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ABSTRACT

This thesis presents several nonlinear mathematical models applied to ecoepidemio-
logy and evolution. A detailed study involving predator-prey type models con-
sidering an alternative resource for the predator was carried out, investigating the
situation of infection in the prey and in the predator on separate models. Such study
served as a theoretical contribution to the investigation of problems such as bovine
tuberculosis in wild animal species presented in a specific model. We also developed
models to explain the evolution of alarm calls in species of birds and mammals.
The theoretical framework adopted for those evolution models is that of Population
Ecology. The models were developed using Ordinary Differential Equations (ODEs)
to describe the population dynamics. The biological assumptions of the systems
that we wanted to analyse were enumerated and explained.
Keywords: predator-prey models; bovine turberculosis; evolution models; alarm call
behaviour.
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RESUMO

Esta tese apresenta vários modelos matemáticos não-lineares aplicados à ecopidemio-
logia e à evolução. Foi realizado um estudo detalhado envolvendo modelos do tipo
predador-presa considerando um recurso alternativo para o predador, investigando
situações de infecção na presa e no predador em modelos separados. Tal estudo,
serviu de aporte teórico para a investigação de problemas como a tuberculose bovina
em espécies de animais selvagens apresentado em um modelo espećıfico. Também
desenvolvemos modelos para explicar a evolução dos chamados de alarme em espécies
de aves e mamı́feros. O quadro teórico adotado para esses modelos de evolução é
o da Ecologia de População. Nos modelos desenvolvidos usamos as Equações Dife-
renciais Ordinárias (EDOs) para descrever a dinâmica populacional. Consideramos
pressupostos biológicos dos sistemas biológicos analisados.
Palavras-chave: modelos predador-presa; tuberculose bovina; modelos de evolução;
comportamento de chamado de alarme.
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INTRODUCTION

In this thesis we introduced several nonlinear mathematical models applied to
ecoepidemiology (fieldwork that investigates how transmissible diseases affect
interacting populations) and evolution (change in the heritable characteristics
of biological populations over successive generations).

A detailed study involving predator-prey type models considering an al-
ternative resource for the predator was carried out, investigating the situation
of infection in the prey and in the predator on separate models. Such study
served as a theoretical contribution to the investigation of problems such as
bovine tuberculosis in wild animal species presented in a specific model. We
also developed models to explain the evolution of alarm calls in species of birds
and mammals. The theoretical framework adopted for those evolution models
was that of Population Ecology. The models were developed using Ordinary
Differential Equations (ODEs) to describe the population dynamics. In every
model we considered the underlying suitable biological assumptions in order
to formulate it.

The methodological approach used to analyse the dynamical systems that
we developed was similar for all the models introduced in this thesis. It con-
sisted in finding the equilibrium points and analysing their local stability and
when its possible, to analyse the global stability too. To make the analysis of
local stability we generally evaluated the Jacobian matrix at each equilibrium
point and analysed the signs of its eigenvalues. For the most complicated situ-
ations for which the theoretical analysis was not enough, numerical simulations
have been used to gather information on equilibria existence and stability, and
more generally, on the system behaviour. Furthermore, for the equilibria for
which the analysis was possible, the numerical simulations were used as a tool
to reinforce the theoretical results.

This thesis is divided into two main parts: the first one addresses the pro-
blem of the epidemic spread in wild animal species, where some mathematical
models are introduced and analysed, Chapters 1-2-3-4-5. In the second part of
the thesis some mathematical models of evolution are presented and describe
the interaction of two types of individuals in the same species, Chapter 6.

In the first Chapter two mathematical models are proposed and analyzed
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0 Introduction

to elucidate the influence on a generalist predator of its hidden and explicit re-
sources. Boundedness of the system’s trajectories, feasibility, local and global
stabilities of the equilibria for both models are established, as well as possible
local bifurcations. The findings indicate that the relevant behaviour of the
system, including switching of stability, extinction and persistence of the in-
volved populations, depends mainly on the reproduction rate of the favorite
prey. To achieve full ecosystem survival some balance between the respective
grazing pressures exerted by the predator on the prey populations needs to be
maintained, while higher grazing pressure just on one species always leads to
its extinction.

Chapter 2 investigates mathematical models of predator-prey systems where
a transmissible disease spreads only among the prey species. Two mathemati-
cal models are proposed, analysed and compared in order to assess the influence
of hidden or explicit resources for the predator. The predator is assumed to be
a generalist in the first model and a specialist on two prey species in the second
one. Existence and boundedness of the solutions of the models are established,
as well as local and global stability and bifurcations. The equilibria of two sys-
tems possessing the same biological meaning are compared. The study shows
that the relevant ecosystem behaviour, including stability switching, extinction
and persistence for any species depends on four important parameters, viz.,
the reproduction rate and the infection rate of the main prey, the mortality
rate of infected prey and the reproduction rate of the alternative prey.

Chapter 3 deals with two mathematical models of predator-prey type where
a transmissible disease spreads among the predator species only. in the same
way as it was done in the Chapter 2 we analysed and compared the models
in order to assess the influence of hidden and explicit alternative resource for
predator. The analyse show boundedness as well as local stability and trans-
critical bifurcations for equilibria of systems. Numerical simulations support
our theoretical analysis.

In Chapter 4 we presented and analysed a model for the spread of Bovine
Tuberculosis (BT) between buffaloes and lions. The most important system
parameters are identified: vertical and horizontal disease transmission among
the buffaloes and the influence of intraspecific competition between healthy and
diseased buffaloes on the infected buffaloes population. Removal of diseased
prey appears to be the most effective strategy to render the ecosystem disease-
free.

In order to investigate in more detail the herd behaviour, the prey group
defense presented in Chapter 4 we proposed and analysed in Chapter 5 a mo-
dified model where different response functions have been formulated to model
predator-prey interactions. In particular, Lotka-Volterra models work with the
Mass Action Law, resulting in a Holling type I response function. More re-
cently, authors have proposed a term proportional to the square root of the
prey population, in order to model herd behaviour and group defense. We
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present a model in which the response function is defined piecewisely: below
a certain threshold (populations too small to display group defense) we have
a Lotka-Volterra type interaction and above it we have herd behaviour type
response. The model is analysed using standard techniques and also comple-
mentary techniques designed specifically for piecewise systems. Both stability
of equilibria and bifurcations are investigated. In particular, we were able to
prove that both supercritical and subcritical Hopf bifurcations occur, one of
those leading to the existence of two limit cycles (one stable and the other
unstable). We concluded that the proposed model displays novel behaviour in
comparison to previous models and serves as a coherent tool to model predator-
prey interactions. It is important to highlight that the model described in 5 is
a generalization of herd behaviour that has other possible developments.

Finally, in Chapter 6 the evolution of alarm call behaviour under indi-
vidual selection is studied. Four mathematical models of increasing complexity
are proposed and analysed. Theoretical conditions for the evolution of “sel-
fish”, “mutualistic”, “altruistic” or “spiteful” alarm calls are established. The
models indicate that the hypotheses of benefits of retaining group members or
avoiding group detection are not sufficient to explain the evolution of alarm
call behaviour, but serve as a complementary factor to facilitate its evolution
in most cases. It is hypothesized that the evolution of alarm calls between
non-kin should evolve probably when calls are mutualistic, mildly altruistic
and there are beneficial group size effects against predation.

General conclusions will finally be presented.

Most of the research presented in this thesis has previously been either
published or submitted for publication. The papers are in order of chapters:

• de Assis, L. M. E., Banerjee, M., Venturino, E. Comparing Predator-Prey
Models with Hidden and Explicit Resources. Annali dell’Universitá di
Ferrara, 64(2), 259-283, 2018. Presented in this thesis as Chapter 1.

• de Assis, L. M. E., Banerjee, M., Venturino, E. Comparison of Hidden
and Explicit Resources in Ecoepidemic Models of Predator-Prey Type.
Preprint accepted on Journal Computational and Applieds Mathematics,
2019. Presented in this thesis as Chapter 2.

• de Assis, L. M. E., Banerjee, M., Cecconello, M., Venturino, E. Lotka-
Volterra Type Predator-prey Models: Comparison of hidden and explicit
resources with a transmissible disease in the predator species. Journal
Applications of Mathematics, 63(5), 569-600, 2018. Presented in this
thesis as Chapter 3.

• de Assis, L. M. E., Massad, E., Assis, R. A., Martorano, S. R., Venturino,
E. A Mathematical Model for the Propagation of Bovine Tuberculosis in
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Wild Animals. 17th CMMSE Conference Proceedings, ISBN: 978-84-617-
8694-7, 1323–1355, 2017. Presented in this thesis as Chapter 4.

• Assis, L. M. E., Massad, E., Assis, R. A., Martorano, S. R., Venturino,
E. A mathematical model for bovine tuberculosis among buffaloes and
lions in the Kruger National Park. Mathematical Methods in the Applied
Sciences, 41(2), 525-543, 2018. Presented in this thesis as Chapter 4.

• Assis, L. M. E., Carnevarollo Jr, M. R. P., Assis, R. A., Venturino, E.
On periodic regimes triggered by herd behaviour in population systems.
Preprint submitted, 2019. Presented in this thesis as Chapter 5.

• de Assis, L. M. E., de Assis, R. A., Cecconello, M., Venturino, E. Models
for alarm call behaviour. Theoretical Ecology, 11(1), 1-18, 2018. Pre-
sented in this thesis as Chapter 6.
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Part I

Ecological interacting
population models
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CHAPTER 1

COMPARING PREDATOR-PREY
MODELS WITH HIDDEN AND

EXPLICIT RESOURCES

The mathematical study of predator-prey interactions is an important research
component in mathematical ecology. Various types of interactions and popula-
tion models with two or more trophic levels have been formulated and received
significant attention from several researchers in the past and the more recent
literature. The basic building block for a wide range of study are the two
populations predator-prey models, in which mathematical models describe the
interactions of a hunter species that feeds on a prey, thereby being beneficial
for the former and detrimental for the latter. In real life situations this may
occur when possibly also other resources are available for the predator. The
latter can be subdivided into two broad sets, the specialist predators, that
feed only on one species, see for instance the case of the weasel Mustela nivalis
exploiting the field vole Microtus agrestis, [11], and the generalist predators
with several options for their diet, e.g. the spiders, that hunt every possible
insects, [58, 73]. In this latter situation, mainly with more than two resources
available, predators focus generally on the most abundant one, changing to
exploiting the substitute prey, the second most abundant population, when
the primary becomes scarce, [13].

It is a matter of fact that the literature on predator-prey models with
generalist predator appears to be smaller compared to that with specialist
predator. Primarily, this is due to the fact that the models with a generalist
predator are a little bit tougher to handle mathematically. Indeed in most
of the cases the components of the coexisting equilibrium point cannot be
obtained explicity when the functional responses are represented by highly
nonlinear functions of both populations involved, prey and predators.
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1 Comparing predator-prey models with hidden and explicit resources

In case of a two species predator-prey model with a specialist predator,
the latter cannot survive in the absence of prey as its reproduction and growth
rates are functions of the prey density and in its absence these functions vanish.
On the other hand, the growth rate of the generalist predator is different
from zero even if the explicit prey disappears, because they can feed on other
resources. The mathematical models of two-species generalist predator-prey
models can be divided into two types: (i) those in which the predators growth
rate follows a logistic law, to which the prey density contributes enhancing
it with an additional growth; (ii) those whose predators growth rate follows
logistic growth, where the carrying capacity is a function of prey population
density. The second type of systems is known as Leslie-Gower [48] or Holling-
Tanner [6, 43] model, depending upon the type of the functional response
[81, 42, 41] term involved to describe the grazing pattern of the prey by their
predator.

Predator-prey models with two-prey and one predator are investigated in
particular because this leads to the question of prey switching, [50, 51]. This
occurs when the primary resource by overexploitation becomes more difficult
to find. The alternative, less palatable prey at that moment is seen as a new
potential diet for their survival by the hungry predators. They thus switch
their attention to it, instead of wasting time in a difficult search for the pri-
mary hard-to-find resource. As a result, in these cases the absence of either
primary or substitute prey does not necessarily drive the predator towards ex-
tinction. The main objective of the present work is to elucidate the existing
relationship between two predator-prey models with a generalist predator, dis-
tinguishing the model with implicit secondary prey and the one in which the
latter population is explicitly modeled as an additional ecosystem’s variable.

The chapter is organized as follows. In the next Section the two types of
models are formulated and their basic properties are analyzed. Global stability
of the coexistence equilibria in both models is assessed in Section 1.2 and
next the possible bifurcations are analytically investigated, Section 1.3, and
numerically, Section 1.4, investigated.

Section 1.5 performs the system’s comparative study, the subsequent sec-
tion contains further numerical simulations on bifurcations. A final discussion
concludes the chapter.

1.1 The predator-prey models

The predator population is denoted by Z, thriving in the presence respectively
of one and two of its only resources, the prey are represented by X and Y . Con-
sidering the two possible demographic situations, the following two different
predator-prey models can be formulated. The first one with two-populations,
i.e. the primary food source for the predators, whose equilibria are denoted by
[p hp], the first “p” referring to predators, the second one to prey, “h” standing

4



1.1 The predator-prey models

for the “hidden” substitute resource not explicitly modeled in the equations,
is classical, see Chapter 3 of [65]:

dX

dt
= rX

(
1− X

K

)
− aXZ, (1.1)

dZ

dt
= uZ

(
1− Z

L

)
+ aeXZ.

The first equation models the logistic prey growth and its additional mor-
tality due to encounters between prey individuals with the predators. The
last term in the second one accounts for the benefits the latter gain from this
successful hunting, while the first term indicates that the predators have an
alternative food sources.

Its three dimensional counterpart, with the additional resource explicitly
modeled, has equilibria denoted by [p ep], “e” standing for “explicit”.

As a one-predator-two prey system, it is also present in the literature, but
here a correction on the mortality rate discussed below is made:

dX

dt
= rX

(
1− X

K

)
− aZX,

dY

dt
= sY

(
1− Y

H

)
− bZY, (1.2)

dZ

dt
= −mZ2 + e(aZX + bZY ).

The first and second equations are replicae of the first equation in (1.1) for
the prey, in this case there being explicitly two food resources in the ecosystem.

Note that here the alternative prey Y is the unnamed resource in model
(1.1).

The predators’ equation is the same of the former model, with the exception
that now they feed only on these two types of prey, and therefore the predator
individuals are no more generalist as in (1.1), but two-population specialists
on X and Y . This entails that they will not survive in the absence of both
prey.

The parameters are non-negative in both models. In (1.2) we take morta-
lity in the quadratic form −mZ2 since this term is related to the intraspecific
competition term −uL−1Z2 of the system (1.1). Indeed, comparing the second
equation of (1.1) with the third one of (1.2), the last term in the former is iden-
tical with the second one of the latter. The first (reproductive) term in the
generalist model (1.1) is now replaced by the hunting on the Y prey, last term
of (1.2). To make the comparison fair, then the mortality due to intraspecific
competition in (1.1) must correspond to the first term in (1.2). This entails
that in the specialist system the predators essentially die by intraspecific com-
petition for the needed resources.
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1 Comparing predator-prey models with hidden and explicit resources

Mathematically, the connection between (1.1) and (1.2) is given by

u = ebY, L = eb
Y

m
, i.e. u = Lm. (1.3)

Here we should understand the value of the population Y at steady state,
namely Y = Y ∗, otherwise (1.3) would be “unbalanced”, i.e. it would have
only one time-dependent side.

The Jacobians for models (1.1) and (1.2) are respectively

J [p hp] =

(
r − 2 r

K
X − aZ −aX

aeZ u− 2 u
L
Z + aeX

)
(1.4)

and

J [p ep] =

 r − 2 r
K
X − aZ 0 −aX
0 s− 2 s

H
Y − bZ −bY

aeZ ebZ −2mZ + e(aX + bY )

 . (1.5)

1.1.1 Boundedness

In order to obtain a well-posed model, we need to show that the systems
trajectories remain confined within a compact set. Since 0 ≤ X,Z ≤ ϕ and
0 ≤ X, Y, Z ≤ ψ , the boundedness of the original ecosystem populations is
immediate. Trajectories in systems (1.1) and (1.2) remain non-negative follows
directly from the facts that Ẋ = 0 if X = 0, Ẏ = 0 if Y = 0, Ż = 0 if Z = 0
and that initial conditions for the model should always be non-negative to
make biological sense.

Consider the total environment population ϕ(t) = X(t) + Z(t). Let ϕ(t)
be a differentiable function, then taking an arbitrary 0 < µ, summing the
equations in model (1.1), and observing that e ≤ 1 we find the estimate:

dϕ(t)

dt
+ µϕ(t) ≤ rX

(
1− X

K
+
µ

r

)
+ uZ

(
1− Z

L
+
µ

u

)
= p1(X) + p2(Z).

The functions p1(X) and p2(Z) are concave parabolae, with maxima located
at X?, Z?, and corresponding maximum values

M1 = p1(X?) =
rK

4

(
1 +

µ

r

)2

, M2 = p2(Z?) =
uL

4

(
1 +

µ

u

)2

,

Thus,
dϕ(t)

dt
+ µϕ(t) ≤M1 +M2 = M.

Integrating the differential inequality, we find

ϕ(t) ≤
(
ϕ(0)− M

µ

)
e−µt +

M

µ
≤ max

{
ϕ(0),

M

µ

}
.

6



1.1 The predator-prey models

From this the boundedness of the original ecosystem populations is immediate.
The proof for system (1.2) follows a similar patter, after remarking that setting

ψ(t) = X(t) + Y (t) +Z(t) and summing the equations in model (1.2), we find
again for an arbitrary 0 < µ and observing that e ≤ 1 we find:

dψ(t)

dt
+ µψ(t) ≤ rX

(
1− X

K
+
µ

r

)
+ sY

(
1− Y

H
+
µ

s

)
+ Z(µ−mZ)

= q1(X) + q2(Y ) + q3(Z).

The functions q1(X), q2(Y ) and q3(Z) are concave parabolae, with maxima
located at X?, Y ?, Z?, and corresponding maximum values

M1 = q1(X?) =
rK

4
(1 + µ/r)2, M2 = q2(Y ?) =

sH

4
(1 + µ/s)2,

and

M3 = q3(Z?) =
µ2

4m
.

Thus,
dψ(t)

dt
+ µψ(t) ≤M1 +M2 +M3 = M.

Integrating the differential inequality, we find

ψ(t) ≤
(
ψ(t)(0)− M

µ

)
e−µt +

M

µ
≤ max

{
ψ(t)(0),

M

µ

}
Thus for both models, the solutions are always non-negative and remain

bounded.

1.1.2 Equilibria of model (1.1)

The model (1.1) is standard in mathematical biology, see for instance Chapter
3 of [65] where also more complex models of such type are described.

Proposition 1. The trivial equilibria P
[p hp]
1 = (0, 0) and the point P

[p hp]
2 =

(K, 0) exist, are always feasible and unstable.

Proof. For X = Z = 0 we obtain that the equilibrium P
[p hp]
1 exists and is

feasible. The Jacobian matrix (1.4) evaluated at P
[p hp]
1 is given by

J
[p hp]
P1

=

(
r 0
0 u

)
which provides the eigenvalues r, u. As both eigenvalues are positive, the
equilibrium P

[p hp]
1 is unstable.

7



1 Comparing predator-prey models with hidden and explicit resources

For Z = 0, we obtain the system (1.1) becomes,

rX

(
1− X

K

)
= 0.

Solving the equation with respect to X we find X = K and then, we obtain
that the equilibrium point P

[p hp]
2 exists and it is feasible. The Jacobian matrix

(1.4) evaluated at the P
[p hp]
2 is given by

J
[p hp]
P2

=

(
−r −aK
0 u+ aeK

)
which provides the eigenvalues −r, u+ aeK. As one eigenvalue is positive, the
equilibrium P

[p hp]
2 is unstable.

Proposition 2. The equilibrium point P
[p hp]
3 = (0, L) exists and it is always

feasible. Furthermore, it is conditionally stable if the following condition holds

r < aL. (1.6)

Proof. For X = 0 in the system we get that P
[p hp]
3 always exists. The Jacobian

matrix evaluated at P
[p hp]
3 is

J
[p hp]
P3

=

(
r − aL 0
aeL −u

)
for which the eigenvalues are given by r − aL and −u. Thus, P

[p hp]
3 is stable

if r < aL.

Proposition 3. The equilibrium point P
[p hp]
4 =

(
uK r−aL

ur+a2eKL
, r
a
(1− u r−aL

ur+a2eKL
)
)
,

exists and it is feasible if K ≥ X
[p hp]
4 ≥ 0, i.e., r ≥ aL. P

[p hp]
4 , whenever fea-

sible, is stable, because the Routh-Hurwitz conditions are satisfied:

−tr(J
[p hp]
P4

) > 0, det(J
[p hp]
P4

) > 0.

Proof. To show that the coexistence exists, we consider X 6= 0, and Z 6= 0 the
system (1.1) becomes,

rX

(
1− X

K

)
− aXZ = 0

uZ

(
1− Z

L

)
+ aeXZ = 0

Solving this system with respect to X and Z we find

X
[p hp]
4 = uK

r − aL
ur + a2eKL

, Z
[p hp]
4 =

r

a

(
1− u r − aL

ur + a2eKL

)
.

8



1.1 The predator-prey models

For the feasibility of P
[p hp]
4 we need to ask the positivity of X

[p hp]
4 and Z

[p hp]
4 .

Thus the condition

r ≥ aL (1.7)

must hold. The Jacobian matrix evaluated at P
[p hp]
4 is

J
[p hp]
P4

=

 aruL−ur2
a2eKL+ur

a2uKL−aurK
a2eKL+ur

a2e2rKL+aeruL
a2eKL+ur

−u2r−aeruK
a2eKL+ur


Thus, X

[p hp]
4 whenever feasible, is unconditionally stable, because the Routh-

Hurwitz conditions are satisfied:

−tr(J
[p hp]
P4

) = rK−1X
[p hp]
4 + uL−1Z

[p hp]
4 > 0,

det(J
[p hp]
P4

) = (rK−1uL−1 + a2e)X
[p hp]
4 Z

[p hp]
4 > 0.

Remark 1.1.1. In particular, note that the condition on the trace being strictly
positive prevents the occurrence of Hopf bifurcations at this equilibrium. They
cannot also occur at P

[p hp]
3 since the corresponding eigenvalues are both real.

1.1.3 Equilibria of model (1.2)

To find the equilibrium points of the model (1.2), we need to solve the equi-
librium equations:

rX

(
1− X

K

)
− aZX = 0,

sY

(
1− Y

H

)
− bZY = 0, (1.8)

−mZ2 + e(aZX + bZY ) = 0.

Proposition 4. The trivial equilibrium point P
[p ep]
1 = (0, 0, 0), P

[p ep]
2 =

(0, H, 0), P
[p ep]
3 = (K, 0, 0) and P

[p ep]
4 = (K,H, 0) are always feasible and

unstable.

Proof. In the same way that we made before, we can solve the system (1.8)
for X = Y = Z = 0, X = Z = 0 and Y 6= 0, X 6= 0 and Y = Z = 0, Z = 0
and X 6= 0, Y 6= 0 to obtain the coordinates of equilibria P

[p ep]
1 = (0, 0, 0),

P
[p ep]
2 = (0, H, 0), P

[p ep]
3 = (K, 0, 0) and P

[p ep]
4 = (K,H, 0), respectively. The

Jacobian matrix of these equilibria are

J
[p ep]
P1

=

 r 0 0
0 s 0
0 0 0

 , J
[p ep]
P2

=

 r 0 0
0 −s −bH
0 0 ebH

 ,

9
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J
[p ep]
P3

=

 −r 0 −aK
0 s 0
0 0 aeK

 , J
[p ep]
P4

=

 −r 0 aK
0 −s −bH
0 0 e(aK + bH)

 ,

and their eigenvalues are r, s, 0 for P
[p ep]
1 , r, −s, ebH for P

[p ep]
2 , −r, s, eaK

for P
[p ep]
3 and −r, −s, aeK + beH for P

[p ep]
4 . Finally, these equilibria are

always feasible and unstable because at least one eigenvalue of each one is
positive.

Proposition 5. The equilibrium point P
[p ep]
5 = (0, Y

[p ep]
5 , Z

[p ep]
5 ) where Y

[p ep]
5 =

msH
b2eH+ms

, Z
[p ep]
5 = ebsH

b2eH+ms
exists and it is always feasible. Furthermore, it is

stable if the condition

aZ
[p ep]
5 =

abesH

b2eH +ms
> r (1.9)

holds and if the Routh-Hurwitz conditions are satisfied:

−tr(J
[p ep]

P5
) > 0, det(J

[p ep]

P5
) > 0.

Proof. The coordinates of P
[p ep]
5 are obtained solving the system (1.8) for

X = 0, Y 6= 0 and Z 6= 0 and the equilibrium is always feasible. The Jacobian
matrix (1.5) evaluated at P

[p ep]
5 is given by

J
[p ep]
P5

=

 r − aZ [p ep]
5 0 0

0 − s
H
Y

[p ep]
5 −bY [p ep]

5

aeZ
[p ep]
5 ebZ

[p ep]
5 −mZ [p ep]

5

 .

that provides one explicity eigenvalue r − aZ [p ep]
5 . The equilibrium P

[p ep]
5 is

stable if

aZ
[p ep]
5 =

abesH

b2eH +ms
> r (1.10)

holds and if the Routh-Hurwitz conditions for the remaining minor are always
satisfied, i.e.

s

H
Y

[p ep]
5 +mZ

[p ep]
5 > 0,

(ms
H

+ b2e
)
Y

[p ep]
5 Z

[p ep]
5 > 0,

with

J
[p ep]

P5
=

 − s
H
Y

[p ep]
5 −bY [p ep]

5

beZ
[p ep]
5 −mZ [p ep]

5

 .
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1.1 The predator-prey models

Proposition 6. The equilibrium point P
[p ep]
6 = (X

[p ep]
6 , 0, Z

[p ep]
6 ) where X

[p ep]
6 =

mrK
a2eK+mr

, Z
[p ep]
6 = aerK

a2eK+mr
. exists and it is always feasible. Furthermore, it

is stable if the condition

bZ
[p ep]
6 =

aberK

a2eK +mr
> s, (1.11)

holds and if the Routh-Hurwitz conditions are satisfied:

−tr(J
[p ep]

P6
) > 0, det(J

[p ep]

P6
) > 0.

Proof. The coordinates of P
[p ep]
6 are obtained solving the system (1.8) for

X 6= 0, Y = 0 and Z 6= 0 and the equilibrium is always feasible. The Jacobian
matrix (1.5) evaluated at P

[p ep]
6 is given by

J
[p ep]
P6

=

 − r
K
X

[p ep]
6 0 −aX [p ep]

6

0 s− bZ [p ep]
6 0

aeZ
[p ep]
6 ebZ

[p ep]
6 −mZ [p ep]

6

 .

that provides one explicity eigenvalue s − bZ [p ep]
6 . The equilibrium P

[p ep]
6 is

stable if

bZ
[p ep]
6 =

aberK

a2eK +mr
> s, (1.12)

holds and if the Routh-Hurwitz conditions for the remaining minors are always
satisfied, i.e. r

K
X

[p ep]
6 +mZ

[p ep]
6 > 0,

(
mr
K

+ a2e
)
X

[p ep]
6 Z

[p ep]
6 > 0, with

J
[p ep]

P6
=

 − r
K
X

[p ep]
6 −aX [p ep]

6

aeZ
[p ep]
6 −mZ [p ep]

6

 .

Proposition 7. The coexistence P
[p ep]
7 = (X

[p ep]
7 , Y

[p ep]
7 , Z

[p ep]
7 ), with X

[p ep]
7 =

K − aKr−1Z
[p ep]
7 , Y

[p ep]
7 = H − bHs−1Z

[p ep]
7 , Z

[p ep]
7 = ers(bH+aK)

s(a2eK+mr)+b2erH
> 0 is

feasible if X
[p ep]
7 ≥ 0 and Z

[p ep]
7 ≥ 0. Furthermore, it is stable if the Routh-

Hurwitz conditions are satisfied.

Proof. The coordinates of P
[p ep]
7 are obtained solving the system (1.8) for

X 6= 0, Y 6= 0 and Z 6= 0 and the feasibility requirements for X
[p ep]
7 ≥ 0 and

for Y
[p ep]

7 ≥ 0 are given, respectively, by

r ≥ aZ
[p ep]
7 =

abesH

b2eH +ms
, s ≥ bZ

[p ep]
7 =

aberK

a2eK +mr
. (1.13)

11
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For stability of the latter, the Jacobian evaluated at P
[p ep]
7 is

J
[p ep]
P7 =

 −rK−1X
[p ep]
7 0 −aX [p ep]

7

0 −sH−1Y
[p ep]

7 , −bY [p ep]
7

aeZ
[p ep]
7 ebZ

[p ep]
7 −mZ [p ep]

7


and we have that

−tr(J
[p ep]
P7

) =
r

K
X

[p ep]
7 +

s

H
Y

[p ep]
7 +mZ

[p ep]
7 > 0,

− det(J
[p ep]
P7

) =
X

[p ep]
7 Y

[p ep]
7 Z

[p ep]
7

HK
(a2esK + b2erH +mrs) > 0.

Finally, the remaining Routh-Hurwitz conditions are satisfied, i.e.

r2s

K2H
(X

[p ep]
7 )2Y

[p ep]
7 +

(
ra2e

K
+ r2m

)
(X

[p ep]
7 )2Z

[p ep]
7

+

(
3rms

KH
+
rb2e

K
+
sa2e

H

)
X

[p ep]
7 Y

[p ep]
7 Z

[p ep]
7 +

(
sm2

H
+mb2e

)
(Y

[p ep]
7 )2Z

[p ep]
7

+

(
s2m

H2
+
sb2e

H

)
(Y

[p ep]
7 )2Z

[p ep]
7 +

(
m2r

K
+ ea2m

)
X

[p ep]
7 (Z

[p ep]
7 )2

+
s2r

KH2
X

[p ep]
7 (Y

[p ep]
7 )2 +

(
b2erH + a2esK + rms

KH

)
X

[p ep]
7 Y

[p ep]
7 Z

[p ep]
7 > 0,

is clearly satisfied as well. Thus the coexistence equilibrium P
[p ep]
7 of (1.2) is

unconditionally stable, when feasible.

From (1.10) and the first condition of (1.13) there is a transcritical bifur-

cation linking P
[p ep]
7 with P

[p ep]
5 and, from (1.12) and the second condition of

(1.13) there is a transcritical bifurcation linking P
[p ep]
7 with P

[p ep]
6 .

1.2 Global stability for the equilibria of mod-

els (1.1) and (1.2)

The coexisting equilibrium point P
[p hp]
4 of the model (1.1) cannot undergo any

Hopf-bifurcation, recall Remark (1.1.1) in Section 1.1.2. Here we prove that

the feasibility of P
[p hp]
4 implies that it is globally asymptotically stable. For

this purpose we consider the following Lyapunov function,

V
[p hp]

4 (X(t), Z(t)) =

(
X −X [p hp]

4 −X [p hp]
4 ln

X

X
[p hp]
4

)

+ α1

(
Z − Z [p hp]

4 − Z [p hp]
4 ln

Z

Z
[p hp]
4

)
,
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where α1 is a positive constant, yet to be determined. Differentiating the above
function with respect to t along the solution trajectories of system (1.1), we
find

dV
[p hp]

4

dt
= − r

K

(
X −X [p hp]

4

)2

− α1
u

L

(
Z − Z [p hp]

4

)2

+ a(α1e− 1)(X −X [p hp]
4 )(Z − Z [p hp]

4 ).

If we choose α1 = 1
e
> 0, then the above derivative is negative definite except

at the equilibrium point P
[p hp]
4 . Hence P

[p hp]
4 is a globally stable equilibrium

point whenever it is feasible.
For the equilibrium P

[p hp]
3 we instead choose

V
[p hp]

3 (X(t), Z(t)) = α2X + α1

(
Z − Z [p hp]

3 − Z [p hp]
3 ln

Z

Z
[p hp]
3

)
,

and differentiation along the system trajectories leads to

dV
[p hp]

3

dt
= −α2

r

K
X2 − α1

u

L

(
Z − Z [p hp]

3

)2

+ [aZ(α2e− α1) + α1r − α2eaL]X

so that choosing α2e = α1 and using the feasibility condition (1.6), the deriva-

tive of V
[p hp]

3 becomes negative definite. Hence, when feasible, also P
[p hp]
3 is

globally asymptotically stable.
Similarly, by choosing the following Lyapunov function,

W
[p ep]
7 (X(t), Y (t), Z(t)) =

(
X −X [p ep]

7 −X [p ep]
7 ln

X

X
[p ep]
7

)

+

(
Y − Y [p ep]

7 − Y [p ep]
7 ln

Y

Y
[p ep]

7

)

+ β1

(
Z − Z [p ep]

7 − Z [p ep]
7 ln

Z

Z
[p ep]
7

)
,

β1 is a positive constant required to be determined. Differentiating the function
W

[p ep]
7 along the solution trajectories of the system (1.2) we find, after some

algebraic manipulation,

dW
[p ep]
7

dt
= − r

K

(
X −X [p ep]

7

)2

− s

H

(
Y − Y [p ep]

7

)2

−mβ1

(
Z − Z [p ep]

7

)2

+ [a(1− eβ1)(X −X [p ep]
7 ) + b(1− eβ1)(Y − Y [p ep]

7 )](Z − Z [p ep]
7 ).

Choosing β1 = 1
e

we find that the derivative of W
[p ep]
7 is negative definite

except at P
[p ep]
7 . Hence P

[p ep]
7 is a global attractor whenever it is feasible.
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For the other equilibria, again when locally asymptotically stable, they are
also globally asymptotically stable. Indeed we consider instead, e.g. for P

[p ep]
5 ,

the function

W
[p ep]
5 (X(t), Y (t), Z(t)) = α2X + α3

(
Y − Y [p ep]

5 − Y [p ep]
5 ln

Y

Y
[p ep]

5

)

+ α1

(
Z − Z [p ep]

5 − Z [p ep]
5 ln

Z

Z
[p ep]
5

)
.

Once more, differentiation along the trajectories gives

dW
[p ep]
5

dt
= −α2

r

K

(
X −X [p ep]

5

)2

− α3
s

H

(
Y − Y [p ep]

5

)2

− α1m
(
Z − Z [p ep]

5

)2

+ [a(1− eα1)(X −X [p ep]
5 ) +X[α2r − α3aZ

[p ep]
5 − aZ(α3 − α2)]

and choosing α2 = α3 = eα1 and using the local stability condition (1.10) the

above derivative of W
[p ep]
5 is negative definite. Hence the global stability for

P
[p ep]
5 . For P

[p ep]
6 the result is obtained in the same way, using (1.12).

1.3 Transcritical bifurcation of model (1.1)

Here we verify the analytical transversality conditions required for the trans-
critical bifurcation between the equilibrium points P

[p hp]
3 and P

[p hp]
4 . For con-

venience we consider r as the bifurcation parameter. The axial equilibrium
point P

[p hp]
3 coincides with the coexistence equilibrium P

[p hp]
4 at the parame-

tric threshold rTC = aL.
The Jacobian matrix of the system (1.1) evaluated at P

[p hp]
3 and at the

parametric threshold r = aL, we find

J
[p hp]
P3

(rTC) =

(
0 0
eaL −u

)
,

and its right and left eigenvectors, corresponding to the zero eigenvalue, are
given by V1 = ϕ1(1, er

u
)T and Q1 = ω1(1, 0)T , where ϕ1 and ω1 are arbitrary

nonzero real numbers. Differentiating partially the right hand sides of the
equation (1.1) with respect to r and calculating its Jacobian matrix, we res-
pectively find

fr =

(
X

[p hp]
3 (1− X

[p hp]
3

K
)

0

)
, Dfr =

(
1− 2X

[p hp]
3

K
0

0 0

)
.

Here we use the same notations of [70] to verify the Sotomayor’s conditions
for the existence of a transcritical bifurcation. Let D2f((X,Z); r)(V1, V1) be

14
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defined by (
∂2f1
∂X2 ξ

2
1 + 2 ∂2f1

∂X∂Z
ξ1ξ2 + ∂2f1

∂Z2 ξ
2
2

∂2f2
∂X2 ξ

2
1 + 2 ∂2f2

∂X∂Z
ξ1ξ2 + ∂2f2

∂Z2 ξ
2
2

)
,

where f1 = rX (1−XK−1)−aZX, f2 = uZ (1− ZL−1) +aeZX are the right
hand sides of (1.1) and ξ1, ξ2 are the components of the eigenvector V1.

After calculating D2f we can easily verify the following three conditions

QT
1 fr((0, L); rTC) = 0, QT

1Dfr((0, L); rTC)V1 = 1 6= 0,

QT
1D

2f((0, L); rTC)(V1, V1) = −2aL

(
1

K
+
ae

u

)
6= 0.

Hence all the conditions for transcritical bifurcation are satisfied. In the above
expression, Dfr((0, L); rTC) denotes the Jacobian of the matrix fr evaluated
at (0, L) for r = rTC .

Figure 1.1 illustrates the simulation explicitly showing the transcritical
bifurcation between P

[p hp]
3 and P

[p hp]
4 for the chosen parameters values (see

the caption of Fig. 1.1) when the parameter r crosses a critical value rTC

rTC = aL = 1 (1.14)

0 0.5 1 1.5

r
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0.4
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Figure 1.1: Transcritical bifurcation between P
[p hp]
3 and P

[p hp]
4 for the para-

meter values: K = a = u = L = e = 1. Initial conditions X0 = Z0 = 0.01.
The equilibrium P

[p hp]
3 is stable from 0.1 to 1 and P

[p hp]
4 is stable past 1; the

vertical line corresponds at the transcritical bifurcation threshold between the
equilibria.
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1 Comparing predator-prey models with hidden and explicit resources

1.4 Numerical simulation results of model (1.2)

Similar to what was done in Section 1.3 we also verify the transversality condi-
tions required for the transcritical bifurcations between the coexistence equi-
librium P

[p ep]
7 and first the equilibrium point P

[p ep]
5 , and secondly with the

equilibrium point P
[p ep]
6 . Considering a and b for convenience as the bifurca-

tion parameters in the two cases, these bifurcations occur respectively at the
parametric thresholds

aTC =
mrs+ b2erH

besH
, bTC =

mrs+ a2esK

aerK
.

The Jacobian matrix of the system (1.2) evaluated at P
[p ep]
7 and at the para-

metric threshold aTC becomes

J
[p ep]
P7

(aTC) =


0 0 0

0 − ms2

b2eH+ms
− bmsH
b2eH+ms

er b2e2sH
b2eH+ms

− bemsH
b2eH+ms

 ,

and its right and left eigenvectors, corresponding to the zero eigenvalue, are
given by

V2 = ϕ2(1,−r
s
,
r

bH
)T , Q2 = ω2(1, 0, 0)T ,

where ϕ2 and ω2 represent arbitrary nonzero real numbers. Differentiating
partially the right hand sides of (1.2) with respect to a, we find

fa =

 −X [p ep]
7 Z

[p ep]
7

0

eX
[p ep]
7 Z

[p ep]
7

 ,

and calculating its Jacobian matrix, we get

Dfa =

 −Z [p ep]
7 0 −X [p ep]

7

0 0 0

eZ
[p ep]
7 0 eX

[p ep]
7

 .

After calculating D2f we can then verify the following three conditions

QT
2 fa(P

[p ep]
7 ; aTC) = 0, (1.15)

QT
2Dfa(P

[p ep]
7 ; aTC)V2 = −ϕ2ω2

besH

b2eH +ms
6= 0 (1.16)

and

QT
2D

2f(P
[p ep]
7 ; aTC)(V2, V2) = −ϕ2

2ω2(
2r

K
+

2r2

sH
+

2mr2

b2eH2
) 6= 0. (1.17)
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1.4 Numerical simulation results of model (1.2)

Now, considering the parametric threshold, bTC , the Jacobian matrix of the
system (1.2) evaluated at P

[p ep]
7 and at bTC is

J
[p ep]
P7

(bTC) =


− mr2

a2eK+mr
0 − amrK

a2eK+mr

0 0 0

a2e2rK
a2eK+mr

es − aemrK
a2eK+mr

 ,

and its right and left eigenvectors, corresponding to the zero eigenvalue, are
given by

V3 = ϕ3(1,−r
s
,
r

aK
)T , Q3 = ω3(0, 1, 0)T ,

where ϕ3 and ω3 are any nonzero real numbers. Differentiating partially the
right hand sides of the equation (1.2) with respect to b, we find

fb =

 0

−Y [p ep]
7 Z

[p ep]
7

eY
[p ep]

7 Z
[p ep]
7

 ,

and calculating its Jacobian matrix, we get

Dfb =

 0 0 0

0 −Z [p ep]
7 −Y [p ep]

7

0 eZ
[p ep]
7 Y

[p ep]
7

 .

After calculating D2f we can once more easily verify the following three con-
ditions

QT
3 fb(P

[p ep]
7 ; bTC) = 0, (1.18)

QT
3Dfb(P

[p ep]
7 ; bTC)V3 = −ϕ3ω3

a2er2K2 + a2ersHK +mr2sH

a3esK2 + ab2erHK + amrsK
(1.19)

6= 0

and

QT
3D

2f(P
[p ep]
7 ; bTC)(V3, V3) = −ϕ3

2ω3(
2r

K
+

2r2

sH
+

2mr2

b2eH2
) 6= 0. (1.20)

Hence all the conditions for transcritical bifurcation are satisfied. Note
that Dfa(P

[p ep]
7 ; aTC) and Dfb(P

[p ep]
7 ; bTC) in the above expressions (1.16) and

(1.19) denote the Jacobian of the matrix fa and fb evaluated at P
[p ep]
7 for
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1 Comparing predator-prey models with hidden and explicit resources

a = aTC and b = bTC , respectively. Finally, (1.17) and (1.20) are obtained
from

D2f((X, Y, Z);ψ)(V, V ) (1.21)

=


∂2f1
∂X2 ξ

2
1 + 2 ∂2f1

∂X∂Y
ξ1ξ2 + 2 ∂2f1

∂X∂Z
ξ1ξ3 + 2 ∂2f1

∂Y ∂Z
ξ2ξ3 + ∂2f1

∂Y 2 ξ
2
2 + ∂2f1

∂Z2 ξ
2
3

∂2f2
∂X2 ξ

2
1 + 2 ∂2f2

∂X∂Y
ξ1ξ2 + 2 ∂2f2

∂X∂Z
ξ1ξ3 + 2 ∂2f2

∂Y ∂Z
ξ2ξ3 + ∂2f2

∂Y 2 ξ
2
2 + ∂2f2

∂Z2 ξ
2
3

∂2f3
∂X2 ξ

2
1 + 2 ∂2f3

∂X∂Y
ξ1ξ2 + 2 ∂2f3

∂X∂Z
ξ1ξ3 + 2 ∂2f3

∂Y ∂Z
ξ2ξ3 + ∂2f3

∂Y 2 ξ
2
2 + ∂2f3

∂Z2 ξ
2
3

 ,

where

f1 = rX

(
1− X

K

)
− aZX, f2 = sY

(
1− Y

H

)
− bZY,

f3 = −mZ2 + e(aZX + bZY )

are the right hand sides of (1.2), ψ is the bifurcation parameter and ξ1, ξ2, ξ3

are the components of the eigenvector V .

We now consider a numerical example to understand the dynamics of the
model (1.2). We fix the parameter values r = 3, K = 100, s = 4, H = 120,
m = 0.2 and e = 0.5. The other two parameters, a and b are considered
as bifurcation parameters. We verify that the trivial equilibrium P

[p ep]
1 , two

axial equilibria P
[p ep]
2 and P

[p ep]
3 and boundary equilibrium P

[p ep]
4 are always

unstable irrespective of the parameter values for a and b. P
[p ep]
5 is stable for

300b > 3(250b2 + 1) and is unstable otherwise. Similary P
[p ep]
6 is stable for

250a > 4(250a2+1). The coexistence equilibrium point P
[p ep]
7 is feasible when

the parametric restrictions 300b < 3(250b2 + 1) and 250a < 4(250a2 + 1) are
satisfied simultaneously. The coexisting equilibrium point is stable whenever
it is feasible.

Analytically we have discovered that the coexisting equilibrium point for
the model (1.1) is stable whenever it is feasible. Now we can demonstrate how
the stability of this coexisting equilibrium point is altered by explicitly con-
sidering the alternative prey population in the system. We fix the parameter
values r = 3, K = 100 and e = 0.5. The existence and hence the stability
of the coexistence equilibrium is determined by the grazing rate a and the
carrying capacity L of the generalist predator. For a = 0.1, P

[p hp]
4 is feasible

and stable for L < 30 but for a = 0.3 we find P
[p hp]
4 is feasible and stable only

for L < 10. Here, the intrinsic growth rate of the generalist predator has no
role in determining the stability of P

[p hp]
4 ; rather, stable coexistence depends

just on L. Now we consider the model (1.2) with two fixed parameter values
of a, that is a = 0.1 and a = 0.3, respectively.

The components of P
[p ep]
1 , P

[p ep]
2 = (0, H, 0), P

[p ep]
3 = (K, 0, 0), P

[p ep]
4 =

(K,H, 0) and P
[p ep]
6 = (54.54545455, 0, 13.63636364) are independent of b
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1.4 Numerical simulation results of model (1.2)

Figure 1.2: Bifurcation diagram in the a− b parameter space. The two trans-
critical bifurcation curves divide the parameter space into the three regions.
In R1 the coexistence equilibrium P

[p ep]
7 is stable; in R2 instead the primary-

prey-free (X
[p ep]
5 = 0) equilibrium P

[p ep]
5 is stable; in R3 we find the substitute-

prey-free (Y
[p ep]

6 = 0) equilibrium P
[p ep]
6 to be stable.

however P
[p ep]
6 = (54.54545455, 0, 13.63636364) and

P
[p ep]
5 =

(
0,

12

1 + 75b2
,

300b

1 + 75b2

)
,

P
[p ep]
7 =

(
45000b2 − 6000b+ 600

11 + 450b2
,
1320− 4500b

11 + 450b2
,
1800b+ 150

11 + 450b2

)
.

depend on b.

The coexistence equilibrium is feasible and stable for b < 0.29333333. For
b > 0.29333333, instead the coexistence point does not exists, the substitute
prey species goes to extinction and P

[p ep]
6 is stable.

