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Abstract 

 

The identification and validation of new small molecules able to inhibit the replication of 

human cytomegalovirus (HCMV) remains a priority to develop alternatives to the currently used 

DNA polymerase inhibitors, which are often burdened by long-term toxicity and emergence of 

cross-resistance. To contribute to this advancement, here we report on the characterization of the 

mechanism of action of a bioactive plant-derived alkaloid, berberine (BBR), selected in a previous 

drug repurposing screen expressly devised to identify early inhibitors of HCMV replication. Low 

micromolar concentrations of BBR were confirmed to suppress the replication of different HCMV 

strains, including clinical isolates and strains resistant to approved DNA polymerase inhibitors. 

Analysis of the HCMV replication cycle in infected cells treated with BBR then revealed that the 

bioactive compound compromised the progression of virus cycle at a stage prior to viral DNA 

replication and Early (E) genes expression, but after Immediate-Early (IE) proteins expression. 

Mechanistic studies in fact highlighted that BBR interferes with the transactivating functions of the 

viral IE2 protein, thus impairing efficient E gene expression and the progression of HCMV 

replication cycle. Finally, the mechanism of the antiviral activity of BBR appears to be conserved 

among different CMVs, since BBR suppressed murine CMV (MCMV) replication and inhibited the 

transactivation of the prototypic MCMV E1 gene by the IE3 protein, the murine homolog of IE2. 

Together, these observations warrant for further experimentation to obtain proof of concept that 

BBR could represent an attractive candidate for alternative anti-HCMV therapeutic strategies. 

 

 

 

 

 
Keywords: Berberine chloride; Human Cytomegalovirus; Murine Cytomegalovirus; IE2; IE3; 

Promoter transactivation. 
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1. Introduction 

 

Human cytomegalovirus (HCMV) represents one of the most important opportunistic human 

pathogens. It belongs to the Beta-herpesvirinae subfamily and rarely causes symptomatic clinical 

manifestations in immunocompetent individuals (Griffiths et al., 2015; Luganini et al., 2016; Britt 

& Prichard, 2018). However, HCMV induces severe morbidity and mortality in the 

immunocompromised population following reactivation or primary infection, leading to gastro- 

intestinal diseases, pneumonia, retinitis, and other organs’ infections (Griffiths et al., 2015; 

Luganini et al., 2016). Moreover, HCMV is also the viral leading cause of congenital defects in 

newborn children, causing deafness and other neurological disorders in approximately 0.1% cases 

of congenital infections (Britt, 2018). Understanding the molecular mechanisms of HCMV 

replication and identifying essential viral and host factors involved in productive infection is 

mandatory for the development of new effective antiviral agents and therapeutic strategies that 

could fill the gap left by the currently approved anti-HCMV therapies. In fact, the drugs available 

for the treatment of HCMV infections suffer from several drawbacks, including long-term toxicity 

and poor bioavailability (Meesing and Razonable, 2018). In addition, since the anti-HCMV drugs 

all share a common target (i.e., the viral DNA polymerase), the possibility may occur that drug- 

resistant viruses selected during long-term therapy are also cross-resistant to all the available drugs, 

leaving the patient bereft of therapeutic options (Haidar and Singh, 2017; Razonable, 2018). A step 

forward was the very recent approval of letermovir, a viral terminase inhibitor, albeit only as a 

prophylactic agent for preventing HCMV disease in patients undergoing hematopoietic stem cells 

transplantation (Bray et al., 2018; Marty et al., 2017). For all these reasons, there is an evident 

medical need for the development of new anti-HCMV drugs with a favorable pharmacological 

profile and directed against different viral targets. 

The multifunctional and essential viral Immediate-Early 2 (IE2) protein is thought one of the 

most promising new targets for anti-HCMV drug discovery, and over time targeting IE2 expression 
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or activity has been proven to represent an effective antiviral strategy ((Scholz et al., 2001; 

Mercorelli et al., 2014a). Indeed, ISIS 2922 (fomivirsen), an antisense phosphorothioate 

oligonucleotide complementary to the mRNA encoding IE2 and thus able to prevent IE2 protein 

expression, is a drug approved for treatment of HCMV diseases, although infrequently used 

compared to ganciclovir (GCV) (Britt & Prichard, 2018). More recently, several small molecules, 

including already approved drugs, have been reported to interfere with the expression or activity of 

IE2 (Mercorelli et al., 2014b; Gardner et al., 2015; Mercorelli et al., 2016; Beelontally et al., 2017; 

Mercorelli et al., 2018a). In detail, we focused on the gene transactivating activity of IE2 (Stinski & 

Petrik, 2008) as a HCMV-specific target for a drug-repurposing cell-based screening of a library of 

both approved drugs and natural bioactive compounds (Mercorelli et al., 2016). Among the 38 

identified hits, the anti-parasitic drug nitazoxanide (NTZ) was observed to inhibit HCMV 

replication, as well as viral Early (E) and Late (L) gene expression and DNA synthesis. Mechanistic 

studies then revealed that NTZ hindered the IE2-dependent transactivation of essential viral E genes 

(Mercorelli et al., 2016). NTZ represents therefore the prototype of a novel class of anti-HCMV 

agents that can act by interfering with the transactivating activity of IE2. The natural compound 

berberine hydrochloride (BBR) was another of the molecules selected by the screening that showed 

a potent inhibitory activity on HCMV replication at low-micromolar concentrations (Mercorelli et 

al., 2016). 

