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Abstract

CD157/BST1 glycosylphosphatidylinositol-anchored glycoprotein is an evolutionary conserved 

dual-function receptor and β-NAD+-metabolizing ectoenzyme of the ADP-ribosyl cyclases gene 

family. Identified as bone marrow stromal cell and myeloid cell differentiation antigen, CD157 turned 

out to have a wider expression than originally assumed. The functional significance of human CD157 

as an enzyme remains unclear, while it was well established in mouse models. Conversely, the 

receptor role of CD157 has been clearly delineated. In physiological conditions, CD157 is a key 

player in regulating leukocyte adhesion, migration and diapedesis. Underlying these functional roles 

is the ability of CD157 to bind with high affinity selected extracellular matrix components within 

their heparin-binding domains. CD157 binding to extracellular matrix promotes its interaction with 

β1 and β2-integrins and induces the organization of a multimolecular complex that is instrumental to 

the delivery of synergistic outside-in signals leading to optimal cell adhesion and migration, both in 

physiological and in pathological situations. CD157 also regulates cell adhesion and migration and is 

a marker of adverse prognosis in epithelial ovarian cancer and pleural mesothelioma.

This review focuses on human CD157 expression and functions and provides an overview on its role 

in human pathology and its emerging potential as target for antibody-mediated immunotherapy.

Key words: CD157/BST1, CD157 ligand, leukocyte trafficking, cell adhesion, innate immunity
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1. Introduction

    CD157 has been discovered in 1985 as the Mo5 human myelomonocytic differentiation antigen 

[1]. A decade later, CD157 was identified and characterised as a cell surface receptor expressed in 

bone marrow stromal cells where it supports the growth of hematopoietic B cell progenitors, hence 

the name bone marrow stromal cell antigen 1 (BST1)[2] [3]. Subsequently, the Human Cell 

Differentiation Molecules organization (HCDM; www.hcdm.org) grouped together Mo5 and BST1 

as CD157 cell differentiation marker. Human CD157 is a glycosylphosphatidylinositol (GPI)-

anchored glycoprotein conserved among vertebrates, that along with its paralogue CD38, constitutes 

the ADP-ribosyl cyclases (ARC) gene family [4]. CD157 and CD38 genes maps to human 

chromosome 4 (4p15.33) and they show highly conserved exon structure and gene regulatory 

elements [5]. Until recently, only one BST1 gene consisting of nine exons and eight introns was 

known, which encodes the canonical CD157/BST1 protein of 318 amino acids [4]. Recently, our 

group discovered a second BST1 transcript, which encompasses an additional exon, located between 

exons 1 and 2 of the canonical BST1 gene, and encodes a novel CD157 proteoform (namely, CD157-

002) of 333 amino acids. This unexpected finding unveiled that canonical CD157 does not derive by 

constitutive splicing of the 9-exon BST1 gene as believed, but is generated by exclusion of the 

additional exon by alternative splicing [6]. So far, human CD157 is the first member of the ARC 

family to be described as being regulated by alternative splicing.

    Several single-nucleotide polymorphisms (SNPs) at BST1 gene have been described, four of which 

(i.e., rs11931532, rs12645693, rs4698412 and rs4538475) were identified as risk factors in sporadic 

late-onset Parkinson disease in a Japanese GWA study, with rs4538475 showing the strongest 

association [7]. This association was confirmed in the northern Han Chinese population [8], while it 

was controversial in the European population [9, 10]. Moreover, rs4301112 and rs28532698 SNPs at 

BST1 gene proved to be significantly associated with Autism spectrum disorders in a Japanese 

population [11] but not in a Han Chinese population [12], suggesting that the association between 
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BST1 locus and sporadic late-onset Parkinson’s disease or Autism spectrum disorders varies with 

ethnicity. 

    CD157 protein has a molecular weight ranging between 42-50 kDa due to its heterogeneous 

glycosylation patterns [13]. CD157 exists both as membrane-bound and as a soluble protein that is 

measurable in sera [14] and in pleural and peritoneal effusions [15].