Next, we consider a = 0.3. In this case we discover an interesting situation:
coexistence is feasible and stable for b < 0.03670068382 and 0.3632993162 <
b < 0.4533333333, while the primary prey resource becomes extinct and P

[p ep]
5

is stable for 0.03670068382 < b < 0.3632993162 and finally, the substitute
prey population vanishes and P

[p ep]
6 is stable for b > 0.4533333333. Increasing

grazing pressure on substitute prey leads to its extinction when the predation
on the primary resource does not vary. On the other hand, extinction of the
main prey is observed if the hunting on it increases while the grazing pressure
on the second population remains fixed. These numerical results, obtained by
our own MATLAB code, are in agreement with the bifurcation diagram shown
in Figure 1.2.
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1 Comparing predator-prey models with hidden and explicit resources

1.5 Comparing analytical findings for the mo-

dels (1.1) and (1.2)

Both models are capable to represent the extinction of prey X(t) and the
survival of the predators Z(t). In model (1.1) this situation corresponds to

the equilibrium point P
[p hp]
3 = (0, L) while the analogue situation in model

(1.2) is represented by point P
[p ep]
5 = (0, Y

[p ep]
5 , Z

[p ep]
5 ). Note that in model

(1.1) predator survival is due to the existence of a hidden resource, i.e., there
is one population able to sustain the predator. This situation is represented
by the equilibrium point P

[p ep]
5 in model (1.2), where here the resource is

explicitly exhibited at the non-vanishing level Z
[p ep]
5 . If we now use these

correspondences between the points and compare the coordinates X and Z of
models (1.1) and (1.2) we obtain

L = Z
[p ep]
5 =

eb

m
Y

[p ep]
5 , (1.22)

which is consistent with the result obtained earlier, compare indeed the second
condition in (1.3). In view of the first above equality, (1.22), stability of the
two equilibria is completely analogous, compare indeed (1.6) and (1.10), while
both are unconditionally feasible. Note also that the results on global stability
of these corresponding equilibria is again analogous, whenever viable, they
are also globally asymptotically stable. In summary, P

[p hp]
3 and P

[p ep]
5 are

completely equivalent.
Using a similar reasoning for the coexistence situation in both models we

obtain the correspondence between the equilibrium points P
[p hp]
4 and P

[p ep]
7 .

Indeed in both these equilibria, the main prey and the predators coexist. In this
case, both are unconditionally locally and globally asymptotically stable. Note
that substituting X

[p hp]
4 into Z

[p hp]
4 we find X

[p hp]
4 = K(1−ar−1Z

[p hp]
4 ), which

corresponds to the formula for X
[p ep]
7 . For feasibility we find a correspondence

between the conditions (1.7) and the first one of (1.13), but in the latter
case another additional condition is needed. Therefore acting on this second
feasibility condition, essentially on the parameter s, P

[p ep]
7 could be made

unfeasible while P
[p hp]
4 in principle retains its feasibility.

Note also that equilibrium P
[p ep]
6 = (X

[p ep]
6 , 0, Z

[p ep]
6 ) does not have any

correspondent point in the model (1.1), since this system assumes that the
alternative prey is always available, because we cannot set L = 0 in it.

1.6 An application

In this section we provide a numerical example based on a realistic ecosys-
tem. We consider as predator the pine marten Z, Martes martes L., that
feeds possibly on the grey squirrel X, Sciurus carolinensis, taken here as the
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1.6 An application

primary prey, and on the European hare Y , Lepus Europaeus, considered as
the alternative resource. This example has practical relevance since both the
European hare and the grey squirrel are nowadays established invasive species
in Piemonte, NW Italy, [35, 64]. Some indications on the parameter values
are given in the available literature, first line of (1.23); for the parameters for
which an estimate does not exist instead, we choose hypothetical values, se-
cond line of (1.23), and numerically explore the possible ecosystem behaviour
as they are varied. From [79], the pine marten net reproductive rate ranges in
the interval 0.9-1.2; also, for the Swiss and Italian Alps, its density is about
0.1-0.8 individual per square Km, [59]. For the hare, the net reproductive rate
is about 1.96, while the density in the Alps ranges between 2-5 individuals to
a maximum value of 10 individuals per square Km, [64]. The grey squirrel has
a net reproductive rate of 1.28 and density of 20 individuals per square Km,
[10]. The time unit is taken as the year.

Based on the above information, the parameter reference values that we
use for the simulations are:

r = 1.28, K = 20, s = 1.96, H = 5, u = 1.2, L = 0.1;

e = 0.8, a = 1, m = 12, b = 1.

We have assumed that in the absence of food a pine marten dies in about
a month, thereby setting the value for m. Note that with this choice the last
condition in (1.3) is satisfied.

In Fig. 1.3 we plot the equilibrium values of the three population densities
as functions of the hunting parameters a and b. In agreement with the fin-
dings of the previous section, the squirrels, the main prey X, vanishes in the
left portion of the parameter space, while the alternative prey thrives there
and vanishes in the opposite portion of the space. The predator Z thrives
instead in the whole parameter space by feeding on each surviving prey in
the two different portions of the space. Both prey densities are depressed for
larger values of both hunting rates. Somewhat counterintuitively, the predator
density in such conditions drops also. This can be explained by the fact that
in such case both prey are removed faster and therefore there are less resources
for the pine marten, so that a large predator population cannot be sustained.

We investigate then the behaviour of the model (1.2) in the a −m para-
meter space for the subsequent comparison with the system with the generalist
predator, i.e. with model (1.1), Fig. 1.4. Note that in the left part of the
parameter space, the main prey X vanishes, while in the remaining part of the
plane the ecosystem attains coexistence. Here again the predator population
density drops as both its mortality and the hunting rate increase independently
of each other. The prey experience a gain from higher predator mortalities.
The main prey is also depressed by a higher hunting rate, while the alternative
prey has a relief: indeed in this case the predation rate a concerns only the
primary resource, so that if it is exploited more, the secondary prey suffers
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Figure 1.3: The coexistence equilibrium value in the a − b parameter space
for the model (1.2). Left to right the squirrels X, hares Y and pine marten
Z population densities. The remaining fixed parameters values are given in
(1.23).

less.

Finally in Fig. 1.5 we consider model (1.1). In the a− u parameter space,
we let u vary in a domain that is comparable with the range used for m in Fig.
1.4. Clearly, here the squirrels density behaviour mimicks the one found in Fig.
(1.2). Instead, the predators behave in the same way as for the mortality rate
m in Fig. 1.4, when the reproduction rate u is concerned, but their density
drops with increasing hunting rate, at least for low values of u, while in Fig.
1.4 it remains essentially constant.
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for the model (1.2). Left to right the squirrels X, hares Y and pine marten
Z population densities. The remaining fixed parameters values are given in
(1.23).
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1.7 Discussion

This chapter is devoted to investigate the differences in the dynamics between
two predator-prey models with a generalist predator in the first model and a
specialist predator on two prey in the second on. The alternative food source
for the predator is implicit in the first model, but in the second model we
have considered it explicitly. The most significant difference between the two
models lies in the fact that the grazing pressure on the preferred prey and
carrying capacity of the predator determine the stable coexistence of prey and
predator when the alternative resource is implicit. It is interesting to note that
for predator-prey models with specialist predator and logistic growth for the
prey population, we cannot find any prey species extinction scenario due to
overexploitation. However, if the predators have an alternative resource other
than their favorite prey, higher rate of consumption of one prey species can
drive them towards extinction. Due to the presence of the alternative food
source for the generalist predator, no predators’ extinction scenario can be ob-
served as the prey-only equilibrium point (K, 0) is always unstable. Although
the predators have an alternative food source, they still survive on their most
favorite food. As a result the ecosystem extinction and the predator-free equi-
librium point (K, 0) are always non-achievable by the system trajectories, as
they are unstable. The generalist predator grazing rate on the primary prey
a determines which one of the equilibria is stable, the favorite prey-free point
P

[p hp]
3 or the coexistence P

[p hp]
4 .

To ensure the coexistence of both the prey populations and the generalist
predator some balance between the respective grazing pressures exerted on
them needs to be maintained. Higher grazing pressure only on one species
always leads to its extinction, but we never find total system collapse, where
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1 Comparing predator-prey models with hidden and explicit resources

extinction of both the prey populations is responsible for the extinction of the
predator as well. For both types of models, the feasibility and local asymptotic
stability of the equilibria imply also their global asymptotic stability.

Note finally that when we consider the ecosystem with both prey popula-
tions explicitly modeled, there is no equilibrium point of the form (0, 0, Z). In
such case thus the survival of the predator population alone is not possible.
This result is quite reasonable, because then the predator is left with no food
available and thus starves to death. The model with implicit prey however
cannot show the same behaviour, as the alternative food source is constant
and thus remains unaltered and therefore predicts something different.

The numerical simulations performed on a concrete ecosystem show that
there could be a difference in the model behaviour whether or not the alter-
native resource is explicitly built into the system. The predator density drops
with decreasing hunting rate for low values of the reproduction rate when the
secondary prey is hidden and the predators are treated as generalist, while
if they are specialist on both species their steady state level remains about
constant. So at least in this case, apparently the hiding of the secondary prey
as a generic alternative resource plays a significant role, in that it changes a
bit the behaviour of the predators steady state outcomes.
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CHAPTER 2

COMPARING PREDATOR-PREY
MODELS WITH HIDDEN AND

EXPLICIT RESOURCES WITH A
TRANSMISSIBLE DISEASE IN THE

PREY SPECIES

Currently, mathematical models in ecoepidemiology play an important tools in
the analysis of the spread and control of infectious diseases among interacting
animal communities [4, 37, 82]. Most models dealing with the transmission of
infectious diseases descend from the classic SIR model [43, 49, 84]. However,
in this chapter we consider models only of type SI, [83], to keep the presenta-
tion simple without obscuring the main goals with unnecessary mathematical
complications.

The main focus of this investigation concerns the fact that in modeling some
selected features in nature are chosen as being part of the general picture one
wants to set in the mathematical framework, while necessarily some others are
neglected. The situation is similar to the well-know story that cartographers
were asked to produce a very accurate map of the terrain, and to obtain that
any scale smaller than the 1:1 would be insufficient. But the result was that
such a map would cover completely the ground and therefore be absolutely use-
less. When looking at ecological situations, apart from including or excluding
particular features of the ecosystem at hand, it is important to decide which
dependent variables are essential for the effective description of the picture. In
that respect, including too many may lead to a full illustration of the system
dynamics, which can be simulated via numerical devices but excludes any sort
of mathematical qualitative analysis, in view of its complexity. Needless to
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2 Comparing predator-prey models with hidden and explicit resources with a
transmissible disease in the prey species

say, the simulations must be repeated over and over again giving each time
different values to the relevant parameters, in order to obtain qualitative in-
formation on the future system behaviour. On the contrary the mathematical
analysis, if it can be carried out, would answer these evolution questions in a
relatively easy fashion. When it comes to quantitative predictions, the roles
reverse, and it is the numerical simulations that could provide more or less
reliable answers, but those would depend on the accurate measurements of the
parameters of the model, which may not all be known or available.

Setting our perspective from the qualitative viewpoint, sometimes of the
many actors on the scene, i.e. the several species interacting in a natural
scenery, some should be excluded in order to render the mathematical de-
scription analytically tractable. It may thus happen that some populations
are judged to play a less relevant role and are not therefore modeled as sys-
tem’s variables. For instance, a (generalist) predator may sussist on several
prey, but to reduce the number of interacting populations in the dynamical
system formulation, only the main one is explicitly taken into account. But
in so doing something is lost and it is not clear if this entails relevant conse-
quences for the ensuing analysis. Here we would like to consider exactly this
issue, and exploring namely what are the implications of omitting one explicit
(prey) population from the dynamical formulation of a predator-prey interac-
tion. We thus compare two models, one in which the omission is compensated
by some “generic” alternative resources available for the predator, and a second
one in which the previously omitted population is instead explicitly accounted
for as a system variable. In nature there are very many such instances, we
mention for instance the pine marten Martes martes L., that can feed possibly
on grey squirrel Sciurus carolinensis and the European hare Lepus Europaeus,
both now invasive species in Northern Italy, [35, 64]. Either one could be for-
gotten, if the focus of the model is for instance finding eradication measures
for the other one.

The main objective of this Chapter is therefore the comparative study of
two predator-prey ecoepidemic models, an example of which is discussed in
[13, 42], although food webs can also be considered, see for instance [48]. We
assume that the disease spreads among the prey population. The difference
between the models is represented by the predator having an alternative food
source, which is implicit in the first formulation and explicit in the second
one. Thus the predator is assumed to be generalist in the first model, while
in the second model, because of this explicitly accounted for alternative food
resource, the predator is regarded as specialist on both prey species. This
Chapter extends to ecoepidemic situations the analysis already performed on
the purely demographic ecosystems, [5, 51, 81].

The presentation is organized as follows: In Section 2.1, we present the
model for the generalist predator and in Section 2.2, the corresponding model
with two prey and the specialist predator. In both situations, we show that
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2.1 The model with hidden resources

the systems trajectories remain confined within a compact set, we study local
and global stability, and determine existing bifurcations between the equilibria
of the model. The outcomes of the two models are compared in Section 2.3
and a final discussion concludes the Chapter.

2.1 The model with hidden resources

Let the prey population be denoted by X, the infected prey population U ,
which is assumed to be weakened by the disease so as not to be able to re-
produce nor to interfere with the susceptibles, and the predator population
Z. The predator population has an alternative food supply, indicated by a
suitable logistic growth term. The model, in which all the parameters are
nonnegative, reads:

dX

dt
= rX

(
1− X

K

)
− aZX − λXU,

dU

dt
= λXU − cZU − µU, (2.1)

dZ

dt
= uZ

(
1− Z

L

)
+ eZ(aX + cU).

The first equation of model (2.1) describes the healthy prey propulation
dynamics. The first term on the right hand side expresses logistic growth with
r being the per capita net reproduction rate and K the carrying capacity of
the environment. The second term models the hunting process of predators on
healthy individuals at rate a and the third term describes the infection process
by “successful” contacts with an infected individual via a simple mass action
law, with contact rate λ. The second equation describes the infected prey
evolution, recruited by the infection process at rate c, hunted via a classical
mass action term and subject to natural plus disease-related mortality µ. The
third equation contains the dynamics of the predators, who in the absence of
both healthy and infected prey have an alternative resource, that is hidden in
the model and originating a logistic growth, with per capita net reproduction
rate u and the carrying capacity of the environment L. The term eZ(aX+cU)
instead accounts for the reward obtained by hunting healthy and infected prey,
respectively, e denoting the conversion factor. The equilibria of this model are
denoted by the superscript [p ehp], the first “p” referring to predators and the
second one to prey, “e” standing for “epidemics” and “h” for “hidden”.

In shorthand notation, the model (2.1) can be rewritten in a vector form

dP

dt
= f(P ), P = (X,U,Z)T , f = (f1, f2, f3)T , (2.2)

with the components of f given by the right hand side of model (2.1).
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2.1.1 Boundedness

In order to obtain a well-posed model, we need to show that the trajectories of
system remain confined within a compact set. Consider the total environment
population ϕ(t) = X(t)+U(t)+Z(t). Taking an arbitrary 0 < η < µ, summing
the equations in model (2.1), we obtain:

dϕ(t)

dt
= rX

(
1− X

K

)
+ uZ

(
1− Z

L

)
− µU + (e− 1)(aXZ + cUZ). (2.3)

Since e ≤ 1, from (2.3) we can obtain:

dϕ(t)

dt
= rX

(
1− X

K

)
+ uZ

(
1− Z

L

)
− µU + (e− 1)(aXZ + cUZ)

≤ rX

(
1− X

K

)
+ uZ

(
1− Z

L

)
− µU. (2.4)

Adding ηϕ(t) on both sides of inequality (2.4) we find the estimate:

dϕ(t)

dt
+ ηϕ(t) ≤ rX

(
1− X

K
+
η

r

)
+ uZ

(
1− Z

L
+
η

u

)
+(η − µ)U ≤ p1(X) + p2(Z),

p1(X) = rX

(
1− X

K
+
η

r

)
, p2(Z) =

(
1− Z

L
+
η

u

)
.

The functions p1(X) and p2(Z) are concave parabolae, with maxima located
at X∗, Z∗, and corresponding maximum values

M1 = p1(X∗) =
rK

4

(
1 +

η

r

)2

, M2 = p2(Z∗) =
uL

4

(
1 +

η

u

)2

.

Thus,
dϕ(t)

dt
+ ηϕ(t) ≤M ; M1 +M2 = M.

Integrating the differential inequality, we find

ϕ(t) ≤
(
ϕ(0)− M

η

)
e−ηt +

M

η
≤ max

{
ϕ(0),

M

η

}
. (2.5)

From this result, since 0 ≤ X,U,Z ≤ ϕ, the boundedness of the original
ecosystem populations is immediate. The coordinate subspace are solution
trajectories in system (2.1) and, by the uniqueness theorem [70], they cannot
be crossed by other trajectories. Indeed, Ẋ = 0 if X = 0, U̇ = 0 if U = 0,
Ż = 0 if Z = 0 and when nonvanishing, the initial conditions for the model
should always be positive to make biological sense.
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2.1.2 Local stability analysis

The Jacobian matrix of the system (2.1), is given by

J [p ehp] =

 J
[p ehp]
11 −λX −aX
λU −cZ + λX − µ −cU
aeZ ceZ J

[p ehp]
33

 (2.6)

with

J
[p ehp]
11 = −λU − aZ + r

(
1− 2X

K

)
, J

[p ehp]
33 = u− 2u

Z

L
+ eaX + ecU,

There are 7 equilibria for model (2.1), but four must be rejected. At first,

the two always feasible but unstable points: the origin P
[p ehp]
1 = (0, 0, 0),

with eigenvalues r,−µ, u, and P
[p ehp]
2 = (K, 0, 0), with eigenvalues −r,Kλ −

µ, u + aeK. In addition, for the equilibrium point P
[p ehp]
3 = (µλ−1, rλ−1(1 −

µλ−1K−1), 0) the feasibility condition requires U
[p ehp]
3 ≥ 0 which explicitly is

given by 1 ≥ µλ−1K−1.

Furthermore, the Jacobian matrix (2.6) evaluated at P
[p ehp]
3 gives one ex-

plicit eigenvalue which should be negative to ensure stability, i.e. u+aeµλ−1 +
cerλ−1(1 − µλ−1K−1) < 0 must be satisfied. Clearly, if the condition for fea-

sibility of P
[p ehp]
3 holds, this eigenvalue is positive and thus P

[p ehp]
3 is unstable

whenever feasible. Finally, the point P
[p ehp]
4 = (0,−(uµ+ucL)e−1c−2L−1,−µc−1)

is not feasible.

The equilibrium point P
[p ehp]
5 = (0, 0, L) is always feasible and stable if

r

a
< L. (2.7)

The point P
[p ehp]
6 = (X

[p ehp]
6 , 0, Z

[p ehp]
6 ), with explicit populations levels:

X
[p ehp]
6 =

urK − auKL
a2eKL+ ur

, Z
[p ehp]
6 =

L(aerK + ur)

a2eKL+ ur
,

is feasible if
r

a
≥ L. (2.8)

The characteristic equation of the Jacobian matrix (2.6) evaluated at P
[p ehp]
6

can be factorized into the product of one linear equation and one quadratic
equation providing one explicit eigenvalue producing the following condition,
written both in implicit and explicit forms:

λX
[p ehp]
6 < cZ

[p ehp]
6 + µ, λ <

acerKL+ ucrL+ uµr + a2eµKL

uK(r − aL)
, (2.9)
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while the Routh-Hurwitz conditions for the remaining minor

J
[p ehp]

P6
=

 − ru(r−aL)
ur+a2eKL

−auK(r−aL)
ur+a2eKL

aerL(aeK+u)
ur+a2eKL

− ru(aeK+u)
ur+a2eKL


are always satisfied, if the feasibility condition (2.8) holds sharply, namely

tr(J
[p ehp]

P6
) =
−ru(r − aL)− ruaeK − ru2

ur + a2eKL
< 0 (2.10)

and

det(J
[p ehp]

P6
) =

(r − aL)(aeK + u)(a2uerKL+ r2u2)

(a2eKL+ ru)2
> 0. (2.11)

Thus, if the condition (2.9) is satisfied, equilibrium P
[p ehp]
6 is stable.

For the coexistence P
[p ehp]
7 = (X

[p ehp]
7 , U

[p ehp]
7 , Z

[p ehp]
7 ), we find

X
[p ehp]
7 =

cZ
[p ehp]
7 + µ

λ
, U

[p ehp]
7 =

r

λ

(
1− µ

λK

)
− Z

[p ehp]
7

λ

(
a+

rc

λK

)
and

Z
[p ehp]
7 =

L

Kλ2u+ c2erL
(aeµλK + uλ2K + cerλK − cerµ).

Feasibility requirements for U
[p ehp]
7 ≥ 0 and Z

[p ehp]
7 ≥ 0 are given, respectively,

by

λ ≥ auλKL+ rcuL+ acerKL+ a2eµKL+ µru

urK
,

µ ≤ aeµλK + uλ2K + cerλK

cer
.

which in turn reduce to

uk(r − aL)λ ≥ rcuL+ acerKL+ a2eµKL+ µru, (2.12)

which is satisfied for

λ ≥ λ∗, λ∗ =
rcuL+ acerKL+ a2eµKL+ µru

uk(r − aL)
, (2.13)

where λ∗ is the root of the equality associated to (2.12) when (2.8) holds, while

in the opposite case no solution exists and P
[p ehp]
7 in unfeasible, and

Ψ(λ) = uλ2K + e(aKµ+ crK)λ− cerµ ≥ 0
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2.1 The model with hidden resources

for which, denoting by λ± the roots of Ψ(λ), the quadratic inequality is satisfied
for

0 ≤ λ ≤ λ±. (2.14)

For stability, the diagonal entries in the generic Jacobian(2.6) simplify to

J
[p ehp]
11 = − r

K
X

[p ehp]
7 , J

[p ehp]
22 = 0, J

[p ehp]
33 = −u

L
Z

[p ehp]
7 .

Evaluating all the principal minors of the opposite of the Jacobian at coexis-
tence, −J(P

[p ehp]
7 ), we find that it is positive definite.

Thus, whenever feasible, P
[p ehp]
7 is stable:

r

K
X

[p ehp]
7 > 0, λ2U

[p ehp]
7 X

[p ehp]
7 > 0,(

c2er

K
+
uλ2

L

)
X

[p ehp]
7 U

[p ehp]
7 Z

[p ehp]
7 > 0.

In Table 4.1 we summarize the behaviour of the equilibrium points of model
(2.1).

Table 2.1: Behaviour and feasibility and stability conditions of the equilibria
of model (2.1).

Equilibria Feasibility Stability

P
[p ehp]
1 always unstable

P
[p ehp]
2 always unstable

P
[p ehp]
3 µ ≤ λK unstable if feasible

P
[p ehp]
4 unfeasible

P
[p ehp]
5 always r < aL

P
[p ehp]
6 r ≥ aL (2.9)

P
[p ehp]
7 (2.12), (2.13), (2.14) stable if feasible

2.1.3 Global stability analysis

Table 4.1 shows that of the seven equilibria in model (2.1), only three may be
stable. In this section we prove that their local stability, as proved through
the analysis of the eigenvalues, also implies their global stability as well. To
accomplish this task, suitable Lyapunov functions are constructed.
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We now prove that feasibility of P
[p ehp]
7 implies its global asymptotic sta-

bility. Consider the following function,

V
[p ehp]

7 (X(t), U(t), Z(t)) = α2

(
X −X [p ehp]

7 −X [p ehp]
7 ln

X

X
[p ehp]
7

)

+α1

(
U − U [p ehp]

7 − U [p ehp]
7 ln

U

U
[p ehp]
7

)
+ α0

(
Z − Z [p ehp]

7 − Z [p ehp]
7 ln

Z

Z
[p ehp]
7

)
,

where α2, α1 and α0 are arbitrary positive constants. Differentiating along the
solution trajectories of (2.1), we find

dV
[p ehp]

7

dt
= −α2

r

K

(
X −X [p ehp]

7

)2

− α0
u

L

(
Z − Z [p ehp]

7

)2

+ λ(α1 − α2)
(
X −X [p ehp]

7

)(
U − U [p ehp]

7

)
+ a(α0e− α2)

(
X −X [p ehp]

7

)(
Z − Z [p ehp]

7

)
+ c(α0e− α1)

(
U − U [p ehp]

7

)(
Z − Z [p ehp]

7

)
.

If we choose α2 = α1 = α0e, then the above derivative is negative definite
except at the equilibrium point P

[p ehp]
7 , so it is a Lyapunov function. Hence

P
[p ehp]
7 is a globally stable equilibrium point whenever it is feasible.

Analogous results can be shown for the remaining two equilibria, P
[p ehp]
5

and P
[p ehp]
6 .

For P
[p ehp]
5 we need to choose

V
[p ehp]

5 (X(t), U(t), Z(t)) = β2X + β1U + β0

(
Z − Z [p ehp]

5 − Z [p ehp]
5 ln

Z

Z
[p ehp]
5

)
,

with β2, β1 and β0 positive constants to be determined. Differentiation along
the system trajectories leads to

dV
[p ehp]

5

dt
= −β2

r

K
X2 − β0

u

L

(
Z − Z [p ehp]

5

)2

+ a(β0e− β2)XZ

+ λ(β1 − β2)XU + c(β2e− β1)UZ + (β2r − β0eaL)X

+ (−β1µ− β0ecL)U

so that choosing β2 = β1 = β0e and using the local stability condition (2.7)

the above derivative of V
[p ehp]

5 is negative definite and the equilibrium point

P
[p ehp]
5 is globally asymptotically stable.

Similarly, for the equilibrium point P
[p ehp]
6 consider the following candidate
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Lyapunov function:

V
[p ehp]

6 (X(t), U(t), Z(t)) = γ2

(
X −X [p ehp]

6 −X [p ehp]
6 ln

X

X
[p ehp]
6

)

+ γ1U + γ0

(
Z − Z [p ehp]

6 − Z [p ehp]
6 ln

Z

Z
[p ehp]
6

)
,

γ2, γ1 and γ0 being positive constants to be determined. Once more, diffe-
rentiating V

[p ehp]
6 along the trajectories of (2.1) we find, after some algebraic

manipulations,

dV
[p ehp]

6

dt
= −γ2

r

K

(
X −X [p ehp]

6

)2

− γ0
u

L

(
Z − Z [p ehp]

6

)2

+ a(γ0e− γ2)
(
X −X [p ehp]

6

)(
Z − Z [p ehp]

6

)
+ λ(γ1 − γ2)XU

+ c(γ0e− γ1)UZ +
(
γ2λX

[p ehp]
6 − γ0ecZ

[p ehp]
6 − γ1µ

)
U.

Choosing γ1 = γ2 = γ0e and using the local stability condition (2.9) we find

that the derivative of V
[p ehp]

6 is negative definite except at P
[p ehp]
6 . Thus, the

equilibrium point P
[p ehp]
6 is globally asymptotically stable.

Remark 1. These results indicate that if feasible, the equilibria P
[p ehp]
5 ,

P
[p ehp]
6 and P

[p ehp]
7 of the system (2.1) are globally asymptotically stable. In-

deed these three equilibria are mutually exclusive. This statement for P
[p ehp]
5

and P
[p ehp]
6 follows by comparing their respective feasibility and stability condi-

tions in Table 1. Further, for r < aL, P
[p ehp]
5 is stable and P

[p ehp]
7 is unfeasible,

because (2.12) does not hold. Conversely, for r ≥ aL, P
[p ehp]
6 is feasible but

then (2.9) and (2.12), (2.13) contradict each other, so that P
[p ehp]
6 and P

[p ehp]
7

are also excluding each other. These remarks suggest the existence of trans-
critical bifurcations linking these equilibria, a question that will be investigated
analytically in the next section.

2.1.4 Transcritical bifurcations

To study the local bifurcations of the equilibrium points of model (2.1), we
use Sotomayor’s theorem [70]. The general second order term of the Taylor
expansion of f in (2.2) is given by

D2f(P, ψ)(V, V ) (2.15)

=


∂2f1
∂X2 ξ

2
1 + ∂2f1

∂U2 ξ
2
2 + ∂2f1

∂Z2 ξ
2
3 + 2 ∂2f1

∂X∂U
ξ1ξ2 + 2 ∂2f1

∂X∂Z
ξ1ξ3 + 2 ∂2f1

∂U∂Z
ξ2ξ3

∂2f2
∂X2 ξ

2
1 + ∂2f2

∂U2 ξ
2
2 + ∂2f2

∂Z2 ξ
2
3 + 2 ∂2f2

∂X∂U
ξ1ξ2 + 2 ∂2f2

∂X∂Z
ξ1ξ3 + 2 ∂2f2

∂U∂Z
ξ2ξ3

∂2f3
∂X2 ξ

2
1 + ∂2f3

∂U2 ξ
2
2 + ∂2f3

∂Z2 ξ
2
3 + 2 ∂2f3

∂X∂U
ξ1ξ2 + 2 ∂2f3

∂X∂Z
ξ1ξ3 + 2 ∂2f3

∂U∂Z
ξ2ξ3

 ,
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where ψ represents the parametric threshold and ξ1, ξ2, ξ3 are the components
of the eigenvector V = (ξ1, ξ2, ξ3)T of the variations in X,U and Z.

Bifurcation of the equilibrium point P
[p ehp]
6

The axial equilibrium point P
[p ehp]
6 coincides with the equilibrium P

[p ehp]
5 at

the parametric threshold r† and with equilibrium P
[p ehp]
7 at the parametric

threshold λ†, where

r† = aL, λ† =
aeKL(cr + aµ) + ur(µ+ cL)

uK(r − aL)
(2.16)

when we compare the feasibility condition (2.8) of P
[p ehp]
6 together with the

stability condition (2.7) of P
[p ehp]
5 as well as, respectively, the stability con-

dition (2.9) of P
[p ehp]
6 and the feasibility condition (2.12) of the equilibrium

P
[p ehp]
7 .

The Jacobian matrix of the system (2.1) evaluated at P
[p ehp]
6 and at r† is

J
[p ehp]
P6

(r†) =

 0 0 0
0 −cL− µ 0
aeL ceL −u

 .

Its right and left eigenvectors, corresponding to the zero eigenvalue, are given
by V1 = ϕ1(1, 0, aeL/u)T and Q1 = ω1(1, 0, 0)T , where ϕ1 and ω1 are any
nonzero real numbers. Differentiating partially the right hand sides of the
equation (2.1) with respect to r and calculating its Jacobian matrix, we find,
respectively:

fr =

 X
[p ehp]
6 (1−X [p ehp]

6 /K)
0
0

 , Dfr =

 1− 1
K
X

[p ehp]
6 0 0

0 0 0
0 0 0

 .

After calculating D2f in (2.15) evaluated at P
[p ehp]
6 , the parametric threshold

r† and the eigenvector V1 we can verify the following three conditions

Q1
Tfr(P

[p ehp]
6 , aL) = 0,

Q1
T [Dfr(P

[p ehp]
6 , aL)V1] = ϕ1ω1 6= 0,

QT
1 [D2fr(P

[p ehp]
6 , aL)(V1, V1)] = −ω1ϕ1

2

(
aL

K
+

2a2eL

u

)
6= 0.

When P
[p ehp]
6 coincides with the equilibrium P

[p ehp]
7 at the threshold λ†,
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the Jacobian matrix of the system (2.1) is

J
[p ehp]
P6

(λ†) (2.17)

=


− ru(r−aL)
ur+a2eKL

−L(acerK+a2eµK+cru)+ruµ
ur+a2eKL

a2uKL−aruK
ur+a2eKL

0 0 0

L(a2e2rK+aeru)
ur+a2eKL

L(ace2rK+ceru)
ur+a2eKL

−aeruK+ru2

ur+a2eKL

 .

For the zero eigenvalue in (2.17), the corresponding eigenvector is V2 =
ϕ2(1, v1, v2)T , where ϕ2 is any nonzero real number and v1 and v2 are

v1 =
−a3eKL2 − L(aru− a2erK) + r2u)

a2ceKL2 + L(−2acerK − a2eµK − cru)− µru

and

v2 =
L2(a2ce2rK + a3e2µK + 2aceru) + uL(aeµr − cer2)

a2ceuKL2 + L(−2aceruK − a2eµuK − cru2)− µru2
. (2.18)

Besides that, Q2 = ω2(0, 1, 0)T represents the eigenvector corresponding

to the zero eigenvalue of (J
[p ehp]
P6

(r†))T , where ω2 is any nonzero real number.
Differentiating partially the right hand sides of (2.1) with respect to λ and
calculating its Jacobian matrix, we respectively find

fλ =

 −X [p ehp]
6 U

[p ehp]
6

X
[p ehp]
6 U

[p ehp]
6

0

 , Dfλ =


0 −X6

[p ehp] 0

0 X6
[p ehp] 0

0 0 0

 .

After calculating D2f in (2.15) evaluated at P
[p ehp]
6 , the parametric threshold

λ† and the eigenvector V2 we can verify the following three conditions, the
latter being satisfied in view of (2.18) and (2.16):

Q2
Tfλ(P

[p ehp]
6 , λ†) = 0, Q2

T [Dfλ(P
[p ehp]
6 , λ†)V2] = ϕ2ω2v1X6

[p ehp] 6= 0,

QT
2 [D2fλ(P

[p ehp]
6 , λ†)(V2, V2)] = 2v1ω2ϕ2

2
(
λ† − cv2

)
6= 0.

Thus, all the conditions for transcritical bifurcation are satisfied. Figure 4.1
illustrates the simulation explicitly showing the transcritical bifurcation be-
tween P

[p ehp]
6 and P

[p ehp]
5 for the chosen parameter values (see the caption of

Fig. 4.1 (a)) when the parameter r crosses a critical value r† = aL = 1 given

by (2.16) and the transcritical bifurcation between P
[p ehp]
6 and P

[p ehp]
7 for the

chosen parameters values (see the caption of Fig. 4.1 (b)) when the parameter
λ crosses a critical value λ† ≈ 1.072 given by (2.16).
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Figure 2.1: a) Transcritical bifurcation between P
[p ehp]
6 and P

[p ehp]
5 for the

parameter values: µ = 0.01, K = L = a = u = 1, e = c = 0.3 and λ = 1.01.
Initial conditions X0 = U0 = Z0 = 0.01. The equilibrium P

[p ehp]
5 is stable for

λ ∈ [0.1, 1.01] and P
[p ehp]
6 is stable past λ = 1.01. The vertical line shows

the transcritical bifurcation threshold. b) Transcritical bifurcation between

P
[p ehp]
6 and P

[p ehp]
7 for the parameter values: µ = 0.01, K = L = a = u = 1,

e = c = 0.3 and r = 1.6 and the same initial conditions. The equilibrium
P

[p ehp]
6 is stable for λ ∈ [0.1, 1.072] and P

[p ehp]
7 is stable past λ = 1.072. The

vertical line has the same meaning as in (a).

2.2 The model with explicit resources

Now, we render the hidden resource for the predator explicit, naming it Y .
The model is denoted with the superscript [p eep], where the first “p” refers
to predators and the last one to prey, the first “e” stands for “epidemics” (in
the prey) and the second one stands for explicit resource for the predator. The
model, in which all the parameters are nonnegative, reads:

dX

dt
= rX

(
1− X

K

)
− aZX − λXU,

dU

dt
= λXU − cZU − µU, (2.19)

dY

dt
= sY

(
1− Y

H

)
− bY Z,

dZ

dt
= −mZ2 + e(aXZ + bY Z + cUZ).

The first and second equations of model (2.19), respectively representing the
healthy and infected prey, have the same meaning as described for model (2.1).
The third equation describes the alternative prey population dynamics. The
first term on the right hand side expresses logistic growth with s being the
per capita net reproduction rate and H the environment carrying capacity.
The second term models hunting of Y by the predator at rate b. The fourth
equation describes the predator propulation dynamics and is essentially the
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same as described for (2.1), with an additional gain due to the hunting of the
alternative prey.

2.2.1 Boundedness

The proof for system (2.19) follows a similar pattern as in Section 2.1.1 and is
therefore omitted. Setting ψ(t) = X(t) + U(t) + Y (t) + Z(t), for an arbitrary
0 < η < µ, we find an estimate similar to the one in equation (3.6), where
only the definition of M slightly changes, again ensuring boundedness of all
the ecosystem populations.

2.2.2 Local stability analysis

The Jacobian matrix of system (2.19) is given by

J [p eep] =


J

[p eep]
11 −λX 0 −aX
λU −cZ + λX − µ 0 −cU
0 0 s− 2s

H
Y − bZ −bY

aeZ ceZ beZ J
[p eep]
44

 (2.20)

with

J
[p eep]
11 = r − 2r

K
X − aZ − λU, J

[p eep]
44 = eaX + ebY + ecU − 2mZ.

There are 13 possible equilibria for model (2.19). The four always unstable

points: the origin P
[p eep]
1 = (0, 0, 0, 0), with eigenvalues r, µ, s, 0, P

[p eep]
2 =

(K, 0, 0, 0), with eigenvalues −r,−µ, s, eaK, P
[p eep]
3 = (0, 0, H, 0), with eigen-

values r, −µ, −s, ebH and P
[p eep]
4 = (K, 0, H, 0), with eigenvalues−r,−s,−µ+

λK, aeK + ebH.
Further, the point P

[p eep]
5 = (X

[p eep]
5 , U

[p eep]
5 , 0, 0), where X

[p eep]
5 = µλ−1

and U
[p eep]
5 = rλ−1 − rµλ−2K−1, which is feasible if µ ≤ λK, is uncondi-

tionally unstable because the Jacobian (2.20) evaluated at the P
[p eep]
5 , has two

explicit eigenvalues, eaµλ−1 + ecrλ−1 − ecrµλ−2K−1 and s > 0. Similarly, the
equilibrium P

[p eep]
8 = (µλ−1,−rλ−1 + rµλ−2K−1, H, 0), is feasible if

µ ≥ λK, (2.21)

but unconditionally unstable when feasible, since one of the two explicit eigen-
values of the Jacobian at P

[p eep]
8 is positive in view of (2.21):

−s < 0, ebH +
eaµ

λ
− ecr

λ

(
1− µ

λK

)
> 0.

There are also two unconditionally unfeasible points:

P
[p eep]
6 = (0,−mµ

ec2
, 0,−µ

c
), P

[p eep]
7 = (0, U

[p eep]
7 , Y

[p eep]
7 , Z

[p eep]
7 ),
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with

U
[p eep]
7 =

ecsbH − eµb2H −msµ
c2es

, Y
[p eep]

7 =
µbH + csH

cs
, Z

[p eep]
7 = −µ

c
.

The equilibrium P
[p eep]
9 = (X

[p eep]
9 , 0, 0, Z

[p eep]
9 ), where

X
[p eep]
9 =

mrK

a2eK +mr
, Z

[p eep]
9 =

aerK

a2eK +mr

is always feasible and conditionally stable, because two explicit eigenvalues of
the Jacobian at P

[p eep]
9 give the stability conditions

s <
aberK

a2eK +mr
, λ <

aeK(aµ+ cr) +mrµ

mrK
. (2.22)

while the Routh-Hurwitz conditions for the remaining minor J
[p eep]

P9
hold:

−tr(J
[p eep]

P9
) =

r

K
X

[p eep]
9 +mZ

[p eep]
9 > 0,

det(J
[p eep]

P9
) =

mr

K
X

[p eep]
9 Z

[p eep]
9 + a2eX

[p eep]
9 Z

[p eep]
9 > 0.

The point P
[p eep]
10 = (0, 0, Y

[p eep]
10 , Z

[p eep]
10 ), with

Y
[p eep]

10 =
msH

b2eH +ms
, Z

[p eep]
10 =

ebsH

b2eH +ms

is similarly always feasible and conditionally stable. From the Jacobian at
P10

[p eep] one explicit eigenvalue is −cZ [p eep]
10 − µ < 0 while another explicit

eigenvalue provides the stability condition

Z
[p eep]
10 =

abesH

b2eH +ms
>
r

a
. (2.23)

The Routh-Hurwitz criterion on the remaining minor J
[p eep]

P10 holds:

−tr(J
[p eep]

P10
) =

s

H
Y

[p eep]
10 +mZ

[p eep]
10 > 0,

det(J
[p eep]

P10
) =

ms

H
Y

[p eep]
10 Z

[p eep]
10 + b2eY

[p eep]
10 Z

[p eep]
10 > 0.

The equilibrium P
[p eep]
11 = (X

[p eep]
11 , 0, Y

[p eep]
11 , Z

[p eep]
11 ), with

X
[p eep]
11 = K − aK

r
Z

[p eep]
11 , Y

[p eep]
11 = H − bH

s
Z

[p eep]
11 ,

Z
[p eep]
11 =

rs(beH + aeK)

a2esK + b2erH +mrs
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is feasible if

r ≥ aZ
[p eep]
11 =

abesH

b2eH +ms
, s ≥ bZ

[p eep]
11 =

aberK

a2eK +mr
. (2.24)

The second condition can be rewritten giving either an upper bound on r or
no bound at all, respectively if abeK > ms holds or not. In the former case
the condition is

r ≤ a2eKs

abeK −ms
, abeK > ms. (2.25)

Its Jacobian has one explicit eigenvalue, providing the stability condition

λX
[p eep]
11 < µ+ cZ

[p eep]
11 , (2.26)

which explicitly becomes

r[ces(aK + bH) + (µ− λK)(b2eH +ms)] > −aesK(bHλ+ aµ), (2.27)

so that if ces(aK + bH) + (µ− λK)(b2eH +ms) > 0 no costraint on r arises,
while conversely we must have

r <
aesK(bHλ+ aµ)

(λK − µ)(b2eH +ms)− ces(aK + bH)
, (2.28)

ces(aK + bH) + µ(b2eH +ms) < λK(b2eH +ms).

Besides that, the remaining submatrix of the Jacobian, −J [p eep]

P11
, is positive

definite, since its principal minors are all positive, so no further stability con-
ditions arise:

r

K
X

[p eep]
11 > 0,

rs

HK
X

[p eep]
11 Y

[p eep]
11 > 0,(

mrs

HK
+
a2es

H
+
b2er

K

)
X

[p eep]
11 Y

[p eep]
11 Z

[p eep]
11 > 0.

Thus, J
[p eep]

P11
is negative definite and P

[p eep]
11 is stable.

The equilibrium P
[p eep]
12 = (X

[p eep]
12 , U

[p eep]
12 , 0, Z

[p eep]
12 ), with

X
[p eep]
12 =

c2erK + aceµK +mµλK

c2er +mλ2K
, Z

[p eep]
12 = −µ

c
+
λ

c
X

[p eep]
12 ,

U
[p eep]
12 =

aµ

cλ
+
r

λ
− r

λK
X

[p eep]
12 − a

c
X

[p eep]
12

is feasible if

λ ≥ a2eµK +mrµ+ acerK

mrK
(2.29)
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and µ ≤ λK(rc+ aµ)(rc)−1. The latter can be rewritten as

µ ≤ crλK

cr − aλK
, cr > aλK, (2.30)

while in the case for which the second inequality in (2.30) does not hold, no

solution exists for µ and the equilibrium P
[p eep]
12 is therefore unfeasible.

Again, one eigenvalue is explicit, to give the stability condition

λ >
cer(cs+ bµ) +msλ2K

beK(cr + aµ)
. (2.31)

The explicit condition (2.31) in terms of λ hinges on the roots λ± of the
quadratic

Φ(λ) = msKλ2 − beK(cr + aµ)λ+ cer(cs+ bµ) < 0. (2.32)

If the discriminant of Φ(λ) is negative, no solution of (2.32) exists, while in
the opposite case we find the stability conditions become

λ− ≤ λ ≤ λ+, b2eK(cr + aµ)2 ≥ 4cmrs(cs+ bµ). (2.33)

Also, no further stability conditions arise, as the submatrix

−J [p eep]

P12
=

 r
K
X

[p eep]
12 λX

[p eep]
12 aX

[p eep]
12

−λU [p eep]
12 0 cU

[p eep]
12

−aeZ [p eep]
12 −ceZ [p eep]

12 mZ
[p eep]
12


is positive definite:

r

K
X

[p eep]
12 > 0, λ2X

[p eep]
12 U

[p eep]
12 > 0,(

mλ2 +
c2er

K

)
X

[p eep]
12 U

[p eep]
12 Z

[p eep]
12 > 0.

The coexistence equilibrium P
[p eep]
13 = (X

[p eep]
13 , U

[p eep]
13 , Y

[p eep]
13 , Z

[p eep]
13 ) can also

be explicitly evaluated,

X
[p eep]
13 =

λK(bcesH + b2eµH +msµ) + c2ersK + acesµK

λ2K(b2eH +ms) + ersc2
,

U
[p eep]
13 =

[
λ2K(b2eH +ms) + ersc2

]−1
[λK(b2erH +mrs− abesH)

−aesK(rc+ aµ)− berH(sc+ bµ)−mrsµ],

Y
[p eep]

13 =
λHK(−bcer − abeµ) + c2ersH + bcerµH +msλ2HK

λ2K(b2eH +ms) + ersc2
,

Z
[p eep]
13 =

aesµλK + cersλK + besλ2HK − cersµ
λ2K(b2eH +ms) + ersc2

.
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The feasibility requirements are:

r ≥ aesK(bHλ+ aµ)

(λK − µ)(b2eH +ms)− ces(aK + bH)
, (2.34)

ces(aK + bH) + µ(b2eH +ms) < λK(b2eH +ms);

λ ≤ cer(cs+ bµ) +msλ2K

beK(cr + aµ)
; (2.35)

µ ≤ λK(bλH + cr + aµ)

rc
. (2.36)

These conditions can be made explicit in terms of λ by considering Φ1(λ) ≥ 0

Φ1(λ) = [rK(b2eH+ms)−aesKbH]λ−a2esKµ−r[µ(b2eH+ms)+ces(aK+bH)]

whose root λ0 is positive if

r(b2eH +ms) ≥ aesbH (2.37)

in which case the inequality is satisfied for λ > λ0, while in the opposite case,
for which (2.37) does not hold, no solution exists, and we have to consider the
following inequalities:

Φ2(λ) = mKsλ2 − λbeK(cr + aµ) + cer(cs+ bµ) ≥ 0,

Φ3(λ) = bKHλ2 + λK(cr + aµ)− crµ ≥ 0.

If the respective roots of the associated equalities are denoted by λ
(k)
± , k = 2, 3,

feasibility is ensured for λ ≥ λ0, λ
(2)
− ≥ λ ≥ 0 or λ ≥ λ

(2)
+ , 0 ≤ λ ≤ λ

(3)
+ , i.e. in

the interval

min
{
λ

(3)
+ , λ

(2)
−

}
≥ λ ≥ max

{
λ0, λ

(2)
+

}
. (2.38)

The diagonal of the Jacobian at P
[p eep]
13 simplifies using the equilibrium equa-

tions:

J11 = − r

K
X

[p eep]
13 , J33 = − s

H
Y

[p eep]
13 , J44 = −mZ [p eep]

13 .

Now, −J [p eep]
P13

is positive definite because its principal minors are

r

K
X

[p eep]
13 > 0, λ2U

[p eep]
13 X

[p eep]
13 > 0,

λ2s

H
X

[p eep]
13 U

[p eep]
13 Y

[p eep]
13 > 0,(

s

H

(
λ2m+

rec2

K

)
+ b2mλ2

)
X

[p eep]
13 U

[p eep]
13 Y

[p eep]
13 Z

[p eep]
13 > 0.

