2.68)

{
∆u+ q(x)u− b(x)uσ = 0 on Ω,

u > 0 on Ω, u = n on ∂Ω.

Proof. By the definition of λL1 (B0), there exists an open domain with smooth
boundary D such that B0 b D b Ω and λL1 (D) > 0. Let ψ ∈ C∞c (Ω) be a cut-off
function such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 on D. Fix

N ≥ max
{

1 + sup
Ω

|q(x)|, λ−∆
1 (M) + 1

}
and define

(2.69) q̂(x) = ψ(x)q(x) +N(1− ψ(x)) ∈ C2,µ(Ω).

Consider the operator L̂ = −∆ − q̂(x). Since q̂ = q on D, we have λL̂1 (B0) ≡
λL1 (B0) > 0. Furthermore, since N ≥ λ−∆

1 (M) + 1, there exists a sufficiently large,
relatively compact domain Ω1 such that

Ω ⊂ Ω1 and λL̂1 (Ω1) < 0.

We fix γ > 0 sufficiently small in such a way that, if ϕ ∈ C2,µ(Ω1) is a normalized

eigenfunction of L̂ on Ω1, that is, if ϕ satisfies{
L̂ϕ = λL̂1 (Ω1) on Ω1,

ϕ = 0 on ∂Ω1

and ‖ϕ‖L2(Ω1) = 1, then

(2.70)

∫
Ω1

[
|∇ϕ|2 − q̂(x)ϕ2

]
+ γ

∫
Ω1

b(x)ϕ2 = λL̂1 (Ω1) + γ

∫
Ω1

b(x)ϕ2 < 0.

This shows that the operator L̃ = L̂+γb(x) satisfies λL̃1 (Ω1) < 0. Let ψ ∈ C2,µ(Ω1)

be an eigenfunction corresponding to λL̃1 (Ω1). Then, ψ is positive by Remark 1.28,
and satisfies {

−L̂ψ ≥ γb(x)ψ on Ω1,

ψ = 0 on ∂Ω1.
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If we choose

0 < ρ < γ
1

σ−1

[
sup
Ω1

ψ

]−1

,

then the C2,µ function v− = ρψ solves{
∆v− + q̂(x)v− − b(x)vσ− ≥ 0 on Ω1,

v− > 0 on Ω1, v− = 0 on ∂Ω1.

On the other hand, since λL̂1 (B0) > 0, by Proposition 2.33 there exists 0 < v+ ∈
C2,µ(Ω1) satisfying{

∆v+ + q̂(x)v+ − b(x)vσ+ ≤ 0 on Ω1,

v+ ≥ 0 on ∂Ω1.

By the comparison Proposition 2.32, v− ≤ v+ on Ω1. Thus, by the monotone
iteration scheme (see [Sat72], or [Kur89] for a different approach), we find a
solution w ∈ C2,µ(Ω1) of the problem{

∆w + q̂(x)w − b(x)wσ = 0 on Ω1,

w > 0 on Ω1, w = 0 on ∂Ω1.

Note that w > 0 on ∂Ω since Ω ⊂ Ω1. We set w+ = ξw, ξ > 0. Then, it is
immediate to see that, since q̂ ≥ q on Ω, up to choosing ξ sufficiently large{

∆w+ + q(x)w+ − b(x)wσ+ ≤ 0 on Ω,

w+ ≥ n on ∂Ω.

Since u ≡ 0 is clearly a subsolution of the same problem, by the monotone iteration
scheme we deduce the existence of a non-negative solution u ∈ C2,µ(Ω) of the
problem (2.68). However, u > 0. Indeed, ∆u + (q(x) − b(x)uσ−1)u = 0 and now
apply the strong maximum principle ([GT98], p.35) to conclude. �

In the next result we produce a solution blowing up at the boundary of Ω.

Lemma 2.35. In the assumptions of Lemma 2.34, there exists a solution u ∈
C2,µ

loc (Ω) of the problem

(2.71)

{
∆u+ q(x)u− b(x)uσ = 0 on Ω,

u > 0 on Ω, u→ +∞ on ∂Ω.

Proof. By standard Schauder estimates (Chapter 6 of [GT98]), it is enough
to show that the sequence {un}, n ∈ N, with un solution of (2.68), is bounded
on any compact subset K of Ω. Once this is proved, by Theorem 6.2 of [GT98]
{un} is bounded in C2,µ(K) for every domain K with compact closure in Ω. Ascoli-
Arzelà compactness result together with a Cantor diagonal argument yields, up to a
subsequence, un → u in the C2 topology. As a matter of fact, u is again in C2,µ

loc (Ω)
by passing to the limit in the definition of Hölder seminorm. If K ⊂ Ω\B0, then
we can find a finite covering of relatively compact balls {Bi} for K, i ∈ {1, . . . , t},
such that b(x) > 0 on Bi. We claim that for each Bi there exists a constant Ci
such that un ≤ Ci on Bi for every n ∈ N. Postponing for a moment the proof of
this claim we deduce the existence of a constant C such that

(2.72) un(x) ≤ C ∀ x ∈ K,∀ n ∈ N.
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It remains to find an upper bound for un in a neighbourhood of B0. Towards this
aim, let {Nj} be a decreasing nested sequence of relatively compact domains with
smooth boundary converging to B0. By the compactness of B0, we can choose j
sufficiently large that N j ⊂ Ω. Furthermore, by the definition of λL1 (B0) and by
λL1 (B0) > 0, we can choose j big enough in such a way that

λL1 (Nj) > 0

is met. Now, ∂N2j is compact, therefore (2.72) holds on ∂N2j for some constant
C2 > 0. Let ϕ be the positive eigenfunction associated to λL1 (Nj). Then, there
exists a positive constant S > 0 such that

Sϕ ≥ C2 ≥ un on ∂N2j , ∀ n ∈ N.

Since, on N2j ,

∆(Sϕ) + q(x)(Sϕ) = −λL1 (Nj)(Sϕ) < 0;

∆un + q(x)un = b(x)uσn ≥ 0,

we can apply Proposition 2.32 with b(x) ≡ 0 to deduce the uniform estimate un ≤
Sϕ ≤ S‖ϕ‖L∞(Nj) on N2j .
To finish the proof of of the Lemma is remains to prove the claim. Let B3R be a
relatively compact ball of radius 3R such that b(x) > 0 on B3R. Let u > 0 be a
solution of

∆u+ q(x)u = b(x)uσ on B3R.

Then, if q0 = ‖q(x)‖L∞(B3R), u satisfies

∆u+ q0u ≥ 0.

Thus, we can apply Theorem 8.17 of [GT98] to the operator ∆ + q0 to deduce the
weak Harnack inequality

sup
BR

u ≤ C‖u‖Lp(B2R),

for some p > 1 and with a constant C depending on m, p, q0, R, the geometry of
B2R and the ellipticity constant of ∆ on B3R. To give a uniform upper estimate of
‖u‖Lp(B2R), observe that if φ ∈ C∞c (B3R), φ ≡ 1 on B2R and we choose p = σ + 1,
for any η > 1

‖u‖pLp(B2R) ≤
∫
B3R

uσ+1φη.

It is therefore enough to give a uniform upper bound for the RHS of the above. Set

η =
2(σ + 1)

σ − 1
> 2,

and note that η is twice the Hölder conjugate of (σ + 1)/2. Multiply both sides of

(2.73) ∆u+ q(x)u = b(x)uσ

by uφη and integrating by parts we get∫
b(x)uσ+1φη =

∫
qu2φη −

∫
φη|∇u|2 −

∫
ηφη−1u〈∇u,∇φ〉

Set b0 = infB3R
b > 0. An application of Cauchy-Schwarz and Young inequalities

to the RHS gives

(RHS) ≤ q0

∫
u2φη +

η2

4

∫
φη−2u2|∇φ|2.
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We now apply Hölder’s inequality to both terms of the RHS to get

b0

∫
uσ+1φη ≤

∫
b(x)uσ+1φη ≤ q0

{∫
uσ+1φη

} 2
σ+1

{∫
φη
}σ−1
σ+1

+
η2

4

{∫
uσ+1φη

} 2
σ+1

{∫
|∇φ|η

}σ−1
σ+1

.

Simplifying, we obtain∫
uσ+1φη ≤ 1

b0

[
q0

{∫
φη
}σ−1
σ+1

+
η2

4

{∫
|∇φ|η

}σ−1
σ+1

] σ+1
σ−1

,

and the uniform Lσ+1-estimate follows. �

Remark 2.36. For a proof of L∞ estimates with a different method inspired
by a work of L. Ahlfors [Ahl38], the reader can consult the Appendix of [RRV97].

Lemma 2.37. Let q(x), b(x) ∈ C0,µ
loc (M), µ ∈ (0, 1], b(x) ≥ 0 and suppose that

B0 is compact and satisfies λL1 (B0) > 0. If u− ∈ C2,µ
loc (M), u ≥ 0, u 6= 0 is a global

subsolution of

(2.74) ∆u+ q(x)u− b(x)uσ = 0, σ > 1

on M, then (2.74) has a maximal positive C2,µ
loc solution on M .

Proof. We fix an exhausting sequence {Ωk} of relatively compact open do-
mains with smooth boundary such that

B0 b Ωk b Ωk+1 ∀ k ∈ N.

Having fixed k, according to Lemma 2.35 we can construct a blowing up solution
0 < uk ∈ C2,µ

loc (Ωk) of the problem (2.71) with Ω = Ωk. Note that, by Proposition
2.32,

(2.75) uk ≥ u− on Ωk.

Similarly, uk+1 ≤ uk on Ωk. Since uk is monotone decreasing, by elliptic regularity

it converges locally in the C2 topology to a C2,µ
loc solution of (2.74). Because of

(2.75), u ≥ u− on M , ad since u− 6= 0, by the maximum principle u > 0 on M . If
ũ > 0 is any non-negative C2 solution of (2.74), by Proposition 2.32 ũ ≤ uk on Ωk,
so that letting k → +∞ we deduce ũ ≤ u. This proves that u is maximal. �

Proof of Theorem 2.30. By the above lemmas, assumption λL1 (B0) > 0

enables us to produce a positive maximal C2,µ
loc solution u provides we can find

some non-negative, non zero subsolution u−. The requirement λL1 (M) < 0 is what
we need to construct u−. Indeed, we are going to produce as u− the minimal
positive solution v. The method follows the lines of that of Lemma 2.34, where the

first step was a perturbation of L to produce some operator L̂ satisfying λL̂1 (M) < 0.
Here, since λL1 (M) < 0 we can fix a sufficiently large relatively compact set Ω with
smooth boundary such that λL1 (Ω) < 0. Let ϕ ∈ C2,µ(Ω) be the corresponding
normalized eigenfunction. If γ is sufficiently small, then∫

Ω

|∇ϕ|2 − q(x)ϕ2 + γb(x)ϕ2 = λL1 (Ω) + γ

∫
Ω

b(x)ϕ2 < 0,
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thus λL̃1 (Ω) < 0, where L̃ = L+ γb(x). Let ψ ∈ C2,µ(Ω) be a positive eigenfunction

corresponding to λL̃1 (Ω). Then ψ solves{
−Lψ ≥ γb(x)ψ,

ψ = 0 on ∂Ω.

If we choose ρ ≤ γ1/(σ−1) [supΩ ψ]
−1

, the function v− = ρψ solves

(2.76)

{
∆v− + q(x)v− ≥ b(x)vσ− on Ω,

v− = 0 on ∂Ω.

Lemma 2.33 guarantees the existence of a positive C2,µ supersolution v+ of (2.76),
which by Proposition 2.32 satisfies v− ≤ v+. Then, the monotone iteration scheme
and the maximum principle give a positive, C2,µ solution v with zero boundary
condition on ∂Ω. Choose now a sequence {Ωk} of relatively compact domains with
smooth boundaries, and let vk be the positive solution of ∆vk + q(x)vk − b(x)vσk =
0 with zero condition on ∂Ωk constructed above. By Proposition 2.32, {vk} is
monotone increasing, and uniformly bounded by the procedure of Lemma 2.35.
Thus the elliptic estimates, together with Ascoli-Arzelà and Cantor arguments yield
C2 convergence of {vk} to a C2,µ solution v > 0, which is obviously minimal, since
by Proposition 2.32 every positive solution w shall satisfy w ≥ vk on Ωk. This
concludes the proof. �

Remark 2.38. If λL1 (M) ≥ 0, it is possible to prove the triviality of any solution
u ∈ Liploc(M), u ≥ 0 of

u∆u+ q(x)u2 − b(x)uσ+1 ≥ 0

satisfying suitable integrability assumptions. As a consequence, the spectral as-
sumption λL1 (M) < 0 in Theorem 2.30 is necessary. We will come back to this
nonexistence result in Section 4.3, when we will prove a sharp Liouville type the-
orem on manifolds with a pole as a consequence of our ODE approach. Liouville
type theorems are a cornerstone in modern Differential Geometry and Geometric
Analysis. For a detailed treatment, together with many geometric applications, see
[PRS08] and the references therein.



CHAPTER 3

On the solutions of the ODE (vz′)′ + Avz = 0

The purpose of this chapter is to introduce one of the main tools in our inves-
tigation of the ODE (vz′)′ + Avz = 0: the critical curve χ(r). After a few brief
introductory considerations, we proceed discussing some of its properties related to
geometry. In particular, we focus on comparison results for χ and we discuss the
behaviour of χ as r → +∞ depending on some relevant geometric quantities.

3.1. Existence, uniqueness and the behaviour of zeroes

This preliminary section is devoted to showing existence, in the Liploc class, of
a solution of the Cauchy problem

(3.1)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+

z′(r) = O(1) as r ↓ 0+, z(0) = z0 > 0

under the assumptions

A(r) ∈ L∞loc(R+
0 )(A1)

0 ≤ v(r) ∈ L∞loc(R+
0 ),

1

v(r)
∈ L∞loc(R+), lim

r→0+
v(r) = 0(V1)

v(r)

∫ a

r

ds

v(s)
and

1

v(r)

∫ r

0

v(s)ds ∈ L∞([0, a]), for some a ∈ R+(V2)

1

v(r)

∫ r

0

v(x)dx = o(1) as r → 0+.(V3)

Clearly, (V3) and the third assumption in (V1) require the choice of a version of v.

Remark 3.1. Both (V2) and (V3) are met if, for instance, a version of v is non-
decreasing on (0, a). By Proposition 1.6, this is always the case if v(r) = vol(∂Br)
and a is sufficiently small.

Solving (3.1) is equivalent to finding z ∈ Liploc(R+
0 ) satisfying

(3.2) z(r) = z0 −
∫ r

0

1

v(s)

{∫ s

0

A(x)v(x)z(x)dx

}
ds.

Observe that z′(r) = O(1) near 0 is automatically true if z ∈ Liploc(R+
0 ). Next,

with a suitable substitution we prove both uniqueness and the fact that the zeros
z(r) if any, are at isolated points. Existence results for the Sturm-Liouville problem
(3.1) are classical and proved with fairly weaker regularity on A and v, for instance,
in Section 2 of the Lecture Notes of J. Weidmann [Wei87]. However, to keep the
paper self-contained, we report here a direct proof for the Liploc class. As usual, this
relies upon the Banach-Caccioppoli fixed point theorem, together with an Ascoli-
Arzelá argument to deal with the singularity in r = 0.
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Proposition 3.2 (Existence). Under assumptions (A1), (V1), (V2) there ex-
ists a solution z(r) ∈ Liploc(R+

0 ) of

(3.3)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+

z(0) = z0 > 0.

Moreover, if also (V3) holds, up to a zero-measure set Ω, z′(r)→ 0 as r → 0, r 6∈ Ω.
If v is continuous, z ∈ C1(R+

0 ) and, when (V3) is met, z′(0) = 0; if A ∈ Ck(R+
0 ),

k ≥ 0, v ∈ Ck+1(R+
0 ), then z ∈ Ck+2(R+).

Proof. Assume A 6≡ 0 in L∞loc sense, the case A ≡ 0 being easier. First, fix a
sequence Rj ↑ +∞. We can suppose that a ∈ (0, Rj) for every j, where a is as in
(V2), and A 6≡ 0 on [0, Rj ]. Fix ε ∈ (0, a), and define

vε(r) =

{
v(ε) on (0, ε]

v(r) on [ε,+∞)

Then,

(3.4) kε(r, s) = −A(s)vε(s)

∫ r

s

dx

vε(x)

belongs to L∞loc(R+
0 ×R+

0 ). Thus, by the Banach-Caccioppoli theorem (for instance,
one can consult chapter IX of [KF80]), Volterra integral equation of the second
kind

(3.5) w(r) = z0 +

∫ r

0

kε(r, s)w(s)ds,

restricted to every interval [0, Rj ] where the kernel kε(r, s) is bounded, admits a
unique solution zε,j ∈ L2((0, Rj)). From (3.4), an integration by parts applied to
the integrable function −A(s)vε(s)zε,j(s) and to the absolutely continuous one∫ r

s

dx

vε(x)

gives

(3.6) zε,j(r) = z0 −
∫ r

0

1

vε(s)

{∫ s

0

A(x)vε(x)zε,j(x)dx

}
ds

on [0, Rj ]. This shows that zε,j(r), being an integral function, is absolutely contin-
uous on [0, Rj ], hence differentiable a.e. with derivative

− 1

vε(r)

∫ r

0

A(x)vε(x)zε,j(x)dx ∈ L∞([0, Rj ]).

Therefore, zε,j(r) is a Lipschitz function on [0, Rj ]. By the uniqueness of solutions
of (3.5), we deduce that the functions {zε,j}j fit together on common intervals to
give a locally Lipschitz solution zε(r) on R+

0 . What we want to prove is that, for
every Rj , the family {zε}ε∈(0,a) is equibounded and equi-Lipschitz in C0([0, Rj ]).
For the ease of notation, from now on we omit the subscript j and we consider the
problem on [0, R] ⊂ R+

0 . For every s ≤ ε observe that, because of (A1), (V2) and
the definition of vε,

vε(s)

∫ a

s

dx

vε(x)
= v(ε)

[∫ ε

s

. . .+

∫ a

ε

. . .

]
≤ (ε− s) + v(ε)

∫ a

ε

dx

v(x)
,
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hence

(3.7)

∥∥∥∥vε(·)∫ a

·

dx

vε(x)

∥∥∥∥
L∞([0,a])

≤ 2a+

∥∥∥∥v(·)
∫ a

·

dx

v(x)

∥∥∥∥
L∞([0,a])

≤ C

For some uniform constant C independent of ε. Thus, for 0 ≤ s ≤ r ≤ a we have

(3.8) |kε(r, s)| ≤ C‖A‖L∞([0,R]).

Next, we consider the case 0 ≤ s ≤ a < r ≤ R. Because of (V1), on [a,R] v−1 is
bounded. It follows that

|kε(r, s)| = A(s)vε(s)

{∫ a

s

dx

vε(x)
+

∫ r

a

dx

v(x)

}
≤ ‖A‖L∞([0,R])

(
C + ‖v‖L∞([0,R])‖v−1‖L∞([a,R])R

)
The case 0 < a ≤ s ≤ r ≤ R is immediate:

|kε(r, s)| ≤ ‖A‖L∞([0,R])‖v‖L∞([0,R])‖v−1‖L∞([a,R])R.

Therefore, there exists L = L(R, a) > 0 such that

(3.9) sup
ε∈(0,a)

(
sup

0≤s≤r≤R
|kε(r, s)|

)
≤ L

Using (3.9) into (3.5) and applying Gronwall’s lemma we conclude

(3.10) |zε(r)| ≤ z0e
Lr ≤ z0e

LR on [0, R]

This shows equiboundedness of the family {zε}ε∈(0,a). To show equicontinuity we
differentiate (3.6) to obtain

(3.11) z′ε(r) = − 1

vε(r)

∫ r

0

A(x)vε(x)zε(x)dx a.e. on [0, R].

As in (3.7), using (V2) it is easy to see that there exists a constant C > 0, inde-
pendent of ε, such that ∥∥∥∥ 1

vε(·)

∫ ·
0

vε(x)dx

∥∥∥∥
L∞([0,R])

≤ C,

whence

(3.12) |z′ε(r)| = ‖A‖L∞([0,R])C‖zε‖L∞([0,R]) ≤ Cr0e
LR a.e. on [0, R]

This shows that {zε}ε∈(0,a) is equi-Lipschitz on every compact subset [0, R] ⊂ R+
0 .

The Ascoli-Arzelá theorem and a Cantor diagonal argument on increasing intervals
yields a sequence {zεn}n which converges locally uniformly to a locally Lipschitz
function z on R+

0 . Clearly, vεn → v in L∞(R+
0 ). If we set

wε(s) =
1

vε(s)

∫ s

0

A(x)vε(x)zε(x)dx

using (3.11) and (3.12) we see that wεn is locally a bounded sequence of L∞loc-
functions converging pointwise to

w(s) =
1

v(s)

∫ s

0

A(x)v(x)z(x)dx a.e. on R+
0
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By the dominated convergence theorem, for every r ∈ R+ wεn → w in L1((0, r]),
hence

lim
n→+∞

∫ r

0

ds

vεn(s)

{∫ s

0

A(x)vεn(x)zεn(x)dx

}
=

∫ r

0

ds

v(s)

{∫ s

0

A(x)v(x)z(x)dx

}
Because of (3.6) it follows that z satisfies the integral equation

(3.13) z(r) = z0 −
∫ r

0

1

v(s)

{∫ s

0

A(x)v(x)z(x)dx

}
ds,

hence the Cauchy problem (3.3). Note that, when v(r), A(r) are also continuous,
from (3.13) we deduce that z(r) ∈ C1(R+). This concludes the first part of the
proof. Under the additional assumption (V3),

|z′(r)| ≤ ‖A‖L∞([0,a])‖z‖L∞([0,a])

∣∣∣∣ 1

v(r)

∫ r

0

v(s)ds

∣∣∣∣→ 0+ as r → 0+,

and this concludes the second part, while Ck+2 regularity follows easily from (3.13)
by iteration. �

Remark 3.3. With a minor modification of the above argument we can provide
existence of a locally Lipschitz solution of the problem

(3.14)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on [r0,+∞)

z(r0) = z0 ∈ R.

when (A1) and (V1) are met on [r0,+∞), for some r0 > 0. Note that 1/v is required
to be bounded also in a neighborhood of r0.

Remark 3.4. We observe that Sturm type arguments can be easily rephrased
for (vz′)′ + Avz = 0. Indeed, if z1, z2 denotes solutions of (3.3) with, respectively,
potential A1 and A2, it is enough to differentiate F = (vz′1)z2 − (vz′2)z1 and to
proceed analogously to the proof of Theorem 1.9. Therefore, the properties of
being oscillatory and nonoscillatory are well defined and mutually exclusive also for
Liploc solutions of (vz′)′ +Avz = 0.

Corollary 3.5 (Existence and uniqueness). Under assumptions (A1), (V1),
(V2), there exists a unique solution z(r) ∈ Liploc(R+

0 ) of the problem{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+

z(0+) = z0 > 0

Proof. If z1, z2 are two distinct solutions of the Cauchy problem, by Sturm
argument they coincide on some interval [0, δ). Fix Rj ↑ +∞. Since the Cauchy
problem on Ij = [δ/2, Rj) with initial data (vz′)(δ/2) = (vz′1)(δ/2) is equivalent to
a Volterra integral equation with locally bounded kernel, by uniqueness (z1)|Ij ≡
(z2)|Ij is the unique solution on each Ij , hence on R+. �

The next proposition ensures that zeros of z(r), if any, cannot have cluster
points on R+. Note that usual methods cannot be directly applied to z since z is
not C1, and we first need a suitable substitution.

Proposition 3.6 (Isolated zeroes). Assume (A1) and (V1). Then, the zeros
of every solution z(r) ∈ Liploc(R+

0 ) of (3.3), if any, are at isolated points of R+
0 .
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Proof. If 1/v ∈ L1(+∞), we set

(3.15) s(r) =

(∫ +∞

r

ds

v(s)

)−1

.

Clearly s : R+ → I = (s0,+∞) is a locally bi-Lipschitz bijection, where s0 ≥ 0. We
let r(s) be the inverse function and we define g(s) = sz(r(s)), as classically done,

for instance, in [Lei50], [Moo55]. A first differentiation shows that g ∈ C1,1
loc (I),

and a further differentiation together with (3.3) shows that g solves

(3.16)
d2g

ds2
+

(
A(r(s))v2(r(s))

s4

)
g = 0.

If the zeroes of g have a cluster point s̃ on I, by Rolle theorem g(s̃) = g′(s̃) = 0.
By the uniqueness of solutions of the Volterra integral equation associated to

d2g

ds2
+

(
A(r(s))v2(r(s))

s4

)
g = 0,

g(s̃) = g′(s̃) = 0,

we deduce that g ≡ 0 on (s0,+∞), and therefore that z ≡ 0, which contradicts
z(0) = z0 > 0. Thus, the zeroes of g are isolated on I, and by (3.15) it follows that
also those of z(r) are isolated on R+. When 1/v 6∈ L1(+∞), since z0 > 0 we can
fix R > 0 sufficiently small that z > 0 on [0, R]. The above argument applies after
the change of variables

(3.17) s(r) =

∫ r

R

ds

v(s)
and g(s) = z(r(s)).

Indeed, s is a bi-Lipschitz bijection from [R,+∞) to R+
0 , and g ∈ C1,1

loc (R+
0 ) solves

d2g

ds2
+A(r(s))v2(r(s))g = 0.

�

From Proposition 1.6, (V1), (V2), (V3) are met when v(r) is the volume growth
of geodesic spheres of a complete, non-compact Riemannian manifold.

Corollary 3.7. Let (M, 〈 , 〉) be a complete, non-compact Riemannian man-
ifold of dimension m, and let K ⊂ M be either a point or a compactly embedded
submanifold satisfying dim(K) ≤ m−2. Define Br to be the geodesic ball centered
at K, and let v(r) = vol(∂Br). Then, for every A(r) satisfying (A1), there exists a
unique solution z ∈ Liploc(R+

0 ) of problem (3.3). Moreover, z is C1 in a neighbour-
hood of 0, z′(0) = 0 and z has isolated zeroes. Analogously, for each z′0 ∈ R there
exists a unique solution of problem (3.14) satisfying also z′(r0) = z′0 and, if z 6≡ 0,
z has isolated zeroes.

Remark 3.8. When K is a compact hypersurface, the compactness argument
in Proposition 1.6 is not necessary since v(0) > 0, and existence is easier to prove.
In this case, uniqueness follows once we also specify z′(0).

Remark 3.9. Of course, the set of, say, Liploc solutions of (vz′)′ + Avz = 0
on [R,+∞), R ≥ 0, is a linear space of dimension two. By general theory, if z1 is



68 3. ON THE SOLUTIONS OF THE ODE (vz′)′ + Avz = 0

a Liploc solution without zeroes on [R,+∞) then another Liploc solution, linearly
independent of z1, has the explicit expression

z2(r) =


z1(r)

∫ r

R

ds

v(s)z2
1(s)

if (vz2
1)−1 ∈ L1(R+);

z1(r)

∫ r

R+1

ds

v(s)z2
1(s)

if (vz2
1)−1 6∈ L1(R+).

The classical change of variables exploited in the proof of Theorem 3.6 will be
repeatedly used throughout the paper. For this reason, we state next proposition
to avoid tiresome repetitions.

Proposition 3.10. Let K ∈ L∞loc(R+
0 ), and let g be a solution of{

g′′ +K(s)g = 0 on R+

g(0) = 0, g′(0) = 1.

Choose v satisfying (V1), (V2) and 1/v ∈ L1(+∞)\L1(0+), let r = r(s) be the
inverse function of

(3.18) s(r) =

(∫ +∞

r

dτ

v(τ)

)−1

, and define z(r) =
g(s(r))

s(r)
.

Then, z solves

(3.19)

 (v(r)z′(r))′ +

(
K(s(r))s4(r)

v2(r)

)
v(r)z(r) = 0 on R+,

z(0) = 1, (vz′)(0) = 0.

3.2. The critical curve: definition and main estimates

In what follows, when we deal with (3.3) or with the Cauchy problem

(3.20)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on [r0,+∞)

z(r+
0 ) = z0 ∈ R,

for some r0 > 0, we always assume the validity of (A1) and (V1), with the under-
standing that, for (3.20), these requirements are met on [r0,+∞) and that 1/v is
bounded in a right neighbourhood of r0. The critical curve χ, in the form given
below, has been introduced for the first time in [BMR09], and in some special
cases in [BR97].

Throughout this section, we will require the further integrability condition

(VL1)
1

v(r)
∈ L1(+∞).

This condition is essential for defining χ(r). As we shall see, the situation changes
considerably when 1/v is not integrable at infinity. We set

(3.21) χ(r) =

{
2v(r)

∫ +∞

r

ds

v(s)

}−2

=

{(
−1

2
log

∫ +∞

r

ds

v(s)

)′}2

∈ L∞loc(R+).
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Observe that, for every fixed r, χ(r) depends on the behaviour of v on the whole
[r,+∞), but not on that before r. From the definition, it follows immediately that

(3.22)

∫ r

R

√
χ(s)ds =

1

2
log

{(∫ +∞

R

ds

v(s)

)/(∫ +∞

r

ds

v(s)

)}
∀ 0 < R < r,

whence, letting r → +∞, we deduce that, for every v(r) satisfying (V1),

(3.23)
√
χ(r) 6∈ L1(+∞)

Remark 3.11. We note in passing that, if 1/v is integrable at zero, by (3.21)
and (V1), χ(0+) = +∞. The same happens when v(r) satisfies (V1) and is increas-
ing near zero, independently of its integrability at zero. Indeed, for every a > 0
and r ∈ (0, a),

1

2
√
χ(r)

= v(r)

∫ +∞

r

ds

v(s)
= v(r)

(∫ a

r

. . .+

∫ +∞

a

. . .

)
≤ (a− r) + C(a)v(r),

for some constant C(a) > 0, and the claim follows letting r → 0+ by the arbitrari-
ness of a.

Although the critical curve χ(r) is suitable to describe the oscillatory behavior
of the ODE (vz′)′ + Avz = 0, it is in general not easy to handle, both because of
its integral expression and for its lack of regularity. For geometric applications it is
often useful to bound v(r) = vol(∂Br) from above or below by some function f(r)
with better regularity properties, and to introduce a critical curve χf associated to
f exactly as in (3.21) with v(r) replaced by f(r). Of course this is meaningful if f
satisfies requirements similar to those for v(r). An important feature of χf is the
homogeneity property χCf ≡ χf , for C > 0. However, simple relations between v
and f such as, for instance, v ≤ f do not imply similar relations between χ and
χf . Indeed, in this case a more stringent condition is required.

Proposition 3.12. Consider the functions v, f on some open interval I =
(r0,+∞) ⊂ R+. Then,

(i) If v/f is non-increasing (resp. strictly decreasing) on I, χ(r) ≤ χf (r)
(resp. χ(r) < χf (r)) on I;

(ii) If v/f is non-decreasing (resp. strictly increasing) on I, χ(r) ≥ χf (r)
(resp. χ(r) > χf (r)) on I;

Proof. We consider case (i), the second case being similar. Now χ ≤ χf on I
if and only if, for every [R, r] ⊂ I,∫ r

R

√
χ(s)ds ≤

∫ r

R

√
χf (s)ds

and because of (3.22) this is equivalent to

(3.24) h(r) ≤ h(R) ∀ [R, r] ⊂ I

where

h(r) =

{∫ +∞

r

ds

f(s)

}/{∫ +∞

r

ds

v(s)

}
.
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By adapting the reasoning in [CGT82], p.42, if v/f is non-increasing then h(r) is
non-increasing. Indeed,∫∞

r
1
f

∫∞
R

1
v =

[ ∫∞
r

(
1
v

)
v
f

][ ∫ r
R

1
v

]
+
∫∞
r

1
f

∫∞
r

1
v

≤ v(r)
f(r)

∫∞
r

1
v

∫ r
R

1
v +

∫∞
r

1
f

∫∞
r

1
v

≤
[ ∫∞

r
1
v

][ ∫ r
R

(
v
f

)
1
v

]
+
∫∞
r

1
f

∫∞
r

1
v

=
∫∞
r

1
v

[ ∫ r
R

1
f +

∫∞
r

1
f

]
=
∫∞
r

1
v

∫∞
R

1
f .

This proves (3.24). The above reasoning also shows that strict monotonicity of v/f
implies strict inequalities between χ and χf , as can be easily checked. �

As a consequence of the Bishop-Gromov comparison Theorem 1.24, the above
result applies when v(r) = vol(∂Br) and f is related to bounds on the Ricci tensor
or on the radial sectional curvature.

Proposition 3.13 (Comparison for the critical curve). Let (M, 〈 , 〉) be a com-
plete manifold of dimension m with a reference origin o ∈M , and let G ∈ C0(R+

0 ).
Define χ(r) as the critical curve associated to v(r) = vol(∂Br).

(i) Assume that

(3.25) Ricc(∇r,∇r)(x) ≥ −(m− 1)G(r(x)) ∀ x ∈M.

and let g be a solution of

(3.26)

{
g′′ −Gg ≥ 0 on R+

0 ,

g(0) = 0, g′(0) = 1.

Suppose that g > 0 on R+. Then χ ≤ χgm−1 on R+.
(ii) Assume that

(3.27) cut(o) = ∅, Krad(x) ≤ −G(r(x)) on M.

and let g be a solution of

(3.28)

{
g′′ −Gg ≤ 0 on R+

0 ,

g(0) = 0, g′(0) = 1.

Suppose that g > 0 on R+. Then χ ≥ χgm−1 on R+.

We now describe explicit examples of critical curves χ and χf in some inter-
esting cases. Unfortunately, as already observed the defining expression (3.21) is
computationally difficult to handle. For this reason, explicit expressons can be
found only in few simple situations. Thus, in the general case we shall limit our-
selves to stress the asymptotic behaviour of χ near 0+ and +∞. We concentrate
on the case v(r) = vol(∂Br). From the asymptotic v(r) ∼ ωm−1r

m−1 as r → 0+ in
(1.63), a straightforward computation using De l’Hopital theorem yields

(3.29)

χ(r) ∼ (m− 2)2

4r2
as r → 0+, if m ≥ 3;

χ(r) ∼ 1

4r2 log2 r
as r → 0+, if m = 2.
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In particular, if we consider a manifold M and we let r(x) be the distance function
from a fixed origin o, (3.29) and v(r) ∼ ωm−1r

m−1 imply that χ(r(x)) has an
integrable singularity near o for every m ≥ 2. Next, we consider the examples of
Euclidean and hyperbolic spaces.

Example 3.14 (Euclidean space). Let M be the Euclidean space Rm. Then,
v(r) = ωm−1r

m−1, so we have to exclude m = 2 since (VL1) does not hold. For
every m ≥ 3, a simple computation gives

(3.30) χ(r) =
(m− 2)2

4r2
on R+.

Similarly, if v(r) = Λrα for r ≥ r0 > 0, where Λ > 0 and α > 1,

χ(r) =
(α− 1)2

4r2
on [r0,+∞).

We mention that a polynomial growth of type rα is the case, for instance, of tran-
sient metric trees (see [EFK11]) and some fractal spaces, and that many of the
arguments of the next chapters can be rephrased and extended to be applied in
these general settings.

Example 3.15 (The hyperbolic space). Some computations are required for
the hyperbolic space HmB of sectional curvature −B2 < 0. In this case, the volume

of geodesic spheres is v(r) = B1−m sinhm−1(Br). Set

Im(r) =

∫ +∞

r

sinh1−m(Bs)ds, so that
1

2
√
χ(r)

= sinhm−1(Br)Im(r).

Denote, for convenience, with χm the critical curve of HmB . From the recursive
relation

(m− 1)Im(r) =
1

B
cosh(Br) sinh−m(Br)−mIm+2(r),

which can be proved integrating by parts, we deduce

m− 1

2
√
χm(r)

=
coth(Br)

B
− 1

sinh2(Br)

m

2
√
χm+2(r)

.

Therefore, we can compute the explicit expression of χm for every m once we know
those of χ2 and χ3. If m = 3,

I3(r) = B−1

∫ +∞

r

(
coth(Bs)

)′
ds = B−1

(
coth(Br)− 1

)
,

hence

(3.31) χ(r) =
B2

(1− e−2Br)2
on H3

B .

If m = 2, we change variables according to σ = eBs to deduce

I2(r) =
2

B

∫ +∞

eBr

dσ

σ2 − 1
=

1

B
log

(
eBr + 1

eBr − 1

)
and thus

(3.32) χ(r) = B2

[
2 sinh(Br) log

(
eBr + 1

eBr − 1

)]−2

on H2
B .
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In what follows, particularly in Chapters 5 and 6, it will be useful to consider
bounds f for v of the following type:

(3.33) f(r) = Λ exp
{
arα logβ r

}
, Λ, a, α > 0, β ≥ 0,

on I = R+ or on I = [r0,+∞). In the easy case α = 1, β = 0, that is, f(r) =
Λ exp{ar}, the critical curve is constant:

χf (r) ≡ a2

4
on I.

In the general case, χf (r) cannot be explicitly computed in terms of elementary
functions, so we concentrate on the asymptotic behaviour as r → +∞. Again using
De l’Hopital rule

(3.34) χf (r) ∼
(
a2α2

4

)
r2(α−1) log2β r ∼

[
f ′(r)

2f(r)

]2

as r → +∞.

Therefore, with the choice (3.33), the critical function χf (r) is asymptotic to what
we shall call from now on the modified critical function χ̃f (r):

(3.35) χ̃f (r) =

[
f ′(r)

2f(r)

]2

.

As we will stress later, χ and χ̃ are deeply related. Here we limit ourselves to
observe that, if f(r) = g(r)m−1 comes from the Laplacian comparison theorem,

χ̃f (r) =
1

4

[
(m− 1)

g′(r)

g(r)

]2

directly depends on a bound for ∆r. The modified critical function, being asymp-
totic to χf when f is of type (3.33), will come in handy in Chapter 6 to control the
oscillations of (vz′)′ +Avz = 0.

Combining Bishop-Gromov volume comparison theorem and Proposition 3.13,
we provide upper and lower bounds at infinity in some useful geometrical situations.
This is the content of the next three results. We begin with

Theorem 3.16 (Upper bounds for χ(r) on R+). Let (M, 〈 , 〉) be a complete
manifold of dimension m ≥ 2 satisfying

(3.36) Ricc(∇r,∇r)(x) ≥ −(m− 1)B2
(

1 + r(x)2
)α/2

on M,

for some B > 0 and α ≥ −2. Then,

(i) If α ≥ 0, χ(r) ≤ χf (r) on R+, where

(3.37) f(r) = B1−m sinhm−1

(
2B

2 + α

[
(1 + r)1+α

2 − 1
])

,

and

χf (r) ∼ B2(m− 1)2

4
rα as r → +∞.

(ii) If α ∈ (−2, 0), χ(r) ≤ χf (r) on R+, where

(3.38) f(r) = r(m−1)/2

[
I 1

2+α

(
2B

2 + α
r1+α

2

)]m−1

,
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and Iν(s) is the modified Bessel function of order ν. Moreover,

χf (r) ∼ B2(m− 1)2

4
rα as r → +∞.

(iii) If α = −2,

(3.39) χ(r) ≤
(
B′(m− 1)− 1

)2
4r2

on R+, where B′ =
1 +
√

1 + 4B2

2
.

Proof. (i) The function g(r) = f(r)1/(m−1) solves (3.26) with G(r) = B2(1 +
r2)α/2. Then, by Proposition 3.13 we deduce χ ≤ χf , where f = gm−1. An
application of De l’Hopital rule gives, for some explicit C > 0,

(3.40)

f(r) ∼ C exp
(

2B(m−1)
2+α (1 + r)1+α

2

)
,∫ +∞

r

ds

f(s)
∼ C−1 1

B(m−1) (1 + r)−α/2 exp
(
− 2B(m−1)

2+α (1 + r)1+α
2

)
.