Human CD157 is prevalently expressed in cells belonging to the myelomonocytic lineage, especially 

in monocytes, neutrophils and more immature myeloid stages [16], hence its original designation as 

myeloid differentiation antigen. However, CD157 has a wider expression than previously thought; 

indeed, it was also found in vascular endothelium [17] and tissue-resident vascular endothelial stem 

cells [18], mesothelial cells [19], mesenchymal stem cells [20], follicular dendritic cells [21] and 

Paneth cells [22], and in many other cell types [23-31]. However, functional implications of CD157 

in many of these tissues have not been fully examined. Over the past decade, we have found CD157 

expression in epithelial ovarian cancer [32] and malignant pleural mesothelioma (MPM) [33], and in 

both tumor types a correlation emerged between CD157 expression levels and tumor aggressiveness. 

The expression of CD157 in lymphoid and non-lymphoid tissues is summarized in Table 1.

2. CD157 enzymatic functions

    CD157 shares with CD38 the ability to convert β-NAD+ to cyclic ADP ribose (cADPR, minor 

product) and ADP ribose (APDR, major product), indicating the presence of ADP-ribosyl cyclase, 

NAD glycohydrolase and possibly cyclic adenosine 5′-diphosphoribose hydrolase activities [34, 35]. 

However, human CD157 ADP-ribosyl cyclase activity is hundreds fold less efficient compared to 

that of human CD38, requires an acidic pH (4.0-6.5) and the presence of metal (Zn2+ and Mg2+) ions 

[34, 35]. Actually, CD157 quantitative contribution to generate the intracellular second messenger 

cADPR by β-NAD+ conversion is unknown. In contrast, the β-NAD+ glycohydrolase activity of 

CD157 is readily detectable and leads to production of ADPR, which can act both as a substrate and 
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as a second messenger [36]. Although CD157-002 shares similar distribution and receptor functions 

with canonical CD157, it does not display measurable NADase activity [6].  

    In contrast to what has been observed in human models, in murine models there is evidence that 

cADPR generation by CD157 may be biologically relevant in mediating paracrine signaling in 

hematopoiesis [37], in gut stem cell homeostasis in response to calorie restriction [22] and in social 

behavior, envisaging a role for CD157 as a neuro-entero-immune regulator [38].

3. CD157 receptor functions

    First evidence of the receptor nature of CD157 was inferred from the observation that the protein 

expressed by bone marrow stromal cells supported the growth of a pre-B cell line [3]. Subsequently, 

several experimental evidence confirmed that CD157 behaves as a receptor capable of transducing 

intracellular signals. The receptor functions of CD157 were established long before the discovery of 

its physiological non-substrate ligand, thanks to the availability of specific agonistic (or blocking) 

monoclonal antibodies (mAb). Indeed, binding of CD157 with agonistic antibodies in several 

myelomonocytic cell line models induced tyrosine phosphorylation of a 130 kDa protein, identified 

as focal adhesion kinase (FAK) [39], regulated calcium homeostasis and promoted polarization in 

neutrophils [40], and mediated superoxide (O2-) production in the U937 human myelomonocytic 

leukemia cells [41]. As CD157 lacks intracellular domains, it is unfit to transduce signals by its own. 

To overcame this intrinsic structural limitation, CD157 exploits the lateral mobility provided by the 

GPI-moiety to establish structural and functional interactions with co-receptors in the plasma 

membrane. In particular, in human leukocytes (neutrophils and monocytes), CD157 associates with 

CD29 (β1 integrin) and CD18 (β2 integrin) to form a multimolecular complex mediating out-side-in 

signal transduction [42]. 

    As many other GPI-anchored proteins, CD157 is sorted into specialised cholesterol- and 

ganglioside-enriched microdomains in the cell membrane, referred to as lipid rafts. These membrane 
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domains are dynamic assemblies of proteins and lipids that harbour many receptors and intracellular 

effectors and so act as platforms for signal transduction [43]. Upon binding to its ligand (or 

engagement by a specific mAb as a surrogate for the ligand),  CD157 promotes the recruitment of β1 

and β2 integrin into lipid rafts, thus inducing the formation of a multimolecular complex that delivers 

efficient downstream signals. In leukocytes, CD157-mediated intracellular signals relies on the 

integrin/FAK/Src pathway, leading to increased phosphorylation of tyrosine kinase receptors and 

activation of downstream MAPK/ERK1/2 and PI3K/Akt signaling pathways [44] (Figure 1).