Thus whenever feasible, coexistence is unconditionally stable. In Table 4.2 we
summarize the behaviour of the equilibrium points of model (2.19).
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Table 2.2: Behaviour and feasibility and stability conditions of the equilibria
of model (2.19).

Equilibria Feasibility Stability

P
[p eep]
1 always unstable

P
[p eep]
2 always unstable

P
[p eep]
3 always unstable

P
[p eep]
4 always unstable

P
[p eep]
5 µ ≥ λK unstable

P
[p eep]
6 unfeasible

P
[p eep]
7 unfeasible

P
[p eep]
8 µ ≤ λK unstable if feasible

P
[p eep]
9 always s < aberK

a2eK+mr
,

λ < aeK(cr+aµ)+mrµ
mrK

P
[p eep]
10 always r < abesH

b2eH+ms

P
[p eep]
11 r ≥ abesH

b2eH+ms
, (2.27), (2.28)

s ≥ aberK
a2eK+mr

P
[p eep]
12 (2.29), (2.30) (2.33)

P
[p eep]
13 (2.34), (2.37), (2.38) stable if feasible
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2.2.3 Global stability analysis

We prove the global stability for the equilibria of (2.19) following the pattern
of Section 2.1.3. For this reason, we just summarize the results.

For each equilibrium, se select the following Lyapunov functions candidates,
using always the same positive coefficients δ3, δ2, δ1 and δ0, whose specific
choice will possibly be different for each equilibrium, though:

W
[p eep]
13 (X(t), U(t), Y (t), Z(t)) = δ3

(
X −X [p eep]

13 −X [p eep]
13 ln

X

X
[p eep]
13

)

+δ2

(
U − U [p eep]

13 − U [p eep]
13 ln

U

U
[p eep]
13

)
+ δ1

(
Y − Y [p eep]

13 − Y [p eep]
13 ln

Y

Y
[p eep]

13

)

+δ0

(
Z − Z [p eep]

13 − Z [p eep]
13 ln

Z

Z
[p eep]
13

)
,

Differentiating along the trajectories we find

dW
[p eep]
13

dt
= −δ3

r

K

(
X −X [p eep]

13

)2

− δ1
s

H

(
Y − Y [p eep]

13

)2

− mδ0

(
Z − Z [p eep]

13

)2

+ λ(δ2 − δ3)
(
X −X [p eep]

13

)(
U − U [p eep]

13

)
+ a(δ0e− δ3)

(
X −X [p eep]

13

)(
Z − Z [p eep]

13

)
+ b(δ0e− δ1)

(
Y − Y [p eep]

13

)(
Z − Z [p eep]

13

)
+ c(δ0e− δ2)

(
U − U [p eep]

13

)(
Z − Z [p eep]

13

)
.

which is negative definite, giving global stability, if we choose

δ3 = δ2 = δ1 = δ0e. (2.39)
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The Lyapunov function candidates for the remaining equilibria are:

W
[p eep]
9 (X(t), U(t), Y (t), Z(t)) = δ3

(
X −X [p eep]

9 −X [p eep]
9 ln

X

X
[p eep]
9

)

+δ2U + δ1Y + δ0

(
Z − Z [p eep]

9 − Z [p eep]
9 ln

Z

Z
[p eep]
9

)
,

W
[p eep]
10 (X(t), U(t), Y (t), Z(t)) = δ1

(
Y − Y [p eep]

10 − Y [p eep]
10 ln

Y

Y
[p eep]

10

)

+δ3X + δ2U + δ0

(
Z − Z [p eep]

10 − Z [p eep]
10 ln

Z

Z
[p eep]
10

)
,

W
[p eep]
11 (X(t), U(t), Y (t), Z(t)) = δ3

(
X −X [p eep]

11 −X [p eep]
11 ln

X

X
[p eep]
11

)
+ δ2U

+δ1

(
Y − Y [p eep]

11 − Y [p eep]
11 ln

Y

Y
[p eep]

11

)
+ δ0

(
Z − Z [p eep]

11 − Z [p eep]
11 ln

Z

Z
[p eep]
11

)
,

W
[p eep]
12 (X(t), U(t), Y (t), Z(t)) = δ3

(
X −X [p eep]

12 −X [p eep]
12 ln

X

X
[p eep]
12

)
+ δ1Y

+δ2

(
U − U [p eep]

12 − U [p eep]
12 ln

U

U
[p eep]
12

)
+ δ0

(
Z − Z [p eep]

12 − Z [p eep]
12 ln

Z

Z
[p eep]
12

)

and upon differentiation, they are all seen to produce negative definite deriva-
tives using always the choice (2.39).

Remark 2. These results indicate that there is no possibility of Hopf bifur-
cations at all the equilibria also of the system (2.19).

2.2.4 Transcritical bifurcations

Similar to what was done in Section 2.1.4, we also verify the transversality
conditions required for the transcritical bifurcations involving the equilibria of
model (2.19).

The pairs P
[p eep]
11 − P [p eep]

9 and P
[p eep]
11 − P [p eep]

10

The equilibrium point P
[p eep]
11 coincides with the equilibrium P

[p eep]
9 and with

equilibrium P
[p eep]
10 respectively at the parametric thresholds

s∗ =
aberK

a2eK +mr
, r∗ =

abesH

b2eH +ms
, (2.40)
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when we compare the second feasibility condition (2.24) and the first stability
condition (2.22) and, similarly, the second feasibility condition (2.24) and the
stability condition (2.23).

The Jacobian of (2.19) evaluated at P
[p eep]
11 with s = s∗ is

J
[p eep]
P11

(s∗) =


− mr2

mr+a2eK
− mrλK
mr+a2eK

0 − amrK
mr+a2eK

0 mrλK+mrµ−acerK−a2eµK
mr+a2eK

0 0

0 0 0 0

a2e2rK
mr+a2eK

ace2rK
mr+a2eK

abe2rK
mr+a2eK

− aemrK
mr+a2eK


and its right and left eigenvectors, corresponding to zero eigenvalue, are given
by V3 = ϕ3(1, 0,−(mr+a2eK)/abeK,−r/aK)T and Q3 = ω3(0, 0, 1, 0)T , where
ϕ3 and ω3 are any nonzero real number. Differentiating partially the right
hand sides of the system equations (2.19) with respect to s and calculating its
Jacobian matrix we find

fs =


0
0

Y
[p eep]

11 (1− Y [p eep]
11 /H)

0

 , Dfs =


0 0 0 0
0 0 0 0

0 0 1− 2
H
Y

[p eep]
11 0

0 0 0 0

 .

Denoting by P = (X,U, Y, Z)T the population vector and by f = (f1, f2, f3, f4)T

the right hand side of (2.19), by ψ a generic threshold parameter and by
ξ1, ξ2, ξ3, ξ4 the components of the eigenvector V = (ξ1, ξ2, ξ3, ξ4)T of variations
in X,U, Y and Z, let us define D2f(P, ψ)(V, V ) by

D2f(P, ψ)(V, V ) =


D2

11

D2
21

D2
31

D2
41

 , (2.41)

where

D2
11 =

∂2f1

∂X2
ξ2

1 +
∂2f1

∂U2
ξ2

2 +
∂2f1

∂Y 2
ξ2

3 +
∂2f1

∂Z2
ξ2

4 + 2
∂2f1

∂X∂U
ξ1ξ2 + 2

∂2f1

∂X∂Y
ξ1ξ3

+ 2
∂2f1

∂X∂Z
ξ1ξ4 + 2

∂2f1

∂U∂Y
ξ2ξ3 + 2

∂2f1

∂U∂Z
ξ2ξ4 + 2

∂2f1

∂Y ∂Z
ξ3ξ4,

D2
21 =

∂2f2

∂X2
ξ2

1 +
∂2f2

∂U2
ξ2

2 +
∂2f2

∂Y 2
ξ2

3 +
∂2f2

∂Z2
ξ2

4 + 2
∂2f2

∂X∂U
ξ1ξ2 + 2

∂2f2

∂X∂Y
ξ1ξ3

+ 2
∂2f2

∂X∂Z
ξ1ξ4 + 2

∂2f2

∂U∂Y
ξ2ξ3 + 2

∂2f2

∂U∂Z
ξ2ξ4 + 2

∂2f2

∂Y ∂Z
ξ3ξ4,
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D2
31 =

∂2f3

∂X2
ξ2

1 +
∂2f3

∂U2
ξ2

2 +
∂2f3

∂Y 2
ξ2

3 +
∂2f3

∂Z2
ξ2

4 + 2
∂2f3

∂X∂U
ξ1ξ2 + 2

∂2f3

∂X∂Y
ξ1ξ3

+ 2
∂2f3

∂X∂Z
ξ1ξ4 + 2

∂2f3

∂U∂Y
ξ2ξ3 + 2

∂2f3

∂U∂Z
ξ2ξ4 + 2

∂2f3

∂Y ∂Z
ξ3ξ4,

D2
41 =

∂2f4

∂X2
ξ2

1 +
∂2f4

∂U2
ξ2

2 +
∂2f4

∂Y 2
ξ2

3 +
∂2f4

∂Z2
ξ2

4 + 2
∂2f4

∂X∂U
ξ1ξ2 + 2

∂2f4

∂X∂Y
ξ1ξ3

+ 2
∂2f4

∂X∂Z
ξ1ξ4 + 2

∂2f4

∂U∂Y
ξ2ξ3 + 2

∂2f4

∂U∂Z
ξ2ξ4 + 2

∂2f4

∂Y ∂Z
ξ3ξ4.

After calculating D2f from (2.41) evaluated at P
[p eep]
11 , at the threshold s∗ and

using the eigenvector V3 we can verify the following three conditions

Q3
Tfs(P

[p eep]
11 , s∗) = 0, Q3

T [Dfs(P
[p eep]
11 , s∗)V3] = −ϕ3ω3(

mr + a2eK

abeK
) 6= 0

QT
3 [D2fs(P

[p eep]
11 , s∗)(V3, V3)] = −2ω3ϕ3

2

(
bmr2

a2beK2
+

r

K
+

mr2

abeHK
+
ar

bH

)
6= 0.

Now, a similar calculation when P
[p eep]
11 coincides with P

[p eep]
10 for r = r∗,

using the Jacobian

J
[p eep]
P11

(r∗) =



0 0 0 0

0 −bcesH−b2eµH+msµ
b2eH+ms

0 0

0 0 − ms2

b2eH+ms
− bmsH
b2eH+ms

abe2sH
b2eH+ms

abce2HK
(a2beH+amr)K+bmrH

b2e2sH
b2eH+ms

− bems
b2eH+ms

 ,

the right and left eigenvectors of the zero eigenvalue V4 = ϕ4(1, 0,−abeH/(b2eH+
ms), aes/(b2eH +ms))T and Q4 = ω4(1, 0, 0, 0)T , produces

fr =


X

[p eep]
11 (1−X [p eep]

11 /K)
0
0
0

 , Dfr =


1− 2

K
X

[p eep]
11 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0


so that evaluating D2f from (2.41) the following three conditions are satisfied:

Q4
Tfr(P

[p eep]
11 , r∗) = 0, Q4

T [Dfr(P
[p eep]
11 , r∗)V4] = ϕ4ω4 6= 0,

QT
4 [D2fr(P

[p eep]
11 , r∗)(V4, V4)] = 2ω4ϕ4

2

(
abesH

msK + b2eHK

)
6= 0.

These transcritical bifurcations are illustrated, respectively, in Figure 4.2
which occur for s∗ ≈ 0.6, r∗ ≈ 0.6, (2.40).
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Figure 2.2: a) Transcritical bifurcation between P
[p eep]
11 and P

[p eep]
9 for the

parameters values r = K = a = c = µ = H = b = m = e = 1.1, λ = 0.5. The
equilibrium P

[p eep]
9 is stable for s ∈ [0.1, 0.602] while P

[p eep]
11 is stable for s >

0.602. The vertical line indicates the threshold. b) Transcritical bifurcation

between P
[p eep]
11 and P

[p eep]
10 for s = K = a = c = µ = H = b = m = e = 1.1,

λ = 0.5. The equilibrium P
[p eep]
10 is stable for r ∈ [0.1, 0.603], P

[p eep]
11 is stable

for r > 0.603; the vertical line indicates the threshold.

The pairs P
[p eep]
13 − P [p eep]

11 and P
[p eep]
13 − P [p eep]

12

P
[p eep]
13 coincides with P

[p eep]
11 at the threshold λ∗ and with P

[p eep]
12 at the thresh-

old b∗, comparing (2.34) and the stability condition (2.27) of P
[p eep]
11 , as well

as (2.34) with the stability condition (2.31) of P
[p eep]
12 , respectively.

The transcritical bifurcations proofs at P
[p eep]
13 are analogous to those pre-

sented earlier in this section and therefore omitted.
Figure 4.3 illustrates the simulation explicitly showing the transcritical

bifurcation between P
[p eep]
13 with respectively P

[p eep]
11 and P

[p eep]
12 for the pa-

rameters values given in the caption of Fig. 4.3, respectively for λ∗ ≈ 1.57,
b∗ ≈ 2.7, (2.40).

In Table 4.3 we summarize the transcritical bifurcations of the models (2.1)
and (2.19).

2.3 Comparison between the models with hid-

den and explicit resources

In this Section, we investigate the behaviour of the models (2.1) and (2.19)
from the comparison of their equilibrium points.

In Table (4) 4.4 we present all the possibilities of comparison between
equilibria.

The populations in both ecosystems cannot completely disappear, as the
origin in both systems is unstable. Note that the equilibria with the presence
only of infected prey and predators, while the healthy prey population is ab-
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Figure 2.3: a) Transcritical bifurcation between P
[p eep]
13 and P

[p eep]
11 for s =

K = b = e = r = 0.5, a = 0.6, c = µ = 0.4, H = m = 0.9. The point P
[p eep]
11

is stable for λ ∈ [0.1, 1.572] and P
[p eep]
13 is stable for λ > 1.572. The vertical

line indicates the threshold. b) Transcritical bifurcation between P
[p eep]
13 and

P
[p eep]
12 for r = K = a = H = m = e = s = 0.5, µ = 0.2, c = 0.3 and λ = 0.9.

P
[p eep]
13 is stable for b ∈ [0.1, 2.7], P

[p eep]
12 is stable for b > 2.7; the vertical line

indicates the threshold.

Table 2.3: Trancritical bifurcations of the models (2.1) and (2.19). The thre-
shold b∗ arises after modifications in (2.31) and (2.35) and the threshold λ∗

arises from modifications in (2.27) and (2.34).

Model Threshold Equilibria

(2.1) r† = aL P
[p ehp]
6 = P

[p ehp]
5

(2.1) λ† = aeKL(cr+aµ)+ur(µ+eL)
uK(r−aL)

P
[p ehp]
6 = P

[p ehp]
7

(2.19) s∗ = aberK
a2eK+mr

P
[p eep]
11 = P

[p eep]
9

(2.19) r∗ = abesH
b2eH+ms

P
[p eep]
11 = P

[p eep]
10

(2.19) λ∗ = aecrsK+a2esµK+becrsH+b2erµH+mrsµ
b2erHK−abesHK+mrsK

P
[p eep]
13 = P

[p eep]
11

(2.19) b∗ = c2ers+msλ2K
cer(λK−µ)+aeµλK

P
[p eep]
13 = P

[p eep]
12
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2.3 Comparison between the models with hidden and explicit resources

Table 2.4: Comparison between similar equilibria of systems (2.1) and (2.19)
in which have the same biological behaviour and u=unstable, s=stable,
cs=conditionally stable, i=unfeasible, uf=unstable if feasible, sf=stable if fea-
sible. The • corresponds to a nonvanishing population. Note that P

[p eep]
9 =

(•, 0, 0, •) of (2.19) is absent since it does not really correspond to any equili-
brium of the hidden resource model (2.1).

Eq. of (2.1) Eq. of (2.19) Interpretation

P
[p ehp]
1 = (0, 0, 0) (u) P

[p eep]
1 = (0, 0, 0, 0) (uu ) ecosystem collapse

P
[p eep]
3 = (0, 0, •, 0) (u)

P
[p ehp]
2 = (•, 0, 0) (u) P

[p eep]
2 = (•, 0, 0, 0) (uu)

P
[p eep]
3 = (0, 0, •, 0) (u) healthy prey-only

P
[p eep]
4 = (•, 0, •, 0) (u)

P
[p ehp]
3 = (•, •, 0) (u) P

[p eep]
5 = (•, •, 0, 0) (u) predator-free

P
[p eep]
8 = (•, •, •, 0) (uf)

P
[p ehp]
4 = (0, •, •) (i) P

[p eep]
6 = (0, •, 0, •) (i) healthy prey-free

P
[p eep]
7 = (0, •, •, •) (i)

P
[p ehp]
5 = (0, 0, •) (s) P

[p eep]
10 = (0, 0, •, •)(cs) predator-only

P
[p ehp]
6 = (•, 0, •) (cs) P

[p eep]
11 = (•, 0, •, •) (cs) disease-free

P
[p ehp]
7 = (•, •, •) (sf) P

[p eep]
12 = (•, •, 0, •) (cs) coexistence

P
[p eep]
13 = (•, •, •, •) (sf)
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sent, are impossible in both models. This is illustrated in table 4.4 by the
comparison of points P

[p ehp]
4 with P

[p eep]
6 and P

[p eep]
7 .

The predator-free environment, with endemic disease in the prey, is feasible
but unstable in both models, comparing equilibria P

[p ehp]
3 with P

[p eep]
5 and

P
[p eep]
8 .

Observe that the healthy-prey-only equibrium P
[p ehp]
2 in (2.1) has several

counterparts in the system with alternative resources, namely P
[p eep]
2 , healthy-

prey-only environment, P
[p eep]
3 , alternative resource-only point, and P

[p eep]
4

healthy-prey and alternative resource equilibrium. All these states are however
unachievable, since they all are unconditionally unstable.

The predator-only state arises at P
[p ehp]
5 in the simpler model, and has

its counterpart in the point P
[p eep]
10 . Both are always feasible. The stability

conditions (2.7) and (2.23) express the same idea, that the prey reduced growth
rate, i.e. the ratio between the reproduction rate of the healthy prey and the
rate at which they are captured by the predators, is bounded above by the
predators’ population size at equilibrium.

The disease-free equilibrium in (2.1) is P
[p ehp]
6 . Two points could be related

to it, namely P
[p eep]
9 and P

[p eep]
11 . The former, however, does not contain the

alternative resource, so it is not really comparable. This would be possible
only if in the model with alternative food supply we let L → 0, but in such
case P

[p ehp]
6 reduces to P

[p ehp]
2 .

For feasibility of P
[p ehp]
6 and P

[p eep]
11 in both cases the opposite conditions

that ensure stability for P
[p ehp]
5 and P

[p eep]
10 are required, thereby indicating

transcritical bifurcations among the pairs of points belonging to the same
model.

Analogously, we can compare the equilibria P
[p ehp]
6 and P

[p eep]
11 with the

pair P
[p ehp]
7 and P

[p eep]
13 . The stability conditions of P

[p ehp]
6 and P

[p eep]
11 are the

opposite conditions that ensure stability for the coexistence equilibria P
[p ehp]
7

and P
[p eep]
13 , thereby indicating transcritical bifurcations among the pairs of

points belonging to the same model (see Table 4.5).

The coexistence equilibrium P
[p ehp]
7 of the hidden resource system has two

counterparts in the explicit resource model, P
[p eep]
12 and P

[p eep]
13 , the difference

being that in the former the alternative resource is absent, so in reality is not
really a “coexistence” equilibrium of the explicit resource model. But in all
three equilibria, the first prey with endemic disease and the predators persist.

2.4 Results and conclusions

In this Chapter, we have compared the dynamics between two predator-prey
models where the predador is generalist in the first model and specialist on
two prey species in the second one; further, a transmissible disease spreads
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2.4 Results and conclusions

Table 2.5: Transcritical bifurcations among the pairs of equilibria belonging
to the same model.

comparable points of models Comparable points of models

P
[p ehp]
6 ≡ P [p eep]

11 P
[p ehp]
5 ≡ P

[p eep]
10

P
[p ehp]
6 ≡ P [p eep]

11 P
[p ehp]
7 ≡ P

[p eep]
13

among the primary population resource. The alternative prey for the predator
is implicit in the first model, but in the second one we have made it explicit.

In the first model the infection rate λ on the healthy prey population and
the mortality rate of infected prey µ determine the stable coexistence of healthy
prey, infected prey and predator when the predator has an alternative resource,
see condition (2.12). However, in the second model, when we consider the
explicit resource for the predator species, in addition to the infection rate λ
and the mortality rate µ, also an extra condition involving the growth rate r of
the healthy prey X plays an essential role for the stable coexistence, compare
conditions (2.34), (2.35) and (2.36). In these cases the ranges of possible values
for the contact rate are, respectively, provided in (2.14) and (2.38).

Due to the presence of the alternative food resource for the generalist preda-
tor in model (2.1) we cannot observe any predator’s extinction scenario because

the equilibria P
[p ehp]
2 and P

[p ehp]
3 are unstable. The same scenario exists in

model (2.19) because the equilibria with no predators, namely P
[p eep]
2 , P

[p eep]
3 ,

P
[p eep]
4 , P

[p eep]
5 and P

[p eep]
8 , are all always unstable.

The main features in the behaviour of the systems (2.1) and (2.19) include
switching of stability, extinction and persistence for the various populations.
The bifurcation analysis and the comparison of the results of these models,
summarized in Table 4.3, indicate that the most important parameters in these
systems are the reproduction rate of the main prey r, the infection rate of the
main prey λ, the mortality rate of infected prey and the reproduction rate of the
alternative prey s. Note however, that the last two, in particular, appear only
in system (2.19). This remark shows that the more comprehensive formulation
allows a finer tuning for the ecosystem behaviour. Indeed this has already been
observed earlier, see Table 4.4, when we found that the equilibrium P

[p eep]
9 of

(2.19) with neither disease nor alternative prey does not have any counterpart
in the hidden resource model (2.1).

If the reproduction rate r of the prey X is low, it will cause the simultaneous
extinction of the healthy prey X and the infected prey U in both systems
(2.1) and (2.19). This situation is represented by equilibria P

[p ehp]
5 and P

[p eep]
10

for which the stability conditions are respectively given by (2.7) and (2.23).
However, if the main prey growth rate r is high, the primary prey invade the
system and the models will display the infected-prey-only extinction (equilibria

P
[p ehp]
6 and P

[p eep]
11 ), compare their feasibility conditions (2.8) and the first
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condition in (2.24), respectively.

In addition, when the growth rate s of the alternative prey Y is low in
model (2.19), extinction of U and Y occurs (see the first condition of (2.22)).
However, if this rate is high, only the infected prey disappears (see the second
condition of (2.24)).

A further consideration concerns the infection rate among prey λ. If it is
low, extinction of the infected prey U occurs in both ecosystems (equilibria

P
[p ehp]
6 and P

[p eep]
11 ), see (2.9) and (2.26), but otherwise both ecosystems will

exhibit a coexistence scenario with all the species present, equilibria P
[p ehp]
7

and P
[p eep]
13 . For both situations see Figures 4.1-b and 4.3-a. In models (2.1)

and (2.19) feasibility and local asymptotic stability of the equilibria imply also
their global asymptotic stability. Thus if disease eradication is the goal, a low
transmission rate λ is desirable.

Another result that we can highlight is associated with the purely demo-
graphic system presented in [5], where the same dynamical systems are inves-
tigated, but excluding the possibility of an epidemic in the main prey X. As
in our present situation, the models proposed in [5] present a logistic growth
for both the X and Y prey populations and a quadratic mortality for the Z
predator population when the alternative resource is explicit. When it is hid-
den, to take it into account, also the predators exhibit logistic growth. Table
4.6 illustrates the comparison between models with hidden and explicit prey
for the predator, considering an environment with and without the possibility
of a transmissible disease among individuals of prey population X. There is
no possibility of a scenario in which in the ecoepidemic models, i.e. with a
transmissible disease affecting the first prey, the infected prey thrive without
the presence of the susceptible prey. This occurs both in the case of the hid-
den prey as well as of the explicit prey. This situation is represented by the
healthy-prey-free equilibria. Note that this remark of course hinges on the
assumption that the infected prey do not reproduce.

The scenario in which the predator Z survives is possible in both scenarios,
i.e., with and without the infected population U . In both cases, clearly this
result is guaranteed in the models (2.1) and (2.19). Finally, the existence of
a transmissible disease among individuals X does not compromise the coexis-
tence of prey and predator species. In addition, the disease-free equilibrium
points represented by P

[p ehp]
6 and P

[p eep]
11 , when represented in the same dy-

namic but without a transmissible disease among individuals X, clearly reduce
to the equilibria representing coexistence.

This study ultimately indicates that the simpler formulation with the hid-
den resource already captures the salient features of the ecosystem. Therefore
modeling explicitly the substitute prey is not necessary unless a particular em-
phasys is placed on the behavior and the possible consequences that involve
the alternative resource. In such case the extended model is preferable, but
this of course as expected complicates the model formulation and entails a
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Table 2.6: Systems dynamics considering an environment with and without
a transmissible disease among individuals of the main prey X. The column
representing the biological interpretation in the table refers to the equilibrium
points obtained in both models (2.1) and (2.19) that are biologically equivalent.

Biological Environment with disease Environment without
interpretation transmission in prey X disease transmission

in prey X, [5]
ecosystem collapse not possible not possible

healthy-prey-only not possible not possible

predator-free not possible not possible

healthy-prey-free not possible possible

predator-only possible possible

disease-free possible possible

coexistence possible possible

rather more complicated analysis. The bottom line of these remarks is there-
fore that the model to be used should be guided by the questions that prompt
its formulation and the answers that are sought.
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CHAPTER 3

COMPARING PREDATOR-PREY
MODELS WITH HIDDEN AND

EXPLICIT RESOURCES WITH A
TRANSMISSIBLE DISEASE IN THE

PREDATOR SPECIES

Ecology is an area of biology that seeks to understand the relationships existing
between living beings in a given environment and to ensure the maintenance
of ecological balance. To protect species from extinction it is fundamental to
understand the interaction dynamics between different populations, usually
related through food links [57, 22, 44, 84]. Important tools to investigate the
dynamics among populations are mathematical models that seek to describe
this type of interaction. As an instance we can cite the dynamics of predator-
prey type biological systems [56, 86, 66], whose scientific foundations provide
solid results that allow the expansion of research in the area ([33, 82, 87, 17].

In this Chapter, we extend the results of earlier investigations on preda-
tors feeding on a main resource and on an additional prey, when the latter is
implicitly and explicitly modeled in the system [5] and in addition when the
prey is subject to a transmissible disease [54], presented as Chapters 1 and 2.

Two models are here proposed to investigate a similar situation when the
epidemics affects the predators, such as in [42, 41]. We investigate the dyna-
mics between predator and prey in two different scenarios. In the first one, we
consider a generalist predator that has two different prey for own survival, the
main prey and an alternative one which is not explicitly built in as a model
variable. In the second scenario, the predator becomes a type of specialist with
only two explicit prey. The results of [5] show that the grazing pressure on
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the preferred prey and carrying capacity of the predator determine the stable
coexistence of prey and predator when the alternative resource is implicit.

The Chapter is organized as follows: the mathematical models are formu-
lated in Section 3.1. The boundedness of both systems are discussed in Section
3.1.1. The existence of equilibria and the stability are examined in Section 3.1.2
and the theoretical results for bifurcations are discussed in Section 3.1.3. The
numerical simulations of Section 3.1.4 give detailed results about the onset of
bifurcations. In Sections 3.2 and 3.3 we compare the models and their results,
respectively. Transcritical bifurcations present in both models are illustrated
with the help of numerical examples.

3.1 Basic assumptions and models formulation

This ecoepidemic model considers the following three populations: the prey X,
the healthy predator population Z and the infected predators W . The model
with the alternative food supply, in which the prey population is represented
by Y , is denoted [ep hp], where “ep” denotes ecoepidemic in predator and
“hp” denotes hidden prey that substitute resource not explicitly modeled in
the equations [5], is well known in the literature, see Chapter 3 of [65]:

dX

dt
= rX

(
1− X

K

)
− aZX − gXW,

dZ

dt
= uZ

(
1− Z +W

L

)
+ eX(aZ + gW )− βZW,

dW

dt
= βZW − νW. (3.1)

Now, we consider a disease-affected predator, which is specialist for two prey
species. The model in this case is denoted by [ep ep] where the first “ep”
denotes ecoepidemic in predator and the second one denotes explicit prey:

dX

dt
= rX

(
1− X

K

)
− aZX − gXW,

dY

dt
= sY

(
1− Y

H

)
− bZY − κYW,

dZ

dt
= −mZ2 + eZ(aX + bY ) + eW (gX + κY )− βZW,

dW

dt
= βZW − νW. (3.2)

In both models all the parameters are assumed to be nonnegative. Their
biological meaning is rather obvious, as these are kind of standard models: r,
u and s are growth rates, K, L, H denote carrying capacities, a, g, b and κ
are hunting rates, β is the disease horizontal transmission rate ν the natural
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plus disease-induced mortality, m is the predators’ mortality rate, e is the
conversion factor, i.e., the fraction of captured prey that is used to produce
new predators. In particular note that for the latter, if the biomass is measured
in kilograms and in any case taking into account that the whole prey is never
entirely converted into predators’ mass, we take

e ≤ 1 (3.3)

The Jacobians are,

J [ep hp] =

 J
[ep hp]
11 −aX −gX

aeZ + egW J
[ep hp]
22 − u

L
Z + egX − βZ

0 βW βZ − ν

 (3.4)

with

J
[ep hp]
11 = r − 2r

K
X − aZ − gW, J

[ep hp]
22 = u− 2u

L
Z − u

L
W + aeX − βW

and

J [ep ep] =


J

[ep ep]
11 0 −aX −gX

0 J
[ep ep]
22 −bY −κY

aeZ + egW ebZ + eκW J
[ep ep]
33 egX + eκY − βZ

0 0 βW βZ − ν

 (3.5)

with

J
[ep ep]
11 = r − 2r

K
X − aZ − gW, J

[ep ep]
22 = s− 2s

H
Y − bZ − κW,

J
[ep ep]
33 = −2mZ + eaX + ebY − βW,

respectively.
The first equation of model (3.1) describes the healthy prey propulation

dynamics. The first term on the right hand side expresses logistic growth
with r being the per capita net reproduction rate and K the environment
carrying capacity. The second and third terms describe the process where the
healthy individual is hunted by healthy predator Z and infected predator W ,
respectively. The second equation of model (3.1) contains the dynamics of
the healthy predator,that in absence of prey X has an alternative resource,
that is hidden in this model. It is implicitly represented in the model by
the carrying capacity L, whereas the predators per capita net reproduction
rate is u, respectively. The term eX(aZ + gW ) expresses the increase of the
predator Z population due to successful hunting of the prey, by healthy and
infected predators. The term βZW models the infection process of susceptible
predators by contact with other infected individuals. The third equation of
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model (3.1) describes the infected predator W evolution, recruited as explained
in the previous equation and subject to disease-related mortality ν.

The first and fourth equations of model (3.2) represent the healthy prey
X and infected predator W dynamics. They are the same as for model (3.1).
The second equation of model (3.2) describes the alternative prey population
dynamics which now becomes an explicit variable of the system.

The first term on the right hand side expresses logistic growth with per
capita net reproduction rate s and carrying capacity H. The second and third
terms model the process where the individual of population Y is hunted by
healthy predator Z and infected predator W , respectively. The third equation
of model (3.2) describes the healthy predator population dynamics. In this
equation, first term on the right hand side assumes mortality in the quadratic
form −mZ2 since this term is related to the intraspecific competition term
−uL−1Z2 of the system (3.1). Predators mortality clearly occurs in the absence
of both their food resources X and Y because in this model the predator is
assumed to be a specialist on both of them. The term eZ(aX+bY ) corresponds
the population increase of predator Z due to hunting the prey X and Y .
Finally, the term βZW accounts for individuals of the population Z that
become infected.

3.1.1 Boundedness of models

In order to have a well-posed model, the systems trajectories must be con-
tained in a compact set. First of all, note that the populations cannot become
negative because they start from positive initial values, for obvious biological
reasons, and systems (3.1) and (3.2) are homogeneous, so that the coordinate
subspaces are solution trajectories and, by the uniqueness theorem, they can-
not be crossed by other trajectories. Indeed Ẋ = 0 if X(0) = 0, Ẏ = 0 if
Y (0) = 0, Ż ≥ 0 if Z(0) = 0, Ẇ = 0 if W (0) = 0 and when nonvanishing, the
initial conditions should always be positive to make biological sense.

Proposition 3.1.1. Consider the total environment population ϕ(t) = X(t)+
Z(t) +W (t), in model (3.1). Then there exists η ∈ R+ for which

ϕ(t) ≤
(
ϕ(0)− M

η

)
e−ηt +

M

η
≤ max

{
ϕ(0),

M

η

}
. (3.6)

Thus for model (3.1) the solutions are always nonnegative.

Proof. Taking an arbitrary 0 < η < ν, summing the equations in model (3.1),
we obtain:

dϕ(t)

dt
= rX

(
1− X

K

)
+ uZ

(
1− Z +W

L

)
− νW (3.7)

+ (e− 1)(aXZ + gXW ).
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Recalling (3.3), the last term in (3.7) can be dropped, as well as the term
−uL−1WZ, to obtain:

dϕ(t)

dt
≤ rX

(
1− X

K

)
+ uZ

(
1− Z

L

)
− νW. (3.8)

Then, adding ηϕ(t) and using the definition of ϕ on both sides of the inequality
(3.8) we find the estimate:

dϕ(t)

dt
+ ηϕ(t) ≤ rX

(
1− X

K
+
η

r

)
+ uZ

(
1− Z

L
+
η

u

)
+(η − ν)W ≤ p1(X) + p2(Z),

p1(X) = rX

(
1− X

K
+
ν

r

)
, p2(Z) = uZ

(
1− Z

L
+
ν

u

)
.

The functions p1(X) and p2(Z) are concave parabolae, with maxima located
at X∗, Z∗, and corresponding maximum values

M1 = p1(X∗) =
rK

4

(
1 +

ν

r

)2

, M2 = p2(Z∗) =
uL

4

(
1 +

ν

u

)2

.

Thus,

dϕ(t)

dt
+ ηϕ(t) ≤M ; M1 +M2 = M.

Integrating the differential inequality, we find (3.6). From this result, since
0 ≤ X,Z,W ≤ ϕ , the boundedness of the original ecosystem populations is
immediate. From the nonnegativity of the trajectories, remarked before the
proof, and this result, the solution of model (3.1) remains bounded and the
trajectories remain nonnegative.

Proposition 3.1.2. Consider the total environment population ψ(t) = X(t)+
Y (t) + Z(t) +W (t) in model (3.2). Then there exists η1 ∈ R+ for which

ψ(t) ≤
(
ϕ(0)− M

η1

)
e−η1t +

M

η1

≤ max

{
ψ(0),

M

η1

}
. (3.9)

Thus for model (3.2) the solutions are always nonnegative.

Proof. We proceed in a similar way as for the proof of Proposition 3.1.1. Taking
an arbitrary 0 < η1 < ν, summing the equations in model (3.2), we obtain:

dψ(t)

dt
= rX

(
1− X

K

)
+ sY

(
1− Y

H

)
−mZ2 − νW (3.10)

+ (e− 1)(aXZ + bY Z + gXW + κYW ).
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Since e ≤ 1 by (3.3), from (3.10) we can obtain:

dψ(t)

dt
≤ rX

(
1− X

K

)
+ sY

(
1− Y

H

)
−mZ2 − νW. (3.11)

Adding η1ψ(t) on both sides of inequality (3.8) we find the estimate:

dψ(t)

dt
+ η1ψ(t) ≤ rX

(
1− X

K
+
η1

r

)
+ sY

(
1− Y

H
+
η1

s

)
+Z(η1 −mZ) + (η1 − ν)W ≤ q1(X) + q2(Y ) + q3(Z),

q1(X) = rX

(
1− X

K
+
ν

r

)
,

q2(Z) = sY

(
1− Y

H
+
ν

s

)
, q3(Z) = Z(ν −mZ)

The functions q1(X), q2(Y ) and q3(Z) are concave parabolae, with maxima
located at X∗, Y ∗, Z∗, and corresponding maximum values

M1 = q1(X∗) =
rK

4

(
1 +

ν

r

)2

,

M2 = q2(Y ∗) =
sH

4

(
1 +

ν

s

)2

, M3 = q3(Z∗) =
ν2

4m
.

Thus,

dψ(t)

dt
+ η1ψ(t) ≤M ; M1 +M2 +M3 = M.

Integrating the differential inequality, we find (3.9). From this result, since
0 ≤ X, Y, Z,W ≤ ψ , the boundedness of the original ecosystem populations
is immediate.

3.1.2 Equilibria and stability analysis

•The purely demographic model (3.1)

As illustrated in the following propositions, there are six equilibria for the
model (3.1), two of which are unconditionally unstable while the remaining four
are stable subject to suitable conditions on the system parameters. We are
concerned with two main issues in this respect, namely feasibility and stability
of these stationary points. The former refers to the fact that the population
values are all nonnegative. This is a key issue for biological reasons. As for
the latter, stability ensures that trajectories originating nearby an equilbrium,
do indeed tend to it.

Proposition 3.1.3. The trivial equilibrium point P
[ep hp]
1 = (0, 0, 0) and the

point P
[ep hp]
2 = (K, 0, 0) are always feasible and unstable.
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Proof. Since the the system (3.1) is homogeneous, the origin P
[ep hp]
1 is a so-

lution. The eigenvalues of the Jacobian matrix (3.4) evaluated at P
[ep hp]
1 are

r, u,−ν. As two eigenvalues are positive, the origin is unstable.
For Z = W = 0, the equilibrium equations of (3.1) give X2 = K, i.e. the

equilibrium P
[ep hp]
2 , which is always feasible. The eigenvalues of the Jacobian

evaluated at the P
[ep hp]
2 are−r, −ν, u+aeK > 0, again showing instability.

Proposition 3.1.4. The healthy predator-only point P
[ep hp]
3 = (0, L, 0) is al-

ways feasible. It is stable for

r < aL, ν > βL (3.12)

.

Proof. For X = W = 0 in the system (3.1) we obtain the equilibrium P
[ep hp]
3 ,

which is always feasible. The Jacobian (3.4) at P
[ep hp]
3 becomes

J
[ep hp]
P3

=

 r − aL 0 0
aeL −u −(u+ βL)

0 0 βL− ν


and provides explicitly the eigenvalues, one of which −u is negative, while the
remaining ones give conditions (3.12).

Proposition 3.1.5. The disease-free point

P
[ep hp]
4 =

(
urK − auKL
a2eKL+ ur

,
aerKL+ urL

a2eKL+ ur
, 0

)
is feasible for

r ≥ aL, (3.13)

and stable when the following condition holds:

β < ν
ur + a2eKL

urL+ aerKL
(3.14)

Proof. The above equilibrium expression is easily obtained setting W = 0 in
the system (3.1). From X

[ep hp]
4 ≥ 0 provides the feasibility condition (3.13).

The Jacobian matrix (3.4) evaluated at P
[ep hp]
4 gives one explicit eigenvalue,

from which (3.14) follows. In addition, since

−tr
(
J

[ep hp]

P4

)
=

r

K
X

[ep hp]
4 +

u

L
Z

[ep hp]
4 > 0

and
det
(
J

[ep hp]

P4

)
=
( ru
KL

+ a2e
)
X

[ep hp]
4 Z

[ep hp]
4 > 0,
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the Routh-Hurwitz conditions on the remaining minor

J
[ep hp]

P4 =

(
− r
K
X

[ep hp]
4 −aX [ep hp]

4

aeZ
[ep hp]
4 − u

L
Z

[ep hp]
4

)

are always satisfied, and thus (3.14) is the only condition for stability.

Proposition 3.1.6. The point

P
[ep hp]
5 =

(
0,
ν

β
,
uβL− uν
βu+ β2L

)
is feasible if

ν ≤ βL (3.15)

and stable for

urβ + rβ2L+ guν < auν + aνβL+ guβL. (3.16)

Proof. This equilibrium point is feasible for W
[ep hp]
5 ≥ 0 which gives expli-

citly (3.15). One eigenvalue gives the stability condition (3.16), while for the
remaining minor

J
[ep hp]

P5 =

(
− uν
βL

− uν
βL
− ν

uβL−uν
u+βL

0

)

the Routh-Hurwitz conditions are unconditionally satisfied:

−tr
(
J

[ep hp]

P5

)
=
uν

βL
> 0, det

(
J

[ep hp]

P5

)
= β

(u
L

+ β
)
Z [ep hp]W [ep hp] > 0.

Proposition 3.1.7. Coexistence, P
[ep hp]
6 = (X

[ep hp]
6 , Z

[ep hp]
6 ,W

[ep hp]
6 ), whose

population values are given below (3.19), exists as a double equilibrium for
(3.20), (3.21) and (3.22), or as a single point, whenever (3.20) and (3.23) are
satisfied, with the additional feasibility condition

β ≥ aνK + rβX
[ep hp]
6

rK
(3.17)

and it is stable for

K >
(aνβL+ ugβL+ auν)K + (aegβKL+ rβ2L+ ruβ)X

[ep hp]
6

rβ2L+ 2guν + ruβ
(3.18)
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Proof. Explicitly, the coordinates of P
[ep hp]
6 are

Z
[ep hp]
6 =

ν

β
, W

[ep hp]
6 =

r

g
− aν

gβ
− r

gK
X

[ep hp]
6 (3.19)

where X
[ep hp]
6 is a root of the quadratic function

Φ(X
[ep hp]
6 ) = α2(X

[ep hp]
6 )2 + α1X

[ep hp]
6 + α0,

with

α2 = −er
K
, α1 = er +

urν

gβKL
+

rν

gK
,

α0 =
uν

β
− rν

g
+
auν2

gβ2L
− uν2

β2L
− urν

gβL
+
aν2

gβ
.

Besides that, P
[ep hp]
6 is feasible if W

[ep hp]
6 ≥ 0, i.e. (3.17), and, for X

[ep hp]
6 ≥

0 we have conditions for two positive roots

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0,

that are equivalent to

rν2β2L+ 4aegν2βKL2 + 4eg2uvβKL2 + e2g2rβ2K2L2 + 2ruv2βL (3.20)

+4aeguν2KL+ ru2ν2 > 2egrνβ2KL2 + 4eg2uν2KL+ 2egruνβKL,

L(egβK + νβ) + uν

egβL
> 0 (3.21)

and

urβ + rβ2L+ guν > auν + aνβL+ guβL. (3.22)

For one positive root we have the conditions

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0,

that correspond to (3.20), again, and

urβ + rβ2L+ guν < auν + aνβL+ guβL, (3.23)

respectively.
The Jacobian matrix of P

[ep hp]
6 is

J
[ep hp]
P6

=

 − r
K
X

[ep hp]
6 −aX [ep hp]

6 −gX [ep hp]
6

eaν
β

+ egW
[ep hp]
6 J

[ep hp]
22 J

[ep hp]
23

0 βW
[ep hp]
6 0


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with

J
[ep hp]
22 = u− 2uν

βL
+ eaX

[ep hp]
6 −

(u
L

+ β
)
W

[ep hp]
6 ,

J
[ep hp]
23 = −ν − uν

βL
+ egX

[ep hp]
6 .

Requiring the condition J
[ep hp]
22 < 0, that is, (3.18), the principal minors of

−J [ep hp]
P6

are all positive:

r

K
X6 > 0, − r

K
J

[ep hp]
22 X

[ep hp]
6 + aX

[ep hp]
6 (

eaν

β
+ egW

[ep hp]
6 ) > 0,

eagνX
[ep hp]
6 W

[ep hp]
6 + eg2βX

[ep hp]
6 (W

[ep hp]
6 )2

+
urβ

KL
X

[ep hp]
6 Z

[ep hp]
6 W

[ep hp]
6 +

r

K
β2X

[ep hp]
6 Z

[ep hp]
6 W

[ep hp]
6

−egrβ
K

X
[ep hp]
6 W

[ep hp]
6 > 0.

Thus, P6
[ep hp] is feasible and stable, respectively, if (3.17), (3.20), (3.21), (3.22),

(3.23) and (3.18) hold.

In Table 3.1 we summarize the equilibria of model (3.1).

Table 3.1: Behaviour and conditions of feasibility and stability of equilibria
for the model (3.1).

Equilibria Admissibility Stability

P
[ep hp]
1 always unstable

P
[ep hp]
2 always unstable

P
[ep hp]
3 always r < aL, ν > βL

P
[ep hp]
4 r ≥ aL (3.14)

P
[ep hp]
5 ν ≤ βL (3.16)

P
[ep hp]
6 (3.17), (3.20), (3.21), (3.22) - 2 positive roots (3.18)

(3.17), (3.20), (3.21), (3.23) - 1 positive root

•Model (3.2)

The study of local stability analysis of model (3.2) gives 11 equilibria, four
of which are unconditionally unstable, one unfeasible and six are conditionally
stable. The details follow.
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Proposition 3.1.8. The equilibria P
[ep ep]
1 = (0, 0, 0, 0), P

[ep ep]
2 = (K, 0, 0, 0),

P
[ep ep]
3 = (0, H, 0, 0), P

[ep ep]
4 = (K,H, 0, 0) are feasible and unstable and the

equilbrium P
[ep ep]
5 = (0, 0, νβ−1,−mνβ−2) is unfeasible.

Proof. For X = Y = Z = W = 0 in the system (3.2) we obtain that the

origin P
[ep ep]
1 exists and is feasible. The eigenvalues of the Jacobian matrix

(3.5) evaluated at P
[ep ep]
1 are −ν, r, s, 0. As two eigenvalues are positive, the

origin is unstable.
For Y = Z = W = 0 in the system (3.2) we obtain the equilibrium P

[ep ep]
2 ,

which exists and is feasible. The eigenvalues of the Jacobian matrix (3.5)

evaluated at P
[ep ep]
2 are −r, −ν, s, eaK. As two eigenvalues are positive,

P
[ep ep]
2 is unstable.

For X = Z = W = 0 in the system (3.2) we obtain the equilibrium P
[ep ep]
3 ,

which exists and is feasible. The eigenvalues of the Jacobian matrix (3.5)

evaluated at P
[ep ep]
3 are −s, −ν, r, ebH. As two eigenvalues are positive,

P
[ep ep]
3 is unstable.

For Z = W = 0 in the system (3.2) we obtain the equilibrium P
[ep ep]
4 , which

exists and is feasible. The eigenvalues of the Jacobian matrix (3.5) evaluated

at P
[ep ep]
4 are −ν, −s, −r, eaK + ebH. As one eigenvalue is positive, P

[ep ep]
4

is unstable.
Finally, for X = Y = 0 in the system (3.2) we obtain the equilibrium

P
[ep ep]
5 = (0, 0, νβ−1,−mνβ−2) which is unfeasible.

