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Abstract 

 
The main aim of mediation analysis is to study the direct and indirect effects of an 

exposure on an outcome. To date, the literature on mediation analysis with multiple 

mediators has mainly focused on continuous and dichotomous outcomes. However, 

the development of methods for multiple mediation analysis of survival outcome is 

still limited. Here we extend to survival outcomes a method for multiple mediation 

analysis based on the computation of appropriate weights. The approach considered 

has the advantage of not requiring specific models for mediators, allowing non-

independent mediators of any nature and not relying on the assumption of rare 

outcomes. Simulation studies show a good performance of the proposed estimator, in 

terms of bias and coverage probability. The method is further applied to an example 

from a published study on mortality for prostate cancer aimed at understanding to 

what extent the effect of DNA methyltransferase genotype on mortality was explained 

by DNA methylation and tumor aggressiveness. The approach can be used to quantify 

the marginal time-dependent direct and indirect effects carried by multiple indirect 

pathways and a code is provided to facilitate its application. 

 
 
Keywords: multiple mediation analysis, proportional hazards model, pure direct effect, weighting 
approach, total indirect effect 
 
 
Abbreviations: pure direct effect (PDE), total indirect effect (TIE), total effect (TE), DNA 
methyltransferase 3b (DNMT3b), CI (confidence interval) 
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In medical and epidemiological research it is often of interest to understand the biological or 

mechanistic pathways that contribute to the effect of an exposure on an outcome. The aim of 

mediation analysis is to disentangle the total effect into the indirect effect, i.e. the effect exerted by 

intermediate variables (mediators), and the direct effect, i.e. the effect involving pathways 

independent of the hypothesized mediators. 

A first approach to mediation analysis was proposed by Baron and Kenny in 1986 (1). The 

theory was later on generalized through a counterfactual approach that provided broader 

definitions of the direct and indirect effects allowing the presence of nonlinearities and 

interactions between the exposure and the mediators in the models for the outcome (2-6). 

In the counterfactual framework, methods to estimate the direct and indirect effects differ 

according to the type of outcome. As far as the survival framework is concerned, a mediation 

approach involving a single mediator was firstly proposed in 2011 by Lange et al. (7), where an 

additive hazard model was employed to model the time to an event as the outcome of interest. 

Consequently Vanderweele (8) discussed several effect measures in survival analysis and 

extended Lange's approach using both an accelerated failure time model and the Cox proportional 

hazards model with a rare outcome. These standard approaches in the presence of a single 

mediator were based on combining parameter estimates from the models for the outcome and for 

the mediator respectively, but the former required a normal continuous mediator and the latter 

rare outcomes. Tchetgen Tchetgen (9) derived new estimators for mediation analysis for 

proportional hazards and additive hazards models with appealing robustness properties. Lange 

(10) developed a weighting approach for the proportional hazards model with a non-rare outcome. 

In a more recent work, Wang and Albert proposed a mediation formula approach for survival 

outcome with a normally distributed mediator (11). 
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Several methods have also been introduced to study mediation effects for scenarios where 

multiple mediators are considered (12-21), but the focus was on survival analysis only for some 

of them (12, 14, 15, 17-20). The purpose of the present paper is to show the extension to survival 

outcome of the weighting approach for multiple mediators proposed by Vanderweele et al. (13) 

focusing on proportional hazards models. We chose to extend this method because of the many 

advantages that characterize its employment. It is easily implementable in the presence of 

multiple mediators not necessarily independent, it does not require specific models for the 

mediators thus avoiding the problem of model incompatibility and, similarly to the other 

weighting approaches, it does not rely on the assumption of rare outcomes. 

The paper is organized as follows. First we provide definitions and assumptions, then we 

describe how the approach can be implemented in practice. We show the results obtained from 

simulation outcomes and a real application on a study on mortality for prostate cancer patients. 

Finally we discuss the proposed methodology.   