BBR is an isoquinoline alkaloid that can be isolated from different plants belonging to the 

Berberis genus and is a traditional component of Chinese and Ayurvedic medicine used since 

millennials for its antimicrobial and antiparasitic effects (Imenshahidi and Hosseinzadeh, 2016; 

Kumar et al., 2015). Currently, BBR is under preclinical and clinical investigation for its broad- 

spectrum pharmacological properties, including anti-cancer, anti-diabetes, and anti-hypertensive 

activities (Imenshahidi and Hosseinzadeh, 2016; Kumar et al., 2015). An inhibitory activity of BBR 

have been already reported against different viruses, such as herpesviruses (herpes simplex virus 

and HCMV) (Song et al., 2014; Hayashi et al., 2007), influenza virus (Cecil et al., 2011), 
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respiratory syncytial virus (RSV) (Shin et al., 2015), alphavirus (Varghese et al., 2016a; Varghese  

et al., 2016b), enterovirus (Wang et al., 2017), and flavivirus (Robinson et al., 2018). Moreover, 

BBR is used as a common dietary supplement all over the world and thus its repurposing potential 

is high. 

However, in the case of HCMV, the mechanism of the antiviral activity of BBR has not  

been investigated. Here, we report the characterization of the mechanism of action of BBR against 

both HCMV and the murine cytomegalovirus (MCMV) and provide strong evidence that BBR 

targets the activity of the HCMV transcription factor IE2, as well as of its murine homolog IE3. 

 
 

2. Materials & Methods 

 

2.1 Compounds 

 

Berberine chloride (BBR), nitazoxanide (NTZ), foscarnet (FOS), and ganciclovir (GCV) 

were purchased from Sigma-Aldrich. Cidofovir (CDV) was from Gilead Sciences. Fomivirsen (ISIS 

2922) was synthesized by Metabion International AG. The anti-HCMV 6-aminoquinolone 

compound WC5 was previously described (Mercorelli et al., 2009). 

 
 

2.2 Cells and viruses 

 

Human Foreskin Fibroblasts (HFF), low-passage number human embryonic lung fibroblasts 

(HELF), U373-MG, and NIH 3T3 cells were cultured in Dulbecco modified Eagle's medium 

(DMEM) (Life Technologies) supplemented with 10% fetal bovine serum (FBS, Euroclone), 2 mM 

glutamine, 1 mM sodium pyruvate, 100 U/ml penicillin, and 100 μg/ml streptomycin sulfate (P/S, 

both from Euroclone) at 37°C in a humidified atmosphere supplemented with 5% CO2. Quiescent 

HELFs were obtained by culturing the subconfluent cultures for 48 h in DMEM supplemented with 

0.5% serum (low-serum medium). 

HCMV laboratory strain AD169 was purchased from American Type Culture Collection 

(ATCC; VR-538). HCMV TB40-UL32-EGFP (kindly provided by C. Sinzger, University of Ulm, 
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Germany) was previously described (Sampaio et al., 2005). HCMV VR1814 (kindly provided by G. 

Gerna, IRCCS Policlinico San Matteo, Pavia, Italy) was recovered from a cervical swab from a 

pregnant woman (Revello et al., 2001). HCMV 388438U, a clinical isolate of HCMV, was collected 

from a urine sample at the Microbiology and Virology Unit of Padua University Hospital (Italy) and 

was at passage 4 after primary isolation. HCMV strains resistant to antiviral drugs were obtained 

from the NIH AIDS Research and Reference Reagent Program (Rockville, MD) and were 

previously described (Mercorelli et al., 2009). Murine cytomegalovirus (MCMV) strain Smith was 

purchased from the ATCC (ATCC VR-194). Recombinant adenoviral vectors expressing HCMV 

IE2 or E. coli β-galactosidase (LacZ) were previously described (Mercorelli et al., 2014). 

 
 

2.3 Plaque reduction assays 

 

For plaque reduction assays (PRA) with HCMV and MCMV, HFF and NIH 3T3 cells, 

respectively, were seeded in 24-well plates. The next day, cell monolayers were infected at 37°C 

with 100 Plaque Forming Units (PFU) per well of the different viral strains. At 2 h post-infection 

(p.i.), viral inocula were removed, cells were washed, and media containing increasing 

concentrations of each compound, 5% FBS, and 0.6% methylcellulose were added. All compound 

concentrations were tested at least in duplicate. After 10 days for HCMV and 6 days for MCMV, 

cell monolayers were fixed, stained with crystal violet, and viral plaques were microscopically 

counted. 

 
 

2.4 Cytotoxicity assays 

 

The cytotoxicity of BBR and reference compounds were determined by the 3-(4,5- 

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT; Sigma-Aldrich) method, as 

described previously (Loregian and Coen, 2006). 

 
 

2.5 Quantitative Real-Time PCR 
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To analyze the effects of BBR on HCMV DNA synthesis, HFFs were seeded at a density of 

 

1.5 × 105 per well in 24-well plates. The next day, cell monolayers were infected with HCMV 

AD169 at a multiplicity of infection (MOI) of 0.1 PFU/cell and, following virus adsorption (2 h at 

37°C), were incubated with 50 µM BBR or 25 µM GCV as a control. At different times p.i., cells 

were collected and total DNA was extracted. The levels of viral DNA were then determined by 

quantitative Real-time PCR (qPCR) and normalized to the cellular β-globin gene copies as 

previously described (Loregian et al., 2010). The oligonucleotide sequences used for the qPCR 

experiments were previously reported (Mercorelli et al., 2016). 

