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Key points: 

 

 Exposure to chronic hypoxia during gestation influences long-term health and development, 

including reproductive capacity, across generations. 

 

 If the peri-conceptual environment, in the developing oviduct, is affected by gestational 

hypoxia, then this could have implications for later fertility and the health of future 

generations. 

 In this study, we show that the oviducts of female rats who were exposed to chronic hypoxia 

whilst in utero, have reduced telomere length, decreased mitochondrial DNA biogenesis, and 

increased oxidative stress 

 Our results show that exposure to chronic gestational hypoxia leads to accelerated ageing of 

the oviduct in early adulthood, and help us understand how exposure to hypoxia during 

development could influence reproductive health across generations.  

Abstract (245): 

Exposure to chronic hypoxia during fetal development has important effects on immediate and 

long-term outcomes in offspring. Adverse impacts in adult offspring include impairment of 

cardiovascular function, metabolic derangement, and accelerated ovarian ageing. However, it is 

not known whether other aspects of the female reproductive system may be similarly affected. 

In this study, we examine the impact of chronic gestational hypoxia on the developing oviduct. 

Wistar rat dams were randomized to either normoxia (21%) or hypoxia (13%) from day 6 post-

mating until delivery. Post-delivery female offspring were maintained in normoxia until 4 

months of age. Oviductal gene expression was assayed at the RNA (q-rtPCR) and protein 

(Western blotting) levels. Oviductal telomere length was assayed using Southern blotting. 

Oviductal telomere length was reduced in the gestational hypoxia-exposed animals compared to 

the normoxic controls (p<0.01). This was associated with a specific post-transcriptional 

reduction in the KU70 subunit of DNA-pk in the gestational hypoxia-exposed group (p<0.05). 

Gestational hypoxia-exposed oviducts also showed evidence of decreased mitochondrial DNA 

biogenesis; reduced mtDNA copy number (p<0.05), and reduced gene expression of Tfam 

(p<0.05) and Pgc1α (p<0.05). In the hypoxia-exposed oviducts there was up-regulation of 

mitochondrial-specific antioxidant defense enzymes (MnSOD; p<0.01). Exposure to chronic 

gestational hypoxia leads to accelerated ageing of the oviduct in adulthood. The oviduct plays a 

central role in early development as the site of gamete transport, syngamy, and early 

development, hence accelerated ageing of the oviductal environment could have important 

implications for fertility and the health of future generations. 
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Introduction 

Many human fetuses are exposed to chronic gestational hypoxia, either via factors intrinsic to 

the pregnancy, for example impaired utero-placental blood flow (Kuzmina et al., 2005), or 

factors arising from the maternal environment, for example pregnancy at high altitude (Ducsay, 

1998; Postigo et al., 2009; Giussani et al., 2016). The immediate effects of gestational hypoxia 

have been characterized in both human pregnancies and animal models, and include adverse 

outcomes such as IUGR, low birth weight and stillbirth (Giussani et al., 2001; Keyes et al., 2003; 

Richter et al., 2012; Gonzalez-Candia et al., 2016). The long-term outcomes for the adult 

offspring of chronic gestational hypoxia are generally less well understood, but some aspects, 

for example the increased risk of later cardiovascular dysfunction, have been well described in 

animal models (Giussani et al., 2012; Giussani & Davidge, 2013). Furthermore, there is evidence 

from animal models that exposure to chronic gestational hypoxia can adversely impact brain 

development (Phillips et al., 2017), renal ageing (Gonzalez-Rodriguez et al., 2013), and insulin 

resistance (Camm et al., 2011).  

The link between exposure to various suboptimal intrauterine environments and subsequent 

impairment of reproductive function has been demonstrated in a number of animal models 

(Aiken et al., 2013; Aiken et al., 2016). These studies have mainly been performed in rodents, 

and have focused primarily on alterations to maternal diet (Chan et al., 2015b). It has been 

shown that accelerated ageing of the somatic ovarian tissue, with a concomitant decrease in 

ovarian reserve in early-mid reproductive life, is a consequence of a maternal low protein diet 

(Aiken et al., 2013), obesogenic maternal diet (Aiken et al., 2016), and maternal caloric 

restriction (Bernal et al., 2010) in various rodent models.  

