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Abstract 

No field in health sciences has more interest than organ transplantation in fostering progress 

in RM because the future of no other field more than the future of organ transplantation will 

be forged by progress occurring in RM. In fact, the most urgent needs of modern transplant 

medicine - namely, more organs to satisfy the skyrocketing demand and immunosuppression-

free transplantation -, cannot be met in full with current technologies and are at risk to remain 

elusive goals. Instead, in the past few decades, groundbreaking progress in regenerative 

medicine (RM) is suggesting a different approach to the problem. New, RM-inspired 

technologies among which decellularization, 3D printing and interspecies blastocyst 

complementation, promise organoids manufactured from patients' own cells and bear 

potential to render the use of currently used allografts obsolete. Transplantation, a field that 

has traditionally been immunology-based, is therefore destined to become a RM-based 

discipline.  

However, the contours of RM remain unclear, mainly due to the lack of a universally 

accepted definition, the lack of clarity of its potential modalities of application and the 

unjustified and misleading hype that often follows the reports of clinical application of RM 

technologies. All this generates excessive and unmet expectations and an erroneous 

perception of what RM really is and can offer.  

In this manuscript, we will reason on these aspects of RM and transplant medicine, will 

propose a definition of RM and will illustrate the state of the art of the most promising RM-

based technologies of transplant interest. 

  



Introduction 

Regenerative medicine (RM) has shown an immense potential to profoundly impact 

transplant medicine (TM) by meeting its two most urgent needs: a new and potentially 

inexhaustible source of organs and the achievement of an immunosuppression-free status[1].  

Through the development of technologies that will make organ fabrication possible using 

patient-derived biomaterials – cells and supporting scaffolding materials – RM promises to 

enable organ-on-demand whereby patients will receive organs that will not be rejected and in 

a timely fashion. This will make registration in the waiting list and anti-rejection medications 

unnecessary and, as the new organs will be implanted immediately after fabrication, 

ischemia-reperfusion injury secondary to organ preservation will not be a problem anymore. 

However, the contours of RM remain unclear, mainly due to the lack of a universally 

accepted definition, the lack of clarity of its potential modalities of application and the 

unjustified and misleading hype that often follows the reports of clinical application of RM 

technologies. All this generates excessive (and unmet) expectations and an erroneous 

perception of what RM really is and can offer. 

With the present manuscript, we intend to address these concerns, propose a definition of RM 

pertinent to TM and elucidate the RM technologies that may be applied to and serve the 

mission of TM. We will also briefly discuss the most relevant product development 

challenges and the immunological implications of the biomaterials currently under 

development.  

 

Definition 

“Regenerative medicine” is an umbrella term of still unclear significance. For example: in 2006 the 

United Nations Educational, Scientific and Cultural Organization (UNESCO) defined RM as a super-

discipline whose contours are still being defined 

(http://unesdoc.unesco.org/images/0014/001454/145409e.pdf). In the document, it was stated that the 

definition of RM “can be either narrow or very wide” and that the field “is generally about 

replacement, repair and regeneration to address deficient organ function resulting from congenital 

defects, disease, trauma or wear and tear”. From this definition, it may be inferred that RM and TM 

share the same interests and pursue the same goal, namely the replacement of terminally diseased 

organs with new functioning organs. However, while the term replacement is intimate to organ 

transplantation, repair and regeneration are not, unless we consider the case of auxiliary heterotopic 

liver transplantation, performed to allow the native liver devastated by an acute damage to regenerate 

and resume normal function[2].  



More recently, the term RM has been used to define – more succinctly – a field in the health sciences 

that aims to replace or regenerate human cells, tissues, or organs to restore or establish normal 

function[3]. The process of regenerating body parts can occur in vivo or ex vivo and may require cells, 

natural or artificial scaffolding materials, growth factors, gene manipulation, or combinations of all 

the four elements. However, RM is commonly used as synonymous to “tissue engineering”, but it has 

been noted that “tissue engineering” is “narrower in scope and strictly defined as manufacturing body 

parts ex vivo, by seeding cells on or into a supporting scaffold”[4]. According to NIH, “tissue 

engineering evolved from the field of biomaterials development and refers to the practice of 

combining scaffolds, cells, and biologically active molecules into functional tissues”, with the 

ultimate goal of assembling “functional constructs that restore, maintain, or improve damaged tissues 

or whole organs” (https://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-

and-regenerative-medicine ). 

The NIH also defines RM as “the process of creating living, functional tissues to repair or replace 

tissue or organ function lost due to age, disease, damage, or congenital defects. This field holds the 

promise of regenerating damaged tissues and organs in the body by stimulating previously 

irreparable organs to heal themselves; […] empowers scientists to grow tissues and organs in the 

laboratory and safely implant them when the body cannot heal itself. Importantly, regenerative 

medicine has the potential to solve the problem of the shortage of organs available through donation 

compared to the number of patients that require life-saving organ transplantation”. 

(https://report.nih.gov/nihfactsheets/viewfactsheet.aspx?csid=62). This definition is quite 

comprehensive but neglects two critical aspects of modern TM, namely immunosuppression-free 

transplantation and ischemia-reperfusion damage deriving from organ preservation and storage. In 

fact, RM research aims at building autologous tissues and organs from patient’s own cells with the 

ultimate goal of bypassing the need for lifelong anti-rejection therapy, with consequent obvious 

clinical and financial benefits. Moreover, by enabling physicians to implant bioengineered organs 

immediately after maturation, ischemia-reperfusion damage is prevented. 