The asymptotic behaviour of χf follows immediately.
As for (ii), since Iν(s), ν > 0, is a positive solution of the Bessel equation

(3.41)

s2 d2Iν
ds2

+ s
dIν
ds
− (s2 + ν2)Iν = 0,

Iν(s) =

+∞∑
k=0

1

Γ(k + 1)Γ(k + ν + 1)

(x
2

)ν+2k

(see [Leb72], p.102), a straightforward computation shows that g(r) = f(r)1/(m−1)

is a positive solution of the singular equation g′′−B2rαg = 0 with initial condition
g(0) = 0, g′(0) = C > 0 for some positive constant C = C(α,B). Hence, since
α < 0, g satisfies

(3.42)

{
g′′ −B2(1 + r2)α/2g ≥ g′′ −B2rαg = 0

g(0) = 0, g′(0) = C > 0,

so that χ ≤ χf̃ , where f̃ = (C−1g)m−1 is proportional to f . Since χ in invariant

under multiplication by a positive constant, χ ≤ χf . Using

(3.43) Iν(s) =
es√
2πs

(1 + o(1)) as s→ +∞

(see [Leb72], p.123) and De l’Hopital rule we deduce, for some explicit C > 0,

(3.44)

f(r) ∼ Cr−
(m−1)α

4 exp
(

2B(m−1)
2+α r1+α

2

)
,∫ +∞

r

ds

f(s)
∼ C−1 1

B(m−1)r
(m−3)α4 exp

(
− 2B(m−1)

2+α r1+α
2

)
,

thus χf ∼
[
B2(m − 1)2/4

]
rα also when α ∈ (−2, 0). It remains to examine (iii).

The function

g(r) = rB
′
, B′ =

1 +
√

1 + 4B2

2
solves

(3.45)

{
g′′ −B2(1 + r2)−1g ≥ g′′ −B2r−2 = 0

g(0) = 0, g′(0) = 0.
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Condition g′(0) = 0 requires some care. Let h be the (positive) solution of{
h′′ −B2(1 + r2)−1h = 0 on R+

0 ,

h(0) = 0, h′(0) = 1.

Then, (hg′ − gh′)′ ≥ 0 on R+. Since (hg′ − gh′)(0+) = 0, we deduce hg′ − gh′ ≥ 0,
hence g/h is increasing. Applying both Propositions 3.12 and 3.13 we get

χ(r) ≤ χhm−1(r) ≤ χgm−1(r) =

(
B′(m− 1)− 1

)2
4r2

on R+.

�

Remark 3.17. Observe that, in (iii), the upper bound
(
B′(m − 1) − 1

)2
/4r2

fails to have the right behaviour (3.29) at r = 0+. This fact is due to g′(0) = 0 in
(3.45).

Next, we consider lower bounds for χ(r) on negatively curved manifolds.

Theorem 3.18 (Lower bounds for χ(r) on R+). Let (M, 〈 , 〉) be a complete
manifold of dimension m ≥ 2 satisfying

(3.46) cut(o) = ∅, Krad(x) ≤ −B2
(

1 + r(x)2
)α/2

on M,

for some B > 0 and α ≥ −2. Then,

(i) If α ≥ 0, χ(r) ≥ χf (r) on R+, where f(r) is as in (3.38) and satisfies

(3.47) χf (r) ∼ B2(m− 1)2

4
rα as r → +∞.

(ii) If α ∈ (−2, 0), χ(r) ≥ χf (r) on R+, where f(r) is as in (3.37) and satisfies
(3.47).

(iii) If α = −2,

(3.48) χ(r) ≥
(
B′(m− 1)− 1

)2
4(1 + r)2

on R+, where B′ =
1 +
√

1 + 4B2

2
.

Proof. The proof is dual to that of Theorem 3.16. As for (i), since g(r) =
f(r)1/(m−1) solves g′′−B2rαg = 0 with initial condition g(0) = 0, g′(0) = C(α,B) >
0, when α ≥ 0, g satisfies

(3.49)

{
g′′ −B2(1 + r2)α/2g ≤ g′′ −B2rαg = 0

g(0) = 0, g′(0) = C.

By comparison, χ ≥ χf̃ ≡ χf , where f̃ = (C−1g)m−1 = C1−mf .

Case (ii) is identical. It is enough to observe that, when α ∈ (−2, 0), g(r) =
f(r)1/(m−1) solves{

g′′ −B2(1 + r2)α/2g ≤ g′′ −B2(1 + r)αg(r) ≤ 0,

g(0) = 0, g′(0) = 1.

We are left to the almost Euclidean case, that is, (iii). Consider h(r) = (1 + r)B
′
.

Then, h(0) = 1, h′(0) = 0 and

h′′(r) =
B′(B′ − 1)

(1 + r)2
h(r) =

B2

(1 + r)2
h(r) ≤ B2

1 + r2
h(r).
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Therefore, if g satisfy

(3.50)

{
g′′ −B2(1 + r2)α/2g = 0

g(0) = 0, g′(0) = 1,

(g′h− gh′)′ ≥ 0 on R+ and (g′h− gh′)(0) = 1, hence (g/h)′ > 0. This implies that
g/h is increasing, and applying Propositions 3.12 and 3.13

χ(r) ≥ χgm−1(r) ≥ χhm−1(r) =

(
B′(m− 1)− 1

)2
4(1 + r)2

,

which concludes the proof. �

Remark 3.19. If α = 0 in the above theorem, that is, Krad(x) ≤ −B2, we
indeed have the simpler lower bound

(3.51) χ(r) ≥ χf (r) >
B2(m− 1)2

4
on R+.

To see this, by case (ii) of Theorem 3.18, χ ≥ χgm−1 , where g = B−1 sinh(Br).
Therefore, to prove (3.51) it is enough to consider the solution h(r) = exp(Br) of{

h′′ −B2h = 0,

h(0) = 1, h′(0) = B
for which χhm−1(r) ≡ B2(m− 1)2

4
on R+.

Comparing with g (note that g(0) = 0, g′(0) = 1), by Sturm argument h/g is
strictly decreasing, hence by Proposition 3.12 χgm−1 > χhm−1 , as desired.

We now consider upper and lower bounds when the manifold M has possibly
non-negative radial sectional curvature. Note that, by the volume comparison the-
orem, if Krad ≥ 0 then v(r) = vol(∂Br) ≤ ωm−1r

m−1. Hence, the case m = 2 has
to be excluded since 1/v 6∈ L1(+∞). The proofs follow the same procedure as those
of Theorems 3.16 and 3.18, so we only sketch them.

Theorem 3.20 (Upper bounds for χ(r) on R+). Let (M, 〈 , 〉) be a complete,
non-compact manifold of dimension m ≥ 3 satisfying

(3.52) Ricc(∇r,∇r) ≥ (m− 1)
B2

(1 + r(x))2
on M,

for some B ≤ 1/2. Then,

(i) If B < 1/2, then χ(r) ≤ χf (r) on R+, where

f(r) =
(

(1 + r)B
′′
− (1 + r)1−B′′

)m−1

, B′′ =
1 +
√

1− 4B2

2
,

and

χf (r) ∼
(
B′′(m− 1)− 1

)2
4r2

as r → +∞.

(ii) If B = 1/2, then χ(r) ≤ χf (r) on R+, where

f(r) = (1 + r)
m−1

2 logm−1(1 + r)
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satisfies

(3.53) χf (r)


∼ (m− 3)2

16r2
if m > 3;

=
1

4(1 + r)2 log2(1 + r)
if m = 3,

Proof. It is enough to compare the critical curve with that of a model manifold
(Mg,ds

2), where g is the explicit solution of the Cauchy problem for the Euler
equation described in Remark 1.22. The behaviour of each critical curve can be
easily computed. In particular, (3.53) follows from

(3.54)

∫ +∞

r

ds

g(s)m−1


∼ 2

m− 3
r−

m−3
2 log−(m−1) r if m > 3;

=
1

log(1 + r)
if m = 3.

�

Lower bounds can be found by comparing, again, with the solutions of Euler
equation. However, for future use, it is more convenient to compare with functions
g for which the critical curve is simpler. As we will see in Theorem 4.10, this will
enable us to deal also with some border line case for which the sole asymptotic
behaviour of the critical curve as r → +∞ is not enough to produce a sharp result.

Theorem 3.21 (Lower bounds for χ(r) on R+). Let (M, 〈 , 〉) be a complete,
non-compact manifold of dimension m ≥ 3 satisfying

(3.55) cut(o) = ∅, Krad(x) ≤ B2

(1 + r(x))2
on M,

for some B ≤ 1/2.

(i) If B < 1/2 or B = 1/2 and m > 3, then

(3.56) χ(r) ≥
(
B′′(m− 1)− 1

)2
4r2

on R+, where B′′ =
1 +
√

1− 4B2

2
.

(ii) If B = 1/2 and m = 3, then

(3.57) χ(r) ≥ 1

4(1 + r)2 log2(1 + r)
on R+.

Proof. In case (i), we consider the function h(r) = rB
′′

which solves

(3.58)

 h′′ +
B2

(1 + r)2
h ≤ h′′ + B2

r2
h = 0;

h(0) = 0.

Note that, in both the cases

B < 1/2, m ≥ 3 and B = 1/2, m > 3

we have h1−m ∈ L1(+∞). Now, if g is the solution of g′′ +
B2

(1 + r)2
g = 0;

g(0) = 0, g′(0) = 1,
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by Sturm argument g/h is non-decreasing. By Propositions 3.13 and 3.12,

χ(r) ≥ χgm−1(r) ≥ χhm−1(r) =

(
B′′(m− 1)− 1

)2
4r2

on R+.

To show (ii), we compare directly with the solution g(r) =
√

1 + r log(1 + r) of

(3.59)

 g′′ +
1

4(1 + r)2
g = 0,

g(0) = 0, g′(0) = 1.

Define f(r) = g(r)m−1. Since m = 3, by (3.53) χgm−1 can be explicitly computed
and has the expression in (3.57). �

To conclude, we consider estimates for χ when we can only control the Ricci
or sectional curvatures in a neighbourhood of +∞, that is, on [r0,+∞) for some
r0 > 0. The principal problem is to construct subsolutions and supersolutions
whose initial conditions allow the application of Sturm type arguments. The basic
step is the following technical lemma. For the ease of notation, we set

D(t) =
1

2

(√
t2 + 4− t

)
on R,

and we observe that D is positive, decreasing on R, and such that D(0) = 1.

Lemma 3.22. Let 0 ≤ H ∈ C1([r0,+∞)), for some r0 > 0. Let h0, h1 be fixed
positive numbers, and define

(3.60) θ∗ = lim inf
r→+∞

H ′

2H3/2
, θ∗ = lim sup

r→+∞

H ′

2H3/2
.

(1) Suppose that θ∗ > −∞. Let Do > D(θ∗), and let θ < θ∗ be close enough
to θ∗ so that Do > D(θ). Let r1 > r0 be sufficiently large that

(3.61)
H ′

2H3/2
> θ on [r1,+∞).

Let C > 0 be a positive number satisfying

(3.62) C ≥ max

{
h0,

h1

Do

√
H(r1)

}
.

Then, the function

(3.63) h(r) = C

{
exp

(
Do

∫ r

r1

√
H(s)ds

)
− 1

}
+ h0

satisfies {
h′′ −Hh ≥ 0 on [r1,+∞)

h(r1) = h0, h′(r1) ≥ h1.

(2) Suppose that θ∗ < +∞. Let 0 < Do < D(θ∗), and let θ > θ∗ be close
enough to θ∗ so that Do < D(θ). Let r1 > r0 be sufficiently large that

H ′

2H3/2
< θ on [r1,+∞).

Let C > 0 be a positive number satisfying

C ≤ min

{
h0,

h1

Do

√
H(r1)

}
.
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Then, the function

h(r) = C

{
exp

(
Do

∫ r

r1

√
H(s)ds

)
− 1

}
+ h0

satisfies {
h′′ −Hh ≤ 0 on [r1,+∞)

h(r1) = h0, h′(r1) ≤ h1.

Proof. We prove item (1), the other case being analogous. By property (3.62),
h(r) defined in (3.63) satisfies h(r1) = h0, h

′(r1) ≥ h1. Moreover,

(3.64) h′′ −Hh = C exp

(
Do

∫ √
H

)
DoH

[
Do −

1

Do
+

H ′

2H3/2

]
+H(C − h0).

Using (3.61), Do > D(θ) and the definition of D(t), on [r1,+∞) the term between
square brackets is bounded as follows:

Do −
1

Do
+

H ′

2H3/2
> Do −

1

Do
+ θ > 0.

Since, by (3.62), C ≥ h0, inserting into (3.64) we obtain h′′−Hh ≥ 0, as desired. �

In the next Proposition, we apply the above lemma to the particular case
H(r) = B2rα, together with the comparisons we have described in this section,
to derive upper and lower estimates for the critical function. In what follows, to
simplify the writing, we introduce the symbol f . g as r → +∞ to mean that
lim supr→+∞(f/g) ≤ 1.

Proposition 3.23 (Bounds for χ(r) near +∞). Let (M, 〈 , 〉) be a non-compact,
complete Riemannian manifold, and let r(x) be the distance function from a refer-
ence origin o.

(i) suppose that Ricc(∇r,∇r) ≥ −(m − 1)B2rα on M\Br0 , for some r0 > 0
and for some B > 0, α ≥ −2. Then,

χ(r) .


B2(m− 1)2

4
rα as r → +∞, if α > −2;(

B′(m− 1)− 1
)2

4r2
as r → +∞, if α = −2.

Where B′ = 1
2

(
1 +
√

1 + 4B2
)
.

(ii) suppose that o is a pole and that the radial sectional curvatures of M
satisfy Krad(x) ≤ K(r(x)), where

(3.65) 0 ≤ K ∈ L1(+∞), r

∫ +∞

r

K(σ)dσ ≤ 1

4
on R+.

Moreover, assume that Krad ≤ −B2rα on M\Br0 , for some r0 > 0 and
for some B > 0, α > −2. Then,

χ(r) &


B2(m− 1)2

4
rα as r → +∞, if α > −2;(

B′(m− 1)− 1
)2

4r2
as r → +∞, if α = −2.

Where B′ = 1
2

(
1 +
√

1 + 4B2
)
.
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In particular, if o is a pole, Krad(x) ≤ K(r(x)) for some K satisfying (3.65), and
Krad ∼ −B2rα as r → +∞, then

χ(r) ∼


B2(m− 1)2

4
rα as r → +∞, if α > −2;(

B′(m− 1)− 1
)2

4r2
as r → +∞, if α = −2.

Proof. (i). First, we extend the function B2rα continuously on [0, r0] to a
non-negative function G(r) for which

Ricc(∇r,∇r) ≥ −(m− 1)G(r) on R+.

By Proposition 1.21, the solution g of

(3.66)

{
g′′ −Gg = 0

g(0) = 0, g′(0) = 1

is positive and increasing on R+. Furthermore, by Proposition 3.13, χ ≤ χgm−1 on
R+. To apply Lemma 3.22, define H(r) = B2rα and note that

H ′

2H3/2
=

α

2B
r−

α
2−1

{
→ 0 as r → +∞, if α > −2;

= −1/B if α = −2.

Thus

θ∗ = θ∗ = 0, D(θ∗) = D(θ∗) = 1 if α > −2;

θ∗ = θ∗ = −1/B D(θ∗) = D(θ∗) =
1

2B

(
1 +

√
1 + 4B2

)
=
B′

B
if α = −2.

We choose D > D(θ∗), θ < θ∗, and r1 > r0 according to item (1) of Lemma 3.22,
and we consider the initial conditions h0 = g(r1), h1 = g′(r1). Note that, since g is
positive and increasing, h0, h1 > 0. Then, for every D > 1, by the assumption

Ricc(∇r,∇r) ≥ −(m− 1)B2rα = −(m− 1)G(r) = −(m− 1)H(r),

the function h(r) in (3.63) is a supersolution of (3.66) on [r1,+∞) and satisfies

h(r1) = g(r1), h′(r1) ≥ g′(r1), h(r) ∼ Ĉ

 exp

{
D

2B

2 + α
r
α
2 +1

}
if α > −2;

rDB if α = −2,

for some Ĉ > 0. Then, by Sturm argument g/h is decreasing, hence by Proposition
3.12

χgm−1 ≤ χhm−1 ∼


D2B

2(m− 1)2

4
rα as r → +∞, if α > −2;(

DB(m− 1)− 1
)2

4r2
as r → +∞, if α = −2.

Letting D ↓ D(θ∗) we get the desired bounds.
Case (ii) can be proved similarly. Indeed, let G(r) be a continuous function satis-
fying

Krad(x) ≤ −G(r(x)) on M, G(r) = B2rα on [r0,+∞), −G(r) ≤ K(r) on R+.

By Proposition 1.21, the assumptions (3.65) on K(r) ensure that the solution g
of (3.66) is positive and increasing on R+. This is essential to apply item (2) of
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Lemma 3.22 and to conclude along the same lines as for (i). The last part of the
proposition follows from (i), (ii) and a simple limit argument. �

Corollary 3.24. Let (M, 〈 , 〉) be a non-compact, complete manifold with a
pole o and radial sectional curvature satisfying

Krad(x) ≤ −G(r(x)) on M\{o},
for some G ∈ C0(R+

0 ) such that

G− ∈ L1(+∞), r

∫ +∞

r

G−(σ)dσ ≤ 1

4
on R+.

Let g be the solution of

(3.67)

{
g′′ −Gg = 0

g(0) = 0, g′(0) = 1.

Suppose that G(r) → +∞ as r → +∞. Then, both χgm−1(r) and χ(r) diverge as
r → +∞.

Proof. Clearly, by Proposition 3.13 it is enough to prove that χgm−1(r)→ +∞
as r → +∞. We choose any B > 0, and we let r0 be such that G(r) ≥ B2 on
[r0,+∞). Then, we apply item (ii) of Proposition 3.23 to the model manifold
(Mg,ds

2) with metric, in polar coordinates, ds2 = dr2 + g(r)2dθ2, to deduce

lim inf
r→+∞

χgm−1(r) ≥ B2(m− 1)2

4
.

The desired conclusion follows letting B → +∞. �

Corollary 3.25. Let (M, 〈 , 〉) be a non-compact, complete manifold with
radial Ricci curvature satisfying

Ricc(∇r,∇r) ≥ −(m− 1)G(r(x)) on M\{o},
for some G ∈ C0(R+

0 ), G ≥ 0 such that G(r)→ 0 as r → +∞. Let g be a solution
of

(3.68)

{
g′′ −Gg = 0

g(0) = 0, g′(0) = 1.

Then, both χgm−1(r) and χ(r) tend to zero as r → +∞.

Proof. The proof is dual to that of Corollary 3.24 and follows from item (i)
of Proposition 3.23. We leave the details to the interested reader. �



CHAPTER 4

Below the critical curve

In this Chapter, we analyze some consequences of pointwise comparisons be-
tween A(r) and χ(r). In particular, we concentrate on the case A(r) ≤ χ(r), and
we provide constancy of the sign of a solution z of (3.1) and estimates on its asymp-
totic behaviour at infinity. The results so obtained are then applied to the study
of geometric problems such as the index of Schrödinger type operators and related
uncertainty principle lemmas, and uniqueness of positive solutions of Yamabe-type
equations on complete manifolds

4.1. Positivity and estimates from below

In this section we prove the main ODE result reported in Theorem 4.1 below
and we subsequently prove its sharpness. We also discuss some comparisons with
previous results. In the various assumptions we keep the notation of Chapter 3.

Theorem 4.1. Assume (A1), (V1), (VL1) and that

(4.1)
1

2
√
χ(r)

= v(r)

∫ +∞

r

ds

v(s)
−→ 0 as r → 0.

Furthermore, suppose that

(4.2) A(r) ≤ kχ(r) on R+
0 , for some k ∈ (−∞, 1].

Then, every solution z(r) ∈ Liploc(R+
0 ) of

(4.3)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+

z(0) = z0 > 0

is positive on R+
0 and there exist r1 > 0 sufficiently large and a constant C =

C(r1) > 0 such that

(4.4)

z(r) ≥ −C

√∫ +∞

r

ds

v(s)
log

∫ +∞

r

ds

v(s)
if k = 1;

z(r) ≥ C

[∫ +∞

r

ds

v(s)

](1−
√

1−k)/2

if k ∈ (−∞, 1).

on [r1,+∞). In particular if v(r) ≤ f(r) on [r1,+∞), and k ∈ [0, 1], then there
exists r2 ≥ r1 such that

(4.5)

z(r) ≥ −C

√∫ +∞

r

ds

f(s)
log

∫ +∞

r

ds

f(s)
if k = 1;

z(r) ≥ C

[∫ +∞

r

ds

f(s)

](1−
√

1−k)/2

if k ∈ [0, 1).

81
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on [r2,+∞).

Proof. The idea of the proof is quite simple. Using (V1) and (VL1) we define

(4.6) t = t(r) = −1

2
log

∫ +∞

r

ds

v(s)

and we observe that t : R+
0 → I = [t0,+∞) is an increasing bijection, where t0 ∈ R

or t0 = −∞ according to whether 1/v ∈ L1(0+) or not. Indeed,

(4.7) t′(r) =
√
χ(r) > 0,

thus, letting r(t) denote the inverse function of t(r) and indicating differentiation
with respect to t with a dot,

(4.8) ṙ(t) =
1√

χ(r(t))
.

Next, for a solution z of (4.3), we set

(4.9) β(t) = etz(r(t));

clearly β : I → R and β ∈ Liploc(I). A simple computation using (4.8) gives

(4.10) β̇(t) = et

{
z′(r(t))√
χ(r(t))

+ z(r(t))

}
.

Using the definition (3.21) of the critical curve, (4.3) and our assumptions it is easy
to see that the RHS of (4.10) is in Liploc. We can therefore differentiate again and
use (4.3) to deduce

(4.11) β̈(t) =

{
1− A(r(t))

χ(r(t))

}
β(t).

Since z0 > 0, there exists δ > 0 such that z(r) > 0 on [0, δ). Furthermore t(0+) =
t0 ≥ −∞, hence there exists a neighbourhood of t0 where β(t) > 0. Since z ∈
Liploc(R+

0 ), by (4.1) it holds z′(r)/
√
χ(r)→ 0 as r → 0+, hence

(4.12) β(t+0 ) = β̇(t+0 ) = z0 exp
{
t+0
}
≥ 0,

with the strict inequality if t0 > −∞. Because of (4.11) and (4.2), β̈ ≥ 0 so that
β > 0 on I and, because of (4.9), this shows that z > 0 on R+

0 . Next, we fix t1 ∈ I
in such a way that β(t1) > 0, β̇(t1) > 0. Integrating β̇ on [t1, t] and using the
convexity of β we deduce

β(t) = β(t1) +

∫ t

t1

β̇ds ≥ β(t1) + (t− t1)β̇(t1) ≥ Ct

for some constant C = C(t1) > 0. Going back to z(r) using (4.6) and (4.9), having
set r1 = r(t1) we have the first of (4.4). To show the validity of the first of (4.5)
simply observe that the function h(x) =

√
x log x is increasing on (0, e−2) and use

v ≤ f . When k < 1, estimates can be improved as in the second inequalities
appearing in (4.4), (4.5). Indeed, from (4.11), β̈ ≥ (1 − k)β on [t1,+∞) and,
comparing with the solution γ of γ̈ = (1− k)γ with the same initial data of β, we
find

β(t) ≥ C exp
{
t
√

1− k
}

for some C > 0.
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The second estimates in (4.4) and (4.5) follow from (4.6) and (4.9) as before. Note
that, in (4.5), the restriction k ∈ [0, 1] is necessary since, for k < 0, the exponent
(1−

√
1− k)/2 is negative. �

Remark 4.2. In virtue of Remark 3.11, condition (4.1) is met provided, for
instance, v(r) is non-decreasing in a neighbourhood of zero.

Remark 4.3. The proof of Theorem 4.1 can be repeated verbatim to prove
both the positivity and the lower bound for the Liploc solution of

(4.13)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on [r0,+∞)

z(r0) = z0 > 0, v(r0)z′(r0) = 0.

whenever A(r) ≤ kχ(r) on [r0,+∞), k ≤ 1. More generally, the same holds for
every nonzero solution on [r0,+∞) whose initial data at r0 satisfy

(4.14) z(r0) > 0,
z′(r0)√
χ(r0)

+ z(r0) > 0,

as one can argue from (4.9) and (4.10).

As an application of Theorem 4.1 and Remark 4.3, we state the following

Corollary 4.4. Assume (A1), (V1), (VL1) and A ≤ χ on [r0,+∞), for some
r0 > 0. Let r1 > 0. Then, every nonzero solution z(r) ∈ Liploc([r1,+∞)) of

(4.15)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on [r1,+∞)

z(r1) = z1 ∈ R

is nonoscillatory.

Proof. Suppose by contradiction that z(r) oscillates; then, there exists a point
r2 > max{r0, r1} such that z(r2) > 0 and v(r2)z′(r2) > 0, for otherwise it would be
easy to deduce that z ≡ 0. Hence, (4.14) is met with r2 replacing r0, and according
to Remark 4.3, z > 0 on [r2,+∞), contradiction. �

To put the above corollary into perspective, we shall compare it with the ex-
isting literature. For instance, R. Moore [Moo55] has extensively studied the
equation (vz′)′ + Avz = 0, adapting and improving a number of previous criteria.
In particular, he proves the following

Theorem 4.5 ([Moo55], Theorem 6). Assume (A1), (V1), (VL1) on [R,+∞),
and set

H(r) =

(∫ +∞

r

ds

v(s)

)(∫ r

R

A(s)v(s)ds

)
.

Then, a solution of (vz′)′ + Avz = 0 is nonoscillatory provided that there exists
some k ∈ R such that

(4.16) −k −
√
k ≤ H(r) ≤ −k +

√
k ≤ 1

4
for r sufficiently large.

In particular, z is nonoscillatory whenever

lim sup
r→+∞

∣∣∣∣∫ r

R

A(s)v(s)ds

∣∣∣∣ < +∞.
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To relate the two criteria, suppose that A ≤ χ. Without loss of generality, we can
assume that A ≥ 0. Indeed, if a solution z of (vz′)′ + A+vz = 0 is nonoscillatory,
where A+ = max{A, 0}, then by Sturm arguments (see Theorem 1.9 and Remark
3.4) each solution z of (vz′)′+Avz = 0 is nonoscillatory. From the definition (3.21)
we get ∫ r

R

A(s)v(s)ds ≤
∫ r

R

χ(s)v(s)ds =
1

4

(∫ +∞

s

dτ

v(τ)

)−1
∣∣∣∣∣
r

R

,

hence by (3.22)

H(r) ≤ 1

4
− 1

4

{∫ +∞

r

ds

v(s)

/∫ +∞

R

ds

v(s)

}
↑ 1

4
as r → +∞.

Therefore, since A ≥ 0, choosing as k each of the (positive) roots of k +
√
k = 1/4

condition (4.16) is met. Hence, Moore criterion is more general than Corollary 4.4.
However, this latter may be of independent interest for its simplicity. Moreover, as
we will see later on, it will be a key step to improve other nonoscillation criteria.
In particular, see Section 5.7. The reader be warned that, although by Sturm
arguments the negative part of A helps the nonoscillatory behaviour of z, in general
the lower bound −k −

√
k for H cannot be removed. Counterexamples, such as

Example 2 in [Moo55], are related to fast oscillations of the potential A. In
this respect we stress that, differently from the requirement A ≤ χ, the integral
condition (4.16) is not automatically preserved when applying Sturm arguments.

Remark 4.6. It seems that in the literature a systematic use of the change of
variables (4.6) to study (4.3) has not been considered. However, we mention that
in [Moo55] the author somehow exploited it at the end of the proof of Theorem
17.

When f(r) has the expression (3.33), estimate (4.5) for k = 1 has the following
behaviour at infinity:

(4.17) −

√∫ +∞

r

ds

f(s)
log

∫ +∞

r

ds

f(s)
� exp

{
−a

2
rα logβ r

}
r
α+1

2 log
β
2 r,

while if f is of polynomial type, namely f(r) = Λrα, α > 1, Λ > 0, we get

(4.18) −

√∫ +∞

r

ds

f(s)
log

∫ +∞

r

ds

f(s)
� r−

α−1
2 log r.

Despite of its simplicity, Theorem 4.1 enables us to produce estimates from below for
linear ODE of the type (4.3) in a sharp and considerably easy way. In the literature,
only partial results are known, see for instance [BR97] and [BRS98b]. In these
papers much effort has been done to prove positive lower bounds for solutions of{

z′′ + (m− 1) g
′

g z
′ +Az = 0 on R+,

z(0+) = z0 > 0, z′(0+) = 0.

However, both the lack of an explicit critical curve for general g and the tricky,
but somewhat involved, techniques used, have forced the authors to consider only
the cases g(r) = r (Euclidean setting) and g(r) = B−1 sinh(Br) (for HmB ). In both
cases, we stress that the estimates at infinity obtained by the authors (Theorems
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2.5 and 3.2 of [BR97]) are the same as those given by (4.17), (4.18).
Next result is somewhat dual to Theorem 4.1, and shows its sharpness.

Proposition 4.7. Assume (A1), (V1), (VL1), (4.1) and

A(r) ≥ kχ(r) on [r0,+∞),

for some r0 > 0 and k ∈ (−∞, 1]. If

(4.19)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on [r0,+∞)

z(r0) = z0 > 0.

admits a solution z(r) ∈ Liploc([r0,+∞)) which is positive on [r0,+∞), then nec-
essarily, for some positive constant C(r1),

(4.20)

z(r) ≤ −C

√∫ +∞

r

ds

v(s)
log

∫ +∞

r

ds

v(s)
if k = 1;

z(r) ≤ C

[∫ +∞

r

ds

v(s)

](1−
√

1−k)/2

if k ∈ (−∞, 1).

Proof. If A(r) ≥ kχ(r), the function β(t) introduced in the proof of Theorem

4.1 satisfies β̈ ≤ (1− k)β, β(t0) > 0, where t0 = t(r0). Therefore, β is below some
straight line (k = 1) or some exponential curve (k < 1) at +∞, and estimate (4.20)
follows at once by using (4.6), (4.9). �

Next, we apply Theorem 4.1 to the study of the equation g′′ − Gg = 0, with
initial conditions g(0) = 0, g′(0) > 0, and we prove Proposition 1.21.

Remark 4.8 (Proof of Proposition 1.21). By Sturm argument, g′/g ≥ g̃′/g̃ and
g ≥ g̃ on R+, where g̃ solves the same Cauchy problem of g with −G− replacing
G. Hence, without loss of generality we can assume G ≤ 0. Furthermore, again
by Sturm argument, we can assume that g satisfies g′′ − Gg = 0, in place of the
inequality. From the initial conditions, we can choose ε > 0 small enough that
g, g′ > 0 on (0, ε]. We are going to show that g, g′ > 0 on [ε,+∞). Towards this
aim we define

ω(s) =
1

4s
−
∫ +∞

s

G(σ)dσ on R+.

Then, by (1.52) and G ≤ 0, we have ω > 0 and ω satisfies ω′ + ω2 ≤ G on R+.
Since ω − 1/(4s) is bounded in a neighbourhood of zero,

h(s) = s1/4 exp

{
−
∫ s

0

(∫ +∞

σ

G(τ)dτ

)
dσ

}
= s1/4 exp

{∫ s

0

(
ω(σ)− 1

4σ

)
dσ

}
is well defined and positive on R+. A computation shows that

h′ = hω > 0, h′′ −Gh ≤ 0 on R+, h′(s) =
1

4
s−

3
4 + o(1) as s→ 0+.

Comparing with g, we deduce (g′h − gh′)′ ≥ 0. Since g(s) ∼ s as s → 0+ we get
(g′h − gh′)(0+) = 0+, thus g′/g ≥ h′/h > 0 on R+. The quotient g/h is therefore
increasing, and integrating on [ε, s] we deduce

g(s) ≥ h(s)
g(ε)

h(ε)
> 0 on [ε,+∞),
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which proves that g > 0 on R+. Consequently, g′ ≥ h′g/h > 0 on R+. To prove
the final part of the proposition, it is enough to apply first the change of variables
in Proposition 3.10, and then Theorem 4.1. It is easy to see that A(r) ≤ χ(r) is
equivalent to (1.54), and that the lower bound (4.4) is of order

√
s log s at infinity.

Example 4.9. Further understanding is provided by the following examples,
which serve the purpose to introduce some conditions related to Chapter 5.
(1). Equation (4.11) suggests the application of classical oscillation criteria, for
example Hille-Nehari Theorem 2.7, to ensure that z(r) is oscillatory (hence, a pos-
teriori, that it has a first zero). Indeed, by (4.9) β(t) oscillates if and only if so does
z(r). Oscillation of β is guaranteed whenever the potential in (4.11) is eventually
non-negative, that is, when

(4.21) A(r) ≥ χ(r) on [R,+∞),

and provided

(4.22) lim inf
t→+∞

t

∫ +∞

t

(
A(r(τ))

χ(r(τ))
− 1

)
dτ >

1

4
,

that is, under (VL1), changing variables according to (4.6) and (4.7),

(4.23) lim inf
r→+∞

[
−1

2
log

∫ +∞

r

ds

v(s)

] ∫ +∞

r

(
A(s)− χ(s)√

χ(s)

)
ds >

1

4
.

This latter is equivalent, by (3.22), to

(4.24) lim inf
r→+∞

∫ r

R

√
χ(s)ds

∫ +∞

r

(
A(s)− χ(s)√

χ(s)

)
ds >

1

4
.

On the other hand, again by Hille-Nehari theorem, z(r) is nonoscillatory whenever

(4.25)

∫ r

R

√
χ(s)ds

∫ +∞

r

(
A(s)− χ(s)√

χ(s)

)
ds ≤ 1

4
for r big enough.

The last two inequalities are not particularly appealing, since they require a careful
balancing of the integral behaviour of

√
χ on [R, r] and on [r,+∞). In Chapter

5, working directly on the ODE (vz′)′ + Avz = 0, we will prove a different, sharp
oscillatory condition with a fairly neat expression in terms of the critical curve.
Furthermore, our criterion will not require (4.21).
(2). First zeroes of solutions of (4.3) may appear even when A(r) is sufficiently
above χ(r) in a compact region, but small and below χ at infinity. For instance,
consider the problem

(4.26)

{
(rm−1z′(r))′ +A(r)rm−1z(r) = 0 on R+,

z(0) = z0 > 0, z′(0) = 0,

with m ≥ 3, 0 ≤ A ∈ C0(R+
0 ) and

(4.27) A(r)


= z2

0(m− 2)2r2(m−3) on
[
0, (π/z0)

1
m−2

]
≤ (m− 2)2

4

1

r2
on

[
(π/z0)

1
m−2 + 1,+∞

)
.
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Then, by Propositions 3.2, 3.5 and Remark 4.3, problem (4.26) has a unique C2

solution z on R+
0 with finitely many zeroes, and it is immediate to verify that

z(r) ≡ r2−m sin
(
z0r

m−2
)

on
[
0, (π/z0)

1
m−2

]
.

Thus, z(r) has a first zero in (π/z0)
1/(m−2)

. The following elementary computations
serve the purpose to introduce what shall reveal to be a finite form condition for

the existence of a first zero of z. We fix 0 < R ≤ r ≤ (π/z0)
1/(m−2)

and compute

(4.28)

∫ r

R

(√
A(s)−

√
χ(s)

)
ds = z0

(
rm−2 −Rm−2

)
− m− 2

2
log
( r
R

)
.

Note that the LHS of the above equation measures the area (with sign) between the

graph of
√
A(r) and that of the critical curve

√
χ(r) on the interval [R, r] before

the first zero. A simple computation shows that
(4.29)

−1

2

(
log

∫ R

0

A(s)sm−1ds+ log

∫ +∞

R

s1−mds

)
= log

(√
3

z0

)
− (m− 2) logR.

Thus, the difference between (4.28) and (4.29) is equal to

(m− 2)

2
log

(
R3

r

)
+ z0

(
rm−2 −Rm−2

)
− log

(√
3

z0

)
.

The above function on the region

D =
{

(R, r) ∈
[
0, (π/z0)

1
m−2

]
×
[
0, (π/z0)

1
m−2

]
: r ≥ R

}
has a positive absolute maximum: indeed, it is positive when restricted to R =
r ∈ [(

√
3/z0)1/(m−2), (π/z0)1/(m−2)]. Concluding, by continuity for every choice of

initial data z0 we can find 0 < R < r < (π/z0)
1/(m−2)

such that
(4.30)∫ r

R

(√
A(s)−

√
χ(s)

)
ds > −1

2

(
log

∫ R

0

A(s)sm−1ds+ log

∫ +∞

R

s1−mds

)
.

We shall see below that the above inequality is the condition of Corollary 5.2 for
the existence of a first zero. The interest on such a condition lies in the fact that
only the LHS depends on r, thus (4.30) reveals how much A must exceed χ on some
compact region [R, r] to force the existence of a first zero, and the bound is given
only in terms of A before R and of v(r) = rm−1.

4.2. Stability, index of −∆− q(x) and the uncertainty principle

An easy but significant geometric application of Theorem 4.1 is the following
spectral estimate for manifolds with a pole. For the convenience of the reader, we
state part (i) under general assumptions on M , while for (ii) and (iii) we exploit
our estimates.

Theorem 4.10. Let (M, 〈 , 〉) be a complete m-dimensional Riemannian man-
ifold with a pole o ∈M . Denote with r(x) the distance function from o.
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(i) Let G ∈ C0(R+
0 ) and let g ∈ C2(R+

0 ) be a solution of

(4.31)

{
g′′ −Gg ≤ 0 on R+

0 ,

g(0) = 0, g′(0) = 1.

Assume that g > 0 on R+, g1−m ∈ L1(+∞) and

(4.32) Krad(x) ≤ −G(r(x)).

Suppose that q(x) ∈ L∞loc(M) satisfies

q(x) ≤ χgm−1(r(x)) on M.

Then, there exists a positive weak solution w ∈ C2(M\{o}) ∩ C1(M) of

(4.33) ∆w + q(x)w ≤ 0

such that

(4.34) w(x) � −

√∫ +∞

r(x)

ds

g(s)m−1
log

∫ +∞

r(x)

ds

g(s)m−1
as r(x)→ +∞

In particular,

(4.35) λL1 (M) ≥ 0 with L = −∆− q(x).

(ii) Assume

(4.36) m ≥ 3, Krad(x) ≤ B2

(1 + r(x))2
on M,

for some B ∈ [0, 1/2], and that, outside some geodesic ball BR,
(4.37)

q(x) ≤ 1

4
(
1 + r(x)

)2
log2

(
1 + r(x)

) if B = 1/2, m = 3.

q(x) ≤
(
B′′(m− 1)− 1

)2
4r(x)2

if B < 1
2 or B = 1

2 , m > 3,

where B′′ = 1
2 (1 +

√
1− 4B2). Then, L = −∆− q(x) has finite index.

(iii) Assume

(4.38) m ≥ 2, Krad(x) ≤ −B2
(

1 + r(x)2
)α/2

on M,

for some α ≥ −2, B > 0. Suppose that q(x) satisfies
(4.39)

lim sup
r(x)→+∞

(
q(x)r(x)−α

)
<
B2(m− 1)2

4
if α > −2, α 6= 0;

q(x) ≤ B2(m− 1)2

4
outside some BR, if α = 0;

q(x) ≤ (B′(m− 1)− 1)
2

4 (1 + r(x))
2 outside some BR, if α = −2,

where B′ = 1
2 (1 +

√
1 + 4B2). Then, L = −∆− q(x) has finite index.
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Proof. (i) We let A ∈ C0(R+
0 ) be such that q(x) ≤ A(r(x)) on M and, for

some r0 > 0,

(4.40) 0 ≤ A(r) ≤ χgm−1(r) on R+, A(r) ≡ χgm−1(r) on [r0,+∞).

Let z(r) be the C2 solution of

(4.41)

{
(g(r)m−1z′(r))′ +A(r)g(r)m−1z(r) = 0 on R+

z(0) = z0 > 0, z′(0+) = 0,

which exists by Corollary 3.7. According to Theorem 4.1 and Proposition 4.7, by
(4.40) z is positive and satisfies

z(r) � −

√∫ +∞

r

ds

g(s)m−1
log

∫ +∞

r

ds

g(s)m−1
as r → +∞.

Note that, by (4.41) and A(r) ≥ 0 we deduce z′(r) ≤ 0. By the Laplacian compar-
ison theorem and (4.32),

(4.42) ∆r(x) ≥ (m− 1)
g′(r(x))

g(r(x))
on M\{o}.