4. CD157 and its natural ligands

    Although it was clear since its discovery that CD157 induces a variety of cellular responses in 

leukocytes and other cell types, apparently unrelated from its enzymatic functions [40], for a long 

time, the efforts to define the non-enzymatic functions of CD157 have been hindered by the lack of 

a known biological ligand. The identification of the role of CD157 in leukocyte adhesion, migration 

and invasion and its functional and structural partnership with β1 and β2 integrins [42, 45], paved the 

way to discover the ability of CD157 to bind with high affinity to selected components of the 

extracellular matrix (ECM) such as fibronectin, fibrinogen, laminin-1 and type 1 collagen (but not 

vitronectin), within their heparin-binding domains [46]. The strong CD157/ECM interaction is 

instrumental to establish a physical interaction with integrins and to deliver intracellular signals 

regulating cell adhesion and migration. Consistently, knockdown of CD157 in myeloid, mesothelial 

or epithelial cells remarkably reduces fibronectin-mediated phosphorylation of FAK, Src, and Akt 

tyrosine kinases [46] and eventually affects cell adhesion and spreading [33, 47]. Overall, 

experimental evidence suggests that binding of human CD157 to selected ECM proteins mediates 

many of the biological effects exerted by CD157 in different physiological (e.g., leukocyte 

trafficking) and pathological contexts (e.g., inflammatory diseases and cancer), where the 

composition of the extracellular matrix in the local environment dictates the proper outcome. For 
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example, in ovarian cancer, the CD157-ECM interaction occurring in the peritoneal cavity rescues 

floating tumor cells from anoikis and promotes their migration and metastatic dissemination, 

ultimately exacerbating tumor aggressiveness [47]. 

    In human mesenchymal stem cells (MSC) CD157 in combination with integrin β1 has been 

reported to act as a receptor for SCRG1 (scrapie responsive gene 1). SCRG1 is a soluble protein 

induced in transmissible spongiform encephalopathies and brain injuries, involved in the regulation 

of MSC self-renewal, migration, and osteogenic differentiation, especially in the central nervous 

system of mice infected with scrapie, where SCRG1 is highly expressed. The SCRG1/BST1/integrin 

axis maintains MSC self-renewal and multipotency and promotes the migration of human bone 

marrow-derived MSC through the activation of the FAK/PI3K/Akt signaling pathway [20]. However, 

functional significance of this interaction in vivo is currently unknown.

5. Role of CD157 in immune response and inflammation

    In the mouse model, ample evidence demonstrated that CD157 is an immunoregulatory molecule 

implicated in early B and T cell growth and development [48]. Moreover, the expression of CD157 

by murine B and T cell progenitors parallels rearrangement of antigen receptor genes [49]. In pro-B 

cells, BST1 is reported as PAX5-activated gene, adding supportive evidence that CD157 functions 

during rearrangement of antigen receptor genes [50]. The murine CD157 KO model highlighted that 

CD157 plays a role in the regulation of the humoral T-independent immune responses and the 

mucosal thymus-dependent response [51]. 

    Our group has spent several years assessing the role of human CD157 in the innate and adaptive 

immune response, coming to the conclusion that CD157 has a key role in the control of myeloid cell 

migration and diapedesis during inflammation, a function which is fully consistent with its expression 

on leukocytes membrane and at intercellular border of vascular endothelial cells, and with its role as 

an adhesion molecule. In the early 2000s, using CD157-specific agonistic (or blocking) mAb, we 
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demonstrated that CD157 regulates neutrophil and monocyte adhesion to ECM proteins and 

orchestrates their motility and transendothelial migration by establishing a structural and functional 

cross-talk with β1- [45] and β2-integrin [40]. These findings were strengthened by the observation 

that neutrophils obtained from patients with paroxysmal nocturnal hemoglobinuria, an acquired 

genetic disease characterized by lack of GPI-anchored molecules, including CD157 [52], are 

characterized by severe defects in neutrophil adhesion, migration and transendothelial migration [17]. 