The primary outcome of most studies that have demonstrated a link between the early life 

environment and impairment of female fertility has been ovarian reserve (Chan et al., 2015b; Ho 

et al., 2017). As a key determinant of future reproductive potential (Depmann et al., 2015; Pelosi 

et al., 2015), ovarian reserve is a useful and specific marker of fertility potential, but 

reproduction depends on a wide range of factors beyond the availability of gametes. In the 

female, successful pregnancy depends not only on a viable oocyte, but also on a suitable 

reproductive tract environment. The oviduct has several vital roles in successful reproduction, 

including gamete transport (Wang & Larina, 2018), syngamy (Parada-Bustamante et al., 2016), 

and early embryonic development (Robertson et al., 2015). Oviductal problems are a major 

cause of infertility in human populations, accounting for approximately 25-35% of all female 

infertility (Practice Committee of the American Society for Reproductive, 2015). Such problems 
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can range from complete blockage of the oviduct, which impairs gamete transport and prevents 

conception, to sub-clinical oviductal damage, for example through smoking, which alters the 

tubal epithelium and increases the risk of ectopic pregnancy (Horne et al., 2014; Nio-Kobayashi 

et al., 2016). Impact on the oviductal environment of the adult offspring is thus an important 

consideration in investigating the effect of developmental programming on female reproductive 

potential. 

A limited number of studies have previously reported on the impact of an adverse intrauterine 

environment on the developing oviduct. Wister rat offspring exposed to a maternal low-protein 

diet during gestation, followed by postnatal catch-up growth, showed evidence of reduced 

telomere length and increased oxidative stress in the oviduct in early adulthood (Aiken et al., 

2013). We hypothesise that exposure to chronic gestational hypoxia may also adversely affect 

the oviduct, and hence the peri-conceptual environment, in a similar way. 

Using an established model of hypoxic pregnancy in rats, we investigated the impact of 

exposure to a 40% reduction in environmental oxygen (13% versus 21% ambient oxygen from 

day 6 of pregnancy) on the oviduct of the adult female offspring. A reduction in the 

environmental oxygen tension by 40% reflects the difference in oxygen availability between 

pregnancies occurring at sea level compared to 3500-4000m altitude (Postigo et al., 2009). 

Hence our rat model of gestational hypoxia is highly relevant to human pregnancy at these 

altitudes, where it is estimated that ~40,000 babies are born each year in Bolivia alone (Roost et 

al., 2009). The aim of this study was therefore to evaluate whether there is evidence of 

accelerated ageing in the oviducts of young adult female rats exposed to chronic gestational 

hypoxia.  

Materials and Methods 

Ethical approval 

All animal experiments were approved by the University of Cambridge Animal Welfare and 

Ethical Review Board (ref. no. PC6CEFE59). All animal experiments were conducted in 

accordance with the British Animals (Scientific Procedures) Act (1986) and were compliant 

with EU Directive 2010/63/EU. Animals underwent euthanasia by CO2 inhalation and cervical 

dislocation. 
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Study design 

Wistar rat dams at 10-12 weeks of age (Charles River Ltd., Margate, UK; wild-type RRID: 

RGD_13508588) were housed in individually ventilated cages (21% oxygen, 70-80 air 

changes/hour) under standard conditions, with a regular 12-hour light/dark cycle. All animals 

were fed a standard laboratory chow diet (20% protein) and fed ad libitum with free access to 

water. After initial acclimatization (10 days) they were mated with fertile male Wistar rats, and 

pregnancy confirmed through the observation of a vaginal plug. The day of the plug was 

designated day 0 of pregnancy (full term 21-22 days). Upon confirmation of pregnancy, dams 

were weighed and housed individually. On day 6 of pregnancy, dams were randomly divided 

into two groups; control (21%) and hypoxic (13%) pregnancy (n=8 per group). Pregnant rats 

assigned to the hypoxia group were placed inside a chamber that could hold 9 rat cages, which 

combined a PVC isolator with a nitrogen generator, as previously described (Giussani et al., 

2012; Herrera et al., 2012). The hypoxia model did not alter maternal food intake or gestational 

length. Pregnancies undergoing hypoxia were maintained at a constant inspired fraction of 

oxygen of 13% from day 6 to 20 of gestation. All dams delivered under normoxic conditions, and 

normoxia (21%) was maintained for all animals during lactation, weaning and thereafter. 