 
 

2.6 Immunoblotting 

 

Sub-confluent HFF cells cultured in 6-well plates were infected with HCMV AD169 at an 

MOI of 0.5 PFU/cell. Following virus adsorption, cells were treated with 50 μM BBR, 30 μM NTZ, 

or with DMSO (0.1% v/v) as a control. Whole-cell protein extracts were prepared at different times 

p.i. as previously described (Cavaletto et al., 2015), fractionated through 8% SDS-PAGE, and then 

transferred to PVDF membranes (BioRad). After blocking with 5% nonfat dry milk in TBS-Tween 

0.05%, membranes were incubated overnight at 4°C with the following mAbs: anti-IEA (IE1 and 

IE2) (1:2000, clone CH160, Virusys), anti-UL44 (1:2000, clone CH16, Virusys), anti-UL99 

(1:2000, clone H19, Virusys), and anti-tubulin (1:2000, clone TUB 2.1, Sigma) as a control for 

protein loading. Immunocomplexes were then detected with a goat anti-mouse Ig Ab conjugated to 

horseradish peroxidase (Life Technologies) and visualized by enhanced chemiluminescence 

(Western Blotting Luminol Reagent, Santa Cruz). 

 
 

2.7 Plasmids 

 

The pUL54-luciferase indicator plasmids pUL54-0.4, bearing the entire HCMV UL54 

promoter, and pUL54-0.15, containing UL54 promoter sequence from −150 to +15 relative to the 

transcription start site, were previously described (Gariano et al., 2012). pRL-TK and pSV-Rluc 
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vectors expressing Renilla luciferase were purchased from Promega. The indicator plasmids pE(- 

207)Luc and pME(-207)Luc containing the firefly luciferase reporter gene under control of wt and 

mutated cellular cyclin E promoter, respectively, were kindly provided by E.A. Thompson (Mayo 

Clinic Florida, FL) and were previously described (Bresnahan et al., 1998). Generation of the 

pGL3-MIEP-crs wt plasmid expressing firefly luciferase under the control of HCMV Major 

Immediate Early promoter was previously described (Mercorelli et al., 2014). The pGL4.10-luc2- 

LTR construct expressing the luciferase indicator gene under the control of HIV-1 LTR was 

previously described (Perrone et al., 2013). pRPneo/SL3/Tat expressing HIV-1 Tat protein was 

previoulsy described (Gibellini et al., 1995). The firefly luciferase indicator construct phTS- 

243/+30 contains a portion of the promoter of the human thymidylate synthase gene (TS) (-243 and 

+30 relative to the transcription start codon) cloned into pGL3-basic vector (Promega) (Gribaudo et 

al., 2002). The pSGIE72 and pSGIE86 constructs, expressing the HCMV IE1-72 kDa or IE2-86 

kDa proteins respectively, were generated as described previously (Klucher et al., 1993). The empty 

pSG5 expression vector was purchased from Agilent Technologies. The pGL3-E1 vector, harboring 

the MCMV early gene E1 promoter responsive to IE3 protein (the MCMV homolog of HCMV 

IE2), was generated as previously reported (Mercorelli et al., 2014). The pIE3 plasmid for the 

expression of IE3 was described previously (Messerle et al., 1992). pBSK plasmid was purchased 

from Agilent Technologies. 

 
 

2.9 Cell transfection and adenoviral transduction 

 

All transient transfection experiments in HELF cells were performed using Lipofectamine 

3000 (Life Technologies). For transfection/transduction experiments, HELF grown on 24-well 

plates were transfected with the luciferase reporter plasmid driven by either the UL54-0.4 or UL54- 

0.15 gene promoter, and the pRL-TK plasmid expressing Renilla luciferase to normalize variations 

in transfection efficiency (Mercorelli et al., 2016). At 24 h post-transfection, cells were transduced 

with AdVIE2, or AdVLacZ as a control, at an MOI of 20 PFU/cell for 2 h at 37°C, and then  treated 
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with 50 M BBR, 30 μM NTZ, 5 μM ISIS 2922, or 0.1% DMSO (v/v). At 48 h post-transduction, 

cell extracts were prepared and firefly and Renilla luciferase activities were measured. 

To evaluate the effect of BBR on the TS gene promoter activity, HELF cells were co- 

transfected with phTS-243/+30, pSGIE72, or the empty pSG5 vector, along with pRL-TK plasmid. 

At 18 h post-transfection, cells were washed with warm medium and incubated in low-serum 

medium (0.2% FBS) containing 50 μM BBR, 30 μM NTZ, or 0.1% DMSO (v/v) for 48 h before 

measuring firefly and Renilla luciferases activities (Gribaudo et al., 2002; Mercorelli et al., 2018). 

Transient transfections in U373-MG cells were performed using calcium phosphate precipitation 

method (CellPhect Transfection Kit, GE Healthcare). Briefly, U373-MG were seeded in 24-well 

plates and the next day were transiently co-transfected with 0.5 µg of plasmids containing different 

promoters (cyclin E both wt and mutated, HCMV MIEP, and HIV-1 LTR) and, where indicated, 

pSGIE86 or Tat-expressing plasmids in 1:3 ratio, along with 0.25 µg of pSV-Rluc plasmid as a 

control for transfection efficiency. Total DNA amount was equalized with pSG5 empty vector. 

After incubation for 4 h at 37°C, the transfection mixtures were removed and medium containing 

either BBR or DMSO (0.1%) as a control was added to the cells. To investigate whether BBR could 

affect the transactivation of MCMV E1 gene promoter by the IE3 protein, NIH 3T3 cells grown on 

24-well plates were co-transfected using Lipofectamine 3000 with 0.75 μg of luciferase reporter 

plasmid pGL3-E1 and, where indicated, with 1.5 μg of pIE3 plasmid and with 0.15 μg pRL-TK 

plasmid. In control transfections, the total amount of DNA was equalized with pBSK. After 3 h at 

37°C, transfected cells were treated with 50 μM BBR, or 50 μM WC5 as a positive control, or 0.1% 

DMSO (v/v) as a negative control. At 48 h post-transfection, cells were harvested for the 

measurement of firefly and Renilla luciferase activities. For all transfection experiments, firefly and 

Renilla luciferase activities were measured using the Dual-Luciferase reporter assay system kit 

(Promega). 