Last, to the best of our knowledge, none of the societies that may claim parenthood to the field of RM 

has ever released an official definition of the term.  Therefore, we herein propose the following 

definition: 

 

RM is a field in the health sciences that aims to regenerate, repair or replace functionally 

impaired tissues and organs in order to restore normal function. The process of regenerating body 

parts can occur in vivo or ex vivo and may require cells, natural or artificial scaffolding materials, 

growth factors, genetic manipulation, or combinations of them. RM promises to address the longest 

standing limitations of organ transplantation, namely the identification of an inexhaustible source of 

transplantable organs, immunosuppression-free transplantation and organ-on-demand, whereby a 

patient in need and deemed suitable for transplantation is enabled to promptly receive an organ that 



will be bioengineered from his/her own cells. This will rule out the need for lifelong 

immunosuppression and, by allowing implantation of the graft immediately after production, will 

likely prevent the damage resulting from organ preservation, storage and ischemia-reperfusion. As a 

corollary, RM will eliminate the waiting list. 

 

 

RM technologies applied to organ transplantation  

Decellularization.  The term decellularization refers to a process whereby the cellular compartment 

of living tissues is removed by chemical or physical means[5]. The end product of this process is an 

acellular scaffold consisting of the innate extracellular matrix (ECM) of the original tissue that is 

being used for different purposes. For example, acellular scaffolds may serve as template for the ex 

vivo bioengineering of implantable organs[6], or to promote functional tissue restoration after 

implantation in vivo[7]. In the first case, the scaffold will be recellularized with progenitor or adult 

cells first, and either allowed to mature in bioreactors before implantation or implanted directly in 

patients thereafter [8]. In the second case, the acellular scaffold is implanted in the diseased tissue to 

orchestrate a constructive remodeling in situ[7].  The rationale behind these applications is that the 

ECM is the fundamental 3D network that not only provides structural support to cells, but by 

interacting with cell surface molecules and serving as a reservoir for growth factors, also plays a 

critical role in tissue and organ development, homeostasis and regeneration after damage[9]. Although 

the decellularization process does produce some damage to the innate ECM, the scaffolds produced 

with current technology retain most of the biochemical complexity, nanostructure, and bioinductive 

properties of the native matrix that are essential for cells to attach, migrate, proliferate and function, 

and have been shown to promote the creation of site-specific, functional tissue in vivo[10]. Moreover, 

as the framework of the innate vasculature is preserved, patent, and able to sustain the physiological 

blood pressure[11], acellular ECM scaffolds (aECMs) seem ideal for the bioengineering of 

transplantable organs. AECMs may also be a source of hydrogel and used as such as cell delivery 

tool.  Notably, more than 80 ECM based products are currently available in the market for a variety of 

clinical applications[12]. 

From a TM perspective, the use of aECMs as a template for whole organ bioengineering undoubtedly 

holds immense potential. Since the milestone report on the bioengineering of a functional heart in 

2008[13], more than two hundreds papers have proven that aECMs may be produced from virtually 

all transplantable organs from clinically relevant animal [11, 14-16] and human donors [16-24], 

including the human hand, face and face subunits [25-29]. As one of the major objectives of RM is to 

identify an inexhaustible source of organs, animals may be considered an ideal source of aECMs for 

intra-abdominal and intra-thoracic bioengineering, whereas human donors should provide organs for 

limb, face and face subunit bioengineering for obvious reasons. Interestingly, the term semi-



xenotransplantation has been proposed to indicate the bioengineering of implantable organs whereby 

aECMs of animal origin are seeded with human cells [30]. 

Despite the fact that viable and functioning bioengineered tissues and/or organs supplied with their 

own vascular pedicle have never previously been described in animal models, the literature reports a 

few anecdotal cases [8, 24, 31-34] or small studies in humans [35]  where  relatively complex tissues 

were transplanted without any vascular pedicle, and therefore lacked an immediate connection to the 

recipient’s vasculature. Although some short-term success has been obtained, and to some extent, it 

can be claimed that the proof of concept has been provided, the reported morbidity and mortality are 

extremely high [36]. This probably reflects our incomplete understanding of the biology of organ 

regeneration and underestimation of the true anatomical and physiological complexity of the organs in 

question[37]. As recently stigmatized by Badylak in an illuminating editorial, the big mistake that has 

been reiterated by tissue engineers in the past decade is the erroneous belief that organs can be 

manufactured without the critical elements required to maintain the viability and function of all living 

tissues; namely, adequate lymphatic and innervation networks, and – more importantly –  

vascularization [38]. Moreover, most clinical and experimental studies report that after cells are 

seeded on aECMs, the so-obtained construct is allowed to mature in bioreactors for conventional 

periods of one or few weeks, which is probably insufficient as this is much shorter than the time 

needed for any given organ to develop in utero. 

 

3D printing technology.  3D bioprinting promises to have a disruptive impact in TM and represents a 

significant technological advancement in the manufacturing processes used for tissue and organ 

engineering. Where the conventional manufacturing approach requires the manual fabrication by a 

skilled technician, 3D bioprinting is automating this process, with subsequent improvements in 

standardization, reproducibility, resolution and accuracy. These advances have arisen from the 

adoption of design and manufacturing techniques used in the non-biological manufacturing sector, 

such as the use of imaging and design software, and the increased availability, and reduced cost of 3D 

printing hardware. 3D printed medical devices have already been transplanted into patients [39, 40], 

and simple bioprinted tissues such as cartilage and bone have been successfully transplanted in 

preclinical animal studies [41-43]. However, just like above, current 3D bioprinted tissues lack 

essential functional elements such as vasculature, innervation, lymphatics and the number and 

diversity of functional and supporting cell types required for more complex or larger tissues and 

organs.  

In health care, 3D printing has been applied for the manufacturing of surgical guides, anatomical 

models and prosthetics [39], and more recently, for custom implants [44]. Medical uses of 3D printing 

have usually been confined to static, non-living constructs, including patient-specific craniofacial 

implants and hip and mandibular prostheses [40]. In 2013, the clinical application of 3D printing was 



expanded, with the implantation of a 3D printed, bioresorbable external airway splint into an infant 

with tracheobronchomalacia, which was followed up with a 2015 report of a further 3 infants recei 

ving patient-matched 3D printed splints [45]. These constructs, while non-living, were designed 

to prevent external airway compression over a predetermined time period before bioresorption to 

accommodate airway growth [46]. While these advances have demonstrated the promise of 3D 

printing technology for medical applications, the progression from non-living constructs to 3D printed 

living cellular constructs has not been as rapid. Significant challenges surrounding the formation of 

complex, heterogeneous tissues, with sufficient vasculature, innervation, and function, means that we 

are currently years away before even simple constructs make their way into clinical use. It is likely 

that the first advances in the clinical transplantation of 3D printed living tissues will be made in 

relatively simple tissues before advancing to tissues with more complex geometries, cell types and 

functions. 

