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ABSTRACT
Transiting exoplanet parameter estimation from time-series photometry and Doppler
spectroscopy is fundamental to study planets’ internal structures and compositions.
Here we present the code pyaneti, a powerful and user-friendly software suite
to perform multi-planet radial velocity and transit data fitting. The code uses a
Bayesian approach combined with an MCMC sampling to estimate the parameters of
planetary systems. We combine the numerical efficiency of FORTRAN, the versatility
of PYTHON, and the parallelization of OpenMP to make pyaneti a fast and easy to
use code. The package is freely available at https://github.com/oscaribv/pyaneti.

Key words: methods: numerical – planets and satellites: general – techniques: pho-
tometry – techniques: spectroscopy

1 INTRODUCTION

A new branch of astrophysics was born with the discov-
ery of the first planet orbiting a star other than the Sun
(Mayor & Queloz 1995). Since then, astronomers have de-
veloped new techniques to detect and characterize exoplan-
ets (Seager 2010; Perryman 2011). The two more successful
techniques are the transit and radial velocity (RV) methods
(see, e.g., Bozza et al. 2016). They provide a direct mea-
surement of the planet radius (Charbonneau et al. 2000;
Henry et al. 1999) and minimum mass (Mayor & Queloz
1995), respectively. By combining transit photometry with
RV measurements, it is possible to measure the true mass
and determine the planetary mean density. This allows us
to to study planets’ internal structure and composition and
gives us important hints as to their formation and evolution.

The success of the transit method relies on both ground-
(e.g., HAT-Net, KELT, WASP; Bakos et al. 2004; Pepper et al.
2007; Pollacco et al. 2006) and space-based photometric sur-
veys (e.g., CoRoT, Kepler, and K2; Auvergne et al. 2009;
Borucki et al. 2010; Howell et al. 2014), which have led to the
discovery of more than 2800 transiting exoplanets1. The RV
method has strongly benefited from state-of-the-art high-
precision (∼1 m s−1) spectrographs such as HIRES (Vogt et al.
1994), HARPS (Mayor et al. 2003), and HARPS-N (Cosentino
et al. 2012), which have opened up the doors to the Earth-

? E-mail: oscar.barraganvil@edu.unito.it
1 As of July 2018, exoplanet.eu.

mass domain. Future exoplanet surveys and follow-up ob-
servations conducted with both space-based (TESS, PLATO,
CHEOPS; Ricker et al. 2015; Rauer et al. 2014; Broeg et al.
2013) and ground-based (e.g., ESPRESSO, SPIRou; Pepe et al.
2010; Donati et al. 2017) facilities will provide us with a
wealth of photometric and spectroscopic time-series data
sets that need powerful tools for a fast and robust analy-
sis.

Radial velocity and transit light curves are described by
time-dependent parametric equations. By comparing mod-
els with data we can determine the physical properties of
planetary systems. Bayesian model fitting techniques, such
as Markov chain Monte Carlo (MCMC) methods, are widely
used for parameter estimation and their popularity among
the astronomers’ community has steadily increased in the
past two decades (see, e.g., Sharma 2017).

Markov chain Monte Carlo data analysis is a reliable
statistical method to estimate planetary parameters. How-
ever, it can be computationally challenging, especially when
the amount of data is large and the dimension of the parame-
ter space that one needs to explore is high. Some examples of
such cases include: long-cadence photometric data – as those
collected by Kepler and K2 – for which the transit model has
to be re-sampled to account for the long integration time
(Kipping 2010); the light curve of stars hosting ultra-short-
period transiting planets (P < 1 day), which includes hun-
dreds or even thousands of transits (e.g., Gandolfi et al. 2017;
Guenther et al. 2017; Sanchis-Ojeda et al. 2014); low-mass
planets whose masses can be precisely derived only collect-
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2 Barragán et al.

ing hundreds of RV data points (e.g., Hatzes et al. 2011);
multi-planet systems whose parameter space increases di-
mensionality with the addition of each planet (e.g., Gillon
et al. 2017). Combining sophisticated statistical methods
and powerful numerical tools is therefore an optimal ap-
proach to simultaneously model photometric and RV data.

There is a variety of software packages in the litera-
ture that allow us to determine the physical parameters of
exoplanets from time-series photometry and RV measure-
ments, using either purely Bayesian approaches (e.g. PY-

TRANSIT,PyTranSpot; Parviainen 2015; Juvan et al. 2018), or
different methods (e.g. TLMC Csizmadia et al. 2015). Some of
these packages can model transit light curves (PYTRANSIT;
PyTranSpot), RV curves (e.g., RVLIN, Wright & Howard
2009), or even perform a joint analysis of the photometric
and RV data (e.g., TLMC; EXOFAST, Eastman et al. 2013).

In this work we present the software suite pyaneti2.
This code is a new powerful tool to perform multi-planet
fit to RV and/or transit data sets. It combines the MCMC
technique with the computational power of FORTRAN and the
versatility of PYTHON. This code has already been used for
the analysis of several planetary systems (see, e.g., Barragán
et al. 2016, 2018a,b; Chakraborty et al. 2018; Fridlund et al.
2017; Gandolfi et al. 2017; Guenther et al. 2017; Li et al.
2017; Livingston et al. 2018).

The paper is organized as follows. For the sake of self-
consistency, we provide a short recap of Bayesian analyses
and MCMC algorithms in Sect. 2. The RV and transit equa-
tions used by pyaneti are given in Sect. 3. Section 4 de-
scribes the general algorithms used by the code. We test the
package in Sect. 5 and conclude in Sect. 6.

2 MATHEMATICAL APPROACH

2.1 The Bayes’ theorem

The aim of data analysis is to extract information from ex-
periments and/or observations. In this work, we are inter-
ested in extracting planetary physical parameters by com-
paring parametric models with astronomical observations.
From a probabilistic point of view, we want to estimate the
probability that a physical parametric model M = M( ®φ),
function of some parameters ®φ, describes the data D. Such
probability is called the conditional probability of M given
D and it can be written as P(M |D).

Bayes’ theorem (Bayes & Price 1763) provides a simple
and robust mathematical framework to compute P(M |D) as

P(M |D) = P(D |M)P(M)
P(D) . (1)

In a context of a fixed dataset, P(D |M) is a function of
the model called the likelihood of observing the data set D
if the model M is true, while P(M) is the prior probability
associated to the model M, and P(D) is the model evidence.
P(M |D) is called the joint posterior distribution and it gives
the probability that a model M is true given D is true.