 
 

2.10 Statistical analysis 
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All statistical analyses were performed using GraphPad Prism version 5.00 for Windows 

(www.graphpad.com; GraphPad Software, San Diego, CA). 

 
 

3. Results 

 

3.1 Berberine exerts broad-spectrum anti-HCMV activity 

 

In a drug repurposing screening specifically designed to identify inhibitors of the HCMV 

transcription factor IE2, we identified the bioactive plant-derived BBR as a hit compound 

(Mercorelli et al., 2016). The observation of the anti-HCMV activity of BBR in our experimental 

setting prompted us to characterize deeper its mechanism of action. To this end, we first confirmed 

the anti-HCMV activity and cytotoxicity of BBR in HFF cells by PRAs and MTT assays, 

respectively (Table 1). According to our previous observations (Mercorelli et al., 2016), BBR 

specifically inhibited HCMV AD169 replication in a dose-dependent manner (Fig. 1) with an 

Effective Concentration (EC50) of 2.65 µM. This value was very similar to that measured for GCV 

in our experimental conditions (Table 1). The Cytotoxic Concentration (CC50) determined by MTT 

assays was 390 μM, thus resulting in a favorable Selectivity Index (SI) of 147 (Table 1). In this 

regard, a similar SI value was previously observed for BBR in MRC5 cells (Hayashi et al., 2007). 

To further characterize the anti-HCMV activity of BBR, we performed PRAs with several HCMV 

strains, including different low-passage clinical isolates (TB40-UL32-EGFP, VR1814, and 

388438U). Results reported in Table 2 indicated that the anti-HCMV activity of BBR is not 

dependent on the viral strain used for the studies, since the EC50 values obtained with different 

HCMV strains were all comparable. 

 
 

3.2 Activity of BBR against drug-resistant HCMV strains 

 

Next, we evaluated the activity of BBR against HCMV strains resistant to the available viral 

DNA polymerase inhibitors, as the emergence of drug resistance is an increasing cause of transplant 

failure associated with HCMV infections, in particular after prolonged antiviral therapy (Razonable, 
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2018). BBR fully inhibited the replication of viruses with mutations in UL54 gene conferring cross- 

resistance to GCV and CDV and to FOS and acyclovir (strains GDGrP53 and PFArD100, 

respectively, Table 3). These results suggested that BBR may have a mechanism of action that 

differs from that of the currently available anti-HCMV drugs that target the viral DNA polymerase. 

 
 

3.3 BBR inhibits HCMV DNA replication 

 

To investigate the effect of BBR on the replication of HCMV genome, we performed a 

quantitative analysis of viral DNA production at different times p.i.. As depicted in Fig. 2, a 

progressive increase of viral DNA levels was detected by qPCR in a time-dependent manner up to 

120 h p.i. in untreated infected cells. In contrast, already at 72 h p.i. (i.e., after a completed cycle of 

replication), BBR, like the specific HCMV DNA polymerase inhibitor GCV, significantly inhibited 

the replication of viral genome. The inhibitory activity of BBR was confirmed later at 96 and 120 h 

p.i. (Fig. 2). Thus, most likely BBR affects a stage of the HCMV replication cycle that is located 

prior to the onset of viral DNA replication and this interference resulted in a significant impairment 

of viral DNA synthesis. 

 

 

 
3.4 BBR interferes with the HCMV replication cycle after the IE phase 

 

To determine whether the observed inhibition of HCMV DNA synthesis (Fig. 2) was a 

consequence of a BBR-mediated effect on viral IE and/or E gene expression that foreruns viral 

genome replication, HFFs were infected with HCMV AD169 and treated with BBR for different 

times p.i. Then, total protein cell extracts were assayed by immunoblotting for the content of 

representative Immediate-Early (IE1 and IE2), Early (UL44), and Late (UL99) viral proteins 

(Figure 3). For each time p.i. analyzed, control samples were: (i) extracts prepared from AD169- 

infected cells treated with the appropriate DMSO amount, and (ii) AD169-infected cells treated 

with NTZ, as a positive control for inhibition of the expression of Early and Late HCMV proteins 
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(Mercorelli et al., 2016). Figure 3 shows that BBR did not seemingly affect IE1 and IE2 protein 

accumulation at each time analyzed. In contrast, compared to the untreated cells, BBR determined a 

clear reduction in UL44 and UL99 levels, although less markedly than NTZ, which was used as a 

positive control. Taken together, these results indicated that BBR affects HCMV replication cycle 

after the expression of IE proteins and, together with those reported in Fig. 2, suggested that BBR 

likely interferes with a molecular event involved in the expression of HCMV E genes. 

 
 

3.5 BBR inhibits the IE2-dependent transactivation of both viral and cellular promoters 

 

To investigate whether BBR might affect the transactivation of E genes of HCMV, 

luciferase reporter plasmids containing full-length or a minimal UL54 gene promoter were 

transfected in HELFs. The UL54 promoter is a prototypic HCMV E gene promoter that is 

transactivated by IE2, thus its activation marks out the E phase of HCMV replicative cycle (Stinski 

& Petrik, 2008). Two luciferase reporter plasmids containing different segments of the UL54 gene 

5'-flanking region were used: the UL54-0.4 construct includes the full-length gene promoter, while 

the UL54-0.15 plasmid carries a segment of 150 bp upstream from the transcription start site 

(Gariano et al., 2012). This shorter portion of the UL54 5'-flanking region mediates the IE2- 

dependent transactivation of the UL54 gene at a level comparable to that of the full-length 

promoter. Furthermore, it includes an 8-bp inverted repeat element 1 (IR-1, located between -55 and 

-48 nt relative to the transcription start site) which has been shown to be required for both HCMV- 

and IE2-mediated transactivation (Kerry et al. 1996). Thus, to identify the minimal portion of the 