In contrast to many other tissues, cartilaginous tissues are avascular and aneural structures 

containing a relatively low density of cells, potentially minimizing three of the most difficult hurdles 

in the field. For this reason, cartilaginous tissues are likely to be one of the first types of 3D printed 

tissues to progress to clinical transplantation, and multiple examples of 3D printed cartilage tissue 

have been described at the pre-clinical stage of development. Cui and colleagues have applied inkjet 

3D printing technology to repair human articular cartilage [41], achieving a tissue construct with a 

compressive modulus in the same order of magnitude as hyaline cartilage [47].  

Another novel approach involves the fabrication of tissue constructs using self-assembling 

spheroids of chondrocytes to form cartilage strands, significantly increasing cellular density and 

improving post-transplantation maturation and function [48]. Recently, the biofabrication and 

implantation of human-sized 3D printed cartilage tissues has been reported, with tissue constructs 

possessing histological and mechanical characteristics of human auricles after animal implantation in 

vivo [49]. 

Bone has been well studied by the materials engineering community due to its unique structure 

and mechanical properties. Biomaterial scaffolds that exploit the inherent properties of nanoparticles 

have been developed that meet the physicomechanical requirements of bone regeneration, formulated 

to control the mechanical properties and degradability of scaffolds upon transplantation [50]. In one 

example, Inzana and coworkers fabricated a calcium phosphate, collagen composite bone scaffold 

using a modified inkjet-based 3D printer. The implants were confirmed to be osteoconductive and 

biodegradable in a critical sized murine femoral defect [43]. However, to date, many 3D printing 

approaches rely only on hard scaffolds to reproduce the appropriate mechanical properties for cortical 

bone, but fail to fully recapitulate the cellular, spongy component of cancellous bone. One approach 

to overcome this limitation includes incorporating bone marrow-derived mesenchymal stromal cells 

into osteoconductive hydrogel bioinks. These soft bioinks are then supported by a network of 

reinforcing poly(ε-caprolactone) (PCL) microfibers to enable the fabrication of mechanically 



reinforced constructs with decoupled biological and mechanical functionality. These 3D printed 

constructs mimic the geometry and bulk mechanical properties of trabecular-like endochondral bone 

with a supporting marrow structure, and undergo endochondral ossification over time following 

implantation [51]. Using a similar approach, human-scale mandible and calvarial structures have been 

3D printed, with size and shape similar to what would be needed for facial reconstruction after 

traumatic injury. Implantation of 3D printed bone constructs into animal defect models resulted in the 

formation of mature, vascularized bone tissue in implants retrieved up to 5 months later [49]. 

The application of 3D printing technology to fabricate relatively simple tissues such as cartilage 

and bone has been facilitated by the development of new biomaterials and 3D printing technology that 

can accurately and reproducibly deposit these materials. 3D bioprinting techniques can be broadly 

classified by their mechanism of cell deposition into inkjet [52], microextrusion [49, 53-55], or laser-

assisted bioprinting [56-58]. The basic technologies and their applications have been extensively 

reviewed [59, 60]. Recent advances in bioprinter technology have facilitated the patterning of multi-

component constructs containing both synthetic and natural materials capable of resolution down to 

2µm for biomaterials alone and down to 50 µm for encapsulated cells [49]. Further progress in the 

field will require the ability to deposit an even wider range of material types concurrently with 

increases in print resolution and speed. Some progress has been made in this area, such as the use of 

microfluidic switching nozzles that swap between two different inks on demand [61], as well as 

mixing nozzles that can be used to print materials at the microscale with tunable gradients of differing 

material properties [62]. Additionally there has been remarkable achievements in the high-resolution 

patterning of matrix materials using light-based free-form fabrication. One example of this is two-

photon lithography, where transparent photoresist materials are photopolymerized with multiphoton 

absorption events with highly controllable focal volumes and print speed [63]. 

The combination of materials that provide mechanical strength and those that are compatible with 

cell function has resulted in the successful fabrication of human scale, cellular tissues that have shown 

long-term function post-transplantation. Biomaterials commonly used for bioprinting are 

predominantly based on either naturally derived polymers (such as tissue-based extracellular matrix 

proteins including alginate, gelatin, collagen, chitosan, fibrin and hyaluronic acid) or synthetic 

molecules (polyethylene glycol; PEG). Often, the synthetic materials provide physical integrity at the 

at the macro level, while softer materials, such as hydrogels, provide an appropriate environment for 

cell encapsulation and placement. However, synthetic materials often fail to provide physiological 

interactions with the cellular component. On the other hand, the weak mechanical properties of 

hydrogels is a considerable limitation for their contribution to the physical properties of the tissue. 

Further advances in the development of biological materials are needed to improve control of the 

structural, mechanical, and biological properties of constructs to replicate tissue structure and function 

[64, 65]. One approach towards overcoming this challenge include chemical modification of the 

hydrogels to enable the materials to cross-link with other materials, therefore controlling its 



mechanical strength or other parameters such as degradation times. Synthetic hydrogels like PEG-

based hydrogels have been modified to covalently tether ECM-derived biomolecules [66]. Similarly, 

there is a need for the continued development of 3D printers that are specifically designed for these 

biological materials, combined with the decreased cost of these technologies. 

However, before we can expect to see successful 3D printing of larger, or more complex tissue 

types, several significant limitations and obstacles need to be overcome. For larger tissues, the 

incorporation of intact vasculature will be essential for the survival and function of the implanted 

tissues. One potential approach to overcome this bottleneck is the utilization of light-based 3D 

printing technology, capable of photopolymerizing a wide range of biological materials, with 

significantly improved speed and resolution. For example, microscale continuous optical bioprinting 

(µCOB) has been used to create prevascularized tissue constructs within a soft hydrogel network [67]. 