Proposition 3.1.9. The point

P
[ep ep]
6 =

(
mrK

a2eK +mr
, 0,

aerK

a2eK +mr
, 0

)
is always feasible and stable for

β <
mrν + a2eνK

aerK
, b >

mrs+ a2esK

aerK
. (3.24)

Proof. Considering Y = W = 0 in the system (3.2) we obtain the equili-

brium P
[ep ep]
6 = ( mrK

a2eK+mr
, 0, aerK

a2eK+mr
, 0). Two eigenvalues of the Jacobian (3.5)

evaluated at the P
[ep ep]
6 are explicit, giving the stability conditions (3.24). No

other conditions arise since −J [ep ep]

P6
with

J
[ep ep]

P6
=

(
− r
K
X

[ep ep]
6 −aX [ep ep]

6

aeZ
[ep ep]
6 −mZ [ep ep]

6

)
is positive definite, because its principal minors are

r

K
X

[ep ep]
6 > 0,

rm

K
X

[ep ep]
6 Z

[ep ep]
6 + a2eX

[ep ep]
6 Z

[ep ep]
6 > 0.
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Proposition 3.1.10. The point

P
[ep ep]
7 =

(
0,

msH

b2eH +ms
,

besH

b2eH +ms
, 0

)
is always feasible and stable whenever

β <
msν + b2eνH

besH
, a >

mrs+ b2erH

besH
, (3.25)

Proof. Substituting X = W = 0 in the system (3.2) we obtain the components

of P
[ep ep]
7 by solving the equilibrium equations. It is stable for the conditions

(3.25), given by two explicit eigenvalues. Nothing else is required, because

−J [ep ep]

P7
is positive definite with

J
[ep ep]

P7
=

(
− s
H
Y

[ep ep]
7 −bY [ep ep]

7

ebZ
[ep ep]
7 −mZ [ep ep]

7

)
since its principal minors are

s

H
Y

[ep ep]
7 > 0,

sm

H
Y

[ep ep]
7 Z

[ep ep]
7 + b2eY

[ep ep]
7 Z

[ep ep]
7 > 0.

Proposition 3.1.11. The point P
[ep ep]
8 =

(
X

[ep ep]
8 , Y

[ep ep]
8 , Z

[ep ep]
8 , 0

)
with

X
[ep ep]
8 =

b2erHK +mrsK − abesHK
a2esK + b2erH +mrs

, Z
[ep ep]
8 =

aersK + bersH

a2esK + b2erH +mrs
,

Y
[ep ep]

8 =
a2esHK +mrsH − aberHK

a2esK + b2erH +mrs
.

is feasible if

a ≤ b2erH +mrs

besH
, (3.26)

b ≤ a2esK +mrs

aerK
. (3.27)

and is conditionally stable for

β <
a2esνK + b2erνH +mrsν

aersK + bersH
. (3.28)

Proof. P
[ep ep]
8 is obtained setting W = 0 in the system (3.2). It is feasible for

X
[ep ep]
8 ≥ 0, giving (3.26) and for Y

[ep ep]
8 ≥ 0, giving (3.27). One explicit eigen-

value of the Jacobian matrix gives the stability condition (3.28), No further

stability conditions arise, because −J [ep ep]

P8
is positive definite, where

J
[ep ep]

P8
=

 − r
K
X

[ep ep]
8 0 −aX [ep ep]

8

0 − s
H
Y

[ep ep]
8 −bY [ep ep]

8

aeZ8 ebZ
[ep ep]
8 −mZ [ep ep]

8

 .
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Indeed its principal minors are

r

K
X

[ep ep]
8 > 0,

rs

HK
X

[ep ep]
8 Y

[ep ep]
8 > 0,(

mrs

HK
+
a2es

H
+
b2er

K

)
X8Y8Z8 > 0.

Proposition 3.1.12. The main prey-free equilibrium point

P
[ep ep]
9 =

(
0, Y

[ep ep]
9 , Z

[ep ep]
9 ,W

[ep ep]
9

)
is conditionally feasible see (3.29), (3.31) below and stable, (3.33).

Proof. We have explicitly

Z
[ep ep]
9 = νβ−1, Y

[ep ep]
9 = H − bνH

sβ
− κH

s
W

[ep ep]
9 ,

and W
[ep ep]
9 is given by the roots of the quadratic function

Φ(W
[ep ep]
9 ) = α2(W

[ep ep]
9 )2 + α1W

[ep ep]
9 + α0,

with

α2 = −eκ
2H

s
, α1 = −2beνκH

sβ
+ eκH − ν, α0 = −b

2eν2H

sβ2
+
beνH

β
− mν2

β2
.

The point P
[ep ep]
9 is feasible if Y

[ep ep]
9 ≥ 0, which becomes

s ≥ bν

β
+ κW

[ep ep]
9 , (3.29)

and also, two positive values for W
[ep ep]
9 are obtained if

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0,

that are equivalent to

ν <
e2sκ2β2H2 + 4beν2βκH + β2sν2

4emνκH + 2esβ2κH
, (3.30)

and

ν <
esκβH

sβ + 2beκH
, β <

b2eνH +msν

besH
, (3.31)
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respectively. For one positive root W
[ep ep]
9 , instead the following conditions

must hold

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0,

which are equivalent to the first condition (3.30) and

β >
b2eνH +msν

besH
. (3.32)

Besides that, P
[ep ep]
9 is stable for

r <
aν

β
+ gW

[ep ep]
9 (3.33)

given by an explicit eigenvalue of the Jacobian matrix.
In addition,

J
[ep ep]

P9
=

 − s
H
Y

[ep ep]
9 −bY [ep ep]

9 −κY [ep ep]
9

beν
β

+ eκW
[ep ep]
9 J

[ep ep]

22 J
[ep ep]

23

0 βW
[ep ep]
9 0

 ,

with

J
[ep ep]

22 = J
[ep ep]
33 , J

[ep ep]

23 = J
[ep ep]
34 ,

is negative definite, if we require the conditions J
[ep ep]
33 < 0, J

[ep ep]
34 < 0, i.e.

b <
2mν

eβH
+
b2ν

sβ
+ (

bκ

s
+

β

eH
)W

[ep ep]
9 (3.34)

and

e <
ebν

sβ
+

ν

κH
+
eκ

s
W

[ep ep]
9 , (3.35)

respectively. Indeed, in this way the principal minors of −JP9 turn out to be
all positive,

s

H
Y

[ep ep]
9 > 0,

s

H
J

[ep ep]

22 Y
[ep ep]

9 + bY
[ep ep]

9 (
beν

β
+ eκW

[ep ep]
9 ) > 0,

(βκY
[ep ep]

9 W
[ep ep]
9 )J

[ep ep]

22 +
sβ

H
Y

[ep ep]
9 W

[ep ep]
9 J

[ep ep]

23 > 0.

Proposition 3.1.13. The equilibrium point P
[ep ep]
10 = (X

[ep ep]
10 , 0, Z

[ep ep]
10 ,W

[ep ep]
10 )

is unique and feasible if the conditions (3.36) and (3.39) hold; it is condition-
ally stable when (3.40), (3.41) and (3.42) hold.
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Proof. Setting Y = 0 in the system (3.2) we obtain the population values

X
[ep ep]
10 = K − aνK

rβ
− gK

r
W

[ep ep]
10 , Z

[ep ep]
10 =

ν

β

where W
[ep ep]
10 is a root of the quadratic

Φ(W
[ep ep]
10 ) = α2(W

[ep ep]
10 )2 + α1W

[ep ep]
10 + α0,

with

α2 = −eg
2K

r
, α1 = egK − 2aegνK

rβ
− ν, α0 =

aeνK

β
− a2eν2K

rβ2
− mν2

β2
.

For feasibility we need to require X
[ep ep]
10 ≥ 0, that is,

r ≥ aν

β
+ gW

[ep ep]
10 , (3.36)

and W
[ep ep]
10 ≥ 0. In this case, two positive roots arise if

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0,

that are equivalent to

ν <
rν2β2 + 4aegν2βK + e2g2rβ2K2

4eg2mνK + 2egrβ2K
(3.37)

β >
rνβ + 2aegνK

egrK
, β <

mrν + a2eνK

aerK
, (3.38)

respectively. One positive root is found whenever the conditions

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0,

hold, which are equivalent to (3.36) and

β >
mrν + a2eνK

aerK
. (3.39)

One explicit eigenvalue of the Jacobian at P
[ep ep]
10 is J

[ep ep]
22 , which must be

negative for stability, giving

s <
bν

β
+ κW

[ep ep]
10 (3.40)

given by one explicit eigenvalue of J
[ep ep]
P10

.
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In addition,

J
[ep ep]

P10
=

 − r
K
X

[ep ep]
10 −aX [ep ep]

10 −gX [ep ep]
10

aeν
β

+ egW
[ep ep]
10 J

[ep ep]
33 egX

[ep ep]
10 − ν

0 βW
[ep ep]
10 0


is negative definite, if we require the conditions J

[ep ep]
33 < 0 and J

[ep ep]
34 < 0,

that is, respectively

a <
2mν

eβK
+
a2ν

rβ
+ (

ag

r
− β)W

[ep ep]
10 (3.41)

and
ν > egX

[ep ep]
10 , (3.42)

because its principal minors of −JP10 become

r

K
X

[ep ep]
10 > 0,

r

K
J

[ep ep]
33 X10 + aX

[ep ep]
10 (

aeν

β
+ egW

[ep ep]
10 ) > 0,

gβX
[ep ep]
10 W

[ep ep]
10 (

aeν

β
+ egW

[ep ep]
10 ) +

rβ

K
X

[ep ep]
10 W

[ep ep]
10 (ν − egX [ep ep]

10 ) > 0.

Proposition 3.1.14. The coexistence P
[ep ep]
11 = (X

[ep ep]
11 , Y

[ep ep]
11 , Z

[ep ep]
11 ,W

[ep ep]
11 )

is unique if (3.43) and (3.46) hold and is conditionally stable for (3.47).

Proof. For the coexistence P
[ep ep]
11 we have

Z
[ep ep]
11 = νβ−1, X

[ep ep]
11 = K − aνK

rβ
− gK

r
W

[ep ep]
11 ,

Y
[ep ep]

11 = H − bνH

sβ
− κH

s
W

[ep ep]
11 ,

with W
[ep ep]
11 given by root of the quadratic function:

Φ(W
[ep ep]
11 ) = α2(W

[ep ep]
11 )2 + α1W

[ep ep]
11 + α0,

with

α2 = −eg
2K

r
− eκ2H

s
, α1 = eκH + egK − ν − 2beνκH

sβ
− 2aegνK

rβ
,

α0 =
beνH

β
+
aeνK

β
− mν2

β2
− a2eν2K

rβ2
− b2eν2H

sβ2
.

The equilibrium P
[ep ep]
11 is feasible if X

[ep ep]
11 ≥ 0 and Y

[ep ep]
11 ≥ 0, i.e. for

r ≥ aν

β
+ gW

[ep ep]
11 , s ≥ bν

β
+ κW

[ep ep]
11 (3.43)
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respectively, and if W
[ep ep]
11 ≥ 0. There are two positive roots if

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0,

that are equivalent to

e2rsβ2κ2H2 + 8abe2gν2κKH + 4berν2κβH + 4ae2rνκ2βKH (3.44)

+4be2g2sνβKH + 2e2grsκβ2KH + 4aegsν2βK + e2g2rsβ2K

+rsν2β2 > 4a2e2ν2κ2KH + 4b2e2g2ν2KH + 4be2grνκβKH

+4emrν2κ2H + 4ae2gsνκβKH + 2ersνκβ2H + 4eg2msν2K + 2egrsνβ2K,

ν <
ersβκH + egrsβK

2berκH + rsβ + 2aegsK
, β <

b2erνH +mrsν + a2esνK

bersH + aersK
, (3.45)

respectively. For one positive root the conditions are

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0,

or, explicitly, (3.44) and

β >
b2erνH +mrsν + a2esνK

bersH + aersK
. (3.46)

In addition, J
[ep ep]
P11

is negative definite if we require the condition J
[ep ep]
34 < 0

which explicitly becomes

egX
[ep ep]
11 + eκY

[ep ep]
11 < ν. (3.47)

Indeed, the Jacobian of P
[ep ep]
11 simplifies to

J
[ep ep]
P11

=


− r
K
X

[ep ep]
11 0 −aX [sp ep]

11 −gX [ep ep]
11

0 − s
H
Y

[ep ep]
11 −bY [ep ep]

11 −κY [ep ep]
11

J
[ep ep]
31 J

[ep ep]
32 −mν

β
J

[ep ep]
34

0 0 βW
[ep ep]
11 0

 ,

with

J
[ep ep]
31 =

aeν

β
+ egW

[ep ep]
11 , J

[ep ep]
32 =

beν

β
+ eκW

[ep ep]
11 ,

J
[ep ep]
34 = egX

[ep ep]
11 + eκY

[ep ep]
11 − ν.

The first three principal minors of −J [ep ep]
P11

are all positive:

r

K
X

[ep ep]
11 > 0,

rs

HK
X

[ep ep]
11 Y

[ep ep]
11 > 0,

X
[ep ep]
11 Y

[ep ep]
11

[(
mrs

HK
+
a2es

H
+
b2er

K

)
ν

β
+

(
aegs

H
+
berκ

K

)
W

[ep ep]
11

]
> 0,
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and also the determinant is, as it simplifies to

egs

H

(
aν

β
+ gW

[ep ep]
11

)
+
eκr

K

(
bν

β
+ κW

[ep ep]
11

)
− rs

HK
J

[ep ep]
34 > 0

Thus, then feasible, P
[ep ep]
11 is stable if (3.47) holds.

In the Table 3.2 we summarize the behaviour of the equilibria of model
(3.2).

Table 3.2: Behaviour and conditions of feasibility and stability of equilibria
for the model (3.2).

Equilibria Admissibility Stability

P
[ep ep]
1 always unstable

P
[ep ep]
2 always unstable

P
[ep ep]
3 always unstable

P
[ep ep]
4 always unstable

P
[ep ep]
5 unfeasible

P
[ep ep]
6 always (3.24)

P
[ep ep]
7 always (3.25)

P
[ep ep]
8 (3.26), (3.27) (3.28)

P
[ep ep]
9 (3.29), (3.30), (3.31) - 2 positive roots (3.33), (3.34), (3.35)

(3.29), (3.30), (3.32) - 1 positive root

P
[ep ep]
10 (3.36), (3.37), (3.38) - 2 positive roots (3.40), (3.41), (3.42)

(3.36), (3.37), (3.39) - 1 positive root

P
[ep ep]
11 (3.43), (3.44), (3.45) - 2 positive roots (3.47)

(3.43), (3.44), (3.46) - 1 positive root

3.1.3 Theoretical results for bifurcations of the models
(3.1) and (3.2)

The bifurcations presented in this section were found from the conditions of
feasibility and stability of equilibria of the systems (3.1) and (3.2). These
conditions are summarized in Tables 3.1 and 3.2. We do not claim that the
bifurcations found are exhaustive.
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To study the local bifurcations of the equilibria of the models (3.1) and
(3.2) we use Sotomayor theorem [70].

Proposition 3.1.15. Consider the continuously differentiable system (3.1),
then:

(i) There is a transcritical bifurcation between equilibria P
[ep hp]
3 and P

[ep hp]
4

when r passes through the critical value r† = aL.

(ii) There is a transcritical bifurcation between equilibria P
[ep hp]
3 and P

[ep hp]
5

when ν passes through the critical value ν† = βL.

Proof.

(i) The equilibrium point P
[ep hp]
3 coincides with the equilibrium P

[ep hp]
4 at the

parametric threshold r† = aL, compare the first stability condition (3.12) of

P
[ep hp]
3 and the feasibility condition (3.13) of P

[ep hp]
4 .

The Jacobian matrix of the system (3.1) evaluated at P
[ep hp]
3 and at the

parametric threshold r† = aL, becomes

J
[ep hp]
P3

(r†) =

 0 0 0
aeL −u −u− βL

0 0 −ν + βL


and its right and left eigenvectors, corresponding to zero eigenvalue, are given
by V1 = ϕ1(1, aeL/u, 0)T and Q1 = ω1(1, 0, 0)T , where ϕ1 and ω1 are arbitrary
nonzero real numbers. Differentiating with respect to r the right hand sides of
the system (3.1), we find

fr =

 X
[ep hp]
3 (1−X [ep hp]

3 /K)
0
0

 .

Its Jacobian matrix is

Dfr =

 1− 2
K
X

[ep hp]
3 0 0

0 0 0
0 0 0

 .

Calculating D2f we find

D2f(P, ψ)(V, V )

=


(∂

2f1
∂X2 ξ

2
1 + ∂2f1

∂Z2 ξ
2
2 + ∂2f1

∂W 2 ξ
2
3 + 2 ∂2f1

∂X∂Z
ξ1ξ2 + 2 ∂2f1

∂X∂W
ξ1ξ3 + 2 ∂2f1

∂Z∂W
ξ2ξ3

∂2f2
∂X2 ξ

2
1 + ∂2f2

∂Z2 ξ
2
2 + ∂2f2

∂W 2 ξ
2
3 + 2 ∂2f2

∂X∂Z
ξ1ξ2 + 2 ∂2f2

∂X∂W
ξ1ξ3 + 2 ∂2f2

∂Z∂W
ξ2ξ3

∂2f3
∂X2 ξ

2
1 + ∂2f3

∂Z2 ξ
2
2 + ∂2f3

∂W 2 ξ
2
3 + 2 ∂2f3

∂X∂Z
ξ1ξ2 + 2 ∂2f3

∂X∂W
ξ1ξ3 + 2 ∂2f3

∂Z∂W
ξ2ξ3

 ,
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where P = (X,Z,W )T , while the components of f = (f1, f2, f3)T are given by
the right hand sides of (3.1), ψ represents the parametric thresold and ξ1, ξ2, ξ3

are the components of the eigenvector V = (ξ1, ξ2, ξ3)T of the variations in
X,Z and W .

We can thus verify the following three conditions

Q1
Tfr(P

[ep hp]
3 , r†) = 0,

Q1
T [Dfr(P

[ep hp]
3 , r†)V1] = ϕ1ω1 6= 0

QT
1 [D2f(P

[ep hp]
3 , r†)(V1, V1)] = −ω1ϕ1

2

(
2aL

K
+ a2eL

)
6= 0.

(ii) When the equilibrium point P
[ep hp]
3 coincides with the equilibrium P

[ep hp]
5

at the threshold ν† = βL (compare the second stability condition (3.12) of

P
[ep hp]
3 and the feasibility condition (3.15) of equilibrium P

[ep hp]
5 ), the Jacobian

matrix of the system (3.1) evaluated at P
[ep hp]
3 and at the parametric threshold

ν†, becomes

J
[ep hp]
P3

(ν†) =

 r − aL 0 0
aeL −u −u− βL

0 0 0

 .

Its right and left eigenvectors, corresponding to the zero eigenvalue, are
given by V2 = ϕ2(0, 1,−u/(u + βL))T and Q2 = ω2(0, 0, 1)T , where ϕ2 and
ω2 are any nonzero real numbers. Differentiating with respect to ν† the right
hand sides of (3.1), we find

fν =

 0
0

−W [ep hp]
3

 ,

and calculating its Jacobian matrix, we get

Dfν =

 0 0 0
0 0 0
0 0 −1

 .

From D2f we can finally verify the following three conditions

Q2
Tfν(P

[ep hp]
3 , ν†) = 0,

Q2
T [Dfν(P

[ep hp]
3 , ν†)V2] = ϕ2ω2

u

u+ βL
6= 0

QT
2 [D2f(P

[ep hp]
3 , ν†)(V2, V2)] = −ω2ϕ2

2

(
2uβ

u+ βL

)
6= 0.

Hence all the conditons for transcritical bifurcation are satisfied.
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Proposition 3.1.16. Consider the continuously differentiable system of equa-
tions (3.2), then:

(i) There is a transcritical bifurcation between equilibria P
[ep ep]
8 and P

[ep ep]
6

when b crosses the critical value b† = (mrs+ a2esK)/aerK .

(ii) There is a transcritical bifurcation between equilibria P
[ep ep]
8 and P

[ep ep]
7

when a passes through the critical value a† = (mrs+ b2erH)/besH .

Proof.

(i) When the equilibria P
[ep ep]
8 and P

[ep ep]
6 coincide at the parametric threshold

b† = (mrs + a2esK)/aerK (compare the second condition condition of (3.24)

and the condition (3.27)), the Jacobian of the system (3.1) evaluated at P
[ep ep]
8

and at the parametric threshold b†, is

J
[ep ep]
P8

(b†) =


− mr2

mr+a2eK
0 − amrK

mr+a2eK
− gmrK
mr+a2eK

0 0 0 0
a2e2rK
mr+a2eK

es − aemrK
mr+a2eK

egmrK−aerβK
mr+a2eK

0 0 0 −mrν−a2eνK+aerβK
mr+a2eK


and its right and left eigenvectors, corresponding to the zero eigenvalue, are
given by V3 = ϕ3(1,−r/s,−r/(aK), 0)T and Q3 = ω3(0, 1, 0, 0)T , where ϕ3 and
ω3 are any nonzero real numbers. Differentiating partially the right hand sides
of the system equations (3.2) with respect to b, we find

fb =


0

−Y [ep ep]
8 Z

[ep ep]
8

eY
[ep ep]

8 Z
[ep ep]
8

0

 ,

and calculating its Jacobian matrix, we get

Dfb =


0 0 0 0

0 −Z [ep ep]
8 −Y [ep ep]

8 0

0 eZ
[ep ep]
8 eZ

[ep ep]
8 0

0 0 0 0

 .

From the calculation of D2f the following three conditions are verified:

Q3
Tfb(P

[ep ep]
8 , b†) = 0,

Q3
T [Dfb(P

[ep ep]
8 , b†)V3] = ϕ3ω3ρ 6= 0,

QT
3 [D2fb(P

[ep ep]
8 , b†)(V3, V3)] = −2ω3ϕ3

2(
mr2H + a2erHK + a2er2K

a2esHK
) 6= 0,
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Since the feasibility condition of the P
[ep ep]
8 for Y

[ep ep]
8 is given by (3.27), and

ρ =
r(a2esHK − aberHK +mrsH)

aK
+

r(arrK + berH)

a2esK + b2erH +mrs
,

we have r(a2esHK−aberHK+mrsH)
aK

≥ 0 and thus ρ 6= 0.

(ii) When the equilibrium point P
[ep ep]
8 = P

[ep ep]
7 at the threshold a† = (mrs+

b2erH)/besH (compare the second condition of (3.25) and the condition (3.26)),

the Jacobian of (3.2) evaluated at P
[ep ep]
8 and at the parametric threshold a†,

is

J
[ep ep]
P8

(a†) =


0 0 0 0

0 − ms2

ms+b2eH
− bmsH
ms+b2eH

0

er b2e2sH
ms+b2eH

− bemsH
ms+b2eH

(emκ−ebβ)sH
ms+b2eH

0 0 0 −b2eνH+besβH−msν
ms+b2eH


and its right and left eigenvectors, corresponding to the zero eigenvalue, are
given by V4 = ϕ4(1,−r/s, r/(bH), 0)T and Q4 = ω4(1, 0, 0, 0)T , where ϕ4 and
ω4 are any nonzero real numbers. Differentiating partially with respect to a†

the right hand sides of (3.2), we find

fa =


−X [ep ep]

8 Z
[ep ep]
8

0

eX
[ep ep]
8 Z

[ep ep]
8

0

 ,

and calculating its Jacobian, we get

Dfa =


−Z [ep ep]

8 0 0 0
0 0 0 0

eZ
[ep ep]
8 0 eX

[ep ep]
8 0

0 0 0 0

 .

Evaluation of D2f verifies the following three conditions

Q4
Tfa(P

[ep ep]
8 , a†) = 0,

Q4
T [Dfa(P

[ep ep]
8 , a†)V4] = −ϕ4ω4

besH

ms+ b2eH
6= 0

QT
4 [D2fa(P

[ep ep]
8 , a†)(V4, V4)] = −2ω4ϕ4

2

(
b2ersH2 + b2er2K +mr2sK

b2esH2K

)
6= 0.

Hence all the conditons for a transcritical bifurcation are satisfied. The
computation of D2f(P, ψ)(V, V ) of the (3.2) is analogous to the formula for
the model (3.1).

76



3.1 Basic assumptions and models formulation

0.5 1 1.5 2

0

0.5

1

1.5

2

P
o

p
u

la
ti
o

n
s
: 

X
, 

Z
, 

W

X

Z

W

a)
0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

P
o

p
u

la
ti
o

n
s
: 

X
, 

Y
, 

Z
, 

W

X

Z

W

b)

Figure 3.1: a) Transcritical bifurcation between P
[ep hp]
3 and P

[ep hp]
5 . The equi-

librium P
[ep hp]
5 is stable for 0.1 < ν < 1.6 and P

[ep hp]
3 is stable for ν > 1.6 . The

vertical line corresponds to the transcritical bifurcation threshold ν† = 1.6 be-
tween the equilibria. b) Transcritical bifurcation between P

[ep hp]
5 and P

[ep hp]
6 .

The equilibrium P
[ep hp]
6 is stable for 0.1 < ν < 0.4009 and P

[ep hp]
5 is stable

for ν > 0.4009. The vertical line corresponds to the transcritical bifurcation
threshold ν† = 0.4009. The parameter values for (a) and (b) are r = u = 1,
L = 2, K = 10, e = 0.75, g = 0.56, a = 1.75. For (a) β = 0.8 and (b) β = 1.

3.1.4 Numerical results for bifurcations of the models
(3.1) and (3.2)

In Section 3.1.3 we performed theoretical analysis for transcritical bifurcation
of models (3.1) and (3.2). In this Section, we illustrate these transcritical bi-
furcations and further investigate the possibilities for transcritical bifurcations
about other equilibria of the systems by means of numerical simulations, by
suitably adapting the standard ode45 Matlab routine for our purposes.

•Numerical results for model (3.1)

Here, we performed the investigation for transcritical bifurcations in terms
of the bifurcation parameters ν and r. Considering ν as bifurcation parameter
we find transcritical bifurcations between the equilibria: P

[ep hp]
3 and P

[ep hp]
5 for

ν† = βL = 1.6 as well as between P
[ep hp]
5 and P

[ep hp]
6 for ν† = β(ur+rβL−guL)

au+aβL−gu =

0.4009, see Figure 3.1 frames (a) and (b), respectively.

The frames (a) and (b) of Figure 3.2 illustrate the transcritical bifurca-

tion between P
[ep hp]
3 and P

[ep hp]
4 taking r as a bifurcation parameter, with

threshold r† = aL = 0.5 and between P
[ep hp]
6 and P

[ep hp]
4 for the threshold

ν† = β(urL+aerK)
ur+a2eKL

= 0.9747, respectively.

Table 3.3 presents a summary of all bifurcations results in our numerical
simulations.

•Numerical results for model (3.2)

Here, we take β, a and b as bifurcation parameters in the model (3.2).
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Figure 3.2: a) Transcritical bifurcation between P
[ep hp]
3 and P

[ep hp]
4 . The equi-

librium P
[ep hp]
3 is stable for 0.1 < r < 0.5 and P

[ep hp]
4 is stable for r > 0.5. The

vertical line corresponds to the transcritical bifurcation threshold r† = 0.5
with ν = 0.9747. b) Transcritical bifurcation between P

[ep hp]
6 and P

[ep hp]
4 .

The equilibrium P
[ep hp]
6 is stable for 0.1 < ν < 0.9747 and P

[ep hp]
4 is stable for

ν > 0.9747. The vertical line denotes the transcritical bifurcation threshold
ν† = 0.9747 between the equilibria and r = 1. The parameter values for (a)
and (b) are: L = 1, K = 10, e = 0.75, a = β = 0.5, u = 0.1, g = 0.37.

Table 3.3: Behaviour of equilibria of the model (3.1) considering ν and r as
variation parameters. Notation: tb=transcritical bifurcation

Behaviour of Equilibria involved Parameter threshold

the model (3.1)

tb P
[ep hp]
3 − P [ep hp]

5 ν† = βL = 1.6

tb P
[ep hp]
5 − P [ep hp]

6 ν† = β(ur+rβL−guL)
au+aβL−gu = 0.4009

tb P
[ep hp]
3 − P [ep hp]

4 r† = aL = 0.5

tb P
[ep hp]
4 − P [ep hp]

6 ν† = β(urL+aerKL)
ur+a2eKL

= 0.9747
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Figure 3.3: The common parameter values for both (a) and (b) are: r = 1,
K = 10, e = 0.75, ν = 0.5, g = 0.937, m = s = b = 0.25, H = 10,
κ = 0.187. a) Transcritical bifurcation between P

[ep ep]
6 and P

[ep ep]
10 . The

equilibrium P
[ep ep]
6 is stable for 0.1 < β < 0.1826 and P

[ep ep]
10 is stable for

β > 0.1826. The vertical line corresponds at the transcritical bifurcation
threshold β† = 0.1826 between the equilibria. Here we have a = 0.18. b)

Transcritical bifurcation between P
[ep hp]
7 and P

[ep ep]
9 . The equilibrium P

[ep ep]
7

is obtained for 0.1 < β < 0.5667 while P
[ep ep]
9 is found for β > 0.5667. The

vertical line corresponds at the transcritical bifurcation threshold β† = 0.5667
between the equilibria. In this case we take a = 1.25.

Figures 3.3, 3.4, 3.5 illustrate all the possibilities that we have found. All the
different behaviours of the system are summarized in Table 3.4.

Note that considering β as bifurcation parameter the system has several
possible different behaviours.

Figure 3.3 (a) illustrates the transcritical bifurcation between P
[ep ep]
6 and

P
[ep ep]
10 and (b) illustrates a transcritical bifurcation between P

[ep ep]
7 and P

[ep ep]
9

for

β† =
ν(mr + a2eK)

aerK
= 0.1826, β† =

msν + b2eνH

besH
= 0.5667,

respectively.
Figure 3.4 illustrates the transcritical bifurcation between P

[ep ep]
8 and P

[ep ep]
11

with critical threshold

β† =
ν(a2esK + b2erH +mrs)

aersK + bersH
= 0.3884.

Figure 3.5 (a), (b) illustrates a numerical simulations when we consider b
and a as a bifurcation parameters. There is a transcritical bifurcation between
P

[ep ep]
6 and P

[ep ep]
8 and another one between P

[ep ep]
7 and P

[ep ep]
8 for

b† =
mrs+ a2esK

aerK
= 1.5, a† =

mrs+ b2erH

besH
= 2.17,

respectively. .
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Figure 3.4: Transcritical bifurcation between P
[ep ep]
8 and P

[ep ep]
11 . The equi-

librium P
[ep ep]
8 is stable for 0.1 < β < 0.3884 while P

[ep ep]
11 is obtained for

0.3884 < β < 0.67. The vertical line corresponds to the transcritical bifur-
cation threshold β† = 0.3884. The remaining parameter values are: r = 1,
K = 10, e = 0.75, ν = 0.5, g = 0.5625, m = b = 0.25, κ = 0.187, a = 0.75,
s = H = 1.
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Figure 3.5: a) Transcritical bifurcation between P
[ep ep]
8 and P

[ep ep]
6 for the

parameter values: r = K = a = e = m = 0.5, g = 0.8, s = H = β = 0.3
and ν = κ = 0.9. Initial conditions X0 = Z0 = W0 = 0.01. The equibrium
P

[ep ep]
8 is found for 0.1 ≤ b < 1.5 and P

[ep ep]
6 arises for b > 1.5. The vertical line

corresponds to the transcritical bifurcation threshold b† = 1.5. b) Transcritical

bifurcation between P
[ep ep]
8 and P

[ep ep]
7 for the parameter values: K = e =

m = 0.5, g = 0.8, r = s = H = β = 0.3, b = 1.5 and ν = κ = 0.9. Initial
conditions and populations are the same. The equibrium P

[ep ep]
8 is found for

0.1 ≤ a < 2.17 while P
[ep ep]
7 exists in the range a > 2.17. The vertical line

corresponds to the transcritical bifurcation threshold a† = 2.17.
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3.2 Comparing analytical findings for the models (3.1) and (3.2)

Table 3.4: Behaviour of equilibria of the model (3.2) considering β, b and s as
bifurcation parameters. Notation: tb=transcritical bifurcation

Behaviour of Equilibria involved Parameter threshold

the model (3.2)

tb P
[ep ep]
7 − P [ep ep]

9 β† = msν+b2eνH
besH

= 0.5667

tb P
[ep ep]
6 − P [ep ep]

10 β† = ν(a2eK+mr)
aerK

= 0.1826

tb P
[ep ep]
11 − P [ep ep]

8 β† = a2eνsK+b2erνH+mrsν
aersK+bersH

= 0.3884

tb P
[ep ep]
6 − P [ep ep]

8 b† = mrs+b2erH
aerK

= 1.5

tb P
[ep ep]
7 − P [ep ep]

8 a† = mrs+b2erH
besH

= 2.17

3.2 Comparing analytical findings for the mod-

els (3.1) and (3.2)

In this Section, we compare the behaviour of the models (3.1) and (3.2), sum-
marizing in Table 3.5 all the possibilities.

As we can see in Table 3.5, both ecosystems cannot completely disappear.
Note that to the origin P

[ep hp]
1 in model (3.1) corresponds also the point P

[ep ep]
3

of model (3.2), in which only the alternative prey thrives. The prey-only

equilibria P
[ep hp]
2 and P

[ep ep]
2 , P

[ep ep]
3 and P

[ep ep]
4 are all unstable.

The healthy-predator-only equilibrium P
[ep hp]
3 has its counterpart in the

point P
[ep ep]
7 . The equilibrium P

[ep hp]
3 can be achieved stably in the simpler

model, provided (3.12) is satisfied and P
[ep ep]
7 can also be stably attained, if

the stability condition (3.25) holds.

The disease-free equilibrium point in model (3.1) is P
[ep hp]
4 . Three points of

model (3.2) could be related to it, namely P
[ep ep]
6 , P

[ep ep]
7 and P

[ep ep]
8 , differing

in that either the extra source or the main prey are absent, or that both preys
thrive, together with the healthy predators.

The main-prey-free point P
[ep hp]
5 in model (3.1) cannot be compared with

the equilibrium P
[ep ep]
5 of model (3.2) because P

[ep ep]
5 does not contain the

alternative resource and the predador can only survive if the alternative prey
thrives in the absence of the main prey. Its counterpart is thus just the equi-
librium P

[ep ep]
9 .

Finally, the coexistence equilibria in both models are conditionally stable.
Table 3.5, shows that the P

[ep hp]
6 in model (3.1) can be related with equilibria

P
[ep ep]
10 and P

[ep ep]
11 of model (3.2). Thus, for both models there is the possibility

of the survival of all predators and preys.
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Table 3.5: Possibilities of comparison between equilibria of systems (3.1)
and (3.2) that have the same biological behaviour. Notation: u=unstable,
s=stable, cs=conditionally stable, uf=unstable if feasible, sf=stable if feasible.
Note that the second and third components of system (3.1) correspond to the
third and fourth components of system (3.2), respectively, while in this latter
system the second one represents the explicit resource that was hidden in the
model (3.1).

Equilibrium - model (3.1) Equilibrium - model (3.2) Interpretation

P
[ep hp]
1 = (0, 0, 0) (u) P

[ep ep]
1 = (0, 0, 0, 0) (u ) ecosystem collapse

P
[ep ep]
3 = (0, •, 0, 0) (u)

P
[ep hp]
2 = (•, 0, 0) (u) P

[ep ep]
2 = (•, 0, 0, 0) (u)

P
[ep ep]
3 = (0, •, 0, 0) (u) prey-only

P
[ep ep]
4 = (•, •, 0, 0) (u)

P
[ep hp]
3 = (0, •, 0) (cs) P

[ep ep]
7 = (0, •, •, 0)(cs) healthy-predator-only

P
[ep hp]
4 = (•, •, 0) (cs) P

[ep ep]
6 = (•, 0, •, 0) (cs)

P
[ep ep]
7 = (0, •, •, 0) (cs) disease-free

P
[ep ep]
8 = (•, •, •, 0) (cs)

P
[ep hp]
5 = (0, •, •) (cs) P

[ep ep]
5 = (0, 0, •, •) (u) main-prey-free

P
[ep ep]
9 = (0, •, •, •) (cs)

P
[ep hp]
6 = (•, •, •) (cs) P

[ep ep]
10 = (•, 0, •, •) (cs) coexistence

P
[ep ep]
11 = (•, •, •, •) (cs)

82



3.3 Results

3.3 Results

In this Chapter, we have compared the dynamics between two predator-prey
models where a transmissible disease spreads among the predators. The alter-
native prey for the predator is implicit in the first model, but in the second
one we have made it explicit.

The most important parameters determining the type of possible changes in
the system behaviour, leading to transcritical bifurcations, are the growth rate
r of the prey population X and the mortality of the infected predator ν. In the
case where the mortality rate ν of the infected predator exceeds the infection
rate β of healthy predator Z, the environment becomes infection-free due to
the extinction of the infected predators W . However, two distinct scenarios
arise: in the first one, if we the growth rate of the prey X is smaller than the
predator efficiency Z in converting resource into new predators as well as its
carrying capacity L (see Proposition 3.1.4), the resulting dynamics is composed
only of healthy predators Z; their survival is guaranteed by the existence of an
alternative resource. However, if the growth rate of the prey X exceeds the
predation efficiency as well as the carrying capacity of the healthy predator
Z, the main prey survives in the environment. This result is guaranteed by
the existence of a transcritical bifurcation between the equilibria P

[ep hp]
3 and

P
[ep hp]
4 . Continuing along the same lines, the study of transcritical bifurcation

between the equilibria P
[ep hp]
3 and P

[ep hp]
5 shows that if the mortality rate ν of

the infected predator W is smaller than the infection rate β and the carrying
capacity L of the healthy-predator, the ecosystem will be composed just of the
populations of healthy-predators Z and infected-predators W ; their survival is
in this case guaranteed by the available alternative resource (see the feasibility
and stability conditions (3.15) and (3.16)).

For the second model (3.2), where the alternative resource is explicit, the
main parameters defining the system dynamics are the predation rates a and b
on the main prey X and on the alternative prey Y as well as the infection rate
β of the healthy predator Z, respectively. In an infection-free scenario, the
analysis of the transcritical bifurcation between equilibria P

[ep ep]
6 and P

[ep ep]
8

indicates the predation rate b as an important factor to guarantee the survival
of the predator, i.e. b determines if the predator will feed only on the main
prey or on both main and alternative prey, see the second condition of (3.24)

and (3.27). Similarly, the transcritical bifurcation between P
[ep ep]
7 and P

[ep ep]
8

indicates that the mortality a characterizes the predator survival only. The
second condition of (3.25) shows that the healthy predator Z has only the
alternative prey Y as source of food represented by the stable equilibrium
point P

[ep ep]
7 . But, when a transcritical bifurcation occurs with the equilibrium

point P
[ep ep]
8 considering the same value of the bifurcation parameter a (see

condition (3.26)), the healthy predator Z has two sources of food, i.e., the
main prey X and the alternative prey Y . Thus, the predator thrive on both
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resources.
Our numerical analysis indicates that the disease transmission rate β plays

a fundamental role for obtaining an environment with persistent disease, see
Section 3.1.4.

Table 3.6 illustrates the comparison between models with hidden and ex-
plicit prey for the predator, considering an environment with and without the
possibility of a transmissible disease among the predators.

Table 3.6: Systems dynamics considering an environment with and without
a transmissible disease among the predator population Z. The column re-
presenting the biological interpretation in the table refers to the equilibrium
points obtained in both models (3.1) and (3.2) that are biologically equivalent.

Biological interpretation Environment with Environment without
disease transmission disease transmission
in predator Z in predator Z, [5]

ecosystem collapse not possible not possible

prey-only not possible not possible

healthy-predator-only possible possible

disease-free possible possible

main-prey-free/ possible possible

predator-only

coexistence possible possible

There is no possibility of a scenario where in the ecoepidemic model (3.2),
the infected predators thrive without the presence of the main and of the
alternative prey because P

[ep ep]
5 is unstable. However, healthy and infected

predators survive without the presence of the main prey in both systems (3.1)
and (3.2). In this case, the alternative prey provides the food for predators
in both models. This situation is represented by the main-prey-free equilibria
P

[ep hp]
5 and P

[ep ep]
9 .

The environment in which only the healthy predator Z survives in the
absence of the main prey is possible in both scenarios, i.e., at the equilibria
P

[ep hp]
3 and P

[ep ep]
7 . The disease-free equilibrium points represented by P

[ep hp]
4

and P
[ep ep]
8 when represented in the same dynamics but without a transmis-

sible disease among individuals Z, [5], clearly can represent the coexistence
between X and Z populations. In this situation, investigated in [5], the same
feasibility conditions for these equilibria hold. The coexistence also has the
same behaviour in both environments, i.e. with and without a transmissible
disease among the predator population Z.
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CHAPTER 4

A MATHEMATICAL MODEL TO
DESCRIBE THE BOVINE
TUBERCULOSIS AMONG

BUFFALOES AND LIONS IN THE
KRUGER NATIONAL PARK

Bovine Tuberculosis (BT) is a threat to wildlife health. For instance, in the
Kruger National Park in South Africa, at least 21 species of wild mammals
were diagnosed [72, 62]. There are species that are “maintenance” hosts for
BT and those that are considered “spillovers”. The former are species in
which the infection is endemic, without introduction from an external source.
Indeed, the BT bacterium M. bovis has been found in African buffalo and pos-
sibly also in the Greater kudu (Tragelaphus strepsiceros) and in the lions. In
view of their multiple interactions, variable susceptibility and the influence of
environmental factors, [72], the presence of several susceptible hosts compli-
cates the management and control of BT. Further, with diminishing habitats,
there are increased wildlife-livestock-human interfaces and a growing threat of
disease transmission through the species barrier. Indeed, the transmission of
BT between herd individuals occurs most frequently by aerosol, [9]. However,
predators contract the disease mostly by ingestion of infected tissues [61]. BT
directly impacts animal productivity and fitness and can lead to a mortality
rate increase.

Wild animals appear to be able to harbour mycobacteria for months or even
years. As infection progresses, there is evidence that BT may decrease their
reproductive and other fitness parameters, but it may not significantly affect
them unless they experience other stressors, such as drought or concurrent
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disease, suggesting that infected animals may remain in the population for
prolonged periods [61, 62]. For instance, buffalo herds with a higher prevalence
of BT had worse body condition in the dry season than those with lower
BT prevalence. Consequently, affected buffalo might be more susceptible to
predation by lions, [20]. In addition the loss of these prey animals may influence
the predators. A simulation over 50 years of the the impact of BT on lions
shows a scenario suggesting a serious threat to the species survival, with a
possible 35%-75% decline with respect to the present population, [62].

To study the impact of BT on wild animals, we present a predator-prey
model involving buffaloes and lions, both subject to the disease, which is hori-
zontally as well as vertically transmitted. Because the wild buffalo congregates
in huge herds, the border individuals are usually captured. Mathematically,
this can be modeled via a square root response function, [3, 2, 83, 18]. Indeed
since the total prey population P occupies a certain area A on the ground, the
number of the individuals who are found at the border is proportional to the
length of the perimeter of the patch A, which in turn is proportional to

√
P .

The chapter is organized as follows. In the next section, we formulate the
model, show that trajectories are bounded and nondimensionalize it. The fea-
sibility and stability analysis are performed in Section 4.3. Section 4.4 contains
a study about the basic reproduction number R0 where we focus the discus-
sion on conditions for disease eradication. Transcritical and Hopf bifurcations
are investigated in Section 4.5. Section 4.6 shows that the predators mortality
m is crucial for the feasibility and stability of the prey-only point E1 and the
disease-free equilibrium E2, respectively. Endemicity of the disease is directly
related to the value of R0 at both points. To investigate the behaviour of
model (4.2) in relation to the parameters, we first separate the simulations in
two specific cases, considering also the predation rate a. In the first case, E1 is
stable and E2 is unstable; the ecosystem thus attains the prey-only equilibrium,
if the predators mortality exceeds their hunting rate, i.e. m > a. Alternatively
when the mortality falls below the hunting rate, but not too much, namely for
a/
√

3 < m < a, the disease-free point becomes feasible and E1 is unstable. A
final discussion concludes the chapter.

4.1 Model Formulation

We consider a model for species interactions, subject to a BT that can infect
both the buffaloes and lions. Once infected, an animal remains infected for its
life, so that the disease is of type SI. Infected prey Î become weak and are
left behind the herd. Let further R̂ denote the susceptible prey population, F̂
and Ŵ r the susceptible and infected predators, respectively. The prey have
a highly socialized “herd behaviour”, in that they live together wandering in
search of pastures. They are generally followed in their wanderings by the
predators. If the hunt is successful for the predator, generally the prey indi-
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4.1 Model Formulation

viduals residing on the boundary of herd are harmed. The model, accounting
for all the possible population interactions described below, reads as follows:

dR̂

dτ
= r̃R̂ + r̄ (1− α̂) Î − kR̂

(
R̂ + ĝÎ

)
− λ̂R̂Î − ĉp̂

√
R̂Ŵ − â

√
R̂F̂ (4.1)

− θ̂ (1− p̂) ĉ
√
R̂Ŵ ,

dÎ

dτ
= r̄α̂Î + Î

(
λ̂R̂− b̂F̂ − µ̂− ̂̀̂W)+ θ̂(1− p̂)ĉ

√
R̂Ŵ − kÎ(ûR̂ + q̂Î),

dF̂

dτ
= âê

√
R̂F̂ + (1− σ̂)̂bêÎF̂ + (1− γ̂)Ŵ (ĉêp̂

√
R̂ + ̂̀̂eÎ)− m̂F̂ − β̂F̂ Ŵ ,

dŴ

dτ
= Ŵ

(
γ̂ĉêp̂

√
R̂ + γ̂ ̂̀̂eÎ − ν̂)+ σ̂b̂êÎF̂ + β̂F̂ Ŵ .

The first equation describes the dynamics of R̂ (susceptible prey). The term

r̃R̂ expresses growth rate of R̂ due to their own reproduction and r̄(1 − α̂)Î

is the fraction of Î that are born healthy (vertical transmission). The term

kR̂
(
R̂ + ĝÎ

)
is the mortality by intraspecific competition between R̂ individ-

uals among themselves and with Î individuals. The term λ̂R̂Î represents the
susceptible prey, that become infected (horizontal transmission). The term

ĉp̂
√
R̂Ŵ represents the prey individuals that are captured by infected preda-

tors and â
√
R̂F̂ is the capture rate of R̂ by F̂ . Finally, θ̂ (1− p̂) ĉ

√
R̂Ŵ

are the new infections by an unsuccessful attack of infected predator Ŵ on
healthy prey R̂, and then latter gets disease. Note that, we have a fraction
(1− θ̂)(1− p̂) of healthy prey that are not captured, but do not get the disease
from predators.