Following determination of birth weight, litters were culled to 4 males and 4 females to 

standardise nutritional access and maternal care (Herrera et al., 2012). All pups were suckled 

by their own mothers. At four months of age, adult female pups underwent euthanasia by CO2 

inhalation and cervical dislocation. At postmortem, the reproductive tract tissues were 

harvested immediately after dissection. The oviducts were snap-frozen in liquid nitrogen until 

used for analysis. No sample was refrozen after the initial thaw. 

Telomere length analysis 

High-molecular weight DNA was extracted using the DNeasy Blood and Tissue kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s instructions. DNA quantity and purity was 

determined using a Nanodrop spectrophotometer (Nanodrop Technologies (Thermo Fisher, 

Scientific, Hemel Hempstead, UK). Agarose gels were run to ensure all DNA samples were of 

high-molecular weight. DNA (1.2μg) was digested with HinfI and RsaI restriction enzymes for 2h 

at 37oC. The restricted samples were quenched with 5x SDS loading buffer (Roche Diagnostics, 

Mannheim, Germany) and loaded onto agarose gels containing SYBR safe stain (Invitrogen, 

Paisley, Scotland, UK). After pulsed field gel electrophoresis, the gels were checked for non-

specific degradation of an undigested DNA control and complete digestion of the enzyme-

restricted DNA by visualizing the stained gels under UV light (Syngene, Cambridge, UK). The 
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separated DNA fragments were transferred to nylon membrane (Roche Diagnostics, Mannheim, 

Germany) by Southern blotting, and telomeric repeat length was determined using a 

commercial method of chemiluminescent detection as described previously (Tarry-Adkins et al., 

2006). Molecular weight markers on each gel were a mid-range pulsed-field gel marker (New 

England Biolabs, Ipswich, MA, USA) and dioxygenin (DIG; low range) molecular-weight marker 

(Roche Diagnostics, Mannheim, Germany). Standard undigested and digested genomic samples 

of DNA from a 4-month control animal were also included on each gel to verify digestion 

efficiency. Telomere signals were analyzed using Adobe Photoshop (Adobe Systems Inc. San 

Jose, CA, USA) and Alpha Ease Software (Alpha Innotech, San Leandro, CA, USA). Telomere 

length was measured as described previously (Tarry-Adkins et al., 2006).  

Gene expression analysis 

An initial panel of 38 candidate genes was developed to test which molecular pathways might 

be altered in the somatic oviduct following exposure to chronic gestational hypoxia. These 

genes were chosen based on (i) previous work on the effects of developmental programming on 

ovarian, para-ovarian adipose tissue, and oviductal gene expression (Aiken et al., 2015; Aiken et 

al., 2016; Tarry-Adkins et al., 2018) (ii) knowledge of programming mechanisms in other organ 

systems in the same gestational hypoxia rat model (Camm et al., 2010; Giussani et al., 2012; 

Herrera et al., 2012) and (iii) relevant literature review. RNA was extracted from snap-frozen 

oviducts using a miRNeasy mini kit (Qiagen, Hilden, Germany) following manufacturers' 

instructions, with the addition of a DNaseI digestion step to ensure no genomic DNA 

contamination. RNA quantification was performed using a NanoDrop spectrophotometer 

(Nanodrop Technologies, Wilmington, DE, USA). RNA (1 μg) was used to synthesize cDNA using 

oligo-dT primers and M-MLV reverse transcriptase (Promega, Madison, Wisconsin, USA). Gene 

expression was determined using custom designed primers (Sigma, Poole, Dorset, UK) and 

SYBR Green reagents (Applied Biosystems, Warrington, UK) as previously described (Tarry-

Adkins et al., 2009). Primer sequences are in supplementary table 1. Quantification of gene 

expression was performed using a Step One Plus RT-PCR machine (Applied Biosystems, 

Warrington, UK). Equal efficiency of the reverse transcription of RNA from all groups was 

confirmed through quantification of expression of the house-keeping gene ppia, the expression 

of which did not differ between groups. 
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Protein quantification 

Due to the extremely small amount of tissue available, limited protein quantification was 

performed. Genes were selected for protein expression analysis on the basis of (i) RNA 

quantification results and (ii) rationale from previous studies in the same model. Protein was 

extracted from whole tissue lysates of snap-frozen oviducts, as described previously (Tarry-

Adkins et al., 2015; Tarry-Adkins et al., 2018). Protein (20μg) was loaded onto 10%, 12% or 

15% polyacrylamide gels, dependent upon the molecular weight of the protein to be measured. 