The ability to pattern increasingly complex cellular structures with increased resolution would provide 

many opportunities to incorporate other functional tissue components and architectures such as 

vascular, neural and lymphatic networks and potentially lumens, tubules and ducts. Another limitation 

to the fabrication of larger, more complex tissues is the requirement for increased quantity and 

diversity of cell types. Many studies have utilized either primary cells or tissue-derived multipotent 

stem cells, but the limited expansion and differentiation capacity of these cell types may limit their 

application for larger or more complex tissues. Potential approaches to overcome this problem include 

involve viral transfection [68] or use of small molecules to induce cell proliferation or differentiation 

[69, 70]. 

 

Stem cell technology.  Cells within the inner cell mass of blastocyst-stage embryos give rise to all 

adult cell types and are thus termed ‘pluripotent’. In 1981, it was discovered that these ‘embryonic 

stem cells’ (ESC) could be isolated from mouse embryos and expanded in culture without losing their 

pluripotency [71].  Following the isolation of the first human ESC lines in 1998 [72], there was huge 

optimism that these cells could not only replace cells lost in degenerative diseases such as Parkinson’s 

disease, but could also be combined with natural or bioengineered scaffolds to generate replacement 

tissues and organs [73].  However, apart from the ethical issues surrounding the use of human 

embryos, several challenges facing the development and application of ESC-based therapies were 

soon identified, including (i) their tumorigenic risk; (ii) the need for reliable culture conditions to 

direct their differentiation to fully functional specialized cells; (iii) strategies to prevent immune-

rejection.  

Much progress has been made; for instance,  methods to identify and remove undifferentiated 

ESCs from administered cell populations have now been developed [74],  reducing the risk of  tumor 

formation; and although some ESC derivatives  remain functionally immature [75, 76], others, such as 

ESC-derived retinal pigment epithelial cells, display the typical characteristics of their adult 

counterparts [77] and have already been applied in clinical trials [78]. Some ESC-based therapies can 



involve the transplantation of progenitor cells which then further differentiate in vivo to generate 

functionally mature cell types; for example, ESC-derived dopaminergic neuron progenitors can 

undergo maturation in rats with chemically-induced Parkinson’s disease and can ameliorate motor 

deficits [79]. The problems with immune-rejection, however, still remain, because ESC are non-

autologous. Therefore, unless ESC-based therapies are applied to immune-privileged sites like the 

retina and brain, immune-suppressant therapies or other strategies to prevent immune-rejection are 

required.  

Reports that pluripotent stem cells could be isolated from bone marrow[80] appeared to 

circumvent the aforementioned ethical issues as well as the problems with immune-rejection, as these 

cells can be self-derived. Although it is now clear that the bone marrow does not harbor pluripotent 

stem cells, there is good evidence that multipotent mesenchymal stromal cells (MSC) isolated from 

various sources, including bone marrow, adipose tissue and umbilical cord, have the potential to 

generate bone-, cartilage- and adipocyte-like cells following in vitro culture under specific conditions 

[81]. This has led to much enthusiasm regarding the use of autologous MSC-derived cells in 

combination with biomaterial scaffolds to generate replacement tissues for transplantation, an 

example being the use of MSC-derived chondrocytes to regenerate cartilage in the upper airway [24]. 

However, although such constructs have been used in human patients under ‘compassionate use’, data 

from animal studies indicate that MSC-derived chondrocytes fail to engraft and there is no evidence 

of cartilage regeneration [82], which might partly explain the high mortality rates observed in the 

clinic [83]. Most studies now show that while MSC and other somatic cell-based regenerative 

medicine therapies can have significant beneficial effects, these are mediated by paracrine factors that 

either directly or indirectly stimulate endogenous repair [84-86]. Thus, while MSC could be useful for 

promoting the repair and regeneration of transplanted tissues and organs, it is unlikely that they will 

be able to directly replace damaged tissues [87]. For instance, liver MSC-derived exosomes 

administered in an ex vivo normothermic liver perfusion system displayed regenerative functions and 

promoted in vivo repair [88].  

The seminal work of Yamanaka, who showed that somatic cells could be reprogrammed to 

generate induced pluripotent stem cells (iPSC) that have the same plasticity as ESC [89, 90], 

addressed some of the problems encountered with ESC and MSC; for instance, iPSC generation does 

not require human embryos, they can be patient-derived, and unlike MSC, they are pluripotent. The 

plasticity of iPSC raises the possibility that they could be used as a source of specialized cells types 

for the recellularization of tissue and organ scaffolds for transplantation. Indeed, iPSC appear to 

represent a potentially unlimited supply of pluripotent cells that could overcome cellular challenges 

related to quantity and specificity of cell sources for recellularization [91]. Improvement in 

pluripotent stem cell differentiation techniques are continuously in development [92]. Further 

optimization has to be determined exploiting the local cues and the functional stimuli occurring in the 

in vivo setting to acquire functional maturation. While some progress has been made with de- and 



recellularization of kidney [93], heart [21], pancreas [94] and liver scaffolds [95], at present an 

adequate kidney scaffold recellularization in vivo appears challenging and available infusion protocols 

inadequate [96].   

Overall, several additional key points need to be clarified to make stem cell research more 

realistic and practical. The extent and quality of vascularization required by tissue-engineered 

constructs for their in vivo stabilization and maintenance still need to be determined [97]. RM would 

benefit of methods to allow a constant in vivo tracking of cell viability and functions. Magnetic 

resonance imaging and optical imaging appear the more suitable approaches for high spatial 

resolution and high sensitivity, respectively. A fist approach to track endothelial after seeding in a 

trachea scaffold has been recently reported using bioluminescence technology cells [98]. 