Hence, blocking CD157 with specific antibodies or its genetic loss, results in impaired cell adhesion 

to ECM proteins and reduced cell motility.

    The discovery that CD157 binds with high affinity to the heparin-binding domains of fibronectin 

or other components of the ECM, revealed the nature of the physiological interaction(s) implementing 

multiple biological activities attributed to CD157 in normal and pathological conditions, unrelated to 

its role as enzyme [32, 33, 46]. 

6. CD157 in pathological conditions

6.1 Autoimmune diseases

6.1.1 Rheumatoid arthritis 

    Several evidence showed that abnormal functions of the bone marrow (BM) play critical roles in 

the pathophysiology of rheumatoid arthritis (RA). Since RA-derived stromal cells express higher 

levels of CD157 than those derived from healthy subjects, it has been hypothesized that CD157 

expressed by synovia-derived stromal cells may contribute to the pathogenesis of the disease by 

increasing the proliferative capacity and reducing apoptosis of pre-B cells [53, 54]. Moreover, soluble 

CD157 concentration in serum from patients with RA proved to be significantly higher than those 

from healthy subjects and to correlate with the severity of the disease [14], hinting to an involvement 

of CD157 in the progression of the disease. However, the mechanistic implication of CD157 in the 

pathophysiology of RA has never been substantiated by experimental evidence.
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6.2 Hematologic malignancies

6.2.1 B-cell precursors acute lymphoblastic leukemia

    CD157 has been proposed as marker for disease monitoring in B-cell precursor acute lymphoblastic 

leukemia. Indeed, high CD157 expression discriminates malignant cells from CD157-negative 

normal B cells in the bone marrow from the same patient, and may be useful as an additional marker 

to detect and quantify residual leukemia cells at early treatment time points and during follow-up 

[55].

6.2.2 Acute myeloid leukemia

    Acute myeloid leukemia (AML), the most-common acute leukemia in adults, is a heterogeneous 

disease frequently associated with poor prognosis. Standard chemotherapies can induce complete 

remission in selected patients, however, most patients eventually relapse and succumb to the disease. 

Thus, the development of novel therapies for AML is an urgent need.  The therapeutic 

armamentarium for AML has remained unchanged for decades, until the last two years, when multiple 

drugs with novel mechanisms of action and low toxicity have been approved [56]. Other agents are 

being tested in the clinic, especially  immunotherapeutics, including monoclonal antibodies, chimeric 

antigen receptor-engineered T cells (CART cells), and checkpoint inhibitors [57]. 

CD157 is expressed in 97% of AML patients both at time of primary diagnosis and relapse, regardless 

of the genetic profile. Notably, the highest expression of CD157 is associated to M4 and M5 subtypes 

[58], which represent the group in which conventional chemotherapy has limited efficacy. Albeit at 

lower extent, CD157 was also found in the compartment of leukemia-initiating cells, which are 

believed to be implicated in leukemia relapse [59]. These findings make CD157 an attractive target 

for immunotherapy in AML. To this aim, a novel anti-CD157 monoclonal antibody (MEN1112) has 

been developed by the Menarini Group (Pomezia, Italy) in collaboration with OBT (Oxford Bio 

Therapeutics, Oxon, UK). MEN1112 is a humanized de-fucosylated monoclonal IgG1, which binds 
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to the Fcγ receptor (CD16) on natural killer (NK) cells with enhanced affinity and exerts a robust 

anti-leukemia activity through antibody dependent cell-mediated cytotoxicty (ADCC) [59]. A phase 

I clinical trial is ongoing (NCT02353143).