Having defined w(x) = z(r(x)) ∈ C2(M\{o}) ∩ C1(M) we then have

(4.43)
∆w = z′′ + z′∆r ≤ z′′ + (m− 1)

g′

g
z′

= g1−m (gm−1z′
)′

= −A(r)z ≤ −q(x)w,

pointwise on M\{o} and weakly on M , since ∆r has a mild singularity at r = 0.
The spectral estimate (4.35) follows from (4.33) and Theorem 1.33.
(ii) By Theorem 3.21 we can consider

g(r) =
√

1 + r log(1 + r) when B = 1/2, m = 3,

g(r) = rB
′′

when B < 1/2 or B = 1/2, m > 3.

Combining (3.56) and (3.57) with assumption (4.37), in both cases

q(x) ≤ χgm−1(r(x)) on M\Br1 ,

for every r1 ≥ R. Choose 0 ≤ A ∈ C0([r1,+∞)) such that q(x) ≤ A(r(x)) on
M\Br1 and (4.40) is met on [r1,+∞), and consider the problem

(4.44)

{
(g(r)m−1z′(r))′ +A(r)g(r)m−1z(r) = 0 on [r1,+∞)

z(r1) > 0, z′(r1) = 0.

By Remark 4.3, the C2 solution z(r) of (4.44) is positive. Moreover, a first in-
tegration and the initial condition z′(r1) = 0 give z′ ≤ 0. This is essential for
w(x) = z(r(x)) to be a weak solution of

−Lw = ∆w + q(x)w ≤ 0 on M\Br1 ,

as computation (4.43) shows. The finiteness of indL(M) is a consequence of Theo-
rem 1.41.
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(iii) By the comparison Proposition 3.13, χ ≥ χgm−1 on R+, where g solves

(4.31) with equality sign and G(r) = B2(1 + r2)α/2. An application of Theorem
3.18 on the model manifold (Mg, 〈 , 〉), with metric 〈 , 〉 = dr2 + g(r)2dθ2, gives

χgm−1(r) &
B2(m− 1)2

4
rα as r → +∞, if α > −2;

χgm−1(r) ≥
(
B′(m− 1)2 − 1

)2
4(1 + r)2

if α = −2,

from these and (4.39) we deduce, both for α > −2, α 6= 0 and α = −2, q(x) ≤
χf (r(x)) on M\Br1 , r1 sufficiently large. The rest is again as in (ii). When α = 0,
there is no need to require that q(x) is strictly below B2(m − 1)2/4 near infinity,
since by inequality (3.51) the less demanding requirement of (4.39) is enough. �

Remark 4.11. Item (ii) of the above theorem contains the case of Euclidean
space, that is, B = 0, and the required bound (4.37) on q(x) becomes the well
known

q(x) ≤ (m− 2)2

4r2
outside some BR.

Remark 4.12. With the aid of Proposition 3.23, item (ii), we can weaken the
assumption (4.38) by requiring Krad ≤ −B2rα outside some compact set, up to the
further mild condition (3.65).

Remark 4.13. To prove cases (ii) and (iii) we have, as a matter of fact,
constructed a solution w of ∆w + q(x)w ≤ 0 (outside some ball BR) with the
asymptotic behaviour (4.34) as r → +∞. As it is clear from Theorem 4.1 and
Proposition 4.7, if

q(x) ≤ kχgm−1(r(x)) on M\BR,
for some k < 1 and R > 0, the same procedure yields a solution w satisfying

w(x) �

[∫ +∞

r(x)

ds

g(s)m−1

](1−
√

1−k)/2

as r(x)→ +∞.

These explicit barriers will be useful later.

Remark 4.14. It is worth to point out that, in the Euclidean setting, S. Ag-
mon in [Agm85] has obtained sharp upper and lower bounds for the decay of
eigenfunctions of L = −∆ − q(x) related to eigenvalues λ < inf σess(L). His ODE
approach, used to deal with the case q(x) = o(r(x)−1), has been recently extended
by H. Kumura [Kum] in the setting of complete Riemannian manifolds. Their ODE
arguments, however, are somewhat different from those described here. It would
therefore be interesting to compare the two methods, or to achieve Agmon-Kumura
results with the aid of the techniques developed in this paper. In this respect, we
feel that next Sections 5.6 and 5.7 could be useful.

With a little change of perspective, Theorem 4.10 gives the following non-
Euclidean extension of the uncertainty principle lemma in (2.41). We prove the
theorem in two somehow different ways, which are closely related. The first one
is by directly exploiting Theorem 4.10, and the second one relies on an important
observation in [LW06].
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Theorem 4.15 (Non-Euclidean uncertainty principle). Let (M, 〈 , 〉) be a com-
plete Riemannian manifold of dimension m ≥ 2 with a pole o and radial sectional
curvature satisfying

(4.45) Krad(x) ≤ −G(r(x)),

with G ∈ C0(R+
0 ). Let g ∈ C2(R+

0 ) be a solution of

(4.46)

{
g′′ −Gg ≤ 0 on R+

0 ,

g(0) = 0, g′(0) = 1.

Suppose that g > 0 on R+ and g1−m ∈ L1(+∞). Then, for every u ∈ H1(M),

(4.47)

∫
M

(χgm−1 ◦ r)u2 ≤
∫
M

|∇u|2.

First Proof. By the regularity of g, χgm−1 ∈ C0((0, ε0]) for some ε0 > 0.
Choose 0 < ε < ε0 and apply case (i) of Theorem 4.10 with the choice

qε(x) =

{
inf [0,ε] χgm−1 if r(x) ≤ ε;

χgm−1(r(x)) if r(x) ≥ ε

to deduce λLε1 (M) ≥ 0, where Lε = −∆− qε(x). Hence, for every u ∈ C∞c (M),

(4.48)

∫
M

qεu
2 ≤

∫
M

|∇u|2.

Now observe that, if M is complete, H1(M) is the closure of C∞c (M) in the H1

norm. This can be seen as follows. For every u ∈ H1(M), consider a family of
cut-off functions {ϕr} ⊂ C∞c (M) such that

0 ≤ ϕr ≤ 1, ϕr ≡ 1 on Br, supp(ϕr) ⊂ B2r, |∇ϕr| ≤
C

r
,

for some C > 0 independent of r (see [Gaf54]). It is straightforward to see that
uϕr → u in H1(M) as r → +∞. It is enough to approximate each uϕr ∈ H1

0 (B2r)
by C∞c (B2r) functions {ur,j}j , and to use a Cantor diagonal argument. Therefore,
(4.48) holds for every u ∈ H1(M). Since 0 ≤ qε ↑ χgm−1 on M , letting ε → 0 and
using the monotone convergence theorem we reach the desired inequality. �

Second proof. Consider the following function:

(4.49) G(x) =

∫ +∞

r(x)

ds

gm−1(s)
.

By the Laplacian comparison Theorem 1.17,

∆G = (m− 1)
g′(r)

g(r)m
− 1

g(r)m−1
∆r ≤ 0

on M\{o}. Whence, for every a ∈ R+ the function Ga = min{G, a} is positive,
bounded on M and it is a weak solution of ∆Ga ≤ 0. A straightforward computation
shows that w =

√
Ga is a positive, weak solution of

∆w +
|∇ log Ga|2

4
w ≤ 0.

By Theorem 1.33, for every u ∈ Lipc(M)∫
|∇ log Ga|2

4
u2 ≤

∫
|∇u|2,
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and letting a→ +∞, by monotone convergence we get

(4.50)

∫
|∇ log G|2

4
u2 ≤

∫
|∇u|2 ∀u ∈ Lipc(M).

This can be extended to u ∈ H1(M) by density as in the previous proof. It is
immediate to verify that

|∇ log G(x)|2

4
= χ(r(x)).

�

Remark 4.16. Note that G in (4.49) is the transplantation to M of the Green
function Ḡ(o, x) for the model (Mg,ds

2), which exists by the non-parabolicity as-
sumption g1−m ∈ L1(+∞) (see [Gri99]). The second proof of the above theorem
is inspired by the following observation of P. Li and J. Wang in [LW06]: consider
a non-parabolic manifold M , possibly incomplete, and let G(x, y) be its minimal
positive Green kernel. Then, for every fixed y ∈M , the function

|∇x log G(x, y)|2

4
=
|∇xG|2

4G2
(x, y)

is a good Hardy weight for the uncertainty principle lemma, that is,

(4.51)

∫
|∇xG|2

4G2
u2 ≤

∫
|∇u|2 ∀u ∈ Lipc(M).

Indeed, having observed that Ga(x) = min{G(x, y), a} is superharmonic for every
a ∈ R+, the proof of (4.51) goes along the same lines as the second proof of Theorem
4.15.

It should be observed that, in the very recent paper [AK], K. Akutagawa and
H. Kumura have proved a similar uncertainty principle lemma. More precisely, let
M be a complete manifold with a pole. Then, for every u ∈ C∞c (M),

(4.52)

∫
M

|∇u|2 ≥
∫
M

[
1

4r2
+

1

4
(∆r)2 − 1

2
|Hess r|2 − 1

2
Ricc(∇r,∇r)

]
u2.

The idea of the proof is to combine the one-dimensional Hardy inequality (see for
instance [HLP52], Theorem 327), an integration by parts in normal coordinates
and formula (1.46). Since, in (4.52), ∆r and |Hess r|2 appear with different signs, it
is difficult to estimate the RHS by means of comparison results. It would be inter-
esting to compare (4.52) and (4.47) for a general manifold with a pole. However, we
postpone this matter to a forthcoming paper. A somehow related question will be
discussed after the next estimates for λL1 (BR), λL1 (M) and inf σess(L). In the case
L = −∆, the result below should be compared with Theorem 2.17, item (ii). The
interested reader can also consult the papers by M.A. Pinsky [Pin78] (for surfaces
with a pole), R. Brooks [Bro81] and H. Donnelly [Don81b].

Proposition 4.17. Let (M, 〈 , 〉) be a complete Riemannian manifold with a
pole o, and let Krad, G, g satisfy the assumptions of Theorem 4.15. Let L = −∆−
q(x), where q(x) ∈ L∞loc(M) Then,
(4.53)

λL1 (BR) ≥ inf
x∈BR

(
χgm−1(r(x))− q(x)

)
, λL1 (M) ≥ inf

x∈M

(
χgm−1(r(x))− q(x)

)
;

inf σess(L) ≥ lim inf
r(x)→+∞

(
χgm−1(r(x))− q(x)

)
.
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In particular, if
(
χgm−1(r(x))− q(x)

)
→ +∞, then L has only discrete spectrum.

Proof. These inequalities follow immediately from Rayleigh characterization,
the decomposition Theorem 1.38 and the uncertainty principle. Indeed, for the last
relation,

inf σess(L) = lim
r→+∞

(
inf

06=φ∈C∞c (M\Br)

∫
M
|∇φ|2 − qφ2∫
M
φ2

)

≥ lim
r→+∞

(
inf

06=φ∈C∞c (M\Br)

∫
M

(χgm−1 − q)φ2∫
M
φ2

)
≥ lim

r→+∞
inf
M\Br

(χgm−1 − q).

The other estimates are proved similarly. If χgm−1(r(x))−q(x)→ +∞ as x diverges,
then σess(L) = ∅, and by the min-max theorem σ(L) is a divergent sequence of non-
negative eigenvalues, each of finite multiplicity. �

Remark 4.18. As an easy consequence of our estimates for χgm−1(r), in par-
ticular inequality (3.51), we recover a theorem of McKean [McK70]. Indeed, if
Krad ≤ −B2 on M , the next lower bound for the spectral radius of −∆ on M
holds:

λ−∆
1 (M) ≥ inf

r∈R+
χgm−1(r) ≥ B2(m− 1)2

4
.

Remark 4.19. Suppose that L = −∆. Then, combining Corollary 3.24 and
Proposition 4.17, we immediately get a proof of item (ii) of Corollary 2.17 by using
the critical curve instead of comparisons for ∆r.

On the links between χ and χ̃, I. We pause for a moment to comment
on the estimates in (4.53). Assume for simplicity that q(x) ≡ 0, that is, that
L = −∆. It is useful to compare the proof of Proposition 4.17 with the classical
method to prove lower bounds of λ−∆

1 (BR) that we described in Proposition 2.14.
As we realize by comparing (4.53) and (2.26), we need a closer look to the mutual
relationship between the C1 curves

χgm−1(r) and

(
m− 1

2

g′(r)

g(r)

)2

= χ̃gm−1(r),

since χ and χ̃ enter in spectral estimates with identical tasks. Note that χ̃ is the
modified critical function of (3.35) for f(r) = g(r)m−1. For convenience, we omit
writing the subscript f . The above problem is nontrivial, and we begin with some
observations that will be recalled in next sections to deal with part of the question.
First, comparing with (3.29) we observe that χ and χ̃ have a different behaviour
near r = 0, since by the properties of g(r)

(4.54) χ̃(r) ∼ (m− 1)2

4r2
as r → 0+.

In [BR97] the authors found, for Euclidean and hyperbolic spaces, the first instance
of a critical curve, that for the present considerations we shall call Θ(r). They
proved that, if A lies below Θ, a solution z of (gm−1z′)′ + Agm−1z = 0 is positive



94 4. BELOW THE CRITICAL CURVE

and has an explicit lower bound at infinity. Although the lower bounds coincide
with those in (4.1), for the hyperbolic case they found for Θ the curve

B2(m− 1)2

4
coth2(Br) = χ̃(r) (they excluded, however, the case m = 2).

One might ask if this is a general property, that is, if χ̃ can replace χ as a critical
curve for (at least C1) volume functions. If this were true, −∆ − q must have
non-negative spectral radius for every q ≤ χ̃. By the approximation procedure of
Theorem 4.15, this is equivalent to requiring that the uncertainty principle holds
with χ replaced by χ̃. By (4.54), this is impossible if m = 2. Indeed, if u = 1 in
a ball B1 around o, from g(s) ∼ s, g′(s) → 1 as s → 0 we deduce that, for some
small C > 0, ∫

B1

χ̃gm−1(r(x))dV (x) ≥ C
∫ 1

0

(
g′(s)

g(s)

)2

g(s)ds = +∞.

Therefore, if m = 2, χ̃ can never be used as a critical curve. This justifies why, in
[BR97], the authors assume m ≥ 3 even for the hyperbolic case. The situation for
m ≥ 3 is more subtle. However, it is known that on Rm the constant (m − 2)2/4
is sharp for the uncertainty principle. Since, on Rm, χ̃(r) = (m − 1)2/(4r2), χ̃ is
not a critical curve for Rm for any m. Essentially, the problem is that χ̃ is too big
with respect to χ in a neighbourhood of +∞. Indeed,

χ̃(r)

χ(r)
→
(
m− 1

m− 2

)2

> 1 as r → +∞.

However, by (3.34), for non-polynomial volume growths f(r) as in (3.33) it holds
χ̃ ∼ χ as r → +∞, so we need finer estimates. This discussion will be considered
in detail in the remark “On the links between χ and χ̃, III”, at the end of Section
5.3 below. The key difference between χ and χ̃ is that χ(r) takes into account the
values of f on the whole [r,+∞), while χ̃ merely depends on f in arbitrarily small

neighbourhoods of r. For this reason, since λ−∆
1 (BR) only depends on the geometry

of BR, χ̃ should be, at least conceptually, more suitable than χ to yield a lower
bound for λ−∆

1 (BR). Indeed, at least for small R, by comparing (3.29) and (4.54)

the curve χ̃ yields better estimates for λ−∆
1 (BR) than χ. However, deciding which

curve gives better estimates for λ−∆
1 (BR) when R is big seems more complicated.

In this respect, the following ODE characterization of χ in terms of χ̃ is useful.
Suppose that f is non-decreasing on R+. Then, from their very definitions,

(4.55) 2
√
χ− 2

√
χ̃ =

d

dr

(
− log

∫ +∞

r

ds

f(s)
− log f(s)

)
=

d

dr
log(2

√
χ),

hence y(r) = 2
√
χ(r) ∈ C1(R+) is a solution of Bernoulli equation

(4.56) y′ = y2 − 2y
√
χ̃.

From the form of the ODE, we argue that

(4.57) χ̃(r) > χ(r) (resp. < χ(r)) if and only if χ′(r) < 0 (resp. > 0),

and that χ ≡ χ̃ if and only if both are constants, which implies f(r) = Λ exp{ar}
for some Λ, a > 0.
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4.3. A comparison at infinity for nonlinear PDE

The spectral estimates of Theorem 4.10 also provide barriers at infinity help-
ful to compare subsolutions and supersolutions of semilinear elliptic equations on
unbounded domains. This is the core of the following theorem, which improves
on Theorem 3.1 and Corollary 3.3 of [RRV97]. In what follows we consider the
prototype nonlinearity b(x)uσ, σ > 1 of Yamabe-type equations. Note that the case
of a bounded domain has already been dealt with in Proposition 2.32. The basic
step is the following general

Theorem 4.20. Let (M, 〈 , 〉) be a Riemannian manifold, let q(x) ∈ L∞loc(M)
and let L = −∆ − q(x). Assume that there exists a nonzero, weak solution 0 ≤
w ∈ C0(M\Ω) ∩H1

loc(M\Ω) of the inequality Lw ≥ 0 on M\Ω, for some relatively
compact domain Ω. Let

0 ≤ b(x) ∈ L∞loc(M), σ > 1,

and suppose that u, v ∈ Liploc(M) are weak solutions on M of the following in-
equalities:

(4.58)

{
∆u+ q(x)u ≤ b(x)uσ u > 0 on M ;

∆v + q(x)v ≥ b(x)vσ v ≥ 0 on M.

If

(4.59) u− v = o(w) as x diverges,

then one of the following cases occur:

(1) v ≤ u on M ;
(2) b(x) = 0 a.e. on M , v = Cu for some constant C > 1 and both satisfy

(4.58) with equality signs.

Proof. By the maximum principle ([GT98], p.35), w > 0. First, we extend w
to a positive function w̃ on the whole M . For instance, this can be done by taking
a relative compact set Ω′ such that Ω b Ω′, a cut-off function 0 ≤ ψ ≤ 1 compactly
supported in Ω′ and satisfying ψ ≡ 1 on Ω, and defining w̃ = ψ + w(1− ψ). Note
that w̃ = w on M\Ω′, so that Lw̃ ≥ 0 weakly on M\Ω′. For notational convenience,
we write again w and Ω in place of w̃ and Ω′. Let ε > 0, and define uε = u+ εw on
M . Then, uε is a weak solution of ∆uε+ quε ≤ b(x)uσ− εLw, that is, by definition
and by (4.58), the following inequalities hold for every 0 ≤ φ ∈ Lipc(M):

(4.60)

(i) −
∫
M

〈∇uε,∇φ〉+

∫
M

quεφ ≤
∫
M

b(x)uσφ− ε
∫
M

wLφ

(ii) −
∫
M

〈∇v,∇φ〉+

∫
M

qvφ ≥
∫
M

b(x)vσφ.

Suppose that case (1) does not occur. Then, by (4.59) the Lipschitz function
γε = (v2 − u2

ε)+ is compactly supported and nonzero for ε sufficiently small, hence

Θε =
{
x ∈M : v(x) > uε(x)

}
is a nonempty, relatively compact open set. Since v > uε ≥ ε infΘε w ≥ C(ε) > 0
on Θε, for some positive constant C(ε) > 0, the functions φ1 = γε/uε, φ2 = γε/v
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are admissible for (4.60). Choosing φ1 in (i) and φ2 in (ii), and subtracting the
two resulting inequalities we deduce

−
∫

Θε

〈∇uε
uε
− ∇v

v
,∇γε〉+

∫
Θε

(
|∇uε|2

u2
ε

− |∇v|
2

v2

)
γε

≤
∫

Θε

b(x)
(
uσ/uε − vσ−1

)
γε − ε

∫
M

wL(γε/uε)

Inserting the expression for γε and rearranging we get

(4.61)

∫
Θε

∣∣∣∇uε − uε
v
∇v
∣∣∣2 +

∫
Θε

∣∣∣∣∇v − v

uε
∇uε

∣∣∣∣2
≤
∫

Θε

b(x)
(
uσ/uε − vσ−1

)
γε − ε

∫
M

wL(γε/uε).

Let V be a smooth, relatively compact domain such that Ω b V , and let 0 ≤ ψ ≤ 1
be a smooth function such that ψ = 1 on Ω and ψ ≡ 0 on M\V . Then, from the
properties of w∫
M

wL(γε/uε) =

∫
M

wL(ψγε/uε) +

∫
M

wL((1− ψ)γε/uε) ≥
∫
M

wL(ψγε/uε).

Since u is bounded from below by a positive constant on V , applying the dominated
convergence theorem we deduce that

lim
ε→0

ε

∣∣∣∣∫
M

wL(ψγε/uε)

∣∣∣∣ ≤ lim
ε→0

ε

[∫
V

|∇w||∇ (ψγε/uε) |+ |qwψγε/uε|
]

= 0.

Hence, letting ε→ 0 in (4.61), using Fatou lemma and the last two inequalities we
finally get

(4.62) 0 ≤
∫
{v>u}

∣∣∣∇u− u

v
∇v
∣∣∣2 ≤ ∫

{v>u}
b(x)(uσ−1 − vσ−1)(v2 − u2) ≤ 0.

Therefore, v/u is constant on every connected component Γ of {v > u}. Clearly, Γ
must have no boundary, for otherwise letting x → ∂Γ we would deduce u = v on
Γ, contradiction. By connectedness, v = Cu on M for some C > 1 and inserting
into (4.62) we deduce ∫

M

b(x)(1− C2)(1− Cσ−1)uσ+1 ≡ 0.

Case (2) follows immediately. �

Remark 4.21. We recall that, by Theorem 1.41, the existence of w satisfying
the assumptions of the above theorem is equivalent to the requirement indL(M) <
+∞.

Remark 4.22. As in Theorem 3.1 of [RRV97], indL(M) < +∞ can be re-
placed with the existence of a solution w of

Lw ≥ −σb(x)uσ−1w weakly on M\Ω.

In other words, indL(M) < +∞ can be substituted for the requirement that the
solution u of the Yamabe equation is a stable solution (in the sense of calculus of
variations) outside some compact set.
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Clearly, the above comparison has an obvious, companion uniqueness result for
weak solutions of ∆u + q(x)u = b(x)uσ, where b ≥ 0 and b 6≡ 0 on M . Note that,
by the maximum principle, each non-negative solution u of ∆u + q(x)u ≤ b(x)uσ

is either strictly positive or identically zero. If the assumption indL(M) < +∞ is
strengthened to λL1 (M) ≥ 0, with minor modifications in the proof one can even
consider the case u ≡ 0 (set uε = εw). The resulting statement is a Liouville type
theorem that we present for the particular case of manifolds with a pole. Suppose
therefore that (M, 〈 , 〉) has a pole o and radial sectional curvature controlled as
usual:

(4.63) Krad(x) ≤ −G(r(x)) on M,

for some G ∈ C0(R+
0 ). Once a solution g of

(4.64)

{
g′′ −Gg ≤ 0 on R+,

g(0) = 0, g′(0) = 1

such that g > 0 on R+ and g1−m ∈ L1(+∞) is given, by Theorem 4.10 condition

(4.65) q(x) ≤ χgm−1(r(x)) on M\BR, for some R > 0

implies indL(M) < +∞, and the same with R = 0 ensures λL1 (M) ≥ 0. Further-
more, we can construct a radial weak solution w of Lw ≥ 0 with the asymptotic

(4.66) w(x) � −

√∫ +∞

r(x)

ds

g(s)m−1
log

∫ +∞

r(x)

ds

g(s)m−1
as r(x)→ +∞.

As an immediate application of Theorem 4.20 and the above discussion, we state
the following

Corollary 4.23. Let (M, 〈 , 〉) be a manifold with a pole o and radial sectional
curvature satisfying (4.63). Let g be a solution of (4.64) such that g > 0 on R+

and g1−m ∈ L1(+∞). Let q(x) ∈ L∞loc(M), and assume that

q(x) ≤ χgm−1(r(x)) on M\{o}.
Let σ > 1 and choose 0 ≤ b(x) ∈ L∞loc(M), b 6≡ 0 on M . Suppose that 0 ≤ v ∈
Liploc(M) satisfies

(4.67) ∆v + q(x)v ≥ b(x)vσ

and

(4.68) v(x) = o

(
−

√∫ +∞

r(x)

ds

g(s)m−1
log

∫ +∞

r(x)

ds

g(s)m−1

)
as r(x)→ +∞.

Then, v ≡ 0 on M .

Remark 4.24. It is worth to realize that, if g satisfies (4.64) with the equality
sign, one does not obtain a sharper result. This is due to the appearance of two
opposite effects. Indeed, consider the solution h of{

h′′ −Gh = 0,

h(0) = 0, h′(0) = 1.

Sturm argument and Proposition 3.12 imply g ≤ h and χgm−1 ≤ χhm−1 , so that
(4.65) is more demanding than the requirement q(x) ≤ χhm−1(r(x)). On the con-
trary, since −

√
x log x is increasing near 0, substituting g with h in (4.68) gives a
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smaller bound at infinity. Thus, the above result has to be interpreted as follows: if
q(x) is sufficiently small to lie below χgm−1(r(x)), and not only below χhm−1(r(x)),
then for v ≡ 0 to hold on M it is enough that (4.68) is met with g instead of the
larger h.

We spend a few words to comment on the role of the spectral radius of L, and
to compare Theorem 4.20 and Corollary 4.23 with the previous literature. Suppose
for convenience that b(x) > 0 on M . As we have seen in the proof of Theorem
2.30, if λL1 (M) < 0 there is no obstacle to the existence of a nonzero solution
0 ≤ v ∈ Liploc(M) of

(4.69) ∆v + q(x)v ≥ b(x)vσ.

Indeed, v can even be compactly supported. By the subsolution-supersolution
method and the positivity of b(x), this is enough to construct positive solutions u
of ∆u+ q(x)u = b(x)uσ. On the contrary, if λL1 (M) ≥ 0 each positive solution w of
Lw ≥ 0 is a barrier that forces a minimal growth of any subsolution v ≥ 0. Such w
has been specified by imposing an upper bound on the radial sectional curvature of
M . The same idea is the core of other type of Liouville theorems, although they are
obtained with quite different techniques. For example, by Theorem 1.3 and Section
3 of [BRS98a] no positive, bounded subsolution v can exists if λL1 (M) ≥ 0 and v
satisfy some suitable integrability conditions. These can be rephrased in terms of
upper bounds of v once a controlled decay is imposed on q(x), b(x) and Ricc(∇r,∇r)
is bounded from below. It is curious to observe that the geometrical requirement
is opposite to (4.63). We will now show that these results do not contain Theorem
4.20.

Towards this aim, let (Mg,ds
2) be a model manifold with metric, in polar

coordinates, ds2 = dr2 + g(r)2dθ2, where g ∈ C∞(R+
0 ), g > 0 on R+ and

(4.70) g(r) =


r if r ∈ [0, 1];

exp

{
1

m− 1
rα logβ r

}
if r ∈ [2,+∞), α > 0, β ≥ 0.

Clearly, setting G = −g′′/g = −Krad, g solves (4.64). The volume element is gm−1,
and choosing a L∞loc function q(x) such that q(x) = χgm−1(r(x)) on M\B1, the
supersolution w has the behaviour

(4.71)

w(r) � −

√∫ +∞

r

ds

g(s)m−1
log

∫ +∞

r

ds

g(s)m−1

� r
α+1

2 log
β
2 r exp

{
−m− 1

2
rα logβ r

}
as r → +∞. Hence, assuming u−v = o(w), by (4.66) there exists C > 0 such that,
for r >> 1,

(4.72)
1∫

∂Br
(u− v)2

≥ C∫
∂Br

w2
� 1

rα+1 logβ r
∈ L1(+∞) since α > 0.

In other words, (4.68) in general does not imply

(4.73)

(∫
∂Br

(u− v)2

)−1

6∈ L1(+∞),
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thus Theorem 4.20 is not contained in Theorem 4.1 of [BRS98a]. Note that the
exponent 2 in (4.73) is special for the validity of the uniqueness result. Indeed,
it cannot be substituted with any p > 2, see [BRS98a] and [BRS98b]. The
same model manifold can be used to prove that Corollary 4.23 is not contained in
Theorem 1.3 of [BRS98a] (see also Theorem 8.9 of [PRS08]). This last result
states that a bounded, non-negative solution v ∈ C2(M) of (4.67) is identically
zero provided
(4.74)

(1) λL1 (M) ≥ 0, (2) b(x) > 0, q(x) ≤ Cb(x) for some C > 0,

(3) q(x)v2 ∈ L1(M), (4)

(∫
∂Br

v2

)−1

6∈ L1(+∞).

Indeed, choose 0 < q = b ≤ χ on M , q = b = χ on M\B2, so that (1), (2) are met.
By Corollary 4.23, v ≡ 0 provided v = o(w), where w has the asymptotic behaviour
in (4.71). By (4.72), the condition v = o(w) does not automatically imply (4). As
for (3), by the expression of χ, for every r ≥ 2∫

∂Br

qw2 �
[
g(r)m−1

∫ +∞

r

ds

g(s)m−1

]−1

log2

∫ +∞

r

ds

g(s)m−1
� r3α−1 log3β r

which is non-integrable at infinity. Hence, by the coarea formula, not even (3) is a
consequence of v = o(w).

Once we specialize Theorem 4.20 to manifolds with a pole and to the explicit
g of Theorem 4.10 (items (ii) and (iii)), we obtain the next result that improves
on Theorem C of [BR97].

Corollary 4.25. Let (M, 〈 , 〉) be a complete Riemannian manifold of dimen-
sion m with a pole o, and let q(x), b(x) ∈ L∞loc(M). Suppose that one of the set of
assumptions (ii), (iii) of Theorem 4.10 is met, and that b(x) ≥ 0, b 6≡ 0. Let σ > 1,
and let u, v ∈ Liploc(M) be such that{

∆u+ q(x)u ≤ b(x)uσ, u > 0 on M ;

∆v + q(x)v ≥ b(x)vσ, v ≥ 0 on M.

Then, v ≤ u on M provided
(4.75)

u− v = o
(
r−

(m−1)B′′−1
2 log r

)
for (ii),

{
B ∈ [0, 1/2) or

B = 1/2, m > 3;

u− v = o
(

log−
1
2 r log log r

)
for (ii), B = 1/2, m = 3;

u− v = o
(
r1+(m+1)α8 exp

{
−B(m−1)

2+α r1+α
2

})
for (iii), α ≥ 0;

u− v = o
(
r1+α

4 exp
{
−B(m−1)

2+α r1+α
2

})
for (iii), α ∈ (−2, 0);

u− v = o
(
r−

(m−1)B′−1
2 log r

)
for (iii), α = −2.

as r → +∞, where B′′ = 1
2 (1 +

√
1− 4B2) and B′ = 1

2 (1 +
√

1 + 4B2).

Proof. By Theorem 4.10, if q(x) satisfy the requirements of cases (ii) and
(iii) then indL(M) < +∞, where L = −∆ − q(x). Furthermore, by Remark 4.13,
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there exists a positive solution w of Lw ≥ 0, outside some compact set, with the
behaviour (4.66) as r(x)→ +∞. Since b 6≡ 0 excludes case (2) of Theorem 4.20, to
prove that v ≤ u on M it is enough to check, for each explicit g(r) as in the proof
of Theorem 4.10, that the asymptotic (4.66) for w(x) coincides with the bound in
(4.75).
As for (ii),

G(r) = − B2

1 + r2
, 0 ≤ B ≤ 1

2
,

and a good choice is to consider

g(r) =
√

1 + r log(1 + r) when B = 1/2, m = 3;

g(r) = rB
′′

when B < 1/2 or B = 1/2, m > 3.

Estimate (3.54) gives (4.75) at infinity. To deal with case (iii), set

G(r) = B2(1 + r2)α/2.

When α ≥ 0, we can choose

g(r) = r1/2I 1
2+α

(
2B

2 + α
r1+α

2

)
,

up to a positive normalizing constant (see also the proof of Theorem 3.18). Estimate
(4.75) follows from (3.43), (3.44). When α ∈ (−2, 0), g(r) has the form

g(r) =
1

B
sinh

(
2B

2 + α

[
(1 + r)1+α

2 − 1
])

,

and (4.75) is a consequence of (3.40). In the polynomial case α = −2 we use

(4.76) g(r) = (1 + r)B
′
.

Note that the different conditions at 0 with respect to those of (4.31) are, however,
compatible with Sturm argument. Indeed, if h solves (4.31) with equality sign,
(h′g − hg′)′ ≥ 0 and (h′g − hg′)(0) = 1, hence h′/h ≥ g′/g on R+. By the
comparison Proposition 3.12, (4.76) is suitable for (4.44) and to yield the radial
supersolution w(x). �

Remark 4.26. Observe that, in (4.75), the estimate for case (iii), α ∈ (−2, 0)
fits with that for (iii), α ≥ 0 as α ↑ 0. Analogously, that for (iii), α = −2
approaches the bound in (ii) when B → 0. As a particular case, we recover the
asymptotic behaviours in Theorem C of [BR97] for Rm and for the hyperbolic
space HmB :

u− v = o
(
r−

m−2
2 log r

)
for Rm, m ≥ 3;

u− v = o
(
r exp

{
−B(m−1)

2 r
})

for HmB , m ≥ 2, B > 0.

Remark 4.27. According to Remark 4.13, if we replace assumptions (ii), (iii)
of Theorem 4.10 with the corresponding requirements on q(x) that imply

q(x) ≤ kχ(r(x)) on M\BR,

for some k < 1, we can provide a whole range of bounds of type (4.75) depending
on k. We leave the computational details to the interested reader.
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The next Corollary applies the above comparison result to a relative of the
Yamabe problem.

Corollary 4.28. Let (M, 〈 , 〉) be a complete Riemannian manifold of di-
mension m ≥ 3 with a pole o and scalar curvature s(x) ≤ 0, s 6≡ 0. Define
q(x) = −s(x)/cm, where cm = 4(m − 1)/(m − 2). Suppose that one of the set of
assumptions (ii), (iii) of Theorem 4.10 is met. Let f : M → M be a conformal
diffeomorphism that preserves the scalar curvature, and define u > 0 according to

f∗〈 , 〉 = u
4

m−2 〈 , 〉. If the decay conditions in (4.75) are met with v ≡ 1, then f is
an isometry.

Proof. In our assumptions, by (2.55) u > 0 is a solution of

0 = ∆u− s(x)

cm
u+

s(x)

cm
u
m+2
m−2 = ∆u+ q(x)u− q(x)u

m+2
m−2 .

Since v ≡ 1 is clearly another solution, by Corollary 4.25 we deduce u ≤ 1. Revers-
ing the role of u and v we deduce u ≥ 1, thus u ≡ 1 and f is an isometry. �

Our next task is a brief discussion on the sharpness of Corollary 4.25. Towards
this aim, we consider M = Rm, m ≥ 3, and the coefficients q(x), b(x) satisfying

q(x) ≤ (m− 2)2

4r(x)2
, b(x) ≤ r(x)(m−2)(σ−1)/2(

log r(x)
)σ+1(

log log r(x)
)(

log log log r(x)
)2 ,

and equal to the upper bounds for r(x) >> 1. Then, it has been proved in
[BRS98b] that ∆u+q(x)u = b(x)uσ has a family of distinct, positive solutions ua,
a > 0, satisfying

ua(o) = a, ua(x) ∼ r(x)−
m−2

2 log r(x) as r(x)→ +∞,
coherently with case (ii), B = 0 of (4.75). As a second example, we recall that in
Section 4 of [BRS98a]. Consider the standard hyperbolic space Hm = Hm1 . By
means of suitable conformal transformations, we are going to produce a family of
solutions {ua} of

∆ua −
s(x)

cm
ua = u

m+2
m−2
a , where

s(x)

cm
= −m(m− 1)(m− 2)

4(m− 1)
= −m(m− 2)

4
.

Towards this aim, let Dm be the unit disk of Rm, and let 〈 , 〉, 〈̃ , 〉 be, respectively,
the Euclidean and the Poincarè metric on Dm:

〈̃ , 〉 =
4(

1− |x|2
)2 〈 , 〉 = u

4
m−2 〈 , 〉, where u =

(
2

1− |x|2

)m−2
2

.

Let a > 0, and consider the solutions

βa(r) =
(a2 − r2)−

m−2
2

m(m− 2)a2
of

 β′′a + m−1
r β′a = β

m+2
m−2
a on (0, 1)

βa(0) = 1
m(m−2)a2 , β′a(0) = 0.

Clearly, they give rise to a family of solutions

wa(x) = βa(r(x)) of ∆Rmwa = w
m+2
m−2
a on (Dm, 〈 , 〉).

By (2.56), the functions va = u−1wa are solutions of

∆̃va +
m(m− 2)

4
va = u−

m+2
m−2w

m+2
m−2
a = v

m+2
m−2
a on (Dm, 〈̃ , 〉).
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Now, consider the radial model (Mg,ds
2) of the hyperbolic space, with metric, in

polar coordinates, ds2 = dr2 + sinh2 rdθ2. The map T : (Mg,ds
2) → (Dm, 〈̃ , 〉)

given, in polar coordinates, by

T : (r, θ) 7−→
(

tanh
r

2
, θ
)

is an isometry between the two models of Hm, so that

ua(x) = va(T (x)) =

(
2 cosh2 r(x)

2

)−m−2
2

βa

(
tanh

r(x)

2

)
is a family of distinct solutions of

∆ua +
m(m− 2)

4
ua = u

m+2
m−2
a

with the property that

(4.77) ua(x) ∼
[

2−(m−2)/2

m(m− 2)a2
(a2 − 1)−(m−2)/2

]
e−

m−2
2 r(x) as r(x)→ +∞.

This decay is slower than the desired r exp{−(m− 1)r/2}. The reason is that the
potential q(x) = m(m− 2)/4 is much below the critical curve χ of Hm; indeed, by
(3.51)

χ(r(x)) ≥ (m− 1)2

4
=

(m− 1)2

m(m− 2)

(
−s(x)

cm

)
=

1

k
q(x) where k =

m(m− 2)

(m− 1)2
< 1.

Consequently, the bounds (4.75) can be improved, according to Remarks 4.13 and
4.27, to the following requirement for Hm:

u− v = o

[∫ +∞

r

ds

sinhm−1 s

](1−
√

1−k)/2
 = o

(
e−

m−1
2 (1−

√
1−k)r

)
= o

(
e−

m−2
2 r
)
,

so e−(m−2)r/2 is sharp as the minimal growth allowed when L is the conformal
Laplacian on Hm. As far as we know, Corollary 4.25 is not contained in previous
results. In this respect, note also that it does not overlap with the very general
comparison Theorem 17 of [PRS06].

4.4. Yamabe type equations with a sign-changing nonlinearity

In Section 4.3 we have considered, on a non-compact manifold M , Yamabe-type
equations

(4.78) ∆u+ q(x)u = b(x)uσ

where the coefficient b(x) of the nonlinearity is non-negative. The case where b(x)
in (4.78) is allowed to change sign reveals to be the most challenging one, and very
little is known either about the existence or about the non-existence of positive
solutions. As an application of the techniques presented in this paper, we are
going to obtain a sharp existence result on model manifolds under suitable growth
conditions on |b(x)|. What we present in this section is part of the forecoming paper
[BMR].
Historically, to the best of our knowledge, the existence problem for (4.78) with
σ ≤ (m+ 2)/(m− 2) has been mainly studied via a combination of concentration-
compactness methods and variants of the mountain pass theorem inspired by the
seminal paper of H. Brezis and L. Nirenberg, [BN83]. Among the literature we
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limit ourselves to quote [Zha04] for both a sharp result and an up-to-date account
of the problem, and we suggest the reader to consult the references therein for
futher insight. Usually, this variational approach requires the validity of some
global Sobolev-type inequality on M (commonly expressed as the positivity of a
Yamabe-type invariant) which, on non-compact manifolds, turns out to be a quite
restrictive assumption. In the Euclidean setting and when a(x) = 0, W.M. Ni
[Ni82], and later W.Y. Ding and W.M. Ni [DN85], have studied the problem with
different techniques and have given optimal conditions for the existence of positive
solutions of (4.78) in terms of the growth of |b(x)|. Furthemore, they have described
a whole variety of phenomena to illustrate how subtle is the dependence of u upon
the behaviour of b(x). As an application of the results in Chapter 4, we are able to
extend the original ideas in [Ni82] to the case of model manifolds and general a(x).
These results seem to be new even for the hyperbolic space, see [BR97]. First, we
recall our starting point, Ni result, which will be recovered as a corollary of the
main Theorem 4.35.