 

Organoids and blastocyst complementation. Apart from the potential of using iPSC in combination 

with scaffolds for tissue replacement, recent progress has been made towards generating 3-

dimensional iPSC-derived organoids in vitro representative of several different organ systems, 

including renal, liver and heart organoids [99]. Exciting breakthroughs have been made with renal 

organoid development in particular, where it has been shown that iPSC-derived renal progenitor cells 

can generate organoids comprising all key renal cell types [100]. While organoids could potentially 

open the door to the development of bioengineered tissues and organs for transplantation in the future, 

many problems first need to be overcome, including appropriate vascularization. This is actually a 

major challenge because in the developing embryo, the major organ systems develop together with 

their capillary network and main feed arteries, ensuring that blood is supplied at the correct pressure. 

This problem is exemplified by a previous study showing that fetal rat kidneys do not mature beyond 

a neonatal stage following transplantation into adult rats, likely due to their abnormal vasculature and 

failure to develop a renal artery [101]. 

A potentially more promising iPSC-based technology for generating autologous tissues and 

organs for transplantation is interspecies blastocyst complementation (IBC). In this approach, genetic 

manipulation of the host precludes the development of an organ which is then compensated by stem 

cells from a donor that produce the missing organ. Proof of principle for this approach was 

demonstrated in 1993 to generate T and B lymphocyte lineages by implanting murine ESC into the 

blastocysts of  Rag2−/− mice [102]. Using host blastocysts derived from Pdx1-/- mice that display 

pancreatic agenesis, Melton’s group showed that complementation with wild-type mouse ESCs 

resulted in the pancreatic epithelium being derived from the donor Pdx1+/+ cells [103].  A later study 

showed that complementation of Pdx1-/- mouse blastocysts with rat iPSC resulted in the development 

of functional rat pancreases within the adult mice hosts, thus demonstrating interspecies 

complementation [104]. These groundbreaking studies raise the possibility that, by genetically 

modifying pig blastocysts so that they are unable to generate specific organs, and then complementing 

with patient-derived human iPSC, it could be possible to generate autologous organs for 



transplantation within the host pig. A key advantage of this approach is that apart from being 

autologous, functional and of the correct size, the organs could be transplanted with their own 

vascular pedicle. However, a number of challenges need to be addressed. For instance, although rat 

iPSC could generate pancreata within mouse hosts, they were unable to generate kidneys in Sal1-/- 

mice that display renal agenesis [105], suggesting that for some organs, additional modification of the 

donor iPSC might be required to enable them to interact appropriately with the developing host 

embryo. Furthermore, previous attempts to undertake interspecies complementation using human 

pluripotent stem cells and mouse blastocysts have had limited success [106, 107]. Nevertheless, using 

a ‘primed’ pluripotent state, Belmonte’s group has shown that human pluripotent stem cells could 

contribute to developing mouse embryos following grafting into gastrulating mouse embryos [108], 

thus providing proof of principle for interspecies blastocyst complementation using human iPSC. 

Importantly, while decellularization and 3D printing rely on bioreactors for the maturation of the 

bioengineered constructs, with this technology, the organs develop in utero, which presents the most 

convenient and physiologically appropriate conditions.  

However, some issues related to the generation of interspecies blastocyst complementation 

derived organs need to be faced. The purity of the generated organs, in terms of cell composition, 

need to be addressed. In fact, endothelial cells or other cell types derived from the host could 

contaminate the donor-derived organ. In addition to the technical problems, ethical concerns has been 

emphasized in relation to the possibility that human cells could contribution to the formation of non-

targeted organs, such as brain or germ cells, generating chimeric brains or fetuses [109]. 

 

Expanding the donor pool by the application of regenerative medicine strategies.  The narrowest 

concept of RM presumes the creation of neotissues from a cell source.  This presumptive approach 

entails addressing barriers that may take decades to overcome including those related to 

manufacturing practicality, safety, regulation and cost/reimbursement. However, established solid 

organ transplantation may be considered to already encompass a truly RM approach best illustrated by 

the successful transplantation of kidneys with severe acute kidney injury and most recently, donation 

after circulatory death (DCD) heart transplants. These clinical successes have allowed organs 

historically considered unusable to be successfully transplanted but the approach in each case relies 

on firstly predictable in-vivo regeneration but in the latter case, actively managed ex-vivo muscle cell 

regeneration in the context of normothermic reperfusion. 

Given the exceptionally successful results of solid organ transplants and the global “mantra” 

that this excellent selection of treatments is limited only by organ availability, it is possible to reason 

that managed regenerative treatment of the many thousands of deceased donor organs currently 

declined for transplant worldwide may represent a rapid route for clinical translation of the variety of 

regenerative therapies currently being developed. This diverges from the assumption that the 

generation of functioning neotissue is essential for patient benefit and instead uses regenerative cells 



or alternative therapies to protect the intrinsic regenerative capability of the solid organs from damage 

and promote its augmented activation, during and after the multifaceted phase of peri-transplant graft 

injury. 

This indication is evidently a major arena of clinical need. Candidate regenerative 

interventions – with the potential for multiple mechanisms of action – may be more effective and are 

already in phase 1 studies with particular promise for the application of MSC or pleomorphic 

regenerative cell populations such as those derived from adipose tissue.  The former have been widely 

administered for immunoregulatory purposes but increasingly the focus of such therapies is more 

regenerative with a recent study in ex-vivo perfused human livers confirming up to 50 x 106 cells can 

be delivered safely via the hepatic artery.  The latter have been safely administered intra-arterially or 

intra-portally, without vascular complications in animal models of kidney [110], lung and liver as well 

as directly into porcine and human coronary arteries [111-113]. These interventions have the added 

advantage of ex-vivo applicability in the context of organ storage or normothermic machine 

perfusion.  This latter scenario offers the opportunity for regenerative therapy in the context of 

optimized biodistribution and pre-implantation efficacy/safety assessment. 