The second equation describes the dynamics of Î (infected prey). The term

r̄α̂Î is the fraction of the reproduction rate of Î that is born infected (possibility

of vertical transmission), λ̂R̂Î represents the susceptibles prey, that become

infected (horizontal transmission), b̂ÎF̂ is the predation of Î by F̂ , µ̂Î is the

mortality of Î (disease-related) and ̂̀̂IŴ is the predation of Î by Ŵ . Finally,

θ̂ (1− p̂) ĉ
√
R̂Ŵ are the new infections by an unsuccessful attack of infected

predator Ŵ on healthy prey R̂, and then latter gets disease and kÎ(ûR̂ + q̂Î)

is the mortality by intraspecific competition of Î among themselves and with
R̂. Note that, in the model, infected prey do not benefit from the effects of
herd behaviour.

The third equation describes the dynamics of F̂ (susceptible predator). The

term âê
√
R̂F̂ expresses the increase of F̂ due to the consumption of R̂ on the

boundary with conversion factor 0 < ê < 1. The term (1− σ̂)̂bêÎF̂ represents

the growth rate of F̂ due to the consumption of Î, that is, predators that

consume infected prey but do not become infected. The term (1−γ̂)Ŵ (ĉêp̂
√
R̂)
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expresses the fraction of the reproduction rate of Ŵ that is born as a healthy
predator due to the consumption R̂ on boundary. Besides that, (1− γ̂)Ŵ (̂̀̂eÎ)

is the analogous term, but due to the consumption of infected prey Î. Now,
the term m̂F̂ is the mortality of F̂ , β̂F̂ Ŵ represents the predator who moves
from one class to another, that is, susceptibles become infected by contact with
another infected predator Ŵ (horizontal transmission).

The fourth equation describes the dynamics of Ŵ (infected predator). The

term γ̂ĉêp̂
√
R̂Ŵ represents the vertical transmission of Ŵ in converting cap-

tured R̂ on boundary in infected predators Ŵ . The term γ̂ ̂̀̂eÎŴ is the ver-
tical transmission of Ŵ due to the consumption of Î, ν̂Ŵ is the mortality of
Ŵ (disease-related) and σ̂b̂êÎF̂ is the fraction of healthy predators that gives

birth to infected offspring by eating Î (vertical transmission). Finally, β̂F̂ Ŵ
represents the predator who moves from one class to another, that is, suscepti-
bles become infected by contact with another infected predator Ŵ (horizontal
transmission). All parameters are non-negative and listed in Table 4.1.

Following closely [83], the system’s trajectories are confined within a com-

pact set. For the total environment population ϕ(τ) = R̂(τ) + Î(τ) + F̂ (τ) +

Ŵ (τ), summing equations (4.1),

dϕ(τ)

dτ
=

(
r̃R̂ + r̄Î

)
− kR̂

(
R̂ + ĝÎ

)
− kÎ

(
ûR̂ + q̂Î

)
+ (ê− 1)

(
ĉp̂
√
R̂Ŵ + â

√
R̂F̂ + ̂̀̂IŴ)− (µ̂Î + m̂F̂ + ν̂Ŵ

)
.

Using (ê− 1) ≤ 0 we can drop the term that contains it, to get

dϕ(τ)

dτ
≤ (r̃R̂ + r̄Î)− kR̂(R̂ + ĝÎ)− kÎ(ûR̂ + q̂Î)− (µ̂Î + m̂F̂ + ν̂Ŵ )

Letting M be the maximum value of the parabola Φ(R̂+ Î) = −kη2(R̂+ Î)2 +

(η1 + η3)(R̂+ Î), with η1 = max{r̃, r̄}, η2 = min{1, ĝ, û, q̂}, η3 = min{µ̂, m̂, ν̂},
we find the estimate

dϕ(τ)

dτ
+ η3ϕ(τ) ≤ Φ(R̂ + Î) ≤ M̄ =

(η1 + η3)2

4η2k
,

from which we establish the boundedness result

ϕ(τ) ≤ M

η3

+ ϕ(0)(ê)−η3τ ≤ M

η3

+ ϕ(0) = M̄

Note also that from below, the coordinate hyperplanes cannot be crossed to-
ward negative values, although the system is not homogeneous. For instance,
the first equation for R̂ = 0 gives R̂′(τ) = r̄ (1− α̂) Î ≥ 0 because the param-
eters are nonnegative and 1− α̂ ≥ 0.
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4.1 Model Formulation

Table 4.1: Parameters of model (4.1) and their biological meanings
Parameter Biological meaning

r̃ Specific growth rate of healthy prey R̂

r̄ Specific growth rate of infected prey I (r̄ ≤ r̃)
α̂ Non-dimensional parameter that represents the fraction of

prey R̂ that born infected (vertical transmission)
1− α̂ Non-dimensional parameter that represents the fraction of

prey R̂ that born no infected
k Mortality of healthy prey R̂ due intraspecific competition (k =

r
K )

K Carrying capacity of prey R̂ in absence of predator

ĝ Parameter that regulates competition among infected prey Î
with healthy prey R̂

λ̂ Infection rate in healty prey R̂ (horizontal transmission)

θ̂ Probability that healthy prey R̂, not captured by infected
predator Ŵ , becomes infected

p̂
Probability that represents the fraction of captured prey R̂

1− p̂
Probability that represents the fraction of no captured prey R̂

â Predation rate of healthy prey R̂ by healthy predator F̂

ĉ Predation rate of healthy prey R̂ by infected predator Ŵ

b̂ Predation rate of infected prey Î by healthy predator F̂

µ̂ Mortality rate of infected prey Î̂̀ Predation rate of infected prey Î by infected predator Ŵ
û Non-dimensional parameter that regulates how infected prey

Î compete with healthy prey R̂
q̂ Non-dimensional parameter that regulates how infected prey

Î compete with infected prey Î
ê Efficiency of the predator in converting captured prey into

reproductive success
σ̂ Non-dimensional parameter that regulates the infection rate

in predator F̂ (vertical transmission)

1− σ̂
Non-dimensional parameter that represents the fraction of no
infection of F̂ in the vertical transmission for the case where
there is consumption of infected prey

m̂ Mortality rate of healthy predator F̂

β̂ Infection rate in healty predator F̂ (horizontal transmission)

γ̂ Probalility of vertical transmission in predator F̂

1− γ̂ Non-dimensional parameter that describes the fraction that
rate of no infection in F̂ (no infected individual)

ν̂ Mortality rate of infected predator Ŵ
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4.2 Non-dimensional model

The model (4.1) can be nondimensionalized via R(t) = k
r̃
R̂(τ), I(t) = k

r̃
Î(τ),

F (t) = k
er̃
F̂ (τ), W (t) = k

er̃
Ŵ (τ), t = r̃τ , and

r =
r̄

r̃
, g = ĝ, λ =

λ̂

k
, c =

ĉê√
r̃k
, a =

âê√
r̃k
, b =

b̂ê

k
, µ =

µ̂

r̃
,

` =
̂̀̂e
k
, u = û, q = q̂, m =

m̂

r̃
,

β̂ê

k
,

to get re-scaled system:

dX

dt
= f(X), X = (R, I, F,W )T , f = (f1, f2, f3, f4)T , (4.2)

f1 = R + r (1− α) I −R (R + gI)− λRI − cp
√
RW − a

√
RF

− θ (1− p) c
√
RW,

f2 = αI + I (λR− bF − µ− `W ) + θ(1− p)c
√
RW − I(uR + qI),

f3 = a
√
RF + (1− σ)bIF + (1− γ)cp

√
RW −mF + (1− γ)`IW

− βFW,

f4 = γcp
√
RW + γ`IW − νW + σbIF + βFW.

4.3 System’s equilibria

Model (4.2) has five equilibria. The origin E0, two disease-free equilibria,
E1 = (1, 0, 0, 0), and E2 = (R2, 0, F2, 0), the predator-free E3 = (R3, I3, 0, 0)
and coexistence E4 = (R4, I4, F4,W4) which is studied numerically. Their
components are:

R2 =
m2

a2
, F2 =

m2

a2

(
1

m
− m

a2

)
, I3 =

α− µ
q

+
λ− u
q

R3 (4.3)

and R3 given by the roots of the quadratic equation

Φ(R3) = α2R
2
3 + α1R3 + α0 = 0 (4.4)

with

α2 =
(g + λ)(u− λ)− q

q
, α0 =

r(α− 1)(µ− α)

q
,

α1 =
(1− α)r(λ− u) + (µ− α)(λ+ g) + q

q
.
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4.3.1 Feasibility

Feasibility for E2 is ensured by

m ≤ a (4.5)

and in case of E3 the feasibility conditions are for I3 ≥ 0

α + λR3 ≥ µ+ uR3 (4.6)

and for R3 ≥ 0 two positive roots exist if

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0

while at least one positive root is ensured by

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0.

The viability conditions for R3 ≥ 0 of E3 are explicit in the appendix 4.7. A
feasible equilibrium solution for system (4.2) with F = 0 and W = 0 is an
intersection in the first quadrant of the two curves:

f(R) =
(R− 1)R

(1− α)r − (g + λ)R
, h(R) =

(α− µ) + (λ− u)R

q
.

Note that the function f(R) has an asymptote in R = p∗ = r(1−α)/(g+λ),
thus there are two cases: p∗ > 1 and p∗ < 1, which respectively give:

f(R) :


< 0 if 0 < R < p∗

> 0 if p∗ < R < 1
< 0 if 1 < R

f(R) :


< 0 if 0 < R < 1
> 0 if 1 < R < p∗

< 0 if p∗ < R
.

Assume

λ+ α > µ+ u. (4.7)

It follows thay f(1) = 0 and f is unbounded around (p∗−ε, p∗+ε), ε > 0, since
h(R) is bounded in any closed interval in (0,∞) it follows that f(R) and h(R)
must intersect at a point in (p∗, 1) if p∗ < 1 or in the interval (1, p∗) if p∗ > 1.
Since f(R) is convex in such intervals and negative outside them, uniqueness
of the intersection is assured. In Figure 4.1 we present a sketch with the two
cases.

4.3.2 Local stability analysis

The Jacobian of the system (4.2) is given by
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Figure 4.1: Nullclines in the plane R− I, considering F = W = 0. If λ+ α >
u + µ (λE1

1 > 1), there is a unique feasible equilibrium point in the form
(R3, I3, 0, 0). a) Parameter values: α = 0.5, q = 0.1, r = 0.5 and g = u = µ =
0.25 we obtain p∗ = 0.5. b) Parameter values: α = 0.5, q = g = 0.1, r = 0.75
and u = µ = 0.25 we obtain p∗ = 1.5.

J =


J11 −λR− gR + (1− α)r −a

√
R −θ(1− p)c

√
R− cp

√
R

J21 J22 −bI θ(1− p)c
√
R− `I

J31 J32 J33 (1− γ)(`I + cp
√
R)− βF

cγpW

2
√
R

`γW + bσF βW + bσI cpγ
√
R + γ`I + βF − ν


with

J11 = −λI−θ(1− p)cW
2
√
R

− cpW
2
√
R
−2R− aF

2
√
R
−gI+1, J31 =

c(1− γ)pW

2
√
R

+
aF

2
√
R
,

J22 = λR− `W − 2qI − uR− bF + α− µ, J21 = λI +
θ(1− p)cW

2
√
R

− uI,

J32 = (1− γ)`W + b(1− σ)F, J33 = −βW + a
√
R + b(1− σ)I −m.

The origin for this model presents a particular behaviour. Although unsta-
ble in the Lyapunov sense [70], it is still capable of attracting trajectories over
a set of initial condition with positive measure in R4. The instability of the
origin can be seen, by observing that any trajectory starting in the line defined
by I = F = W = 0 remains in it, since İ = Ḟ = Ẇ = 0. The equation for Ṙ
on the line is simply Ṙ = R(1− R) which implies that the origin is unstable,
since any trajectory with initial condition 0 < ε = R0 < 1 moves away from
the origin.

This particular behaviour of the origin is caused by the predation term
which is proportional to the square root of the healthy prey population. When
R → 0, such term has a higher order when compared to the reproduction
term (R). In fact such proportionality to the square root of R is adequate
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for “large” population, since the group defense effect is negligible when the
population is “small”. Also, in the present model we seek to analyze the
biological situations which are relevant to the analysis to the spread of the
disease, that is, the scenarios where at least one of the populations is present.

However, a particular phenomenon has been observed in similar models
in these conditions, [85, 34, 52, 7]. The right hand side of the system is
not Lipschitz-continuous because of the presence of the square root in every
component, so that the uniqueness theorem does not hold. In [85] this has
been investigated, showing that trajectories lying in a narrow stripe may well
end up on the prey axis in finite time, and from there they move toward the
origin, with ecosytem collapse. This has been further investigated in [34, 52, 7],
showing that it entails a wealth of bifurcation phenomena. For a generalization
to an arbitrary power instead of the square root, see [15].

At E1 the eigenvalues are easily found and given by λ1 = cpγ−ν, λ2 = a−m,
λ3 = −1 and λ4 = λ+ α− µ− u. E1 is stable if and only if

cpγ < ν, a < m, λ+ α < µ+ u. (4.8)

For E2 the product of two quadratic equations is obtained. The first one

has the Routh-Hurwitz conditions tr(J
1

E2
) = (a2−3m2)(2a)−2 < 0, det(J

1

E2
) =

(ma2 −m3)(2a)−
2
> 0, the stability conditions

a√
3
< m < a. (4.9)

The second quadratic has more complicated Routh-Hurwitz conditions that
provide the second set of stability conditions

a4ν+a2m2u+a4µ+βm3 +bma2 > am2λ+cmpγa3 +bm3 +βma2 +αa4 (4.10)

and

a5cγm3pλ+ a4βm3λ+ a6m2uν + a8µν + a6bmν + a2βm5u

+a5bcpm2θσ + a3bcm4θσ + a3bcpm4γ + a7cmpαγ + a4βm3µ

+a22bβm4 + a6βmα > a6m2νλ+ a2βm5λ+ a4bm3ν + a8αν (4.11)

+a5cpuγm3 + a3bcpm4θσ + a4βm3u+ a5bcm2θσ + a7cmpµγ

+a5bcpm2γ + a6βmµ+ βbm6 + a4βm3α + a4βbm2.

At E3 again the characteristic equation factorizes into the product of two
quadratic equations, that have the Routh-Hurwitz conditions

tr(J
1

E3
) = (λR3 − λI3 − 2qI3 − gI3 − uR3 − 2R3 + α + 1− µ < 0,

det(J
1

E3
) = −2λR3

2 + λR3 + 2qλI3
2 + 2gqI3

2 − 2rλI3 − gµI3 − 2uR3
2

+ 4qR3I3 − 2qI3 − rukR3 − rαuI3 − ruI3 − 2µR3 − rλI3

+ µλI3 − αλI3 − gαI3 − 2αr − µ+ α > 0,
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from which the stability conditions follow

λI3 + 2qI3 + gI3 + uR3 + 2R3 + µ > λR3 + α + 1,

2λR3
2 + λR3 + 2qλI3

2 + 2gqI3
2 + 4qR3I3 + µλI3 + α > 2rλI3 + gµI3 + 2uR3

2

+2qI3 + rukR3 + rαuI3 + ruI3 + 2µR3 + rλI3 + αλI3 + gαI3 + 2αr + µ.

The second quadratic instead gives the Routh-Hurwitz conditions

tr(J
2

E3
) = cpγ

√
R3 + a

√
R3 − bσI3 + γ`I3 + bI3 − ν −m < 0,

det(J
2

E3
) = acpγR3 − bcpσ

√
R3I3 + bcγp

√
R3I3 + aγ`

√
R3I3 − aν

√
R3

− cmpγ
√
R3 − bσ`I3

2 + b`γI3
2 + bσνI3 − bνI3 −m`γI3 +mν > 0,

once again providing the stability conditions

bσI3 + ν +m > cpγ
√
R3 + a

√
R3 + γ`I3 + bI3acpγR3 + bcγp

√
R3I

+aγ`
√
R3I3 + b`γI3

2 + bσνI3 +mν > bcpσ
√
R3 + aν

√
R3I3

+cmpγ
√
R3 + bσ`I3

2 + bνI3 +m`γI3.

4.4 The basic reproduction number

Conditions for the eradication of the disease can be obtained from the basic
reproduction number R0, the spectral radius of the next generation matrix at
each disease-free equilibrium [26, 12].

Let FI , FW be the corresponding new infectious rates and VI , VW the
analogous flows, the dynamics of the infectious classes I and W can be written
as:

dI

dt
= FI − VI = FI − (V −I − V

+
I ),

dW

dt
= FW − VW = (V −W − V

+
W ), (4.12)

where

FI = αI + λRI + θ(1− p)c
√
RW,

FW = bσIF + βFW + cpγ
√
RW + lγIW,

VI
− = bIF + µI + lIW + uRI + qI2,

VI
+ = 0,

VW
− = νW,

VW
+ = 0.

Letting

F =

( ∂FI

∂I
∂FW

∂I

∂FI

∂W
∂FW

∂W

)
=

(
α + λR γ`W + bσF

θ(1− p)c
√
R pcγ

√
R + `γI + βF

)
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and

V =

( ∂VI
∂I

∂VW
∂I

∂VI
∂W

∂VW
∂W

)
=

(
bF + µ+ `W + uR + 2qI 0

`I ν

)
,

the next generation matrix is

G = FV −1 =


αν + λνR− `γIW − b`σIF
ν(`W + uR + 2qI + bF + µ)

`γW + bσF

ν

θ(1− p)cν
√
R− pc`γI

√
R− `2γI2 − β`IF

ν(`W + uR + 2qI + bF + µ)

βF + `γI + cpγ
√
R

ν

.

R0 is defined in each disease-free equilibrium as the spectral radius of G.
For model (4.2) the only feasible disease-free equilibria are E0, E1 and E2.
Therefore, we proceed the analysis of the disease-free equilibria.

4.4.1 Stability analysis of disease-free equilibria

The methodology requires five conditions to be applied [26], one of them is
that disease-free equilbrium should be stable if the number of new cases are
set to zero. Considering FI = 0 and FW = 0 in model (4.2) we obtain:

dR

dt
= R + r (1− α) I −R (R + gI)− λRI − cp

√
RW

−a
√
RF − θ (1− p) c

√
RW,

dI

dt
= −bIF − µI − lIW − uRI − qI2,

dF

dt
= a

√
RF + (1− σ)bIF + (1− γ)W (cp

√
R + `I)

−mF − βFW,
dW

dt
= −vW.

(4.13)

The Jacobian of the system (4.13) is given by

J =


J11 −λR− gR + (1− α)r −a

√
R J14

−uI J22 −bI −`I
cp(1−γ)W+aF

2
√
R

J32 J33 J34

0 0 0 −v


with

J11 = −λI − θ(1− p)cW
2
√
R

− cpW

2
√
R
− gI − 2R− aF

2
√
R

+ 1,
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J14 = −θ(1− p)c
√
R− cp

√
R, J22 = −bF − µ− `W − uR− 2qI,

J32 = (1− γ)`W + b(1− σ)F,

J33 = a
√
R + (1− σ)bI −m− βW, J34 = (1− γ)(`I + cp

√
R)− βF.

Disease-free equilibrium E1

For this point the stability condition under FI = FW = 0 is

m > a.

The eigenvalues of G in E1 are:

λE1
1 =

α + λ

u+ µ
, λE1

2 =
cpγ

ν
. (4.14)

Since λE1
1 and λE1

2 are both positive, the value of R0 in E1 is simply RE1
0 =

max{λE1
1 , λE1

2 }. Disease-induced instability occurs if R0 > 1.
If ν ≥ m, that is, the rate of mortality of infected predators is greater than

non-infected ones, then we can write:

ν ≥ m > a ≥ c ≥ cpγ,

because we consider a ≥ c (healthy predators are more efficient in hunting
than infected ones) and p, γ ≤ 1. Therefore, λE1

2 < 1 if E1 is stable in the
absence of disease.

The condition for R0 < 1 coming from λE1
1 can be written as

α + λ < u+ µ.

The left side of the inequality represents rates that are favorable to the perma-
nence of the disease, i.e, reproduction rate of infectious prey and generation
of new infectious cases at the equilibrium. In the right side of inequality are
the factors that contribute to the eradication of the disease, i.e, the mortality
rates of infected prey and mortality due to competition with healthy prey at
the equilibrium. In this case stability in the absence of the disease does not
imply λE1

1 < 1. For instance, even if α = 0 it is sufficient to take λ > u+ µ to
obtain R0 > 1.

Disease-free equilibrium E2

Considering FI = FW = 0, the viability condition for the equilibrium E2 is
given by

m ≤ a
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and the stability conditions for it are

a√
3
< m < a.

The matrix G in E2 is

G(E2) =


αa4 + λm2a2

um2a2 + bma2 − bm3 + µa4

σba2m− σbm3

νa4

(−cpma3 + cma3)θ

a2m2u+ µa4 − bm3 + bma2

cpmγa3 − βm3 + βma2

νa4


The formulas for eigenvalues of G(E2) do not provide any immediate insight

on the behaviour of R0, but through numerical simulations we can state that
both λE2

1 and λE2
2 can have absolute values greater than one.

4.5 Bifurcations

To make a study about the local bifurcations near the equilibrium points of
model (4.2), we use the Sotomayor theorem [70, 67].

4.5.1 Transcritical bifurcation

Note that the general second order term of the Taylor expansion of f , recall
(4.2), is given by

D2f((R, I, F,W ), ψ)(V, V ) = (D11, D21, D31, D41)T , (4.15)

taking ψ as bifurcation parameter and V = (ξ1, ξ2, ξ3, ξ4)T being the vector of
variations in R, I, F and W , with

D11 =
θ(1− p)cWξ1

2 + cpWξ1
2 + aFξ1

2

4R
√
R

− 2ξ1
2

− 2gξ1ξ2 − 2λξ1ξ2 −
a√
R
ξ1ξ3 −

cp√
R
ξ1ξ4 −

θ(1− p)c√
R

ξ1ξ4,

D21 = −θ(1− p)cW
4R
√
R

ξ1
2 + 2(λ− u)ξ1ξ2 − 2bξ2ξ3 − 2`ξ2ξ4 − 2qξ2

2

+
θ(1− p)c√

R
ξ1ξ4,

D31 = −c(1− γ)pWξ1
2 − aFξ1

2

4R
√
R

+
a√
R
ξ1ξ3 +

c(1− γ)p√
R

ξ1lξ4

+ 2b(1− σ)ξ2ξ3 + 2(1− γ)`ξ2ξ4 − 2βξ3ξ4,

D41 = − cpW

4R
√
R
ξ1

2 +
cpγ√
R
ξ1ξ4 + 2bσξ2ξ3 + 2γ`ξ2ξ4 + 2βξ3ξ4.
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Bifurcation between E1 and E2

Comparing the second stability condition in (4.8) given by m > a for the
equilibrium point E1 and, the feasibility condition in (4.5) of E2, we find
that E2 we can see a transcritical bifurcation between E1 and E2 when the
parameter m crosses the critical value m† given by

m† = a.

Proposition 8. Assuming that α + λ < u + µ and cpγ < ν, when m passes
through the value m† = a, model (4.2) near the disease-free equilibrium E1 =
(1, 0, 0, 0) has:

• no saddle-node bifurcation;

• a transcritical bifurcation;

• no pitchfork bifurcation.

Proof. Since α + λ < u + µ, cpγ < ν and m > a, the equilibrium point E1 is
stable. The Jacobian matrix of model (4.2) evaluated at E1 with m† = a, is
given by

JE1(m
†) =


−1 −λ− g + (1− α)r −a −θ(1− p)c− cp
0 λ− u− µ+ α 0 θ(1− p)c
0 0 0 c(1− γ)p
0 0 0 cpγ − ν

 . (4.16)

In this case, we have one eigenvalue equal zero in (4.16), in which the cor-
responding eigenvector is V1 = ϕ1(1, 0,− 1

a
, 0)T and Z1 = ω1(0, 0, 1,−p(cγ −

c)(ν − cγp)−1)T represents the eigenvector corresponding to eigenvalue equal
zero of (JE1(m

†))T , where ϕ1 and ω1 are any nonzero real number.
Differentiating partially the right hand sides of the equations of system

(4.2) with respect to m† = a, we find

df

dm
= fm(E1, a) = (0, 0, 0, 0)T ,

which gives ZT
1 fm(E1, a) = 0. Thus, according to Sotomayor’s theorem for

local bifurcation, model (4.2) has no saddle-node bifurcation near disease-free
equilibrium at m† = a. Besides that,

Dfm(E1, a) =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


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then,

ZT
1 [Dfm(E1, a).V1] =

ϕ1ω1

a
6= 0.

Now, considering E1, m† = a and V1 in (4.15) we get

D2f(E1, a).(V1, V1) = ϕ2
1 (−1, 0,−1, 0)T .

Therefore,

ZT
1 [D2f(E1, a).(V1, V1)] = −ω1ϕ

2
1 6= 0.

According to Sotomayor’s theorem model (4.2) has a transcritical bifurcation
at E1 with parameter m† = a, while the pitchfork bifurcation cannot occur.

Bifurcation between E1 and E3

Comparing the third stability condition in (4.8) for the equilibrium point E1

and, the feasibility condition in (4.7) for equilibrium point E3, we have a
transcritical bifurcation between E1 and E3 when the parameter α crosses the
critical value α† given by

α† = u+ µ− λ

Proposition 9. Assuming that α + λ < u + µ and cpγ < ν, when α passes
through the value α† = u+µ−λ, model (4.2) near the disease-free equilibrium
E1 has:

• no saddle-node bifurcation;

• a transcritical bifurcation;

• no pitchfork bifurcation.

Proof. Since α + λ < u + µ, cpγ < ν and m > a, the equilibrium point E1 is
stable. The Jacobian matrix of model (4.2) evaluated at E1, with α† = u+µ−λ
is

JE1(α
†) =


−1 λ(r − 1) + r(1− u− µ)− g −a −θ(1− p)c− cp
0 0 0 θ(1− p)c
0 0 a−m c(1− γ)p
0 0 0 cpγ − ν

 .

which has one eigenvalue equal zero and the corresponding eigenvector is V2 =
ϕ2(1, (λ − ru + r − rµ − g)−1, 0, 0)T . For JE1(α

†))T , the eingenvector is Z2 =
ω2(0, 1, 0, ((cp − c)θ)(cγp − ν)−1)T . We have ϕ2 and ω2 are any nonzero real
number.
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Differentiating partially the right hand sides of the equations of system
(4.2) with respect to α† = u+ µ− λ , we find

df

dα
= fα(E1, α

†) = (0, 0, 0, 0)T ,

which gives ZT
2 .fα(E1, α

†) = 0. Thus, according to Sotomayor’s theorem for
local bifurcation, model (4.2) has no saddle-node bifurcation near disease-free
equilibrium at α† = u+ µ− λ.

Moreover,

Dfα(E1, α
†) =


0 −r 0 0
0 1 0 0
0 0 0 0
0 0 0 0,


then,

ZT
2 [Dfm(E1, α

†)V2] = ϕ2ω2(λ− ru+ r − rµ− g)−1 6= 0.

Now, considering E1, α† and V2 in (4.15) we get with Λ = λ−ru+r−rµ−g

D2f(E1, α
†).(V2, V2) = ϕ2

2

(
−4λ− 2r + 2ru− 2rµ

Λ
,
2(λ− u)

Λ
− 2q

Λ2
, 0, 0

)T
.

Therefore,

ZT
2 [D2f(E1, α

†).(V2, V2)] =
2ω2ϕ

2
2(λ− u)(λ− ru+ r − rµ− g)

(λ− ru+ r − rµ− g)2
6= 0.

So, according to Sotomayor’s theorem model (4.2) has a transcritical bifur-
cation at E1 with parameter α† = u + µ − λ, while the pitchfork bifurcation
cannot occur.

Both theoretical proof made above, can be illustrated in the simulations
presented in Figure 4.2, which (a) shows explicitly the transcritical bifurcation
between E1 and E2 for the chosen parameters values (see the caption of Fig. 4.2
(a)) when the parameter m crosses a critical value m† = a = 1 and, (b) shows
the transcritical bifurcation between E1 and E3 for the chosen parameters
values (see the caption of Fig. 4.2 (b)) when the parameter α crosses a critical
value α† = u+ µ− λ = 1.

4.5.2 Hopf bifurcation

We now try to establish whether there are parameter combinations giving
sustained population oscillations. For E1 it is not the case, since the eigenvalues
are all real.

For the equilibrium point E2 we have a Hopf bifurcation according to the
following proposition.
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Figure 4.2: a) Transcritical bifurcation between E1 and E2 for the parameter
values λ = β = ` = α = σ = γ = θ = q = c = p = r = g = b = 0.5,
a = 1, u = µ = 0.75, ν = 2m . Initial conditions R0 = I0 = F0 = W0 = 0.1
considering R and F populations The equilibrium E2 is stable from 0.6 to 1
and E1 is stable past 1. b) Transcritical bifurcation between E1 and E3. We
have same parameter value and initial conditions for R and I populations,
except for m = 0.5. The equilibrium E1 is stable from 0.9 to 1 and E3 us
stable past 1.

Proposition 10. Assuming that conditions (4.10) and (4.11) hold, then model
(4.2) undergoes Hopf bifurcation around the equilibrium point E2 when param-
eter m crosses the critical positive value m> = a/

√
3.

Proof. For systems in four-dimensional spaces, for a Hopf bifurcation to occur,
the following conditions should be satisfied [30, 89, 67]:

• The characteristic equation at E2 has two real and negative eigenvalues
and two complex eigenvalues;

• τ1(m>) = 0;

• ( d
dm
τ1(m))|m=m> ( The transversality condition).

The stability analysis of E2 showed that we obtain two real and negative
eigenvalues and another two given by:

Λ± =
τ1 ±

√
P (m)

4a2
, τ1 = 3m2−a2, P (m) = 9m4+8a2m3−6a2m2−8a4m+a4.

Thus, since P (m) is continuous, τ1(m>) = 0 and P (m>) = −16a5(3
√

3)−1 < 0,
there is an interval T = (m> − ε,m> + ε) around m> , such that, P (x) < 0
whenever x ∈ T .
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Figure 4.3: Hopf bifurcation for point E2 for parameter values λ = β = ` =
α = σ = γ = θ = q = c = p = r = g = b = 0.5, a = 1, u = µ = 0.75,
ν = 1.157. Initial conditions R0 = I0 = F0 = W0 = 0.1.

Finally, the transversality condition is satisfied because

d

dm
τ1(m>) =

3

2a
√

3
6= 0.

Figure 4.3 illustrates the simulation explicity showing a Hopf bifrucation
at E2.

At E4 we can only perform numerical simulations. We present two different
bifurcation scenarios. In the first, when parameter m crosses from above the
critical value m?

1 ≈ 0.71462 there is a transcritical bifurcation between E4

losing feasibility and E2 becoming stable. Then when m?
2 ≈ 0.578 we find

a Hopf bifurcation in E2. With a further decrease of m a four-dimensional
limit cycle arises when m?

3 ≈ 0.56884, Figure 4.4. The second situation is
simply a Hopf bifurcation in E4 when m crosses from above the critical value
of m?

4 ≈ 0.4626875, Figure 4.5.
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Figure 4.4: a), b), c) and d) illustrate a Transcritical bifurcation between
E4 and E2 for m?

1 ≈ 0.71462; Hopf bifurcation for E2 when m?
2 ≈ 0.578;

Loss of stability of the two-dimensional limit cycle and creation of a four-
dimensional limit cycle when m?

3 ≈ 0.56884. The parameter values are: λ =
σ = θ = r = q = g = µ = 0.5, a = 1, α = 0.6, c = 0.8289, β = 0.2056,
γ = ` = 0.99, b = 0.5066, ν = 0.8, p = 0.7389 and u = 0.4 . Initial conditions
R0 = I0 = F0 = W0 = 0.1.
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Figure 4.5: Hopf bifurcation for point E4 for parameter values λ = σ = θ =
r = q = g = µ = 0.5, a = 1, α = 0.61, c = 0.8289, β = 0.9433, γ = ` = 0.99,
b = 0.5066, ν = 0.6833, p = 0.7389 and u = 0.4.
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4.6 Numerical results

The analysis of model (4.2), shows that the parameter m is crucial for the fea-
sibility and stability of points E1 and E2, respectively. The establishment of
the disease is directly related to the value of R0 at both points. Thus, we con-
duct an exploration of the parameter space with relation to those fundamental
quantities. As it will be shown in this section, the results of the majority of
the simulations can be predicted simply by the analysis of m, RE1

0 and RE2
0 .

4.6.1 Details about the numerical implementation

To investigate the behaviour of model (4.2) in relation to the parameters, we
first separate the simulations in two specific cases. In the first case, E1 is
stable and E2 is unstable, that is, m > a. The second case, is obtained when
a/
√

3 < m < a, in which E1 is unstable and E2 is feasible. The reason for the
adoption of such thresholds comes from the analysis of the analogous predator-
prey model without the presence of disease [15]. In our model a transcritical
bifurcation E1 and E2 is observed when m = a and Hopf bifurcation occurs
when m = a/

√
3 as we can see in subsection 4.5.

Given the high number of parameters (18), we opt for a random explo-
ration of the space. In Table 4.2 represent the distributions adopted for each
parameter.

Table 4.2: Distribution for the parameters in simulations using Matlab. Here,
we make a random exploration of the space to each parameter. U(x, y) stands
for an uniform distribution between x and y.

Parameters Distribution
u, q, g 50% U(0.5, 1); 50% U(1, 2)

µ, β, λ 50% U(0.1, 1); 50% U(1, 10)

a, b 50% U(0.1, 1); 50% U(1, 2)

c U(0.1, a)

m > a (case 1) U(1.1a, (2− 1.1/
√

3)a)

a/
√

3 < m < a (case 2) U(1.1a/
√

3, 0.9a)

ν U(m, 3m)

` U(0.1, b)

α, σ, γ, θ, p U(0.05, 0.95)

r U(0.05, 1)

When non-dimensional parameters cross the threshold 1, it usually means
a transition between two qualitatively distinct scenarios. For this reason, the
random sampling is chosen to be half of the time in each situation. For bi-
ological reasons, some parameters are linked. For instance, the mortality of

105



4 A mathematical model to describe the bovine tuberculosis among buffaloes
and lions in the Kruger National Park

diseased predators (ν) is greater than or equal to the mortality of healthy
predators (m).

For the numerical simulation of the system of differential equations we use
the Matlab ode45 routine. For each random combination of parameters, a
random initial condition was chosen with the distributions: R0 ∼ U(0.2, 1),
I0 ∼ U(0.2, 0.6), F0 ∼ U(0.05, 1.05) and W0 ∼ U(0.05, 0.1) (U(x, y) stands
for an uniform distribution between x and y). The choice of initial conditions
with smaller predator populations is made in order to avoid trajectories that
converge to the origin, in which the approximation of the predation term by√
R is not valid. Given the initial conditions, the system is simulated in the

time interval It1 = [0, 200], if such interval is not enough to find an equilibrium,
another try is attempted with It2 = [0, 2000].

Also, for each combination of parameters the equilibrium points E1, E2, E3

and E4 are estimated. For E1 and E2 the analytical formulae of section 4.3 are
used. For the equilibrium point E3 the quadratic equation (4.17) is numerically
solved using the routine ROOTS of Matlab. In sequence, the equation for I3

(4.3) is employed to establish if there was any feasible equilibrium solution E3.
For the equilibrium point E4 we do not have analytic formulae. Thus, we

used the routine FMINCON of Matlab, to minimize the sum of the squares
of the derivatives subject to the conditions: R4 > 2−8, I4 > 2−8, F4 > 2−8,
e W4 > 2−8. Since the results of the minimization process depend on the
initial guess, 10 starting points are taken for each parameter combination. The
distributions of the initial guesses are taken as: Rg ∼ U(0, 1), Ig ∼ U(0, 1),
Fg ∼ U(0, 1) and Wg ∼ U(0, 1). Each time, if the routine obtained with
success a solution for the minimization problem, it is stored as a candidate
for equilibrium point E4. After the 10 executions of the routine FMINCON,
redundant solutions are removed from the list of equilibrium candidates. Two
solutions x1, x2 ∈ R4 are considered redundant if

‖x1 − x2‖
‖x1‖

< 0.01.

After obtaining the list of all equilibrium candidates (from E1 to E4), again all
redundant solutions are removed, using the same criterion. For the equilibrium
points E1 and E2 the values of λE1

1 , λE1
2 , λE2

1 and λE2
2 are computed. For points

E3 and E4 (possibly multiple) the stability (eigenvalues of the Jacobian) are
computed numerically.

The remaining list of candidates is then used to be compared with the re-
sult of the numerical simulation. The relative error between all the candidate
solutions and the result of the numerical simulation is calculated. If the small-
est error between the simulated solution and the candidate solutions is smaller
than 0.001, then the simulation is classified as a success and said to converge
to the candidate solution closest to the simulated solution. In figure 4.6 we
present a scheme on how each simulation is conducted.
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Figure 4.6: Scheme for a numerical simulation of the system. The equilibrium
points, their stability and a simulated solution is computed. If the numerical
solution converges to any of the computed candidate equilibrium points, the
simulation is classified as a success.
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As we shall show, from the results of the numerical simulations, the ma-
jority of the results of the simulations can be predicted only by analyzing the
values of m (which is a critical ecological parameter) and the values related to
the spread of the epidemy: λE1

1 , λE1
2 , λE2

1 and λE2
2 . We divide the discussion

according to the values of those variables.

4.6.2 Case 1: m > a

We ran 10,000 simulations with random parameters as in Table 4.2, in which
m > a. Of this total, 9870 (98.7%) were concluded with success in the sense
defined in section 4.6.1 and Figure 4.6. The results can be subdivided in two
main cases, one when RE1

0 < 1 and the other when RE1
0 > 1.

RE1
0 < 1:

In 6155 (63,26% ) of the total 9870 successful simulations, RE1
0 < 1. Of those,

in 6143 (99.81%) the system converged to E1 while in 12 (0.19%) cases it
converged to E3. To understand these results, we analyzed also the feasibility
and stability of the other equilibrium points under these conditions.

We have shown that if m > a, E2 is unfeasible, therefore, besides E1, the
system could converge to E3 or E4. We map the behaviour of those other two
points in the simulations. For each simulation, we classify three possible states
for the points E3 and E4:

• State 1: There are no feasible points of this type of equilibrium.

• State 2: There is at least one feasible point of this type of equilibrium,
but it is unstable.

• State 3: There is at least a feasible and stable point of this type of
equilibrium.

In table 4.3 we present the distribution of the results for points E3 and E4. It is
easy to note that, for the vast majority of the simulations, the only feasible and
stable point is E1, in agreement with the result that 99.81 % of the simulations
with RE1

0 < 1 converged to E1.
The results for point E3 can be summarized as follows: in 6136 (99.69%) we

have two unfeasible points, in two (0.02%) we have two feasible and unstable
points and in 17 (0.28 %) we have two feasible points of which one is stable.

The behaviour of E4 can be summarized as follows. The 6155 simulations
with RE1

0 < 1 are distributed as follows: 5301 (86.13 %) no feasible points are
found, 628 (10.2%) one feasible and unstable point, 25 (0.41%) two feasible
and unstable points, 130 (2.11%) one feasible and stable point, 59 (0.96%) two
feasible points with one stable and 12 (0.19%) three feasible points with one
stable. Thus, in the vast majority of the simulations, E4 is either unfeasible or
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Table 4.3: Distribution of states of points E3 and E4 when m > a andRE1
0 < 1.

The rows and columns represent the number of times the points E3 and E4,
respectively, were in the states 1, 2 or 3. State 1: No feasible points of this
type are found in the simulation. State 2: there is at least one feasible point
of this type, but it is unstable. State 3: There is at least a feasible and stable
point of this type.

E3

E4 1 2 3

1 5285 (85.87%) 652 (10.59%) 199 (3.23 %)
2 0 0 2 (0.03 %)
3 16 (0.26%) 1 (0.02%) 0

unstable. We may also observe that, since E4 is calculated numerically it can
be very close to other equilibria, but not enough to be eliminated as redundant
from the candidate list.

RE1
0 > 1:

In this particular case it is possible to show that there exists a unique feasible
point E3 in the form (R3, I3, 0, 0) (see section 4.3.2).

In 3715 (37.64%) of the total 9870 successful simulations, RE1
0 > 1. Of

those, in 3567 (96.02%), the system converges to E3 and in 148 (3.98%) it
converges to E4. In this case, E1 is unstable, E2 is unfeasible and the equilibria
for which the solution could converge are only E3 or E4.

In Table 4.4 we present the distribution of the results for points E3 and E4,
observing that E3 can never be unfeasible in this case. It is easy to note that,
for the vast majority of the simulations, the only feasible and stable point is
E3, in agreement with the result that 96.02 % of the simulations with RE1

0 > 1
converges to E3. The only cases in which we have convergence for E4 is in
when E3 is unstable.

Table 4.4: Distribution of states of points E3 and E4 when m > a andRE1
0 > 1.

E3

E4 1 2 3

2 0 0 148 (3.98%)
3 3050 (82.10%) 302 (8.13%) 215 (5.79%)

The results for point E3 can be summarized as follows: in 148 (3.98%)
simulations we have one feasible and unstable point and in the other 3567
(96.02%) we obtain one feasible and stable point.

The behaviour of E4 can be summarized as follows. Of the total 3715
simulations with RE1

0 > 1 we have: 3050 (82.10%) no feasible point found, 282
(7.59 %) one feasible and unstable point, 14 (0.38 %) two feasible and unstable
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points, 6 (0.16%) three feasible and unstable points, 306 (8.24%) one feasible
and stable point, 50 (1.35%) two feasible points with one stable, 2 (0.05%)
three feasible points with one stable, 3 (0.08 %) four feasible points with one
stable and 2 (0.05%) two stable and feasible points.

Sensitivity analysis

Since RE1
0 has a fundamental role in the determination of the behaviour of

the system, we can discuss its sensibility in relation to the parameters. In
the first place, it is worth to note that, as shown in section 4.4.1 in this case,
λE1

2 < 1. Therefore, point E1 can only be destabilized through λE1
1 . The

explicit relation of equation (4.14) indicates that λE1
1 should be sensible to

parameters α and λ with a positive correlation and to parameters u and µ
with a negative correlation.

For each of the 9870 successful simulations, λE1
1 is computed. Using this

collection of values, we calculate the slope of the linear regression of λE1
1 with

each of the parameters. In table 4.5 we present the coefficients. As expected,
the strongest correlations are those of parameters α, λ, u and µ.

Table 4.5: Regression slopes of λE1
1 for each parameter.

Parameter α σ γ q u g
Slope 0.4576 0.0642 0.1734 -0.0188 -0.6930 -0.0080

Parameter p a c θ r m
Slope -0.0013 0.0899 0.0503 0.0202 0.0720 0.0643

Parameter λ β ν µ ` b
Slope 0.4156 0.0045 0.0283 -0.2584 -0.0103 -0.0153

4.6.3 Case 2: a/
√

3 < m < a

We ran 10,000 simulations with random parameters as in table 4.2, in which
m < a. Of this total, 9001 (90.1%) are successul in the sense defined in section
4.6.1 and Figure 4.6. In this case, E1 is always unstable, the stability of E2

hinges on RE2
0 and the distribution of the convergences is more complex than

when m > a. Again, we discuss separately the two casesRE2
0 < 1 andRE2

0 > 1.

RE2
0 < 1:

In 4598 (51,08% ) of the total 9001 successful simulations, RE2
0 < 1. Of those,

in 4581 (99.63%) the system converges to E2, in 16 (0.35%) cases it converges
to E3 and in 1 (0.02%) case it converges to E4. To understand these results, we
analyze also the feasibility and stability of the other equilibrium points under
these conditions.
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We have shown that if m < a, E1 is unstable, therefore, besides E2, the
system could converge to E3 or E4. Just as in the examples above, we map the
behaviour of those other two points in the simulations. In table 4.6 we present
the distribution of the results for points E3 and E4. It is easy to note that, for
the vast majority of the simulations, the only feasible and stable point is E2,
in agreement with the result that 99.63 % of the simulations with RE2

0 < 1
converged to E2.

Table 4.6: Distribution of states of points E3 and E4 when m < a andRE2
0 < 1.

E3

E4 1 2 3

1 3600 (78.29%) 273 (5.94%) 155 (3.37 %)
2 406 (8.83 %) 63 (1.37 %) 78 (1.70 %)
3 2 (0.04%) 20 (0.43%) 1 (0.02%)

The results for point E3 can be summarized as follows. Of the total 4598
simulations with RE2

0 < 1 we obtain: 4028 (87.60%) two unfeasible points, 544
(11.83%) one feasible and unstable point, 12 (0.26 %) one feasible and stable
point, 3 (0.07%) two feasible and unstable points and 11 (0.24% ) two feasible
points with one stable.

The behaviour of E4 can be summarized as follows. The 4598 simulations
with RE2

0 < 1 are distributed in this form: 4008 (87.17 %) no feasible points
are found, 346 (7.53%) one feasible and unstable point, 9 (0.2%) two feasible
and unstable points, 1 (0.02%) three feasible and unstable points, 207 (4.5%)
one feasible and stable point, 26 (0.57%) two feasible points with one stable
and 1 (0.02%) two feasible and stable points. Thus, in the vast majority of
the simulations, E4 is either unfeasible or unstable.

RE2
0 > 1:

In 4403 (48.92% ) of the total 9001 successful simulations, RE2
0 > 1. Of

those, in 2255 (51.22%) the system converges to E4, in 2137 (48.54%) cases it
converges to E3 and in 12 (0.25%) case it converges to E2. In the cases where
the solution converge to E2, despite its instability, were due to the fact that
RE2

0 is close to one, so the numerical solution remains quasi-stationary close
to E2 for a long period of time, in that time the relative error between E2

and the numerical solution is estimated and found to be smaller than 0.001.
Below, we present the analysis of the stability of the other equilibrium points
in those simulations.

In table 4.7 we present the distribution of the results for points E3 and E4.
The results for point E3 can be summarized as follows. Of the total 4403

simulations with RE2
0 > 1 we obtain: 1526 (34.66%) two unfeasible points, in

620 (14.08%) one feasible and unstable point, 2248 (51.06%) one feasible and
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Table 4.7: Distribution of states of points E3 and E4 when m < a andRE2
0 > 1.

E3

E4 1 2 3

1 0 8 (0.18%) 1518 (34.48 %)
2 0 0 622 (14.13 %)
3 1483 (33.68%) 346 (7.86%) 426 (9.68%)

stable point, 2 (0.05%) two feasible and unstable points and 7 (0.16% ) two
feasible points with one stable.