UL54 gene promoter sufficient to mediate the sensitivity to BBR, the UL54-0.15 construct was also 

included in transfection-transduction experiments. At 24 h post-transfection, HELFs were 

transduced with the adenoviral vectors AdVIE2 or AdVLacZ as a negative control of transcriptional 

activation, and, after additional 2h, treated with BBR, ISIS 2922, or NTZ. The latter two 

compounds were employed as positive controls for inhibition of the IE2-dependent UL54 gene 

promoter transactivaction (Mercorelli et al., 2016). As shown in Fig. 4A, ectopic expression of IE2 
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significantly increased the transcriptional activity of both UL54 reporter constructs compared to 

cells expressing LacZ. As expected, both NTZ and ISIS 2922, both used as a positive control, 

inhibited the IE2-dependent transactivation of the UL54-0.4 promoter by 87% and 95%, 

respectively (Mercorelli et al., 2016). Interestingly, also treatment with BBR decreased the 

transcriptional activity of the full-length UL54-0.4 promoter by 77% and that of the minimal 

promoter UL54-0.15 by about 65% (Fig. 4A). These data indicated the ability of at BBR to interfere 

with the IE2-dependent transactivation of the promoter of an essential viral E gene, and that a 

segment of 150 bp upstream from the UL54 transcription initiation site is sufficient to mediate the 

inhibitory activity of BBR. 

The above observation then prompted the investigation on the effect of BBR on the activation of 

other gene promoters that can be activated by IE2. Cellular cyclin E (CycE) gene expression is up- 

regulated upon HCMV infection in quiescent cells to promote G0/G1 transition and its 

transcriptional activation can be directly stimulated by IE2 (Bresnahan et al., 1998). To assess the 

effect of BBR on the IE2-mediated transactivation of CycE gene promoter, we co-transfected 

permissive U373-MG cells with a construct expressing IE2 together with reporter constructs 

containing either a portion of wt CycE promoter (pCycE) or a mutated version wherein the binding 

sites for the cellular transcription factor E2F at -16 and +7 have been mutated (mpCycE). As shown 

in Fig. 4B, BBR efficiently inhibited the IE2-dependent transactivation of the pCycE. Similar 

results were obtained in cells transfected with mpCyE construct, thus indicating that disruption of 

E2F binding sites of the CycE gene promoter did not affect the inhibitory activity exerted by BBR 

(Fig. 4C). 

Taken together, these results suggest that BBR affects the transactivation of both viral and 

cellular promoters, which are known to depend on IE2 for their activation. 

 
 

3.6 BBR is not a general inhibitor of viral and cellular transcription 
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To investigate whether the inhibitory effect of BBR was specific for IE2 and not due to a 

general inhibition of transcription, the activities of two other viral promoters, i.e., the MIEP of 

HCMV and the LTR of HIV-1, which contain multiple binding sites for general cellular 

transcription factors, were examined for their sensitivity to BBR. Although an inhibitory activity of 

BBR on the basal activity of both viral promoters was observed (Fig. 5A), it was not as solid or 

dose responsive as that measured on the IE2-dependent transactivation of both UL54 and CycE gene 

promoters (Fig. 4). Moreover, since the HIV-1 LTR can be specifically transactivated by the virus- 

encoded Tat transcription factor (Ne et al., 2018), we also investigated the effect of BBR on the Tat- 

mediated transactivation of LTR. As shown in Figure 5B, BBR did not affect the Tat-mediated 

transactivation of HIV-1 LTR. These results thus suggest that most likely BBR is not a general 

inhibitor of transcription. 

Then, to further strengthening the specificity of IE2 inhibition by BBR, we evaluated its 

effect on the activity of the other major HCMV-encoded IE transcription factor, IE1. IE1 and IE2 

proteins originate from a single precursor RNA through alternative splicing, therefore IE1 shares 

the same first three exons (85 aa) with IE2 (Stinski and Petrik, 2008). We previously reported that 

IE1 transactivates the human thymidylate synthase (TS) gene promoter to stimulate cellular TS 

activity that is required for HCMV DNA replication in quiescent cells (Gribaudo et al., 2002). 

Based on this premise, we investigated the effects of BBR on the IE1-dependent transactivation of 

the human TS gene promoter. To this end, HELFs cells were co-transfected with phTS-243/+30 and 

an IE1 expression vector. As reported in Fig. 5C, IE1-dependent transactivation of the human TS 

promoter was not affected by the treatment with BBR. NTZ, included as a control of a specific 

inhibitor of the IE2-mediated transactivation, did not affect the IE1-mediated activation of cellular 

TS gene promoter as previously observed (Mercorelli et al., 2016). 

Altogether, these results indicate that the observed BBR-mediated inhibition of IE2- 

dependent transactivating activity is not due to a general inhibitory effect on transcription. 

Moreover, together with those reported in Fig. 4, they sustain the hypothesis that the overall 
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inhibitory activity of BBR against HCMV likely stems from its ability to interfere with the 

expression of critical E genes required for viral DNA synthesis and progression of HCMV 

replication cycle. 

 
 

3.7 BBR prevents murine CMV replication and inhibits the IE3-dependent transactivaction of the 

Early E1 gene promoter 

Finally, we evaluated the activity of BBR also against murine CMV (MCMV). To this end, 

PRAs were performed in NIH 3T3 fibroblasts infected with the Smith strain of MCMV. As reported 

in Table 4, BBR fully retained antiviral activity against MCMV and the measured EC50 values were 

comparable to those obtained for the HCMV strains (Tables 1 to 3). Moreover, BBR did not show 

any significant cytotoxicity in uninfected cells, confirming that the inhibition of the virus replication 

was due to a specific antiviral effect. 