The samples were electrophoresed and transferred to polyvinylidene fluoride membranes. 

Detection steps used the following primary antibodies; P53 (R & D Systems; cat no: MAB1355, 

1:1000, RRID:AB_357649), P16INK (Abcam, Cambridge, UK; cat no: Ab189034, 1:1000, 

RRID:AB_2737282), OGG1 (Novus Biologicals; cat no: NB100-106,1:1000, RRID:AB_10104097), 

MRE11 (ProteinTech, Cambridge, UK, cat no: 10744-1-AP, 1:1000, RRID:AB2145118), KU70 

(ProteinTech, Cambridge, UK, cat no: 10723-1-AP, 1:1000, RRID:AB_), KU80 (Novus, cat no: 

NB100-508, 1:1000, RRID:AB_2218756), Total Ox Phos rodent antibody cocktail (Abcam, 

Cambridge, UK, cat no: Ab110413, 1:5000, RRID:AB_2629281), HIF1α (Abcam: cat no: Ab51608, 

1:1000, RRID:AB_880418), GP91phox (ProteinTech, Cambridge, UK; cat no: 19013-1-AP, 

RRID:AB_1342287), P47phox (ProteinTech, Cambridge, UK; cat. no: 15551-1-AP, 1:1000, 

RRID:AB_11182937), XO (Santa-Cruz, Wimbledon, Middlesex, UK; cat. no: SC-20991, 1:200, 

RRID:AB_2214858), HMOX1 (ProteinTech, Cambridge, UK, cat no: 20960-1-AP, 1:1000, 

RRID:AB_10732601), Catalase (Abcam, Cambridge, UK, cat. no.: Ab1877-10, 1:10000, 

RRID:AB_187710), MnSOD (Upstate, Watford, UK; cat. no.: 06-984, RRID:AB_310325), CuZnSOD 

(ProteinTech, Cambridge, UK; cat. no.: 10269-1-AP, 1:1000, RRID:AB_2193750). Anti-rabbit 

secondary antibodies (Cell Signaling Technology, Danvers, MA, USA, 1:2000) were utilised for all 

primary antibodies except P53, which required an anti-mouse secondary antibody (Cell 

Signaling Technology (Danvers, MA, USA), 1:2000). Equal protein loading was confirmed by 

staining electrophoresed gels with Coomassie Blue (Bio-Rad, Hemel Hempstead, Herts, UK) to 

visualize total protein. To ensure that the chemiluminescent signal changed in a linear manner, 

the ratio between loading controls (100% and 50% pooled sample) was confirmed for each 

detected protein. 

Statistical Analysis 

All data were initially analyzed using a 2-way ANOVA with gestational hypoxia/normoxia as the 

independent variable. Raw p values were transformed to take account of the false discovery 

rates. Maternal environmental effects were compared between groups using 2-tailed Student’s 

T tests. Data are represented as means ± SEM. Where p values are reported, an alpha level <0.05 
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was considered statistically significant. All data analysis was conducted using the R statistical 

software package version 2.14.1 (R Foundation for Statistical Computing, Vienna, Austria). In all 

cases, n refers to the number of litters, and n=7-8 for all groups. The adequacy of the sample size 

was determined via a power calculation based on the effect sizes for somatic ovarian expression 

for ageing-related genes a previous rodent developmental programming model (Aiken et al., 

2016) using an alpha level of 0.05 to give power of 0.8. Sample analysis was performed using 

project codes to blind the investigators to the experimental groups. 

Results 

There was no impact of chronic gestational hypoxia on either maternal food intake during 

gestation (normoxia 79±2g/kg/day-1 v. hypoxia 70±3g/kg/day-1) or length of gestation 

(normoxia 20±1 days v. hypoxia 20±1 days). 

Maintenance of oviductal telomere length 

At 4 months of age, there were significantly more very short (1.3-4.2kB, p<0.001) telomeres in 

the oviducts of gestational hypoxia-exposed adult females compared to the normoxic group 

(Figure 1A). There were no significant differences between the hypoxia and normoxia-exposed 

groups in the proportion of telomeres that were short (4.2-8.6kB), long (8.6-45.5kB) or very 

long (45.5-145kB).  