2 From the Italian word pianeti, which means planets.

2.2 Likelihood

For a given data set D composed of N measurements D1,...,N ,
we can generate a set of N predicted points M1,...,N from a
parametric model. The likelihood of a point Di being de-
scribed by a point Mi is written as P(Di |Mi). The likelihood
of the whole data set D to be described by the model M is
given by the product of each probability P(Di |Mi) as

P(D |M) =
N∏
i=1

P(Di |Mi). (2)

In order to compute P(D |M) using eq. (2), we need
to find out which likelihood functions describes better our
data. If we assume that our measurements are normally dis-
tributed, independent, and that only contain uncorrelated
noise σi , the likelihood of the data point Di being true, as-
suming Mi is also true, is written as

P(Di |Mi) =
1√

2π(σ2
i
+ σ2

j )
exp

{
−1

2
(Di − Mi)2

σ2
i
+ σ2

j

}
, (3)

where the terms σj are used to normalize the likelihood
in the case the nominal uncertainties σi are underestimated
(see e.g., Sharma 2017). If we use eq. (3) for a data set, its
likelihood is given by using eq. (2) as

P(Di |Mi) =
N∏
i


1√

2π(σ2
i
+ σ2

j )

 exp
{
−1

2
χ2

}
, (4)

where

χ2 =
N∑
i=1

(Di − Mi)2

σ2
i
+ σ2

j
. (5)

pyaneti uses the likelihood given by eq. (4), but we
acknowledge that more general likelihoods exist, in which
possible correlated noise between data points is taken into
account (see, e.g., Parviainen 2017; Sharma 2017). We also
note that for numerical reasons, it is better to treat P(M |D)
in a logarithmic way (Appendix A).

2.2.1 Priors

Priors contain previously known information about a given
model parameter, e.g., some physical range in which a pa-
rameter has equal probability to lie. Alternatively, the pa-
rameter’s probability can be given by a distribution based
on previous estimates. Widely used priors are the uniform
and Gaussian priors.

A uniform prior is called a weakly informative or un-
informative prior. It is used when the only available infor-
mation about a given parameter φi is that it lies inside a
range [a, b]. For example, we know that the eccentricity of
an elliptical orbit ranges between 0 and 1. If the parameter
φi lies between a and b with equal probability, its uniform
prior is given by

U(φi ; a, b) =
{
(b − a)−1 : a < φi < b

0 : otherwise (6)

MNRAS 000, 1–15 (2018)
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A Gaussian prior is called an informative prior. This
prior is useful when, for a given parameter, we have a pre-
vious measurement and its 1-σ uncertainty, and we want to
use this information to weight the probability. For instance,
if we have asteroseismology-derived mass and radius of a
star hosting a transiting planet, we can use these quanti-
ties together with the orbital period to set a Gaussian prior
on the semi-major axis of the planet’s orbit through Ke-
pler third law.

A Gaussian prior of a given parameter φi with median
a and standard deviation b is given as

N(φi ; a, b) = 1
√

2πb2
exp

[
−(φi − a)2

2b2

]
. (7)

In this work we describe only the uniform and Gaussian
priors, as those are currently implemented in pyaneti. We
acknowledge the existence of other priors in the literature
(see, e.g., Dı́az 2018; Sharma 2017). Figure 1 shows how
priors can affect the final posterior distribution for a fixed
likelihood. For instance, the upper and lower limits of a flat
prior may truncate or exclude the maximum of the likelihood
function. The influence of a Gaussian prior on the posterior
distribution depends on the prior’s center and width, as well
as on the number of data points (e.g., Gelman et al. 2004).

2.2.2 Model evidence

The term P(D) in equation (1) is called model evidence or
marginal likelihood. It has the function to normalize the
posterior distribution. By definition P(D) is calculated by
integrating the likelihood and prior distributions in the pa-
rameter space as

P(D) =
∫

P(D|M( ®φ))P(M( ®φ))d ®φ. (8)

2.2.3 Marginal posterior distribution

We now have a mathematical description of all the compo-
nents to calculate P(M |D) from equation (1). In order to
derive the parameters, we are interested on the shape of the
posterior distribution of each parameter φi more than in its
normalized probability. The parameter estimation can be ex-
tracted from the non-normalized posterior distribution, i.e.
the term P(D|M)P(M), ignoring the evidence term P(D). We
note that the evidence term has an important role when do-
ing Bayesian comparison between different models (see, e.g.,
Gelman et al. 2004).

Since M is a parametric model, we can marginalize the
parameter φi by integrating P(D |M)P(M) over the remaining
φ j,i parameters. This leads to a marginal posterior distri-
bution for each parameter φi from which we can infer the
model parameters.

2.3 Markov chain Monte Carlo

The calculation of a marginal posterior distribution can be
done analytically or numerically. However, in some cases it
may not have an analytic solution. For instance, numerical
iterative methods are widely used to sample the parameter

space in order to generate marginal posterior distributions
from a collection of data points.

An efficient method to generate a set of data points in a
parameter space is by using a Markov chain. Following the
definition of Sharma (2017), a Markov chain is a sequence
of random variables X1, . . . , Xn such that, given the present
state, the future and past are independent. If random num-
bers are used to generate the Markov chains, this method is
called Markov chain Monte Carlo (MCMC). These random
variables can be the points ®φ in the parameter space that
we want to sample. For instance, if we start a point in the
parameter space ®φ1, we can generate a set of different mod-
els ®φi via Markov chains. In this way, we can create a set of
N models from an initial ®φ1.

There is a large variety of MCMC sampling methods,
which ensure that the Markov chains converge to the optimal
solution where the posterior has a static solution. For a basic
MCMC algorithm, we refer the reader to the Metropolis-
Hastings algorithm (Metropolis et al. 1953; Hastings 1970).
In the next section we will describe the ensemble sampler
algorithm (Goodman & Weare 2010) that is used by pyaneti

for the parameter estimations. This algorithm was first used
by Hou et al. (2012) to infer parameters from time-series RV
measurements.

2.4 Ensemble sampler algorithm

The ensemble sampler algorithm uses a group of Markov
chains to explore the parameter space. Each chain j starts
with a point in the parameter space ®φ j,t and is evolved using
the complementary chains of the ensemble.