Having established that BBR is also active against MCMV, we wondered whether the 

mechanism of action of BBR against MCMV may be the same observed for the human virus. To 

this end, NIH 3T3 cells were transfected with an indicator plasmid containing the luciferase gene 

driven by the prototypic MCMV Early E1 gene promoter (pGL3-E1), together with an IE3- 

expressing vector (pIE3). The MCMV IE3 protein is the structural and functional homolog of 

HCMV IE2 (Messerle et al., 1992). Transfected NIH 3T3 cells were then treated with BBR or 

WC5, used as a control for inhibition of MCMV E1 promoter (Mercorelli et al., 2014). As shown in 

Fig. 6, the expression of IE3 increased the activity of the E1 gene promoter of more than 50-fold. 

Treatment with BBR reduced the IE3-dependent transactivation of the E1 gene promoter by 60% 

compared to that of DMSO-treated cells. As expected, WC5 reduced the luciferase activity by 71% 

(Mercorelli et al., 2014). These results thus indicated that the mechanism of action of BBR against 

HCMV is conserved also against MCMV. 

 
 

4. Discussion 
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The identification and validation of new antiviral molecules to prevent or limit HCMV 

replication remains a priority for the clinical management of HCMV infections. Since IE2 plays a 

critical role in the progression of HCMV replication, as well in virus pathogenesis and reactivation 

from latency (Scholz et al., 2001; Stinski and Petrik, 2008), we and others have addressed the 

identification and characterization of small molecules that could block IE2 synthesis or activities 

(Mercorelli et al., 2014a, b; Gardner et al., 2015; Mercorelli et al., 2016; Beelontally et al., 2017; 

Mercorelli et al., 2018a). In a drug repurposing screen devised to select early inhibitors of HCMV 

replication, we previously identified 38 different molecules active in the inhibition of HCMV E 

gene expression (Mercorelli et al., 2016). To date, some of them have been confirmed to selectively 

inhibit the IE2-mediated transactivation of essential viral E genes and hence HCMV replication 

(Mercorelli et al., 2016; Mercorelli et al., 2018a). Here, we add another piece of knowledge about 

this novel class of IE2 inhibitors by reporting the characterization of the mechanism of action of 

BBR, one of the compounds selected in the drug repurposing screen for its anti-HCMV activity. 

BBR is an isoquinoline alkaloid present in several medicinal plants including Berberis 

vulgaris, Coptis chinensis, Hydrastis canadensis, and Rhizoma coptidis, and over the past years 

several biological effects of BBR have been reported, including antimicrobial activities against 

bacteria, fungi, and viruses (Imenshahidi and Hosseinzadeh, 2016; Kumar et al., 2015). In this 

regard, an inhibitory activity of BBR against the replication of HCMV (strain not specified) was 

previously reported (Hayashi et al., 2007); however, the mechanism by which BBR impaired 

HCMV replication was not defined. In the present study, we have demonstrated that BBR is a 

broad-spectrum inhibitor of HCMV replication, including strains resistant to drugs that target viral 

DNA polymerase, thus suggesting that its mechanism of action differs from that of the currently 

used DNA polymerase inhibitors. To support further this hypothesis, we showed that BBR 

selectively reduced the expression of representative E and L viral proteins, without affecting that of 

IE proteins, and inhibited the synthesis of viral DNA as well, thus suggesting that these inhibitory 

effects of BBR most likely account for its marked overall antiviral activity on HCMV replication. 
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Based on these facts, we hypothesized that BBR could target a molecular event involved in the 

switch from IE to E phase of virus replication cycle. Indeed, BBR strongly reduced the ability of 

IE2 to transactivate two different versions of a prototypic E gene promoter, i.e., the UL54 gene 

promoter. Although other molecular mechanisms cannot be totally ruled out, the effect of BBR 

seems to be specific for the IE2 transactivating activity, since we observed that: i) it inhibited the 

activation of gene promoters of both viral and cellular origin that depend on IE2 for their 

transcriptional activity (Fig. 4); ii) it did not significantly affect neither the transcriptional activity  

of viral gene promoters responsive to general cellular transcription factors, nor the Tat-dependent 

transactivation of HIV-1 LTR (Fig. 5); and iii) it did not exert any interference with the 

transactivating activity of the closely related IE1 protein (Fig. 5), which shares 85 N-terminal 

residues with IE2 (Stinski and Petrik, 2008). 

Among molecules targeting IE2, BBR acts differently from fomivirsen, the only IE2 

inhibitor that had been approved for the treatment of HCMV infections so far (Britt and Prichard, 

2018), since unlike the latter it does not inhibit the expression of IE2 (Fig. 3). BBR in fact interferes 

with the transactivating properties of IE2 (Fig. 4), and therefore, along with NTZ (Mercorelli et al., 

2016), it belongs to a novel class of anti-HCMV agents that can act by interfering with the 

transactivating activity of IE2. 

It is known that BBR can modulate multiple host cell signaling pathways, including NF-B (Pandey 

et al., 2008) and mitogen activated protein kinases (MAPK) (Cui et al., 2009). Since these pathways 

are also activated by HCMV infection and contribute to the efficient viral gene expression and 

progression of HCMV replicative cycle (Johnson et al., 2000; DeMeritt et al., 2004; Caposio et al., 

2007; Caposio et al., 2010), it is possible that BBR may hinder the full activation of these 

transduction pathways in HCMV-infected cells, thus leading to a significant impairment of viral 

replication. In this regard, Song et al. observed that BBR inhibits HSV IE protein expression when 

added on cells before HSV infection (Song et al., 2014). This inhibition was associated to an 

impairment of HSV-induced NF-B activation, indicating that BBR compromises a very early stage 
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of the HSV replication cycle, such as the IE gene expression. The NF-B pathway is activated very 

early also by HCMV infection and is required to kick-start the viral IE gene expression (Caposio et 

al., 2007). However, it is unlikely that BBR could affect NF-B activation in HCMV-infected cells, 

since we did not observe any significant effect on the accumulation of IE proteins (Fig. 3), whose 

expression is driven by the Major IE Promoter (MIEP) of HCMV that contains four NF-B sites 

(Stinski and Meier, 2007). Moreover, in different virus models, such as those of influenza and Zika 

viruses, it has been observed that BBR affects virus replication after the initial attachment and entry 

(Cecil et al., 2011; Robinson et al., 2018). 