Cell-cycle markers of ageing 

Alongside the increase in very short telomeres observed in hypoxia-exposed tissues, there was 

an increase in cell-cycle markers that increase with cellular ageing. Gene expression of p21 was 

significantly increased in the hypoxia-exposed group compared to the controls (p<0.04). There 

was also a trend towards increased p53 expression (p=0.09), but this did not reach statistical 

significance (Table 1). At the protein expression level, there was no significant difference in 

P16ink levels between groups, but there was a significant increase in P53 (p<0.05; Table 2) 

DNA damage repair mechanisms 

Gene expression of Ogg1 was elevated in the hypoxia-exposed group compared to the normoxic 

group (1294±135 v. 1710±132 units; p<0.05) (Table 1). At the protein level, the elevation of 

OGG1 in the hypoxia-exposed group was of borderline significance (p=0.08; Table 2). By 

contrast Mre11 expression was decreased by more than 50% in the hypoxia-exposed group 

compared to the controls (723±119 v. 307±79, p<0.05) (Table 1), however there was no 

difference in MRE11 protein expression between the experimental groups (Table 2). There was 

a trend towards an overall reduction in the catalytic subunit of the DNA protein kinase (DNA 
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pkcs) that is required for double-stranded break repair and telomere maintenance (p<0.1; Table 

1), but no differences in the expression of either of the components of the binding subunit, Ku70 

or Ku80 (Figure 1B). However, at the protein level, there was a significant deficit of KU70 in the 

oviducts of animals exposed to gestational hypoxia (p<0.05), with no difference in KU80 levels 

(Figure 1C).  

There was no significant difference between hypoxia-exposed and normoxic groups in 

expression of any other DNA damage sensing or early repair mechanisms that were included in 

the candidate genetic screen; Neil1, Nthl1 or Xrcc1 (Table 1).  

Mitochondrial Biogenesis 

Mitochondrial DNA (mtDNA) copy number was reduced in hypoxia-exposed animals compared 

to controls (p<0.05, Figure 2A). The expression of Tfam was significantly reduced in oviducts of 

animals exposed to gestational hypoxia compared to normoxic controls (p<0.05; Figure 2B). 

Pgc1α also showed reduced expression in the hypoxia-exposed group (p<0.05; Figure 2C). 

There was no difference between groups in expression of Nrf2 or Lonp1 (Table 1). Hence, there 

is evidence that mtDNA biogenesis may be impaired in the oviduct after exposure to chronic 

gestational hypoxia.  

We further investigated the gene expression of components of the mitochondrial respiratory 

complex. There was significant reduction in gene expression of complex I (p<0.01) and complex 

IV (p<0.05) in the hypoxia-exposed group compared to the normoxia group. There was also a 

significant reduction in the gene expression of citrate synthase (Cs) (p<0.05; Table 1). There 

was no difference in the expression levels of complex II, complex III or cytochrome C (Cycs). 

However, there was no significant difference in protein expression between the hypoxia-

exposed and normoxia-exposed groups in any of the tested mitochondrial respiratory 

components (Table 2).  

Oxidative stress and anti-oxidant defense capacity 

There was no direct evidence of increased oxidative stress markers in any of the pathways 

tested in the oviducts at either the gene expression or protein levels (Hif1α, Gp91phox, P22phox, 

P47phox, Xo, Gpx1, Hmox1) (Table 1 and Table 2). 

In terms of antioxidant defense capacity, there was no significant difference in gene expression 

of Catalase, Cuzusod or Ecsod in the hypoxia-exposed compared to the normoxia group. 

However there was an increase in MnSOD expression at both the RNA and protein level (Figure 

2 D&E), which is in keeping with the suggestion that mitochondrial biogenesis may be 
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suboptimal in the gestational oviduct. MnSOD is the specific mitochondrial isoform of the 

powerful superoxide dismutase group of anti-oxidants. Increased expression of MnSOD may 

thus indicate a successful attempt to buffer the impact of excess free radical generation 

resulting from impaired mitochondrial biogenesis. 