Christen (2007) found that it is possible to evolve the
chain φ j,t to the state t + 1 via a walk move using a comple-
mentary chain of the ensemble. Goodman & Weare (2010)
used the idea of the walk move to construct an affine in-
variant move called stretch move. The stretch move for the
chain ®φ j,t is defined as

®Φj = ®φk,t + z
(
®φ j,t − ®φk,t

)
, (9)

where ®φk,t is a complementary chain of the ensemble,
such that j , k and z is a scaling variable that regulates
the step. This scaling variable has to come from a density
distribution g with the symmetry condition (Christen 2007)

g

(
1
z

)
= z g(z). (10)

A distribution that follows this condition is

g(z) ∝
{

1√
z

: z ∈
[

1
a , a

]
0 : otherwise,

(11)

where a > 1. There is no optimal value for a, but we
set a = 2 to be consistent with ensemble sampler algorithms
in the literature (e.g., Goodman & Weare 2010; Hou et al.
2012). To ensure the invariant distribution we have to com-
pute the ratio

q = zN−1 P(M( ®Φ)|D)
P(M( ®φ j,t )|D)

. (12)

MNRAS 000, 1–15 (2018)
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Figure 1. Posterior distributions (solid red line) for a fixed likelihood (blue dashed lines) and different priors (green dot-dashed lines).

All quantities have been normalized for comparison purpose. Upper left: Uniform prior with limits [−3, 3]. Upper right: Uniform prior
with limits [−3, 0]. Lower left: Gaussian prior with mean 1.5 and standard deviation 1.5. Lower right: Gaussian prior with mean 1.5 and

standard deviation 0.3.

The term zN−1 ensures detailed balance (for more de-
tails see Goodman & Weare 2010). To decide whether we
accept or not the proposed state we use

®φ j,t+1 = ®Φj : q > U
®φ j,t+1 = ®φ j,t : q ≤ U,

(13)

where U is a random number between [0, 1]. After a
number N of iterations and L chains, we will have N × L
samples for each parameter from which we can create poste-
rior distributions. A general overview of a single step of the
ensemble sampler method is given in Algorithm 1.

Figure 2 shows an example of the evolution of an ensem-
ble sampler algorithm using six chains. The latter start at a
different point in the parameter space. After a finite number
of iterations (in this case a few hundreds), the chains con-
verges to a stable region of the parameter space. Details on
how we create marginal posterior distributions from chain’s
samples are provided in Section 2.6.

Another advantage of this approach is that, since each
Markov chain evolves independently, this algorithm can be
parallelized (Foreman-Mackey et al. 2013).

2.5 Convergence

In order to infer the parameter values based on a MCMC
sampling we need to use chains that have converged. A
widely used convergence test has been developed by Gelman
& Rubin (1992). This test compares the “between-chain” B

input : Initial ensemble of N states ®φ j,t
output: Ensemble of N states ®φ j,t+1

1 for j = 1 to N do
2 Select a complementary state from the

ensemble such that j , k
3 Sample the scaled variable z from the density

distribution g

4 Propose the new state via a walk move

®Φj = ®φk,t + z
(
®φ j,t − ®φk,t

)
5 Compute q from eq. (12) using likelihood and

priors for the states ®φ j,t and ®Φj

6 Sample an uniform random variable U
between 0 and 1

7 if q > U then

8 ®φ j,t+1 = ®Φj

9 else

10 ®φ j,t+1 = ®φ j,t
11 end

12 end

Algorithm 1: One iterations of the ensemble
sampler algorithm.

and “within-chain” W variance via the scaled potential fac-
tor R̂ =

√
[W(n − 1)/n + B/n]/W , where n is the length of each

chain. We define convergence as when chains have R̂ < 1.02
for all the parameters (Gelman et al. 2004).

MNRAS 000, 1–15 (2018)
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Figure 2. Example of the evolution of an ensemble sampler algorithm using six chains. Upper panel: Parameter value for each chain

from iteration 0 to 5000 in logarithmic scale. Lower left panel : Chains behavior for the last 4000 iterations. Lower right panel: Histogram
created using the information contained in all the chains in the last 4000 iterations.

2.6 Marginal posterior distribution from
parameter sampling

Chains that have converged to a static solution represent
a sample of the marginal posterior distribution from which
they were sampled. The frequencies of the chains can be
used to create the posterior distribution of the sampled pa-
rameters. A common way to draw the sampling frequency is
with a histogram, as shown in Fig, 2. The final marginal pos-
terior distribution for each parameter is also called credible
interval.

The median and the 68% limits of the credible interval
are commonly used to define the parameter’s best estimate
and its uncertainty (see, e.g., Hogg & Foreman-Mackey
2018). When the marginal posterior distribution follows a
Gaussian distribution, the median and the 68% limits of
the credible interval correspond to the mean and standard
deviation of a normal distribution. When the posterior dis-
tribution is skewed, the 68% limits are not symmetric with
respect to the median, and they give an “first-order” idea
of the shape of the marginal posterior distribution that de-
scribes a given parameter.

3 MULTI-PLANET EQUATIONS

In this section, we describe the equations used by pyaneti to
extract parameter values from time-series RV and photomet-
ric transit data. For a detailed derivation of the equations
presented in the following sub-sections, we refer the reader

to the specific literature (see, e.g., Murray & Correia 2010;
Winn 2010).

3.1 Radial velocity equations

The motion of a planet orbiting a star can be reduced to
a two-body problem in which one of the two body is far
more massive than the other. The change of the velocity
component along the line-of-sight to the host star, induced
by the presence of the orbiting planet, is described by the
following equation

fRV( ®φ; t) = γ + K? [cos (θ + ω?) + e cosω?] , (14)

where γ is the systemic velocity of the center of mass,
θ is the true anomaly, e the orbital eccentricity, and ω? the
angle of periastron of the star. K? is the radial velocity semi-
amplitude variation, which is given by

K? =
(
2πG

P

)1/3 Mp sin i(
Mp + M?

)2/3 1(
1 − e2)1/2 , (15)

Equation (15) provides a relation between the semi-
amplitude RV variation of the star K? and the planetary Mp
and stellar mass M?. The remaining parameters of eq. (15)
are the gravitational constant G (we use the IAU units given
by Prša et al. 2016), the orbit inclination with respect to the
line-of-sight i, and the orbital period P. Since Mp << M?, we

can assume that (Mp + M?)2/3 ≈ M2/3
? . The dependence on

the orbit inclination implies that only the planet’s minimum

MNRAS 000, 1–15 (2018)
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mass Mp sin i can be measured, provided that the stellar mass
M? is known. In order to determine the planet’s true mass,
the orbit inclination has to be measured. For transiting ex-
oplanets, the inclination can be derived from the modeling
of the transit light curve (Sect. 3.2).