BBR is also a known inhibitor of MAPKs pathway, in particular ERK1/2 and p38 kinases (Cui et 

al., 2009; Shin et al., 2015; Varghese et al., 2016b). Relevant to this activity of BBR, it is well 

established that HCMV activates several MAPKs, including ERK1/2 and p38 (Johnson et al., 2000; 

Caposio et al., 2010), and that an appropriate phosphorylation of MAPKs downstream partners in 

HCMV-infected cells is required for efficient progression of the viral replicative cycle (Johnson et 

al., 2001). Given that IE2 can be phosphorylated by MAPKs in vitro (Harel and Alwine, 1998), and 

the phosphorylation status modulates IE2-dependent transcriptional activation of gene promoters 

(Barrasa et al., 2005), one could hypothesize that the inhibitory activity of BBR on the IE2- 

dependent transactivation of E genes may descend from its ability to hamper MAPKs activation. 

Noteworthy, the block of MAPKs pathway was recently identified as the mechanism of the antiviral 

activity of BBR against RSV and alphaviruses (Shin et al., 2015; Varghese et al., 2016b). Relevant 

to the above hypothesis, it is worth mentioning that the p38 kinase inhibitor FHPI was reported to 

halt HCMV replicative cycle after IE gene expression and prior to the onset of viral DNA 

replication (Johnson et al., 1999), thus in the same time frame of the HCMV replication cycle that 

we identified as the main target of the antiviral activity of BBR (Fig. 3). Clearly, further 

experimentation is required to confirm this hypothesis and it will be object of future studies. 

BBR is active against a broad range of different microbial pathogens (Kumar et al., 2015), thus it 

may offer advantages over other current anti-HCMV drugs, since HCMV infection can increase the 
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risk in immunosuppressed patients of other opportunistic infections, such as bacterial and fungal 

infections. Moreover, BBR shows very low toxicity and side effects (Pang et al., 2015) and these 

features, together with the other pharmacological properties, point out BBR as an interesting 

candidate to develop alternative anti-HCMV therapeutic strategies. 

 
 

5. Conclusion 

 

In conclusion, the results of this study suggest BBR as another attractive candidate for a new 

class of anti-HCMV drugs that exert their effects via novel pathways that target IE2 functions, and 

warrant further investigations to evaluate whether BBR may be effective in animal models of CMV 

infection. Indeed, BBR is active also against MCMV replication and prevents the transactivation of 

a prototypic MCMV E gene mediated by the IE3 protein, the murine homolog of HCMV IE2. 

Given this high similarity between HCMV IE2 and MCMV IE3, the investigation of the therapeutic 

potential of BBR in the murine model of CMV infection is worth pursuing. 
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Figure legends 

 

Figure 1. BBR exerts a dose-dependent inhibition of HCMV AD169 replication. HFFs were 

infected with HCMV AD169 and then treated with different concentrations of BBR (from 0.01 to 

100 M), and incubated at 37°C for 10 days. Data shown are expressed as a percentage of the 

plaque number determined in treated samples with respect to the DMSO-treated and mock-infected 

controls and represent the means ± SD of three independent experiments performed in duplicate. 

Figure 2. Berberine inhibits viral DNA synthesis in HCMV-infected cells. Infected HFFs were 

treated with 50 µM BBR, 25 µM GCV, or 0.1% DMSO as a control. At 24, 72, 96, and 120 h p.i., 

total DNA was extracted and qPCR was performed with appropriate IE2 and β-globin primers. 

HCMV genomic copies were normalized to the cellular β-globin copies. Data shown are the means 
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± SD of four independent experiments performed in duplicate. *p < 0.05;**p < 0.01 versus 

calibrator sample (DMSO). 

Figure 3. Berberine reduces the expression of E and L HCMV proteins. HFFs were mock- 

infected or infected with AD169 (MOI of 0.5 PFU/cell) and after 2 h of viral adsorption, cells were 

treated with 50 μM BBR, 30 μM NTZ, or with 0.1% DMSO (added in mock-infected and virus- 

infected samples). Total cell protein extracts were prepared at the indicated times p.i., fractionated 

by SDS-PAGE, and analyzed by immunoblotting. Protein markers sizes are indicated in kilodaltons. 

Figure 4. BBR inhibits the IE2-dependent transactivation of viral and cellular promoters. (A) 

HELF cells were transfected with the luciferase reporter plasmids pUL54–0.4 or pUL54–0.15. 

Twenty-four hours later, transfected cells were transduced with AdVIE2 or AdVLacZ at a MOI of 

20 PFU/cell and then treated with 50 μM BBR, 30 μM NTZ, 5 μM ISIS 2922, or 0.1% DMSO. 

Luciferase reporter activity was measured 48 h later to determine promoter activation under the 

different conditions. Data represent the means ± SD from three independent experiments in 

triplicate. The results were analyzed by one-way ANOVA with Bonferroni post-test correction for 

multiple comparisons. ***p <0.0001; versus calibrator sample (AdVIE2 + DMSO). 