Theorem 4.29 ([Ni82], Theorem 1.4). Consider the Euclidean space Rm, m ≥
3, and let s̃(x) ∈ C∞(Rm) be a function satisfying

(4.79) |s̃(x)| ≤ C

r(x)l
,

for some l > 2 and for some constant C > 0. Then, the Euclidean metric 〈 , 〉 can

be conformally deformed to a complete smooth metric 〈̃ , 〉 of scalar curvature s̃(x)
and satisfying

(4.80) C1〈 , 〉x ≤ 〈̃ , 〉x ≤ C2〈 , 〉x ∀ x ∈ Rm,
for some 0 < C1 ≤ C2. Furthermore, C2 can be chosen to be as small as we wish.

Note that the bound in (4.79) can be improved. Indeed, already in [Ni82] it is
shown that

(4.81) |s̃(x)| ≤ C

r(x)2 log2 r(x)
for r(x) >> 1.

is sufficient, and later on M. Naito, [Nai84], has refined (4.81) up to the following
sufficient condition for the existence of the conformal deformation:

(4.82) |s̃(x)| ≤ B(r(x)), for some B such that rB(r) ∈ L1(+∞).

Moreover, he has also proved that (4.82) is sufficient to improve (4.80) to the
property that

〈̃ , 〉x → C〈 , 〉x as r(x)→ +∞,
for some constant C ∈ (0, C2]. The case C = 0, that is, when the conformal factor
u → 0 as r(x) → +∞, reveals some further problem, and the sole (4.82) is not
sufficient to ensure the existence of a positive u decaying to 0, as has been shown
in [LN88].

Condition (4.82) is essentially sharp. In fact, by Theorem 1.13’ of [Ni82] or
Theorem A of [BR97], no conformal deformations of Rm exist whenever the new
scalar curvature s̃(x) is required to satisfy

(4.83) s̃(x) ≤ − C

r(x)2 log r(x)
for r >> 1.

for some constant C > 0.
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Remark 4.30. In virtue of Ni and Naito results, one could ask whether the
condition

(4.84) s̃(x) ≤ −B(r(x)) ≤ 0 and rB(r) 6∈ L1(+∞)

prevents from the existence of any positive solution of ∆u = −s̃(x)uσ on Rm.
This is conjectured in [CL87] and, to the best of our knowledge, it is still an open
problem. In [Lin85], [KN84], [CL87], a number of steps have been moved towards
the solution of this conjecture, giving rise to non-existence conditions slightly more
demanding than (4.84), see in particular Theorems 2.2 and 2.3 in [CL87].

We now come to our main results. Let (Mg,ds
2) be a model manifold, and

denote with v(r) = ωm−1g(r)m−1 the volume growth of its geodesic spheres centered
at the reference origin. Note that v satisfies (V1), (V2), (V3). We further assume
(VL1). We need the following

Lemma 4.31. Suppose that v is as above, and let A ∈ L∞loc(R+
0 ) be such that

A < kχ on R+, for some k ∈ (−∞, 1]. Let B ∈ L∞loc(R+
0 ), B ≥ 0, and σ > 1. For

each fixed α > 0, consider a Liploc solution zα of

(4.85)

{
(vz′α)′ +Avzα +Bv|zα|σ−1zα = 0 on [0, εα)

zα(0) = α > 0, z′α(0) = 0.

for some εα > 0. Let h and h̄ be positive solutions of

(4.86)

{
(vh′)′ +Avh ≥ 0 on R+

h(0) = 1, h′(0) = 0.
,

{
(vh̄′)′ +Avh̄ ≤ 0 on R+

h̄(0) = 1, h̄′(0) = 0.

on R+
0 . Suppose that B(r) satisfies

(4.87)

B(r) ≤ −Cχ(r)−A(r)

h(r)σ

√∫ +∞

r

ds

v(s)
log

∫ +∞

r

ds

v(s)
if k = 1;

B(r) ≤ C
kχ(r)−A(r)

h(r)σ

[∫ +∞

r

ds

v(s)

](1−
√

1−k)/2

if k ∈ (−∞, 1),

when r ≥ r1, for some large r1 and for some constant C > 0. Then, there exists
α0 > 0 such that, for every α ∈ (0, α0), zα can be extended to a positive, locally
Lipschitz solution on R+ of (4.85) satisfying

(4.88)
α

2
h̄(r) ≤ zα(r) ≤ αh(r) on R+.

Remark 4.32. The local existence for (4.85) is ensured, for instance, via the
Picard iteration argument or a modification of Proposition 4.3. This last procedure
also gives z′α(0) = 0, and positivity follows from the initial data and from continuity.
Furthermore, in our assumptions, Theorem 4.1 guarantees the existence of positive
solutions h, h̄ of (4.86).

Proof of Lemma 4.31. On the interval [0, εα) we consider the function ξ =
zα/h. From (4.85), (4.86) and B ≥ 0 we deduce{

(h2vξ′)′ ≤ 0 on (0, εα)

ξ(0) = α, ξ′(0) = 0.
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Integrating we obtain ξ′ ≤ 0, and therefore ξ(r) ≤ ξ(0) = α. In other words,

(4.89) zα(r) ≤ αh(r) on [0, εα),

We now look for a lower bound of zα on [0, εα). Towards this aim we observe that,

since A(r) < kχ(r) on R+
0 , we can define Ã ∈ Liploc(R+

0 ) in such a way that

A < Ã ≤ kχ on R+, Ã ≡ kχ on [r1,+∞),

Next, let w be the solution of

(4.90)

{
(vw′)′ + Ãvw = 0 on R+

w(0) = 1, w′(0) = 0.

Then, by Theorem 4.1 w > 0 on R+ and it satisfies the estimate

(4.91)

w(r) � −

√∫ +∞

r

ds

v(s)
log

∫ +∞

r

ds

v(s)
if k = 1;

w(r) �
[∫ +∞

r

ds

v(s)

](1−
√

1−k)/2

if k ∈ (−∞, 1).

Hence, using assumption (4.87) we deduce the existence of a constant C1 > 0
sufficiently large such that

(4.92) B(r) ≤ C1

[
Ã(r)−A(r)

]
w(r)

h(r)σ
on R+.

Note that, for the existence of C1, it is necessary that A < Ã on R+ and therefore
that the strict inequality A < kχ holds.

For any β > 0 we set wβ = βw, and consider ϕ = zα − wα/2. Then, by the
initial conditions for zα and wα/2, ϕ > 0 on some maximal interval [0, ε̄α) ⊂ [0, εα).
From (4.85), (4.90), (4.92) and (4.89) we get

(4.93)

(vϕ′)′ = −Bv|zα|σ −Avzα + Ãvwα/2

= −Avϕ+ (Ã−A)vwα/2 −Bv|zα|σ

≥ −Avϕ+ (Ã−A)vwα/2 − C1v
(Ã−A)w

hσ
(αh)σ

= −Avϕ+ (Ã−A)vwα/2
(
1− 2C1α

σ−1
)
,

hence (vϕ′)′ + Avϕ ≥ 0 on [0, ε̄α) provided α ≤ (2C1)−1/(σ−1) = α0. Next, on
[0, ε̄α) we define η = ϕ/h̄. Using (4.86) and ϕ > 0 we get{

(h̄2vη′)′ ≥ 0 on (0, ε̄α)

η(0) = α/2, η′(0) = 0.

Integrating, we get η′ ≥ 0, hence from η(r) ≥ η(0) = α/2 we finally get η ≥ α/2.
Since, by construction, η(ε̄α) = 0 whenever ε̄α < εα, we deduce that necessarily
ε̄α = εα and thus

(4.94) zα ≥ wα/2 +
α

2
h̄ on [0, εα),



106 4. BELOW THE CRITICAL CURVE

completing the proof of (4.88) restricted to [0, εα). Since h, h̄, w are defined and
positive on R+, zα cannot explode in a finite time and can therefore be extended
to a positive solution on the whole R+. �

Remark 4.33. Without loss of generality, we can assume that h = h̄ is the
solution of (vh′)′+Avh = 0 with initial condition h(0) = 1, h′(0) = 0. Indeed, if we
call y(r) such a solution, by Sturm argument h̄ ≤ y ≤ h on R+. We have preferred
to keep h, h̄ distinct since, to make condition (4.87) more explicit, we only need an
explicit h that solves a differential inequality.

Remark 4.34. We observe that the first step in the above proof consists of
getting rid of the linear term Avz by taking a positive solution h of (vh′)′+Avh = 0
and considering ξ = zα/h. The price we have to pay is that a weight h2 for the
volume is introduced. However, as soon as we have a good control on h, this trick
enables us to extend many classical results. For a detailed discussion, we refer the
reader to the next Section 5.6.

Theorem 4.35. Let (Mg,ds
2) be an m-dimensional model manifold, denote

with v = ωm−1g
m−1 the volume growth of geodesic spheres centered at the reference

origin, and suppose that (VL1) is met. Let σ > 1, and let A(r(x)) ∈ C2,µ
loc (Mg),

0 < µ ≤ 1 be a radial function satisfying

A(r) < kχ(r) on R+,

for some k ∈ (−∞, 1]. Let h, h̄ be positive, C2 solutions of (4.86) on R+. Consider

a function b(x) ∈ C2,µ
loc (Mg) satisfying

(4.95)

|b(x)| ≤ −Cχ(r(x))−A(r(x))

h(r(x))σ

√∫ +∞

r(x)

ds

v(s)
log

∫ +∞

r(x)

ds

v(s)
if k = 1;

|b(x)| ≤ C
kχ(r(x))−A(r(x))

h(r(x))σ

[∫ +∞

r(x)

ds

v(s)

](1−
√

1−k)/2

if k ∈ (−∞, 1),

outside some ball, and for some C > 0. Then, the equation

(4.96) ∆u+A(r(x))u− b(x)uσ = 0

possesses infinitely many C2,µ
loc solutions on Mg, {uj}j∈N. For each of them, there

exist constants 0 < C1,j ≤ C2,j such that

(4.97) C1,j h̄(r(x)) ≤ uj(x) ≤ C2,jh(r(x)) on Mg.

Furthermore, C2,j ↓ 0 as j → +∞. If A(r) and b ∈ C∞(Mg), then {uj} ⊂
C∞(Mg).

Proof. First of all we prove the theorem in case h = h̄ = y is a solution of

(4.98)

{
(vy′)′ +Avy = 0
y(0) = 1 y′(0) = 0.

Next we choose a function B(r) ≥ 0 on R+
0 , B ∈ L∞loc(R+

0 ) such that |b(x)| ≤
B(r(x)) on Mg and satisfying (4.87). This is possible because of (4.95). By Lemma
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4.31, there exists α0 > 0 such that for each α ∈ (0, α0) we have a positive solution
zα on R+

0 of (4.85). Setting ωα(x) = zα(r(x)), ωα solves

∆ωα +Aωα − bωσα ≤ ∆ωα +Aωα +Bωσα

= z′′α + (m− 1)
g′

g
z′α +Azα +Bzσα

= v−1
[
(vz′α)′ +Avzα +Bvzσα

]
= 0

and has the property that

(4.99)
α

2
y(r(x)) ≤ ωα(x) ≤ αy(r(x))

on Mg. Next, we define

yα =
α

2
y − zα/4.

Then, yα(0) = α/4 and, by (4.88),

α

2
y ≥ yα =

α

2
y − zα/4 ≥

(α
2
− α

4

)
y =

α

4
y.

Therefore, using (4.99),
α

4
y ≤ yα ≤

α

2
y ≤ ωα ≤ αy.

Furthermore,

(vy′α)′ +Avyα = Bvzσα/4 = Bv

(
zα/4

α
2 h− zα/4

)σ
yσα.

But
zα/4

α
2 h− zα/4

≥
α
8 h
α
2 h

=
1

4
,

and it follows that yα solves

(vy′α)′ +Avyα ≥ Bv4−σyσα.

Defining ȳα = 4−
σ
σ−1 yα we have

(vȳ′α)′ +Avȳα ≥ Bvȳσα.
As a consequence, ω̄α(x) = ȳα(r(x)) satisfies

(4.100) ∆ω̄α +Aω̄α − bω̄σα ≥ (B − b)ω̄σα ≥ 0

and

(4.101) 4
−σ
σ−1

α

4
y(r(x)) ≤ ω̄α(x) ≤ 4

−σ
σ−1

α

2
y(r(x)) ≤ α

2
y(r(x)) ≤ ωα(x)

on Mg. By the monotone iteration scheme, [Sat72], there exists a solution uα(x)
of (4.96) satisfying

(4.102) ω̄α ≤ uα ≤ ωα
on Mg. Furthermore, if A(r) and b are smooth, then uα is smooth by elliptic
regularity. From (4.101) and (4.102) it follows immediately that

4−
2σ+1
σ−1 αy(r(x)) ≤ uα(x) ≤ αy(r(x))

The procedure can now be iterated, simply replacing α = α1 with, say, α2 =

4−
2σ+1
σ−1 −1α. Note that the corresponding positive solution uα2 is strictly below

uα1
= uα. In this way we obtain the required sequence of solutions. If h 6≡ h̄, we
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reason as in Remark 4.33. Let y be a solution of (4.98). Then, by Sturm comparison
h̄ ≤ y ≤ h, thus the validity of (4.95) implies the validity of the analogous of (4.95)
with y replacing h. Applying the previous proof we get a sequence of solutions uj
such that

C1,j h̄(r(x)) ≤ C1,jy(r(x)) ≤ uj(x) ≤ C2,jy(r(x)) ≤ C2,jh(r(x))

on Mg. This completes the proof of the theorem. �

To better appreciate the above theorem, we give two geometric applications.
Firstly, we deduce Theorem 4.29 as an immediate corollary.

Proof of Theorem 4.29. Defining u as in (2.54), u must be a positive solu-
tion of (2.55), which on Euclidean space reads as

∆u+
s̃(x)

cm
u
m+2
m−2 = 0, where cm =

4(m− 1)

m− 2
.

Set σ = (m + 2)/(m − 2), b(x) = −s̃(x)/cm, and realize Rm as a model manifold
with g(r) = r, so that χ(r) = (m − 2)2/(4r2). To apply Theorem 4.35, we choose

A ≡ 0, h = h̄ = 1 and k > 0 small enough in such a way that 2+(m−2) 1−
√

1−k
2 < l.

This is possible since l > 2. Then, |b(x)| ≤ Cr−l implies the inequality

(4.103) |b(x)| ≤ Cr(x)−2−(m−2) 1−
√

1−k
2 ,

which is (4.95) in our setting. Thus, the existence of the desired conformal defor-
mations follows from Theorem 4.35. �

Secondly, specializing the main theorem to the hyperbolic setting, we get the
following extension of Ni result.

Corollary 4.36. Consider the hyperbolic space HmB of sectional curvature
−B2 and dimension m ≥ 3, and let s̃(x) ∈ C∞(HmB ) be a function satisfying

(4.104) |s̃(x)| ≤ Ce(2B−δ)r(x),

for some δ > 0 and for some constant C > 0. Then, for every ε > 0, the Poincaré

metric 〈 , 〉 can be conformally deformed to a smooth metric 〈̃ , 〉 of scalar curvature
s̃ and satisfying

(4.105) C1e
−(2B+ε)r(x)〈 , 〉x ≤ 〈̃ , 〉x ≤ C2e

−(2B−ε)r(x)〈 , 〉x ∀ x ∈ HmB ,

for some 0 < C1 ≤ C2. Furthermore, for each fixed ε > 0, C1 and C2 and can be
chosen to be as small as we wish.

Proof. The scalar curvature of HmB is −m(m−1)B2, thus the conformal factor
u in (2.54) has to satisfy

(4.106) ∆u+
B2m(m− 2)

4
u+

s̃(x)

cm
u
m+2
m−2 = 0, where cm =

4(m− 1)

m− 2
.

Set σ = (m+ 2)/(m− 2), b(x) = −s̃(x)/cm, A(r) = B2m(m− 2)/4, and realize HmB
as a model manifold with g(r) = B−1 sinh(Br). Hence, v(r) = g(r)m−1 satisfies
(VL1) and, by Remark 3.19 and Proposition 3.23, for every r ∈ R+

χ(r) >
B2(m− 1)2

4
and χ(r)→ B2(m− 1)2

4
as r → +∞.
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We let k1 = m(m−2)
(m−1)2 < 1. Note that k1 is the smallest k for which

m(m− 2)B2

4
= A(r) < k1χ(r) on R+

For k0 < k1, k0χ(r) → k0
m−1

4 B2 < A(r). Hence there exists r1 = r1(k0) >> 1

such that on [r1,+∞), k0χ(r) < A(r). We define A on R+
0 so that A ≤ A on R+

0

and A(r) = k0χ(r) on [r1,+∞). We let h be the solution of{
(vh′)′ +Avh = 0 on R+

h(0) = 1, h′(0) = 0.

Then, by Theorem 4.1 and Proposition 4.7, h > 0 on R+ and

(4.107) h(r) � exp

{
−B(m− 1)(1−

√
1− k0)

2
r

}
as r → +∞

Moreover, since A ≤ A, h solves the first of (4.86) and can therefore be used to
verify condition (4.95) in Theorem 4.35. Choose k ∈ (k1, 1). Then A < kχ(r) on
R+

0 and[∫ +∞

r

ds

v(s)

](1−
√

1−k)/2

� exp

{
−B(m− 1)(1−

√
1− k)

2
r

}
as r → +∞.

Thus, for σ = m+2
m−2 ,

kχ(r)−A(r)

hσ(r)
≥ (k − k1)χ(r)

hσ(r)
≥ C exp

{σ
2
B(m− 1)(1−

√
1− k0)r

}
for some constant C > 0 depending on k, k1. This implies that (4.95) is satisfied if
on HmB
(4.108)

|s̃(x)| = cm|b(x)| ≤ C exp

{
B(m− 1)

2

[
σ(1−

√
1− k0)− (1−

√
1− k)

]
r

}
for some constant C > 0. Next we observe that for

k0 ↑ k1,
B(m− 1)

2
σ(1−

√
1− k0)→ σ

B(m− 2)

2
= B

m+ 2

2

and for

k ↓ k1,
B(m− 1)

2
(1−

√
1− k)→ B

m− 2

2
We can therefore choose k0 and k sufficiently close to k1 so that
(4.109)

1

2
B(m− 1)(1−

√
1− k0) ≥ Bm− 2

2
− εm− 2

4
1

2
B(m− 1)(1−

√
1− k) ≤ Bm− 2

2
+ ε

m− 2

4

2B − δ = B
m+ 2

2
−Bm− 2

2
− δ ≤ B

2
(m− 1)

[
σ(1−

√
1− k0)− (1−

√
1− k)

]
Thus (4.104) implies the validity of (4.108) and therefore of (4.95). Applying
Theorem 4.35 we get the existence of infinitely many solutions u of (4.106) such
that

(4.110) C1e
−B(m−1)(1−

√
1−k)

2 r(x) ≤ u(x) ≤ C2e
−B(m−1)(1−

√
1−k0)

2 r(x) on HmB ,
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where C1, C2 can be chosen as small as we wish. From (4.109), we deduce

C1e
−(B(m−2)

2 +εm−2
4 )r(x) ≤ u(x) ≤ C2e

−(B(m−2)
2 −εm−2

4 )r(x) on HmB .

Since 〈̃ , 〉 = u
4

m−2 〈 , 〉, we get the desired (4.105). �

Remark 4.37. The lower bound in (4.110) is sharp. In this respect, see the
discussion after Corollary 4.28, Theorem 4.23 and Remark 4.27.

Remark 4.38. The estimates for |b(x)| in Theorem 4.35 are sharp. Indeed, in
the hyperbolic setting, by Corollary B of [BR97] no conformal deformations of HmB
exist if we require that

s̃(x) ≤ −C e2Br(x)

r(x) log r(x)
for r(x) >> 1,

which shows the necessity of δ > 0 in (4.104). In the spirit of Naito improvement
of Ni result, this motivates the next

Conjectures:

(1) The Poincaré metric can be conformally deformed to a new metric of
scalar curvature s̃(x) provided that there exists S(r) such that

|s̃(x)| ≤ S(r(x)) and e−2BrS(r) ∈ L1(+∞).

(2) If

s̃(x) ≤ −S(r(x)) ≤ 0 and e−2BrS(r) 6∈ L1(+∞),

then the Poincaré metric cannot be conformally deformed to a new metric
of scalar curvature s̃(x).

We mention that, in the forecoming paper [BMR], we improve and complement
the results of this section and we move some steps towards the solution of these
conjectures.

4.5. Upper bounds for the number of zeroes of z

Once we know that the number of zeroes of z solving (4.3) is finite, say, n (for
instance, this is always the case when z comes from the radialization of an operator
L = −∆− q(x) with finite index), the next step is to determine upper bounds for
n. In passing, we note that, by classical Sturm-Liouville theory ([Wei87], Theorem
14.2), n is also the index of the self-adjoint extension of the operator

L = −v−1 d

dr

(
v

d

dr

)
+A on C∞c (R+

0 , vdr).

This section rests upon some ideas in a recent paper of T. Ekholm, R.L. Frank and
H. Kovař̀ık, [EFK11], in which upper bounds for the index of Schrödinger operators
on metric trees are derived from inequalities on the corresponding radialized ODE.
The analytical core is the following weighted Hardy-Sobolev inequality.

Theorem 4.39 ([OK90], Theorem 6.2). Let 2 ≤ q ≤ +∞, ξ, η ∈ L∞loc(R+
0 ).

Then, the inequality

(4.111)

(∫ +∞

0

|η(r)u(r)|qdr
)2/q

≤ S2

∫ +∞

0

|ξ(r)u′(r)|2dr
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holds, for some S > 0 and for every absolutely continuous u such that u(r)→ 0 as
r → +∞ if and only if

T = sup
r>0

{
‖η‖Lq([0,r]) ‖1/ξ‖L2([r,+∞))

}
< +∞.

If this is the case, the best constant S satisfies

(4.112)
T ≤ S ≤ T

(
1 +

q

2

)1/q
(

1 +
2

q

)1/2

if q < +∞

S = T if q = +∞.

A direct application of Theorem 4.39 gives

Theorem 4.40 ([EFK11], Theorem 2.15). Let A, v satisfy assumptions (A1),
(V1), (VL1), and let z be a Liploc solution of (4.3). Let {zj}nj=1 be the zeroes of

z, n ≤ +∞. Let w : R+ → R+ be an integrable function such that, for some
2 < q ≤ +∞,
(4.113)

C = sup
r>0

[(∫ r

0

v(s)
q
2w(s)−

q−2
2 ds

)2/q ∫ +∞

r

ds

v(s)

]
< +∞ if q < +∞;

C = sup
r>0

[(
sup
s∈[0,r]

v(s)

w(s)

)∫ +∞

r

ds

v(s)

]
< +∞ if q = +∞.

Set p = q/(q − 2) if q < +∞, p = 1 if q = +∞. Then, there exists an optimal
constant Np(w) > 0 such that

(4.114) n ≤ Np(w)

∫ +∞

0

A+(r)pw(r)dr.

Furthermore, Np(w) satisfies

(4.115)
Np(w) ≤ (1 + p′)

p−1
(

1 + 1
p′

)p
Cp if q < +∞;

Np(w) ≤ C if q = +∞,

where p′ = p/(p− 1) = q/2.

Proof. We consider the case q < +∞, the remaining case being simpler.
Because of (4.113) we can apply the Hardy-Sobolev inequality of Theorem 4.39
with the choice

ξ(r) =
√
v(r), η(r) = v(r)

1
2w(r)−

q−2
2q

to deduce (∫ +∞

0

v(s)
q
2w(s)−

q−2
2 |u(s)|qds

)2/q

≤ S2

∫ +∞

0

|u′(s)|2v(s)ds

for every u with compact support in R+
0 , where

√
C ≤ S ≤

√
C
(

1 +
q

2

)1/q
(

1 +
2

q

)1/2

if q < +∞;

S =
√
C if q = +∞.
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Let u = zχ[zj−1,zj ], where z0 = 0. Then, integrating by parts and using Hölder
inequality with conjugate exponents p and p′ = q/2 we get(∫ zj

zj−1

v(s)
q
2w(s)−

q−2
2 |z(s)|qds

)2/q

≤ S2

∫ zj

zj−1

(z′(s))2v(s)ds

= S2

∫ zj

zj−1

A(s)v(s)|z(s)|2ds ≤ S2

∫ zj

zj−1

A+(s)v(s)|z(s)|2ds

≤ S2

(∫ zj

zj−1

w(s)−
q−2

2 v(s)
q
2 |z(s)|qds

)2/q (∫ zj

zj−1

A+(s)pw(s)ds

)1/p

Simplifying and taking the p-th power we obtain

1 ≤ S2p

∫ zj

zj−1

A+(s)pw(s)ds.

Estimate (4.114) and the bound (4.115) follow at once summing up with respect to
j. �

Clearly, it would be nice to find suitable functions w such that conditions
(4.113) are automatically satisfied. The problem is addressed in the following

Corollary 4.41. Let A, v, z, {zj}nj=1 be as in the previous theorem, and let

χ be the critical curve. Assume also that 1/v 6∈ L1(0+). Then, for every fixed
p ∈ [1,+∞)

(4.116) n ≤
(

2p− 1

2p

)2p−1 ∫ +∞

0

[
1√
χ(s)

]2p−1

A+(s)pds

Proof. We begin with the case p > 1. Let q be such that p = q/(q−2) < +∞.
To apply the previous theorem, we will find w(r) such that(∫ r

0

v(s)
q
2w(s)−

q−2
2 ds

)2/q ∫ +∞

r

ds

v(s)
= 1 on R+,

so that C = 1. An algebraic manipulation with the aid of the initial condition
1/v 6∈ L1(0+) and the definition of χ gives

w(r) = 2−
q
q−2 q−

2
q−2

(
1√
χ(r)

) q+2
q−2

.

An application of Theorem 4.40 taking into account the upper bound (4.115) yields

(4.117) n ≤
(
q + 2

2q

) q+2
q−2
∫ +∞

0

[
1√
χ(s)

] q+2
q−2

A+(s)
q
q−2 ds.

Rewriting with respect to p we get (4.116). The case p = 1 is obtained by setting
q = +∞. The choice

w(r) =
1

2
√
χ(r)

implies (
sup
s∈[0,r]

v(s)

w(s)

)∫ +∞

r

ds

v(s)
= 1 on R+,



4.5. UPPER BOUNDS FOR THE NUMBER OF ZEROES OF z 113

hence C = 1 and (4.116) follows at once from the definition of w(r), (4.114) and
(4.115). �

Despite their simplicity, it should be stressed that, in some unfortunate cir-
cumstances, (4.116) is not sharp. Indeed, assume that A ≤ χ on R+ and A = χ
on [r0,+∞), for some r0 > 0. Then, after r0 the integrand in estimate (4.116) is√
χ(s), which is non-integrable by (3.23). However, as we saw in Proposition 4.1,

n = 0 and (4.116) is useless.
By means of the change of variables in Proposition 3.10, we can also give a

corresponding statement for solutions g of g′′ +K(s)g = 0.

Corollary 4.42. Let K ∈ L∞loc(R+
0 ), and let g be a solution of{

g′′ +K(s)g = 0 on R+,

g(0) = 0, g′(0) = 1.

Then, for every p ∈ [1,+∞), the number of zeroes n of g satisfies

(4.118) n ≤
(

2p− 1

2p

)2p−1 ∫ +∞

0

σ2p−1K+(σ)pdσ

We note that the role of the critical curve χ seems to be ubiquitous in deriv-
ing the validity of Hardy-Sobolev inequalities like that of Theorem 4.39, although
sometimes there is no evidence of it in the formulas. Corollaries 4.41 and 4.42 are
simple examples. In this respect, the treatise [OK90] is a wealth of information.

On the links between χ and χ̃, II. Before proceeding, we would like to
make a few further observations on the relation between χ and χ̃ discussed at the
end of Section 4.2. We proceed with a reasoning for the m ≥ 3 dimensional case.
Our task is to see whether χ̃ can replace χ in the uncertainty principle lemma, that
is, in Theorem 4.15, and furthermore if this replacement gives a better result.

With the aid of Theorem 4.39, we obtain the following necessary condition on
χ̃ to be a critical curve on a model manifold.

Proposition 4.43. Let (Mg,ds
2) be an m-dimensional model with metric

given, in polar coordinates, by ds2 = dr2 + g(r)2dθ2. Suppose that m ≥ 3, and
set f(r) = g(r)m−1. If the uncertainty principle lemma

(4.119)

∫
M

χ̃f (r(x))u2(x)dV (x) ≤
∫
M

|∇u(x)|2dV (x)

holds for every u ∈ Lipc(M), with χ̃f = [f ′/(2f)]2 the modified critical function,
then

inf
r>0

(
2r
√
χf (r)

)
≥ 1,

where χf (r) is the critical function of f(r).

Proof. By restricting (4.119) to radial, compactly supported Lipschitz test
functions u(r(x)), the following inequality holds for every u ∈ Lipc(R

+
0 ):

(4.120)

∫ +∞

0

(
m− 1

2

g(s)′

g(s)

)2

u2(s)g(s)m−1ds ≤
∫ +∞

0

(u′(s))2g(s)m−1ds.

Applying Theorem 4.39 with the choices

(4.121) q = 2, S ≤ 1, ξ(r) = g(r)
m−1

2 , η(r) =
m− 1

2

g(r)′

g(r)
g(r)

m−1
2 = ξ′(r),
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by estimate (4.112), the validity of (4.120) forces the inequality T 2 ≤ 1, where
(4.122)

T 2 = sup
r>0

T 2(r) and T 2(r) =

(∫ r

0

[(
g(s)

m−1
2

)′]2

ds

)(∫ +∞

r

ds

g(s)m−1

)
,

for otherwise the sharp constant S in (4.111) would be strictly greater than 1.
Note that, through a standard approximation procedure, (4.111) holds for every
absolutely continuous u converging to zero at infinity if and only if it holds for
every u ∈ Lipc(R

+
0 ). By the Cauchy-Schwarz inequality and the definition of the

critical curve (3.21) for v(r) = f(r), we deduce

T 2(r) ≥ g(r)m−1

r

∫ +∞

r

ds

g(s)m−1
=

1

2r
√
χf (r)

,

and combining with T 2 ≤ 1 we get the desired inequality. �

It is worth to observe that, with the choice (4.121), inequality (4.120) has the
expression

(4.123)

∫ +∞

0

(ξ′)2u2 ≤
∫ +∞

0

ξ2(u′)2 ∀ u ∈ Lipc(R
+
0 ).

This is often called a (1-dimensional) Caccioppoli inequality. By a standard tech-
nique, which we now briefly recall, if ξ is non-negative and convex (and this is
often the case by its very definition and the properties of g), (4.123) holds up to
a factor of 4. As a consequence of the estimates (4.112) of the sharp constant in
Theorem 4.39, this means that T < +∞, where T is as in (4.122). Without loss of
generality, we can limit ourselves to prove Caccioppoli inequality with u compactly
supported in R+

0 . We integrate ξ′′(ξu2) ≥ 0 by parts, we use Young inequality and
ξ ∈ C∞(R+

0 ), ξ(0) = 0 to get, for every δ ∈ (0, 1),

0 ≤
∫ +∞

0

ξ′′ξu2 = −
∫ +∞

0

ξ′(ξu2)′ = −
∫ +∞

0

(ξ′)2u2 −
∫ +∞

0

2ξξ′uu′

≤ (δ − 1)

∫ +∞

0

(ξ′)2u2 +
1

δ

∫ +∞

0

ξ2(u′)2,

hence ∫ +∞

0

(ξ′)2u2 ≤
[

inf
δ∈(0,1)

1

δ(1− δ)

] ∫ +∞

0

ξ2(u′)2 = 4

∫ +∞

0

ξ2(u′)2,

as desired.



CHAPTER 5

Exceeding the critical curve

In this Chapter we give some sufficient conditions to guarantee that a solution
z ∈ Liploc(R+

0 ) of the problem

(5.1)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+,

z(0) = z0 > 0

either has a first zero or it is oscillatory. One of the main features of our results is
that we do not require A(r) to be non-negative. However, the case A(r) ≥ 0 is more
transparent, easier to handle and sufficient for some geometric applications. For
this reason, we first deal with A ≥ 0. Throughout this section we shall also consider
a bounding function f defined on R+

0 and satisfying the following requirements:

f ∈ L∞loc(R+
0 ),

1

f
∈ L∞loc(R+), 0 ≤ v ≤ f on R+

0 .(F1)

5.1. First zero and oscillation

The techniques used in the proof of the next theorem remind some in the work
of M.P. Do Carmo and D. Zhou [CZ99]. Observe that assumptions (A1) and (V1)
have been introduced in Section 3.1.

Theorem 5.1. Let (A1), (V1), (F1) be met, and assume that z ∈ Liploc(R+
0 )

is a positive solution of

(5.2)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on R+,

z(0) = z0 > 0

Suppose A ≥ 0 and A 6≡ 0. Then

(5.3)
1

v(r)
∈ L1(+∞)

and for every 0 < R0 < r such that A 6≡ 0 in L∞([0, R0])

(5.4)

∫ r

R0

(√
A(s)−

√
χf (s)

)
ds ≤ −1

2

(
log

∫ R0

0

A(s)v(s)ds+ log

∫ +∞

R0

ds

f(s)

)
.

Proof. We define

(5.5) y(r) = −v(r)z′(r)

z(r)
∈ Liploc(R+

0 ).

Because of (5.2) and (V1), y satisfies Riccati equation

(5.6) y′ = Av +
y2

v
a.e. on R+, with y(0) = 0.

115
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Since A ≥ 0, y′ ≥ 0 a.e. on R+ and, for every R0 > 0 such that A 6≡ 0 on [0, R0]

(5.7) y(r) ≥ y(R0) ≥
∫ R0

0

A(s)v(s)ds > 0 ∀ r ∈ [R0,+∞)

Using (5.6) and Young inequality εa2 + ε−1b2 ≥ 2|a||b|, a, b ∈ R, ε > 0 we also
deduce

(5.8) y′ ≥ 2y
√
A a.e. on [R0,+∞)

From (5.7) and (5.8) we infer

(5.9) y(r) ≥

(∫ R0

0

A(s)v(s)ds

)
exp

{
2

∫ r

R0

√
A(s)ds

}
on [R0,+∞)

Moreover, from (5.6),

(5.10)
y′

y2
≥ 1

v
a.e. on [R0,+∞),

and integrating on [r,R] we get

(5.11)
1

y(r)
≥ 1

y(R)
+

∫ R

r

ds

v(s)
≥
∫ R

r

ds

v(s)
.

Letting R→ +∞ we obtain (5.3), and using (5.11) into (5.9) we reach the following
inequality:

(5.12)

∫ r

R0

√
A(s)ds ≤ −1

2
log

∫ R0

0

A(s)v(s)ds− 1

2
log

∫ R

r

ds

v(s)
.

Letting R→ +∞, inequality (5.4) is simply a rewriting of (5.12). Indeed, by (F1)
and (3.22) for χf (r)
(5.13)

−1

2
log

∫ +∞

r

ds

v(s)
≤ −1

2
log

∫ +∞

r

ds

f(s)
= −1

2
log

∫ +∞

R0

ds

f(s)
+

∫ r

R0

√
χf (s)ds.

�

Corollary 5.2 (First zero). In the assumptions of the previous theorem, let
A ≥ 0, A 6≡ 0. Suppose that either 1/f 6∈ L1(+∞) or otherwise there exist
0 < R0 < r such that A 6≡ 0 on [0, R0] and
(5.14)∫ r

R0

(√
A(s)−

√
χf (s)

)
ds > −1

2

(
log

∫ R0

0

A(s)v(s)ds+ log

∫ +∞

R0

ds

f(s)

)
Then, the solution z ∈ Liploc(R+

0 ) of (5.2) has a first zero. Moreover, in this second

case, this is attained on (0, R], where R > 0 is the unique real number satisfying

(5.15)

∫ r

R0

√
A(s)ds = −1

2
log

∫ R0

0

A(s)v(s)ds− 1

2
log

∫ R

r

ds

f(s)
.

Proof. When 1/f 6∈ L1(+∞), the existence of a first zero for z is immediate
from Theorem 5.1. Suppose now that 1/f ∈ L1(+∞). Then (5.14) is equivalent to
say that (5.4) is false for some 0 < R0 < r. Hence, z has again a first zero thanks
to Theorem 5.1.
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As for its positioning, we first note that (5.4) comes from (5.12), that we write
as ∫ r

R0

√
A(s)ds ≤ −1

2

(
log

∫ R0

0

A(s)v(s)ds+ log

∫ R

r

ds

f(s)

)
∀ R > r

and valid for R before the first zero of z. Let H(R) denote the RHS of the above,
which may be thought to be defined on (r,+∞). Note that H is continuous, strictly
decreasing for R ∈ (r,+∞), and H(R)→ +∞ as R→ r+. Using (3.22), we rewrite
(5.14) as ∫ r

R0

√
A(s)ds > −1

2

(
log

∫ R0

0

A(s)v(s)ds+ log

∫ +∞

r

ds

f(s)

)
.

Comparing the last two inequalities, we deduce the existence of a unique R > r
such that (5.15) holds. For every ε > 0, Theorem 5.1 gives the existence of a first
zero on (0, R+ ε), so that letting ε→ 0 we reach the desired conclusion. �

Remark 5.3. In case 1/f 6∈ L1(+∞), by slightly modifying the above proof it
can be shown that the solution R of (5.15) still gives an upper bound for the first
zero of z. Note that, in (5.15), the only requirement on R0 is that A 6≡ 0 on [0, R0].

As already underlined in Example 4.9, (2), inequality (5.14) is deep since the
right hand side of (5.14) is independent both of r and of the behavior of A after R0:
if (5.4) is contradicted for some 0 < R0 < r < R, the left hand side represents how
much must A exceed a critical curve modelled on f in the compact region [R0, r]
in order to have a first zero of z, and it only depends on the behavior of A and f
before R0 (the first addendum of the RHS), and on the growth of f after R0.

Remark 5.4. It is worth observing that, in order to obtain (5.14), we need to
assume A ≥ 0 on the whole R+ and not, a posteriori, only on (0, R).

Remark 5.5. The assumptions of Theorem 5.1 and Corollary 5.2 can be weak-
ened. Indeed, the reader can check that all the reasonings in both proofs are still
valid even if z satisfies the differential inequality

(vz′)′ +Avz ≤ 0,

provided that the initial condition is such that

y(0+) = −vz
′

z
(0+) = 0

(see inequality (5.7)). In particular, a mild singularity of z as r → 0+ is allowed if
v(r) tends to zero sufficiently fast. This will be useful in Section 5.7.

Theorem 5.6 (Oscillation). Assume that (A1), (V1), (F1), A ≥ 0 hold on
[r0,+∞), for some r0 ≥ 0. Let z0 ∈ R\{0}. Suppose that either

(5.16)
1

f(r)
6∈ L1(+∞) and A(r)v(r) 6∈ L1(+∞)

or

(5.17)
1

v(r)
∈ L1(+∞) and lim sup

r→+∞

∫ r

R

(√
A(s)−

√
χf (s)

)
ds = +∞
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for some (hence any) R > r0. Then, every solution z(r) ∈ Liploc([r0,+∞)) of

(5.18)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 on (r0,+∞)

z(r0) = z0

is oscillatory.

Proof. First, we claim that the two conditions in (5.17) imply that

A(r)v(r) 6∈ L1(+∞).

Indeed, from (3.23) and the second condition of (5.17) it follows that
√
A(r) 6∈

L1(+∞), and from Cauchy-Schwarz inequality(∫ r

R

A(s)v(s)ds

)(∫ r

R

ds

v(s)

)
≥
(∫ r

R

√
A(s)ds

)2

,

we prove the claim by letting r → +∞.
Next suppose, by contradiction, that z(r) has constant sign on [%,+∞), for some
% ≥ r0. We define y as in (5.5). Then y ∈ Liploc([%,+∞)) and satisfies

y′ = Av +
y2

v
, y(%) = −v(%)z′(%)

z(%)
∈ R.