An alternative RM-based approach may be molecule-based, in spite of the fact that multiple 

small molecule approaches for the indication that we are herein discussing have already failed to 

show clinical benefit. While on one hand this failure is likely to reflect the extensive redundancy in 

mechanisms of peri-transplant injury, on the other hand failure may simply tell us that we have not 

picked the right drug(s)! Ideally, we should consider molecules possessing high regenerative potential 

rather than molecules that target this or that pathway of the inflammatory response complicating 

ischemia-reperfusion. For instance, recent groundbreaking work from MDI Biological Laboratories 

identified MSI-1436 as a first-in-class regenerative medicine drug candidate [114]. In fact, in adult 

zebrafish, administration of MSI-1436 stimulated the rate of regeneration of caudal fin tissue and 

heart muscle by 2–3-fold without apparent tissue overgrowth or malformation. Moreover, 

administration of the drug to adult mice for 4 weeks beginning 24 h after inducing cardiac ischemia 

increased survival, improved heart function, reduced infarct size, reduced ventricular wall thinning 

and increased cellular proliferation in the infarct border zone. In a Phase 1 and 1b clinical trials 

attesting the potential of MSI-1436 for treating obesity and diabetes, good tolerability was 

demonstrated, and it was found that doses effective at stimulating regeneration were 5–50-times lower 

than the maximum well tolerated human dose; hence, this molecule shows great promise for 

applications in multiple TM scenarios. 

Given the major financial effects associated with delayed graft function of solid organ 

transplants, regenerative therapies in this context may also find a role in reducing peri-transplant 

injury and augmenting post implantation regeneration even in those solid organs currently utilized for 

transplant. 

 



 

Product development challenges for cell-based therapies  

a. Scaling-up production. The scaling up of cell production is not a trivial process as the physical 

environment where the bioengineered tissue will be implanted will exert a number of known and 

unknown effects on the physiologic and phenotypic characteristic of the final product. The type, 

dimension and material where cells are grown is known to impact their characteristic including cell 

proliferation rate and differentiation potential. Using standardized modular unit in parallel is usually 

the simplest and safest approach to scaling up from laboratory to industrial production for products 

dedicated to single individuals. However, this approach result also in an increase of cost, labor and 

risk of failure for single units (http://www.bioprocessintl.com/manufacturing/cell-

therapies/streamlining-cell-therapy-manufacture-328083/).   

As illustrated above, the integration in a tridimensional structure of different cell types can be 

obtained using ECM as an instructing guide. However, the timing, composition and degree of 

differentiation of the cell populations used to regenerate the cellular compartment of these structure 

remains unclear, as well as the stimuli needed to obtain a complete differentiation before (or after) 

implantation.  Due to the complexity of the function of complex modular organs like the kidney or the 

heart [115], the issue of scaling out is depending on the ability to replicate the essential manufacturing 

characteristics in different physical location and/or time.  This in turns depends on the ability to 

identify the key factors regulating the consistency of the manufacturing process and control them 

[116](https://nam.edu/manufacturing-cell-therapies-the-paradigm-shift-in-health-care-of-this-

century/). Single use modular apparatus are likely to be the simplest answer to this particular need.  

Assessing a complex construct requires the understanding of the specific characteristic 

desired for any given clinical application and the technologies to measure them. Both non-invasive 

approaches and surrogate biomarkers will have to be developed in order to perform the identity 

qualification of the final product, both in terms of functionality and expected half-life after 

transplantation.  However, while it is possible to standardize production, it may be difficult to apply 

the principle of "one-size-fits-all" to the recipient due to the intrinsic inter-individual variability but 

also to environmental effects. Adaptation of the process to a finite number of possible recipients is 

likely to be a necessary step. 

  

b. Key attributes of proposed RM interventions/products that demonstrate their readiness to be 

advanced into clinical trials.  

1) Critical quality attributes 

In order to progress to application in humans, any new RM product should have a clear indication in 

terms of expected functions in vivo, the definition of surrogate biomarkers for the estimation of the 

efficacy and an imaging technology to assess the integration and biodistribution. The expected half-

life in vivo should be clear, and remedial approaches in case of failure should be well defined. The 



choice of parameters defining the products (i.e. identity) should be justified by a risk assessment and 

the intended use 

(https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformati

on/Guidances/CellularandGeneTherapy/ucm081670.pdf and 

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC5000039

87.pdf). 

  

2) Critical process parameters  

The critical process parameters are strictly depending on the cell type and need to cover basic safety 

and efficacy in vivo after transplantation. Both donor and recipient characteristics should be included 

in the evaluation of these parameters. Usually these parameters encompass at least cell number, 

viability and proliferative index, which per se do not exclude the necessity of more specific biomarker 

testing.  

  

3) Material attributes 

As the cells respond in a complex – yet, still not fully understood – manner to the materials present in 

the culture media and containers used during the manufacturing process, any substitution or alteration 

has to be carefully assessed against the panel of final desired characteristics. Depending on their 

complexity, such assurance could be obtained by either testing the materials before accepting them for 

the manufacturing process, or by the full qualification of the supply chain. A strict definition of the 

materials sourcing should be established early in the development process.  

  

c. What are the key regulatory science questions that should be addressed in the next five years? 

The understanding of the expansion limit of the different stem cell lines with potential for clinical 

applications is the first knowledge gap to be filled. Stem cells should be expanded and harvested 

without incurring in genomic alterations that would obviously undermine safety. Such limit is now 

defined in a conservative way for MSC [117] but remains unclear for ESC and iPS.  However, the 

necessity to obtain and qualify new donor cell population regularly constitute a strong limitation to 

the application on a large scale of RM.  

Information about the stability of the transplanted organ/tissue and its response to 

environmental stimuli in vivo is fundamental for progress in the field but will be obtained only after a 

more substantial number of applications will be done. Currently, it is not possible to predict the fate of 

an artificial tissue in vivo, which could engraft permanently while exerting (some) function, but may 

also fail in time, or be colonized and replaced by endogenous cell. The long-term stability and the 

ability to exert (to some extent) physiological function(s) after implantation will therefore have to be 

determined.  In this scenario, it will be critical for authors to disclose with honesty and integrity not 



only short- or mid-term results, but also the long-term results. On their side, journals should require 

authors to provide outcome updates on a regular basis. 