The behaviour of E4 can be summarized as follows. The 4403 simulations
with RE2

0 > 1 are distributed in this form: 1483 (33.68 %) no feasible points
are found, 331 (7.52%) one feasible and unstable point, 20 (0.45) two feasible
and unstable points, 2 (0.05%) three feasible and unstable points, 1 (0.02%) 5
feasible and unstable points, 2032 (46.15%) one feasible and stable point, 493
(11.20%) two feasible points with one stable, 28 (0.64%) three feasible points
with one stable, 4 (0.09%) four feasible points with one stable, 1 (0.02%) five
feasible points with one stable, 4 (0.09%) two feasible and stable points, 3
(0.07%) three feasible points with two stable ones and 1 (0.02%) four feasible
points with two stable ones.

Sensitivity analysis

In this case, there is not a clear behaviour of convergence dependent only on
the value of RE2

0 . In fact, it is possible to predict the vast majority of the
results (see section 4.6.4) if we analyze the three eigenvalues λE1

1 , λE2
1 and λE2

2 .
Therefore, we present in Tables 4.8 and 4.9, the analysis of sensitivity for λE2

1 ,
λE2

2 . The sensitivity results for λE1
1 are very similar to the case were m > a

(case 1).

Table 4.8: Regression slopes of λE2
1 for each parameter.

Parameter α σ γ q u g
Slope 0.4764 0.2535 -1.0134 0.1274 -0.1382 0.1062

Parameter p a c θ r m
Slope - 0.6685 -4.8558 -3.8989 -0.1514 0.0643 -6.1289

Parameter λ β ν µ ` b
Slope 0.0841 0.6735 -2.2916 -0.0819 0.0761 -0.0622

4.6.4 Behaviour based on m, λE1
1 , λE2

1 and λE2
2

Based on the results of the simulations and the stability analysis of the equi-
librium points it is possible to suggest a prediction rule based on the values
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Table 4.9: Regression slopes of λE2
2 for each parameter.

Parameter α σ γ q u g
Slope 0.5313 0.0484 -0.0187 -0.0313 -0.3421 -0.0486

Parameter p a c θ r m
Slope -0.0726 0.2256 0.1760 0.0122 0.0105 0.3220

Parameter λ β ν µ ` b
Slope 0.2590 0.0036 0.1006 -0.1795 -0.2026 -0.2385

of λE1
1 , λE2

1 and λE2
2 . In Figure 4.7 we present the way in which the behaviour

of the system can be classified. We show that, for the vast majority of the
parameter space that was explored in this work, a simple analysis of the va-
lues of m, λE1

1 , λE2
1 and λE2

2 is enough to predict the model’s behaviour. The
scheme was successful in predicting the outcome of the numerical simulations
in 96.35% of the simulations.

Figure 4.7: Scheme for a numerical simulation of the system. The equilibrium
points, their stability and a simulated solution is computed. If the numerical
solution converges to any of the computed candidate equilibrium points, the
simulation is classified as a success.
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4.7 Conclusions

In this work we presented an model for the study of prey-predator dynamics
with the presence of disease and herd behaviour. The theoretical analysis
and the numerical simulations suggest that, in the majority of the parameter
combinations studied, the behaviour of the model can be predicted by the
analysis of just four fundamental quantities in the system (m, λE1

1 , λE2
1 and

λE2
2 ).

The first fundamental quantity is the natural mortality rate of predators,
which is crucial to define the survival of the predator species. Since the mor-
tality of diseased predators is supposed to be equal or higher than the the
mortality of healthy ones, parameter m plays a determinant role in the dy-
namics of the system.

The second, third and fourth fundamental quantities are the values of R0

(basic reproduction number) calculated in the two disease-free equilibria of
the system (E1 and E2): RE1

0 and RE2
0 . Sensitivity analysis through linear

regression between the parameters has shown that the parameter with the
strongest influence is RE1

0 .

Parameters α and λ are related to the vertical and horizontal transmission
rates, respectively, and have a positive correlation with RE1

0 . Parameters u
(influence intra-specific competition between healthy and diseased prey on the
infected prey population) has a negative effect on the spread of the disease.
Therefore, it is clear that a species with the behaviour of marginalizing or
being hostile to the diseased individuals reduces the chance of permanence of
an epidemics in the population.

The analysis of sensitivity for RE2
0 , involves two eigenvalues λE2

1 and λE2
2 .

The strongest positive correlation between the first one and the parameters
occurs for parameters α and β. Thus, again, vertical transmission in prey
plays an important role in the maintenance of the disease. Interestingly, the
horizontal transmission in the predator population (β) plays a more important
role in the destabilization of the disease-free coexistence than the horizontal
transmission between prey (λ). Strong negative correlations were observed for
parameters a and m. For the sensitivity of λE2

2 , again, α displayed a strong
positive correlation, followed by parameters m and λ (horizontal transmission).
Parameters u and b (mortality of diseased preys) displayed the strongest ne-
gative correlation.

Given the importance of parameters α, λ and u, our results suggest that
the removal of diseased-prey may be the most effective strategy to lead the
system to a disease-free equilibrium.
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Appendix A

In section 4.3.1 we saw that E3 = (R3, I3, 0, 0), where I3 = α−µ
q

+ λ−u
q
R3 and

R3 given by the roots of the quadratic equation

Φ(R3) = α2R
2
3 + α1R3 + α0 = 0

with

α2 =
−q − gλ− λ2 + gu+ λu

q
, α0 =

(α− 1)µr − α2r + αr

q

and

α1 =
(1− α)rλ+ µλ− αλ− (1− α)ru+ q + gµ− αg

q
.

For R3 ≥ 0 we have the conditions for two positive roots given by

∆ = α2
1 − 4α2α0 > 0, −α1α

−1
2 > 0, α0α

−1
2 > 0

and for at least one positive root we have

∆ = α2
1 − 4α2α0 > 0, α0α

−1
2 < 0.

Explicit, ∆ = α2
1 − 4α2α0 > 0 is given by

α2r2λ2 + 4gruµ+ 2αµrλ2 + 2αrλ2 + 4αr2uλ+ 2αµruλ+ 2gruλα

+2gru2 + µ2λ2 + 2αruλ+ 2guµλ+ 2qrλ+ 2λgrα2 + 2qµλ+ 2gλα2

+r2u2α2 + r2u2 + α2λ2 + g2u2 + 2qruα + r2λ2 + 4ruµ+ 2gruα2 + q2

+g2α2 + 4rqα + 4rqµα + 4grµα + 4gr2α + 4ruα2 > 2r2αλ2 + 2µrλ2

+2rλ2α2 + 2αµλ2 + 2qαλ+ 2r2uλ+ 2ruµλ+ 2gruαλ+ 2α2ruλ

+2α2ruλ+ 2guαλ+ 2qrαλ+ 2α2r2uλ+ 2grαλ+ 2gµαλ+ 2r2u2α

+2gru2 + 2qru+ 4gruµα + 4gruµα + 4ruµα + 2gruα + 4ruα

+2g2uα + 4urq + 4rqα2 + 4grµ+ 4grα2 + 2gqα,

for −α1α
−1
2 > 0 we have

rλ+ µλ+ αru+ q + gu > rαλ+ αλ+ ru+ αg,

λ2 + gλ+ q > uλ+ gu

or

rλ+ µλ+ αru+ q + gu < rαλ+ αλ+ ru+ αg,

λ2 + gλ+ q < uλ+ gu,
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for α0α
−1
2 > 0 we have

µ < α, α > 1, λ2 + gλ+ q > uλ+ gu

or
µ > α, α < 1, λ2 + gλ+ q > uλ+ gu

or
µ > α, α > 1, λ2 + gλ+ q < uλ+ gu

or
µ < α, α < 1, λ2 + gλ+ q < uλ+ gu

and , for α0α
−1
2 < 0 we have

µ < α, α > 1, λ2 + gλ+ q < uλ+ gu

or
µ > α, α < 1, λ2 + gλ+ q < uλ+ gu

or
µ > α, α > 1, λ2 + gλ+ q > uλ+ gu

or
µ < α, α < 1, λ2 + gλ+ q > uλ+ gu.
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CHAPTER 5

A PROPOSAL FOR MODELING
HERD BEHAVIOUR IN
POPULATION SYSTEMS

The interactions between two populations can be described using various ap-
proaches. In particular, Lotka-Volterra systems have played an important role
in the development of mathematical ecology, for example, in the analysis of
thophic webs [1]. Lotka-Volterra systems are based on the very simple assump-
tion that intensity of the interactions between the species, be it of symbiosis,
competition or of prey-predator type, follow a simple mass action law. There-
fore, a natural development of the field was the proposition of alternative
“response functions” to describe the interactions, such as the classical Holling
Type I and II [45]. In [47] an excellent review of the development of such
models is presented.

More recently, new models have been proposed to describe “herd behaviour”,
[3, 83]. Such models seek to incorporate the effect of group behaviour in the
interactions between populations, such as the formation of a boundary that
protects the individuals in its interior [40]. The models proposed displayed
novel behaviour that was not observed in the traditional Lotka-Volterra sys-
tems [2]. In this way, particular qualities of the systems, such as the shape of
the herd or the dimension of the space in which the interactions occurs could
be modeled implicitly through the interaction term, without explicit spatial
description.

Despite such advantages, the proposed models have a drawback: group ef-
fects usually require a minimum number of individuals to be observed. In this
Chapter we propose a modification of the previous “herd models” to incorpo-
rate this factor in the dynamics. Therefore, we include a threshold for which
the interactions between the population shift from a Lotka-Volterra type in-
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teraction to a “herd type” interaction. In this way, topics of planar continuous
piecewise differential systems arise naturally in the analysis of the models.

In this work, we want to clarify some bifurcation phenomena that can
appear in planar continuous piecewise differential systems with two zones. In
particular, we highlight the simplest case of boundary equilibrium bifurcation,
similar to the one introduced in [71].

The Chapter is organized as follows. Section 2 presents a response function
for the predator-prey model which is detailed in Section 5.2. In Section 5.2.1
is proved that the trajectories of the model remain confined within a compact
set. Section 5.2.2 brings a nondimensionalized version of the model and in
Section 5.3 a detailed analysis of local stability is performed, including a topo-
logical interpretation of the results. In Section 5.4 the possible bifurcations are
analytically investigated and numerical simulations are performed to illustrate
the behaviour and in Section 5.5 we present a brief theoretical contribution.
A biological interpretation and a discussion of the theoretical results is done
in section 5.6. Finally, a brief section of conclusions finishes the Chapter.

5.1 Response function

In [2] a predator-prey model is proposed in which the prey is assumed to
be highly sociable while the predator has a more individualistic behaviour.
The sociable characteristic of the prey is described as an interaction term
proportional to the square root of the total population. Such term represents
the effects of group defense in which strongest individuals surround weaker
ones, such as calfs. The formation of a herd may restrict the access of the
predators to the prey, limiting the attacks to those situated at the boundaries
of the group.

Mathematically, this biological behaviour can be represented by assuming
that from the total R̂ prey population distributed in a certain area A, only the
individuals at the boundary will be exposed to attacks. The total number of
individuals in the boundary should be proportional to the perimeter of the area

A which, in turn, is proportional to
√
R̂, the exact constant of proportionality

being dependent on the geometry of the herd.

Such interaction term is reasonable if we consider “large” R̂ populations,
capable of displaying group defense. If a group is too small it may not be
possible to form an appropriate group defense or the boundary of the herd
may be composed of the totality of the population. For such small groups
it would be more reasonable to adopt a traditional Lotka-Volterra interaction
term proportional to the population of prey. Therefore, if F̂ is the population
of predators, we could separate the interaction term in two distinct forms:

â
√
R̂F̂ , valid for large populations and â√

R∗ R̂F̂ , valid for small populations.

In this manner, the interaction in the model can be described as a piecewise
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function:

ĝ(R̂) =

{
R̂√
R∗ if 0 < R̂ ≤ R∗√
R̂ if R∗ < R̂

(5.1)

where R∗ represents a critical threshold of group size for effective defense. Note
that in this way g is a C0 function. In this way, when the prey population size
is large, the herd effect is accounted for. When it falls below the threshold R∗,
we can say that the herd disperses into a bunch of almost individualistically
behaving individuals, so that the hunting occurs classically on a one-to-one
basis, and the Mass Action Law is the tool used to model it.

5.2 The predator-prey model

Using the response function defined by (5.1), we propose the following predator-
prey model:

dR̂

dτ
= r

(
1− R̂

K

)
R̂− aĝ(R̂)F̂

dF̂

dτ
= −mF̂ + eaĝ(R̂)F̂

(5.2)

where ĝ(R̂) is given by (5.1) and all the parameters are assumed to be non-

negative. In model (5.2) the first equation describes the evolution of the R̂
population.

The dynamics for R̂ contains two components: a logistic growth and a
predation term. The logistic growth represents the assumption that, without
predation, the prey population will grow up to a carrying capacity. Param-
eters r and K describe the speed of growth and the total carrying capacity,
respectively.

Predation is described by the term aĝ(R̂)F̂ , meaning group defense above
the threshold group size R∗ and traditional mass action law below it. Pa-
rameter a incorporates efficiency of predators and the prey’s mechanisms of
defense.

The dynamics of F̂ is also composed by two components: a mortality
term proportional to the population and a reproduction one dependent on
the predation rate. In the absence of prey, the predator is assumed to go
extinct, parameter m describes the speed of this process. By modelling the
reproduction term as proportional to the predation rate, we are asserting that
the predator is a very specialized one that depends exclusively on the specific
prey to survive. Parameter e wich has units [units of predator]/[units of prey]
represents a “conversion rate” from predation to reproduction.

Similarly to [31], the system (5.2) is Lipschitz and so it satisfies the standard
results on existence and uniqueness of solution as well as its continuous depen-
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dence with respect to the initial conditions and parameters. Furthermore, the
Poincaré-Bendixson’s theorem can be extended to cover this system, see [16].

5.2.1 Boundedness of the model

Since we are analysing an ecological model, the variables cannot grow un-
boundedly. Thus, in order to have a well-posed model, it is necessary to show
that the system’s trajectories remain confined within a compact set as shown
in the following proposition. In the following proof we will assume e ≤ 1,
wich surely is the case it both populations are described in terms of biomass.
Consider the total environment population ϕ(τ) = R̂(τ) + F̂ (τ), then we have
the following result.

Proposition 5.2.1. There exists m > 0 for which the solutions of (5.2) are
always non-negative and bounded:

ϕ(τ) ≤
(
ϕ(0)− M

m

)
e−mτ +

M

m
≤ max

{
ϕ(0),

M

m

}
. (5.3)

Proof. Now ϕ(τ) is a differentiable function, then taking m > 0, summing the
equations in model (5.2) and observing that e ≤ 1 we find

dϕ(τ)

dτ
+mϕ(τ) = r

(
1− R̂

K
+
m

r

)
R̂ + aĝ(R̂)F̂ (e− 1)

≤ r

(
1− R̂

K
+
m

r

)
R̂ = p(R̂).

The function p(R̂) is concave parabola, with maxima located at R̂max, and
corresponding maximum value

M = p(R̂max) =
rK

4

(
1 +

m

r

)2

.

Thus, ϕ(τ)′+mϕ(τ) ≤M . Integrating the differential inequality, we find (5.3).
Thus, for model (5.2) the solution remains bounded. That trajectories remain

non-negative follows directly from the facts that R̂′ = 0 if R̂ = 0, F̂ ′ = 0 if
F̂ = 0 and that initial conditions for the model should always be non-negative
to make biological sense.

5.2.2 Non-dimensional model

Model (5.2) can be nondimensionalized via R(t) = 1
K
R̂(τ), F (t) = 1

eK
F̂ (τ),

t = mτ and λ = r
m

, θ = ae
√
K

m
to get the rescaled system:

dR

dt
= λR(1−R)− θg(R)F

dF

dt
= −F + θg(R)F

(5.4)
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and the interaction between prey and predators in the non-dimensional model
can be described as a piecewise function:

g(R) =

{
R√
R̃

if 0 < R ≤ R̃
√
R if R̃ < R

where 0 < R̃ < 1 is the critical threshold of group size for effective defense.

5.3 Equilibria and local stability analysis

The vertical and horizontal isoclines are

R = 0, F =
λR(1−R)

θg(R)
(5.5)

and

F = 0, g(R) =
1

θ
= µ. (5.6)

where we introduced the bifurcation parameter µ. Thus we can rewrite the
equation g(R) = µ as

R = g−1(µ) =

{
µ
√
R̃ if 0 < µ ≤

√
R̃;

µ2 if µ >
√
R̃.

The system equilibria are the ecosystem collapse E1 = (0, 0), the prey-only
point E2 = (1, 0) and coexistence:

E3 =

{ (
µ
√
R̃, λµ

√
R̃
(

1− µ
√
R̃
))

= E3L if µ ≤
√
R̃;

(µ2, λµ2 (1− µ2)) = E3R if µ >
√
R̃.

Figure 5.1 illustrates the vertical (5.5) and horizontal isoclines (5.6), and equi-
libria E1, E2 and E3, for the chosen parameters values.

The Jacobian matrix of system (5.4) is given by

J =

 λ− 2λR− ∂g(R)

∂R
F
µ

−g(R)
µ

∂g(R)

∂R
F
µ

−1 + g(R)
µ

 . (5.7)

Proposition 5.3.1. Consider the continuous piecewise differential system (5.4),
with 0 < R̃ < 1. The following statements hold.

(a) Equilibrium point E1 = (0, 0) is a saddle.
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a) b) c)

Figure 5.1: Vertical and horizontal isoclines given by equations (5.5) and (5.6).
E1 = (0, 0), E2 = (1, 0) and E3 are the equilibria obtained from system (5.2).
Here, µ is the variation parameter and R̃ = 0.4 and λ = 8.5. a) µ = 0.3

and E3 = (µ
√
R̃, F3L). b) µ = 0.8 and E3R = (µ2, F3R). c) µ = 1.1 and

E3 = (µ2, F3R).

(b) If µ > 1, then equilibrium point E2 = (1, 0) is a stable node, on the contrary,
if µ < 1, then equilibrium point E2 = (1, 0) is a saddle.

Proof.

(a) The eigenvalues of the Jacobian at E1 are ξ1 = λ and ξ=− 1, showing that
it is a saddle.

(b) At E2 the eigenvalues are ξ1 = −1 + 1
µ

and ξ2 = −λ, giving the stability
condition

µ > 1. (5.8)

If (5.8) is violated, then E2 is a saddle.

Proposition 5.3.2. Consider the continuous piecewise differential system (5.4),
with 0 < R̃ < 1. Then there are five critical values µ̄0, µ1, µ2, µ3 and µ4 given
by

µ̄0 =
2(
√

1 + λ− 1)

λ
√
R̃

, µ1 =

√
−4 + 3λ− 4

√
1 + 3λ

9λ
,

µ2 =

√
3

3
, µ3 =

√
−4 + 3λ+ 4

√
1 + 3λ

9λ
, µ4 = 1,

such that the following statements hold.

(a) For 0 < µ <
√
R̃:

• if 0 < µ ≤ µ̄0, then the equilibrium point E3L is a stable focus ;
• if µ̄0 < µ, then the equilibrium point E3L is a stable node.

(b) For µ ≥
√
R̃ and λ > 8:

• if 0 < µ < µ1, then the equilibrium point E3R is a unstable node;
• if µ1 < µ < µ2, then the equilibrium point E3R is a unstable focus.
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(c) For µ ≥
√
R̃ and λ ≤ 8:

• if 0 < µ < µ2, then the equilibrium point E3R is a unstable focus.

(d) For µ ≥
√
R̃:

• if µ2 < µ < µ3, then the equilibrium point E3R is a stable focus;
• if µ3 < µ < µ4, then the equilibrium point E3R is a stable node;
• if µ4 < µ, then the equilibrium point E3R is a saddle.

Proof.

(a) For the Jacobian evaluated at equilibrium points E3L and E3R we find now

tr(JE3L
) = −λµ

√
R̃ < 0, det(JE3L

) = λ(1− µ
√
R̃) > 0,

∆E3L
(µ) = tr(JE3L

)2 − 4 det(JE3L
) = λ2R̃µ2 + 4λ

√
R̃µ− 4λ.

To assess stability, let us consider ∆E3L
as a function of µ. Then ∆E3L

(µ) = 0
provides only one positive real root,

µ̄0 =
2(
√

1 + λ− 1)

λ
√
R̃

.

For µ = µ̄0 the function ∆E3L
(µ) exhibits a sign change: ∆E3L

(µ) > 0 if and

only if µ > µ̄0. It follows that for µ̄0 ≤ µ <
√
R̂ the point E3L is a stable

node, while conversely is a stable focus.

Before starting the proof of statements (b)–(d), we present some prelimi-
nary results. For the Jacobian matrix (5.7) evaluated at E3R

tr(JE3R
) =

λ(1− 3µ2)

2
, det(JE3R

) =
λ(1− µ2)

2

and ∆E3R
= tr(JE3R

)2 − 4 det(JE3R
) =

λ

4
(9λµ4 + (8− 6λ)µ2 − 8 + λ).

Now making the coordinate change s = µ2 and considering ∆E3R
(s) = 0, we

have
λ

4
(9λs2 + (8− 6λ)s− 8 + λ) = 0 (5.9)

Solving (5.9) for s, we obtain the non-negative solutions

s1 =
−4 + 3λ− 4

√
1 + 3λ

9λ
if λ ≥ 8; s3 =

−4 + 3λ+ 4
√

1 + 3λ

9λ
.

Thus, the function

∆E3R
(µ) =

λ

4
(9λµ4 + (8− 6λ)µ2 − 8 + λ)

changes sign at µ1 =
√
s1 and µ3 =

√
s3. If 0 < λ < 8 then ∆E3R

is negative
if and only if 0 < µ < µ3. For λ > 8 then ∆E3R

is negative if and only if
µ1 < µ < µ3. In summary, for µ > 0 we find
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(i) det(JE3R
) > 0 if and only if 0 < µ < µ4.

(ii) tr(JE3R
) < 0 if and only if 0 < µ < µ2.

(iii) If µ1 is feasible, i.e. λ ≥ 8, then ∆E3R
< 0 if and only if µ1 < µ < µ3.

(iv) If µ1 is not feasible, i.e. 0 < λ < 8, then ∆E3R
< 0 if and only if

0 < µ < µ3.

We can now to prove the statement (b). Since 0 < µ1 < µ2 < µ3 < µ4, if
0 < µ < µ1 then:

• 0 < µ < µ4, by (i) it follows that det(JE3R
) > 0;

• 0 < µ < µ2, by (ii) it follows that tr(JE3R
) < 0;

• 0 < µ < µ3, by (iii) it follows that ∆E3R
> 0.

Therefore, if 0 < µ < µ1 then E3R is a stable node.
On the other hand, an unstable focus arises from the above first two con-

ditions together with µ1 < µ < µ2 < µ3; from (iii) it follows ∆E3R
< 0.

The proof of (c) and (d) are similar and therefore omitted.

5.4 Bifurcations and numerical simulations

The equilibrium E2 cannot give rise to oscillations, since the eigenvalues are all
real. Instead, point E3R goes through a supercritical Hopf bifurcation, giving
rise to a stable limit cycle. To prove this we use second-order conditions, [53].

Proposition 5.4.1. Consider the continuous piecewise differential system (5.4),

with R̃ ≤ R and R̃ < 1. Taking µ as the variation parameter with
√
R̃ < µ,

the following statements hold:

(a) There is a transcritical bifurcation between equilibria E2 and E3R when µ
crosses the critical value µ4 = 1.

(b) A stable limit cycle arises at µ2 =
√

3
3

from a supercritical Hopf bifurcation,
when E3R becomes unstable.

Proof.

(a) The equilibrium point E2 coincides with the coexistence equilibrium E3R

at the parametric threshold µ4 = 1. The Jacobian matrix of system (5.4),
evaluated at E2 and at the parametric threshold µ4 = 1 is

JE2(µ4) =

(
−λ 1
0 0

)
,

124



5.4 Bifurcations and numerical simulations

and its right and left eigenvectors, corresponding to the zero eigenvalue, are
V = ϕ(1,−λ)T and Q = ψ(0, 1)T , where ϕ and ψ are arbitrary nonzero real
numbers. Consider g(R) =

√
R in the system (5.4) we obtain

dR

dt
= λR(1−R)−

√
RF

µ
:= f1

dF

dt
= −F +

√
RF

µ
:= f2.

(5.10)

Differentiating partially the right hand sides of the system (5.10) with respect
to µ we find

fµ =

( √
RF
µ2

−
√
RF
µ2

)
.

Now, calculating the Jacobian matrix of (5.10) in which the elements of this
matrix are differentiated with respect to µ and then evaluated at E2 and at µ†

we get

Dfµ =

(
0 1
0 −1

)
.

In order to verify the Sotomayor’s conditions for the existence of a transcritical
bifurcation, [70], we consider D2f((R,F );µ)(V, V ) defined by(

∂2f1
∂R2 ξ

2
1 + 2 ∂2f1

∂R∂F
ξ1ξ2 + ∂2f1

∂F 2 ξ
2
2

∂2f2
∂R2 ξ

2
1 + 2 ∂2f2

∂R∂F
ξ1ξ2 + ∂2f2

∂F 2 ξ
2
2

)
,

where ξ1, ξ2 are the components of the eigenvector V . The calculation of D2f
shows then that the following three conditions for a transcritical bifurcation
are satisfied

QTfµ(E2;µ4) = 0, QTDfµ(E2;µ4)V = ϕψλ 6= 0,

QTD2f(E2;µ4)(V, V ) = −ϕ2ψλ 6= 0.

(b) For systems in two-dimensional spaces, a Hopf bifurcation may occur. The
Jacobian matrix evaluated at E3R has conjugate imaginary eigenvalues

Λ± =
τ ±

√
P (µ)

4
, τ = λ(1− 3µ2), P (µ) = λ2(9µ4 − 6µ2 + 1) + λ(8µ2 − 8).

Since P (µ) is continuous, τ(µ2) = 0 and P (µ2) = −16λ
3
< 0, there is an interval

T = (µ2 − ε, µ2 + ε) around µ2 , such that, P (x) < 0 whenever x ∈ T .
The transversality condition is satisfied: τ ′(µ)|µ2 = −3

√
3 6= 0.
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Moreover, the Hopf bifurcation at equilibrium E3R is supercritical. Letting
x = R − R3R and y = F − F3R, the third-order Taylor series expansion for
(5.10) evaluated at E3R is given by

S(x, y) = SR3R
x+HF3R

y +
1

2!
(SR3RR3R

x2 + 2SR3RF3R
xy (5.11)

+ SF3RF3R
y2) +

1

3!
(SR3RR3RR3R

x3 + 3SR3RR3RF3R
x2y

+ 3SR3RF3RF3R
xy2 + SF3RF3RF3R

y3)

and

H(x, y) = HR3R
x+ SF3R

y +
1

2!
(HR3RR3R

x2 + 2HR3RF3R
xy (5.12)

+ HF3RF3R
y2) +

1

3!
(HR3RR3RR3R

x3 + 3HR3RR3RF3R
x2y

+ 3HR3RF3RF3R
xy2 +HF3RF3RF3R

y3).

Thus, for R3R and F3R evaluated at µ2 we obtain from (5.11) and (5.12)
S(x, y) = x′ = −y + f(x, y), H(x, y) = y′ = 1

3
λx + g(x, y), respectively,

with

f(x, y) = −3λ

4
x2 − 3

2
xy − 3λ

8
x3 +

9

8
x2y

g(x, y) = −λ
4
x2 +

3

2
xy +

3λ

8
x3 − 9

8
x2y.

In addition, x′ and y; can be put into the following form by suitable changes

of variables multiplying ẋ by A−1 and ẏ by B−1 with A = 1, B =
√

3λ
3

, u = x
A

and v = y
B

. Then,

u̇ = −ωv + f(u, v), u̇ = ωu+ g(u, v),

where the frequency of the limit cycle is given approximately by ω =
√

3λ
3

and

f(u, v) = −3λ

4
u2 −

√
3λ

2
uv − 3λ

8
u3 +

3
√

3λ

8
u2v,

g(u, v) = −
√

3λ

4
u2 +

3

2
uv +

3
√

3λ

8
u3 − 9

8
u2v.

Finally, according to the analytic criterion provided by [36], we have a super-
critical Hopf bifurcation because φ < 0 where

φ =
1

16
(fuuu + fuvv + guuv + gvvv) +

1

16ω
[fuv (fuu + fvv)− (guv(guu + gvv)

− fuuguu + fvvgvv)] = −9λ

64
< 0

and the subscripts denote partial derivatives evaluated at (0, 0).
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E2

E3R

•

•
a)

E2 = E3R•

b)

E3R

E2
•

•

c)

Figure 5.2: There is a transcritical bifurcation due to an exchange of stability
between the equilibrium points E2 and E3R when we consider µ as a variation
parameter and λ = 0.258. a) Here, E2 is a stable node and E3R is a saddle for
µ = 1.096. b) E3R = E2 is a nonhyperbolic equilibrium point for µ = 0.9998.
c) E2 is a saddle and E3R is a stable node for µ = 0.9489. The threshold
parameter value is R̃ = 0.138.

Figure 5.2 illustrates the simulation explicitly showing the transcritical
bifurcation between E2 and E3R for the chosen parameters values when the
parameter µ crosses a critical value µ4 = 1.

Figure 5.3 illustrates the Hopf bifurcation of equilibrium point E3R at µ2 =√
3

3
for the chosen parameters values.

E3R•

a)

E3R•

b)

E3R•

c)

Figure 5.3: Considering µ as a variation parameter and λ = 1.5981 a limit
cycle arises from equilibrium point E3R, indicating a Hopf bifurcation. a)
Here, E3R is a stable focus and for µ = 0.6194. b) E3R is a stable weak focus
for µ = 0.5769. c) E3R is a unstable focus for µ = 0.5628. The threshold
parameter value is R̃ = 0.04.

Figure 5.4 illustrates the boundary equilibria bifurcations. We consider µ
as a variation parameter and a limit cycle unstable arises from equilibrium
point E3R, due to change of stability when µ = R̃.

5.5 Technical results

Now we are going to present a brief theoretical recapitulation to introduce the
“half-return map” and also the results referring to Pz(y).
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E3R

•

a)

E3
•

b)

E3L•

c)

Figure 5.4: Boundary equilibrium bifurcations. Here, µ is the variation para-
meter, λ = 1.33548 and in this case a unstable limit cycle arises from equi-
librium E3 due to change of stability for µ2 = R̃. a) Here, E3 = E3R is a
unstable focus for µ = 0.4384. b) There is a transition of the E3R from stable
to unstable for µ2 = R̃ = 0.4242. In this case we have E3R = E3L. c) E3 = E3L

is a stable focus for µ = 0.4101. The threshold parameter value is R̃ = 0.18.

Consider a two-dimensional differential system,

Ẋ = f(X), X = (x, y) ∈ R2 (5.13)

with smooth f , having a focus equilibrium point at the origin. By [28], the
differential equation (5.13) near such equilibrium point can be written as

dx

dt
= a11x+ a12y +R1(x, y)

dy

dt
= a21x+ a22y +R2(x, y)

(5.14)

with R1(0, 0) = R2(0, 0) = DR1(0, 0) = DR2(0, 0) = 0.
Take Σ1 = {(0, y), y > 0} and Σ2 = {(0, y), y < 0}, it is easily seen that

Σ1 and Σ2 are transverse sections to system (5.14) in a neighborhood of the
origin. Thus, we can define a half-return map P (y) for all points (0, y) in Σ1

with y small enough, so that the orbit starting at (0, y) comes again to Σ2 at
the point (0, PZ(y)). Whenever we have a focus dynamics, it is convenient to
introduce a crucial parameter, namely

γ =
tr(A)√

4 det(A)− tr(A)2
, where A =

(
a11 a12

a21 a22

)
. (5.15)

Lemma 5.5.1. Consider the system (5.14). Then the half-return map P (y0)
has the following property

lim
y0→0

PZ(y0)

y0

= eγπ. (5.16)

Proof. Let ϕ(t, y0) = (x(t, y0), y(t, y0)) be the solution of system (5.14) such
that ϕ(0, y0) = (0, y0). Then, by [70], we have that

ϕ(t, y0) = eAt(0, y0) + ρ(t, y0)
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with

lim
y0→0

ρ(t, y0)

y0

= 0.

Write eAt(0, y0) = (x̂(t, y0), ŷ(t, y0)) and ρ(t, y0) = (ρ1(t, y0), ρ2(t, y0)), thus the
time needed to pass from Σ+ to Σ− starting at (0, y0) is τ(y0) given by less
positive solution of x(t, y0) = 0.

Since the origin is a focus it follows A has a pair of complex conjugate
eigenvalues, namely α ± iβ. Let τ̂(y0) be the smallest positive solution of
x̂(t, y0) = 0; then

τ̂(y0) =
π

2β
.

We claim that
lim
y0→0

τ(y0) =
π

2β
.

Indeed,

lim
y0→0

ρ1(t, y0)

y0

≤ lim
y0→0

ρ(t, y0)

y0

= 0,

then

lim
y0→0

x1(t, y0)

y0

= lim
y0→0

x̂1(t, y0)

y0

= lim
y0→0

x̂1(t, 1) = x̂1(t, 1). (5.17)

Since τ(y0) and τ̂(y0) are solutions of x1(t, y0) = 0 and x̂1(t, 1) = 0 respectively,
by (5.17) it follows that

lim
y0→0

τ(y0) = τ̂(y0) =
π

2β
.

Now we will prove (5.16). Note that

P (y0)

y0

=
y(τ(y0), y0)

y0

=
ŷ(τ(y0), y0)

y0

+
ρ2(τ(y0), y0)

y0

.

Then

lim
y0→0

P (y0)

y0

= ŷ

(
lim
y0→0

τ(y0), y0

)
= ŷ

(
π

2β
, 1

)
= eγπ.

The result of the Lemma 5.5.1 allows the presentation of the following
proposition dealing with the bifurcations of the equilibria at the boundary
where the vector field defining the differential equation changes.

Note that the parameter µ̄0 introduced in Proposition 5.3.2 depends on two
other parameters, λ and R̃. We want to analyze µ̄0 in the transition of group

defense effect, that is µ̄0 =
√
R̃. Thus

R̃ =
2(
√

1 + λ− 1)

λ
:= µ0
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From now on, the critical value µ0 will be used together with thresholds µ1,
µ2, µ3 and µ4.

The following result shows that the critical parameter µ0 can assume any
value in the interval (0, 1). In addition, the conditions for different transitions
scenarios among the equilibria are presented.

Lemma 5.5.2. Consider the four real functions

s0(x) =
2(
√

1 + x− 1)

x
, s1(x) =

3 x− 4
√

3 x+ 1− 4

9x
, s2(x) =

1

3
,

s3(x) =
3 x+ 4

√
3 x+ 1− 4

9x
and s4(x) = 1.

The follows statements hold:

(i) if 0 < x < −20
√

2 + 32, then s1(x) < 0 < s2(x) < s3(x) < s0(x) < s4(x);

(ii) if x = −20
√

2 + 32, then s1(x) < 0 < s2(x) < s3(x) = s0(x) < s4(x);

(iii) if −20
√

2 + 32 < x < 8, then s1(x) < 0 < s2(x) < s0(x) < s3(x) < s4(x);

(iv) if x = 8, then s1(x) = 0 < s2(x) < s0(x) < s3(x) < s4(x);

(v) if 8 < x < 24, then 0 < s1(x) < s2(x) < s0(x) < s3(x) < s4(x);

(vi) if x = 24, then 0 < s1(x) < s2(x) = s0(x) < s3(x) < s4(x);

(vii) if 24 < x < 20
√

2 + 32, then 0 < s1(x) < s0(x) < s2(x) < s3(x) < s4(x);

(viii) if x = 20
√

2 + 32, then 0 < s1(x) = s0(x) < s2(x) < s3(x) < s4(x);

(ix) if x > 20
√

2 + 32, then 0 < s0(x) < s1(x) < s2(x) < s3(x) < s4(x).

Proof. Let us first prove some results that are valid for all statements. It is
easy to verify that the following inequalities hold for all x > 0:

s1(x) < s2(x) < s3(x) < s4(x) and 0 < s0(x) < s4(x). (5.18)

Noting that

(s1(x))′ =

√
3 x+ 1 (6 x+ 4) + 12 x+ 4

27 x3 + 9 x2
> 0,

it follows that s1 is increasing, and as s1(8) = 0 it follows that
s1(x) < 0 if x < 8;
s1(x) = 0 if x = 8;
s1(x) > 0 if x > 8.

(5.19)

From (5.18) and (5.19) almost all the inequalities of the lemma follow. We will
consider only the nontrivial remaining cases, (i) and (vii).
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(i) Solving s0 = s3 we have x = 32− 20
√

2 and x = 0+, i.e.,

lim
x→0+

(s0 − s3) = 0.

Effectively, for x > 0 the equation s0(x)− s3(x) = 0 is equivalent to

4
√

3x+ 1 + 3x+ 14 = 18
√
x+ 1. (5.20)

Now making the coordinate change y =
√

3x+ 1, we obtain

y2 + 4y + 13 = 6
√

3y2 + 6,

that is equivalent to

y4 + 8y3 − 66y2 + 104y − 47 = 0. (5.21)

Solving (5.21) we obtain y = −6
√

2 − 5, y = 1, double root, and y =
6
√

2−5. Thus, x = 0 and x = 32−20
√

2 are solution of equation (5.22).
Therefore, if 0 < x < 32− 20

√
2, then s3(x) < s0(x).

(vii) Solving s0 = s1 we have x = 32 + 20
√

2. Effectively, for x > 0 the
equation s0(x)− s3(x) = 0 is equivalent to

−18
√
x+ 1 + 3x+ 14 = 4

√
3x+ 1. (5.22)

Now making the coordinate change y =
√
x+ 1, we obtain

3y2 − 18y + 11 = 4
√

3y2 − 2

that is equivalent to

y4 − 12y3 + 38y2 − 44y + 17 = 0, (5.23)

where

9− 4
√

3 ≤ 3y ≤ 9 + 4
√

3.

Solving (5.23) we obtain y = −2
√

2 + 5, y = 1, double root, and y =
2
√

2 + 5. Thus, x = 32 + 20
√

2 is the only feasible solution of equation
(5.22). Therefore, if 24 < x < 20

√
2 + 32, then 0 < s1(x) < s0(x) <

s2(x) < s3(x).

Remark 5.5.3. The functions sj with j = 0, . . . , 4, were introduced in Lemma 5.5.2
for simplicity of notation. Note that µj =

√
sj(λ) with j = 0, . . . , 4, but recall

that for s1(λ) < 0, µ1 is not feasible.
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For 0 < λ < (20
√

2+32), by Lemma 5.5.2 s1(λ) < s0(λ). Thus, considering

max{0, s1(λ)} < R̃ < min{s2(λ), s0(λ)} and µ =
√
R̃ we have that E3L is a

stable focus and E3R is an unstable focus, Proposition 5.3.2. Then, in this
transition two symmetric scenarios for the boundary equilibrium bifurcation
occur: subcritical and supercritical. This result is presented in the following
proposition.

Proposition 5.5.4 (focus-focus). Consider the continuous piecewise differ-
ential system (5.4), with 0 < λ < (20

√
2 + 32) and max{0, s1(λ)} < R̃ <

min{s2(λ), s0(λ)}, where s0, s1 and s2 are given by Lemma 5.5.2. Taking
s∗ = 1

7
(3 −

√
2) as a fixed parameter and µ as the bifurcation parameter, the

following statements hold:

(a) if max{0, s1(λ)} < R̃ < min{s∗, s0(λ)}, then a unstable limit cycle bifur-

cates at µ =
√
R̃ at a boundary equilibrium bifurcation. This bifurcation

results of the transition from unstable to stable focus for the equilibrium
point E3 (subcritical bifurcation);

(b) if s∗ < R̃ < min{s2(λ), s0(λ)}, then a stable limit cycle bifurcates at

µ =
√
R̃ at a boundary equilibrium bifurcation. This bifurcation results

of the transition from stable to unstable focus for the equilibrium point
E3 (supercritical bifurcation).

Proof. The main idea of the proof for statement (a) is to build a compact
negative invariant set C1 enclosing the stable focus E3L, as it was done in
[31]. By the Poincaré Bendixson’s Theorem we conclude the existence of one
unstable limit cycle totally contained in C1. Following the notations from
[31], we consider the half-straight lines Σ+ = {(R̃, λR̃(1− R̃) + y), y > 0} and
Σ− = {((R̃, λR̃(1−R̃)+y), y < 0}. Thus, we can define a left half-return map
PL(y) for all points (R̃, λR̃(1− R̃) + y) in Σ+ with y small enough, so that the
orbit starting at (R̃, λR̃(1− R̃) + y) comes again to straight line R = R̃ at the
point (0, PL(y)) in Σ−. On Σ− we can define similarly a right half-return map
PR for all the points (R̃, λR̃(1 − R̃) + y) with |y| small enough and negative.
Let

γL =
tr(J(E3L))√

4 det(J(E3L))− tr(J(E3L))2
; γR =

tr(J(E3R))√
4 det(J(E3R))− tr(J(E3R))2

be the parameters given by (5.15), but now we consider the matrices J(E3L)
and J(E3R) respectively. We claim that

γL + γR > 0. (5.24)

Indeed, by [71] the inequality (5.24) is equivalent to

tr(J(E3L))√
det(J(E3L))

+
tr(J(E3R))√
det(J(E3R))

> 0.
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We know that R̃ < s∗, tr(J(E3L)) < 0 and tr(J(E3R)) > 0, then by a direct
computation we finally obtain∣∣∣∣∣ tr(J(E3L))√

det(J(E3L))
·
√

det(J(E3R))

tr(J(E3R))

∣∣∣∣∣ =

√
2 R̃

1− 3R̃
> 1

Let us now consider the Poincaré map P = PR ◦ PL. If µ =
√
R̃ the equi-

librium point E3 is on the straight line Σ−∪{E3}∪Σ+. Thus by Lemma 5.5.1
it follows that

lim
y→0

P (y)

y
=

(
lim
y→0

PR(PL(y))

PL(y)

)
·
(

lim
y→0

PL(y)

y

)
= e(γL+γR)π > 1.

In this way if y > 0 and small enough we have

P (y) > y. (5.25)

Now we can build the compact negative invariant set C1. Let y > 0 be
arbitrary and small so that P (y) > y and denote B1 = (R̃, λR̃(1− R̃) + y) and
B2 = (R̃, λR̃(1 − R̃) + P (y)). Thus we define the boundary of the compact
negative invariant set C1 that is the orbit from B1 to B2 along with segment
B1B2, see Figure 5.5.

Note that if µ =
√
R̃, then P (y) > y, thus we can conclude that the C1

is effectively a compact negative invariant set. Note that E3R is an unstable
pseudo-focus because P (y) > y for all small enough, see [27].

Allowing now µ to be slightly lower than
√
R̃ and using the continuous

dependence of solutions with respect to the parameter µ, the inequality (5.25)
still holds. Thus the set C1 remains compact and negatively invariant, but now
the focus E3R in its interior is stable. Therefore, by the Poincaré-Bendixson
Theorem, [28]), we have the existence of one unstable limit cycle totally con-
tained in C1. Obviously, this set C1 can be chosen as small as desired by taking
the initial value of y sufficiently small. This shows that a limit cycle arises from
equilibrium point E3R through the boundary equilibrium bifurcation.

The case (b) follows a proof similar to the one of statement (a), taking into
account that, in this case, we have the transition from a stable focus to an
unstable one. Thus, it is necessary to build a compact positive invariant set
enclosing the unstable focus E3R.

Corollary 5.5.5. Consider the continuous piecewise differential system (5.4),
with 0 < λ < (20

√
2 + 32) and max{0, s1(λ)} < R̃ < min{s∗, s0(λ)}, where

s0, s1 and s2 are given by Lemma 5.5.2, and s∗ = 3−
√

2
7

. Then the system has
at least two nested limit cycles surrounding the stable focus E3L. The smaller
limit cycle is unstable and the larger one is stable.
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B2

B1

E3

•
•

R = R̃a)

B2

B1

E3L

••

R = R̃b)

Figure 5.5: The boundary of the positive compact invariant set C1 is composed
by the orbit from B1 to B2 and the segment B1B2. B1 = (R̃, λR̃(1− R̃) + y),
B2 = (R̃, λR̃(1 − R̃) + P (y)). a) E3 = E3L = E3R for µ = 0.4. b) E3 = E3L

for µ = 0.39. The parameter values are: R̃ = 0.16, λ = 1.4 and y = 0, 24.

Proof. The proof is based on the following argument. The smaller unstable
limit cycle from Proposition 5.5.4 is contained within a limited positive in-
variant set, Proposition 5.2.1. Then by Poincaré-Bendixson Theorem we have
the existence of one stable limit cycle surrounding the smaller limit cycle is
unstable. See Figure 5.9.

For λ > 8, by Lemma 5.5.2 s0(λ) < s3(λ). Thus, considering 0 < R̃ <

min{s0(λ), s1(λ)} and µ =
√
R̃ we have that E3L is a stable focus and E3R

is an unstable node, Proposition 5.3.2. Then, in this transition a subcritical
boundary equilibrium bifurcation occurs. In summary

Proposition 5.5.6 (focus-node). Consider the continuous piecewise differen-
tial system (5.4), with λ > 8 and 0 < R̃ < min{s0(λ), s1(λ)}, where s0 and s1

are given by Lemma 5.5.2. Then an unstable limit cycle bifurcates at µ =
√
R̃

in a boundary equilibrium bifurcation. This bifurcation results of the transi-
tion from unstable node to stable focus for the equilibrium point E3, subcritical
bifurcation.

Proof. The proof is analogous to what was done to Proposition 5.5.4, which
is the construction of a compact negative invariant set C2 enclosing the stable

focus E3L. Let H = (R̃, λµ
√
R̃(1 − R̃) be intersection point of the isocline

R′ = 0 with the straight line R = R̃. Thus, for F > λµ
√
R̃(1 − R̃) we

have R′ < 0 at (R̃, F ); conversely, for F < λµ
√
R̃(1 − R̃) we have R′ > 0.

Consequently, the direction of flow is determined along the R = R̃.
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For µ =
√
R̃, consider the point A = (R̃, λR̃(1 − R̃) + y) in the straight

line R = R̃ with y > 0 and small enough. It is evident that the orbit of the
point A has as α-limit the unstable node E3R, see Figure 5.6. For a definition
of α- and ω-limit, see for instance [70]. The orbit of the point A, but now
following forward in time, hit in R = R̃, after a half turn around a focus E3L,
at point B3. We thus obtain the boundary of the compact negative invariant
set C2 that is the orbit from B3 to E3, following backward in time, along with
segment B3E3, see Figure 5.6. Although y > 0 and small enough, the point

A is chosen arbitrarily on R = R̃, so for µ =
√
R̃ the equilibrium point is

asymptotically unstable.