    Results from various studies convincingly established that the bone marrow (BM) 

microenvironment plays an important role in therapy escape of leukemic cells and occurrence of 

leukemic relapse [60]. Development of novel treatments targeting the cellular and molecular 

mechanisms that control dynamic AML-niche interactions represents an appealing strategy to 

overcome the limitations associated with intrinsic genetic heterogeneity of AML, and to resolve 

niche-mediated drug resistance. By virtue of its expression both by tumor cells and surrounding BM 

stromal cells (BMSC), it is reasonable to predict that CD157 takes part to a positive feedback loop in 

the interactions between AML cells and the BM microenvironment that feeds a ‘vicious cycle’ 

resulting in tumor cell protection from chemotherapy (Figure 2). Our preliminary results obtained in 

vitro from co-culture studies indicated that CD157 expressed by BMSC is involved in the protection 

of primary leukemic cells from the cytotoxic effect of cytosine arabinoside (AraC) treatment (EO and 

SA, personal observation) strengthening the potential clinical utility of CD157 as double therapeutic 

target acting both on leukemia cells and BM niche. 

6.3. Solid tumors

6.3.1. Ovarian cancer

    The expression of CD157 in mesothelial cells [19] on the one hand, and its involvement in the 

control of leukocyte trafficking, on the other, led us to assume that CD157 could be expressed by 

epithelial ovarian cancer cells and could be involved in the control of ovarian cancer dissemination. 

This hypothesis was independently supported by the identification of CD157/BST1 among genes 

overexpressed in primary cultures of epithelial ovarian cancer cells, compared to non-malignant 

epithelial cells [61]. Collectively, our experimental and clinical data demonstrated that CD157 is 
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expressed by more than 90% of epithelial ovarian cancers and is an independent prognostic factor of 

tumor relapse shortly after surgery. In addition, CD157 is involved in the interactions between 

epithelial ovarian cancer cells, ECM proteins and peritoneal mesothelial cells, and through these 

functions it controls tumor cell migration and invasion into surrounding tissues. At the molecular 

level, the functional contribution of CD157 to the progression of epithelial ovarian cancer relies on 

its ability to switch on a differentiation program, which allows neoplastic cells to modulate selected 

genes. This eventually translates into increased expression of protein favoring tumor progression and 

reduced expression of proteins hindering tumor progression, which confers cells a highly malignant 

phenotype, and bring them toward the acquisition of morphological and functional features of 

mesenchymal cells, a prerequisite for cancer cell invasion and metastatic dissemination [47]. 

6.3.2. Malignant Mesothelioma

CD157 is also expressed in >85% of MPM, which share embryonic origin, biologic and phenotypic 

properties and dissemination modalities of epithelial ovarian cancer. Again, high CD157 expression 

proved to be associated with enhanced tumor aggressiveness and shorter survival, notably in patients 

with MPM of biphasic histotype. In vitro, CD157 expression correlates with enhanced cell growth, 

migration, invasion and increased activation of the PI3K/Akt/mTOR pathway and reduced sensitivity 

to platinum-based chemotherapy. These findings are supported by clinical data indicating that patients 

with biphasic MPM and high CD157 expression that received platinum-based therapy had 

significantly shorter survival compared to patients with low CD157 expression [33]. Collectively, 

these data suggest that CD157 has potential clinical utility as a marker for stratifying patients with 

MPM into different prognostic groups. Moreover, CD157 may identify patients with highly 

aggressive MPM, which might benefit from a particular chemotherapeutic approach that may include 

specific inhibitors of the PI3K/Akt/mTOR pathway. Recent results from our group demonstrated that 

soluble CD157 levels is significantly higher in MPM effusions than in all other pleural effusions, 

both non-MPM malignant and non-malignant. Although sCD157 does not have the required accuracy 
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for diagnostic purposes by its own, measurement of effusion sCD157 can provide supporting 

evidence for diagnosing MPM in symptomatic individuals when cytology is inconclusive [15].