Lipid peroxidation 

There was a significant increase in the gene expression of Alox12 (a key component of the 

lipoxygenase pathway) in the hypoxia-exposed group compared to the controls (p<0.05; Table 

2). There was no difference in the gene expression levels of Alox15 between the hypoxia-

exposed and control groups. 

Discussion 

We show evidence of accelerated ageing in the oviducts of female offspring in early-mid 

adulthood, following exposure to chronic gestational hypoxia. Accelerated ageing is 

demonstrated at a cellular level by decreased telomere length and increased expression of 

markers of cellular ageing, in particular p21 and p53. The observed decrease in oviductal 

telomere length was accompanied by a specific post-transcriptional reduction in KU70, which is 

a key functional sub-unit of the DNA-activated protein kinase required for telomere length 

maintenance (Jette & Lees-Miller, 2015). The observed up-regulation of Ogg1 in the oviducts of 

the hypoxia-exposed animals is in keeping with an increase in oxidative DNA damage. Ogg1 

excises 7,8-dihydro-8-oxoguanine (8-oxoG) from damaged DNA, which limits the impact of 

ubiquitous oxidative damage accumulated during normal ageing (Radicella et al., 1997). Hence 

the observed increase in Ogg1 suggests a greater exposure to oxidative DNA damage in the 

oviducts following gestational hypoxia.  

There was also clear evidence that mitochondrial biogenesis is reduced in the oviduct following 

exposure to chronic gestational hypoxia. In particular, the key regulatory genes controlling 

mitochondrial biogenesis (Tfam and Pgc1α) were both down-regulated in the hypoxia-exposed 

group compared to the controls. Tfam is the master regulator of mitochondrial biogenesis via 

gene expression from the mitochondrial genome (Picca & Lezza, 2015) and Pgc1α regulates 

mitochondrial biogenesis via nuclear gene expression (Picca & Lezza, 2015). Alongside the 

observed reduction in mtDNA copy number, there is thus evidence that both key mechanisms 

regulating mitochondrial biogenesis are impaired following exposure to gestational hypoxia. 

Evidence of a mitochondrial deficit is particularly interesting as oviductal function depends on 

ciliary motility and coordinated smooth muscle contraction (Halbert et al., 1976; Bylander et al., 

2013; Zhao et al., 2015). Both of these processes are dependent on normal mitochondrial 
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function and ATP production (Dirksen & Zeira, 1981; Lydrup & Hellstrand, 1986), in particular 

in the ciliated cells of the oviduct epithelium. Oviductal ultra-structure, including mitochondria 

in the ciliated epithelial cells, appears to be established mainly during late fetal life (Kenngott et 

al., 2008; Zhao et al., 2015), which correlates with the timing of exposure to a chronic hypoxic 

environment in our study. 

There is remarkably little published evidence regarding oviductal phenotype in other 

developmental programming models, despite the plethora of studies that have examined 

ovarian reserve (Bernal et al., 2010; Aiken et al., 2013; Chan et al., 2015a; Aiken et al., 2016). 

However, at least one previous study has examined the impact of a maternal low protein diet on 

mtDNA copy number and telomere length in the oviduct (Aiken et al., 2013). In keeping with our 

findings here, oviductal telomere length was shown to be particularly sensitive to the early life 

environment, more so than the somatic ovarian tissue (Aiken et al., 2013), an effect that was 

magnified with increasing age (Aiken et al., 2013). In the current study, we observe the same 

highly significant reduction in telomere length in young animals near the start of reproductive 

life. An important point for future development of this work is to test directly whether oviductal 

shortening in response to gestational hypoxia is magnified later in reproductive life.  

Interestingly, in response to a maternal low protein diet, oviductal mtDNA copy number was 

increased compared to the controls, which contrasts with our finding here. This suggests that 

reduced mitochondrial biogenesis is a specific effect of gestational hypoxia rather than a generic 

impact of early life stress on the oviduct. The relatively small number of proteins in the 

developing oviduct affected by exposure to gestational hypoxia also points towards a highly 

specific impact on cellular ageing within the oviduct, rather than ubiquitous tissue damage 

caused by the adverse early life environment. We also did not observe ubiquitous up-regulation 

of markers of oxidative stress in the oviducts (Hif1α, Gp91phox, P22phox, P47phox, Xo, Gpx1, 

Hmox1), which are normally highly sensitive to generic tissue damage adding further evidence 

that the effect reported is highly specific.  