From A ≥ 0, y is non-decreasing. Integrating we get

(5.19) y(r) ≥ y(R) ≥ y(%) +

∫ R

%

A(s)v(s)ds ∀ r > R > %

In both cases considered in the theorem the non integrability of A(r)v(r) ensures
the existence of R > % such that

y(%) +

∫ R

%

A(s)v(s)ds > 0,

therefore y > 0 on [R,+∞). Now, we argue as in Theorem 5.1. In particular,

integrating (5.10) on [r, R̃] we get

(5.20)
1

y(r)
≥ 1

y(r)
− 1

y(R̃)
≥
∫ R̃

r

ds

v(s)
≥
∫ R̃

r

ds

f(s)
∀ R̃ > r > R

so that 1/f ∈ L1(+∞), which contradicts (5.16). As for (5.17), from y′ ≥ 2y
√
A

a.e. on [R,+∞) we deduce

(5.21) y(r) ≥ y(R) exp

{
2

∫ r

R

√
A(s)ds

}
∀ r > R.

Combining (5.19) and (5.21) with (5.20), letting R̃→ +∞ and using the definition
of χf (r) we obtain
(5.22)∫ r

R

(√
A(s)−

√
χf (s)

)
ds ≤ −1

2

[
log

(
y(%) +

∫ R

%

A(s)v(s)ds

)
+ log

∫ +∞

R

ds

f(s)

]
To complete the proof we let r → +∞ along a sequence realizing (5.17) to reach
the desired contradiction. �



5.1. FIRST ZERO AND OSCILLATION 119

Remark 5.7. Condition (5.16) is due to W. Leighton, [Lei50]. The version
in [Swa68], Theorem 2.24, does not assume A ≥ 0, but the author substitutes the
second requirement in (5.16) with the existence of

(5.23) lim
r→+∞

∫ r

%

A(s)v(s)ds = +∞,

for some ρ ∈ R+. The argument is as follows. Assume by contradiction that z has
constant sign on [%,+∞), and define y as in (5.5). Integration of y′ ≥ Av with the
aid of (5.23) gives the existence of R > % such that y > 0 on [R,+∞). By (5.5) it
follows that, if z > 0 (resp z < 0) on [R,+∞), z′ < 0 (resp z′ > 0) on [R,+∞),
thus z(+∞) exists and is finite. Let z2 be the other linearly independent, positive
solution of (vz′)′ +Avz = 0 on (R,+∞) given in Remark 3.9:

(5.24) z2(r) = z(r)

∫ r

R

ds

v(s)z2(s)
.

Repeating the above argument for z2 we deduce that z2(+∞) exists and is finite.
Letting r → +∞ in (5.24) and using 1/v 6∈ L1(+∞) we reach the desired contra-
diction.

Remark 5.8. By (3.22), (5.17) is equivalent to either one of the following
requirements:

(5.25)

(i) lim sup
r→+∞

(∫ r

R

√
A(s)ds+

1

2
log

∫ +∞

r

ds

f(s)

)
= +∞;

(ii) lim sup
r→+∞

(∫ r

R

√
A(s)ds+

1

2
log

∫ +∞

r

ds

f̃(s)

)
= +∞,

where f̃ ∼ Cf as r → +∞, for some constant C > 0.

Here are some stronger conditions which imply oscillation, and that will be
used in the sequel.

Proposition 5.9. In the hypotheses of Theorem 5.6 on some interval [r0,+∞),
and assuming also 1/f ∈ L1(+∞), equation (5.18) is oscillatory if, for some R ≥
r0, one of the following conditions is satisfied:

(i) A(r) ≥ χf (r) on [R,+∞) and
√
A(r)−

√
χf (r) 6∈ L1(+∞);

(ii) lim sup
r→+∞

∫ r
R

√
A(s)ds∫ r

R

√
χf (s)ds

> 1;

(iii) lim inf
r→+∞

√
A(r)√
χf (r)

> 1;

(iv) lim sup
r→+∞

∫ r
R

√
A(s)ds

− 1
2 log

∫ +∞
r

ds
f(s)

> 1;

(v) v 6∈ L1(+∞), A is non-decreasing and, for some sequence {rn} ↑ +∞,

√
A(rn) > inf

r>rn

{
−1

2

log
∫ +∞
r

ds
f(s)

r − rn

}
.
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Proof. Implications (i), (ii), (iii), (iv) are immediate from (3.22) and (3.23).
Regarding (v), we proceed, by contradiction, as in Theorem 5.6, restricting the
problem on [%,+∞), % > R0. Since A(r) is non-decreasing and v(r) 6∈ L1(+∞), we
can choose R > % such that

y(%) +

∫ R

%

A(s)v(s)ds ≥ 1.

Using the monotonicity of A, v ≤ f and the definition of χf , (5.22) becomes√
A(R)(r −R) ≤

∫ r

R

√
A(s)ds ≤ −1

2
log

∫ +∞

r

ds

v(s)
≤ −1

2
log

∫ +∞

r

ds

f(s)

for every R < r; (v) contradicts this last chain of inequalities. �

Condition (5.17) in Theorem 5.6 exhibits clear analogies with Calabi condition
(2.16) for the compactness of a complete Riemannian manifold M with non-negative
Ricci curvature. Indeed, this latter can be quite easily deduced from (5.17). To-
wards this aim, consider the problem

(5.26)

{
g′′ +K(s)g = 0

g(0) = 0, g′(0) = 1,

with

(5.27) K(s) = Kγ(s) =
Ricc(γ′, γ′)(s)

m− 1
.

Here γ is a unit speed geodesic on the complete Riemannian manifold M issuing
from some reference origin o. As already observed in the proof of Theorem 2.1, M
is compact with finite fundamental group provided we can prove the existence of a
first zero of g for each γ.

Theorem 5.10 (Calabi criterion, [Cal67], Theorem 1). Let (M, 〈 , 〉) be a com-
plete Riemannian manifold of dimension m ≥ 2 such that

Ricc ≥ 0 outside some compact set C.

Suppose that there exists an origin o for which, along every unit speed geodesic γ
issuing from o, we have

(5.28) lim sup
s→+∞

(∫ s

S

√
Kγ(σ)dσ − 1

2
log s

)
= +∞,

for some S > 0 such that C ⊂ BS(o), and with Kγ defined as in (5.27). Then, M
is compact and has finite fundamental group.

Proof. We prove that, in our assumptions, g of (5.26) oscillates. Indeed,
defining r, z(r) as in Proposition 3.10, condition (5.28) is equivalent to the oscilla-
tory condition

lim sup
r→+∞

(∫ r

R

√
A(s)ds+

1

2
log

∫ +∞

r

ds

v(s)

)
= +∞

of Remark 5.8 (with v(r) = f(r)) applied to the ODE (3.19), up to changing
variables in the integrals according to (3.18). �
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5.2. Comparison with known criteria

In the previous section we have observed that (5.17) is substantially equivalent
to Calabi criterion for the oscillation of

d2g

ds2
+K(s)g = 0,

once the substitution (3.18) is performed. In the light of the link between (5.18)
and

(5.29) β̈ +

(
A(r(t))

χ(r(t))
− 1

)
β = 0,

obtained via the change of variables (4.6) with

β(t) = etz(r(t)),

we can compare (5.17) and (5.28) with some classical oscillation criteria for (5.29).
Observe that β oscillates if and only if so does z. Changing variables as in (4.6)
and using (4.8), we rewrite (5.17) as the following condition for the oscillation of
(5.29):

(5.30) lim sup
t→+∞

∫ t

T

(√
A(r(σ))

χ(r(σ))
− 1

)
dσ = +∞.

On the other hand, a direct application of Calabi condition (5.28) to (5.29) yields
oscillation whenever

(5.31)
A(r(t))

χ(r(t))
− 1 ≥ 0, that is, A(r) ≥ χ(r), at least for r >> 1,

and

(5.32) lim sup
t→+∞

[∫ t

T

(√
A(r(σ))

χ(r(σ))
− 1

)
dσ − 1

2
log t

]
= +∞.

Condition (5.30) has the advantage, on (5.32), that A ≥ χ is not required. Further-
more, the negative part of the integrand in (5.30) may even be non-integrable in a
neighbourhood of +∞. However, if A ≥ χ, (5.32) is in general better than (5.30).
This can be seen, for instance, in the case

A(r(σ))

χ(r(σ))
= 1 +

C

4σ2
on [T,+∞), where C > 1.

Again, since A may lie below χ, (5.30) is not contained in Hille-Nehari Theorem
2.7, so that (4.24) in Example 4.9, (1) does not contain (5.17). However, since

(5.33)

√
A(r(s))

χ(r(s))
− 1 ≤ A(r(s))

χ(r(s))
− 1 (resp. ≥) if

A(r(s))

χ(r(s))
≥ 1 (resp ≤),

Hille-Nehari condition

lim inf
t→+∞

t

∫ +∞

t

(
A(r(s))

χ(r(s))
− 1

)
ds >

1

4

is sharper than (5.30) when A ≥ χ. To show that (5.17) is not fully contained in
the previous results, we therefore need to compare it with the oscillation criteria
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for (5.29) that allow a changing sign potential, as in the Moore condition on the
existence of

(5.34) lim
t→+∞

∫ t

T

σλ
(
A(r(σ))

χ(r(σ))
− 1

)
dσ = +∞.

for some λ ∈ (0, 1) (see Theorem 2.9). However, it is not hard to construct a
function h : [T,+∞)→ R+

0 satisfying

lim sup
t→+∞

∫ t

T

(√
h(σ)− 1

)
dσ = +∞,

but for which

lim
t→+∞

∫ t

T

σλ
(
h(σ)− 1

)
dσ

does not exist. This is possible since σλ 6∈ L1(+∞). Therefore, (5.30) may yield
information even in some cases when Moore theorem is not applicable. Thus, the
next proposition can be used as an independent oscillation test.

Proposition 5.11. Let K ∈ L∞loc([T,+∞)), and consider the ODE

g′′ +K(t)g = 0.

Assume that K ≥ −B2, for some B > 0. Then, the ODE is oscillatory provided

(5.35) lim sup
t→+∞

∫ t

T

(√
K(σ) +B −B

)
dσ = +∞.

Proof. The case B = 1 reduces to (5.30) with

K(t) =
A(r(t))

χ(r(t))
− 1.

Note that if we fix some critical function χ, for instance, that of a polynomial
volume growth, then by (4.6) A is uniquely determined by K and viceversa. This
enables us to apply (5.30) directly to g′′ + Kg = 0. For general B, we reduce to
the case B = 1 by setting g̃(t) = g(B−1t). Since g̃ solves g̃′′ + B−2K(B−1t)g̃ = 0,
we conclude by changing variable in (5.30). �

Remark 5.12. Expression (5.35) has the same structure as (5.28), and it will
be generalized in Theorem 5.41 to the case of a non-constant negative lower bound
for K.

We observe that (see also Proposition 3.10), the choices

(5.36) s(r) =

(∫ +∞

r

ds

v(s)

)−1

, g(s) = sz(r(s))

and

(5.37) t(r) = −1

2
log

∫ +∞

r

ds

v(s)
, β(t) = etz(r(t))

are different ways to produce an equation of the type g′′ + Kg = 0 from (vz′)′ +
Avz = 0. Furthermore, z, g, β share the same oscillatory (or nonoscillatory) be-
haviour. Therefore, combining the two changes of variables we can pass from the
ODE β̈+Fβ = 0 to the ODE g′′+Kg = 0 or viceversa according to which potential,
F or G, is easier to handle for the specific problem under consideration. In fact, it
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can be checked through (5.36) and (5.37) that, if g solves g′′ +K(s)g = 0 on some
[S,+∞), then β(t) = e−tg(e2t) and it satisfy

β̈(t) +
(

4K(e2t)e4t − 1
)
β(t) = 0.

Viceversa, if β solves β̈ + Fβ = 0, then g(s) = β( 1
2 log s) and it solves

d2g

ds2
+
K(t(s)) + 1

4s2
g = 0.

The above observation gives rise to the next

Proposition 5.13. Let K ∈ L∞loc([s0,+∞)), for some s0 > 0. Then, the
equation g′′ + K(s)g = 0 oscillates if and only if, for some (hence any) B > 0,
a > 0, the same happens to one of the following ordinary differential equations:

(i) β̈(t) + a2

(
4K(B−1e2at)

B2
e4at − 1

)
β(t) = 0;

(ii) β̈(t) +
1

4B2t2

[
B2 +K

(
log t

2B

)]
β(t) = 0.

Proof. As for (i), it is enough to set

(5.38) β(t) = e−atg(B−1e2at),

while (ii) is obtained by means of the change of variables

β(t) =
√
tg

(
log t

2B

)
.

Clearly, in both cases g oscillates if and only if so does β. �

It is worth to observe that case (ii) of Proposition 5.13 enables us to deal
with an ODE with non-negative potential whenever K is bounded from below. For
instance, applying Hille-Nehari Theorem 2.7 to (ii) and changing variables, we get
the following simple criterion.

Corollary 5.14. Assume that K(s) ≥ −B2 on [s0,+∞), for some B > 0.
Then, a solution of g′′ +K(s)g = 0 oscillates if

lim inf
s→+∞

e2Bs

∫ +∞

s

1

e2Bσ

(
B2 +K(σ)

)
dσ >

B

2
,

while it has eventually constant sign when

e2Bs

∫ +∞

s

1

e2Bσ

(
B2 +K(σ)

)
dσ ≤ B

2
on [s1,+∞),

for some s1 ≥ s0.

This is, roughly speaking, the “Hille-Nehari type” counterpart of Proposition
5.11. Clearly, compactness results for manifolds satisfying

Ricc(∇r,∇r) ≥ −(m− 1)B2

follow from Proposition 5.11 and Corollary 5.14.
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5.3. Instability and index of −∆− q(x)

Corollary 5.2 and Theorem 5.6 can be applied to yield upper bounds on the
bottom of the spectrum of a Schrödinger operator L = −∆ − q(x). We let v(r) =
vol(∂Br), and we denote with q(r) the spherical mean of q(x), that is,

q(r) =
1

vol(∂Br)

∫
∂Br

q ∈ L∞loc(R+
0 )

Observe that, by the coarea formula,

(5.39)

∫ R

0

q(s)v(s)ds =

∫ R

0

(∫
∂Bs

q

)
ds =

∫
BR

q.

Theorem 5.15. Let (M, 〈 , 〉) be a complete Riemannian manifold of dimension
m ≥ 2, and let q(x) ∈ L∞loc(M) be such that its spherical mean q(r) satisfies

(5.40) q(r) ≥ 0, q(r) 6≡ 0.

Let f(r) satisfy (F1) with v(r) = vol(∂Br) on R+. Consider the following assump-
tions:

(i) either

1/f 6∈ L1(+∞)

or 1/f ∈ L1(+∞) and there exist r > R such that q(r) 6≡ 0 on [0, R] and

(5.41)

∫ r

R

(√
q(s)−

√
χf (s)

)
ds > −1

2

(
log

∫
BR

q + log

∫ +∞

R

ds

f(s)

)
;

(ii) either

(5.42) 1/f 6∈ L1(+∞), q(x) 6∈ L1(M)

or

(5.43) 1/f ∈ L1(+∞) and lim sup
r→+∞

∫ r

R

(√
q(s)−

√
χf (s)

)
ds = +∞

for some large R.

Then,

- under assumption (i) the Schrödinger operator L = −∆−q(x) has negative
spectral radius, that is,

(5.44) λL1 (M) < 0;

- under assumption (ii) L has infinite index.

Furthermore, if

(5.45) f(r) = Λrθ exp
{
arα logβ r

}
, for some Λ, a, α > 0, β ≥ 0, θ ∈ R,

(5.43) is equivalent to

(5.46) lim sup
r→+∞

[∫ r

R

√
q(s)ds− a

2
rα logβ r − α+ θ − 1

2
log r − β

2
log log r

]
= +∞,

while if f(r) = Λrα, for some α > 1, then (5.43) is equivalent to

(5.47) lim sup
r→+∞

[∫ r

R

√
q(s)ds− α− 1

2
log r

]
= +∞.
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Proof. We follow the reasoning outlined in the Introduction. By Corollary
3.7, we choose a locally Lipschitz solution z(r) of (5.2), with A(r) = q(r). According
to Corollary 5.2, z has a first zero at some R. We define ψ(x) = z(r(x)) if x ∈ BR,
ψ(x) = 0 otherwise, so that ψ ∈ Lip0(BR). Using the coarea formula and Gauss
lemma, and integrating by parts, we obtain

(5.48)

∫
BR

|∇ψ|2 − q(x)ψ2 =

∫
BR

|∇ψ|2 − q(r)ψ2

= −
∫ R

0

z(r)
[
(v(r)z′(r))′ + q(r)v(r)z(r)

]
dr = 0.

By the min-max characterization (1.78) and domain monotonicity we conclude
λL1 (M) < 0. The proof of (ii) is similar. Let Ω be any relatively compact set
of M , and let R be sufficiently large that Ω b BR. By Corollaries 3.7 and 5.6, a
solution z of (5.18) is oscillatory. Let R1, R2 be two consecutive zeroes after R, and
define ψ(x) = z(r(x)) on BR2\BR1 , and zero otherwise. Then, as in (5.48) we get∫

BR2
\Ω
|∇ψ|2 − q(x)ψ2 = 0,

and by domain monotonicity λL1 (M\Ω) < 0. By Theorem 1.40, indL(M) = +∞.
When f(r) has the expression (5.45),

(5.49)

∫ +∞

r

ds

f(s)
∼ 1

Λ

(
1

aα

)
r1−α−θ log−β r exp

{
− arα logβ r

}
,

and we conclude using Remark 5.8 to get (5.46). The case of a polynomial f is
analogous. �

As an immediate application of the above result, we state a particular version
of Theorem 2.30. It seems to us that this is the first instance of an existence result
for Yamabe-type equations that does not require pointwise bounds on either the
sectional or the Ricci curvatures.

Theorem 5.16. Let (M, 〈 , 〉) be a non-compact Riemannian manifold of di-

mension m ≥ 2, and let q(x), b(x) ∈ C0,µ
loc (M), µ ∈ (0, 1]. Suppose that b(x) > 0 on

M . Denote with q(r) the spherical mean of q, and assume

(5.50) q ≥ 0 on R+, q 6≡ 0.

Let f satisfy (F1) with v(r) = vol(∂Br) on R+. If either

1/f 6∈ L1(+∞)

or 1/f ∈ L1(+∞) and there exist r > R such that q 6≡ 0 on [0, R] and

(5.51)

∫ r

R

(√
q(s)−

√
χf (s)

)
ds > −1

2

(
log

∫
BR

q + log

∫ +∞

R

ds

f(s)

)
,

then, for every σ > 1, the equation

(5.52) ∆u+ q(x)u− b(x)uσ = 0

possesses a minimal and a maximal (possibly coinciding) positive C2,µ
loc solutions.
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On the links between χ and χ̃, III. This last observation is related to those
at the end of Sections 4.2 and 4.5. Indeed, case (ii) of Theorem 5.15 can be used to
show that, in many instances, the function χ̃ is not an adequate critical function.
Towards this purpose, we suppose that (Mg,ds

2) is a model manifold, and we set
f(r) = v(r) = g(r)m−1. Furthermore, we assume that g is non-decreasing and
g1−m ∈ L1(+∞). Let q(x) ∈ L∞loc(M) be such that 0 < q ≤ χ̃ on M and q = χ̃ on
M\B1, and define, as usual, L = −∆− q(x). For R ≥ 1, by (4.55) we deduce∫ r

R

(√
q(s)−

√
χ(s)

)
ds = −1

2

∫ r

R

(
log(2

√
χ(r))

)′
ds =

1

2
log

(
1

2
√
χ(r)

)
+O(1)

as r → +∞. If the critical curve satisfies the property

(5.53) lim inf
r→+∞

χ(r) = 0,

then, by (ii) of Theorem 5.15,

(5.54) indL(M) = +∞.

As a consequence, whenever (5.53) is met, the uncertainty principle cannot hold
with χ replaced by χ̃, for otherwise (by our definition of q(x)) the operator L should
have non-negative spectral radius on M , contradicting (5.54). By Corollary 3.25,
condition (5.53) is satisfied if, for instance,

(5.55) Ricc(∇r,∇r)(x) ≥ −(m− 1)G(r),

for some non-negative G ∈ C0(R+
0 ) such that G(r)→ 0 as r → +∞. On the other

hand, it is easy to construct examples when g(r) has faster than exponential growth
and χ is better than χ̃. For instance, if

g(r) =
exp {arα}
rα−1

on [r0,+∞), where a > 0, α > 1,

then χ(r) = a2α2/4r2(α−1) is increasing on [r0,+∞), thus, by (4.57), χ > χ̃ on
[r0,+∞), as can be seen also by a direct computation. The case of exponential
growth reveals to be the most subtle. In fact, it may also present an unpleasant
feature that we describe for the prototype example of H3

B , the hyperbolic 3-space of
sectional curvature −B2 < 0. As observed at the end of Section 4.2, in [BR97] the
authors proved that χ̃ is, indeed, a critical function on each manifold of dimension
m ≥ 3 satisfying Krad ≤ −B2. Since by (3.31) χ is decreasing on H3

B , applying
(4.57) we conclude that χ̃ > χ on R+, that is, χ̃ is better than χ as a critical curve
on H3

B . This particular case motivates the following

Questions:

(1) Which is the optimal uncertainty principle on the hyperbolic space HmB
or, more generally, on manifolds satisfying Krad ≤ −B2?

(2) Why, in this setting, χ̃ may be better than χ?

5.4. Some remarks on minimal surfaces

The aim of this section is to present a typical situation where the case 1/f 6∈
L1(+∞) in Theorem 5.15 occurs. Such example concerns minimal surfaces with
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finite stability index in some ambient 3-manifold. To begin with, and to fix no-
tations, we recall some preliminary facts. Suppose we are given an isometrically
immersed hypersurface

ϕ : Mm −→ Nm+1,

where N is orientable. We fix the index notation i, j, k, t ∈ {1, . . . ,m}, and we
choose a local Darboux frame {ei, ν}. Let R,Ricc, s (resp R,Ricc, s) be the cur-
vature tensor, the Ricci tensor and the scalar curvature of M (resp. N), denote
with II = (hij) the second fundamental form of the immersion in the direction of
ν, with |II|2 the square of its norm and with H = m−1hiiν the mean curvature
vector. Tracing twice the Gauss equations

(5.56) Rijkt = Rijkt + hikhjt − hithjk

we get

(5.57) s = s− 2Ricc(ν, ν) +m2H2 − |II|2.

A minimal immersion ϕ is characterized by H ≡ 0, which is equivalent to say
that ϕ is a stationary point for the volume functional on every relatively compact
domain with smooth boundary in M . If we restrict to those variations of the volume
functional that are driven by functions f ∈ C∞c (M) satisfying∫

M

f = 0,

then it can be proved that the stationary points are characterized to be the constant
mean curvature (shortly, CMC) hypersurfaces. In both the minimal and the CMC
cases, we say that ϕ is stable if it locally minimizes the volume functional up to
second order, and unstable otherwise. Analytically the condition of stability is
expressed by∫

M

|∇ψ|2 −
(
|II|2 + Ricc(ν, ν)

)
ψ2 ≥ 0 ∀ ψ ∈ C∞c (M),

that is,

(5.58) λL1 (M) ≥ 0, where L = −∆−
(
|II|2 + Ricc(ν, ν)

)
.

Following S.T. Yau and R. Schoen [YS79], the potential in L can be rearranged to
make the scalar curvatures appear. Indeed, by (5.57)

(5.59)
Ricc(ν, ν) + |II|2 =

1

2

(
s− s+m2H2 − |II|2

)
+ |II|2

=
1

2

(
s− s+m2H2 + |II|2

)
.

In particular, if M is a CMC surface with Gaussian curvature K, this gives the
following expression for the stability operator:

(5.60) L = −∆−
(

Ricc(ν, ν) + |II|2
)

= −∆− 1

2

(
4H2 + s+ |II|2

)
+K.

Next, we recall that a surface M is of finite topological type (or, equivalently,
finitely connected) if it is homeomorphic to a compact surface Σ with finitely many
points {p1, . . . , ph} removed. In this case, around each pi we can choose a small
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open disk Di in Σ such that the Di are pairwise disjoint and M is homeomorphic
to Σ\

(⋃
iDi

)
. Then, we can define the Euler characteristic of M as

χE(M) = χE

(
Σ\

(⋃
i

Di

))
= χE(Σ)− h.

The stability operator in (5.60) has the general form L = −∆−V +aK, where V ∈
L∞loc(M) and a > 0 is a constant. In the case V ≡ 0, the operator La = −∆ + aK
has been investigated by D. Fischer-Colbrie and R. Schoen in connection with the
type problem for a Riemann surface. In the celebrated paper [FCS80], they pose
some questions about topological restrictions deriving from spectral assumptions.
With the aid of a powerful integral inequality due to T. Colding and W. Minicozzi
[CM02] (which has its germ in the work of A.V. Pogorelov [Pog81]), P. Castillon
[Cas06] and later J.M. Espinar and H. Rosenberg [ER11] succeeded in solving most
of the problems in [FCS80]. Colding-Minicozzi method has been independently
developed by W. Meeks, J. Perez and A. Ros in [MPR08]. Starting from the
estimates in [Cas06], [MPR08], and combining with Theorem 5.15, we shall now
recover some well-known interesting results in the literature.

We begin with a topological Lemma.

Lemma 5.17 ([Cas06], Lemma 2.4). Let (M, 〈 , 〉) be a complete Riemannian
surface, and let {Ωj} be any exhaustion of M .

(i) If M is of finite topological type, there exists j0 such that, for every j ≥ j0,
χE(Ωj) ≤ χE(M);

(ii) If M is not of finite topological type, limj χE(Ωj) = −∞.

Next, we describe the estimate in [Cas06] and [MPR08]. A partial and less
powerful result with the same method has appeared in our recent work [BMR09],
when we still did not know about the papers of P. Castillon, W. Meeks, J. Perez
and A. Ros. We apologize to these authors for the omitted citation.
Set

l(r) = vol(∂Br), k(r) =

∫
Br

K.

Proposition 5.18 ([Cas06], Propositions 3.1 and 3.2, and [MPR08]). Let
(M, 〈 , 〉) be a complete Riemann surface, and let V ∈ L∞loc(M) be such that V− ∈
L1(M). Fix a constant a > 1/4, and suppose that the operator L = −∆− V + aK
has finite index. Then, M is of finite topological type,

V ∈ L1(M) and vol(Br) ≤ Cr2,

for some C > 0 and for r ∈ R+.

Proof. By Theorem 1.40, let R0 be sufficiently large that λL1 (M\BR0−1) ≥ 0.
We choose R > R0 + 1 and we consider a function

(5.61) ψR ∈ Lip(BR\BR0
) such that

{
ψR ≡ 0 on ∂BR0

,

ψR ≡ 1 on ∂BR.

Denote with ca,R the constant

(5.62) ca,R =

∫
BR\BR0

[
|∇ψR|2 + aKψ2

R − V ψ2
R

]
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Let now r > R and let fr : [R, r]→ [0, 1] be a C2 function such that

(5.63) fr(R) = 1, fr(r) = 0, f ′r ≤ 0, f ′′r ≥ 0,

and set ψr(x) = fr(r(x)). Then, by the coarea formula and integrating twice by
parts
(5.64)∫

Br\BR
aKψ2

r = a

∫ r

R

f2
r (t)

[∫
∂Bt

K

]
dt = −a

∫ r

R

(f2
r (t))′k(t)dt− ak(R)

= a

∫ r

R

(f2
r (t))′′

[∫ t

R

k

]
dt− ak(R).

Now, from (1.21) ∫ t

R

k(s)ds ≤ 2π

∫ t

R

χE(s)ds− l(t) + l(R),

and since (f2
r )′′ ≥ 0, the RHS of (5.64) is bounded above by

(5.65) 2πa

∫ r

R

(f2
r (t))′′

[∫ t

R

χE

]
dt− a

∫ r

R

(f2
r (t))′′l(t)dt− ak(R)− 2af ′r(R)l(R).

Therefore, setting

(5.66) ψr(x) =


ψR(x) if r(x) ∈ [R0, R];

fr(r(x)) if r(x) ∈ [R, r];

0 otherwise,

combining (5.62), (5.64), (5.65) and λL1 (M\BR0−1) ≥ 0 we get

0 ≤
∫
M

[
|∇ψr|2 + aKψ2

r − V ψ2
r

]
≤

∫ r

R

(
(f ′r(t))

2 − a(f2
r (t))′′

)
l(t)dt+ 2πa

∫ r

R

(f2
r (t))′′

[∫ t

R

χE

]
dt+

+
[
ca,R − ak(R)− 2af ′r(R)l(R)

]
−
∫
M

V ψ2
r .

Now, the Euler characteristic of the compact surface with boundary, Br, is bounded
above by 1. We can thus set

(5.67) E = E(R) = sup
s∈[R,+∞)

χE(s), E(R) ∈ (−∞, 1].

Again, since (f2
r )′′ ≥ 0, integrating by parts we obtain

2πa

∫ r

R

(f2
r (t))′′

[∫ t

R

χE

]
dt ≤ 2πaE

∫ r

R

(f2
r (t))′′(t−R)dt = 2πaE,
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so that

(5.68)

0 ≤
∫
M

[
|∇ψr|2 + aKψ2

r − V ψ2
r

]
≤

∫ r

R

(
(f ′r(t))

2 − a(f2
r (t))′′

)
l(t)dt+

+
[
ca,R − ak(R)− 2af ′r(R)l(R) + 2πaE

]
−
∫
M

V ψ2
r .

Choose

fr(t) =

(
r − t
r −R

)β
,

where β ≥ 1 has to be specified later, and note that (5.63) are met. A straightfor-
ward computation gives f ′r(R)→ 0 as r → +∞ and

(5.69)

∫ r

R

(
(f ′r(t))

2 − a(f2
r (t))′′

)
l(t)dt =

β2(1− 4a) + 2aβ

(r −R)2β

∫ r

R

(r − t)2β−2l(t)dt.

Since a > 1/4, the constant

cβ = −
(
β2(1− 4a) + 2aβ

)
can be made as big as we wish, up to choosing β big enough. In particular, the
RHS of the above equality is negative provided cβ > 0. If we assume r > 2R, from∫ r

R

(r − t)2β−2l(t)dt ≥
∫ r/2

R

(r − t)2β−2l(t)dt ≥
(r

2

)2β−2

vol(Br/2\BR),

inserting into (5.69) we obtain∫ r

R

(
(f ′r(t))

2 − a(f2
r (t))′′

)
l(t)dt ≤ − cβ

22β−2

r2β−2

(r −R)2β
vol(Br/2\BR).

≤ −c̃β
vol(Br/2\BR)

(r/2−R)2
,

for some c̃β only depending on β. Thus, from (5.68) we deduce the following
estimate:

(5.70) c̃β
vol(Br/2\BR)

(r/2−R)2
+

∫
Br\BR

V ψ2
r ≤ ca,R + a(2πE − k(R)) + o(1).

as r → +∞. Since V− ∈ L1(M) and ψr ↑ 1 pointwise on M\BR, we get from (5.70)

lim
r→+∞

∫
Br\BR

V+ψ
2
r ≤ lim sup

r→+∞

∫
Br\BR

V ψ2
r + lim

r→+∞

∫
Br\BR

V−ψ
2
r < +∞,

hence V ∈ L1(M) by the monotone convergence theorem. The bound vol(Br) ≤
Cr2 for r >> 1 is immediate from (5.70), and by the asymptotic (1.63) the same
estimate holds near r = 0 up to changing C. To prove that M is of finite topological
type, we consider

ψR(x) =

{
r(x)−R0 if r(x) ∈ [R0, R0 + 1),

1 if r(x) ∈ [R0 + 1, R],
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so that

ca,R =

(∫
BR0+1\BR0

[
|∇ψR|2 + aKψ2

R

]
+

∫
BR\BR0

V ψ2
R

)
+ak(R)− aK(R0 + 1)

≤ Ĉ + ak(R),

where Ĉ is a constant depending on a, on the geometry of M on BR0+1 and on the
L1 norm of V on M\BR0

. Inserting into (5.70) and letting r → +∞ we deduce
that

Ĉ + 2πaE ≥
∫
M\BR

V.

Hence, E cannot diverge as R→ +∞. By definition (5.67) and Lemma 5.17, M is
of finite topological type. �

Remark 5.19. We note in passing that condition vol(Br) = O(r2) implies the
parabolicity of the surface, according to a result in [CY75] (see also Theorem 5.1
of [PRS05], together with Lemma 5.22 below). Hence, each end E with respect
to some compact set K is conformally parabolic. Since M is of finite topological
type, if K is sufficiently large then E is a cylinder, so that E must be conformally
diffeomorphic to the punctured disk (D\{0}, |dz|2) ⊂ C, as shown in ([Cas06],
Proposition 3.3).

Remark 5.20. A posteriori, since M is of finite topological type, by Lemma
5.17 the constant E can be chosen to be χ(M). Furthermore, in inequality (5.70),
only ca,R depends on the choice of ψR in (5.61). If we vary ψR among the class A
of Lipschitz functions that are zero on ∂BR0

and 1 on ∂BR, the best value of ca,R
is realized by the L-capacity

capL(BR\BR0
) = inf

φ∈A

∫
BR\BR0

(
|∇φ|2 + aKφ2 − V φ2

)
.

Clearly, capL(BR\BR0
) is non-increasing as a function of R, and we can define

capL(M\BR0
) = lim

R→+∞
capL(BR\BR0

).

Consequently, if we set v∗ = lim supr→+∞ vol(Br)/r
2, letting first r → +∞ and

then R→ +∞ along a suitable sequence we deduce

(5.71) c̃βv
∗ ≤ capL(M\BR0

) + a

(
2πχ(M)− lim sup

R→+∞

∫
BR

K

)
.

In particular, if K ∈ L1(M), we can easily recover the classical Cohn-Vossen
inequality [CV35]. Indeed, for every R we consider the harmonic potential of
BR\BR0

, that is, the solution φR ∈ A of ∆φR = 0 on BR\BR0
. Since M is para-

bolic by Remark 5.19, φR → 0 uniformly with all its derivatives on compact sets as
R→ +∞, and integrating by parts∫

BR\BR0

|∇φR|2 =

∫
BR\BR0

|∇(1− φR)|2 =

∫
∂BR0

∂(1− φR)

∂ν
−→ 0
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as R → +∞. Hence, by Lebesgue dominated convergence theorem and the defini-
tion of L-capacity, capL(M\BR0) = 0, thus (5.71) becomes∫

M

K ≤ 2πχ(M)− c̃β
a
v∗ ≤ 2πχ(M).

It should be stressed that the Cohn-Vossen inequality holds for every complete
Riemann surface with finite topology and K ∈ L1(M). The excess 2πχ(M)−

∫
M
K

has been the subject of an intensive research, aiming to relate it to isoperimetric
constants of the ends (A. Huber [Hub57], R. Finn [Fin65], A.L. Werner [Wer68]),
to the volume ratio of spheres and balls (P. Hartman [Har64a] and K. Shiohama
[Shi85]) and to the behaviour of Busemann functions (K. Shiohama [Shi84]).

Remark 5.21. If L is stable, with minor modifications inequality (5.70) can
be improved to

c̃β
vol(Br/2)

(r/2)2
+

∫
Br

V ψ2
r ≤ 2aπχ(M) + o(1).

Indeed, it is enough to set R0 = R = 0 and to define ψr(x) = fr(r(x)) in (5.66).
Therefore, letting r → +∞ we deduce

(5.72) c̃βv
∗ +

∫
M

V ≤ 2aπχ(M).

The next Lemma is a calculus exercise, see [RS01].

Lemma 5.22.

If
r

vol(Br)
6∈ L1(+∞), then

1

vol(∂Br)
6∈ L1(+∞).

We are ready to prove the next Corollary. Some of the implications have already
been proved in a paper of R. Gulliver [Gul88] when the ambient manifold is real
analytic.

Corollary 5.23. Let ϕ : M2 → N3 be a complete, non-compact surface with
constant mean curvature H in an oriented 3-dimensional manifold N having non-
negative scalar curvature s. Suppose that M has finite stability index. Then, M
has finite topology and

(i) If H 6= 0, then vol(M) < +∞.
(ii) If H = 0, then

(5.73) vol(Br) = O(r2) as r → +∞, s ◦ ϕ, |II|2 ∈ L1(M)

and

(5.74) lim sup
r→+∞

∫
Br

K > −∞.

In particular, if K+ ∈ L1(M), then K ∈ L1(M).

Proof. Since, by (5.60), the stability operator is

L = −∆−
(

4H2 + s+ |II|2

2

)
+K.

It is enough to apply Proposition 5.18 with the choices V = (4H2 +s+ |II|2)/2 and
a = 1 to get that M has finite topology, 0 ≤ V ∈ L1(+∞) and vol(Br) = O(r2),
that is, (5.73) when H = 0. If H 6= 0, from V ∈ L1(+∞) we deduce that necessarily
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vol(M) < +∞. By Lemma 5.22, from vol(Br) = O(r2) we obtain (vol(∂Br))
−1 6∈

L1(+∞). Hence, from (ii) of Theorem 5.15, improved according to Remark 5.7 and
applied to the stability operator with the choice f(r) = vol(∂Br), we deduce that

lim inf
r→+∞

∫
Br

(V −K) < +∞,

thus the inequality in (5.74) follows. If K+ ∈ L1(M), then K− ∈ L1(M) for
otherwise

∫
Br
K → −∞, which contradicts (5.74). Hence, K ∈ L1(M). �

We now examine the case H = 0 a little bit further. It should be stressed that
K+ ∈ L1(M) follows from simple arguments once we sharpen the assumption that
N has non-negative scalar curvature to the higher demanding request Ricc ≥ 0.
Indeed, if N has non-negative Ricci curvature, by (5.57) and (5.73) we get also

0 ≤ 2K+ = s+ ≤ s+ |II|2 ∈ L1(M).

We thus have the following result, that should be compared with Corollary 1 of
[FC85].

Corollary 5.24 ([FC85], Corollary 2.1 and [Gul86]). Let ϕ : M2 → N3 be
a complete, non-compact minimal surface in an oriented 3-dimensional manifold N
satisfying Ricc ≥ 0. Suppose that M has finite stability index. Then, M has finite
topology, vol(Br) = O(r2) and

(5.75) Ricc(ν, ν), s ◦ ϕ, |II|2, K ∈ L1(M)

Using item (i) of Theorem 5.15 we also recover the following celebrated result of
M.P. Do Carmo and C.K. Peng [CP79], D. Fischer-Colbrie and R. Schoen [FCS80]
and A.V. Pogorelov [Pog81].

Theorem 5.25. Any complete, non-compact, stable minimal surface ϕ : M →
N of a 3-manifold with Ricc ≥ 0 is totally geodesic, has non-negative sectional
curvature and Ricc(ν, ν) = 0 on M . Moreover, if N is Ricci flat, M is flat. In
particular, there exist no complete, non-compact stable minimal surfaces in any 3-
manifold N whose Ricci tensor is positive in the complementary of a set of (m−1)-
Hausdorff measure zero.

Proof. By Corollary 5.23 and Lemma 5.22, (vol(∂Br))
−1 6∈ L1(+∞). Hence,

by Proposition 5.15, item (i) with

f(r) = vol(∂Br), q(x) = Ricc(ν, ν) + |II|2 ≥ 0

we deduce that necessarily

Ricc(ν, ν) + |II|2 ≡ 0.

Since both terms are non-negative, M is totally geodesic and Ricc(ν, ν) ≡ 0. In par-
ticular, Ricc is not strictly positive on ϕ(M), which has positive (m− 1)-Hausdorff
measure since ϕ is an immersion. It follows that no such M can exists if Ricc > 0
in the complementary of a set of (m − 1)-Hausdorff measure zero. By (5.57),
2K = s ≥ 0, with equality sign if N is Ricci flat, and this concludes the proof. �



134 5. EXCEEDING THE CRITICAL CURVE

5.5. Newton operators, unstable hypersurfaces and the Gauss map

In this section we shall present a recent application of our ODE results to
the theory of hypersurfaces f : Mm → Rm+1 with some constant higher order
mean curvature, [IMR11]. In this case the geometry is often suitably studied with
the aid of the Newton operators. This is probably due to the fact that they are
the principal part of some Jacobi operator of geometrically interesting variational
integrals, see the discussion before Proposition 5.27 below. As it will be apparent
in a moment, the techniques of Chapter 5 can be quite easily adapted to cover also
this case. We begin with some preliminary material.