(B) (C) U373-MG cells were transfected with either (B) pCycE wt or (C) mutated mpCycE 

indicator constructs along with either the empty pSG5 plasmid or the IE2-expressing pSGIE86 

(IE2) plasmid and treated for 48 h with 25 or 50 μM BBR, or 0.1% DMSO as a control. Then, 

activation of CycE promoters under the different conditions was determined. Data represent the 

means ± SD from four independent experiments in duplicate. The results were analyzed by one-way 

ANOVA with Bonferroni post-test correction for multiple comparisons. **p <0.005; *p<0.05; 

versus calibrator sample (pCycE or mpCycE + DMSO). 

Figure 5. BBR is not a general inhibitor of transcription. U373-MG cells were transfected with 

either (A) HCMV MIEP or (B) HIV-1 LTR indicator constructs along with either the empty pSG5 

plasmid or a Tat-expressing plasmid and treated for 48 h with 25 or 50 μM BBR, or 0.1% DMSO as 

a control. Then, promoter activation under the different conditions was determined. Data represent 
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the means ± SD from four independent experiments in duplicate. The results were analyzed by one- 

way ANOVA with Bonferroni post-test correction for multiple comparisons versus the calibrator 

sample (pMIEP + DMSO for panel A; LTR + DMSO or LTR + Tat + DMSO for panel B). 

(C) HELF cells were co-transfected with phTS-243/+30 reporter vector along with empty pSG5 

vector or an IE1-expressing vector. At 18 h after transfection, cells were washed and treated with 50 

μM BBR, 30 μM NTZ, or 0.1% DMSO (v/v) for 48 h. Then, phTS promoter activation under the 

different conditions was determined. The data shown are the mean ± SD of two experiments, each 

performed in triplicate. Data were analyzed by an unpaired t-test. **p <0.001; versus calibrator 

sample (phTS-243/+30 + pIE1 + DMSO). 

Figure 6. BBR abrogates the IE3-dependent transactivation of the Early E1 gene promoter of 

MCMV. NIH3T3 cells were transfected with a plasmid containing luciferase reporter gene under 

the control of the E1 promoter (pGL3-E1) or co-transfected with an IE3-expressing plasmid (pIE3) 

and then treated with 50 μM BBR, 50 μM WC5, or 0.1% DMSO. After 48 h, E1 promoter 

activation under the different conditions was determined. Data shown are the means ± SD from two 

independent experiments in triplicate and were analyzed by an unpaired t-test. *p < 0.01; **p< 

0.001; versus calibrator sample (pGL3-E1 + pIE3 + DMSO). 
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Table 1. Antiviral activity of BBR against HCMV AD169. 

 

 
Compound EC a (µM) 

50 
CC b (µM) 

50 SIc 

BBR 2.65 ± 0.35 390 ± 10 147 

GCV 2.5 ± 0.5 >500 >200 

 
a50% Effective Concentration, the compound concentration that inhibits 50% of plaque formation, as 

determined by PRAs against HCMV AD169 in HFF cells. Reported values represent the means ± the SD of 

data derived from three independent experiments in triplicate. 
b50% Cytotoxic Concentration, the compound concentration that results in 50% of cytotoxicity, as 

determined by MTT assays in HFF cells. Reported values represent the means ± the SD of data derived from 

at least three independent experiments performed in quadruplicate. 
cSI, Selectivity Index (determined as CC50/EC50). 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Activity of BBR against different HCMV strains. 
 

 
HCMV Strain BBR EC a (µM) 

50 
CC b (µM) 

50 SIc 

TB40-UL32-EGFP 2.70 ± 1.13 390 ± 10 144 

VR1814 4.00 ± 0.71 390 ± 10 98 

388438U 1.30 ± 0.42 390 ± 10 300 

 
a50% Effective Concentration, the compound concentration that inhibits 50% of plaque formation, as 

determined by PRAs in HFF cells. Reported values represent the means ± the SD of data derived from at 

least three independent experiments in triplicate. 
b50% Cytotoxic Concentration, the compound concentration that results in 50% of cytotoxicity, as 

determined by MTT assays in HFF cells. Reported values represent the means ± the SD of data derived from 

at least three independent experiments performed in quadruplicate. 
cSI, Selectivity Index (determined as CC50/EC50). 
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Table 3. Comparison of the activity of BBR against AD169 and drug-resistant HCMV strains. 

 

 
HCMV Strain Drug resistance BBR EC a (µM) 

50 Controlb EC50 (µM) 

AD169 None 2.35 ± 0.35 N.D. 

GDGrP53 GCV, CDV 1.45 ± 0.08 75 ± 5 

PFArD100 FOS, ACV 1.40 ± 0.57 305 ± 18 

 
a50% Effective Concentration, the compound concentration that inhibits 50% of plaque formation, as 

determined by PRAs in HFF cells. Reported values represent the means ± the SD of data derived from at 

least three independent experiments in triplicate. 
b GCV was used for GDGrP53 and FOS for PFArD100. 

N.D., not determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Antiviral activity of BBR against MCMV. 
 

 
Compound EC a (µM) 

50 
CC b (µM) 

50 SIc 

BBR 1.95 ± 0.35 192 ± 12 98 

CDV 0.53 ± 0.18 > 250 >472 

 
a50% Effective Concentration, the compound concentration that inhibits 50% of plaque formation, as 

determined by PRAs against MCMV Smith in NIH 3T3 cells. Reported values represent the means ± the SD 

of data derived from three independent experiments in triplicate. 
b50% Cytotoxic Concentration, the compound concentration that results in 50% of cytotoxicity, as 

determined by MTT assays in NIH 3T3 cells. Reported values represent the means ± the SD of data derived 

from at least three independent experiments performed in quadruplicate. 
cSI, Selectivity Index (determined as CC50/EC50). 



 

 



 

 



 

 



 

 



 

 



 

 