In keeping with the strong evidence of reduced mitochondrial biogenesis in the hypoxia-

exposed oviducts, we also observed an increase in mitochondrial-specific antioxidant defense. 

MnSOD was up-regulated in the hypoxia-exposed group compared to the controls, indicating 

that there may be an increase in reactive oxygen species produced. Mitochondria are the major 

intracellular source of reactive oxygen species, but there was no direct evidence of an increase 

in any of the oxidative stress markers that were assayed in this study. However this may 

become apparent as the animals age.  
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Oviducts are a relatively homogeneous tissue, with very low levels of telomerase expression 

(Lee et al., 2001). This is a significant advantage for our study, which provides novel insight into 

this relatively under-studied yet crucial part of the female reproductive system. A limitation of 

the study is the inherently tiny amount of tissue available from each experimental animal 

(average oviductal weight ≤5mg (Sen & Talwar, 1973)). This meant that the assays performed 

on protein, RNA and DNA had to be strictly prioritised rather than testing all potential genes 

and proteins of interest. The extremely small mass of the tissue also meant that we were unable 

assign tissue for histological examination, or cell-type specific analysis. These are important 

aims for future work. In particular, future work should focus on whether the muscularis or the 

epithelium or both are affected by the phenotype described. Either could plausibly have a 

significant influence on oviductal function and future fertility. Accelerated ageing in the 

muscularis could affect efficient transport of gametes or conceptus, thus influencing the future 

risk of ectopic pregnancy. Accelerated ageing in the epithelium could influence the composition 

of the oviductal fluid, and hence the culture medium for the early embryo. Assessing oviductal 

function in vivo, including assessing fertility outcomes, would help to verify the implications of 

our results and refine our understanding of the phenotype. This should form the basis of future 

programmes of work.  

Oviduct-related infertility is a key cause of female sub-fertility, accounting for ~30% of cases  

(Kawwass et al., 2013), and increases with advancing maternal age (Maheshwari et al., 2008). 

Our work suggests that there may be a developmentally programmed component to the 

acceleration in cellular ageing and hence oviductal dysfunction observed in women ≥ 35 years 

(Maheshwari et al., 2008). The age of the animals studied here equates to early in reproductive 

life, and hence the observed evidence of cellular ageing in the oviducts is even more striking. 

Aside from infertility, ageing of the oviducts is a significant risk factor predisposing to tubal 

ectopic pregnancy (Nybo Andersen et al., 2000), which can be a fatal complication of oviductal 

dysfunction (Farquhar, 2005). The risk of ectopic pregnancy increases sharply with maternal 

age from 1.4% of all pregnancies in women aged 21 years, to 6.9% of pregnancies in women 

above the age of 44 (Nybo Andersen et al., 2000). The active role of the oviductal epithelium in 

the pathogenesis of ectopic pregnancy is becoming increasingly clear (reviewed in (Horne & 

Critchley, 2012)) as is the requirement for normal regulation of smooth muscle contractility 

(Shaw et al., 2010). Hence, our finding that adult females who have been exposed to chronic 

gestational hypoxia show accelerated ageing and dysregulated mitochondrial biogenesis in the 

oviducts may have potential clinical significance not only for patients with difficulty conceiving 

but also in understanding risk factors for ectopic pregnancy. 
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Conclusion 

Large numbers of pregnancies world-wide are exposed to chronic gestational hypoxia, either 

through pregnancy at high altitude or through utero-placental insufficiency (Ducsay, 1998; 

Kuzmina et al., 2005; Postigo et al., 2009; Giussani et al., 2016). The recognition of the adverse 

impact of lower than normal oxygenation during pregnancy on ageing of the oviducts, with 

attendant consequences for gamete and embryo transport in potential next generation mothers, 

is an important area for further research and exploration. 
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Figure legends:  

 

Figure 1 A) Oviductal telomere length in adult female rats exposed to gestational hypoxia 

compared to normoxia. B) Effect of gestational hypoxia compared to normoxia on gene 

expression of components (Ku70 and Ku80) of the DNA-activated protein kinase (DNA-PK) in 

the oviducts. C) Effect of gestational hypoxia compared to normoxia on protein expression of 