Let f : Mm → Rm+1 be a connected, orientable, complete, non-compact hy-
persurface of Euclidean space, let ν be the spherical Gauss map and denote with
A the shape operator in the direction of ν, that is, the (1, 1) version of the second
fundamental form. Associated with A we have the principal curvatures k1, . . . , km
of the immersed hypersurface and the symmetric functions Sj :

Sj = Sj(k) =
∑

i1<i2<...<ij

ki1ki2 . . . kij , j ∈ {1, . . . ,m}, S0 = 1,

where k = (k1, . . . , km). Define the j-mean curvature of f via the normalization

H0 = 1,

(
m

j

)
Hj = Sj .

Thus, for instance, H1 is the mean curvature and Hm is the Gauss-Kronecker
curvature of the hypersurface. Note that, when changing the orientation ν, the odd
curvatures change sign, while the sign of the even curvatures is an invariant of the
immersion. By Gauss equations (5.56) and flatness of Rm+1 it is easy to see that

(5.76) H2 =

(
m

2

)−1

S2 =
1

2

(
m

2

)−1

s(x),

where s(x) is the scalar curvature of M . The j-mean curvatures satisfy the so-called
Newton inequalities

(5.77) H2
j ≥ Hj−1Hj+1,

equality holding if and only if p is an umbilical point (see [HLP52]). We stress
that no restriction is made on the sign of Hj−1, Hj , Hj+1. Furthermore, by Gärding

inequalities [G5̈9] we have

H1 ≥ H1/2
2 ≥ . . . ≥ H1/j

j

on the connected component of

Γj =
{
k = (k1, . . . , km) ∈ Rm : Hj(k) > 0

}
that contains the positive cone C = {k ∈ Rm : ki > 0 ∀ i} (see [HL95] for more
information). We call this component Γ+

j . As a consequence, if Hj > 0 for some

j ∈ {1, . . . ,m} and k ∈ Γ+
j , by Gärding inequalities Hi > 0 for each 1 ≤ i ≤ j.

Repeated applications of Newton inequalities give

(5.78) H1Hi+1 −Hi+2 ≥ 0 on Γ+
j , ∀ i ∈ {0, . . . , j − 1}.
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Indeed, the case j = 1 comes directly from (5.77), while the case j > 1 follows
inductively by using (5.77) again:

H1Hi+1 = H1Hi
Hi+1

Hi
≥ Hi+1

Hi+1

Hi
≥ Hi+2.

The Newton tensors Pj , j ∈ {0, . . . ,m}, are inductively defined by

P0 = I, Pj = SjI −APj−1,

and satisfy the following algebraic properties.

Lemma 5.26 ([BC97]). Let {ei} be the principal directions associated with A,
that is, Aei = kiei, and let Sj(Ai) be the j-th symmetric function of A restricted to
the (m− 1)-dimensional space e⊥i . Set Sm+1 ≡ 0. Then, for each 1 ≤ j ≤ m− 1,

(1) APj = PjA;

(2) Pjei = Sj(Ai)ei;

(3) Tr(Pj) =
∑
i Sj(Ai) = (m− j)Sj ;

(4) Tr(APj) =
∑
i kiSj(Ai) = (j + 1)Sj+1;

(5) Tr(A2Pj) =
∑
i k

2
i Sj(Ai) = S1Sj+1 − (j + 2)Sj+2.

From (2) of the above lemma, and the definition of Pm, it follows that Pm = 0. To
each j-th Newton tensor we associate a well defined, symmetric differential operator
Lj , acting on C∞c (M) by setting

(5.79) Lju = Tr(PjHessu) ∀ u ∈ C∞c (M),

Note that, since f : M → Rm+1, A is a Codazzi tensor. Thus Lj can be written in
divergence form, precisely

Lju = div(Pj∇u),

see [CY75], [Ros93]. Lj naturally appears when looking for stationary points of
the curvature integral

Aj(M) =

∫
M

SjdVM ,

for compactly supported variations that, for j ≥ 1, are required to preserve the
volume. It has been first noticed by R.C. Reilly in [Rei73] that the stationary
points of Aj are characterized as those immersions having constant Sj+1, which
generalize the case j = 0 of constant mean curvature immersions. Afterwards, in
[BC97] and [Elb02] the authors computed the second variation of Aj in ambient
spaces even more general than space forms. For this latter, they obtained for the
Jacobi operator the expression

Tj = Lj +
(
S1Sj+1 − (j + 2)Sj+2

)
= Lj + Tr(A2Pj).

The last equality follows from property (4) of Lemma 5.26. Since, for j = 0,

S2
1 − 2S2 =

(∑
i

ki

)2

− 2
∑
i<j

kikj =

(∑
i

ki

)2

−

(∑
i

ki

)2

−
∑
i

k2
i

 = |II|2,

T0 = ∆+|II|2 is the classical stability operator for minimal and CMC hypersurfaces.
In general, Lj is not elliptic. However, there are a number of sufficient conditions
to guarantee this fact, and the next four are suitable for our applications.
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Proposition 5.27. Let M be an m-dimensional connected, orientable hyper-
surface of some space form N .

(i) ([HL95]) Suppose that Sj+1 ≡ 0. Then, Lj is elliptic if and only if
rank(A) > j.

(ii) ([HL95], [HL99]) Suppose that Sj+1 ≡ 0. Then, Li is elliptic for every
1 ≤ i ≤ j provided that rank(A) > j, and that there exists a point p ∈ M
satisfying Hi(p) > 0 for every 1 ≤ i ≤ j.

(iii) ([BC97]) If M has an elliptic point, that is, a point p ∈ M at which A
is definite, and Sj+1 6= 0 at every point of M , then each Li, 1 ≤ i ≤ j is
elliptic.

(iv) ([Elb02]) If H2 > 0 on M , then both L1 and L2 are elliptic.

Furthermore, we can choose the orientation in such a way that

in (ii), Hi > 0 on M for every 1 ≤ i ≤ j;
in (iii), Hi > 0 on M for every i ∈ {1, . . . ,m− 1};
in (iv), H1 > 0 on M .

Remark 5.28. Condition (ii) deserves some comment. Indeed, under the as-
sumption Sj+1 ≡ 0, by (i) Lj is elliptic, thus Pj is definite on M . Since Hj(p) > 0,
it follows that Pj is positive definite at p and hence on the whole M . Thus, by (1)
and (5) of Lemma 5.26,

0 < Tr(A2Pj) = −(j + 2)Sj+2,

thus Sj+2 < 0 on M . Now, p satisfies Hj+2(p) < 0 < Hi(p) for 1 ≤ i ≤ j. By an
algebraic lemma ([HL99], Lemma 1.2), this is equivalent to say that the curvature
vector k(p) belongs to ∂Γ+

j . A connectedness argument, together with the rank

condition, shows that k(q) ∈ ∂Γ+
j for every q ∈ M , which is a sufficient condition

for each Li, 1 ≤ i ≤ j to be elliptic. See [HL95], [HL99] for more details.

We are now ready to prove the following

Theorem 5.29. Let f : M → Rm+1 be a connected, complete orientable hyper-
surface such that, for some j ∈ {0,m− 2}, Hj+1 is a non-zero constant. If j = 1,
assume that H2 > 0 on M or, if j ≥ 2, assume that there exists a point p ∈ M at
which the second fundamental form is definite. In both cases, choose the orientation
given by the spherical Gauss map ν in such a way that Hi > 0 for every 1 ≤ i ≤ j.
Set
(5.80)

vj(r) = (m− j)
(
m

j

)∫
∂Br

Hj = (m− j)
∫
∂Br

Sj , v1(r) = (m− 1)

∫
∂Br

S1.

Fix an equator E ⊂ Sm and suppose that either

(5.81)

(i) vj(r)
−1 6∈ L1(+∞) and H1 6∈ L1(M) or

(ii) vj(r)
−1 ∈ L1(+∞) and

lim inf
r→+∞

√
v1(r)vj(r)

∫ +∞

r

ds

vj(s)
>

1

2

[(
m−2
j

)
Hj+1

m− j − 1

]−1/2

.

Then, there exists a divergent sequence {xk} ⊂M such that ν(xk) ∈ E.
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Proof. Clearly, the possibility of choosing the orientation of M in such a way
that Hi is positive for every 1 ≤ i ≤ j follows from Proposition 5.27. Fix an equator
E of Sm and assume, by contradiction, that there exists a sufficiently large geodesic
ball Br0 such that, outside Br0 , ν does not meet E. In other words, ν(M\Br0) is
contained in the open spherical caps determined by E. Indicating with a ∈ Sm
one of the two focal points of E, 〈a, ν(x)〉 6= 0 on M\Br0 . Let C be one of the
connected components of M\Br0 ; then, ν(C) is a subset of only one of the spherical
caps. Up to replacing a with −a, we can suppose u = 〈a, ν〉 > 0 on C. Proceeding
in the same way for each connected component we can construct a positive, smooth
function u on M\Br0 . A computation due to R.C. Reilly [Rei73], H. Rosenberg
[Ros93], H. Alencar and A.G. Colares [AC98], shows that, for a general immersion
f : Mm → Rm+1,

(5.82) Tj〈a, ν〉 = −〈∇Sj+1, a〉.

Hence u turns out, by the constancy of Sj+1, to be a positive solution of Tju = 0 on
M\Br0 . Since Tj is elliptic by (iii) of Proposition 5.27, an application of Theorem

1.33 gives λ
−Tj
1 (M\Br0) ≥ 0. We shall now show that the assumptions of the

theorem contradict this fact. Towards this aim, we first note that, since Hj > 0,
vj(r) satisfy the assumptions of (V1). Taking into account Lemma 5.26, for r ≥ r0

we define

(5.83) A(r) =
1

vj(r)

∫
∂Br

(S1Sj+1 − (j + 2)Sj+2) =
1

vj(r)

∫
∂Br

Tr(A2Pj).

Then, A(r) ≥ 0 since, in our assumptions, Pj is positive definite. Furthermore,
A(r) satisfy (A1), hence by Remark 3.3 there exists z ∈ Liploc([r0,+∞)) solving

(5.84)

{
(vj(r)z

′(r))′ +A(r)vj(r)z(r) = 0 on (r0,+∞)

z(r0) = z0 > 0

and z has isolated zeroes. Using (5.78)

(5.85)

S1Sj+1 − (j + 2)Sj+2 = m

(
m

j + 1

)
H1Hj+1 − (j + 2)

(
m

j + 2

)
Hj+2 =

=

(
m

j + 1

)
(mH1Hj+1 − (m− j − 1)Hj+2)

≥
(

m

j + 1

)
(j + 1)H1Hj+1 ≥ 0,

so that

(5.86) A(r)vj(r) ≥ (j + 1)

(
m

j + 1

)
Hj+1

∫
∂Br

H1 =

(
m−2
j

)
Hj+1

m− j − 1
v1(r).

If 1/vj 6∈ L1(+∞), then under (5.81), (i), and by the coarea formula we deduce
Avj 6∈ L1(R+). Hence, we can apply (5.16) of Theorem 5.6 to deduce that every so-
lution of (5.84) is oscillatory. The same conclusion holds when 1/vj ∈ L1((1,+∞)).
Indeed, combining (5.81), (ii), and the lower bound (5.86), condition (iii) of Propo-
sition 5.9 is satisfied with the choice f(r) = vj(r). Let now R < R1 < R2 be two
consecutive zeros of z(r) after R. Defining ψ(x) = z(r(x)) on the annulus BR2

\BR1
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and zero on the complementary set, by the coarea formula and the definition of A(r)
we deduce
(5.87)∫

M

(S1Sj+1 − (j + 2)Sj+2)ψ2 =

∫ R2

R1

z2(s)A(s)vj(s)ds = (m− j)
∫
M

SjA(r)ψ2.

Thus, by property (3) of Lemma 5.26, the above identity and the coarea formula,
integrating by parts we deduce that

(−Tjψ,ψ)L2 =

∫
M

〈Pj∇ψ,∇ψ〉 − (S1Sj+1 − (j + 2)Sj+2)ψ2

≤
∫
M

Tr(Pj)|∇ψ|2 − (S1Sj+1 − (j + 2)Sj+2)ψ2 =

= (m− j)
∫
M

Sj

[
|∇ψ|2 −A(r)ψ2

]
=

∫ R2

R1

[(z′(s))2 −A(s)z2(s)]vj(s)ds

= −
∫ R2

R1

[(vj(s)z
′(s))′ +A(s)vj(s)z(s)]z(s)ds = 0.

Therefore, by the domain monotonicity λ
−Tj
1 (M\Br0) < 0, and we reached the

desired contradiction. �

Remark 5.30. As a matter of fact, the orientability of M is not needed. If
M is non orientable, ν is not globally defined. However, changing the sign of ν
does not change either the assumptions or the conclusion of Theorem 5.29, since
the antipodal map on Sm leaves each E fixed. If 〈a, ν〉 6= 0 on M\Br0 , the normal
field X = 〈a, ν〉ν is nowhere vanishing and globally defined on M\Br0 . This shows
that, in any case, every connected component of M\Br0 is orientable.

We clarify the role of (i) and (ii) of Theorem 5.29 with some examples. First,
we deal with the case j 6= 1, and we assume that vj is of order rk (resp. ekr) as
r → +∞, for some k > 0. Then assumption (ii) requires that v1(r) is of order at
least rk−2 (resp. ekr). Roughly speaking, v1 has to be large enough with respect
to vj . Under additional requirements on the intrinsic curvatures of M , the volume
comparison Theorem 1.24 allows us to control the volume of ∂Br and (ii) can be
read as H1 not decaying too fast at infinity (with respect to Hj). When j = 1,
that is, when M has constant scalar curvature s, by (5.76) and the definition of the
critical curve χv1 condition (ii) reads as

lim inf
r→+∞

1√
χv1

(r)
= 2 lim inf

r→+∞
v1(r)

∫ +∞

r

ds

v1(s)
> H

−1/2
2 =

√
m(m− 1)

s
.

In some sense, v1(r) does not have to grow too fast. Loosely speaking, by the
estimates for the critical curve in Section 3.2, v1(r) shall not grow faster than
exponentially. This shows that condition (ii) requires the balancing of two opposite
effects. The same happens for (i) with j = 1. Indeed, this is a consequence of the
Cauchy-Schwarz inequality and of the coarea formula:(∫ r

R

ds

v1(s)

)(∫
Br\BR

H1

)
≥ (r −R)2

m(m− 1)
.
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Finally, we stress that (i) and (ii) are mild hypotheses as they only involve the
integral of extrinsic curvatures at infinity. In particular, no pointwise control is
required.

Given the hypersurface f : Mm → Rm+1 we shall now identify the image of
the tangent space at p ∈M with the affine hyperplane passing through f(p) in the
standard way. We have the following result:

Theorem 5.31. Let f : M → Rm+1 be a complete, connected orientable hy-
persurface with Hj+1 ≡ 0, for some j ∈ {0, . . . ,m − 2}. If j ≥ 1, assume that
rank(A) > j at every point. Furthermore, if j is even, suppose that there exists
p ∈M such that Hj(p) > 0. Define vj as in (5.80), and set

sj+2(r) =

∫
∂Bj

|Sj+2|.

If either

(5.88)

(i) |vj(r)|−1 6∈ L1(+∞) and Hj+2 6∈ L1(M) or

(ii) |vj(r)|−1 ∈ L1(+∞) and

lim inf
r→+∞

√
sj+2(r)|vj(r)|

∫ +∞

r

ds

|vj(s)|
>

1

2

√
1

j + 2
,

then for every compact set K ⊂M we have⋃
p∈M\K

TpM ≡ Rm+1,

that is, the tangent envelope of M\K coincides with Rm+1.

Proof. We start observing that we can assume that vj is positive on R+.
Indeed, in our assumptions, by (i) of Proposition 5.27 the matrix Pj is either
positive definite or negative definite everywhere. Thus, (3) of Lemma 5.26 implies
that either Hj > 0 or Hj < 0 on M . If j is odd, we can change the orientation of M
in such a way that Hj is positive, whence vj > 0 on R+. On the other hand, if j is
even, this trick cannot be used and we have to rely on the existence of p ∈M with
Hj(p) > 0 to deduce that vj > 0 on R+. Applying (5) of Lemma 5.26 we obtain

0 < Tr(A2Pj) = −(j + 2)Sj+2, hence Sj+2 < 0 on M.

Now, suppose by contradiction that, for some K, the tangent envelope of M\K
does not coincide with Rm+1. By choosing cartesian coordinates appropriately, we
can assume that the origin 0 satisfy

0 6∈
⋃

p∈M\K

TpM.

Then, the function u = 〈f, ν〉 is nowhere vanishing and smooth on M\K. Further-
more, we can arrange the sign of u on each connected component in such a way
that u > 0 on M\K. Again, by a computation in [Rei73], [Ros93] and [AC98],

(5.89) Tj(±u) = ± [−(j + 1)Sj+1 − 〈∇Sj+1, f〉] = 0.
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Note that here the assumption Hj+1 ≡ 0 is essential. It follows that λ
−Tj
1 (M\K) ≥

0. Defining

0 < A(r) =
1

vj(r)

∫
∂Br

Tr(A2Pj) = −(j + 2)
1

vj(r)

∫
∂Br

Sj+2 = (j + 2)
sj+2(r)

vj(r)
,

under assumptions (i) or (ii) the ODE (vjz
′)′ + Avjz = 0 is oscillatory. To show

this fact, we rest upon the same oscillation criteria used in the proof of Theorem
5.29. The rest of the proof is identical to that of Theorem 5.29. �

Remark 5.32. In the statement of Theorem 5.31, we have excluded the case
j = m− 1 since for j = m− 1 our requirements cannot be met. Indeed, condition
Hj+1 = 0 is the vanishing of the Gauss-Kronecker curvature, which implies that
the second fundamental form is everywhere singular. Therefore, rank(A) > m − 1
is automatically false.

Remark 5.33. Again, according to Remark 5.30 we can drop the orientability
assumption on M . Indeed, if the tangent envelope of M\K does not cover Rm+1,
the vector field X = 〈f, ν〉ν is a globally defined, nowhere vanishing normal vector
field on M\K, hence M\K is orientable.

Remark 5.34. In the same set of assumptions of Theorem 5.31, we can prove
a version of Theorem 5.29 that deals with the case Hj+1 ≡ 0 on M .

We mention that the problem of determining the tangent envelope of an iso-
metric immersion M ↪→ Rm+1 has been addressed by B. Halpern [Hal71] when M
is compact and orientable. More precisely, he proved that

(5.90)
⋃
x∈M

TxM 6≡ Rm+1

if and only if M is embedded as the boundary of an open star-shaped domain of
Rm+1. Some years later, H. Alencar and K. Frensel [AF91] extended this result
when the ambient manifold is a space form. In case M is non-compact there
are many examples satisfying (5.90), for instance cylinders over suitable curves.
However, if M is minimal, then M is totally geodesic provided (5.90) is true and the
tangent envelope is closed in Rm+1, as shown in [AF91]. When m = 2, things are
more restrictive. In fact, T. Hasanis and D. Koutroufiotis in [HK84] have proved
that the only complete minimal surfaces in R3 for which (5.90) holds are planes.
Note that the original proof of Hasanis-Koutroufiotis theorem is a consequence of
(5.89) and Theorem 5.25. Indeed, if⋃

x∈M
TxM 6≡ R3

then by formula (5.89), case j = 0, u = 〈f, ν〉 > 0 turns out to solve ∆u+|II|2u = 0
on M . Hence, M is stable on R3, thus totally geodesic.

Our last result is a splitting theorem for constant mean curvature (CMC) hy-
persurfaces whose Gauss map is enclosed in a sufficiently small region. We begin
with the following

Definition 5.35. Let b,m ∈ N, 1 ≤ b ≤ m, and let {wα}, α ∈ {1, . . . , b}
be a set of orthogonal unit vectors of Sm ⊂ Rm+1. We define the (closed) b-cup,
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C({wα}) ⊂ Sm, as the set

C({wα}) =
{
v ∈ Sm : 〈v, wα〉 ≥ 0 for every α ∈ {1, . . . , b}

}
.

Clearly, a 1-cup is a closed hemisphere. Before stating the theorem we recall
that, having fixed a compact set K, each connected component of M\K is called
an end of M . By a compactness argument, it can be proved that the number of
ends of M\K is finite.

Theorem 5.36 (Splitting and codimension reduction). Let ϕ : (Mm, g) →
Rm+1 be a connected, complete, oriented CMC hypersurface with spherical Gauss
map ν. Define

q(r) =
1

vol(∂Br)

∫
∂Br

|II|2.

Assume that vol(∂Br) ≤ f(r), for some f(r) ∈ L∞loc(R+
0 ) such that f−1 ∈ L∞loc(R+)∩

L1(+∞), and that

(5.91) lim sup
r→+∞

∫ r

R

(√
q(s)−

√
χf (s)

)
ds = +∞,

for some R > 0. Suppose that there exist b ∈ {1, . . . ,m} and a compact set K such
that, for every end E of M\K, ν(E) is a subset of some b-cup (possibly depending
on E). Then,

(1) ν(M) is a subset of some totally geodesic Sm−b ⊂ Sm, where

Sm−b = Sm∩ < {wα} >⊥

for some set of orthonormal vectors {wα}bα=1 ⊂ Rm+1.
(2) There exists a totally geodesic (m − b)-submanifold Σ0 ⊂ M such that

(M, g) is isometric to

Σ0 × Rb, with the product metric g|Σ0
+ 〈 , 〉Rb ;

(3) The composition of ϕ with the isometry in item (2) can be written as

ϕ̃ : (p, t) ∈ Σ0 × Rb 7−→ ϕ(p) + tαwα,

where {wα} is the set in item (1). Furthermore, ϕ maps Σ0 into the affine
subspace W = ϕ(p0)+ < {wα} >⊥ for some (hence any) p0 ∈ Σ0, and
ϕ : Σ0 →W has mean curvature H.

Remark 5.37. Condition (5.91) is satisfied, for instance, when M has mean
curvature H 6= 0 and

(5.92) lim sup
r→+∞

log vol(∂Br)

r
= v∗ <

2|H|√
m

(in particular, when H 6= 0 and M has subexponential volume growth). Indeed, by
Newton inequality m|II|2 ≥ H2 and thus q(r) ≥ H2/m for every r ∈ R+. On the
other hand, by (5.92) for each a ∈ (v∗, 2|H|/

√
m) there exists a constant C > 0

such that vol(∂Br) ≤ C exp(ar) = f(r). Since χf (r) ≡ a2/4, we get

(5.93)

∫ r

R

(√
q(s)−

√
χf (s)

)
ds ≥

(
|H|√
m
− a

2

)
(r −R)→ +∞

as r → +∞. Thus, under (5.92), M is a cylinder over an (m− b)-dimensional sub-
manifold Σ0 provided that the Gauss map of the ends of M is enclosed in b-cups.
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Viceversa, CMC immersions of cylinders often satisfy (5.91). As an example, con-
sider a compact, (m−b)-dimensional hypersurface Ψ : Σ0 → Rm−b+1 with constant
mean curvature H 6= 0, and the product CMC immersion

ϕ = Ψ× id : Σ0 × Rb −→ Rm+1 = Rm−b+1 × Rb.
Then, again by Newton inequality q(r) ≥ H2/m, and moreover (since Σ0 is com-
pact) v(r) ≤ Crmax{b,2} for some C > 0. Whence, computing χf , the validity of
(5.91) is immediately checked.

Proof of Theorem 5.36. First, by (ii) of Theorem 5.15 and assumption
(5.91) we deduce that

(5.94) indL(M) = +∞, where L = −∆− |II|2.
Let {E1, . . . , Et} be the ends with respect to K. For each j ∈ {1, . . . , t}, let
C({wα,j}α) be the b-cup containing ν(Ej), and define uα,j = 〈ν, wα,j〉 on M . By
formula (5.82), in our assumptions

uα,j ∈ C∞(M), ∆uα,j + |II|2uα,j = 0 on M, uα,j ≥ 0 on Ej .

Define uα on M\K by setting uα(x) = uα,j(x) if x ∈ Ej . Now, the equivalence
(iii) ⇔ (v) in Theorem 1.41 and (5.94) imply that necessarily uα ≡ 0 on M\K,
that is, uα,j ≡ 0 on Ej for every j. By the unique continuation principle [Aro57],
uα,j ≡ 0 on M , that is,

ν(x) ⊥< {wα,j}α,j > for every x ∈M.

The dimension of the vector space Z =< {wα,j}α,j > is at least b, since {wα,j}α
is an orthonormal set for each j. Therefore, we can choose a collection of at least
b orthonormal vectors {wα} ⊂ Z such that ν ⊥< {wα} >. If Sm−b is the totally
geodesic (m− b)-sphere determined by

Sm∩ < {wα} >⊥,
item (1) is proved.
To show (2), let q ∈ M and let Uq be a neighbourhood of q such that ϕ|Uq is an
embedding. Since ν ⊥ wα, we deduce

wα ∈ Tϕ(q)ϕ(M).

Therefore, since ϕ is a smooth isometric diffeomorphism between Uq and ϕ(Uq),
the definition

Xα(q) = ϕ−1
∗,ϕ(q)(wα)

is well posed and gives rise to an orthonormal set of smooth vector fields {Xα} on
M . We are going to prove that the distribution

D : q ∈M 7−→ D(q) =< Xα(q) >⊥

is integrable. To do so, we prove that the associated ideal

ker(D) = {η ∈ T ∗M : η(v) = 0 ∀ v ∈ D} .
is a differential ideal. Through the Gram-Schmidt procedure we can find, locally
in some neighbourhood U ⊂ M , a set {ei} ⊂ TM , i ∈ {1, . . . ,m − b} such that
{ei, Xα, ν} is a Darboux frame for ϕ, that is, {ϕ∗ei, ϕ∗Xα} is an orthonormal
basis of Tϕ(U). Note that ϕ∗Xα = wα, and define for notational convenience
ξi = ϕ∗ei. Denote with {θi, θα, θm+1} the coframe dual to {ξi, wα, ν}, and with
{ωac }, 1 ≤ a, c ≤ m+ 1 the connection forms of Rm+1. If, as usual, we omit writing



5.5. NEWTON OPERATORS, UNSTABLE HYPERSURFACES AND THE GAUSS MAP 143

the pullback ϕ∗, {θ1, θα} is an orthonormal conframe on M , its connection forms
are {ωAB}, 1 ≤ A,B ≤ m, θm+1 = 0 and ker(D) is the ideal generated by {θα}.
From the equation

0 = dwα = ωiαξi + ωβαwβ + ωm+1
α ν

we argue 0 = ωiα = ωβα = ωm+1
α . Hence, by the structure equations

dθα = −ωαj ∧ θj − ωαβ ∧ θβ − ωαm+1 ∧ θm+1 = 0 ∈ I,

as desired. In the same way, every distribution X⊥α is integrable. Denote with Σ0

the maximal leaf of D passing through some p0 ∈M . From

LXαg = Lϕ−1
∗ wα

ϕ∗〈 , 〉 = ϕ−1
∗ (Lwα〈 , 〉) = 0,

each Xα is a Killing vector field. From |Xα| = 1 and the completeness of M , the
flow Φα generated by Xα is defined on the whole R×M . This can be seen as follows:
suppose by contradiction that there exists a maximal integral curve γ : [0, t0)→M
of Xα such that t0 < +∞. Then, by standard theory, γ eventually lies outside
every compact set. Since M is complete, r(γ(t))→ +∞ as t→ t0. From

r(γ(t))− r(γ(0)) =

∫ t

0

〈∇r, γ′(s)〉ds ≤
∫ t0

0

|Xα(γ(s))|ds = t0,

this necessarily implies t0 = +∞, a contradiction. If we set

Ψα : (t, x) ∈ R× Rm+1 7−→ x+ twα,

by standard theory and the definition of Xα the commutation ϕ ◦ Φαt = Ψα
t ◦ ϕ

holds on M for every t ∈ R. Since

[Xα, Xβ ] = [ϕ−1
∗ (wα), ϕ−1

∗ (wβ)] = ϕ−1
∗ [wα, wβ ] = 0,

the vector fields {Xα} pairwise commutes. Thus, by standard theory, Φαs ◦ Φβt =

Φβt ◦ Φαs for every α, β, s, t. Furthermore, Xα is invariant under the flows {Φβ}.
This follows immediately since wα is invariant under the flows {Ψβ} on Rm+1. We
define the following map

φ : Σ0 × Rb −→ M

(p, t) 7−→ Φbtb ◦ Φb−1
tb−1 ◦ . . . ◦ Φ1

t1(p),

where t = (t1, . . . , tm). We prove that φ is a diffeomorphism. First, φ is injective.
Indeed, suppose by contradiction that

(5.95) Φbsb ◦ Φb−1
sb−1 ◦ . . . ◦ Φ1

s1(q) = Φbtb ◦ Φb−1
tb−1 ◦ . . . ◦ Φ1

t1(p)

for some (q, s) 6= (p, t). Then, if s = t, applying to both terms the composition of

diffeomorphisms (Φbtb ◦ Φb−1
tb−1 ◦ . . . ◦ Φ1

t1)−1 we obtain q = p, contradicting (q, s) 6=
(p, t). Suppose now that s 6= t. Up to renaming the coordinates, we can assume
that sb 6= tb. Then, setting

q̃ = Φb−1
sb−1 ◦ . . . ◦ Φ1

s1(q), p̃ = Φb−1
tb−1 ◦ . . . ◦ Φ1

t1(p)

and applying Φb−tb to (5.95) we obtain p̃ = Φbsb−tb(q̃), so that

(5.96) ϕ(p̃) = ϕ ◦ Φbsb−tb(q̃) = Ψb
sb−tb ◦ ϕ(q) = ϕ(q) + (sb − tb)wp.

By their very definition, p̃ and q̃ belong to some maximal leaf of the distributionX⊥b .
Since p, q ∈ Σ0, p̃ and q̃ belongs to the same leaf Σ, and can therefore be connected
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by some curve σ ⊂ Σ. From g(σ′, Xb) = 0 for every value of the parameter, the
curve ϕ ◦ σ has tangent vector always orthogonal to wb, hence

(5.97) ϕ(q̃) ∈ ϕ(p̃) + w⊥b .

This contradicts (5.96) and sb 6= tb. Next, we show that φ∗ is a diffeomorphism.
By dimensional consideration, it is enough to show that φ∗ is injective. Let (p, t)
be a point of Σ0 × Rb, and denote with

jt : Σ0 → Σ0 × Rb, jp : Rb → Σ0 × Rb

the standard inclusions. If ∂α is the partial derivative with respect to tα, from
φ∗(∂α) = Xα we deduce that φ∗ is injective on (jp)∗(TRb). Furthermore, from the
commutativity of the diagram

(5.98) Σ0

i

  

jt // Σ0 × Rb
φ // M

M '

Φ1
t1 // . . . '

Φb−1

tb−1 // M

Φb
tb

'

>>

we deduce

rank
(
(φ ◦ jt)∗

)
= rank

(
(Φbtb ◦ . . . ◦ Φ1

t1 ◦ i)∗
)

= rank(i∗) = m− b = rank
(
(jt)∗

)
.

Therefore, φ∗ is injective also on (jt)∗(TΣ0). Let (V, Y ) ∈ T (Σ0×Rb) = TΣ0⊕TRb
be such that φ∗(V, Y ) = 0. Then,

(5.99) 0 = φ∗(V, Y ) = φ∗

(
(jt)∗V + (jp)∗Y

)
= φ∗(jt)∗V + φ∗(jp)∗Y.

From the properties of the flows {Φα}, it is not hard to show that[
(φ ◦ jt)∗(TΣ0)

]
∩
[
(φ ◦ jp)∗(TRb)

]
= {0},

thus in (5.99) we must have φ∗(jt)∗V = φ∗(jp)∗Y = 0. Since φ∗ is injective on
(jp)∗(TRb) and on (jt)∗(TΣ0), V = 0 and Y = 0. This proves that φ∗ is injective.
By the implicit function theorem, φ is a local diffeomorphism and an open map.
Being injective, φ is a global diffeomorphism between Σ0×Rb and its image, which
is an open subset of M . The last step is to show that φ is, in fact, surjective. Since
M is connected, it is enough to show that φ(Σ0 × Rb) is closed.
Towards this aim, we first claim that the image St = φ ◦ jt(Σ0) is a whole maximal
slice of D. Let p1 ∈ Σ0, define q1 = φ ◦ jt(p1) and let Σt be the maximal slice
containing q1. To show that St ⊂ Σt, let q2 ∈ St and define p2 ∈ Σ0 in such a way
that q2 = φ ◦ jt(p2). Then, let γ : [0, 1]→ Σ0 be a curve from p1 to p2, and define
σ = φ ◦ jt ◦ γ : [0, 1]→ St. From the diagram (5.98), and since each Xα is a Killing
field invariant under the flows Φβs , we can write
(5.100)

g(σ′, Xα) = g
(

(Φbtb ◦ . . . ◦ Φ1
t1 ◦ i ◦ γ)′, Xα

)
= g
(

(Φbtb ◦ . . . ◦ Φ1
t1)∗(i ◦ γ)′, Xα

)
= g

(
(i ◦ γ)′, Xα

)
= 0,

hence σ is contained in the maximal slice Σt, thus by the arbitrariness of q2 =
σ(1) we get St ⊂ Σt. To prove the converse, if by contradiction St is properly
contained we can choose some q ∈ Σt\St. Now, pick a segment σ ⊂ Σt from a
point q1 ∈ St to q. Applying Φb−tb ◦ . . . ◦ Φ1

−t1 to σ we would have a curve γ from

some point p1 ∈ Σ0 ⊂ M to p = Φb−tb ◦ . . . ◦ Φ1
−t1(q). Proceeding analogously to
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(5.100), we deduce γ′ ⊥ Xα for every α, hence γ ⊂ Σ0. Therefore, p ∈ Σ0 and
q = Φbtb ◦ . . . ◦ Φ1

t1(p) ∈ St, against our assumption. This proves the claim.
To show that φ is surjective, let

(5.101) q ∈ φ(Σ0 × Rb),
and let Υ be the maximal slice of the distribution D containing q. Then, as above

we can construct φ̃ : Υ × Rb → M which is a diffeomorphism with open image

φ̃(Υ × Rb). From (5.101), necessarily φ(Σ0 × Rb) and φ̃(Υ × Rb) have nonempty
intersection, that is, there exist p0 ∈ Σ0, p1 ∈ Υ and suitable s, t ∈ Rb such that

φ(p1, t) = Φbtb ◦ . . . ◦ Φ1
t1(p1) = Φbsb ◦ . . . ◦ Φ1

s1(p2) = φ̃(p2, s),

so that
Υ 3 p2 = Φbtb−sb ◦ . . . ◦ Φ1

t1−s1(p1) = φ(p1, t− s).
Since φ(Σ0, t− s) is the whole slice Σt−s, Υ ≡ Σt−s and from q ∈ Υ we deduce

q ∈ Σt−s ⊂ φ(Σ0 × Rb),
as claimed. We are left with the Riemannian part of the splitting. Let h = φ∗g be
the metric on Σ0 ×Rb. We can choose {ei, ∂α} as a basis of Σ0 ×Rb, where {ei} is
an orthonormal basis for Σ0. Let {θj ,dtα} be the dual coframe. Then, the metric
writes as

h = hijθ
i ⊗ θj + hiαθ

i ⊗ dtα + hβjdt
β ⊗ θj + hαβdtα ⊗ dtβ .

Applying to the couple of vectors (ei, ej), (ei, ∂α) and (∂α, ∂β) and recalling that
φ∗(∂α) = Xα it is immediate to deduce that

h = θi ⊗ θi + dtα ⊗ dtα.

This also implies that Σ0 is totally geodesic in (Σ0 × Rb, h), hence in (M, g). A-
posteriori, Σ0 is properly embedded in M . To prove (3), we have already observed
in (5.97) that every curve in Σ0 is mapped into the affine (m+ 1− b)-space

W = ϕ(p0)+ < {wα} >⊥, where p0 ∈ Σ0,

whence ϕ(Σ0) ⊂W . From the commutation ϕ ◦ Φα = Ψα ◦ ϕ we get

ϕ̃(p, t) = ϕ◦φ(p, t) = ϕ
(
(Φbtb ◦ . . .◦Φ1

t1)(p)
)

= (Ψb
tb ◦ . . .◦Ψ1

t1)(ϕ(p)) = ϕ(p)+ tαwα.

It is easy to see that, in the basis {ei, ∂α} of T (Σ0 × Rb), the second fundamental

form ĨI of ϕ̃ has the block structure

ĨI =

( (
II(ei, ej)

)
0

0 0

)
,

thus the mean curvature of ϕ is that of the immersed hypersurface ϕ : Σ0 → W '
Rm−b+1. �

5.6. Dealing with a possibly negative potential

In this section we describe how to deal with the possible negativity of A. The
search of some sharp estimates that enables us to rewrite in a general form the
results of Chapter 5 for A < 0 seems to present some technical difficulties. For
this reason, we prefer to outline a general method that we shall apply in the next
sections in special situations for which the sought results are particularly appealing.
For instance, a case when the method is quite effective leads to the discovery of
a range of Calabi type conditions for the compactness of a complete Riemannian
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manifold. We shall consider this in Section 5.7 below.
Hereafter, we require the validity of (A1), (V1), (V2), (V3), (F1) as defined at the
beginning of Chapters 3 and 5. Let z ∈ Liploc(R+

0 ) be a solution of

(5.102)

{
(vz′)′ +Avz = 0 on R+,

z(0) = z0 > 0,

or of the analogous problem on [r0,+∞). According to the proof of Theorem 5.1,
the function y = −vz′/z is locally Lipschitz on D = R+

0 \{r : z(r) = 0} and solves

(5.103) y′ = Av +
y2

v
.

Choose a function W ∈ L∞loc(R+
0 ) such that

(5.104) W ≥ 0 a.e. on R+, W +A ≥ 0 a.e. on R+.

For instance, W can be taken to be the negative part of A. To apply the results of
the previous sections, we need to produce, starting from (5.102) and W , a solution

z̃ of a linear ODE of type (ṽz̃′)′ + Ãṽz̃ = 0, for some new volume function ṽ and

some Ã ≥ 0. Towards this purpose, consider a solution w(r) ∈ Liploc of

(5.105)

{
(vw′)′ −Wvw ≥ 0 on R+

w(0+) = w0 > 0.

Note that from (vw′)′ ≥ Wvw we deduce w′ ≥ 0, hence w has a positive essential
infimum on R+

0 . Therefore, the function z̃ = z/w is well defined on R+
0 and solves

(5.106)

{ (
[vw2]z̃′

)′
+
(
A+W

)
[vw2]z̃ ≤ 0 on R+

z̃(0) = z0/w0 > 0,

Setting

h(r) = −
[
v(r)w2(r)

]
z̃′(r)

z̃(r)
, b(r) = −v(r)w′(r)

w(r)
,

a simple computation shows that

(5.107) h(r) = w2(r)
[
y(r)−b(r)] and h satisfies h′ ≥ (A+W )[w2v]+

h2

w2v

The proofs of Theorem 5.1, Corollary 5.2 and Theorem 5.6 can be repeated verbatim
to allow A < 0 simply by replacing

y with h, A with A+W, v with vw2 and f with fw2,

As already observed in Remark 5.5, the inequality sign in (5.107) and (5.106) is
irrelevant for the proofs of Theorem 5.1, Corollary 5.2 and Theorem 5.6.

It is worth to observe the following fact: as clearly expressed in (5.106) and
(5.107), the negative part of A, or in other words W , acts to produce a weight w2

for the manifold. We underline that this approach has already been used for the
proof of Lemma 4.31, see Remark 4.34. For particular choices of W (r), to express
the results in a simple form one needs an explicit w solving (5.105) or, at least,
sharp estimates for w at infinity. In the next section we will consider some special
cases that shall clarify the above observations.
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5.7. An extension of Calabi compactness criterion

Using the method of the previous section, we are able to determine either the
existence of a first zero, or the oscillatory behaviour, of a solution g of g′′+Kg = 0
even when K is not assumed to be non-negative near infinity. As a first main
consequence we have the next geometric result.

Theorem 5.38 (Compactness with sign-changing curvature). Let (M, 〈 , 〉) be
a complete Riemannian manifold. For each unit speed geodesic γ issuing from some
fixed origin o, define

(5.108) Kγ(s) =
Ricc(γ′, γ′)(s)

m− 1
.

Assume that one of the following set of assumptions is met.