As discussed above, so far it has been common practice to implant bioengineered tissues 

without the reconnection to the blood stream of the recipient or the nervous system. For solid organs 

or vascularized composite allografts, this is not an option. Therefore, research should devise strategies 

to allow the integration of the vascular and nervous system of the host with the bioengineered tissue.  

 

 

Regenerative immunology 

One of the most critical questions to answer is how the immune system could react against a 

bioengineered cellular construct and if it would be possible to modulate this response [118]. A 

bioengineered construct consists of two components, the cellular compartment and the cell-supporting 

system, namely the ECM. While a fully developed lab-grown organ consisting in well differentiated 

cells deriving from a genetically different donor will certainly be subjected to the same well codified 

immune response as an allograft, it was initially speculated that tissues derived from allogeneic 

pluripotent stem cells (PSCs)- were not immunogenic and could therefore evade allorecognition 

[119]. This hypothesis was based on the observation that primordial cells like PSC present low MHC 

expression and immunogenicity, and that lab-engineered biological constructs lack dendritic cells and 

a lymphatic system that are primary drivers of alloimmune response. However, a growing body of 

literature has clearly shown that PSC are not immune privileged and that even tissues derived from 

autologous iPS may elicit an inflammatory reaction and succumb to rejection [119]. Therefore, 

strategies to promote local or systemic tolerance or immunomodulation are currently under 

investigations. One approach to solve the problem of graft immunogenicity is the cloaking of lab-

grown (allo- or auto-) grafts in immune-neutral substances, such as nanofilms [120-123]. 

Alternatively, researchers are assessing whether the constitutive secretion of immune-modulating 

cytokines, including TGF-beta, by tissues differentiated from PSC promotes polarization of 

infiltrating T cells toward a regulatory T cell (Treg), immune modulatory phenotype [119, 124-126]. 

Interestingly enough, natural ECM-based scaffolds obtained from human organs that are being used 

as supporting scaffolding material for bioengineered tissues, have been reported to contain significant 

amount of TGF-beta [127-130] and to be able to induce T-cell apoptosis and promote conversion of 

naïve CD4+ T cells into CD4+CD25+Foxp3+ Treg [118, 129]. This observation is consistent with the 

evidence showing that the ECM possesses strong immunomodulatory properties. Studies in rats 

showed that rabbit acellular decellularized muscle scaffolds down-regulated T cell xenogeneic 

responses and TH1 effector function compared to fresh tissue  by inducing a state of peripheral T cell 

hyporesponsiveness [131].  Moreover, ECM obtained from human normal or diseased organs, 

promote a protolerogenic macrophage polarization similar to the one that is observed in the adaptive 

regenerative healing response whereby a phenotypic transition from the pro-inflammatory M1 to the 



immune-modulating M2 phenotype occurs [128, 132, 133].  Therefore, combining the intrinsic ability 

of PSC-differentiated tissue to release TGF-beta with the immunomodulatory properties of ECM-

based scaffolds, may represent a valuable strategy to reduce immunogenicity of bioengeneered 

organs.   

 

 

Conclusions 

The transplant era began in 1902 in Vienna, with the successful autotransplantation of a 

kidney in the neck of a dog performed by Hungary born surgeon Emerich Ullman who however did 

not succeed in performing any transplant in humans. It took fifty-two years before the first successful 

renal transplant could be executed in humans, and more than seven decades before transplantation 

became standard of care for a myriad of clinical settings requiring replacement surgery. In the past 

few decades, a new field of health science referred to as RM has shown potential to deliver to the 

bedside organs manufactured from patient’s own cells thus bypassing allorecognition and ultimately 

rendering anti-rejection medication unnecessary. In doing so, RM promises to meet the more urgent 

needs of our field, proposes a new Holy Grail for modern TM[1] and identifies a field of investigation 

of immense interest to transplantation (Figure 1). 

Few patients have truly benefited from the successful implantation of bioengineered organs, 

while in the majority of others the graft did not work. Moreover, the anatomical and physiological 

complexities of modular organs like the liver, the kidney etc., has not been replicated yet and a lot of 

work remains to be done before organ bioengineering will approach the bedside and so change the 

paradigm that has dominated transplant medicine for more than a century using lab-grown organs 

rather than organs procured from deceased or living donors. However, the proof of concept has been 

provided and researchers are now studying how to fully develop its potential and allow translation. 

Despite the road to the ultimate objective appears long, winding and difficult (Figure 2), the different 

RM technologies are still immature and several questions will have to be answered before translation 

may occur (Table 1), the days when success will be the usual outcome are ahead of us and closer are 

the days when TM, a discipline that traditionally has been immunology-based [134, 135], will realize 

that RM should become its major research core. If we agree on this, then TM should allocate more 

funds to RM-inspired research, transplant societies should twin with RM societies and established RM 

community of practices and committees, transplant journals and conferences should grant the due 

consideration and visibility to RM manuscripts. The good news is that most of this is already being 

done.   

To the authors of the present manuscript, it is clear that no field in health sciences has more 

interest than organ transplantation in fostering progress in RM simply because the future of no other 

field more than the future of TM will be determined and forged by progress occurring in RM. 

  



Figure 1.  In the history of organ transplantation, we identify three phases or eras. The first 
can be referred to as the surgery phase and spans from the early days to the advent of 
cyclosporine. The introduction of this potent immunosuppressant allowed transplantation to 
become a lifesaving procedure for a myriad of clinical scenarios characterized by irreversible 
organ failure. The second phase (immunology) spans from the advent of cyclosporine to 
nowadays. During that phase, we have learned how to manage anti-rejection medications and 
their impact on patient’s quality of life. Importantly, given the burden of side effects that 
comes with lifelong immunosuppression, we have realized that we should devise strategies to 
minimize the immunosuppression if not withdrawing it completely sometime after the 
transplant. Unfortunately, immunosuppression-free transplantation remains unrealistic, 
despite intense research and multiple attempts to translate promising laboratory findings into 
the clinic[136, 137]. The third phase has just begun and can be referred to as the regenerative 
medicine phase. RM promises to meet the most urgent needs of modern transplantation, 
namely, the identification of a new potentially inexhaustible source of organs and 
immunosuppression-free transplantation (adapted from Salvatori et al. Xenotransplantation 
2015 and Orlando G. Transplantation 2017, with permission).  
	