The time dependency of θ is given by

θ(t) = 2 arctan

[√
1 + e
1 − e

tan
(

E(t)
2

)]
(16)

where the eccentric anomaly E(t) is defined via

A(t) = E(t) − e sin[E(t)] (17)

and where

A(t) = 2π
P

(
t − Tp

)
(18)

is the mean anomaly. The latter depends on time t and
on a zero point Tp, which is the time of passage of periastron.
We stress that we fit for the time of minimum conjunction
of the planet T0 that, for transiting planets, coincides with
the time of transit . It is straightforward to pass from T0 and
Tp since the corresponding points in the planet’s orbit are
separated by an angle of π/2 − ω?. We note that eq. (17) is
transcendent and cannot be solved analytically with respect
to the eccentric anomaly E(t). pyaneti solves eq. (17) using
a Newton-Raphson algorithm.

If a star is orbited by Np planets – which we assume their
mutual gravitational interaction is negligible – the general
expression for eq. (14) is then

MRV( ®φ; t) = γi +
Np∑
j=1

Kj

[
cos(θ j + ω?, j ) + ej cosω?, j

]
. (19)

The term γi depends on the spectrograph i to account
for possible instrumental offsets. Equation (19) can be mod-
ified to add linear or quadratic acceleration terms that may
be present in the data.

The general parametric function MRV( ®φ; t), which de-
scribes the Doppler reflex motion of a star orbited by more
than one planet is then

MRV( ®φ; t) = f ({T0, P, e,w?,K}j, γi ; t), (20)

in which the set of parameters {T0, P, e,w?,K} repeats
for each planet j and γi accounts for each different instru-
ment i.

3.2 Transit equations

An eclipse occurs when an astronomical body is obscured by
a second one. A transit is a special case of eclipse, in which
a smaller object passes in front of a larger body. If the orbit
inclination is close to 90◦, the presence of a planet orbiting
its host star can be inferred by detecting the periodic drops
of stellar flux caused by the planet partly occulting the stel-
lar disk. The fraction of light occulted by a planet during
a transit is proportional to its size, being about 1 % for a
Jupiter-size object and 100 times smaller for an Earth-size
planet transiting a Solar-like star.

An useful quantity to describe a planetary transit is the
scaled projected distance between the planet’s and the star’s
center defined as (see, e.g., Winn 2010)

δ =
a

R?

(
1 − e2

)
(1 + e cos θ(t))

√
1 − sin2 (θ(t) + ω?) sin2 i, (21)

where a is the semi-major axis of the relative orbit3, R?
is the stellar radius, and the remaining parameters are the
same used in the RV equations presented in Sect. 3.1. We
note that δ depends on the true anomaly θ(t), which in turn
is a function of time according to eqs. (16), (17) and (18).
Following Eastman et al. (2013), we define the projected
distance δ using the argument of periastron of the star ω?
instead of the argument of periastron of the planet ωp. If
we define rp ≡ Rp/R? as the planet-to-star radius ratio, from
equation (21), the transit of an exoplanet occurs only when
δ < 1 + rp and sin (θ(t) + ω?) > 0 (star behind the planet).
On the other hand, the planet’s occultation – also known as
secondary eclipse – occurs if δ < 1+ rp and sin (θ(t)+ω?) < 0
(planet behind the star).

In order to analytically describe how the total flux F(t)
changes as a function of time due to the presence of a tran-
siting planet, we need to account for the disk-integrated
stellar flux F?(t), the planet flux Fp(t) (both reflected light
and thermal emission), and the loss of light when tran-
sits/occulations occur λ(δ, rp). The total flux F(t) is given by

F(t) = F?(t) + Fp(t) − λ(δ, rp). (22)

We assume that the stellar flux F?(t) is constant and
equal to 1, and that any variation can be expressed as a
fraction of the stellar light. We also assume that the planet
contribution to the light curve is negligible (Fp = 0), i.e., we
assume that occulations and phase curve have no effect on
the observed light curve. Under these assumptions, eq. (22)
can be re-written as

F(t) = 1 − λ(δ, rp). (23)

By definition λ = 0 when δ > 1 + rp. For cases where
δ < 1 + rp, the change of light depends on the analytical
form of λ, which accounts for the loss of light as the planet
crosses the stellar disk. There are different approaches to
define the analytical form of λ(δ, rp). The simplest approach
is to assume that the stellar disk is a uniform source of light
(Seager & Mallén-Ornelas 2003). However, real stellar disks
are brighter in the center and fainter at the edge (the limb),
a phenomenon known as limb darkening (see, e.g., Claret &
Bloemen 2011). pyaneti uses the Mandel & Agol (2002)’s
transit light cure model in which the stellar intensity is limb-
darkened using a quadratic law with coefficients u1 and u2.
Mandel & Agol (2002) provide the function λ(δ, rp) for a
single planet transiting a star.

3 The semi-major axis of the relative orbit is defined as a = ap +

a?, where ap and a? are respectively the semi-major axes of the
planet’s and star’s orbit with respect to the center of mass.
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For a system where there are Np transiting planets, the
relative flux of the star is then

F(t) = 1 −
Np∑
j=1

λj (δ, rp). (24)

According to eq. (24), F(t) = 1 if no planet transits the
star; it reduces to the one-transiting-planet case when there
is a single planet crossing the stellar disk. Equation (24)
takes also into account multi-planet transit events. We note
that this approach does not take into account occultations
between planets that may occur.

The general parametric function Mtr( ®φ) that describes
transit events in a light curve is

Mtr( ®φ; t) = f ({T0, P, e,w?, Rp/R?, a/R?, i}j, {u1, u2}i ; t). (25)

The set of parameters {T0, P, e,w?, Rp/R?, a/R?, i} re-
peats for each planet j. Each {u1, u2} repeats for each band
i of the light curve.

3.3 Multi-planet joint fit

When both Doppler and transit data are available, the best
approach to perform the analysis is via a joint fit. By com-
paring the RV and the transit equations (eqs. 20 and 25),
we see that T0, P, e and ω? are shared parameters. In this
case the orbital parameters are fitted simultaneously. Usu-
ally, the transit light curves improve the determination of
T0 and P, whereas the RV measurements constrain better e
and ω?. The parameters involved in the joint fit are

®φ = ({T0, P, e,w?, Rp/R?, a/R?, i,K}j, {u1, u2}i, γk ), (26)

where {T0 , P , e ,w? , Rp/R? , a/R? , i ,K?}j repeats for
each planet j, {u1, u2}i for each photometric band i, and
γK for each spectrograph k.