(i) The function Kγ(s) satisfies

Kγ(s) ≥ −B2
(
1 + s2

)α/2
on R+,

for some B > 0 and α ≥ −2 possibly depending on γ. Having set

0 ≤ Aγ(s) = Kγ(s) +B2
(
1 + s2

)α/2
,

suppose also that, for some 0 < S < s such that Aγ 6≡ 0 on [0, S],

(5.109)

∫ s

S

(√
Aγ(σ)−

√
χw2(σ)

)
dσ

> −1

2

(
log

∫ S

0

Aγ(σ)w2(σ)dσ + log

∫ +∞

S

dσ

w2(σ)

)
,

where

(5.110) w(s) =


sinh

(
2B

2+α

[
(1 + s)1+α

2 − 1
])

if α ≥ 0;

s1/2I 1
2+α

(
2B

2+αs
1+α

2

)
if α ∈ (−2, 0);

sB
′

if α = −2,

and B′ = (1 +
√

1 + 4B2)/2.
(ii) The function Kγ(s) satisfies

Kγ(s) ≥ B2

(1 + s)2
on R+,

for some B ∈ [0, 1/2] possibly depending on γ. Having set

0 ≤ Aγ(s) = Kγ(s)− B2

(1 + s)2
,

suppose also that, for some 0 < S < s such that Aγ 6≡ 0 on [0, S], the
inequality (5.109) holds with

(5.111) w(s) =

 (1 + s)B
′′ − (1 + s)1−B′′ if B ∈ [0, 1/2);

√
1 + s log(1 + s) if B = 1/2,

and B′′ = (1 +
√

1− 4B2)/2.

Then, M is compact and has finite fundamental group.
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Proof. By Theorem 2.1, M is compact and has finite fundamental group
provided we prove that, for every γ issuing from o, the solution g of

(5.112)

{
g′′ +Kγ(s)g = 0

g(0) = 0, g′(0) = 1

has a first zero. Note that, both for (5.110) and for (5.111), the critical curve related
to w2 exists since 1/w2 ∈ L1(+∞).
(i). As observed in the proof of Theorem 3.16, the function w in (5.110) is a positive
solution of

w′′ −B2(1 + s2)α/2w ≥ 0 on R+

whose initial condition, in the cases α ∈ (−2, 0) and α ≥ 0, is

(5.113) w(0) = 0, w′(0) = C > 0.

Consider the function z̃ = g/w. Then, by the previous section, z̃ solves

(5.114) (w2z̃′)′ +Aγw
2z̃ ≤ 0 on R+.

In order to apply Corollary 5.2 to the differential inequality (5.114), we shall make
use of Remark 5.5. From (5.113), in each case of (5.110) we get

(5.115)
w2z̃′

z̃
(0+) =

(
w2 g

′

g
− ww′

)
(0+) = 0.

By Remark 5.5, this initial condition enables us to apply Corollary 5.2, and the
inequality (5.109) implies that z̃ (hence g) has a first zero. Case (ii) is analogous.
Indeed, by Remark 1.22, w in (5.111) is a solution of the Cauchy problem w′′ +

B2

(1 + s)2
w = 0

g(0) = 0, g′(0) = C > 0.

�

Remark 5.39. We recall that, by (3.22), inequality (5.109) is equivalent to the
somehow simpler one

(5.116)

∫ s

S

√
Aγ(σ)dσ > −1

2

(
log

∫ S

0

Aγ(σ)w2(σ)dσ + log

∫ +∞

s

dσ

w2(σ)

)
.

In the statement of the theorem, we have preferred to use the form (5.109) to put
in evidence that the RHS does not depend on s, as opposed to conditions like (2.15)
and (2.24) where both a and b appear in the LHS as well as in the RHS.
We note that, for m = 3, B = 1/2 in (5.111), for α = 0,−2 in (5.110) and for B = 0
in (5.111), assumption (5.116) can be further simplified. Indeed,

∫ +∞

s

dσ

w2(σ)
=



s−
√

1+4B2

√
1 + 4B2

for (5.110), α = −2 and for B = 0;

B−1
[
coth(Bs)− 1

]
for (5.110), α = 0;

1

log(1 + s)
for (5.111), B = 1/2, m = 3.

To generalize Calabi oscillation criterion, we prove the next Proposition, which
follows easily from the discussion of the previous section.
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Proposition 5.40. Suppose that

K,G ∈ L∞loc(R+
0 ), K(s) ≥ −G(s) on [s0,+∞),

for some s0 ≥ 0. Let w be positive solution of

w′′ −G(s)w ≥ 0 on [s0,+∞).

Then, any solution g of g′′ +K(s)g = 0 is oscillatory provided that either

(5.117)
1

w2(s)
6∈ L1(+∞) and

(
K(s) +G(s)

)
w2(s) 6∈ L1(+∞)

or 1/w2 ∈ L1(+∞) and

(5.118) lim sup
s→+∞

(∫ s

s0

√
K(σ) +G(σ)dσ +

1

2
log

∫ +∞

s

dσ

w2(σ)

)
= +∞.

Proof. The function z̃ = g/w solves

(5.119)

{
(w2z̃′)′ + (K +G)w2z̃ ≤ 0 on [s0,+∞)

z̃(s0) > 0.

By Remark 5.5 the inequality sign in (5.119) is irrelevant. Therefore, we can con-
clude by means of Theorem 5.6 and Remark 5.8. �

Theorem 5.41 (Generalized Calabi criterion). Let K ∈ L∞loc(R+
0 ), and let g 6≡ 0

be a solution of g′′ +Kg = 0. Then, g oscillates in each of the following cases:

(1) K satisfies

(5.120) K(s) ≥ −B2sα when s > s0,

for some B > 0, α ≥ −2 and s0 > 0, and the following conditions hold:
(5.121)

for α = −2, lim sup
s→+∞

(∫ s

s0

√
K(σ) +

B2

σ2
dσ −

√
1 + 4B2

2
log s

)
= +∞;

for α > −2, lim sup
s→+∞

(∫ s

s0

√
K(σ) +B2σαdσ − 2B

α+ 2
s
α
2 +1

)
= +∞.

(2) K satisfies

(5.122) K(s) ≥ B2

s2
when s > s0,

for some B ∈ [0, 1/2], s0 > 0, and the following conditions hold:
(5.123)

for B < 1
2 , lim sup

s→+∞

(∫ s

s0

√
K(σ)− B2

σ2
dσ −

√
1− 4B2

2
log s

)
= +∞;

for B = 1
2 , lim sup

s→+∞

(∫ s

s0

√
K(σ)− 1

4σ2
dσ − 1

2
log log s

)
= +∞;
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Proof. (1). Set G(s) = B2sα in Proposition 5.40. Then, w′′ − B2sαw = 0
has the particular positive solution

(5.124)

w(s) =
√
sI 1

2+α

(
2B

2 + α
s1+α

2

)
if α > −2;

w(s) = sB
′
, B′ =

1 +
√

1 + 4B2

2
if α = −2,

where Iν(s) is the Bessel function in (3.41). In both cases, 1/w2 ∈ L1(+∞), and
computing the asymptotic behaviour with the aid of (3.43) we get

∫ +∞

s

dσ

w2(σ)
∼


C exp

(
− 4B

2+αs
1+α

2

)
if α > −2;

Cs1−2B′ = Cs−
√

1+4B2
if α = −2.

Therefore, condition (5.121) is equivalent to (5.118), and g′′+Kg = 0 is oscillatory
by Proposition 5.40.
(2). The proof is the same. Indeed, it is enough to consider the following positive
solution w of w′′ +B2s−2w = 0:

(5.125)
w(s) = sB

′′
, B′′ =

1 +
√

1− 4B2

2
if B ∈ [0, 1/2);

w(s) =
√
s log s if B = 1/2.

Again, in both cases 1/w2 ∈ L1(+∞). �

Remark 5.42. Observe that setting B = 0 in (5.123) we recover the original
Calabi condition (5.28). Moreover, Theorem 5.40 also generalizes Proposition 5.11,
where the case α = 0 has been proved with a different method.

Remark 5.43. Clearly, when K ≥ 0 on [s0,+∞) the limitation B ∈ [0, 1/2]
in (5.122) covers the more interesting cases. Indeed, if (5.122) is met for some
B > 1/2, then the oscillatory behaviour of g already follows from Hille-Nehari
Theorem 2.7.

Combining the technique described in this section with Theorem 4.1 and Corol-
lary 4.4, we also obtain an improvement of Proposition 1.21.

Theorem 5.44 (Positivity and nonoscillation criteria). Let K ∈ L∞loc(R+
0 ).

(1) Suppose that

(5.126) K(s) ≤ 1

4(1 + s)2

[
1 +

1

log2(1 + s)

]
on R+.

Then, every solution g of

(5.127)

{
g′′ +Kg ≥ 0

g(0) = 0, g′(0) = 1

is positive on R+ and satisfies g(s) ≥ C
√
s log s log log s, for some C > 0

and for s > 3.
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(2) Suppose that

(5.128) K(s) ≤ 1

4s2

[
1 +

1

log2 s

]
on [s0,+∞),

for some s0 > 0. Then, every solution g of g′′+Kg = 0 is nonoscillatory.

Proof. (1). By Sturm argument, it is sufficient to prove the desired conclusion
under the additional assumptions that g satisfies (5.127) with the equality sign, and
that

K(s) ≥ 1

4(1 + s)2
.

Let w(s) =
√

1 + s log(1 + s) be the solution of (5.127) with K(s) = [4(1 + s)2]−1.
Then, z̃ = g/w solves

(5.129)

 (w2z̃′)′ +
[
K(s)− 1

4(1+s)2

]
w2z̃ = 0 on R+,

z̃(0) = 1, z̃′(0) = 0.

Applying Theorem 4.1, z̃ is positive provided

K(s)− 1

4(1 + s)2
≤ χw2(s) =

1

4(1 + s)2 log2(1 + s)
,

that is, (5.126), and z̃ satisfies

z̃(s) ≥ −C

√∫ +∞

s

dσ

w2(σ)
log

∫ +∞

s

dσ

w2(σ)
= C

log log s√
log s

,

for some C > 0 and s sufficiently large. The lower bound for g follows at once by
the definition of z̃.
To prove (2), again by Sturm argument we can assume that the inequality K ≥
1/[4s2] holds. Indeed, suppose that we have shown that a solution g̃ of g̃′′+K̃g̃ = 0
is positive on some interval [s0,+∞), where

K̃(s) = max

{
K(s),

1

4s2

}
,

and assume by contradiction that a solution g of g′′ +Kg = 0 oscillates. Let s1, s2

be two consecutive zeroes of g after s0, chosen in such a way that g > 0 on (s1, s2).

Then, g solves g′′ + K̃g ≥ 0 on [s1, s2]. By Sturm separation Theorem 1.9, (ii), g̃
should have a zero on (s1, s2), contradiction. Proceeding along the same lines as for
(1) with the choice w(s) =

√
s log s, and using Corollary 4.4, we reach the desired

conclusion. �

Remark 5.45. Consider the particular case

(5.130) K(s) =
1

4s2
+

c2

4s2 log2 s
, on [r0,+∞),

for some r0 > 0 and c > 0. Then, if c ≤ 1 Theorem 5.44 implies that g′′+Kg = 0 is
nonoscillatory. On the contrary, when c > 1, by (5.123) g′′ +Kg = 0 is oscillatory.
We observe that, on [r0,+∞),

1

4
< s

∫ +∞

s

K(σ)dσ ≤ 1

4
+ s

c2

4s

∫ +∞

s

dσ

σ log2 σ
=

1

4
+

c2

4 log s
,
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hence the Hille-Nehari criterion cannot detect neither the oscillatory nor the nonoscil-
latory behaviour of g depending on c.

The proof of Theorem 5.44 suggests an iterative procedure to improve our
oscillatory and nonoscillatory criteria with an arbitrary precision. In the general
case, suppose that we are given an ordinary differential equation of the type (vz′)′+
Avz = 0, with v such that χ can be defined. By Sturm argument, there is no loss
of generality if we assume that A ≥ χ. An explicit solution w of

(vw′)′ + χvw = 0

is given by

w(s) = −

√∫ +∞

s

dσ

v(σ)
log

∫ +∞

s

dσ

v(σ)
,

and it is positive on some intervall [s0,+∞). Then, z̃ = z/w solves

(v̄z̃′)′ + (A− χ)v̄z̃ = 0 on [s0,+∞),

where v̄ = vw2, which implies that z̃, and therefore z, are nonoscillatory if (vw2)−1 ∈
L1(+∞) and

A(s)− χ(s) ≤ χvw2(s),

and oscillatory if (vw2)−1 ∈ L1(+∞) and

lim sup
s→+∞

∫ s

s0

(√
A(σ)− χ(σ)−

√
χvw2(σ)

)
dσ = +∞,

or equivalently if

(5.131) lim sup
s→+∞

(∫ s

s0

√
A(σ)− χ(σ)dσ +

1

2
log

∫ +∞

s

dσ

v(σ)w2(σ)

)
= +∞.

Now, the procedure can be pushed a step further by considering z̃. This enables
us to construct finer and finer critical curves. As an example, we now get a first
refinement of the conditions of Theorem 5.44. Suppose that

K(s) ≥ 1

4s2
+

1

4s2 log2 s

on, say, [2,+∞). Then, as in the proof of Theorem 5.44, define w(s) =
√
s log s

and v(s) = w(s)2 = s log2 s. Since w is a positive solution of w′′+ (4s2)−1w = 0 on
some [s1,+∞), z = g/w is well defined and solves (vz′)′ + Avz = 0 on [s1,+∞),
where

A(s) = K(s)− 1

4s2
≥ 1

4s2 log2 s
= χw2(s) = χ(s).

Now, the function

w2(s) = −

√∫ +∞

s

dσ

v(σ)
log

∫ +∞

s

dσ

v(σ)
=

log log s√
log s

is a solution of (vw′2)′ + χvw2 = 0, positive after some s2 ≥ s1. Setting

v2(s) = v(s)w2(s)2 = s log s log2 log s,

then
1

v2(s)
∈ L1(+∞),
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and the function z2 = z/w2 is a solution of (v2z
′
2)′+A2v2z2 = 0 on [s2,+∞), where

A2(s) = A(s)− χ(s) = K(s)− 1

4s2
− 1

4s2 log2 s
≥ 0.

Thus z2, and hence z and g, is nonoscillatory provided

A2(s) ≤ χv2(s), that is, K(s) ≤ 1

4s2
+

1

4s2 log2 s
+

1

4s2 log2 s log2 log s
,

and, by (5.131), it is oscillatory if

lim sup
s→+∞

(∫ s

s2

√
K(σ)− 1

4σ2
− 1

4σ2 log2 σ
dσ − 1

2
log log log s

)
= +∞.

The general result that improves on Theorem 5.44 with an arbitrary degree of
precision follows by means of an inductive procedure, and we leave the technical
details to the interested reader.

We now observe that the explicit solutions of w′′−B2sαw ≥ 0 can be used, via
the change of variables (5.36), to produce positive, explicit solutions w̃ of (5.105),
for suitable W . This trick enables us to get simple extensions of spectral estimates
for Schrödinger operators, which are particularly appealing in the case of Rm, see
the next Theorem 5.46.

To be more precise, let w be as in (5.124), so that w ∈ C1([s0,+∞)) and

w′′ −B2sαw = 0.

According to (5.36), choose some function v satisfying, as usual, (V1) and 1/v ∈
L1(+∞), and define

s(r) =

(∫ +∞

r

dτ

v(τ)

)−1

, w̃(r) =
w(s(r))

s(r)
.

Then, s : R+ → R+, s(s0) = r0 > 0, and

(5.132)

w̃(r) =

√∫ +∞

r

ds

v(s)
I 1

2+α

(
2B

2 + α

[∫ +∞

r

ds

v(s)

]−1−α2
)

if α > −2;

w̃(r) =

(∫ +∞

r

ds

v(s)

)1−B′

if α = −2.

By Proposition 3.10 and the definition of χ, w̃ solves

0 = (vw̃′)′ −

[
B2

(∫ +∞

r

ds

v(s)

)−α−4
1

v2(r)

]
vw̃

= (vw̃′)′ −

[
4B2

(∫ +∞

r

ds

v(s)

)−α−2

χ(r)

]
vw̃.

Setting

(5.133) W (r) = 4B2

(∫ +∞

r

ds

v(s)

)−α−2

χ(r),
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we can now use the machinery described in Section 5.6 to improve Theorem 5.1,
Corollary 5.2 and Theorem 5.6, together with their applications, in case A ≥ −W
on [r0,+∞) by replacing

v(r) with v(r)w̃2(r), where w̃(r) is as in (5.132),

A(r) with A(r) +W (r), where W (r) is as in (5.133).

In particular, by Theorem 5.6 and Remark 5.8, a solution z of (vz′)′ + Avz = 0 is
oscillatory whenever 1/[w̃2v] ∈ L1(+∞) and

(5.134) lim sup
r→+∞

(∫ r

r0

√
A(s) +W (s)ds+

1

2
log

∫ +∞

r

ds

w̃2(s)v(s)

)
= +∞.

From the geometric point of view, it would be desirable to substitute W (r) with

Wf (r) = 4B2

(∫ +∞

r

ds

f(s)

)−α−2

χf (r).

Unfortunately, we have not been able to prove a comparison result for the function
W similar to the one for the critical curve. For this reason, we only consider the
prototype case of Rm, m ≥ 3, where v(r) = f(r) = ωm−1r

m−1. Note that the next
theorem is a further refinement of Theorems 4.10 and 5.15, and definitely improves
on a classical result of M. Reed and B. Simon [RS78], and W. Kirsch and B. Simon
[KS88].

Theorem 5.46 (Index of Schrödinger operators on Rm). Let q(x) ∈ L∞loc(Rm),
m ≥ 3, and denote with q(r) the spherical mean of q on ∂Br. Define L = −∆−q(x).

(1) Assume that q(r) satisfy

q(r) ≥ −c2rµ on [R,+∞),

for some c > 0 and µ ≥ −2. Then, L has infinite index on Rm provided
(5.135)

µ > −2, lim sup
r→+∞

[∫ r

R

√
q(s) + c2sµds− 2c

µ+ 2
r
µ+2

2

]
= +∞;

µ = −2, lim sup
r→+∞

[∫ r

R

√
q(s) + c2s−2ds−

√
(m− 2)2 + 4c2

2
log r

]
= +∞.

(2) Assume that q(r) satisfy

q(r) ≥ c2

r2
on [R,+∞),

for some c ∈ [0, (m− 2)/2]. Then, L has infinite index on Rm provided
(5.136)

c ∈
[
0,
m− 2

2

)
, lim sup

r→+∞

[∫ r

R

√
q(s)− c2

s2
ds−

√
(m− 2)2 − 4c2

2
log r

]
= +∞;

c =
m− 2

2
, lim sup

r→+∞

[∫ r

R

√
q(s)− (m− 2)2

4s2
ds− 1

2
log log r

]
= +∞.
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(3) Suppose that

(5.137) q(x) ≤ (m− 2)2

4r(x)2

[
1 +

1

log2
(
(m− 2)r(x)m−2

)] .
Then L has finite index.

Proof. Reasoning as in (ii) of Theorem 5.15, to prove (1) and (2) it is enough
to guarantee that a solution z of

(rm−1z′)′ +Arm−1z = 0, where A = q

oscillates. We begin with proving (1). By the above discussion, z oscillates provided
(5.134) is met with v(r) = rm−1, w̃ as in (5.132) and W as in (5.133). We show
that, for suitable choices of α and B in the definition of W , (5.134) is equivalent to
(5.135). Set

(5.138) α =
µ− 2(m− 3)

m− 2
, B = c(m− 2)−

2m−2+µ
2(m−2) = c(m− 2)−2−α2 .

Then, µ ≥ −2 is equivalent to α ≥ −2,

(5.139)
µ+ 2

2
= (m− 2)

2 + α

2

and

(5.140) W (r) = 4B2

(∫ +∞

r

ds

v(s)

)−α−2

χ(r) = c2rµ.

As for the weight w̃, from (5.132), (5.139), (5.138) and the asymptotic behaviour
(3.43) we get

w̃(r) ∼


∼ C1r

−m−2
2 +µ+2

4 exp

(
2c

2 + µ
r1+µ

2

)
if µ > −2;

C1r
(m−2)(B′−1) if µ = −2.

for some constant C1 > 0 that may vary from line to line, hence

(5.141)

∫ +∞

r

ds

w̃2(s)sm−1
∼


C1

1

2c
exp

(
− 4c

2 + µ
r1+µ

2

)
if µ > −2;

C1r
−(m−2)(2B′−1) if µ = −2,

where

(m− 2)(2B′ − 1) = (m− 2)
√

1 + 4B2 =
√

(m− 2)2 + 4c2.

Combining (5.140), (5.141) and Remark 5.8, we get immediately that (5.134) is
equivalent to (5.135).
The proof of (2) is similar. Indeed, it is enough to consider the positive solutions
w of w′′ +B2r−2w = 0 in (5.125), where B = c/(m− 2), and to proceed as in (1).
As for (3), denote with A(r) the RHS of (5.137). By the procedure of Theorem
4.10, it is enough to show that a solution z of (rm−1z′)′+Avz = 0 is nonoscillatory.
Changing variables according to Proposition 3.10:

s(r) =

(∫ +∞

r

dτ

τm−1

)−1

= (m− 2)rm−2, g(s) = sz(r(s)),
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we obtain that g(s) solves

g′′(s) +
A(r(s))r(s)2(m−1)

s4
g(s) = 0.

Since
A(r(s))r(s)2(m−1)

s4
=

1

4s2

[
1 +

1

log2 s

]
,

the nonoscillatory behaviour of z follows from Theorem 5.44, (2) applied to g. �

Remark 5.47. Another extension of the classical result in [RS78], [KS88] to
the case of complete Riemannian manifolds has been recently found by K. Akuta-
gawa and H. Kumura [AK]. Their method is very close to that used by S. Agmon
in [Agm85], see also Remark 4.14. Hence, it would be interesting to investigate
the interplay between their approach and the one presented in this work. In this
respect, further interesting results can be found in [Kum11].

Question:

(3) Is it possible to extend Theorem 5.46 on general manifolds, without re-
quiring the exact behaviour of vol(∂Br)?



CHAPTER 6

Much above the critical curve

In this Chapter, we consider the problem of controlling the distance between
consecutive zeroes of oscillatory solutions z ∈ Liploc([r0,+∞)) of

(6.1) (v(r)z′(r))′ +A(r)v(r)z(r) = 0.

For % ∈ (r0,+∞), we set R1(%) and R2(%) to denote the first and the second zero of
z after %. Our aim is to provide an upper bound, depending on z, of the difference
R2(%) − R1(%). In the first section below we prove one of our main results of the
paper. The last two sections are devoted to some geometric applications, especially
on the growth of the index of Schrödinger operators on balls and on the spectrum
of the Laplacian on a “punctured” manifold.

6.1. Controlling the oscillation

We begin with some preliminary considerations. Let us assume, for the mo-
ment, that A, v satisfy (V1), (VL1), (A1) and A ≥ 0 on [r0,+∞), for some r0 > 0.
In this setting, by Theorem 5.6 we know that (6.1) is oscillatory provided

lim sup
r→+∞

∫ r

r0

(√
A(s)−

√
χ(s)

)
ds = +∞,

where χ(r) is the critical curve. It is reasonable to expect that larger contributions

of the integral of
√
A with respect to that of

√
χ near infinity produce “thicker”

oscillations of z. As we have seen in the proof of Theorem 4.1, under the change of
variables (4.6) and the definition (4.9) of β(t), equation (6.1) transforms into

(6.2) β̈ +

{
A(r(t))

χ(r(t))
− 1

}
β = 0 on [t0,+∞), t0 = t(r0).

We set

h(t) =
A(r(t))

χ(r(t))
− 1,

and we suppose that

A(r) ≥ c2χ(r) on [r0,+∞),

for some positive constant c > 1. This implies h(t) ≥ c2 − 1, and by Sturm
separation Theorem 1.9, (ii), there is a zero of β(t) between every pair of consecutive

zeros of a solution β̂(t) of
¨̂
β + (c2 − 1)β̂ = 0.

These solutions are explicitly given by

(6.3) β̂(t) = C1 cos(
√
c2 − 1t) + C2 sin(

√
c2 − 1t).

157
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Thus, since the distance between consecutive zeros of β̂ is 2π/
√
c2 − 1, indicating

with T1(τ) and T2(τ) the first pair of consecutive zeros of β(t) after τ > t0, we have

T2(τ)− T1(τ) ≤ 4π√
c2 − 1

,

and, in particular,

T2(τ)− τ ≤ 6π√
c2 − 1

.

To return to z we use (4.6) and we observe that, if % = r(τ), by (4.9) r(Ti(τ)) =
Ri(%). Hence, we are led to

−1

2
log

∫ +∞

R2(%)

ds

v(s)
+

1

2
log

∫ +∞

%

ds

v(s)
≤ 6π√

c2 − 1
,

and therefore

(6.4)

{∫ +∞

%

ds

v(s)

}/{∫ +∞

R2(%)

ds

v(s)

}
≤ exp

{
12π√
c2 − 1

}
.

Now, suppose we have a good knowledge of v(r), namely, something like

B exp{brβ} ≤ v(r) ≤ A exp{arα}
for r >> 1 and some positive constants

(6.5) 0 < β ≤ α, b ≤ a if β = α, B ≤ A if β = α, b = a.

Then, a simple computation shows that there exists a universal constant C > 0
depending only on those in (6.5) such that

(6.6)
1

%α−β

(
R2(%)

%

)β−1

exp

{
a%α

[
b

a

(
R2(%)

%

)β
1

%α−β
− 1

]}
≤ C

for % >> 1. If α = β, it is immediate to deduce

lim sup
%→+∞

R2(%)

%
≤
(a
b

)1/β

< +∞.

However, note that for α > β conclusions of this type cannot be obtained from the
previous reasoning. Furthermore, observe that the assumption

(6.7) v(r) � exp
{

Λrα logβ r
}

as r → +∞

implies

(6.8) lim
%→+∞

R2(%)

%
= 1

while, if v(r) � rα logβ r as r → +∞, for some α > 1 or α = 1 and β > 1,

(6.9)
R2(%)

%
= O(1) as %→ +∞.

Although the above argument is particularly elementary, in order to obtain the
useful conclusions (6.8) and (6.9) we need to know the precise behaviour of v(r) at
infinity. In geometrical problems v(r) represents vol(∂Br), and this latter can be
estimated from above by a lower bound on the Ricci tensor, and from below by an
upper bound on the sectional curvature K together with the requirement that the
cut-locus of the fixed origin is empty. To require all these estimates on Ricc and
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K and a further matching of the two bounds on vol(∂Br) is a highly demanding
request from the geometric point of view. We want to obtain the same kind of
results on R2(%)−R1(%) under the sole one-sided bound

vol(∂Br) ≤ f(r).

This goal requires a new approach to the problem. Nevertheless, before proceeding
we push the previous method a step further to better grasp the situation at hand.
We observe that, to deduce (6.8), it is enough to be able to replace in (6.4) v(r)
with

f(r) = Λ exp
{
arα logβ r

}
, Λ, a, α > 0, β ≥ 0.

Note that we are not requiring here v ≤ f . An inspection of the proof of the
comparison Proposition 3.12 suggests that this happens if χ ≥ χf . Therefore, this
yields the following

Proposition 6.1. Let (M, 〈 , 〉) be a complete Riemannian manifold with a
pole o and radial sectional curvature satisfying

(6.10) Krad(x) ≤ −B2
(

1 + r(x)2
)α/2

,

for some B > 0 and α > −2. Set v(r) = vol(∂Br), and let A ∈ L∞loc(R+
0 ) be such

that A(r) ≥ c2χ(r) for some c > 1 and r >> 1. Then, the ODE (vz′)′ + Avz = 0
is oscillatory and, denoting with R2(%) the second zero of z after %,

(6.11) lim
%→+∞

R2(%)

%
= 1.

Proof. By the comparison for the critical curve (Proposition 3.13) χ ≥ χgm−1 ,
where g > 0 solves {

g′′ −B2(1 + r2)α/2g ≤ 0

g(0) = 0, g′(0) = 1.

Accordingly, by (6.4) and the proof of Proposition 3.12{∫ +∞

%

ds

g(s)m−1

}/{∫ +∞

R2(%)

ds

g(s)m−1

}
≤
{∫ +∞

%

ds

v(s)

}/{∫ +∞

R2(%)

ds

v(s)

}
≤ C

for some C > 0. As for the proof of Proposition 3.18, explicit g are given by

(6.12) g(r) =


Cr1/2I 1

2+α

(
2B

2+αr
1+α

2

)
if α ≥ 0;

B−1 sinh
(

2B
2+α

[
(1 + r)1+α

2 − 1
])

if α ∈ (−2, 0)

for a suitable C > 0. Computing the asymptotic for gm−1 with the aid of (3.43),
and arguing as at the beginning of this chapter up to (6.6), it is easy to obtain
(6.11). �

The above theorem shows that a two-sided bound on v(r) is not really necessary:
the lower bound suffices. However, it should be stressed that (6.10) implies χ ≥
χgm−1 , so that assumption A ≥ c2χ cannot be replaced by the more manageable
A ≥ c2χgm−1 . This is, in some sense, the counterpart for the lack of an upper
bound for v. If we add a corresponding upper bound for χ, with an application of
Theorem 3.16 we deduce the following useful
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Proposition 6.2. Let (M, 〈 , 〉) be a complete Riemannian manifold of dimen-
sion m ≥ 2 with a pole o and curvatures satisfying

(6.13)

Krad(x) ≤ −B2
(

1 + r(x)2
)α/2

;

Ricc(∇r,∇r) ≥ −(m− 1)B̃2
(

1 + r(x)2
)α̃/2

for some B, B̃ > 0 and α, α̃ > −2. Set v(r) = vol(∂Br), and let A ∈ L∞loc(R+
0 ) be

such that

lim inf
r→+∞

A(r)

rα̃
>

(m− 1)2

4

Then, the ODE (vz′)′+Avz = 0 is oscillatory and, denoting with R2(%) the second
zero of z after %,

lim
%→+∞

R2(%)

%
= 1.

In Propositions 6.1 and 6.2, since α > −2 the polynomial case for the growth of
v(r) is excluded; this is not an accident. With a minor modification of the arguments
at the beginning of this section, we can provide a simple counterexample. Consider
v(r) = rm−1 and A(r) = c2χ(r) on [r0,+∞), and let z be a nontrivial solution of

(6.1). Then, β(t) constructed as in (4.9) solves β̈ + (c2 − 1)β = 0 on [t0,+∞), so
that β has the expression (6.3). Then, there exists C > 0 such that T2(τ)− τ ≥ C,
and changing variables we are led to{∫ +∞

%

ds

sm−1

}/{∫ +∞

R2(%)

ds

sm−1

}
≥ eC > 1.

Computing the integrals we deduce

lim inf
%→+∞

R2(%)

%
≥ e

C
m−2 > 1.

We underline another important feature of the above counterexample: the potential
A, coinciding with a multiple of χ, has the same polynomial order of decay at
infinity; in fact, a quadratic decay. One may ask what happens if A decays more
slowly at infinity and v(r) = rα, for some α > 1. With a repeated application of
Sturm separation Theorem 1.9 to the ODE (6.2), it is not hard to see that (6.11)
is satisfied. The next step is to understand what happens if v(r) has portions with
polynomial growth, but A is modelled on a curve that decay more slowly than r−2.
Towards this aim, it is worth to observe the critical curve associated to a volume
function v(r) that present fast oscillations between polynomial and exponential
bounds. In this respect, the following example might be useful. Let v(r) be defined
as follows: if n ∈ N,

v(r) =

{
n3 + 2(en+ 1

2 − n3)(r − n) if r ∈ [n, n+ 1
2 ];

(n+ 1)3 + 2(en+ 1
2 − (n+ 1)3)(n+ 1− r) if r ∈ [n+ 1

2 , n+ 1].
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Then, v(n) = n3, v(n+ 1/2) = en+1/2 and∫ n+1

n

ds

v(s)
=

=
n+ 1/2

2(en+ 1
2 − n3)

+
n+ 1/2

2(en+ 1
2 − (n+ 1)3)

− 3 log n

2(en+ 1
2 − n3)

− 3 log(n+ 1)

2(en+ 1
2 − (n+ 1)3)

.

If n ≥ n0 and n0 is sufficiently large, then

n+ 1/2

en+ 1
2 − (n+ 1)3

≤ n+ 1/2

en+1/4
≤ 1

en
,

n+ 1/2

4(en+ 1
2 − n3)

≥ 1

en+ 1
2

.

Therefore, denoting respectively with bxc the floor of x ∈ R and with dxe the ceiling
of x, we deduce∫ +∞

r

ds

v(s)
≤

∞∑
n=brc

1

en
=

e

(e− 1)ebrc
≤ e2

(e− 1)er
.∫ +∞

r

ds

v(s)
≥ 1√

e

∞∑
n=dre

1

en
=

√
e

(e− 1)edre
≥ 1√

e(e− 1)er
.

Hence we finally get

(6.14)

∫ +∞

r

ds

v(s)
� 1

er
as r → +∞.

This gives that, as r → +∞,
√
χ(r) is is of the same order as

h(r) =


er

n3 + 2(en+ 1
2 − n3)(r − n)

if r ∈ [n, n+ 1
2 ]

er

(n+ 1)3 + 2(en+ 1
2 − (n+ 1)3)(n+ 1− r)

if r ∈ [n+ 1
2 , n+ 1]

Observe that h(n + 1
2 ) = 1 for every n ∈ N, while h(n) = en/n3 quickly diverges

as n → +∞. This implies that χ(r) may present high peaks where v(r) has its
“holes”.
Now, let f(r) be an upper bound for v, for instance f(r) = er. Then, the critical
function modelled on the upper bound is χf ≡ 1/4. Therefore, one cannot expect
that a pointwise bound on A in terms of χf could imply a pointwise control of A
with respect to χ. However, the peaks of h(r) above the function 1/4 are somehow
not “massive”. This is a consequence of (3.22) and (6.14):∫ r

R

√
χ(s)ds = −1

2
log

∫ +∞

r

ds

v(s)
+

1

2
log

∫ +∞

R

ds

v(s)
∼ r

2
∼
∫ r

R

√
χf (s)ds.

Since oscillations are provided under an integral control of A and χ, we may think
that non massive peaks are negligible in estimating the distance of consecutive
zeroes.
The above discussion can be summarized in the following question. Assume that
1/v ∈ L1(+∞), and that we can control the volume only from above; for instance,

(6.15) v(r) ≤ f(r) = Λ exp
{
arα logβ r

}
, Λ, a, α > 0, β ≥ 0.
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Suppose that A ≥ c2χf for some c > 1. By (3.34) and (3.35), this latter condition
reads

(6.16) A(r) ≥ c2
(
a2α2

4

)
r2(α−1) log2β r ∼ c2

[
f ′(r)

2f(r)

]2

= c2χ̃f (r)

as r → +∞. From condition (5.17) and the non-integrability of
√
χf we know

that z is oscillatory. Note that the decay of χf at infinity is slower than r−2. Do
assumptions (6.15) and (6.16) imply

lim sup
%→+∞

R2(%)

%
≤ C, or even lim

%→+∞

R2(%)

%
= 1 ?

To answer this question, throughout this section we shall require the validity of the
following properties on [r0,+∞), for some r0 > 0.

0 ≤ v(r) ∈ L∞loc([r0,+∞)),
1

v(r)
∈ L∞loc([r0,+∞)) ∩ L1(+∞)

(V1 + VL1)

f ∈ C1([r0,+∞)) , f(r0) > 0(F2)

f is non decreasing on [r0,+∞)(F3)

v(r) ≤ f(r) a.e. on [r0,+∞)(F4)

∀ r ≥ r0
f ′(r)

f(r)
≥ 1

Drµ
for some D > 0, µ < 1(F5)

A ∈ L∞loc([r0,+∞)), A(r) ≥ 0 on [r0,+∞)(A2)

lim sup
r→+∞

∫ r

r0

(√
A(s)−

√
χf (s)

)
ds = +∞(A3)

∃ c > 0 such that
√
A(r) ≥ c

√
χ̃f (r) =

c

2

f ′(r)

f(r)
on [r0,+∞)(A4)

Clearly, f as in (6.15) meets requirements (F2), (F3), (F5) and, by (6.16), (A4)
implies (A3) when c > 1. Furthermore, in the above assumptions, every solution z
of (6.1) is oscillatory by Theorem 5.6, and the zeroes of z are isolated.
Next, we introduce two classes of functions: for f ∈ C0([r0,+∞)), f > 0 on
[r0,+∞), h, k piecewise C0 and non-negative on [r0,+∞), c > 0 we set

(6.17)

A(f, h, c) =
{
g : [r0,+∞)→ R+

0 piecewise C0 such that

lim sup
r→+∞

(
sup

ξ∈(0,1)

(1− ξ)g(r)f
(
r + g(r) + h(r)

)c
f
(
r + (1− ξ)g(r) + h(r)

)c+1

)
< +∞

}

(6.18)

B(f, k, c) =
{
g : [r0,+∞)→ R+

0 piecewise C0 such that

lim sup
r→+∞

(
sup

ξ∈(0,1)

ξg(r)f
(
r + (1− ξ)g(r) + k(r)

)c
f
(
r + g(r) + k(r)

)
· f
(
r + k(r)

)c
)
< +∞

}
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Definition 6.3. We shall say that f satisfies property (P ) for some c > 0 if,
whenever

h(r), k(r) = O(r) as r → +∞, and g ∈ A(f, h, c) ∪ B(f, k, c),

then g(r) = O(r) as r → +∞.

Lemma 6.4. The function f(r) = Λ exp
{
arα logβ r

}
, for Λ, a, α > 0, β ≥ 0

satisfies property (P ) for every c > 1.

Proof. Let h and k be non-negative and such that h(r), k(r) = O(r) as
r → +∞ and let g ∈ A(f, h, c). Assume, by contradiction, the existence of a
sequence {rn} → +∞ with the property

(6.19)
g(rn)

rn
→ +∞ as n→ +∞

Without loss of generality we suppose g(rn) > 1 ∀ n and we define ξn = 1− 1
g(rn) .

Then

Θn =
(1− ξn)g(rn)f(rn + g(rn) + h(rn))c

f(rn + (1− ξn)g(rn) + h(rn))c+1
=
f(rn + g(rn) + h(rn))c

f(rn + 1 + h(rn))c+1

= exp
{
ac(rn + g(rn) + h(rn))α logβ(rn + g(rn) + h(rn)) +

−a(c+ 1)(rn + 1 + h(rn))α logβ(rn + 1 + h(rn))
}

= exp
{
acg(rn)α logβ(rn + g(rn) + h(rn))

[
Ωn − Σn

]}
,

with

Ωn =

(
1 +

rn
g(rn)

+
h(rn)

g(rn)

)α
Σn =

(c+ 1)rαn
cg(rn)α

(
1 +

1

rn
+
h(rn)

rn

)α
logβ(rn + 1 + h(rn))

logβ(rn + g(rn) + h(rn))
.

Note that Ωn → 1, while Σn → 0 as n → +∞. Their difference is thus eventually
positive, so Θn → +∞ as r → +∞, but this contradicts the fact that g ∈ A(f, h, c).
Observe that here any c > 0 would work. Similarly, we let g ∈ B(f, k, c) and we
reason again by contradiction. Let {rn} be as in (6.19). Then

Θn = ξg(rn)
f(rn + (1− ξ)g(rn) + k(rn))c

f(rn + g(rn) + k(rn)) · f(rn + k(rn))c

= ξg(rn) exp
{
ac(1− ξ)αg(rn)α

(
1 + 1

1−ξ

(
rn
g(rn) + k(rn)

g(rn)

))α
·

logβ(rn + (1− ξ)g(rn) + k(rn))− ag(rn)α
(

1 + rn
g(rn) + k(rn)

g(rn)

)α
·

logβ(rn + g(rn) + k(rn))− acrαn
(

1 + k(rn)
rn

)α
logβ(rn + k(rn))

}
≥ ξg(rn) exp

{
ag(rn)α logβ(rn + (1− ξ)g(rn) + k(rn))

[
Ωn − Σn

]}
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with

Ωn =

(
c(1− ξ)α − logβ(rn + g(rn) + k(rn))

logβ(rn + (1− ξ)g(rn) + k(rn))

)(
1 +

rn
g(rn)

+
k(rn)

g(rn)

)α
Σn = c

rαn
g(rn)α

(
1 +

k(rn)

rn

)α
logβ(rn + k(rn))

logβ(rn + (1− ξ)g(rn) + k(rn))
.