 
 

Definitions and assumptions 
 
 

Let the non-negative random variable denote the time until the occurrence of the event of 

interest and let denote the censoring time. Hence ( , ) are the observed data, where 

 and  is the indicator function. Let  be the survival 

function,  be the hazard function and be the density function at time . Let A be a 

dichotomous or a categorical exposure, with a and a* two possible values of A, 

 be the vector of multiple mediators and C be the vector of the baseline 

measured confounders that may affect , and  associations. We explicitly state 

that the measurements of A, M and C respects their causal ordering and precedes possible 

censoring. By assuming the independence between T and U conditional on A, M, and C, the 
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functions ,  and  can be identified and consistently estimated using the observed 

data. For a formal definition of this assumption see Web Appendix 1. 

Suppose to be interested in evaluating how much of the effect of A on T is mediated through M 

jointly and through pathways other than through M. Within the context of mediation in survival 

analysis, the decomposition of the total effect of an exposure on the outcome in the indirect and 

direct effects can be expressed in different ways and scales (8). We will consider here the 

decomposition on multiplicative scale in terms of hazard functions. By indicating with  the 

hazard corresponding to a potential survival time had the exposure A been set at a and with  

 the hazard corresponding to a potential survival time under the indicated manipulation 

of A and M (specifically exposure A was set to a, but the mediators M were set to their potential 

values if A had been set to a*), we can give the following formal definitions in terms of hazard 

functions:  

- total effect (TE), ; 

- pure direct effect (PDE), ; 

- total indirect effect (TIE), . 

Briefly, the expresses how much the hazard at time t would change if the exposure were 

changed from level  to level  uniformly in the population. The  expresses how much 

the hazard at time t would change if the exposure were set at versus  but the 

mediators were kept at the level they would have taken had the exposure been set at . Thus 

the PDE captures which part of the effect of the exposure on the outcome would be maintained if 

we were to disable the pathways from the exposure to the mediators. Finally, the  

expresses how much the hazard at time t would change if the exposure were fixed at the level 

 but the mediators were changed from the level they would have taken if to the level 
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they would have taken if . Thus the TIE captures the effect of the exposure on the outcome 

that operates through the mediators. Under the composition assumption  (that is, the 

value of T that would occur if A were set to a is equal to the value of T that would occur if A were 

set to a and M were set to what it would have been if A were set to a; i.e. under an hypothetical 

intervention on a, interventions on M to set it to its naturally occurring level Ma have no further 

effect on the outcome, the total effect is given by the product of total indirect and pure direct 

effects ( ).  

In order to identify and estimate the causal direct and indirect effects, several assumptions need to 

be satisfied, specifically the consistency and positivity assumptions, the absence of unmeasured 

confounders for the exposure-outcome relationship, exposure-mediators relationships, mediators-

outcome relationships and the absence of measured/unmeasured mediators-outcome confounders 

affected by the exposure. However, in some sense, we can now handle violations of this last 

assumption because if there were such a confounder we could include the variable in the mediator 

vector M and this fourth assumption would not be violated. For a formal definition of these 

assumptions see Web Appendix 1.  

The approach we propose in this paper is an extension of the method proposed for continuous and 

binary outcomes by Vanderweele and Vanstenlandt (13) to survival outcome. The marginal 

hazard function can be estimated as the ratio between the marginal density and survival functions, 

both obtained by means of the mediation formula as follows: 

 

A proof of this equation is provided in Web Appendix 1. The approach is then based on inverse 

probability weighting. Its main feature is that it does not require models for the mediators but only 
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for the exposure conditional on confounders and for the outcome conditional on the exposure, the 

mediators and the confounders. The correct specification of these models is a requisite for the 

validity of the proposed method. Exposure-mediator interactions and interactions between 

mediators can also be included and the independence between mediators is not necessary. 

However it allows to consider only binary or categorical exposures.  