3.4 Parametrizations

Equation (26) defines the general set of parameters that can
be extracted by modeling RV measurements and transit pho-
tometry. It is possible to use a set of convenient parametriza-
tions to improve the exploration of the parameter space and
avoid biases due to priors. In the following sub-sections we
provide a brief description of the parameterizations used by
pyaneti.

3.4.1 Eccentricity and angle of periastron

The posterior distribution of the eccentricity is not well sam-
pled for orbits with small eccentricities (Lucy & Sweeney
1971). A practical solution is to define e and ω? using a po-
lar form. pyanety adopts the parametrization proposed by
Anderson et al. (2011)

ew1 =
√

e sinω?, ew2 =
√

e cosω?. (27)

This parameterization has two advantages: a) it is not
truncated when the eccentricity is close to zero; b) uniform
priors on ew1 and ew2 imply uniform priors on the eccen-
tricity.

3.4.2 Impact factor

As presented in Sect. 3.2, the transit of a planet can de-
scribed using the scaled projected distance between the
planet and star centers. It is then convenient to parametrize
the stellar inclination using a parameter that takes into ac-
count the projected distance. A practical approach is via the
impact parameter defined as (Winn 2010)

b =
a

R?
cos i

(
1 − e2

1 + e sinω?

)
. (28)

The advantage of using the impact factor is that b can
be compared directly with the projected distance z. In this
way it is easy to set priors to exclude orbits for which there
are no transit, i.e., when b > 1 + rp.

3.4.3 Limb Darkening coefficients

For the limb darkening coefficients pyaneti uses the param-
eterization proposed by Kipping (2013), who showed that
an optimal way to sample the parameter space for the Man-
del & Agol (2002)’s limb darkening coefficients is via the
parametrization

q1 = (u1 + u2)2, q2 =
u1

2(u1 + u2)
. (29)

The advantage of this approach is that it fully accounts
for our ignorance about the intensity profile and explores
physical solutions by sampling uniformly q1 and q2 between
0 and 1. This yields robust and realistic uncertainty esti-
mates. It is possible to recover the original u1 and u2 coeffi-
cients via

u1 = 2q1
√

q2, u2 =
√

q1(1 − 2q2). (30)

3.4.4 Stellar density

From Kepler’s third law we obtain that

ρ? + r3
p ρp =

3π
GP2

(
a

R?

)3
. (31)

where ρ? is the star’s mean density, ρp the planet’s
mean density, rp the planet-to-star radius ratio, P the orbital
period, R? the star’s radius, and a the semi-major axis of
the relative orbit. Since r3

p is relatively small, the second
term of the left side of eq. (31) can be neglected (Winn
2010). There is thus a relation between the stellar density
and the orbital parameters P and a/R? that can be used
to compare stellar density derived from the modeling of the
transit light curves with an independent determination (e.g.,
from spectroscopy).

It is convenient to parametrize a/R? with ρ?. If precise
stellar parameters have been calculated, it is possible to set
tight priors on the stellar density and hence on a/R?. For
a multi-planet system, it is convenient to parameterize the
scaled semi-major axis aj/R? of all planets j using the same
stellar density. In this way the stellar density is constrained
for all planets and Kepler’s third law is not violated within
planets orbiting the same star.

MNRAS 000, 1–15 (2018)
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pyaneti uses the parametrization ρ
1/3
? instead of ρ? be-

cause a/R? and ρ
1/3
? are linearly related assuming rp ≈ 0

(eq. 31).

4 CODE OVERVIEW

If we combine the MCMC analysis described in Sect. 2 along
with the multi-planet equations presented in Sect. 3, we can
develop a powerful tool to estimate planet parameters from
Doppler and transit observations. We used this approach to-
gether with the computational speed of FORTRAN and the ver-
satility of PYTHON to write the software suite pyaneti. The
computation-demanding routines, such as orbital solutions,
likelihood calculations, etc., are calculated by FORTRAN sub-
routines. The input and output routines, such as data prepa-
ration, plot creations, etc., are handled by PYTHON. FORTRAN
subroutines are wrapped to PYTHON using F2PY4.

One of the main advantages of pyaneti is that all the
code controls are given inside a PYTHON-based input file. Pri-
ors, fitted parameters, and data files are controlled via flags
and python objects. This allows one to run the code with
only one command line. A general overview of the algorithm
of the code is given in Algorithm 2.

The advantage of using the ensemble sampler algorithm
described in section 2.4 is that it can be parallelized. This
speed-up the global solution of the MCMC run. The par-
allelization is done following the procedure described in
Foreman-Mackey et al. (2013), in which we divide the en-
semble in two subsamples and evolve each group taking a
chain from the complementary set of chains. We use Open
Multi-Processing (OpenMP) to perform the parallelization in-
side the FORTRAN routines.

There are some physical effects that are not included
in the current version of the code. Transit timing varia-
tions (TTVs), mutual interaction between planets, multi-
band photometry, Rossiter-McLaughlin effect, planet’s oc-
cultations, planet’s phase curve fitting have not been im-
plemented yet. pyaneti currently uses likelihood and pri-
ors as described in Sect. 2. More general likelihoods, such
as Gaussian Process, have not been included yet. Neverthe-
less, the code is written in a modular way making it easy
and straightforward to implement additional physical effects
or equations. We plan to keep maintaining and upgrading
pyaneti.

5 CODE TESTS

5.1 A toy model

5.1.1 Setup

We created a set of synthetic RV and transit data to check
the performance of pyaneti. The simulated planetary sys-
tem includes three planets: the two innermost planets transit
the star, whereas the outer planet can only be seen in the
RV data set.

Synthetic data points were created assuming a star with
a mass of 0.66 M� and radius of 0.67 R�. The planets have

4 More documentations are available at http://www.f2py.com/.

periods of 1.21321, 5.61122, and 12.12349 days with conjunc-
tion times of 1.0, 2.21529, and 4.63963 days, respectively.
Their radii and masses are 1.5, 3.0, and 7 R⊕, and 5, 10, and
62 M⊕, respectively. The orbits of the two innermost plan-
ets are circular, whereas the outer planet has a non-zero
eccentricity of ec = 0.1 with the star’s argoment of perias-
tron ω?,c = 204 deg. We assumed inclinations of ib = 87 deg,
ic = 88 deg, and id = 84 deg, so that the two innermost plan-
ets transit the star while planet d does not. We assumed that
gravitational interaction between the three planets is negli-
gible. We imposed limb darkening coefficients of u1 = 0.43
and u2 = 0.31. We used these values to calculate the scaled
parameters used by pyaneti. Details of the whole set of fit-
ted parameters are given in Table 1.