Since Σn → 0 as n → +∞, for every fixed ε > 0 we can choose n such that
eventually Σn < ε. Moreover, since ∀ ξ ∈ (0, 1)

logβ(rn + g(rn) + k(rn))

logβ(rn + (1− ξ)g(rn) + k(rn))
−→ 1 as n→ +∞

and using now c > 1, we can choose a suitable ξ such that Ωn > 2ε, if we choose ε
sufficiently small. Now letting n → +∞ we obtain that Θn → +∞, which implies
g 6∈ B(f, k, c), a contradiction that proves the lemma. �

Note that the assumption α > 0 is necessary. It is not hard to see that, if f(r)
has polynomial growth, then f does not satisfy property (P ) for any c > 0.

Now, we are ready to prove our main technical result.

Theorem 6.5. Assume the validity of (V1 + VL1), (F2), (F3), (F4), (F5),
(A2), (A3), (A4) and that f satisfies property (P ) for the parameter c > 0 required
in (A4). Let z 6≡ 0 be a locally Lipschitz solution of (5.18) on [r0,+∞). Let
% ∈ [r0,+∞), and let R1(%), R2(%) be the first two consecutive zeros of z(r) on
[%,+∞). Then

(6.20) R2(%)− % = O(%) as %→ +∞.

Moreover, in case f(r) = Λ exp
{
arα logβ r

}
with Λ, a, α > 0, β ≥ 0 we have the

estimate

(6.21) lim sup
%→+∞

R2(%)

%
≤
(
c+ 1

c− 1

) 2
α

for any c > 1.

Proof. As we have observed, z(r) is oscillatory. Having fixed % ∈ [r0,+∞),
let

U =
[
%,R2(%)

)∖{
R1(%)

}
,

and on U consider the locally Lipschitz function

y(r) = −v(r)z′(r)

z(r)

solution of

(6.22) y′ = Av +
y2

v
a.e. on [r0,+∞).

Because of (A2) and (V1 + VL1), by (6.22) y is non-decreasing on U . In fact, from
(A4), (F5), (V1 + VL1) we can argue that y is strictly increasing on U , so that

(6.23) y(R1(%)+) = −∞, y(R1(%)−) = +∞, y(R2(%)−) = +∞.
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To see this we only have to prove that y cannot have finite limits. For instance,
denote with R a zero of z. If y(r) ↑ L < +∞ as r → R−,

(6.24) v(R)z′(R) = lim
r→R

v(r)z′(r) = lim
r→R

y(r)z(r) = 0,

therefore z(r) should solve

(6.25)

{
(v(r)z′(r))′ +A(r)v(r)z(r) = 0 a.e. on R+

0

z(R) = 0, v(R)z′(R) = 0.

In other words, z(r) should be a locally Lipschitz solution of Volterra integral
problem
(6.26)

z(r) = −
∫ r

R

1

v(s)

{∫ s

R

A(x)v(x)z(x)dx

}
ds = −

∫ r

R

[
A(s)v(s)

∫ r

s

dx

v(x)

]
z(s)ds,

where the last equality follows integrating by parts. Since v(r) is bounded away
from zero on compact sets of R+, the kernel of Volterra operator is locally bounded.
Therefore, (6.26) has a unique local solution, which is necessarily z ≡ 0 on [r0,+∞).
This contradicts z 6≡ 0.

Since y is increasing, U can be decomposed as a disjoint union of intervals of
the types

(6.27)

I1 ⊆ {r ∈ U : y(r) ∈ [−1, 1]} interval of type 1

I2 ⊆ {r ∈ U : y(r) > 1} interval of type 2

I3 ⊆ {r ∈ U : y(r) < −1} interval of type 3

To fix ideas we consider the case y(%) < −1, which is “the worst” it could happen.
The remaining cases can be dealt with similarly and we shall skip proofs. In this
case we have

U = I3 ∪ I1 ∪ I2 ∪ I ′3 ∪ I ′1 ∪ I ′2
where, for each i ∈ {1, 2, 3},

Ii is the first interval of type i, after % and before R1(%);
I ′i is the first interval of type i, after R1(%) and before R2(%).

For i = {1, 2, 3} we set |Ii| = gi(%) and |I ′i| = g′i(%). We are going to prove that, in
the above hypotheses, each gi(%), g′i(%) is O(%) as %→ +∞.

We consider at first an open interval J of type 3 so that J could be either I3
or I ′3. Set P (%) < Q(%) to denote its end points; thus g3(%) = |J |(%) = Q(%)−P (%)
and g3(%) is clearly piecewise C0([r0,+∞)). We have y(Q) = −1 and y(P ) ≤ −1 if
y is defined in P , otherwise y(P+) = −∞. As in Theorem 5.1, (6.22) yields

y′ ≥ 2
√
A(r)|y| = 2

√
A(r)(−y) a.e. on J.

Fix r ∈ (P,Q] and integrate on [r,Q]. Recalling that y(s) ≤ y(Q) = −1 ∀ s ∈ (P,Q]
we have

(6.28) y(r) ≤ − exp

{
2

∫ Q

r

√
A(s)ds

}
∀ r ∈ (P,Q].

Since y′/y2 ≥ 1/v, integrating on [P + ε, r] for some small ε > 0 we obtain

(6.29)
1

y(P + ε)
− 1

y(r)
≥
∫ r

P+ε

ds

f(s)
,
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and letting ε→ 0+

(6.30) − 1

y(r)
≥ − 1

y(P+)
+

∫ r

P

ds

f(s)
≥
∫ r

P

ds

f(s)
∀ r ∈ (P,Q].

Now, because of (A4)

2

∫ Q

r

√
A(s)ds ≥ c

∫ Q

r

f ′(s)

f(s)
ds = log

(
f(Q)

f(r)

)c
,

and therefore, from (6.28),

− 1

y(r)
≤
(
f(r)

f(Q)

)c
.

Substituting into (6.30) and using (F3) we obtain

(6.31) 1 ≥
(
f(Q)

f(r)

)c ∫ r

P

ds

f(s)
≥ (r − P )

f(Q)c

f(r)c+1
∀ r ∈ (P,Q].

Suppose now that J = I3, so that P (%) = % and Q(%) = %+g3(%) . Since r ∈ (P,Q),
there exists ξ ∈ (0, 1) such that

r = %+ (1− ξ)g3(%), r − P = (1− ξ)g3(%)

and since r is arbitrary, from (6.31) we obtain

(6.32) sup
ξ∈(0,1)

(1− ξ)g3(%)f(%+ g3(%))c

f(%+ (1− ξ)g3(%))c+1
≤ 1.

In this case, it follows that g3 ∈ A(f, 0, c) and then g3(%) = O(%) as %→ +∞.
We will deal with the case J = I ′3 later.

Next, we consider an interval J of type 1. Set P (%) < Q(%) to denote its end
points; thus g1(%) = |J |(%) = Q(%)− P (%) and g1(%) is piecewise C0([r0,+∞)). In
this case y(P ) = −1, y(Q) = 1 and |y| ≤ 1 on J . We integrate Riccati equation
(6.22) on [P,Q] to obtain

2 =

∫ Q

P

y′(s)ds =

∫ Q

P

A(s)v(s)ds+

∫ Q

P

y2(s)

v(s)
ds ≥

∫ Q

P

A(s)v(s)ds.

Now, without loss of generality we can suppose to have chosen % sufficiently large
that (V1 + VL1), in particular 1/v ∈ L1(+∞), implies∫ +∞

%

ds

v(s)
≤ 1,

so that

(6.33)

∫ Q

P

ds

v(s)
≤ 1.

From (6.33), using (A4), the generalized mean value theorem and Holder inequality
it follows that, for some R0 ∈ [P,Q],

2 ≥
∫ Q

P

A(s)v(s)ds

∫ Q

P

ds

v(s)
≥
∫ Q

P

c2

4

(
f ′(s)

f(s)

)2

v(s)ds

∫ Q

P

ds

v(s)

=
c2

4

(
f ′(R0)

f(R0)

)2 ∫ Q

P

v(s)ds

∫ Q

P

ds

v(s)
≥ c2

4

(
f ′(R0)

f(R0)

)2

(Q− P )2,



6.1. CONTROLLING THE OSCILLATION 167

or, in other words, using (F2), (F3) and observing that (F5) implies that f ′ is
eventually positive,

(6.34)
2
√

2

c

f(R0)

f ′(R0)
≥ Q− P.

Now, if J = I1, P (%) = % + g3(%), Q(%) = P (%) + g1(%) and there exists θ ∈ [0, 1]
such that R0 = %+ g3(%) + θg1(%). Substituting in (6.34) and using (F5) we obtain

(6.35) g1(%) ≤ 2
√

2

c

f(%+ g3(%) + θg1(%))

f ′(%+ g3(%) + θg1(%))
≤ 2D

√
2

c

(
%+ g3(%) + θg1(%)

)µ
.

If µ ≤ 0 we immediately obtain g1(%) = O(%). We turn our attention to the
case µ ∈ (0, 1). Using the already known equality g3(%) = O(%) and inequality
(x+ y)µ ≤ xµ + yµ, there exist constants K1,K2 > 0 such that

(6.36)
g1(%)

%
≤ K1

%1−µ +
K2g1(%)µ

%
.

Using a simple reasoning by contradiction, (6.36) implies g1(%) = O(%) as %→ +∞.
If J = I ′1,

P (%) = %+ (g1 + g2 + g3)(%) + g′3(%),

Q(%) = P (%) + g′1(%),

R0 = %+ (g1 + g2 + g3)(%) + g′3(%) + θg′1(%),

and substituting into (6.34)

(6.37) g′1(%) ≤ 2
√

2

c

f(%+ (g1 + g2 + g3)(%) + g′3(%) + θg′1(%))

f ′(%+ (g1 + g2 + g3)(%) + g′3(%) + θg′1(%))

We will come back to this inequality later to prove g′1(%) = O(%) as % → +∞.
Indeed, by the same argument as above, the only things that remain to show for
this purpose are g2(%) = O(%) and g′3(%) = O(%) as % → +∞, and we are going to
prove these facts now.

We consider an interval J of type 2 and again let P (%) < Q(%) denote its end
points. Clearly y(P ) = 1 and y(Q) ∈ (1,+∞]. Again

y′ ≥ 2
√
A(r)y and

y′

y2
≥ 1

v
a.e. on J.

Fix r ∈ [P,Q). Using y(P ) = 1, integration of the first inequality on [P, r] yields

(6.38) y(r) ≥ exp

{
2

∫ r

P

√
A(s)ds

}
∀ r ∈ [P,Q),

while integrating the second on [r,Q− ε), for some small ε > 0, and proceeding as
in (6.29), we have

(6.39)
1

y(r)
≥
∫ Q

r

ds

f(s)
∀ r ∈ (P,Q).

Thus, observing that

2

∫ r

P

√
A(s)ds ≥ log

(
f(r)

f(P )

)c
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we deduce from (6.38)

1

y(r)
≤
(
f(P )

f(r)

)c
.

Finally, substituting into (6.39)

(6.40) 1 ≥
(
f(r)

f(P )

)c ∫ Q

r

ds

f(s)
≥ (Q− r) 1

f(Q)

(
f(r)

f(P )

)c
∀ r ∈ (P,Q).

Suppose now J = I2 so that g2(%) = Q(%)− P (%),

P (%) = %+ g3(%) + g1(%);

Q(%) = %+ g3(%) + g1(%) + g2(%),

and since r ∈ (P,Q), for some ξ ∈ (0, 1) we have

r = %+ (1− ξ)g2(%) + g1(%) + g3(%);

Q− r = ξg2(%).

Substituting into (6.40) yields

(6.41) sup
ξ∈(0,1)

ξg2(%)f(%+ (1− ξ)g2(%) + g1(%) + g3(%))c

f(%+ g2(%) + g1(%) + g3(%))f(%+ g1(%) + g3(%))c
≤ 1.

Thus, setting (g1 + g3)(%) = k(%) since g1(%) = O(%) and g3(%) = O(%) as %→ +∞,
we have that k(%) = O(%) as %→ +∞ and

g2 ∈ B(f, k, c),

and so g2(%) = O(%) as %→ +∞.

We can now deal with the case J = I ′3. We have already shown that g1(%) +
g2(%) + g3(%) = O(%) as %→∞. We go back to (6.31) with J = I ′3 = (P (%), Q(%)):
note that now

P (%) = %+ g3(%) + g1(%) + g2(%), Q(%) = P (%) + g′3(%).

Since r ∈ (P,Q), for some ξ ∈ (0, 1) we have

r = %+ (1− ξ)g′3(%) + (g3 + g1 + g2)(%);

r − P = (1− ξ)g′3(%),

and substituting into (6.31) we obtain

(6.42) sup
ξ∈(0,1)

(1− ξ)g′3(%)f(%+ g′3(%) + (g1 + g2 + g3)(%))c

f(%+ (1− ξ)g′3(%) + (g1 + g2 + g3)(%))c+1
≤ 1

Thus, setting h(%) = (g1 + g2 + g3)(%), h(%) = O(%) as % → +∞ and so we have
g′3 ∈ A(f, h, c) therefore g′3(%) = O(%) as %→ +∞.

Coming back to inequality (6.37), we can now claim that g′1(%) = O(%) as
%→ +∞.

The last case is J = I ′2 so that g′2(%) = Q(%)− P (%). Now we have

P (%) = %+ (g3 + g1 + g2 + g′3 + g′1)(%)

Q(%) = P (%) + g′2(%)
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and since r ∈ (P,Q) there exists ξ ∈ (0, 1) such that

r = %+ (1− ξ)g′2(%) + (g3 + g1 + g2 + g′3 + g′1)(%)

Q(%)− r = ξg′2(%)

Setting k(%) = (g3 + g1 + g2 + g′3 + g′1)(%), we have already proved that k(%) = O(%)
as %→ +∞. Substituting into (6.40) yields

(6.43) sup
ξ∈(0,1)

ξg′2(%)f(%+ (1− ξ)g′2(%) + k(%))c

f(%+ g′2(%) + k(%))f(%+ k(%))c
≤ 1

Thus we have

g′2 ∈ B(f, k, c),

therefore g′2(%) = O(%) as %→ +∞, and this shows that

R2(%)−R1(%) ≤ R2(%)− % = (g3 + g1 + g2 + g′3 + g′1 + g′2)(%) = O(%)

as %→ +∞, so we have proved the first part of the theorem, that is, (6.20).

To conclude, we shall estimate the quantity

K = lim sup
%→+∞

R2(%)− %
%

.

Looking at the group of equations (6.32), (6.35), (6.41), (6.42), (6.37) and (6.43), we
first note that each of the functions gi(%) and g′i(%) involved in the proof, shortly
g(%), satisfies one of the following inequalities, for % ≥ r0 and for some suitable
function h(%) which is known to be O(%):

sup
ξ∈(0,1)

(1− ξ)g(%)f(%+ g(%) + h(%))c

f(%+ (1− ξ)g(%) + h(%))c+1
≤ 1 for g3 and g′3,(6.44)

g(%) ≤ 2
√

2

c

f(%+ h(%) + θg(%))

f ′(%+ h(%) + θg(%))
for g1 and g′1,(6.45)

sup
ξ∈(0,1)

ξg(%)f(%+ (1− ξ)g(%) + h(%))c

f(%+ g(%) + h(%)) · f(%+ h(%))c
≤ 1 for g2 and g′2.(6.46)

For the sake of simplicity, we perform computations in case

f(r) = Λ exp
{
arα
}
, a,Λ, α > 0.

We shall determine K by computing, in each of the three cases above,

Kj = lim sup
%→+∞

g(%)

%

(the index j corresponds to the cases satisfied by gj and g′j), and then summing
the terms ”inductively” following the changes of the known function h case by case.
For this purpose let

H ≥ lim sup
%→+∞

h(%)

%
.
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Consider at first inequality (6.45): we immediately find that, for this choice of
f ,

g(%)

%
≤ 2
√

2

c

1

%

1

aα(%+ h(%) + θg(%))α−1
≤ 2
√

2

caα

1

%α

(
1 +

h(%)

%
+
g(%)

%

)1−α

We claim that K1 = 0. Indeed, suppose by contradiction that there exists a di-
vergent sequence {%n} such that g(%n)/%n → K1 > 0. Then, evaluating the above
inequality along {%n} and passing to the limit we obtain 0 < K1 ≤ 0, a contradic-
tion. We now focus our attention on (6.44). By an algebraic manipulation

g(%) ≤ 1

1− ξ
f(%+ (1− ξ)g(%) + h(%))c+1

f(%+ g(%) + h(%))c
∀ ξ ∈ (0, 1) .

Due to the form of f , better estimates can be obtained by choosing ξ near 1. For
% > 1, we choose ξ = (%− 1)/%. For the ease of notation let x(%) = g(%)/%, so that
x(%) is bounded on [r0,+∞) because f satisfies property (P ). With this choice of
ξ we have

(6.47) x(%) ≤ f(%+ x(%) + h(%))c+1

f(%+ %x(%) + h(%))c
,

thus substituting

x(%) ≤ Λ exp

{
a%α

[
(c+ 1)

(
1 +

x(%)

%
+
h(%)

%

)α
− c

(
1 + x(%) +

h(%)

%

)α]}
.

Suppose now that K3 > 0, and evaluate this inequality along a sequence {%n} such
that x(%n)→ K3. Choose 0 < δ < K3, and let n be large enough that the following
inequalities hold:

x(%n) > K3 − δ,
x(%n)

%n
< δ

This yields:
(6.48)

x(%n) ≤ Λ exp

{
a%αn

[
(c+ 1)

(
1 + δ +

h(%n)

%n

)α
− c

(
1 +K3 − δ +

h(%n)

%n

)α]}
.

Suppose now that K3 satisfies

(6.49) max
µ∈[0,H]

{
(c+ 1)(1 + µ)α − c(1 +K3 + µ)α

}
< 0,

and compare it with (6.48). We can say, by continuity, that there exists a small
δ > 0 such that the expression between square brackets is strictly less than 0.
Letting now %n go to infinity in (6.48) we deduce 0 < K3 ≤ 0, a contradiction.
Note that (6.49) holds if and only if

(c+ 1)− c
(

K3

µ+ 1
+ 1

)α
< 0 ∀ µ ∈ [0, H],

that is,

K3 >

[(
c+ 1

c

) 1
α

− 1

]
(1 +H).

Hence, if K3 > 0, we necessarily have

(6.50) K3 ≤

[(
c+ 1

c

) 1
α

− 1

]
(1 +H).
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The same technique can be exploited when dealing with (6.46): from

(6.51) g(%) ≤ 1

ξ

f(%+ g(%) + h(%)) · f(%+ h(%))c

f(%+ (1− ξ)g(%) + h(%))c
∀ ξ ∈ (0, 1)

we deduce that it is better to choose ξ near 0, so we set ξ = 1/% and, with the same
notations above, we obtain

x(%) ≤ f(%+ %x(%) + h(%)) · f(%+ h(%))c

f(%+ (%− 1)x(%) + h(%))c
.

Thus,

x(%) ≤ Λ exp

{
a%α

[(
1 + x(%) +

h(%)

%

)α
+

+c

(
1 +

h(%)

%

)α
− c

(
1 +

%− 1

%
x(%) +

h(%)

%

)α]}
.

Next, if K2 > 0 we choose a sequence {%n} realizing K2 and we consider n suffi-
ciently large that

(%n − 1)

%n
> (1− δ), K2 − δ < x(%n) < K2 + δ

obtaining the estimate

(6.52)

x(%n) ≤ Λ exp

{
a%αn ·

[(
1 + (K2 + δ) +

h(%n)

%n

)α
+

+c

(
1 +

h(%n)

%n

)α
− c

(
1 + (1− δ)(K2 − δ) +

h(%n)

%n

)α]}
Now, if K2 satisfies

(6.53) max
µ∈[0,H]

{
(1 +K2 + µ)α + c(1 + µ)α − c(1 +K2 + µ)α

}
< 0,

we reach a contradiction proceeding as in the previous case. Similarly to what we
did above this yields the bound

(6.54) K2 ≤

[(
c

c− 1

) 1
α

− 1

]
(1 +H).

To simplify the writing we now set

W =

[(
c+ 1

c

) 1
α

− 1

]
, Z =

[(
c

c− 1

) 1
α

− 1

]
.

To estimate g3(%)/%, we shall use (6.50) and, from (6.32), we deduce h(%) ≡ 0 and
thus H = 0. Therefore, we get

K3 ≤W.
We have already shown that K1 = 0. Next, to estimate g2(%)/% we shall consider
(6.54). By (6.41) h(%) = g3(%) + g1(%), so we can use for H the sum W + 0 = W ,
hence

K2 ≤ Z(1 +W ).
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Proceeding along the same lines we obtain the estimates

K ′3 ≤W
(
1 +W + Z(1 +W )

)
;

K ′1 = 0;

K ′2 ≤ Z
(

1 +W + Z(1 +W ) +W
(
1 +W + Z(1 +W )

))
.

Summing up the Kj and the K ′j , we obtain the surprisingly simple expression

K ≤
3∑
j=1

(Kj +K ′j) =
(
W + 1

)2(
Z + 1

)2 − 1 =

(
c+ 1

c− 1

) 2
α

− 1,

therefore the upper estimate (6.21) holds true. With few modifications it can be
seen that, adding the logarithmic term in the definition of f , the value of K does
not change. �

Remark 6.6. One might ask if, varying the choice of the level sets in (6.27),
one could obtain better estimates. It is not hard to see that, for every choice of
fixed level sets, (6.21) does not change.

The discussion at the beginning of this section motivates the following

Question:

(4) Is it true that, in the assumptions of Theorem 6.5,

lim
%→+∞

R2(%)

%
= 1 ?

6.2. The growth of the index of −∆− q(x)

As an immediate example, we quote the following estimate for the growth of
the index of Schrödinger operators.

Theorem 6.7. Let (M, 〈 , 〉) be an m-dimensional complete Riemannian man-
ifold such that

(6.55) (vol(∂Br))
−1 ∈ L1(+∞), vol(∂Br) ≤ Λ exp

{
arα logβ r

}
,

for some Λ, a, α > 0, β ≥ 0. Let q(x) ∈ L∞loc(M), and let q(r) be its spherical mean.
Assume that, for some r0 > 0 and c > 1,

(6.56) q(r) ≥ c2
(aα

2

)2

r2(α−1) log2β r ∀ r ≥ r0.

Then, L = −∆− q(x) has infinite index and

(6.57) lim inf
r→+∞

indL(Br)

log r
≥ α

2 log
(
c+1
c−1

) .
Proof. In our assumptions (6.55), (6.56), by Theorem 6.5 and the previous

observations (vz′)′ + Avz = 0 with A(r) = q(r) is oscillatory, thus L has infinite
index by the same technique as in Theorem 5.15. Note that (6.57) is equivalent to
proving that

lim inf
r→+∞

indL(Br)

log r
≥ 1

logµ
, where µ =

(
c+ 1

c− 1

) 2
α

.
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Fix ε > 0. Then, by Theorem 6.5 there exists R = R(ε) such that on [R,+∞)

R2(r)

r
< µε =

(
c+ 1

c− 1

) 2
α

+ ε.

Proceeding as in Theorem 5.15, on M\Br we can find a radial function ψ1(x), with
support strictly inside Bµεr, whose Rayleigh quotient is zero, hence λL1 (Bµεr) < 0.
Starting from R2(r), the second zero after R2(r) is attained before µεR2(r) < µ2

εr,
and we can construct a new Lipschitz radial function ψ2(x) whose Rayleigh quotient
is zero. Moreover, the supports of ψ2 and ψ1 are disjoint. In conclusion, the index
of L grows at least by 1 when the radius is multiplied by µε, hence

indL(Br) ≥ indL(BR) +
⌊
logµε

( r
R

)⌋
,

where bsc denotes the floor of s. Therefore we have

(6.58) lim inf
r→+∞

indL(Br)

logµε r
≥ 1 ∀ ε > 0.

Changing the base of the logarithm yields

(6.59) lim inf
r→+∞

indL(Br)

log r
≥ 1

logµε
∀ ε > 0,

and letting ε→ 0 gives the desired conclusion. �

6.3. The essential spectrum of −∆ and punctured manifolds

Our purpose here is to apply oscillation estimates to find sharp bounds for the
spectral radius of M\BR as a function of R, when the volume growth is faster than
exponential. To see which kind of bound we should expect, we readapt Do Carmo
and Zhou example 2.24. Let (Mg,ds

2) be a model manifold with

(6.60) g(r) =


r on [0, 1];

exp

{
arα

m− 1

}
on [2,+∞),

for some a > 0, α ≥ 1. Note that, for r ≥ 2, vol(∂Br) = exp{arα}. We let b ∈ (0, a)
and set

(6.61) ub(x) = exp
{
− br(x)α

}
on M\B2.

A simple checking shows that

∆ub + λb(r)ub = 0 on M\B2,

where λb(r) is defined as

(6.62) λb(r) = α2b(a− b)r2(α−1) + α(α− 1)brα−2.

Observe that, in case α = 1, λb(r) ≡ b(a − b), while, if α > 1, λb(r) is strictly
increasing on (r0,+∞), with r0 sufficiently large that

2α(a− b)rα0 + (α− 2) > 0.

Up to further enlarging r0, we can also assume that

(6.63)
α− 1

2α

1

rα
<
a

2
for r ≥ r0.
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Barta theorem [Bar37] gives, for every b ∈ (0, a), R ≥ r0,

λ−∆
1 (M\BR) ≥ inf

M\BR

(
−∆ub

ub

)
= inf

[R,+∞)
λb(r) = λb(R).

The choice

b̃ =
a

2
+
α− 1

2α

1

Rα

maximize λb(R) and b̃ ∈ (0, a) because of (6.63). Then, for R ≥ r0

(6.64) λ−∆
1 (M\BR) ≥ α2

(
a2

4
− (α− 1)2

4α2

1

R2α

)
R2(α−1)

so that

lim inf
R→+∞

(
λ−∆

1 (M\BR)

R2(α−1)

)
≥ a2α2

4
.

Note that for α = 1 the above reduces to

λ−∆
1 (M\BR) ≥ a2

4
for every R ≥ r0,

coherently with Theorem 2.23. This example, for vol(∂Br) ≤ C exp{arα}, C, a > 0,

α ≥ 1, suggests to look for an upper bound of λ−∆
1 (M\BR) of the form

C1R
2(α−1)

with C1 = C1(a, α) > 0. The guess is indeed correct:

Theorem 6.8. If M is a complete, non-compact Riemannian manifold such
that

(vol(∂Br))
−1 ∈ L1(+∞), vol(∂Br) ≤ Λ exp

{
arα logβ r

}
for r large and for some Λ, a, α > 0, β ≥ 0, the following estimates hold:

- If 0 < α < 1 then

λ−∆
1 (M\BR) = 0 ∀ R ≥ 0.

- If α = 1, β = 0 then

λ−∆
1 (M\BR) ≤ a2

4
∀ R ≥ 0.

- If α ≥ 1 then

(6.65) lim sup
R→+∞

(
λ−∆

1 (M\BR)

R2(α−1) log2β R

)
≤ a2α2

4
inf

c∈(1,+∞)

c2
(
c+ 1

c− 1

) 4(α−1)
α

 .

Remark 6.9. Note that (vol(∂Br))
−1 ∈ L1(+∞) implies vol(M) = ∞ from

Schwarz inequality ∫ R

r

ds

vol(∂Bs)

∫ R

r

vol(∂Bs)ds ≥ (R− r)2

letting R → +∞. Therefore, the cases α ∈ (0, 1) and α = 1, β = 0 already follow
from Taylor-Brooks-Higuchi Theorem 2.23 (see also [CZ99]). We have decided to
add them to the statement of Theorem 6.8 since they can be easily proved with our
techniques.
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We stress that, while the hypothesis vol(M) = ∞ is essential as already ex-
plained in Remark 2.24, the stronger assumption (vol(∂Br))

−1 ∈ L1(+∞) is for
convenience: if it fails, we will show in the next lemma that λ∆

1 (M\BR) = 0 for
every R ≥ 0.

Lemma 6.10. Let (M, 〈 , 〉) be a complete Riemannian manifold satisfying

vol(∂Br) ≤ f(r) on (r0,+∞)

for some r0 sufficiently large and some f ∈ C0([r0,+∞)). Fix R ≥ 0.

- If M has infinite volume and (vol(∂Br))
−1 6∈ L1(+∞) then

(6.66) λ−∆
1 (M\BR) = 0.

- If (vol(∂Br))
−1 ∈ L1(+∞), then for every ε > 0 there exists r1 = r1(ε) >

R such that

(6.67) λ−∆
1 (M\BR) ≤

{
inf
r>r1

[
−1

2

log
∫ +∞
r

ds
f(s)

r − r1

]}2

+ ε

Proof. Set v(r) = vol(∂Br). We begin with the case 1/v ∈ L1(+∞). Up to
further enlarging r0, we can assume that

r0 > R,

∫ +∞

r0

ds

v(s)
< 1

and let ε > 0. We define on [r0,+∞)

Aε(r) =

{
inf
s>r

[
−1

2

log
∫ +∞
s

dx
f(x)

s− r

]}2

+ ε

Then, Aε(r) ≥ ε, Aε(r) is continuous and non-decreasing. By Remark 6.9, M has
infinite volume, thus we can apply (v) of Proposition 5.9 to obtain that

(v(r)z′ε(r))
′ +Aε(r)v(r)zε(r) = 0

is oscillatory. Let %1 < %2 be two consecutive zeroes of zε after r0. Define φ(x) =
zε(r(x)) on B%2

\B%1
. By the domain monotonicity of eigenvalues and integrating

by parts we have

0 ≤ λ−∆
1 (M\BR) < λ−∆

1 (B%2
\B%1

) ≤

∫
B%2\B%1

|∇φ|2∫
B%2\B%1

φ2
=

∫ %2

%1
[z′ε(s)]

2v(s)ds∫ %2

%1
zε(s)2v(s)ds

=

∫ %2

%1
Aε(s)zε(s)

2v(s)ds∫ %2

%1
zε(s)2v(s)ds

≤ Aε(%2)

Thus we get (6.67) with r1 = %2 (note that r1 depends on ε since zε(r) does).
In case 1/v 6∈ L1(+∞) and M has infinite volume, by Theorem 5.6 equation

(vz′)′ +Avz = 0 is oscillatory whenever A(r) ≥ ε > 0: indeed∫ +∞

r0

A(s)v(s)ds ≥ ε
∫ +∞

r0

v(s)ds = +∞.

Choosing Aε(r) = ε and using the Rayleigh quotient as before we deduce (6.66) at
once. �
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Lemma 6.11. If 1/v ∈ L1(+∞), the previous lemma yields in particular the
weaker estimate

(6.68) λ−∆
1 (M\BR) ≤

{
lim inf
r→+∞

[
−1

2

log
∫ +∞
r

ds
f(s)

r

]}2

∀ R ≥ 0.

Proof. This follows immediately from the next observation: if we substitute
in (6.67) “inf” with the greater “liminf”, the latter does not depend on R0(ε). We
can thus fix a particular R0(ε), compute the “liminf” and then let ε→ 0. �

We are now ready to prove Theorem 6.8.

Proof. First, we apply Lemma 6.11 to estimate λ−∆
1 (M\BR) when the volume

growth is at most exponential. Towards this aim suppose that (vol(∂Br))
−1 ∈

L1(+∞) and that

(6.69) vol(∂Br) ≤ f(r) = Λ exp{arα} 0 < α ≤ 1, Λ, a > 0.

Due to our choice of α we easily see that

−1

2

log
∫ +∞
r

ds
f(s)

r
∼ a

2
rα−1 as r → +∞.

Because of this we can apply Lemma 6.11 to deduce that, for every R ≥ 0,

(6.70) λ−∆
1 (M\BR) ≤

{
0 if 0 < α < 1;

a2/4 if α = 1.

The above works also when vol(∂Br) ≤ Λ exp{arα logβ r}, with α < 1, β ≥ 0, since
it is enough to observe that

exp
{
arα logβ r

}
= O

(
exp

{
arα̃
})

for every 1 > α̃ > α.

We are left with the case α ≥ 1, β ≥ 0. For c > 1 and r > R we define

A(r) =
[
c
(aα

2

)
rα−1 logβ r

]2
.

Note that A(r) is monotone non-decreasing and, by Theorem 6.5 and the previous
observations (vz′)′ + Avz = 0 is oscillatory. Hence, proceeding as in Lemma 6.10
we have for R ≥ r0

λ−∆
1 (M\BR) ≤ A(%2),

where %2(R) is the second zero of the solution z of (5.18) after R. By Theorem 6.5,
for every ε > 0 there exists r1(ε) such that, for every R ≥ r1

ρ2(R) ≤

[(
c+ 1

c− 1

) 2
α

(1 + ε)

]
R

Therefore, from the monotonicity of A(r) we get

λ−∆
1 (M\BR) ≤ A

([(
c+ 1

c− 1

) 2
α

(1 + ε)

]
R

)
∀ R ≥ r1(ε).
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Using the definition of A(r), up to choosing ε small enough and r2 ≥ r1 large
enough we deduce that, for every fixed c > 1,

λ−∆
1 (M\BR) ≤ a2α2

4
R2(α−1) log2β R

c2(c+ 1

c− 1

) 4(α−1)
α

 (1 + 2ε) ∀ R ≥ r2(ε).

Thus, letting first R → +∞ and then ε → 0, and minimizing over all c ∈ (1,+∞)
we finally have

(6.71) lim sup
R→+∞

(
λ−∆

1 (M\BR)

R2(α−1) log2β R

)
≤ a2α2

4
inf

c∈(1,+∞)

c2
(
c+ 1

c− 1

) 4(α−1)
α

 ,

as desired. �

Remark 6.12. The infimum of the function

c2
(
c+ 1

c− 1

) 4(α−1)
α

is attained by the unique positive solution c of α(c+ 1)(c− 1) = 4(α − 1)c, which
can be computed, although its explicit expression is not so neat.

Remark 6.13. It is worth to point out that estimate (6.71) fits with the esti-
mate (6.70) for α = 1 and β = 0.

Remark 6.14. As in the introduction of this section, one can study a model
manifold whose function g(r) is of the following type:

g(r) =


r r ∈ [0, 1];

exp

{
arα

m− 1
logβ r

}
r ∈ [2,+∞),

for which the volume growth of geodesic spheres is

exp
{
arα logβ r

}
.

With the same computations, one obtains for R sufficiently large

λ−∆
1 (M\BR) ≥ CR2(α−1) log2β R,

for some C > 0. This shows that the estimate of Theorem 6.8 is sharp even with
respect to the power of the logarithm.

We briefly describe an interesting application, due to M.P. Do Carmo and D.
Zhou in [CZ99], of spectral estimates to constant mean curvature hypersurfaces.
Let ϕ : Mm → Nm+1 be a CMC, orientable hypersurface into an orientable ambient
manifold N . Let ν be a chosen orientation of M . We refer to Section 5.4 both for
notations and basic background. The Jacobi operator associated to the stability of
M is

L = −∆−
(
|II|2 + Ricc(ν, ν)

)
,

And M is called stable, respectively of finite index, if so is L.
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Proposition 6.15 ([CZ99], Theorem 4.2). Let ϕ : Mm → Nm+1 be a CMC
hypersurface with vol(M) = +∞ into an oriented, complete Riemannian manifold.
Assume that M has finite stability index, and that

lim inf
r→+∞

log vol(Br)

r
= a < +∞.

Then,

H2 ≤ 1

m

(
a2

4
− lim inf

x→∞
Ricc(ν, ν)

)
.

In particular, if M has subexponential growth and Ricc ≥ 0, then M is minimal.

Proof. By Theorem 1.41, there exists r0 > 0 and a smooth w > 0 on M\Br0
satisfying Lw = 0. Then, By Theorem 2.23 and Persson formula (1.88), for every
R > r0

a2

4
≥ λ−∆

1 (M\BR) ≥ − inf
M\BR

∆w

w
= inf
M\BR

(
|II|2 + Ricc(ν, ν)

)
≥ mH2 + inf

M\BR
Ricc(ν, ν),

where the last step follows from Newton inequality |II|2 ≥ mH2. Letting R→ +∞
we deduce the desired estimate for H. �

Remark 6.16. As observed in Theorem 5.23, if M is a surface and N3 has
non-negative scalar curvature then vol(M) < +∞. Therefore, for m = 2, the
assumptions of Proposition 6.15 can be satisfied only when the scalar curvature of
N is somewhere negative.

In a similar fashion, Theorem 6.8 can be used to obtain information on the
volume growth of the Martin-Morales-Nadirashvili minimal surface

ϕ : M → B1(0) ⊂ R3

introduced in Section 2.3. We recall a few preliminary facts to put the problem
into perspective. It has been observed in [PRS05], Theorem 3.9 that M , being
minimally immersed into a bounded region of R3, cannot be stochastically complete
(see [Gri99] for a beautiful and detailed account on stochastic completeness). Since
M is complete, it follows from the sufficient condition in [Gri99], Theorem 9.1 that
necessarily

r

log vol(Br)
∈ L1(+∞).

In particular, vol(M) = +∞ and the growth of vol(Br) is faster than exp{ar2}, for
each a > 0, at least along some divergent sequence {rk}. However, to the best of
our knowledge more precise lower bounds on vol(Br) have still to be found. For
instance, it is not clear whether vol(∂Br) can be bounded from above by some
function

f(r) = Λ exp
{
arα logβ r

}
,

for some suitable choices of Λ, a > 0, α ≥ 2 and β ≥ 0, or if M has faster volume
growth along some divergent sequence. We briefly describe here a possible way to
get more information.
The basic step to prove the discreteness of the spectrum of the Martin-Morales-
Nadirashvili is inequality (2.52) of Theorem 2.25. In our setting, the manifold
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Q reduces to a point, no f appears, k = 0, snk(r) = r, m = 2, R0 = 1 and
|dNϕ|2 = |dϕ|2 = 2. Hence, by (2.50), we can choose c = 2 and (2.52) becomes

λ−∆
1 (M\ΩR) ≥ 2R

1−R2
, where ΩR =

{
x ∈M : |ϕ(x)| < R

}
bM.

Suppose that we have a good knowledge of the links between |ϕ(x)| and the intrinsic
distance r(x). For instance, suppose that we can provide a bound of the type
|ϕ(x)| ≤ T (r(x)), for some explicit, strictly increasing T : R+ → (0, 1) such that
T → 1 as r → +∞. Then, from ΩT (r) ⊂ Br and the monotonicity of eigenvalues
we deduce that

2T (r)

1− T 2(r)
≤ λ−∆

1 (M\Br).

Now, M satisfies 1/v ∈ L1(+∞), for otherwise by Corollary 6.10 we would have
inf σess(−∆) = 0, contradicting the fact that M has discrete spectrum. Hence,
Theorem 6.8 can be applied. If

vol(∂Br) ≤ f(r) = Λ exp
{
arα logβ r

}
for some Λ, a, α ≥ 2, β ≥ 0,

then we obtain

lim sup
r→+∞

2T (r)[
1− T 2(r)

]
r2(α−1) log2β r

< +∞.

This shows that a careful analysis of the growth of 2T (r)/[1− T 2(r)] as a function
of r allows to deduce lower bounds on the growth of vol(∂Br), at least along a
divergent sequence, that could possibly be faster than r2. As a matter of fact, the
above procedure can be carried on even for faster growths of type

(6.72) f(r) = Λ exp
{
aebr

}
, Λ, ab > 0.

Indeed, f as in (6.72) satisfies property (P ) of Definition 6.3 for every c > 1. Thus,
adapting the proof of Theorem 6.8, it can be shown that if vol(M) = +∞ and

vol(∂Br) ≤ Λ exp
{
aebr

}
, Λ, a, b > 0,

then, for every µ > 0,

lim
r→+∞

(
λ−∆

1 (M\Br)
exp

{
2b(1 + µ)r

}) = 0.

However, the problem of finding an explicit T (r) seems to be hard task. Never-
theless, maybe it could be more manageable than a direct estimate for vol(∂Br),
mainly because of the technique employed to construct M .
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