Allowing now µ to be slightly lower than
√
R̃ and using the continuous

dependence of solutions with respect to the parameter µ, the orbit starting
at A goes down eventually hitting R = R̃ at the point B4 = (R̃, F ) with

F < λµ
√
R̃(1−R̃). Thus, the set C2 remains compact and negatively invariant,

but now the focus E3R in its interior is stable. Note that now the boundary
of the negative compact invariant set C2 is composed by the orbit from B4

to B3, along with segment B3B4, where B4 is the point obtained from orbit
of A following backwards in time until it hit straight line R = R̃. Therefore,
by Poincaré-Bendixson’s Theorem we have the existence of one unstable limit
cycle totally contained in C2. Obviously, this set C2 can be chosen as small
as desired by taking the initial value of y sufficiently small. This shows that a
limit cycle arises from equilibrium point E3R through the boundary equilibrium
bifurcation.

A

B3

E3

•

•

R = R̃

•

a)

A

B3

B4

E3•

R = R̃b)

Figure 5.6: The boundary of the negative compact invariant set C2. a) E3 =
E3L = E3R for µ = 0.4. b) E3 = E3L for µ = 0.38. The parameter values are:
R̃ = 0.16, λ = 40.

Corollary 5.5.7. Consider the continuous piecewise differential system (5.4),
with λ > 8 and 0 < R̃ < min{s0(λ), s1(λ)}, where s0 and s1 are given by
Lemma 5.5.2. Then the system has at least two nested limit cycles surrounding
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the stable node E3L. The smaller limit cycle is unstable and the larger one is
stable.

Proof. The proof follows in an analogous way to Corollary 5.5.5.

For λ > 24, by Lemma 5.5.2 s0(λ) < s2(λ). Thus, as µ =
√
R̃ and

max{s0(λ), s1(λ)} < R̃ < s2(λ) it follows that E3L is a stable node and E3R

is an unstable focus, Proposition 5.3.2. Then, in this transition a supercritical
boundary equilibrium bifurcation occurs. In summary

Proposition 5.5.8 (node-focus). Consider the continuous piecewise differen-
tial system (5.4), with λ > 24 and max{s0(λ), s1(λ)} < R̃ < s2(λ), where s0,
s1 and s2 are given by Lemma 5.5.2. Then a stable limit cycle bifurcates at

µ =
√
R̃ in a boundary equilibrium bifurcation. This bifurcation results from

the transition from stable node to unstable focus for the equilibrium point E3,
supercritical bifurcation.

Proof. We can proceed analogously to the proof of Proposition 5.5.6, but now
we have the transition from unstable node to stable focus. Thus, it is necessary
to build a compact negative invariant set enclosing the stable focus E3L.

Remark 5.5.9. For λ > (20
√

2 + 32), by Lemma 5.5.2 s0(λ) < s1(λ). Thus,

considering s0(λ) < R̃ < s1(λ) and µ =
√
R̃ we have that E3L is a stable

node and E3R is an unstable one, Proposition 5.3.2. In this transition, for
a neighborhood of equilibrium point E3, there is a set S constituted by a
continuum of homoclinic loops around the point E3. Effectively, consider the
point A = (R̃, λR̃(1 − R̃) + y) at {R = R̃} with y > 0 and small enough. It
is evident that the orbit of the point A has as α- and ω-limit the equilibrium
point E3, see Figure 5.6.

Remark 5.5.10. If for µ =
√
R̃ the exterior part of the set S is stable, then for

µ slightly lower than
√
R̃ the continuum of homoclinic loops disappears and

we conjecture that a stable limit cycle arises when the homoclinic connections

break. On the other hand, if for µ =
√
R̃ the exterior part of the set S

is unstable, then for µ slightly lower than
√
R̃ the continuum of homoclinic

loops disappears and we conjecture that an unstable limit cycle is born when
the homoclinic connections break. Moreover, in this case the system has at
least two nested limit cycles surrounding the stable node E3L. The smaller
limit cycle is unstable and larger one is stable, see Figure 5.7.

5.6 Discussion

In Sections 5.3, 5.4 and 5.5 we presented a mathematical analysis of the be-
haviour of model 5.4. In this section we present biological interpretations for
the main results.
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A

E3

•

•
R = R̃

Figure 5.7: The continuum of homoclinic loops S. The parameter values are:
R̃ = 0.25, λ = 110 and µ = 0.5.

The model has only three equilibria, one corresponding to total extinction
(E1), one to predator extinction (E2) and one to coexistence (E3). E1 is
always unstable, this effect is caused by the fact that the mortality on prey
is of second-order near the origin (due to the application of the law of mass
action for small groups). Of course if the theoretical trajectories of the model
come too near the origin, it means that the real system is in real danger of
total extinction. We should keep that in mind as we anaylize the behaviour of
the model as a whole.

Points E2 and E3 have variation in their stability, depending on parame-
ters R̃, λ and µ. Parameter R̃ is the threshold group size beyond wich group
defense becomes effective, while θ = 1/µ is a combination of parameters a, the
predation rate with defense, e the efficiency of conversion of captures prey into
new predators, K is carrying capacity of prey and m the “natural” per capita
mortality rate of predators. Finally, parameter λ is the ratio between preda-
tor mortality timescale (predator average lifespan) and the prey reproduction
timescale (when approximated by Malthusian dynamics, this represents the
average time a prey takes to produce one descendent). All the main results
can be understood from the variation of these parameters and are summed
up in Figure 5.8 so we will base our discussion on this figure and its different
regions.

The variation in the parameter µ depends on changes in the parameters
a, e, m and K. Since µ = 1/θ, µ = m

ae
√
K

is proportional to m and inversely

proportional to both a, e and
√
K. Thus an increase in µ means an increase in

the mortality rate or a decrease in the predation rate or conversion efficiency.
Variation in R̃ is simply a change in the hypotheses regarding group defense,
wich may vary from species to species, the only critical assumption is that it
is smaller than 1 (meaning that R∗ < K, K the carrying capacity for prey,
and R∗ the threshold population size for group defense). Finally, variation in
λ is due to either a change in predator average lifespan or prey reproduction
timescale.

Region G of Figure 5.8 represents the situation when only E2 is stable, if µ

is above the threshold µ4 = 1. Since µ = 1/ae
√
K

1/m
it can be interpreted as a ratio
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Figure 5.8: In this bifurcation diagrams we have a summary of behaviour of
the system dynamics considering µ as a parameter of variation. We separated
this diagram in seven regions. The green curve corresponds to R̃ = µ2 and the

blue curve corresponds to R̃ = (2(
√

1+λ−1)
λµ

). For µ = µ4 there is a transcritical
bifurcation between E2 and E3R and for µ = µ2 arises a Hopf bifurcation from
E3R. The region of parameter variation is divided in seven subregions (from
A to G) for easier reference. Each region is also classified according to the
topology of the trajectories in the vicinity of point E3: S=saddle, SN =stable
node, UN =unstable node, SF =stable focus, UF =unstable focus.

between two timescales. The first one is 1/ae
√
K, which can be interpreted

as the time it takes for one predator to consume enough prey to produce
one descendent if prey population is kept constant at carrying capacity K.
The second timescale is 1/m which represents predator average lifespan (how
long one predator lasts in average). Thus, it is no wonder that E2 (predator
extinction) is a stable node if µ > 1 (it takes longer for one predator to produce
one descedennt than its average lifespan) and unstable if µ < 1.

Transition from region G to F occurs at the transcritical bifurcation be-
tween E2 and E3R. In this case, in region F the only stable point is the
coexistence E3R and it is a node. When E3 is a node, it means there are
no oscillations in the system, but it travels directly to the equilibrium values.
From region F , transition can occur to either regions A, B, or E.

Damped oscillations in the system may arise in transition from region F
to either regions A or E. This can occur due to a reduction in parameter µ
(meaning a more “favorable” combination of factors to the predators) or in case
both R̃ > µ2

3 and λ < 32− 20
√

2. One way to interpret the rise of oscillations
in the transition from F to E is to think that if the timescale of natural death
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of predators (1/m) is too large (m small), predators take a long time to die
even if there is a low number of prey, and the dynamics of the system will have
a tendency to oscillate. This can be interpreted as a delay in the effect of an
adverse environment over the predators. Observe that, for, very small µ < µ1

and µ < µ̄0 the system will definitely oscillate, either being in region A or C
(even though all oscillation described so far are damped ones). Transition to
region B does not change the qualitative behaviour of the system, the only
critical observation is that the system evolves to an equilibrium where there is
no group defense.

To observe a transition from F to A, one must have both a high value for
λ (meaning that prey reproduce quickly in comparison to the timescale of the
lifespan of predators) and R̃ (only large populations engage in group defense).
If both of those conditions are present, reducing µ may give rise to oscillations.

From region E there can be transitions to either A, B or D. Transition
from E to D occurs via a Hopf bifurcation, giving rise to sustained oscillations
and a stable limit cycle around E3, as in Figure 5.3. We could interpret this
as an amplification of the effect mentioned earlier, that is, the delay of the
impact of low prey populations on the predators. That is, predators reproduce
quickly, but die slowly. This is the only transition possible if R̃ < µ2.

Transition for regions A and B may occur if R̃ > µ2. The transition
to region A leads to no change in the qualitative behaviour of the system,
both region displaying damped oscillations to an equilibrium. Finally, the
transition to region B leads to no oscillations in the system and convergence
to a equilibrium with no group defense. It may occur only if 8 < λ < 24,
meaning that the prey reproduction timescale is at least 8 times quicker than
the predator mortality timescale.

Now, from region D, a most interesting bifurcation may occur in transition

for region A. If µ1 <
√
s∗ (s∗ =

√
(3−

√
2)/7), a subcritical Hopf bifurcation

may occur. When the trajectories of the system are contained in the region of
group defense (R(t) < R̃), a stable limit cycle exists, which has its origin in
the Hopf bifurcation of the transition from region E to D. As the trajectories
approach de boundary, the system begins to travel through both regions: with
group defense and without. In the region without group defense (A), the tradi-
tional Lotka-Volterra dynamics tends to pull the trajectories to a stable focus.
This tension between the two different dynamics, initially generates a bound-
ary of attraction of the stable focus in region A, which is exactly the unstable
limit cycle obtained in the bifurcation. Continuing to reduce the parameter µ,
going further into region A, this region of attraction grows, eventually meeting
the outer stable limit cylce and the Lotka-Volterra dynamics dominates. The
outer stable limit cycle would represent a situation where the prey population
presents such large fluctuations that it oscillates between group defense and
individual behaviour. The inner unstable limit cycle represents the dominance
of individual behaviour. This interesting bifurcation is illustrated in Figure
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5.9.
If the same transition to region A is repeated but in case µ1 >

√
s∗ then

the bifurcation is supercritical and the stable limit cycle that existed before
the transition is destroyed. In those cases, it does not matter much if the
transition occurs into region A or B, in both cases the limit cycle ceases to
exist. Finally, numerical simulations indicate that transition from region C
to A also results in the onset of two limit cycles if µ1 <

√
s∗ and to no-limit

otherwise.

E3L•

Figure 5.9: This graph illustrates two limit cycles. The phase picture con-
taining two threshold cycles and also the equilibrium point E3L, which in
this case, is a stable focus. The parameter values are: R̃ = 0.21, λ = 0.81,
µ = 0.458.

The effect of group defense can be understood to be favorable to the prey
simply by analysing the nullclines in figure 5.1-(c). If the combination of
parameters is such that the equilibrium point E3 lies in the group defense
region, then it is clear that the same population of predators lead to higher
prey populations than if there were no group defense (it is easy to see that,
just by extrapolating the nullcline from the region of R < R̃ to R > R̃). So
the model is coherent in the sense that group defense models well the benefit
for the prey population. Another simple way to recognize this is just to look
at the coordinates of E3L and E3R, noting that the equilibrium with group
defense always provides a larger prey population.

5.7 Conclusion

A alternative model to approach herd behaviour was proposed and its be-
haviour investigated using simulation and analytical techniques. Our results
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show that the model presents novel behaviour when compared with the orignal
model proposed in [3, 2]. An advantadge of this approach is that the model
does not have a singularity in the Jacobian at the origin, as was the case with
[3, 2]. Another fundamental difference is that the new model is coherent even
for low populations of prey, where no group defense is possible, a feature that
was lacking in previous approaches.

The results are interesting from the dynamical point of view, with both
sub and supercritical Hopf bifurcations arising. Group defense has a positive
impact for the prey population, as expected.
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Part II

Evolutionary interacting
population models
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CHAPTER 6

MODELS FOR ALARM CALL
BEHAVIOUR

The emission of alarm calls (or warning calls) is one of the many antipredator
defences used by birds and mammals [19]. A considerable effort was dedicated
to the study of such behaviour [76, 80, 21], because it may appear to be
“altruistic”, i.e. harmful to the sender and beneficial to the receiver. Alarm
call signals often have acoustic characteristics that make them hard to locate
[60, 14, 74], with species displaying convergent evolution of alarm call acoustic
characteristics [60]. The evolution and maintenance of such properties indicate
that there should be some risk in emitting alarm calls in the wild.

Various theories have been proposed to explain the evolution of alarm calls
in species of birds and mammals. [76] proved, using a mathematical model,
that kin selection may positively select alarm calling behaviour if individuals
are full siblings. Evidence in favour of kin selection theory in alarm calling
behaviour in mammals is accumulating [19, p. 195-196], creating a convincing
case that it is, at least, a partial explanation for the phenomenon.

While being adequate to partially explain alarm call behaviour in some ins-
tances, kin selection theory faces difficulties in various cases when the alarm
calling rate of individuals is unrelated with the kinship of benefited conspecifics
[46]. Also, in many bird species, groups of non-kin individuals (and also het-
erospecifics) regularly display this type of behaviour [19, p. 200]. Alternative
explanations for alarm call behaviour, such as reciprocal altruism, group se-
lection or predator discouragement are not supported by field studies [19].

A simple approach to explain alarm calling behaviour is that it is beneficial
to the individual. In particular, [8] presented a model where sentinel behaviour
could be explained by being a strategy beneficial to the sentinel. Many of the
model predictions were later confirmed by field studies [23]. Our goal in this
chapter is to present models to study the selection of alarm calling behaviour
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versus non-calling behaviour that depends on the costs and benefits of adopting
each type of behaviour (alarmist versus non-alarmist or, equivalently, caller
versus non-caller).

The theoretical framework adopted here is that of Population Ecology [29,
65] with the use of differential equations to describe the population dynamics.
In this particular case, the dynamics of two populations are described: that of
“alarmist” and “non-alarmist” individuals. The goal of the models is not to
be a realistic representation of any particular situation, but to serve as a tool
to understand the evolution of alarm calls under individual selection.

This chapter is organized as follows: in Section 6.1 we present four mathe-
matical models of increasing complexity; Section 6.2 contains the mathemati-
cal analysis of the models behaviour, Section 6.3 summarizes the mathematical
findings and discusses their biological implications. Finally, Section 6.4 gives
an interpretation of the main results obtained. At first reading, Section 6.2
might be skipped. A general perspective of the models results can be obtained
through Section 6.3. All proofs of mathematical propositions are deferred to
the Appendix C.

6.1 Models

In this section we present four models for the selection of alarm call behaviour.
The first one supposes unlimited population growth and serves as a paradigm to
understand the fundamental aspects of the problem. In sequence, a model that
takes into account intraspecific competition and limited population growth is
proposed. Finally, the role of population size over predation rates [32, 63] is
included in two further models.

6.1.1 Unlimited population growth

To describe the dynamics of selection for or against alarm call behaviour in
a population, we separated the individuals into two classes: “alarmists” and
“non-alarmists”. Let x denote the number of “non-alarmists” and y the num-
ber of “alarmists”, using a Malthusian model for population growth and ac-
counting for mortality by predation, we can write a dynamics for the popula-
tions x(t) and y(t):

dx

dt
= rx− xTx(x, y)

dy

dt
= ry − yTy(x, y)

(6.1)

where r is the net per capita growth rate (reproduction minus mortality) of
the species, Tx and Ty are the per capita predation mortality rates for non-
alarmists and alarmists, respectively.
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Naturally, the real phenomenon of predation is very complex and is influ-
enced by many variables that depend on the species, the environment and so
on. [55] suggests a general predatory sequence as a scheme to analyse such
processes. Here we will adopt a simplified version of such sequence.

We consider that the prey will have a constant probability of detecting the
predator before a direct attack occurs and will differentiate only two scenarios.
The first scenario occurs when the individual who had the chance to detect the
predator was in the “non-alarmist” class. In this case, even if the individual was
successful in detecting the predator, no alarm call is emitted and the population
will have to face the predator under the “non-alarm” situation. The second
possibility is that the individual who had the chance to spot the predator was
part of the alarmist population. In this case, there is a chance that an alarm
call was produced, and therefore the population faces the predator under a
different condition.

Considering those two distinct scenarios, we model the per capita mortality
due to predation using the following function:

Tx(x, y) = A
x

x+ y
+B

y

x+ y
. (6.2)

Equation (6.2) is a pondered average of the mortalities rates A and B.
Parameter A is the average mortality of a non-alarmist when there was no
chance of an alarm call being emitted, while B is the average mortality in the
case where there is a chance of emission of an alarm call.

A simple way to interpret equation (6.2) is that the average mortality of
non-alarmists is the pondered average of the mortality when there is a chance
of an alarm (which occurs with probability y/(x + y)) and when there is not
(probability x/(x+y)). That is, when there is an attack by predators, x/(x+y)
of the time there will not be any alarm and y/(x + y) of the time there is a
chance that an alarm will be produced.

It can be shown that this form of mortality can represent the one adopted
by [76]:

PK = P
(

1− a r
n

)
(6.3)

where PK is the probability of a kill in an encounter, P is the maximum
kill probability, n is the total population, r the population of alarmists and
0 < a < 1 is coefficient of alarm and detection efficiency. Equation (6.3)
models a situation where the decrease in predation rate is proportional to the
fraction of alarmist individuals in the population. Equation (6.2) corresponds
to this case if A > B.

Analogously, we define the predation rate over the y population:

Ty(x, y) = C
x

x+ y
+D

y

x+ y
. (6.4)

with obvious meanings for the parameters. The reason we adopt distinct pa-
rameters for the populations x and y is that they differ in behaviour (alarm
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or no alarm), which may lead to distinct average mortalities in each case. For
instance, giving an alarm call might increase the risk of being the target of an
attack, which would translate into D > B.

With a change of variables t∗ = rt it is possible to make the time variable
non-dimensional, leading to the system (dropping the asterisk for simplicity in
notation):

dx

dt
= x

(
1− ax

x+ y
− by

x+ y

)
dy

dt
= y

(
1− cx

x+ y
− dy

x+ y

) (6.5)

where a = A/r, b = B/r, c = C/r and d = D/r are the mortality rates
measured in comparison with the per capita reproduction rate r.

6.1.2 Limited population growth

While the model in section (6.1.1) can provide good insight for the behaviour
of a population composed of alarmists and non-alarmists, it is not realistic in
the sense that most real biological systems present some degree of intraspe-
cific competition that limits population growth. One of the simplest ways
to model intraspecific competition is to include a Verhulst-type mortality in
system (6.5), leading to:

dx

dt
= x

(
1− x+ y

K
− a x

x+ y
− b y

x+ y

)
dy

dt
= y

(
1− x+ y

K
− c x

x+ y
− d y

x+ y

)
.

. (6.6)

Again, working with the non-dimensional variables x∗ = x/K and y∗ = y/K
we obtain:

dx

dt
= x

(
1− x− y − a x

x+ y
− b y

x+ y

)
dy

dt
= y

(
1− x− y − c x

x+ y
− d y

x+ y

) . (6.7)

6.1.3 Group size effects

Individuals may benefit from grouping together against predators [40]. A vari-
ety of effects may contribute to the reduction of the per capita mortality rate
[19] and there is some evidence that it decays as a power law with group size
[32, 63].

Predation rate will be described as T = TPG(N), where TP is the max-
imum per capita predation rate and G : R+ → (0, 1] is a non-dimensional
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response function that describes the effects of grouping benefits in decreasing
predation rates. For convenience, we will adopt an exponential decay of per
capita predation mortality dependent on group size, but all conclusions remain
qualitatively unaltered if the function G(N) satisfies the following conditions:

1. G(0) = 1: predation is maximum when the population is small.

2. G′(N) < 0: G(N) is monotonically decreasing.

3. G′′(N) > 0: there is decreasing returns in benefits of increasing popula-
tion size.

Group size effect is, then, modelled as T = TP exp(−(x + y)/g). The
parameter g (already in non-dimensional form G/K) represents the size of a
group must have, in relation to the carrying capacity, for a significant decrease
in mortality to be observed (1− 1/e). So, g ≈ 0 means that grouping benefits
are very effective even for small groups, while g � 1 means that the effects of
group size are very weak.

We will discuss two variants of model (6.7). In the first one, all mortality
rates are reduced by the group size effect. In this model, both in the case of
alarm and no-alarm, all individuals benefit from the protection of being in a
group.

The first variant of model (6.7) is, then:

dx

dt
= x

[
1− (x+ y)− e−(x+y)/g

(
a

x

x+ y
+ b

y

x+ y

)]
dy

dt
= y

[
1− (x+ y)− e−(x+y)/g

(
c

x

x+ y
+ d

y

x+ y

)] . (6.8)

A second variant supposes that individuals can only profit from group protec-
tion if an alarm call was produced:

dx

dt
= x

(
1− (x+ y)− a x

x+ y
− e−(x+y)/gb

y

x+ y

)
dy

dt
= y

(
1− (x+ y)− c x

x+ y
− e−(x+y)/gd

y

x+ y

) (6.9)

6.2 Mathematical Analysis

In this section we analyse the behaviour of the models proposed in section 6.1,
but before starting, we include an important caveat for the reader. In the rest
of the chapter several inequalities will arise, that have a complicated biological
interpretation. For instance, b < (>)d in words translates as “the average
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mortality of non-callers is smaller (larger) than the mortality of callers under
the alarm scenario”. Similarly a < (>)c is “the average mortality of non-
callers is smaller (larger) than the mortality of callers under the non alarm
scenario”. The situations with two opposite inequalities arise most often and
will be called the mixed case. In this situation, looking always at the non-
alarm scenario, we distinguish also the population that “prevails” because of
its smaller mortality. Thus e.g. the case a < c and b > d will be termed the
mixed case with prevailing callers.

6.2.1 Analysis of the unlimited growth model

For model (6.5), we are interested in understanding which conditions could
lead to either the survival or extinction of the populations. For biological
consistency, we are supposing the right hand sides of eq. (6.5) are both zero at
(0, 0). Thus, the dynamical system defined by Eq. (6.5) admits just P = (0, 0)
as an equilibrium point. In the absence of alarmists, the non-alarmists goes
away from zero in case of a < 1. Similarly, in the absence of non-alarmists the
alarmist population goes away from zero in case of d < 1. Thus, if one of these
parameters is less than 1, P1 = (0, 0) is unstable.

For this model, the isoclines are lines given by equations

(1− a)x+ (1− b)y = 0, (1− c)x+ (1− d)y = 0,

so that y(t) = αx(t) for

α =
a− c
d− b

.

In other words, the set S defined by line y = αx is invariant for the system.
Clearly, this line splits up the plane in two others invariant sets: R = {(x, y) :
y > αx} and W = {(x, y) : y < αx}.

For this model we have the following result:

Proposition 6.2.1. If non-callers mortalities in both scenarios exceed one,
a > 1 and b > 1 then the non-callers population vanishes, x(t)→ 0 as t→∞.
Further, if a < 1 and b < 1 then the non-callers population grows unboundedly,
x(t)→∞ as t→∞.

Geometrically, when a, b > 1 the isocline of x is a decreasing line through
the origin and x′(t) < 0 for all x, y > 0. Thus, x-individuals go to extinction.
Similarly, when c, d > 1 we can easily check that y′(t) < 0 for all x, y > 0.
Hence, in this case, y-individuals go to extinction. In other words, when all
parameters are greater than 1, both populations are going extinct.

Now, if a < 1 and b < 1 the isocline for x is a decreasing line and it is
not difficult to check that x′(t) > 0 for all x > 0 and y > 0. In this scenario,
x-individuals are going to survive. Likewise, when c < 1 and d < 1 the isocline
for y is a decreasing line and y′(t) > 0 for all x > 0 and y > 0. Therefore,
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y-individuals are going to survive. Hence, when all parameters are less than
1, both isoclines are decreasing lines crossing the origin and for all x > 0 and
y > 0 we have that x′(t) > 0 and y′(t) > 0. Thus, both populations are going
to survive.

In the following, we are interested in classifying the behaviour of eq. (6.5)
for different settings of parameters. In order to get further information about
the behaviour of the solution of eq. (6.5) let us consider the change of variables
z = x/(x+ y) and w = y/(x+ y). Since w = 1− z, the equation for z becomes

dz

dt
= z (1− z) [(c− a+ b− d) z + d− b] (6.10)

The previous equation has three equilibrium points: z̄1 = 0, z̄2 = 1 and
z̄3 = (b − d)/(c − a + b − d). The stability criteria for z̄1 = 0 and z̄2 = 1 of
eq. (6.10) are given, respectively, by the eigenvalues:

λz̄1 = d− b, λz̄2 = a− c, λz̄3 =
(c− a) (b− d)

c− a+ b− d
.

Proposition 6.2.2. The equilibrium point

z̄3 =
b− d

c− a+ b− d
(6.11)

is feasible in the mixed case with either prevailing callers or non-callers, i.e. if
and only if: (i) c < a and b < d or (ii) c > a and b > d. In the first case, for
prevailing callers, z̄3 is stable while in the second one z̄3 unstable.

Now, feasibility of z̄3 implies that the invariant set S, previously defined,
lies on the first quadrant of the xy-plane. In fact, z(t) = z̄3 for all t means that
z̄3 = x(t)/(x(t)+y(t)) which in turn implies that y(t) = x(t)(1−z̄3)/z̄3 = αx(t).
The stability conditions for equilibrium z̄3 can also be translated in terms of
asymptotic behavior of the original solution x(t) and y(t) as follows. If z̄3

is stable, then the solutions x(t) and y(t) are both increasing functions and,
for large values of t, we have y(t) ≈ αx(t), regardless of the initial condition.
When z̄3 is unstable, then z̄1 and z̄2 are stable equilibrium points. Thus, the
curves described by x(t) and y(t), on the xy-plane, are going to move away
from the line y = αx as t →∞. For initial conditions above the line y = αx,
y(t) dominates and z(t)→ 0 while for initial conditions below the line y = αx,
x(t) dominates and z(t) → 1. Whether both populations survive depends on
the combination of parameters.

Proposition 6.2.3. In the alarm scenario, if callers prevail b > d, then z̄1 = 0
is a stable equilibrium point of eq. (6.10) and considering the callers and non-
callers mortalities d and b:

1. if d > 1 then x(t)→ 0 and y(t)→ 0.
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2. if 1 > b then then x(t)→∞ and y(t)→∞.

3. if b > 1 > d then then x(t)→ 0 and y(t)→∞.

Further, in the non-alarm scenario, if callers prevail a > c, the previous behav-
iors are true for all xo, yo > 0. Otherwise, items 1 - 3 are true for all xo, yo > 0
such that xo/(xo + yo) < z̄3.

Proposition 6.2.4. In the non-alarm scenario, if non-callers prevail c > a,
then z̄2 = 1 is a stable equilibrium point of eq. (6.10) and considering the
non-callers and callers mortalities a and c:

1. if a > 1 then y(t)→ 0 and x(t)→ 0.

2. if 1 > c then y(t)→∞ and x(t)→∞.

3. if c > 1 > a then y(t)→ 0 and x(t)→∞.

Further, in the alarm scenario, if non-callers prevail d > b, the previous behav-
iors are true for all xo, yo > 0. Otherwise, items 1 - 3 are true for all xo, yo > 0
such that xo/(xo + yo) > z̄3.

Finally, let us consider the case in which the equilibrium point z̄3 is stable.

Proposition 6.2.5. In the mixed case with prevailing callers, i.e. when a > c
and d > b, solutions x(t)→∞ and y(t)→∞ if and only if

a+ d− (b+ c) > ad− bc.

6.2.2 Analysis of the limited growth model

The isoclines for system (6.7) are (see also figures 6.1 and 6.2):

x(1− a) + y(1− b)− (x+ y)2 = 0, x(1− c) + y(1− d)− (x+ y)2 = 0

Thus, for eq. (6.7) we have the following equilibrium points: P1 = (0, 0),
P2 = (0, 1− d), P3 = (1− a, 0) and P4 = (x̄, ȳ) in which

x̄ =
(d− b) (a− b− c+ d− ad+ bc)

(a+ d− b− c)2 , (6.12)

ȳ =
(a− c) (a− b− c+ d− a d+ bc)

(a− b− c+ d)2 . (6.13)

We clearly see that equilibrium points P2 and P3 are feasible only if d < 1
and a < 1, respectively.

As in the previous model, in the absence of one population the other one
goes away from zero depening on the size of a and d. Thus, provided that
parameters a and d are less than 1, P1 is an unstable equilibrium.
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Figure 6.1: Isoclines of the limited population growth model. For this condi-
tions, P4 is not feasible. The red curve stands for the x′ = 0 and and the red
one for y′ = 0. In the picture on the left, P2 is asymptotically stable whereas P3

is unstable. On the right, P3 is asymptotically stable whereas P2 is unstable.

Figure 6.2: Isoclines of the limited population growth model. The existence
of an equilibrium solution with nonzero coordinates. The red curve stands for
the x′ = 0 and and the red one for y′ = 0. In the picture on the left, P2 and
P3 are both asymptotically stable whereas P4 is unstable. On the right, P4 is
asymptotically stable whereas P2 and P3 are both unstable.

For the model defined by eq. (6.7), the Jacobian matrix J = [Jij] at (x, y),
with x, y > 0 , is given by

J =


1− 2x− y − a+

y2 (a− b)
(x+ y)2

x2 (a− b)
(x+ y)2 − x

−y − y2 (c− d)

(x+ y)2 1− x− 2y − d− x2 (c− d)

(x+ y)2

 . (6.14)

At the equilibrium P2 = (0, 1− d), the eigenvalues of the Jacobian matrix
are λ1 = d − b and λ2 = d − 1. Thus, provided that it is feasible, P2 is
asymptotically stable when d < b. Further, at the equilibrium P3 = (1− a, 0),
the eigenvalues of the Jacobian matrix are λ1 = a − c and λ2 = a − 1. Thus,
P3 is asymptotically stable when a < c.

Proposition 6.2.6. If P4 is feasible then one of the following are true:
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Figure 6.3: Graphical illustration for Proposition 6.2.6 with a = 0.3, b = 0.2,
c = 0.25 and d = 0.35. For these parameters, the coexistence equilibrium solu-
tions is P4 = (0.54, 0.18) that is stable, as predicted. For the initial condition
xo = 0.1 and yo = 0.5 the solution converges to P4 as t→∞.

1. in the mixed case with prevailing callers, i.e. a > c and d > b. In this
case, P4 is stable.

2. In the mixed case with prevailing non-callers, i.e. a < c and d < b. In
this case, P4 is unstable.

The last statement relies on the feasibility of P4 (Fig. 6.3). We could easily
check that

dx

dt
< (1− p)x < 0

in which p = min{a, b} > 1 and x, y > 0. Thus, when a, b > 1 the last
inequality implies that P4 is not feasible and x(t)→ 0 as t→∞. Analogously,
y(t) → 0 as t → ∞ in case of c, d > 1. Thus, in order to have P4 feasible we
must have at least one parameter less than 1 in each equation of the model.
Furthermore, suppose a > c and d > b. When all parameters are less than 1,
the first part of items 1 and 2 are sufficient conditions for the feasibility of P4.
In fact, assuming that 1 > a > c and d > b we have that

a− c+ d− b− ad+ bc = a− c+ d(1− a) + b(c− 1) > (a− c)(1− b)

and since b < 1, it follows that a− c + d− b− ad + bc is positive. Therefore,
by eq. (6.12) and eq. (6.13) we have that P4 is feasible. On the other hand,
assuming that a < c and d < b < 1 we have that

a− c+ d− b− ad+ bc = d− b+ c(b− 1) + a(1− c) < (d− b)(1− c).

In this case, provided that c < 1, the expression a − c + d − b − ad + bc is
negative and hence eq. (6.12) and eq. (6.13) imply that P4 is feasible.

Now, let us analyse the behaviour of the solution of eq. (6.7) when P4 is
not feasible.
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Proposition 6.2.7. If callers prevail in both scenarios, i.e. a > c and b >
d, the coexistence point P4 is not feasible and P2 is stable when the callers
mortality in the alarm case does not exceed one, i.e. d < 1. Otherwise, P1 is
stable.

Similarly, we have the following result.

Proposition 6.2.8. If non-callers prevail in both scenarios, i.e. a < c and b <
d, the coexistence point P4 is not feasible and P3 is stable when the non-callers
mortality in the non-alarm case does not exceed one, i.e. a < 1. Otherwise, P1

is stable.

From the previous discussion, we must point out that in the case where
all equilibrium points are feasible, the asymptotic stability of P2 and P3 imply
the instability of P4. On the other hand, when P4 is unstable, P2 and P3 are
both asymptotically stable.

When a = c the equilibrium point P4 is no longer feasible, and the equilib-
rium P3 = (1−a, 0) undergoes a bifurcation and its stability relies on whether
b > d or b < d. In fact, the set [0, 1] × [0, 1] is invariant for the dynamical
system defined by eq. (6.7). Thus, when d > b the equilibrium points P2 and
P1 are unstable and the solution converges to P3.

6.2.3 Analysis of group size effects - variant 1

Clearly, P1 = (0, 0) is an stable equilibrium point for eq. (6.8) if and only if
a > 1 and d > 1.

When y = 0, the equilibrium points of eq. (6.8) are defined by the equation

f(x) = 1− x− ae−x/g = 0. (6.15)

The Jacobian matrix for points satisfying eq. (6.15) is given by

J =

 (ax/g)e−x/g − x 0

ae−x/g − x− be−x/g + (ax/g)e−x/g 1− ce−x/g − x


whose eigenvalues are

λ1 = 1− x− ce−x/g λ2 = x
(
a/ge−x/g − 1

)
. (6.16)

Thus, we can state the following results:

Proposition 6.2.9. If the non-callers mortality in the non-alarm case does
not exceed one, i.e. a < 1 then there is only an equilibrium point on the x-axis,
say P1 = (x̄, 0). This equilibrium point is stable if non-callers prevail in the
non-alarm scenario, i.e. c > a and unstable if they do not.
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Proposition 6.2.10. When the non-callers mortality in the non-alarm sce-
nario exceeds both one and the threshold group size, i.e. a ≥ max{1, g} on the
x-axis we can have:

1. No equilibrium point when g [ln(ag−1) + 1] > 1.

2. One equilibrium point when g [ln(ag−1) + 1] = 1.

3. Two equilibrium points, say P1 = (x̄1, 0) and P2 = (x̄2, 0) with x̄1 < x̄2,
when g [ln(ag−1) + 1] < 1. In this case, when non-callers prevail in the
non-alarm scenario, i.e. c > a, P1 is unstable and P2 is stable. Con-
versely, both are unstable.

In the case where a ≤ g, the function f(x) in eq. (6.15) is a decreasing
function and so there is only one equilibrium point on the x-axis. The stability
of such an equilibrium relies on having a > c or a < c.

We can state similar results for equilibrium points on the y-axis.

Proposition 6.2.11. If d < 1 then there is only an equilibrium point on the
y-axis, say P1 = (0, ȳ). This equilibrium point is stable if callers prevail in the
alarm scenario, i.e. b > d and unstable conversely.

Proposition 6.2.12. When the callers mortality in the alarm scenario exceeds
both one and the threshold group size, i.e. d ≥ max{1, g} on the y-axis we can
have:

1. No equilibrium point when g [ln(dg−1) + 1] > 1.

2. One equilibrium point when g [ln(dg−1) + 1] = 1.

3. Two equilibrium points, say P1 = (0, ȳ1) and P2 = (0, ȳ2) with ȳ1 < ȳ2,
when g [ln(dg−1) + 1] < 1. In this case, when callers prevail in the alarm
scenario, i.e. b > d, P1 is unstable and P2 is stable. Conversely both are
unstable.

Now, let us turn our attention to the existence of the equilibrium point in
which both species survive. For x, y > 0 the isoclines of eq. (6.8) are defined
by the following implicit equations:

1− (x+ y)− e−(x+y)/g

(
a

x

x+ y
+ b

y

x+ y

)
= 0

1− (x+ y)− e−(x+y)/g

(
c

x

x+ y
+ d

y

x+ y

)
= 0.

. (6.17)

From the previous equation such an equilibrium point P = (x̄, ȳ) must satisfy
the relation

ȳ =
a− c
d− b

x̄ (6.18)
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and thus, in order for P = (x̄, ȳ) to be feasible, the parameters must satisfy:
(i) a > c and d > b or (ii) a < c and d < b. Now, replacing y by (a−c)x/(d−b),
x̄ must satisfy

1− (1 + α)x− βe−(1+α)x/g = 0 (6.19)

in which

α =
a− c
d− b

, β =

(
a+ αb

1 + α

)
. (6.20)

The eigenvalues of the Jacobian matrix for points on the line y = αx are
given by:

λ1 = 1− (1 + α)x−
(
a+ αd

1 + α

)
e−(1+α)x/g (6.21)

λ2 = 1− 2(1 + α)x− βe−(1+α)x/g +
a+ αb

g
xe−(1+α)x/g. (6.22)

Using the previous equations we can state the following result:

Proposition 6.2.13. If β < 1 then there is an equilibrium point P = (x̄, ȳ)
in which x̄ > 0 and ȳ > 0. This equilibrium point is stable in the mixed case
when callers prevail, i.e. a > c and d > b and unstable in the mixed case when
non-callers prevail, i.e. a < c and d < b.

Proposition 6.2.14. If β > 1 then eq. (6.8) has:

1. No nonzero equilibrium point when g [ln (βg−1) + 1] > 1.

2. One nonzero equilibrium point when g [ln (βg−1) + 1] = 1.

3. Two nonzero equilibrium points, say P1 = (x̄1, ȳ1) and P2 = (x̄2, ȳ2),
in which x̄1 < x̄2 and ȳ1 < ȳ2, in case of having g [ln (βg−1) + 1] < 1.
Furthermore, if callers prevail in the mixed case, i.e. a > c and d > b, P1

is unstable and P2 is stable. Both are unstable in the mixed case when
non-callers prevail, i.e. a < c and d < b.

The line y = αx is an invariant set, say S, for the dynamical system defined
by Eq. (6.8). In fact, defining z(t) = −αx(t) + y(t) we have that z′(t) =
−αx′(t) + y′(t). Now, using Eq. (6.14) for all (x, y) ∈ S we have that z′(t) = 0.
Thus, for every initial condition on S we have that z(t) = 0 for all t > 0.
That is, if yo = αxo then y(t) = αx(t) for all t > 0, which proves that S is
invariant. In this way, when the equilibrium points on the line S are unstable,
solutions generated by initial conditions above the line S are going to converge
to equilibrium points on the y-axis. On the other hand, solutions generated by
initial conditions below the line S are going to converge to equilibrium points
on the x-axis.

By the previous results we can conclude that the surviving of species relies
not only on the combination of the parameters values but it relies also on the
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Figure 6.4: Graphical illustration for Proposition 6.2.15 with a = 1.46,
b = 1.20, c = 1.25 and d = 1.45. On the left, we set g = 0.3 and thus we
have two coexistence equilibrium solution: one unstable and the other one
asymptotically stable. For these parameters, the origin is also asymptotically
stable. On the right, we set g = 0.51 and thus there is no coexistence equilib-
rium solution. All solutions converge to zero.

initial conditions. That is, depending on the combinations of parameters the
system defined by Eq. (6.8) can present an Allee effect. For instance, if a, d > 1
then the origin is a stable equilibrium point. Further, if the third condition
of Proposition 6.2.14 is satisfied then there are two stable equilibrium points:
P1 = (0, 0) and P2 = (x̄, ȳ) in which x̄, ȳ > 0. Of course, the convergence to
each one of these equilibrium points depends on the initial condition.

To clarify this behaviour, let us analyse the following case.

Proposition 6.2.15. Suppose all mortalities exceed one, i.e. a, b, c, d > 1 and
consider the mixed case with prevailing callers, i.e. a > c and d > b. There is
a ḡ such that for each g < ḡ there are two critical values n1 ≤ n2 such that:

1. both solutions converge to P = (x̄, ȳ), x̄ > 0 and ȳ > 0 when the initial
condition (xo, yo) satisfies xo + yo > n2.

2. both solutions converge to P = (0, 0) when the initial condition (xo, yo)
satisfies xo + yo < n1.

6.2.4 Analysis of group size effects - variant 2

As the previous models, the origin P1 = (0, 0) is an stable equilibrium point
of Eq. (6.9) if and only if a > 1 and d > 1.

Now, on the x-axis the equilibrium points can be found by setting y = 0
in Eq. (6.9) and so, (1 − a, 0) is also an equilibrium point. Setting x = 0 in
Eq. (6.9), the equilibrium points on the y-axis are defined by the solutions of

1− y − de−y/g = 0.

Further, we can state the following result:
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Proposition 6.2.16. For Eq. (6.9) it turns out that:

1. If a < 1 then P = (1−a, 0) is an equilibrium, stable if non-callers prevail
in the non-alarm scenario, i.e. c > a and unstable conversely.

2. If d < 1 then there is only an equilibrium P = (0, ȳ) on the y-axis. This
equilibrium is stable if callers prevail in the alarm scenario, i.e. b > d
and unstable conversely.

Furthermore, assuming d > 1 and γ = g [ln (dg−1) + 1] then:

3. There is no equilibrium on the y-axis when γ > 1.

4. There is an equilibrium on the y-axis when γ = 1.

5. There are two equilibria on the y-axis, say P1 = (0, ȳ1) and P2 = (0, ȳ2),
ȳ1 < ȳ2, in case of having γ < 1. Further, if b > d then P1 is unstable
and P2 is stable. Both are unstable if b < d.

Besides the x axis and y axis, the isoclines of Eq. (6.9) are given by

1− (x+ y)−
(
a

x

x+ y
+ b

ye−(x+y)/g

x+ y

)
= 0

1− (x+ y)−
(
c

x

x+ y
+ d

ye−(x+y)/g

x+ y

)
= 0.

. (6.23)

By comparing these two equations, we can conclude that at the equilibrium
P = (x̄, ȳ) we must have:

(x̄+ ȳ)− (x̄+ ȳ)2 − αx̄ = 0, ȳ = αx̄e−(x̄+ȳ)/g (6.24)

in which α = (a − c)/(d − b). Thus, as necessary condition to existence of
P = (x̄, ȳ) the parameters must satisfy: (i) a > c and d > b or (ii) a < c and
d < b.

The previous equalities allow us to state the following

Proposition 6.2.17. If a + αb > 1 + α then there are ḡ and ĝ such that
Eq. (6.9) has:

1. No nonzero equilibrium point when g ≥ ḡ.

2. Two nonzero equilibrium points, say P1 = (x̄1, ȳ1) and P2 = (x̄2, ȳ2), in
which x̄1 + ȳ1 < x̄2 + ȳ2, in case of having g ≤ ĝ. Furthermore, if in the
mixed case callers prevail, i.e. a > c and d > b then P1 is unstable and
P2 is stable. Both are unstable if instead in the mixed case non-callers
prevail, i.e. a < c and d < b.

The next result follows directly from the previous proof.

Proposition 6.2.18. If a + αb < 1 + α Eq. (6.9) has an equilibrium point
P = (x̄, ȳ). Further, P is stable when in the mixed case callers prevail, i.e.
a > c and d > b and unstable conversely.
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Figure 6.5: Graphical illustration for Proposition 6.2.17 with a = 1.3, b = 1.2,
c = 1.25, d = 1.35, g = 0.23 (left) and g = 0.30 (right). On the left, for
these parameters, the coexistence equilibrium solutions are P1 = (0.14, 0.24)
and P2 = (0.05, 0.86). As predicted P1 is unstable whereas P2 is stable. On
the right, there is no coexistence equilibrium solutions.
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Figure 6.6: Graphical illustration for Proposition 6.2.17 with a = 1.3, b =
1.2, c = 1.25, d = 1.35 and g = 0.23. As predicted the convergence to the
coexistence equilibrium depends on the initial condition. On the left we set
(0.2, 0.4) as initial condition whereas on the right we set (0.05, 0.128).
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6.3 Discussion

We begin the discussion section by making a summary and a biological inter-
pretation of the results of section 6.2.

6.3.1 Summary of analysis and biological interpretation
of the models

Model 1 - Unlimited growth

In model 1 we have just two components in the dynamics of the population:
Malthusian growth and death by predation. Since both ingredients may be
unlimited, cases in which the populations tend to infinity can be observed.
Even if extremely simple and unrealistic in the dynamics aspect, the model
can provide the basic insight as to which type of individual will prevail (in
terms of frequency) in the population, depending on the values of parameters
a, b, c and d.

Equation (6.10) is the the dynamics of the frequency of non-alarmists in
the population (z(t)) and captures the essence of our discussion, it is a form
of replicator equation [68]. For such equation of the frequency, three equi-
libria may exist: alarmists dominate the population (z̄1 = 0), non-alarmists
dominate the population (z̄2 = 1) and a mixed equilibrium where there is a
balance in the frequency of the populations (z̄3 = α = (a− c)/(d− b)). Given
these three equilibria, we have only four distinct qualitative behaviours for the
dynamics: non-alarmists dominate, alarmists dominate, both behaviours are
evolutionarily stable and, finally, both are unstable. In table 6.1 we present
the relations between the parameters, the result of the evolutionary dynamics
and some biological interpretation.

Naturally, the mortality rates also define if each population of the types
(x(t) and y(t)) is going to survive, and that depends on their relations with
the population growth rate (in non-dimensional form, they are compared to
1). Propositions 6.2.1 to 6.2.5 give the rigorous proofs of those relations. They
state respectively the conditions for unlimited growth or disappearance for the
“non-alarmist” population, the conditions under which both “non-alarmist”
and “alarmist” thrive coexisting, when each one survives alone, and when both
these populations grow without bounds. The coefficient α = (a− c)/(d− b) is
also important, because it represents the ratio of alarmists per non-alarmists in
case of a mixed equilibrium or the slope of the separatrix in case of bistability.

Model 2 - limited growth

Model (6.7) incorporates the limiting effects of population growth through
intraspecific competition. Propositions 6.2.6-6.2.8 illustrate the mutual rela-
tionships between feasibility of the coexistence equilibrium and stability of the
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Table 6.1: Qualitative behaviour of model (6.1) and biological interpretation.

Conditions
Which type of individual
does better in case of:

Evolutionary outcome

Alarm No-alarm

a < c and b < d Non-alarmists Non-alarmists Non-alarmists dominate

a > c and b > d Alarmists Alarmists Alarmists dominate

a < c and b > d Alarmists Non-alarmists
Both strategies are
stable, mixed equilib-
rium unstable

a > c and b < d Non-alarmists Alarmists
Both strategies are
unstable, mixed equi-
librium stable

points in which only “non-alarmists” or “alarmists” thrive. What propositions
6.2.6-6.2.8 show is that the basic relations depicted in table 6.1 still hold in the
new model. In the model without competition, when one strategy dominates
the other, individuals of the inferior strategy can still survive in the population,
even though they represent a decreasing fraction of the total population as the
time advances. In the model with competition, this possibility is excluded by
the introduction of intraspecific competition.