The synthetic light curve covers a range of 30 days start-
ing at an arbitrary 0 point. We created the instantaneous
normalized flux due to the transiting planets using eq. (24)
with continuous time stamps separated by 5 minutes. We
added Gaussian noise at the 5 × 10−5 level to simulate high
precision photometry, such as that provided by Kepler. The
synthetic light curve is displayed in the upper panel of Fig. 3.

The simulated RV measurements cover the 30 days si-
multaneous to the light curve data. Time stamps were taken
from a random uniform distribution and the corresponding
RVs were calculated using eq. (19). We simulated data for
two spectrographs called instrument A and B. For spectro-
graph A, we created 50 absolute RVs with Gaussian noise of
1 m s−1 assuming a systemic velocity of 10 km s−1. For instru-
ment B, we simulated 50 time stamps with Gaussian noise of
5 m s−1, but we assigned error bars of 3 m s−1 to each point to
simulate a jitter term of σj = (52 − 32)1/2 m s−1 = 4m s−1. We
assumed that the RVs of instrument B are relative and arbi-
trarily centered around 0 km s−1. The lower panel of Fig. 3
shows the synthetic data-points following the correction for
the RV offset between the two instruments.

We performed a joint fit setting uniform priors for all
the parameters (details are given in Table 1). We used 100
independent Markov chains started randomly inside the uni-
form prior ranges. Once all chains converged, we used the
last 5000 iterations and saved the chains’ states every 10
iterations. This approach generated a posterior distribution
of 50,000 points for each parameter.

5.1.2 Results

Table 1 contains the medians and 68% credible intervals of
the posterior distributions of the fitted parameters. We note
that the system parameter’s true values are inside the pos-
terior distribution of each parameter. In most cases, the true
values are inside the 68% credible interval. This shows the
power of pyaneti to infer real parameters from data.

The lower panel of Fig. 3 shows the simulated RV data
and the inferred best-fitting three-planet model. Figure. 4
displays the phase-folded transit and RV curves. Figure 5
displays the posterior distributions of some of the fitted pa-
rameters. These histograms are useful diagnostic plots to
check the goodness of the MCMC output. We note that
our analysis provides unimodal posterior distributions. Their

shapes are either Gaussian (T0,b and Pb), or skewed (ρ
1/3
?

and Rp,c/R?). The 68% credible intervals are over plotted on
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input : RV and/or light curve time-series, correct input file for star-name

output: Posterior distributions, plots, parameter inference of RV and/or transit models from data

1 ./pyneti.py star-name (start of the run)
2 Read initial files (functions, default values)
3 Read input file with parameters for the current run (number of planets, priors, flags)
4 Read time-series data
5 Pass data and variables to FORTRAN routines
6 Start FORTRAN execution
7 Create random chains inside the prior ranges
8 Calculate likelihoods and priors for the initial state
9 Set iteration control variable continua to True

10 Initialize iterations count variable i=0

11 while continua do
12 Evolve chains following Algorithm 1 ! This line can also run in parallel
13 check for convergence after N iterations !N is calculated as niter × thin_factor

14 if i == N then
15 Check convergence using Gelman & Rubin (1992) criteria
16 if chains converged == False then
17 continua = True !Chains have not converged: Keep iterating
18 i = 0 ! restart iteration counter

19 else
20 continua = False !Chains have converged: save posteriors
21 end

22 end

23 end
24 Write posterior distributions with the converged chains taking into account the thin factor
25 End of FORTRAN execution
26 Run PYTHON output routines
27 Read posterior from posterior file
28 Automatic calculation of parameters and creation of plots
29 Save data in the outpy/star-name_out directory
30 End of run for star-name

Algorithm 2: General algorithm of pyaneti.

each histogram; they corresponds to the error bars reported
in Table 1.

We note that the jitter term of instrument B found by
pyaneti (σB = 4.09+0.77

−0.68 m s−1; cfr. Table 1) agrees with the

simulated value of 4 m s−1. We stress that jitter terms must
be used when we have a reason to believe that the error
bars are underestimated (χ2/dof > 1). If a fit is poor, it is
recommended to first check if the model can be improved
before adding a jitter term. The derived stellar density is
fully consistent with the density expected for the simulated
host star. We emphasize that pyaneti fits for the stellar
mean density instead for the scaled semi-major axis of planet
b and c (see Sect. 3.4).

5.2 The multi-planet system K2-38

5.2.1 Setup

We also tested pyaneti with a real planetary system. We
modeled the transit photometry and radial velocities of
K2-38 and compared our results with those published by
Sinukoff et al. (2016). K2-38 is G2 V star transited by two
planets whose masses have been measured via Doppler spec-
troscopy. The inner planet, K2-38 b, orbits the star every
4 days. It has a mass of 12 M⊕ and a radius of 1.55 R⊕.

The outer transiting planet, K2-38 b, has an orbital period
of 10.5 days, a mass of 9.8 M⊕, and a radius of 2.4 R⊕.

K2-38 was photometrically observed by the K2 mission
(Howell et al. 2014) during its campaign 2. The RV mea-
surements were gathered with the HIRES spectrograph (Vogt
et al. 1994) mounted at the Keck I 10 m telescope, at Keck
Observatory (Mauna Kea, Hawai’i). Sinukoff et al. (2016)
detected a linear trend in the RV measurements, indicative
of the presence of an additional companion in the system.
While modeling the RV data, the authors added a jitter
term to the nominal uncertainties to account for instrumen-
tal velocity noise not included in the nominal uncertainties
and/or possible sources of stellar variability. Because of its
complexity, this system is an ideal test-bench for pyaneti.

We used the EVEREST processed light curve (Luger
et al. 2016) to perform the transit light curve analysis. We
de-trended the K2 data with exotrending (Barragán & Gan-
dolfi 2017) by fitting a second-order polynomial function to
the 5-hour out-out-transit data centered around each tran-
sit. The RV measurements were taken from Sinukoff et al.
(2016).