 
 
Figure 2. Roadmap for ex vivo solid organ bioengineering using decellularization and 3D 
printing technologies. The figure briefly summarizes the milestones to reach on the path 
towards the Holy Grail. However, the cartoon does not contemplate interspecies blastocyst 
complementation, which – to the authors – bears the greatest potential for the field because 
all steps of organ ontogenesis occur in vivo and are strictly regulated by the surrogate animal, 
without any need for any intervention from the outside. Instead, based on current views, in 
the case of decellularization and 3D printing, cells and supporting scaffolding materials need 
to go through a maturation phase whose duration, dynamic and physiology remain largely 
unknown. 

  



Table 1. State of the art, perspective and hurdles to overcome in the major RM technologies 
of transplant interest.  
 
Legend: ECMs extracellular matrix scaffolds; aECMs acellular ECMs; iPSC induced 
pluripotent stem cells; IBC interspecies blastocyst complementation; GLP good laboratory 
practice 
 
	
	
 State of the art Perspective and hurdles to 

overcome 
DECELLULARIZATION 1. Virtually all organs from 

all clinically relevant 
mammalian species 
including humans can be 
decellularized to obtain 
acellular ECMs 

2. aECMs preserves most yet 
not all molecular and 
physical characteristics of 
the innate ECM, as the 
decellularization process 
damages the ECM to an 
extent that depends on the 
method and the organ 

3. Partial regeneration of the 
endothelial and 
parenchymal 
compartments has been 
reported, yet results are 
inconsistent and difficult 
to reproduce 

4. The maturation phase 
reported in the literature 
for the different organs 
was always far inferior to 
the time needed in utero to 
develop the organs in 
questions 

5. The implantation in vivo 
of a viable and 
functioning bioengineered 
organ has never been 
reported   

1. In-depth understanding 
of the mechanisms 
underlying organ 
development, 
regeneration and 
homeostasis  

2. In-depth understanding 
of the mechanisms of 
ECM-cell interactions 

3. Cell selection for 
recellularization 

4. Harmonious 
harnessing of 
lymphatic, nervous and 
vascular components   

5. Improving the design 
of ad hoc bioreactors 
to support maturation 

6. Strategies to achieve 
adequate 
recellularization  

3D 1. Successful isolation and 
expansion of many 
functional and supportive 
cell types 

2. Replication of mechanical 
and biophysical properties 

1. Production of an 
adequate number of 
regeneration-
competent cells that do 
not elicit an immune 
repose following 



of simple tissues at the 
macro-level 

3. Bioprinting of cells with 
natural and synthetic 
biomaterials with high 
resolution 

4. Implantation and in vivo 
maturation of small 
avascular tissues 

transplantation 
2. ECM-based materials 

that provide much 
stronger mechanical 
strength while 
maintaining the cell-
supportive 
environment 

3. Improvements in 
speed, resolution, 
material flexibility and 
scalability of 
bioprinters 

4. Bioprinting of multi-
scale vascular 
networks within 
instructive bioink that 
promotes angiogenic 
sprouting and 
neovascularization 

 
 iPSCs 1. Generation of various 

types of complex 
organoids in vitro (e.g., 
renal, liver, heart, 
pancreas) from human 
iPSCs 

2. Generation of human 
pancreatic tissue in vivo 
following transplantation 
of iPSC-derived organoids 
in mice 

3. iPSCs can be generated 
from individual patients, 
circumventing the need 
for immunosuppressants 
following transplantation 
into patients 
 

1. iPSC-derived 
organoids typically 
resemble foetal 
tissues/organs and are 
unlikely to mature into 
functioning adult 
organs 

2. iPSC-derived 
organoids generated in 
vitro do not have the 
blood vessels, 
lymphatics and 
neuronal innervation 
required for them to 
function in vivo 

IBC 1. Development of 
functional rat pancreata 
following IBC of Pdx1-/- 
mouse blastocysts 

2. Generation of a biallelic 
knockout in pigs using 
nuclease-based genome 
editing shows it could be 
possible to generate pig 
embryos for IBC that lack 
specific organs 

1. To improve the 
efficiency of 
generating human-pig 
chimeric embryos, we 
need a greater 
understanding of how 
the status of human 
iPSCs (ie, whether 
they are ‘naïve’, 
‘primed’ or 
‘intermediate’) affects 



3. Development of mouse-
human and pig-human  
chimeric embryos using 
‘primed’ human iPSCs  

their ability to 
integrate into post-
implantation pig 
embryos 

2. The contribution of 
human iPSCs to 
developing pig 
embryos is limited and 
it has not yet been 
possible to generate 
human organs using 
IBC 

3. Even if the above 
challenges were 
addressed, a further 
problem is that human 
organs developed 
using IBC would have 
pig blood vessels, 
lymphatics and 
neuronal innervation, 
which would probably 
lead to immune-
rejection. 

RM for IR 1. Multiple candidate cell 
populations showing 
efficacy beyond previous 
small molecule 
alternatives. 

2. Emerging evidence of 
favourable biodistribution 
avoiding off-site effects 

3. Natural organ architecture 
available in transplant 
context. 

4. Complementary benefits 
with normothermic, ex-
vivo perfusion. 

1 Obtaining adequate numbers 
of point of care derived 
autologous cells. 
2. Obtaining adequate 
numbers of efficacious, non-
immunogenic GLP 
manufactured allogeneic cells. 
3.  Reassurance regarding 
potential 
vascular/microvascular 
complications 
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