KU70 and KU80. Data shown as mean ± SEM. Open bars: normoxia (21% oxygen) during 

gestation, grey bars: hypoxia (13% oxygen) during gestation.  *p<0.05, ***p<0.001. n=7-8 for all 

groups (n refers to the number of litters) 
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Figure 2 Effect of gestational hypoxia compared to normoxia on expression of mitochondrial 

biogenesis regulators and mitochondrial anti-oxidant defense in the oviducts. Data shown as 

mean ± SEM. Open bars: normoxia (21% oxygen) during gestation, grey bars: hypoxia (13% 

oxygen) during gestation. A) MtDNA copy number, B) Tfam gene expression, C) Pgc1α gene 

expression, D) MnSOD gene expression, E) MnSOD protein expression. *p<0.05, **p<0.01. n=7-8 

for all groups (n refers to the number of litters) 
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Gene Normoxia Hypoxia  

Ppia 32234 ±2363 28269±3394 NS 

P53 10775±1237 13417±1332 0.09 

P21 5188±1053 9292±1374 0.04 

Alox12 3120±744 7714±2089 0.05 

Alox15 925±225 854±147 NS 

Ogg1 1294±135 1710±132 0.03 

Neil1 769± 63 730±117 NS 

Nth1 1505±27 1329±151 NS 

Xrrc1 2675±375 2175±372 NS 

Nrf2 11560±1704 7555±893 NS 

Dna pkcs 2134±323 1421±192 0.1 

Mre11 723±119 307±79 0.04 

Ku70 2380±397 1533±389 NS 

Ku80 8743±1410 5709±1219 NS 

Bax 2093±199 1750±329 NS 

Bcl2 4036±530 2599±293 0.05 

BaxBcl2 0.41±0.02 0.5±0.08 NS 

Tfam 6447±844 3866±632 0.04 

Pgc1a 1806±121 903±236 0.01 

Cs 18621±2551 9627±156 0.02 

Lonp1 7518±874 7262±1035 NS 

Cycs 27321±4613 15812±4446 0.08 

Complex I 26745±721 22123±2086 0.01 

Complex II 19112±3730 14311±1389 NS 
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Complex III 27555±4854 18414±1721 NS 

Complex IV 46402±4883 33668±1533 0.05 

Hif 8172±791 8276±628 NS 

Gp91phox 6191±1727 6904±1023 NS 

P22phox 5128±1081 7298±1030 NS 

P47phox 1887±136 2620±631 NS 

Xo 19493±2381 15989±1793 NS 

Gpx1 67342±11501 34576±8409 NS 

Hmox1 3492±202 3720±255 NS 

Catalase 12593±1716 13651±280 NS 

Nfkβ 6419±476 6073±307 NS 

Mnsod 9286±2005 15399±577 0.04 

Cuznsod 171954±8398 160528±13018 NS 

Ecsod 35354±3730 23778±3163 NS 

 

Table 1 Effect of gestational hypoxia compared to normoxia on gene expression in the oviducts 

of adult female rats. All reported p values have been adjusted to take account of multiple 

hypothesis testing. n=7-8 for all groups (n refers to the number of litters) 
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Protein Normoxia Hypoxia  

P53 100±17 158±19 0.05* 

P16INK 100±30 100±24 NS 

OGG1 100±22 137±13 0.08 

MRE11 100±30 77±22 NS 

KU70 100±10 58±12 0.03* 

KU80 100±18 115±18 NS 

Complex I 100±36 142±56 NS 

Complex II 100±29 150±38 NS 

Complex III 100±15 96±18 NS 

Complex IV 100±22 137±31 NS 

Complex V 100±2 108±6 NS 

CS 100±13 110±16 NS 

HIF1α 100±12 124±15 NS 

GP91phox 100±27 97±15 NS 

P47phox 100±24 119±4 NS 

XO 100±10 92±11 NS 

HMOX1 100±44 37±11 NS 

CATALASE 100±10 125±23 NS 

MnSOD 100±9 156±10 <0.01** 

CuZnSOD 100±30 94±23 NS 

 

Table 2 Effect of gestational hypoxia compared to normoxia on protein expression in the 

oviducts of adult female rats. All reported p values have been adjusted to take account of 

multiple hypothesis testing. *p<0.05, **p<0.01. n=7-8 for all groups (n refers to the number of 

litters) 

 

 