We used the general form of the likelihood given in
eq. (3) to account for the RV jitter term. We added a linear
trend term Ûγ to equation (19) taking as zero point the time
of conjunction of planet b. We super-sampled the transit
model by a factor of 10 to account for the K2 long-cadence

MNRAS 000, 1–15 (2018)
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Figure 3. Upper panel: Thirty-day-long synthetic light curve. We assumed a relative flux of 1 with no trends. There are two transiting

planets with different periods and sizes, marked with dashed lines. Lower panel: Synthetic RV measurements. The RV signal consists

of three planets with different masses and periods. Instrument A (blue circles) has a precision of 1 m s−1, whereas instrument B (red
squares) has a precision of 5 m s−1. The nominal error bars of instrument B were set to 3 m s−1 to simulate a jitter term (gray extensions

to the nominal error bars). The best fitting model is shown as a thick black line. Offsets were subtracted to both data sets.

data (Kipping 2013). We fixed q2 to 0.5 to recover the lin-
ear limb darkening case and set Gaussian priors on q1 with
1-σ uncertainty of 0.1. We set uniform priors for the re-
maining parameters (details are provided in Table 2) and
assumed circular orbits as adopted by Sinukoff et al. (2016).
The sampling of the parameter space follows the procedure
described in Sect. 5.1. Briefly, we initialized 100 indepen-
dent chains created randomly inside the prior ranges. Once
all chains converged, we created posterior distributions with
50,000 independent points for each parameter.

5.2.2 Results

The final estimates and their 1-σ uncertainties are taken
as the median and the 68 % of the credible interval of the
posterior distributions. Values are reported in Table 2. Pho-
tometric and RV data, along with the best fitting transit
and RV models are displayed in Figure 6.

We compare our results with those from Sinukoff et al.
(2016) in Table 2. The parameter estimates agree well within
their 1-σ uncertainties. However, we note that the largest
discrepancies are found for the parameters derived from the
K2 data. This is very likely due to the different extracted
light curve used in our analysis, as well as on the different
transit de-trending algorithm. As for the RV-derived param-
eters, our results are in excellent agreement with those re-
ported by Sinukoff et al. (2016).

This test confirms the correct implementation of the
MCMC method and multiplanet equations. Sinukoff et al.

(2016) used the widely used ensemble sampler package emcee
(Foreman-Mackey et al. 2013).

5.3 Execution performance

We show here that pyaneti is able to produce scientific re-
sults within a few minutes in a personal laptop. We ran
the test case presented in section 5.2 (2 planet system, 435
data points, 10 000 iterations with 100 independent Markov
chains) with different CPU configurations. We used a ma-
chine with an Intel i7-6500U CPU (Four 2.50GHz cores) and
with Linux (Fedora 64-bit) operating system. We compiled
the code with gfortran 8.1.1 and used 1, 2, and 4 CPUs.
The respective execution times were 10m 11s, 5m 56s and
4m 22s. These results prove the power of the code to per-
form a full run in a personal laptop. However, we stress that
the execution time depends on the analyzed data set. Based
on our experience with pyaneti, the modeling of only RV
data is carried withing a few minutes. For demanding fits
requiring longer execution time (e.g., long time-series pho-
tometry), pyaneti can be ran in parallel in a server machine
equipped with more than one CPU.

6 CONCLUSIONS

We have developed and tested the code pyaneti, a software
suite able to simultaneously fit RV and transit light curves of
multi-planet systems. pyaneti combines the computational
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Table 1. System parameters.

Parameter Real value Prior(a) Inferred value

Model Parameters planet b

Orbital period Porb (days) 1.21321 U[1.2122, 1.2142] 1.2132028 ± 0.0000097
Transit epoch T0 1.0 U[0.9965, 1.0035] 1.00010 ± 0.00012
Scaled planet radius Rp/R? 0.020525 U[0, 0.1] 0.0204479+0.00027

−0.00015
Impact parameter, b 0.33 U[0, 1] 0.25+0.13

−0.15
e 0 F[0] 0

ω? 0 F[0] 0

Radial velocity semi-amplitude variation K (m s−1) 3.95 U[0, 50] 4.16 ± 0.23

Model Parameters planet c

Orbital period Porb (days) 5.61122 U[5.6012, 5.6212] 5.611254 ± 0.000041
Transit epoch T0 2.21529 U[2.2143, 2.2163] 2.21530 ± 0.00010
Scaled planet radius Rp/R? 0.04105 U[0, 0.1] 0.04058+0.00057

−0.00030
Impact parameter, b 0.60 U[0, 1] 0.57+0.06

−0.03
e 0 F[0] 0
ω? 0 F[0] 0

Radial velocity semi-amplitude variation K (m s−1) 4.74 U[0, 50] 4.86 ± 0.33

Model Parameters planet d

Orbital period Porb (days) 12.12349 U[11.8235, 12.4235] 12.142 ± 0.028
Transit epoch T0 4.640 U[4.1396, 5.1396] 4.592 ± 0.052
e 0.1 U[0, 1] 0.096 ± 0.012
ω? 3.57 U[0, 2π] 3.60 ± 0.14
Radial velocity semi-amplitude variation K (m s−1) 22.75 U[0, 50] 22.99 ± 0.24

Other Parameters

Cubic root of stellar density ρ
1/3
? 1.458 U[0.05, 2] 1.496+0.039

−0.072
Systemic velocity γA (km s−1) 10 U[9, 11] 9.99991 ± 0.00017
Systemic velocity γB (km s−1) 0 U[−1, 1] 0.00107 ± 0.00084
Jitter term σA (m s−1) 0 U[0, 100] 0.25+0.24

−0.18
Jitter term σB (m s−1) 4 U[0, 100] 4.09+0.77

−0.68
Parameterized limb-darkening coefficient q1 0.55 U[0, 1] 0.60±0.05
Parameterized limb-darkening coefficient q2 0.29 U[0, 1] 0.25+0.05

−0.04

Note – (a) U[a, b] refers to uniform priors between a and b and F[a] to a fixed value a.

power of FORTRAN with the versatility of PYTHON and it offers
the option to run in parallel with OpenMP. The package has
been developed under “the open source ideology”, i.e., both
the code and the platforms used to write the package are
totally free.

We have tested pyaneti with synthetic data and proved
that the code is able to recover the parameters of multi-
planet systems. We have also performed an independent fit
of K2-38 and our results are consistent with those in the
literature. The joint modeling of the transit and RV mea-
surements of the K2-38 system takes only ∼5 min on a per-
sonal laptop. This demonstrates that the code can perform
fast analyses and makes pyaneti a powerful tool to perform
data analysis of hundreds of systems coming from future
space- and ground-based instruments, such as TESS, PLATO,
CHEOPS, and ESPRESSO.