7. Conclusion

    CD157 identified over three decades ago as myeloid differentiation marker, has turned out to be a 

key player in the regulation and modulation of various aspect of leukocyte physiology and behavior 

of selected cancer types, hinting to potential clinical applications. Indeed, it is reasonable to envision 

that hindering the interaction between CD157 and fibronectin (or other ECM proteins, depending on 

each specific microenvironment) may represent a new avenue for the design of therapeutic 

approaches against chronic inflammation and cancer. For example, in chronic inflammatory 

conditions, such as arthritis and atherosclerosis, CD157 due to its structural and functional partnership 

with integrins, offers the opportunity for fine-tuning integrin functions avoiding to interfere directly 

with them. Integrins have been a focus of extensive and continuing research as therapeutic targets, 

but despite some outstanding therapeutic successes, the complexity of their function has often made 

treatment development challenging, especially in cancer therapy [62]. Regardless of the encouraging 

in vitro and preclinical results, late phase clinical trials have, thus far, been disappointing. It is possible 

that targeting proteins interacting with integrins, rather than integrins themselves, would be a more 

beneficial therapeutic approach. In ovarian cancer and mesothelioma patients, it is tempting to predict 

that CD157 can be useful as novel marker to formulate prognostic stratification and to refine 

therapeutic selection of patients, and possibly, as novel therapeutic target to counteract invasion and 

dissemination of cancer cells. 
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CD157 expression in healthy tissues
Tissues Cells Ref.

Lymphoid
Blood Neutrophils [40]

Basophils [1]
Monocytes [1]
Macrophages [39]
Plasmocytoid dendritic cells [21]

Bone marrow B cell precursors [25]
Myeloid precursors [1]
Mesenchymal stromal cells [3]

Lymph node Follicular dendritic cells [16]
Spleen Fibroblastic reticular cells (mouse) [23]

Non-lymphoid
Blood vessels Endothelial cells [17]

Tissue-resident vascular endothelial stem cells (mouse) [18]
Mast cells [24]

Liver Fetal B cell progenitors (mouse) [25]
Lung Stem cells (mouse) [26]
Gut Brush border, epithelial cells of villi (rat) [27]

Paneth cells [22]
Stromal cells in cryptopatches and lymphoid follicles and Peyer’s 
patches (mouse) 

[28]

Brain Amygdala, somatosensory cortex (mouse) [38]
Peritoneum Mesothelial cells [19]
Pancreas α and β-cells [29]
Kidney Collecting tubuli (mouse) [30]
Eye Corneal limbal cells, corneal stem cells [31]

CD157 expression in disease conditions

Blood malignancies Acute myeloid leukemia [59]
B-cell precursor acute lymphoblastic leukemia [55]

Autoimmune diseases Nurse-like synovial cells in rheumatoid arthritis [53]
Ovarian cancer Epithelial ovarian cancer cells [32]
Mesothelioma Epithelioid, biphasic and sarcomatoid pleural mesothelioma [33]

Table 1. Expression of CD157 in lymphoid and non-lymphoid tissues, in normal and pathological 
conditions.
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Figure legends

Figure 1. Schematic representation of CD157-mediated intracellular signals. Binding of CD157 

to fibronectin is instrumental to form a multimolecular complex with integrins and to promote the 

assembly of a network of interconnected intracellular signals leading to optimal cell adhesion, 

migration and survival (red arrows) and counteracting cell apoptosis (blue arrows).

Figure 2. Implication of CD157 in the protective effect of bone marrow microenvironment on 

AML cells. AML cells interact with bone marrow stromal cells (BMSC) and extracellular matrix 

proteins (such as, fibronectin) via adhesion molecules. CD157 expressed by AML cells and BMSC 

bind to the heparin binding domain (in red) of selected extracellular matrix components secreted both 

by tumour cells and stromal cells. Cell-cell interaction is potentiated by integrins, which bind both 

ECM proteins (at their cell binding domain, in yellow) and membrane receptors expressed by BMSC, 

such as vascular cell adhesion protein 1 (VCAM-1). These interactions between AML cells and 

BMSC trigger intracellular signals which protect tumor cells from apoptosis, promote cell survival, 

and eventually confer drug resistance to the tumor. Therapeutic strategies that target these interactions 

would reduce the emergence of acquired resistance.
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