Some care has to be taken, again, with the relation of the parameters in
comparison with unity, when they are greater, the whole population may go
extinct.

Model 3 - Group size effects - variant 1

The suggestion that individuals might benefit from the retention of conspecifics
(see also section 6.3.3) due, for example, to Trafalgar, confusion [19][p. 274]
or dilution effects, led us to propose a model to incorporate this factor in
the reduction of the predation rate. In this variant, those effects take place
independently if an alarm call was produced or not. The results indicate
that, under certain assumptions in the functional response, these benefits of
grouping are not enough to change the qualitative results presented in table
6.1.

The results do not change qualitatively, basically because the benefit that
one individual enjoys by the retention of another conspecific is, of course,
shared by every other individual of the population. Therefore, just this factor
is not enough to generate differential fitness (comparison between gains), which
is very important in the competition of the two strategies. A simple way to
understand this is to write the equation for the frequencies of non-alarmists in
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the population for this model, which we denote by u(t):

du

dt
= u (1− u) e−(x+y)/g [(c− a+ b− d) z + d− b] . (6.25)

Equation (6.25), above, is almost identical to equation the replicator equation
(6.11). Since the exponential term e−(x+y)/g is always positive, we can deduce
that the qualitative behaviour of both equations is identical. So, again, this
means that the qualitative relations between the strategies do not change in
terms of the frequencies. The major change is with respect to the survival of
the species.

In the previous models, usually one or two single parameters would define
if the populations would survive. Now, since we have group size effects, results
are more complex and may depend on the initial conditions. Just as a way
of understanding this, we can decompose the behaviour of the model into two
ingredients: frequencies and population size. In terms of frequencies the be-
haviour is exactly analogous to previous models. When it comes to population
size, now there may be an effect analogous to an “Alee effect”, meaning that if
the initial population size is too small, benefits of grouping are inefficient and
populations may go extinct.

The exact conditions over the parameters for the existence of such effects
with respect to equilibrium frequencies u = 0 (non-alarmists dominate), u = 1
(alarmists dominate) and u∗ = α (mixed equilibrium) are worked out and
proved in propositions 6.2.9 to 6.2.15. It is also worth to note that the value
of the mixed equilibrium ratio between alarmists and non-alarmists is not
changed by the inclusion of benefits of grouping (which work for both alarm
and non-alarm scenarios - such as the dilution effect).

Propositions 6.2.9 to 6.2.12 illustrate respectively the situations in which
no, one or two equilibria with only “non-alarmists” may arise, and the cor-
responding situation involving instead only the “alarmist” population. For
the two populations coexisting together, the possible alternatives are stated in
Propositions 6.2.13 and 6.2.14, while Proposition 6.2.15 discusses the bistabil-
ity between coexistence and the system disappearance.

Model 4 - Group size effects - variant 2

This model also may present a behavior analogous to an “Alee effect”. The
conditions for survival of just one of the “non-alarmists” or “alarmists” popu-
lations are given in Proposition 6.2.16. Propositions 6.2.17 and 6.2.18 instead
discuss respectively the feasibility and multiplicity of the coexistence equilib-
rium and its stability. As proved in proposition 6.2.17, for small values of g
this model may have a coexistence equilibrium that is asymptotically stable
besides the origin. In this case, the convergence of the solution to one or an-
other depends on the initial condition. We can see this effect illustrated in the
simulations in the figures 6.5 and 6.6. However, here the frequencies of the
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coexistence equilibrium depends not only on the parameters a, b, c and d but
also it depends on the threshold group size g.

6.3.2 Selfish, mutualistic and altruistic alarm calls

In sections 6.1, 6.2 and 6.3.1 we discussed four distinct models for the selection
of alarmist or non-alarmist behaviour in a population composed of both types
of individuals. The analysis showed that the average mortality rates due to
predation, represented by parameters a, b, c and d are the key elements to
define which behaviour can evolve by individual selection. In this section we
discuss some biological theories and observations and its relations with the
results of the models.

In view of the summary of the behaviour of the models (section 6.3.1), the
first three models have almost identical behaviour in relation to those four
fundamental parameters. Only the model that includes benefits of grouping
just in the case of an alarm has some significant difference in behaviour. Our
discussion will be focused one the relations between a, b, c and d, with some
commentaries on the case of the second variant of group size effects.

In first place, we must make an observation on the reasons of why param-
eters a, b, c and d may differ from one another. Differences between a and b,
or between c and d are simpler to account for, since they are related with two
distinct situations: the chance of existence or non-existence of an alarm call
prior to the attack of the predator. On the other hand, differences between
a and d or between c and d (which are the ones that really matter for the
behaviour of the models) are subtler.

For instance, if there is a “cost” (in terms of increasing risk) of giving an
alarm call, we can suppose that b < d. If all other factors remain equal, non-
alarmist individuals never increase their chance of being attacked by issuing
alarm calls, so their average mortality is the same in all cases where an alarm
call was produced. On the other hand, alarmists will sometimes be the ones
who produced the alarm call, thus, the increased mortality in those specific
situations increase the average mortality of the class. There is mixed evidence
if this is the case for all alarms calls [19, p. 187-189]. In particular, [75]
registered increased mortality for alarm callers in relation to one predator
species (terrestrial) but decreased mortality in relation to another (aerial). In
fact, even in the case where alarm calling has no intrinsic “cost”, if the caller is
consistently the one closest to the predator, still we would have b < d because
the average mortality of non-callers would be smaller than that of callers under
the alarm scenario.

Differences between a and c might occur due to the differential behaviour
when spotting a predator. The individual who is the first to spot the predator
might consistently be the closest to it and, if proximity leads to increased risk,
we would have a > c, simply because the average mortality of non-callers would
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be greater than those of callers when the alarm is not given. Therefore, we
can interpret different biological scenarios by changing the relations between
the parameters.

It must be observed, though, that the inference of the impact of more com-
plex scenarios on the average mortalities of each class, is not straightforward.
For a rigorous analysis it is necessary to think of a more complete predatory
sequence and calculate the impact on the average mortalities explicitly. The
fact that the average mortalities may depend on the actual size of the classes
is one possible direction of model improvement.

[19] (p. 190) presents a classification of alarm calls directed at conspecifics
that consists of three categories: selfish (benefit the caller but harm the re-
ceiver), mutualistic (benefit both caller and receiver) and altruistic (harming
the caller and benefiting the receiver). Such type of terminology, introduced
by Hamilton [38, 39, 88], is based in four possible combinations of two qual-
ities. Given a certain action, the individuals involved in it may be classified
as actors or recipients. The results of the action upon an individual may be
classified as a “benefit” if they increase fitness or “harm” if they decrease
it. Therefore, given the results for actor/recipient, we obtain four distinct
categories: “selfishness” (+/−),“altruism” (−/+), “mutualism” (+/+) and
“spitefulness”(−/−). Even though spite is rare in nature, it is included here
for a complete theoretical treatment.

Recalling the meaning of the parameters a (average mortality of non-caller
under no alarm), b (average mortality of non-callers under alarm), c (average
mortality of caller under no alarm) and d (average mortality of callers under
alarm), one possible interpretation of the relations between the parameters
based on the four interaction types (+/−), (−/+), (+/+) and (−/−), is given
in table 6.2.

Table 6.2: Relations between parameters given the four distinct types of in-
teraction.

Type Parameter relations

Selfish (+/−) a < b and c > d

Mutualistic (+/+) a > b and c > d

Altruistic (−/+) a > b and c < d

Spiteful (−/−) a < b and c < d

We acknowledge that there may be other possible interpretations, but we
remark that the mathematical analysis is not affected by such conflicts. Once
the relations between the parameters is well-established, the evolutionary out-
comes are well-defined.
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Selfish alarm calls

If we interpret a “selfish” alarm call as one that decreases the mortality rate of
callers and increases the mortality rate of non-callers, both in relation to the
non-alarm scenario, in terms of the parameters of the model, we would have
a < b (mortality rate of non-callers are increased in the case of an alarm), and
d < c (mortality rates of callers is decreased in case of alarm). Under such
conditions, three of the four evolutionary outcomes of table 6.1, are possible,
depending on the exact values of the parameters. The only unfeasible outcome
is the total dominance of the non-callers, but the strategy could still be stable
if non-callers did better in the non-alarm scenario.

In terms of the parameters of the models, it does not matter much the
comparisons between a and b or between c and d, which would measure the
efficiency of the alarm in preventing the predator to achieve a successful attack.
What really matters are the relations between the a and c or b and d. If
we suppose that callers and non-callers do equally well under the non-alarm
scenario (a = c), then we can infer from a < b and d < c that d < b. That is,
the mortality rate of callers is smaller than those non-callers under the alarm
scenario. In this case, callers dominate and the behaviour is evolutionarily
stable. The same occurs if callers do better even in the non-alarm scenario
(a > c).

If, for any reason, the non-callers do a little better under the non-alarm
scenario (a < c) then both strategies are stable and the evolutionary outcome
depends on the initial condition. Now, the separatrix is given by the line y =
αx, if the advantage of alarmists in the alarm scenario (b− d) is much greater
than the advantage of non-alarmists in the non-alarm scenario, we obtain a
separatrix very close to the x-axis. That means that small perturbations in
the frequencies of behaviours could lead to the total establishment of alarmist
behaviour. Such initial variation of frequencies could be initiated through kin-
selection, for instance, and then take-off and spread to the whole population.

If we include the benefits of grouping when there is an alarm (model (6.9)),
meaning that although non-callers would do better in the non-alarm situation
without these benefits (a < b), with the inclusion of the effect they could do
better in the alarm scenario (a > e−(x+y)/gb), depending on the size of the pop-
ulation and the efficiency of the benefits of grouping. The complete behaviour
of the model is more complicated, and the separatrix for the establishment of
the strategies is no longer a straight line. But it can be observed, as expected,
that as the efficiency of grouping benefits increases, the region of attraction of
the non-caller strategy increases. This means that the effect of the “selfish”
alarm may get diluted due to the benefits of grouping and the “take-off” of
the alarmist population becomes more difficult.

One can imagine a hypothetical scenario where calling behaviour serves as
an extreme signal of pursuit deterrence (for a definition of pursuit deterrence
see [19], p. 244) to the point that predators choose to attack preferably non-
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callers (which are not displaying that they are alert). Under such conditons
the mortality rate of non-callers under the alarm scenario might be greater
than in the case of no alarm. Finally, one must also observe that such type
of alarm, if ever observed in nature, would have a very distinct aspect when
compared to beneficial alarm calls. For instance, there should be no pressure
in lowering localizability, since now the alarm itself is a sign of unprofitability.

Mutualistic alarm calls

The case where both caller and receiver are benefited by the emission of alarm
calls can be related to the models by choosing the parameters so that a > b
and c > d. Thus, the alarm is beneficial to both callers and non-callers. In
this case, which type of individual benefits more, whether caller or non-caller,
is not explicitly defined. So, no clear relation between d and b or a and c can
be deduced using only this information.

That individuals can reap benefits from group protection when an alarm
call is emitted does not help, [69, 24], what matters most is which type is
benefited the most. When costs and benefits are approximately equal, they
provide a perfect scenario for the evolution of nepotism, where kin selection
should play a crucial role. No wonder there is good evidence for kin selection
in many instances of alarm calling behaviour.

When alarm calls are mutualistic, the selection of alarmist and non-alarmist
behaviour will depend on the relative benefits that each type of individual
obtains. If alarmists and non-alarmists are equally preyed upon under the
“non-alarm” scenario (a = c), and there is a increased risk in emitting an
alarm call that provides equal protection for all individuals (d > b), then
alarmist behaviour will not be selected for (by individual selection alone). We
shall refer to the case of d > b as “mildly altruistic”.

If non-callers suffer higher average mortality rates under the non-alarm sce-
nario (a > c), frequency-dependent selection dominates and both behaviours
can survive in the population, the exact proportions depending on the partic-
ular model adopted (dependent on a − c, d − b and groupsize effects). This
should be the case when the one closest to the predator has both a higher
probability of spotting the predator and of being the target of an attack. Un-
der the non-call scenario, non-caller individuals have a higher probability of
being the one closest to the predator, so their average mortality under this
scenario, when compared to callers, should be a little higher.

Group size effects (those of model (6.9)) can significantly shift the equilib-
rium population fraction of each strategy. When grouping benefits are very
effective even for low population numbers (low when compared to the carrying
capacity, g < 1) the fraction of alarmists increases. If grouping is not very
effective, the proportion of alarmists decreases.

It is worth to note that while the steady state in which there is a non-zero
fraction of both alarmists and non-alarmists may represent a population that

167



6 Models for alarm call behaviour

is composed of individuals that adopt either one or other strategy 100% of
the time, it can also be understood as a population of individuals adopting a
“mixed strategy” [77]. That is, individuals may or may not give the alarm,
having a probability of adopting one or the other strategy. In the case of the
unlimited growth model (eq. (6.5)) the probability of adopting one strategy
or the other is given by z̄3 and 1− z̄3 (z̄3 is the proportion of non-alarmists in
the steady state where both populations are nonzero).

The conclusion is that “mildly altruistic” alarm calls can evolve to a mixed
equilibrium in situations where the individual that spots the predator is subject
to an increased risk (d > b but c < a). Grouping benefits may help the
establishment of alarmist behaviour. We recall that we are not modelling kin
selection in these models.

Altruistic alarm calls

If we interpret altruistic alarm calls as in table 6.2, we have that the average
mortality of the alarmist class increases in case of alarm while the mortality of
non-alarmists decrease, that is a > b and c > d. If one suppose that non-callers
do equally well or better than callers (a ≤ c) under the non-alarm scenario,
then it we can infer that b < d, which leads to the dominance of non-alarmist
behavior.

If a > c, the resulting behaviour will depend on the relation between b and
d. The most likely is that we still have b < d, so that the resulting evolutionary
equilibrium is a mixed equilibrium. If we had b > d > c, that would mean
that callers in the non-alarm scenario do better than non-callers warned by an
alarm, which looks unlikely. So, if callers do a little better under the non-alarm
scenario, that would result in a stable mixed equilibrium.

Recalling that the ratio between of callers and non-callers is given by
α = (a− c)/(d− b), in the case of altruistic scenario, a low ratio works against
the spread of alarmist behaviour. That is because the proportion of the popu-
lation (or frequency with which an individual chooses to emit an alarm) is low
if a ≈ c and d � b. So, in this case there is only the establishment of a very
low frequency of alarmists, and it may represent cases in which alarm is more
restricted to help kin-related individuals. Here the effects of benefits of group-
ing change the equilibrium ratio in favor of alarmists ((a− b)/e(−(x+y)/g(d− b))
reducing the effects of the altruistic alarm and increasing the frequency of
alarmists in the population.

Spiteful alarm calls

Interpreting a spiteful alarm call as one which increases the mortality of both
classes, we would have a < b and c < d. Theoretically, any of the four resulting
outcomes of table 6.1 is possible, since the relations between a and c (who does
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better with no alarm) and b and d (which class is harmed more by the alarm)
are undefined.

Harmful alarm calls would imply in a very different evolutionary relation-
ship between callers and receivers. While receivers should evolve to detect
well and respond quickly to beneficial calls, under the existence of harmful
calls, receivers would be selected to resist the call (and act as if there was no
alarm). In this sense, the relation between callers and receivers could only be
evolutionarily stable if not responding to the alarm led to even worse results.

In the discussion of selfish alarm, we created a scenario of extreme pursuit
deterrence in which the mortality of non-callers would be increased when com-
pared to the non-alarm scenario. A spiteful alarm would be one in which also
the mortality of callers would be increased. For instance, they might draw the
attention of the predator, otherwise unaware of the presence of prey to the
group. If the mortality of non-callers is increased more than that of callers
(b > d) such behaviour could evolve through individual selection. To the best
of our knowledge, we know no evidence of such types of “alarm behaviour”.

6.3.3 Benefits of retaining group members and similar
scenarios

[78] proposed an approach to explain alarm call behaviour:

If it is beneficial for some animals to live in groups with conspecifics
(see Bertram 1978; Pulliam and Caraco 1984), or even in groups
including other species, then the loss of individuals from the group
may reduce the overall benefit of the group to each survivor. If
this loss of benefit is greater than the risk incurred by delivering
a warning signal, then animals that warn group members of im-
pending predator attack may have a selective advantage over those
that do not. The selective advantage would not derive from kinship
and it would not require specific acts of reciprocity (or distinction
between cheaters and alarm senders).

The inclusion of benefits of grouping in models (6.8) and (6.9) has two
important effects:

1. It creates an effect similar to an “Alee effect”. Depending on the combi-
nation of parameters, very low populations may not benefit enough from
grouping to scape extinction.

2. In variant 2 (benefits of grouping only under alarm), the proportion
under equilibrium may shift towards the alarmist population.

Both effects do not change the fundamental relations between parameters a
versus b and c versus d, that define the selection of alarmist or non-alarmist
behaviour.
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Thus, under the light of individual selection and the models proposed,
such theory alone would not be enough to explain the selection of alarmist
behaviour. What matters really is which class benefits most from the alarm
call (b versus d) or is harmed by not issuing an alarm (a versus c). Even
under the assumption of no-intraspecific competition, as in model (6.5), if
the benefit is greater for the non-alarmists, the fraction of the population
composed by non-alarmists would increase in time, approaching one as time
increases. Therefore, under the framework of individual selection, we conclude
that the hypothesis of benefits of retaining group members is not a sufficient
explanation for the maintenance of alarmist behaviour in a population.

On the other hand, we have shown that grouping benefits, model (6.9),
favours the selection of a majority of alarmists in the co-existence scenario.
This is not the exact mechanism suggested by [78] but it is related to it in the
sense that, by retaining group members, alarmists diminish the weight of the
cost of issuing alarm calls in proportion to the costs of not-issuing alarm calls
(x̄/ȳ = G∗(d− b)/(a− c), G∗ = e−(x̄+ȳ)/g, 0 < G∗ < 1).

Analogous to Smith’s reasoning, is the suggestion by [25]: under particular
conditions, it might be in the interest of the individual to emit an alarm
call, lowering the chance of the group of prey being detected and thus his
own chance of being attacked. Another analogous reasoning is arguing that
ensuring any group member is not taken may reduce probability of predator
returning to that area for another meal. This type of situation, again, does not
guarantee selection of alarmist behaviour, because it impacts the mortalities
of both classes. It may benefit the individual, but it may benefit equally, or
more, the individuals of the other class.

6.3.4 Anecdoctal evidence for the evolution of alarm
calls

[24] presents a study about the functions of alarm call in redshanks. The data
collected and the conclusions of the biologist are coherent with the relations
presented with the expected relation between parameters a, b, d and d [24] (text
in bold inserted by us):

There did not appear to be a cost associated with alarm calling
in flight as sparrowhawks (one of the predators of redshanks)
rarely switched birds during an attack (0.6% of N = 535 attacks
on redshank flocks; unpublished data), and the individuals ini-
tially attacked were late or non-callers rather than callers (Cress-
well 1993a). Callers would benefit because the number of birds in
the air would be increased, adding to the “confusion” (see Cress-
well 1993a). Those birds that were approached most closely, and
consequently with the most to gain by encouraging other birds to
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join the flying flock, called most frequently. A call by the bird be-
ing chased might still result in recruiting other redshanks to join it
because a redshank on the ground was much more vulnerable than
any flying bird on attack by a sparrowhawk (Cresswell 1993b).

All elements necessary for the evolution of alarm call behaviour by individual
selection are present in the biologist’s description: low cost of alarm calls
(b ≈ d), strong penalty for either not responding to a call or not emitting
it (a > c) and grouping benefits . It is also interesting to observe that this
particular case is also an example of alarm calling behaviour that cannot be
directly explained by kin selection.

6.4 Conclusions

The results obtained by the analyses of the models indicate that alarm calls
can evolve through individual selection under particular assumptions relating
the average mortalities of each class of behaviour. Using a framework of Popu-
lation Ecology, it was possible to study some of the main explanations for the
emergence of alarm call behaviour under individual selection.

We derived conditions over the average mortalities for the evolution of
selfish, mutualistic, altruistic and spiteful alarm calls. In many particular
cases, where both strategies could survive or be stable, kin selection could
play a important role for the selection of alarm call behaviour.

The models suggest at least one main mechanism for the establishment of
alarm call behaviour without resort to kin selection. The average mortalities
of non-callers would be a little higher than callers in the non-alarm scenario,
simply because the individual who had the chance to spot the predator might
be a little more exposed to danger than the others (a > c). Naturally, such
argument is symmetric and the average mortalities of callers in the alarm
scenario should be also a little higher than those of non-callers (d > b).

If calling behaviour increases a little the chance of being attacked (which
should be the case at least for some species, given the evidence of the evolution
of non-localizability characteristics of alarm calls), then the difference a − b
should be smaller than d − b. Since the equilibrium fraction is y/x = (a −
b)/(d− b), selection does not work much in favor of alarmists. If group effects
are included, the balance may shift in favor of callers, because the equilibrium
fraction is now y/x = (a − b)/G∗(d − b), G = e−(x+y)/g. If grouping benefits
are efficient (g � 1), we can have a strong selection for alarmist behaviour.
We believe this is the most realistic representation presented by the models
studied for the evolution of alarm calls through individual selection.

In this manner, we suggest that the theory that the benefits of retaining
group members could lead to the evolution of alarm call behaviour is not
sufficient for the evolution of alarm calling, but works as a complement in
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the framework used in the models. Finally, it is important to notice that
the inclusion of group size effects in the models, depending on the rates of
mortality, may lead to the creation of an effect similar to an “Alee effect”.
In such cases, small populations may be led to extinction due to the lack of
enough individuals for the efficiency of grouping benefits. So, depending on
the predation rates, there might be a critical minimum population size for this
mechanism to work.

Appendix B

In this appendix we present proofs of propositions presented in this chapter.

Proof. (Proposition 6.2.1): For the first case, it turns out that

dx

dt
=

x

x+ y
[(1− a)x+ (1− b)y] < (1− p)x < 0

in which p = min{a, b} > 1. On the other hand, if both parameters are greater
than 1 then we have then

dx

dt
=

x

x+ y
[(1− a)x+ (1− b)y] > (1− p)x > 0

in which p = max{a, b} < 1.

Proof. (Proposition 6.2.2): In fact, since z(t) ∈ [0, 1] for all t ≥ 0, the
following inequality must be true

0 <
b− d

c− a+ b− d
< 1.

Thus, clearly, we must have b− d > 0 and c− a+ b− d > 0 or b− d < 0 and
c− a+ b− d < 0. In the first case, it turns out that b− d < c− a+ b− d which
implies that c > a. In the second, we have that b − d > c − a + b − d. Hence
a > c and the conclusion follows directly from this inequality.

The eigenvalues for this point are given by

λz̄3 =
(c− a) (b− d)

c− a+ b− d
.

Thus, in the first case the, the numerator of λz̄3 is positive whereas the denom-
inator is negative. Therefore, the equilibrium point z̄3 is feasible and stable
only when condition (i) is satisfied.

Proof. (Proposition 6.2.3): As we saw previously, b > d implies that z̄1 is
an asymptotically stable equilibrium point. Thus, if a > c then z̄3 is no longer
feasible and z(t) decreases to zero as t → ∞ for all zo ∈ (0, 1). On the other

172



6.4 Conclusions

hand, when a < c then z̄3 is unstable and z(t) decreases to zero as t→∞ for
all zo ∈ (0, z̄3). Writing x′(t) and y′(t) in terms of z(t) we have:

dx

dt
= x [1− az(t)− b(1− z(t))]

dy

dt
= y [1− cz(t)− d(1− z(t))] .

Since 1− z(t) < 1 and z(t) is a monotonic function,

dx

dt
> x [1− az(T )− b] dy

dt
> y [1− cz(T )− d]

for every fixed T > 0. If d < b < 1 then there is T > 0 such that [1− az(T )− b] =
α1 > 0 and [1− cz(T )− d] = α2 > 0 for all t > T and therefore x(t), y(t)→∞
as t→∞.

On the other hand,

dx

dt
< x [1− b(1− z(T ))]

dy

dt
< y [1− (1− d)z(T )]

for every fixed T > 0. If 1 < d < b then there is T > 0 such that [1− az(T )− b] =
α1 < 0 and [1− cz(T )− d] = α2 < 0 for all t > T and therefore x(t), y(t)→ 0
as t→∞.

Finally, when b > 1 > d, using the previous inequalities for x′(t) and y′(t),
there are α1 < 0 and α2 > 0 such that x′(t) < α1x and y′(t) > α2y for all t > T
for some T > 0. Thus, x(t)→ 0 and x(t)→∞ as t→∞ and the proposition
is proved.

(Proposition 6.2.4) can be proved using an analogous reasoning.

Proof. (Proposition 6.2.5): First, since a > c and d > b, z̄3 is asymptotically
stable and z(t)→ z̄3 as t→∞ for all zo ∈ (0, 1). As a consequence, x(t)→∞
if and only if y(t) → ∞ as t → ∞. Further, x(t) → 0 if and only if y(t) → 0
as t → ∞. As we stated before, the line y = αx, α = (a − c)/(d − b), defines
an invariant set S and an initial condition (xo, yo) belongs to S if and only if
zo = xo/(xo + yo) = z̄3. In order to prove the statement it is enough to analyse
the signal of x′(t) for initial conditions on the set S. Now, for every (x, y) ∈ S
we have

dx

dt
=

1

1 + α

a− c+ b− d+ bc− ad
d− b

.

Therefore, since d−b > 0, it turns out that x′(t) > 0 if and only if a−c+b−d >
ad− bc and the statement is proved.

Proof. (Proposition 6.2.6): By eq. (6.12) and eq. (6.13), ȳ = (a−c)/(d−b)x̄.
Assuming P4 feasible we must have (a− c)/(d− b) > 0. That is, if a > c then
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d > d and when a < c we must have d < b. This proves the first part in both
items. At P4, the eigenvalues of the Jacobian matrix are given by

λ1 = −(a− c) (d− b)
a− c+ d− b

λ2 = a− 1− (a− b) (a− c)
a− c+ d− b

.

Further, we have that

λ1λ2 =
(a− c) (d− b) (a− c+ d− b− ad+ bc)

(a− c+ d− b)2 .

Since P4 is feasible we have that λ1 is always negative. Furthermore, when
a > c and d > b eq. (6.12) and eq. (6.13) imply that a − c + d − b − ad + bc
must be positive. Therefore, in this case we have that λ1λ2 > 0 which implies
that λ2 is also negative and this proves the first item of the statement. In a
similar way, we can also prove the second claim.

Proof. (Proposition 6.2.7): According to Proposition 6.2.6, P4 is not feasible
for this configuration of parameters. The stability of P2 follows directly from
the expression of the eigenvalues of the Jacobian matrix at P2, which are
λ1 = d− b and λ2 = d− 1.

(Proposition 6.2.8) is proved in an analogous way.

Proof. (Proposition 6.2.9): Since f ′(x) = −1 + (a/g)e−x/g and f ′′(x) =
−(a/g2) e−x/g it turns out that f(x) has a maximum at xm = g ln(a/g). Now,
assuming a < 1, since f is concave, f(0) > 0 and f(1) < 0, there is only one x̄
such that f(x̄) = 0. Hence, in this case, there is only an equilibrium point on
the x-axis. It is not difficult to check that x̄ > xm.

Now, if c > a then eq. (6.15) and eq. (6.16) imply that λ1 < 1−x−ae−x/g =
0. On the other hand, we have that λ2 = xf ′(x) and since f ′(x̄) < f ′(xm) = 0 it
follows that λ2 is also negative at the equilibrium point. Therefore, P1 is stable.
In case of c < a, we have that λ1 > 0 which means that P1 is unstable.

Proof. (Proposition 6.2.10): As before, the maximum value of f(x) is given
by f(g ln(a/g)) = 1 − g ln(a/g) − g. Thus, since f is concave, f(0) < 0 and
f(1) < 0, the conclusion about the existence of equilibrium points depends on
whether the maximum value of f(x) is negative, zero or positive.

Let us assume that P1 = (x1, 0) and P2 = (x2, 0) are feasible. By eq. (6.16),
λ1 is positive when a > c which implies that both equilibrium points are
unstable. Assuming c > a we have that λ1 < 0. Now, we can easily check that
x1 < xm < x2 in which xm is the maximum point of f(x). Since f ′(x) is a
decreasing function it turns out that f ′(x2) < 0 < f ′(x1). Thus, λ2 = xf ′(x) is
negative at x2 and positive at x1. Therefore, if c > a then P1 is unstable and
P2 is stable.

Propositions 6.2.11 and 6.2.12 are also proved in a similar fashion.
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Proof. (Proposition 6.2.13): Defining the function f(x) by

f(x) = 1− (1 + α)x− βe−(1+α)x/g (6.26)

it turns out that f ′(x) = −(1 +α) + (a+ αb) g−1e−(1+α)x/g and f ′′(x) = −(1 +
α) (a+ αb) g−1e−(1+α)x/g and thus f(x) is a concave function. Assuming a−1 <
α(1 − b), we have that f(0) > 0 and f(1) < 0. Thus, since f(x) is concave,
there is only one point x̄ such that f(x̄) = 0 and, therefore P = (x̄, αx̄) is an
equilibrium point for eq. (6.8).

Now, comparing eq. (6.18) and eq. (6.21) we can conclude that λ1 < 0 if
and only if d > b. On the other hand, using eq. (6.18) again, we have that
λ2 = x̄f ′(x̄). Since x̄ must be greater than the point xm where f(x) reaches its
maximum value, we have that f ′(x̄) < 0 and so λ2 < 0. Now, by the feasibility
condition, P = (x̄, ȳ) is stable when a > c and d > b and unstable when a < c
and d < b.

Proof. (Proposition 6.2.14): Defining f(x) as in eq. (6.26), the function f
reaches its maximum value at

xm =
g

1 + α
ln
(
βg−1

)
(6.27)

which is f(xm) = 1 − g ln (βg−1) − g. Since f(0) < 0, f(1) < 0 and f(x)
is concave, the existence of equilibrium points relies on having f(xm) < 0,
f(xm) = 0 or f(xm) > 0. Thus, when f(xm) > 0 there are points x̄1 < xm < x̄2

such that f(x̄1) = f(x̄2) = 0 and, therefore, P1 = (x̄1, αx̄1) and P2 = (x̄2, αx̄2)
are equilibria.

By the concavity of f(x) we have f ′(x̄1) > 0 and f ′(x̄2) < 0. Using the
same argument as in the last proposition, we have that λ2 = x̄1f

′(x̄1) > 0 and
λ2 = x̄2f

′(x̄2) < 0. This implies P1 is unstable. On the other hand, at both
equilibria we have λ1 < 0 when d > b and λ1 > 0 when d < b. Now, using the
feasibility conditions for points on the line y = αx we can conclude that P2 is
stable when a > c and d > b and unstable when a < c and d < b.

Proof. (Proposition 6.2.15): As a, b > 1, a + αb > 1 + α which in turn
implies that β > 1. The expression g [ln(pg−1) + 1] , p = max{a, d, β}, con-
verges monotonically to zero as g → 0. We also have that g [ln(pg−1) + 1] > 1
when g = p. So, there is a ḡ such that g [ln(pg−1) + 1] < 1 for each g < ḡ.
Therefore, for a g satisfying g < ḡ, the hypotheses of the third item in proposi-
tions 6.2.10, 6.2.12 and 6.2.14 are satisfied and Eq. (6.8) has seven equilibrium
points: P1 = (0, 0); P2 = (x1, 0) and P3 = (x2, 0), x1 < x2; P4 = (0, y1) and
P5 = (0, y2), y1 < y2; P6 = (w1, αw1) and P7 = (w2, αw2), 0 < w1 < w2. By
the hypotheses, P1 and P7 are asymptotically stable.

We are going to prove that there is a heteroclinic orbit connecting P2 and
P6. In order to prove it, let (xo, yo) be a initial condition on the (1-dimensional)
stable manifold of P6, below the line y = αx. Since it is bounded, the solution
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generated by this initial condition must converge to the equilibrium point as
t → −∞. In this case, this solution cannot converge neither to P1 nor to
P7 since these equilibrium points have empty unstable manifolds. Thus, the
solution must converge either to P2 or P3 as t→ −∞.

Suppose that it converges to P3, that is, there is an heteroclinic orbit con-
necting P6 to P3. Now, consider the set U enclosed by the line y = αx, x ≥ w1,
the x-axis from x ≥ and the heteroclinic orbit connecting P2 to P6. All solu-
tions with initial condition on the interior of U must converge to P7 as t→∞
because the stable manifolds of P6 and P3 are not in the interior of U. The
unstable manifold of P6 is the line segment connecting P6 to P7 and, therefore,
it does not belong to the interior of U . Thus, solutions starting on U cannot
converge to P6 as t → −∞. In this way, since all solutions are bounded, they
would have to converge to P3 as t → −∞ and, therefore, the unstable mani-
fold of P3 would have dimension 2. But this is a contradiction that comes from
considering an heteroclinic orbit connecting P3 to P6. Therefore, the solution
through a initial condition (xo, yo) on the stable manifold of P6 must converge
to P2 as t→ −∞ which implies that there is a heteroclinic orbit connecting P2

to P6. Similarly, we can conclude that there is a heteroclinic orbit connecting
P4 to P6.

Now, consider the set Q bounded by the line segments connecting P1 to
P2 and P1 to P4 as well as the heteroclinic orbits connecting P2 to P6 and P4

to P6. Of course this set is invariant and contains only the stable equilibrium
P1. Thus, all solutions starting on Q converge to P1 as t → ∞. Likewise, all
solutions starting on the interior of the complement of A converge to P7 as
t→∞. Finally, to prove the statement it is enough to define n1 and n2 as the
minimum and maximum value of x+ y, respectively, on the orbits connecting
P2 to P6 and P4 to P6.

(Proposition 6.2.16) is proved in a way analogous to (Proposition 6.2.14).

Proof. (Proposition 6.2.17): The existence of nonzero equilibria relies on the
existence of solutions for Eq. (6.24). Now, defining u = x + y and v = x − y
we can rewrite it as

v =
2u

γ

(
1− γ

2
− u
)
, v = u

(
e−u/g − α
e−u/g + α

)
(6.28)

where γ = a+αb. Since we are looking for positive solutions, comparing these
two equations it turns out that u must satisfy:

s(u) = γ − (1− u)− α(1− u)eu/g = 0 (6.29)

and by hypothesis we have that s(0) = γ− (1+α) > 0 and s(1) = γ > 0. Now,
define f(u) = γ − 1 + u and h(u) = α(1 − u)eu/g so that s(u) = f(u) − h(u).
Thus the equilibrium solution is given by f(u) = h(u). Taking g ≥ 1 we can
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easily check that s′(u) > 0 for all u ∈ [0, 1] so that Eq.(6.29) has no solution.
On the other hand, we have that h′(u) = (α/g)(1 − g + u)eu/g which implies
that h(u) is an increasing function on the interval (0, 1 − g) and decreasing
on the interval (1 − g, 1). Furthermore, we can verify that h(

√
g) → ∞ as

g → 0 so that s(
√
g) < 0 for a fixed g ≤ g1, with g1 arbitrarily small. Since

s(u) is continuous there must exist a u1 ∈ (0,
√
g), depending on g, such that

s(u1) = 0. Since s(u) > s(u1) for 0 < u < u1 and s(u) < s(u1) for u ∈ (u1, g)
it turns out that s′(u1) < 0. Similarly, h(1 − g) → ∞ as g → 0 and so, for a
fixed g ≥ g2, with g2 small, there must be a u2 ∈ (1 − g, 1), depending on g,
such that s(u2) = 0 and at this point s′(u2) > 0. This proves the existence of
equilibrium points as stated in the proposition.

Now, let F (x, y) and G(x, y) be the right hand sides of Eq.(6.9). Since
x = 0.5(u + v) and y = 0.5(u − v), using the first equality of Eq.(6.28), the
partial derivatives of F and G can be written in terms of u. At the equilibrium
points ui we have eui/g = (ad−bc−(b−d)(ui−1))/((a−c)(1−ui)) = S. Using
these variables, the determinant of the Jacobian matrix J at Pi = (xi, yi) is
given by

det(JPi
)(ui) =

(a− c)ui(ui − 1)2s′(ui)

g(ad− bc)2
(6.30)

whereas the trace of J at Pi = (xi, yi) is given by

tr(JPi
)(ui) =

−g(ad− bc)p(ui)− (a− c)ui(ui − 1)q(ui)

g(ad− bc)2
(6.31)

with

p(u) = (a− c)(d− b) + u [b(a− c) + c(d− b)] ,

q(u) = (u− 1)(b− d)2 + d(ad− bc).

Assuming a > c, and thus d > b, we find det(JP1) < 0 which implies that
P1 is an unstable equilibrium point. In this case det(JP2) > 0, so that for the
stability of P2 we consider the value of tr(JP2). As we have shown, u2 > 1− g,
i.e. u2 − 1 > −g. Since ad− bc and p(u) are positive, we have

tr(JP2)(u2) <
(u2 − 1)(ad− bc)p(u2)− (a− c)u2(u2 − 1)q(u2)

g(ad− bc)2
.

Rewriting the right hand side of last inequality we come up with

tr(JP2)(u2) <
(1− u2)(d− b)Q(u2)

g(ad− bc)2

in which

Q(u) = ηu2 + [(ad− bc)(a− 2c)− η]u− (a− c)(ad− bc)
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and η = (a − c)(d − b) > 0. Thus, the function Q(u) is convex, Q(0) =
−(a − c)(ad − bc) < 0 and Q(1) = −c(ad − bc) < 0 and so Q(u) < 0 for all
u ∈ [0, 1]. Therefore tr(JP2)(u2) < 0 which implies that P2 is stable.

Now, assuming a < c, and thus d < b, it follows that det(JP2) < 0 which
implies that P2 is unstable. In this case, det(JP1) > 0 and we want to prove
the instability of P1. Since u1 <

√
g it turns out that 1 − u1 > 1 − √g. For

this parameter configuration −q(u1) > −q(√q) > 0 and therefore −q(u1)(c−
a)u1(1− u1) > −q(√g)(c− a)u1(1−√g) which in turns implies

tr(JP1)(u1) >
g(bc− ad)p(u1)− q(√g)(c− a)(1−√g)u1

g(ad− bc)2
.

The right hand side of last inequality is a linear function of u, say l(u) = mu+n,
whose coefficients are given by

m(g) =
(1−√g)

[
(1−√g)η2

2 + d(bc− ad)
]
η1

g(bc− ad)2
− bη1 + cη2

bc− ad

n =
η1η2

bc− ad
in which η1 = c − a > 0 and η2 = b − d > 0. Since l(0) > 0 and m(g) → ∞
as g → 0 it turns out that there exists a g3 > 0 such that l(u) ≥ 0 for all
u ∈ [0,

√
g] and therefore tr(JP1)(u1) > 0 for all g ≤ g3. Thus, taking ḡ = 1

and ĝ = min{g1, g2, g3} the statement is proved.

(Proposition 6.2.18) can be obtained as a consequence of (Proposition
6.2.17).
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CHAPTER 7

GENERAL CONCLUSIONS

In this thesis we introduced several nonlinear mathematical models applied
to ecopidemiology and evolution. They were built taking into account the
biological hypothesis of the real life problems.

In the first part of this thesis, we investigated the interaction between
population dynamics through ecological models.

In Chapter 1 we investigated the differences in the dynamics between two
predator-prey models with a generalist predator in the first model and spe-
cialist in two preys in the second one. The predator has an alternative food
source that is implicit in the first model, but in the second one we have con-
sidered it explicitly. The most significant difference between the two models
lies in the fact that the grazing pressure on the preferred prey and carrying
capacity of the predator determine the stable coexistence of prey and preda-
tor when the alternative resource is implicit. It is interesting to note that for
predator-prey models with specialist predator and logistic growth for the prey
population, we cannot find any scenario of extinction of the prey species due
to overexploitation.

In Chapter 2 we compared the dynamics between two predator-prey models
where a transmissible disease spreads among the prey species: the predator
is generalist in the first model and specialist for two prey species in the se-
cond one. The alternative food resource for the predator is implicit in the first
model, but in the second one we have considered it explicit. In the first model
the infection rate on the prey population determines the stable coexistence of
healthy prey, infected prey and predator when the predator has an alterna-
tive resource. However, in the second model, when we consider the explicit
resource for the predator species, in addition to the infection rate, also the
grazing pressure on the alternative prey determines the stable coexistence for
all ecosystem populations.

In Chapter 3 we have compared the dynamics between two predator-prey
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models where a transmissible disease spreads among the predators.The alter-
native prey for the predator is implicit in the first model, but in the second
one we have made it explicit. The most important parameters determining
the type of possible changes in the system behaviour, leading to transcritical
bifurcations, are the growth rate r of the prey population X and the mor-
tality of the infected predator ν. In the case where the mortality rate ν of
the infected predator exceeds the infection rate β of healthy predator Z, the
environment becomes infection-free due to the extinction of the infected preda-
tors W . There is no possibility of a scenario where in the ecoepidemic model
(3.2), the infected predators thrive without the presence of the main and of

the alternative prey because P
[ep ep]
5 is unstable. However, healthy and infected

predators survive without the presence of the main prey in both systems (3.1)
and (3.2). In this case, the alternative prey provides the food for predators in
both models. The environment in which only the healthy predator Z survives
in the absence of the main prey is possible in both scenarios. The disease-
free equilibrium points clearly can represent the coexistence between X and
Z populations. The coexistence also has the same behaviour in both envi-
ronments, i.e. with and without a transmissible disease among the predator
population Z.

In Chapters 1, 2, and 3, we investigated and compared prey-predator po-
pulation dynamics in which two distinct situations were considered: an al-
ternative food resource for the predator in addition to its main prey and a
dynamic in which this hidden resource becomes explicit so that the predator
is a specialist in two species of distinct prey.

Overall, considering the results of the Chapters 1, 2, and 3, where models
were compared for which the prey is at one time hidden, with a generalist
predator, or explicit, with a specialist one, we can identify some general fin-
dings for such dynamics. We note that for the disease free systems (Chapter
1) and systems in which the main prey is infected by some type of disease
(Chapter 2), the stability of equilibria that represent the system composed by

main-prey-free (P
[p hp]
3 , P

[p ep]
5 , P

[p ehp]
5 , P

[p eep]
10 ) depends mainly on three pa-

rameters in both cases: r, a, L. However, when considering the dynamics in
which the predator population is susceptible to an infection (Chapter 3), in
addition to these parameters, the parameters ν and β that mean disease hori-
zontal transmission between predator individuals and the mortality of infected
predator W , respectively, are also important when we have the same biological
situation represented by equilibria P

[ep hp]
3 and P

[ep ep]
7 .

Similarly, the parameters r, a, L, s, b are essential to ensure the stability of
coexistence (P

[p hp]
4 , P

[p ep]
7 ) in a disease-free system (chapter 1) and of the equi-

librium that represents the disease-free system ( P
[p ehp]
6 , P

[p eep]
11 ) in a dynamic

where it is considered a transmissible disease in the main prey population X
(Chapter 2). Recall that r and s represent growth rates, a and b t hunting
rates and L the carriyng capacity of the healthy predador.
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In the dynamics in which a transmissible disease is considered in the preda-
tors population (Chapter 3), in addition to these parameters, the parameters β
(disease horizontal transmission between predator individuals) and b (morta-
lity of alternative prey by healthy predator) become essential for the stability

of the equilibria that represent the same biological situations (P
[p ehp]
4 , P

[p eep]
8 ),

i.e., a disease-free environment regardless of whether or not there is a possibi-
lity of the transmissible disease in individuals of the predators population.

Finally, considering the species coexistence (P
[ep hp]
7 , P

[ep ep]
13 ) in the dy-

namics presented in Chapter 2 and the species coexistence (P
[p ehp]
6 , P

[p eep]
11 )

presented in Chapter 3, the essential parameters for all species coexist even
with a transmissible disease are β (disease horizontal transmission between
predator individuals), b (mortality of alternative prey by healthy predator)
and λ (disease horizontal transmission between main prey individuals).

The investigation performed in Chapters 1, 2 and 3 was essential to provide
the understanding needed to deal with models of predator-prey type, in which
the possibility of a transmissible disease affecting prey and predator popula-
tions is considered. It was possible to explore different mathematical ways to
understand how the interaction between individuals of the same species and
different species occurs. Such studies were essential in helping us to investigate
more specific problems, such as Chapter 4.

In Chapter 4 we presented a model for the study of prey-predator dynam-
ics with the presence of disease and herd behaviour. The theoretical analysis
and the numerical simulations suggest that, in the majority of the parame-
ter combinations studied, the behaviour of the model can be predicted by the
analysis of just four fundamental quantities in the system represented by mor-
tality rate of predators, which is crucial to define the survival of the predator
species and the basic reproduction number calculated in the two disease-free
equilibria of the system. Some parameters of the system are related to the
vertical and horizontal transmission rates and the model shows that the in-
traspecific competition between healthy and diseased prey on the infected prey
population has a negative effect on the spread of the disease. Therefore, it is
clear that a species with the behaviour of marginalizing or being hostile to the
diseased individuals reduces the chance of permanence of an epidemics in the
population.

In Chapter 5 we investigated an alternative way to approach herd be-
haviour. The model behaviour was investigated using simulation and ana-
lytical techniques. Our results show that the model presents novel behaviour
when compared with the original model proposed in [3, 2]. An advantadge of
this approach is that the model does not have a singularity in the Jacobian at
the origin, as was the case with [3, 2]. Another fundamental difference is that
the new model is coherent even for low populations of prey, where no group
defense is possible, a feature that was lacking in previous approaches.

The results are interesting from the dynamical point of view, with both

181



7 General conclusions

sub and supercritical Hopf bifurcations arising. Group defense has a positive
impact for the prey population, as expected.

In the second part of the thesis are presented dynamical systems that con-
sider some evolution models where we discussed four distinct models for the
selection of alarmist or non-alarmist behaviour in a population composed of
both types of individuals. The analysis showed that the average mortality
rates due to predation are the key elements to define which behaviour can
evolve by individual selection.

Research in other areas involving transmissible diseases in wildlife species
[9, 20, 61] and also evolutionary behaviours of bird and mammalian species
[19, 24, 76, 21], provide data, in specific and general cases, that serve as tools to
investigate in detail the spread of certain diseases, the dynamics and interaction
among populations of wild animals and also, to estimate the survival of species
through studies related to the evolutionary behaviour.

Thus, adapting our present theoretical studies in this thesis, as a perspec-
tive of future researches, we can try to get data that are present in situations
of real wildlife as a form to validation of our research and also to do some
contribution to other areas of knowledge.
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