Future releases of pyaneti will include extra parametric
models, such as TTV, multi-band photometry and phase
curves. We anticipate that the code will also be able to use
other likelihoods and priors, such as Gaussian processes.
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Figure 4. Upper panels: Phase-folded light curves for planet b and c of the simulated planetary system. Synthetic data points are plotted
with the red circles. The best fitting transit models are over-plotted with thick black lines. Middle and lower panels: Phase-folded RV

curves for planet b, c and d of the simulated planetary model. Synthetic data for instrument A is shown with blue circles, whereas for

instrument B with red diamonds. The best fitting RV models are over-plotted with thick black lines. The gray error bars account for the
jitter term for each instrument.
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Figure 6. Upper panel : HIRES RV measurements of K2-38 (blue circles). The best-fitting solution is shown with a thick black line.
A linear trend is visible in the data. The fitted stellar jitter is shown as a gray extension to the nominal error bars. Middle panels:

Phase-folded RV curves for K2-38 b (left) and K2-38 c (right). Lower panels: Transit light curve folded to the orbital period of K2-38 b
(left) and K2-38 c (right), and residuals. The red points are K2 data. The thick black lines mark the best fitting transit models.

APPENDIX A: NUMERICAL TREATMENT OF
THE POSTERIOR

Equation (4) may lead to very small/big numbers which
generate numerical overflows. Therefore it is convenient to
use the logarithmic of probability densities. Bayes’ theorem
is rewritten as

ln P(M |D) = ln P(D |M) + P(M) − P(D). (A1)

We note that this treatment of the posterior does not

affect the MCMC method. Since the ratio between the actual
and proposed states can be calculated easily as

P(D | ®Φ)P( ®Φ)
P(D | ®φ)P( ®φ)

= exp
[
ln P(D | ®Φ) + ln P( ®Φ) − ln P(D| ®φ) − ln P( ®φ)

]
(A2)

By following this approach, the general form of the

MNRAS 000, 1–15 (2018)
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Table 2. System parameters.

Parameter Sinukoff et al. (2016) Prior(a) Fitted value

Model Parameters planet b

Orbital period Porb (days) 4.01593 ± 0.00050 U[4.0134, 4.0184] 4.01632+0.00032
−0.00034

Transit epoch T0 (BJD - 2,450,000) 6896.8786 ± 0.0054 U[6896.8486, 6896.9086] 6896.8734+0.0038
−0.0034

Scaled semi-major axis a/R? 10.7+1.3
−3.7 U[1.1, 50] 11.3+1.0

−2.3
Scaled planet radius Rp/R? 0.01281+0.00105

−0.00064 U[0, 0.1] 0.01247+0.00087
−0.00045

Impact parameter, b 0.48 ± 0.30 U[0, 1] 0.35+0.33
−0.25

e 0 F[0] 0

ω? (deg) 90 F[90] 90

Radial velocity semi-amplitude variation K (m s−1) 4.6 ± 1.1 U[0, 100] 4.6 ± 1.1

Model Parameters planet c

Orbital period Porb (days) 10.56103 ± 0.00090 U[10.5565, 10.5655] 10.56155 ± 0.00049
Transit epoch T0 (BJD - 2,450,000) 6900.4752 ± 0.0033 U[6900.4552, 6900.4952] 6900.4740 ± 0.0018
Scaled semi-major axis a/R? 26.3+5.4

−16.1 U[1.1, 50] 31.3+2.1
−5.1

Scaled planet radius Rp/R? 0.02004+0.0024
−0.0013 U[0, 1] 0.01841+0.0010

−0.0005
Impact parameter, b 0.640.23

−0.41 U[0, 1] 0.34+0.27
−0.25

e 0 F[0] 0

ω? (deg) 90 F[90] 90

Radial velocity semi-amplitude variation K (m s−1) 2.8 ± 1.3 U[0, 1000] 2.8 ± 1.3

Other Parameters

RV value at T0,1 γ (m s−1) (b) −1.7 ± 0.9 U[−1000, 1000] 0.034 ± 0.010
Linear trend slope Ûγ (km s−1 d−1) −0.101 ± 0.030 U[−1, 1] −0.103 ± 0.029
HIRES jitter term σHIRES (m s−1) 2.4+1.0

−0.7 U[0, 1000] 2.4+1.0
−0.7

Parameterized limb-darkening coefficient q1 0.38 ± 0.1 (c) N[0.38, 0.1] 0.42 ± 0.1
Parameterized limb-darkening coefficient q2 0.5 (c) F[0.5] 0.5

Note – (a) U[a, b] refers to uniform priors between a and b, N[a, b] to Gaussian priors with median a and standard deviation b, and

F[a] to a fixed value a. (b) Our results and Sinukoff et al. results do not agree because the instant at which the intercept is calculated
is not the same. (c) We transform the values reported by Sinukoff et al. to the q1 and q2 parametrization to perform the comparison.

Gaussian likelihood for an RV and transit fit is given us-
ing eq. (4) as

P(D |M) =
NRV∏
i


1√

2π(σ2
i
+ σ2

j )

RV

×
NLC∏
i


1√

2π(σ2
i
+ σ2

j )

LC

×exp
{
−1

2
χ2

Tot

}
,

(A3)

where

χ2
Tot =

NRV∑
i

(Di,RV − Mi,RV)2

σ2
i
+ σ2

j
+

NLC∑
i

(Di,LC − Mi,LC)2

σ2
i
+ σ2

j
. (A4)

The RV and LC sub-indexes refers to RV and light curve
data and models, respectively. The logarithmic form of the
likelihood given in eq. (4) is rewritten as

ln P(D|M) = −1
2

[
NRV∑
i

ln 2π(σ2
i + σ

2
j ) +

NLC∑
i

ln 2π(σ2
i + σ

2
j ) + χ

2
Tot

]
.

(A5)

We note that eq. (A5) can be used too model pure RV
or transit data.

This paper has been typeset from a TEX/LATEX file prepared by
the author.

MNRAS 000, 1–15 (2018)


	1 Introduction
	2 Mathematical approach
	2.1 The Bayes' theorem
	2.2 Likelihood
	2.3 Markov chain Monte Carlo
	2.4 Ensemble sampler algorithm
	2.5 Convergence
	2.6 Marginal posterior distribution from parameter sampling

	3 Multi-planet equations
	3.1 Radial velocity equations
	3.2 Transit equations
	3.3 Multi-planet joint fit
	3.4 Parametrizations

	4 Code overview
	5 Code tests
	5.1 A toy model
	5.2 The multi-planet system K2-38
	5.3 Execution performance

	6 Conclusions
	A Numerical treatment of the posterior