Specifically we applied the method by using a proportional hazards model for the outcome 

conditional on the exposure, the mediators and the confounders. Because of non-collapsibility of 

hazard ratio in the presence of non-rare outcomes, the marginal hazard function could not satisfy 

the proportionality assumption (22) and hence the pure direct and the total indirect effects may 

vary over time.  

 

The estimation procedure 
 
 
The algorithm for the estimation of causal effects requires the computation at any fixed time of three 

weighted averages that we will call ,  and .  If we suppose that  and , 

these weighted averages correspond to the estimates of the counterfactual ,  and 

 respectively. We denote as  and  (for ) the estimates of  and 

 respectively where  denotes the actual confounder values for subject i and as  and 

the estimates of  and respectively. Furthermore, we indicate by  and the subsamples of 

subjects with  and  respectively and by and  their sizes. The algorithm for the 

estimation of the effects at a specific time  proceeds as follows: 

1. Estimation of  
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For each subject with the hazard function is modelled to obtain a predicted estimate of 

the density and of the survival functions at time separately if the subject had had  

rather than , but using the individual's own values of mediators and confounders.  

Two weighted averages of these predicted values are computed for subjects with  (each 

subject i is given a weight ). Then the ratio of the two weighted averages is computed. 

2. Estimation of  

 

 

For each subject with the hazard function is modelled to obtain a predicted estimate of 

the density and of the survival functions at time separately using the individual's own 

values of exposure, mediators and confounders.  

Two weighted averages of these predicted values are computed for subjects with  (each 

subject i is given a weight  ). The ratio of the two weighted averages is computed. 

3. Estimation of  

 

It is computed as in 2., considering subjects with  and weights . The probability 

estimates  and  in the denominator of the weights are always obtained by fitting 

suitable logistic regressions.  
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4. Computation of the effects: the pure direct effect, the total indirect effect and the total effect 

at time  can then be obtained as follows: 

 

 

. 

5. Computation of the confidence intervals (CI) of the effects: using non-parametric bootstrapping. 
 

The procedure described above can be repeated for a given sequence of times  thus allowing to 

observe how the causal effects possibly vary over time. Specifically we modelled the hazard 

function by the Royston-Parmar model (23, 24), a flexible parametric Cox model that estimates 

the baseline hazard using natural cubic splines. No constraints are imposed on the use of 

alternative survival models as long as they correctly specify the survival and the density 

functions.  
 

All analyses were performed using the software R. We report in Web Appendix 2 the R code for 

the implementation of the estimation algorithm described above. 

 
Simulations 

We performed simulation studies to examine the finite sample performance of the proposed 

estimating procedure. We simulated a binary confounder C (1 with 50% frequency; 0 otherwise) 

and a binary exposure A (1 with 60% frequency in the group with C=1; and 1 with a 50% 

frequency in the group with C=0). We considered different scenarios with two mediators, M1 and 

M2. Firstly, we generated M1 and M2 according to the probabilities 

 and 

. In the second scenario, we replaced 

with a normally distributed variable according to the model 
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, where .  In both scenarios we generated the 

time-to-event T according to the exponential model 

 and the censoring time from the exponential 

distribution with mean 1.25 (the censoring probabilities were 26-41%). Several configurations of 

the parameters and  were considered and for each configuration 500 simulated data sets 

were generated with a total sample size of n=2000.  

The true causal effects for each data set were calculated by using equation (8) (Web Appendix 1). 

For each generated data set, the weighting approach was employed to estimate the causal 

quantities at the median survival time, and 95% CI were computed from 500 bootstrap samples.  

We considered the following simulation statistics: the average of the effect estimates, the standard 

deviation of the effect estimates, the bias and the coverage probability. Table 1 shows the 

simulation statistics for the case of two binary mediators while Table 2 shows the simulation 

statistics for the case of one binary and one continuous mediator. The bias ranges are (0.000-

0.003) and (0.000-0.008) in the first and second scenario respectively. The coverage probabilities 

are equal or greater than 92% for both scenarios. 

 
 
Empirical data example 

In this Section we illustrate the methodology proposed using data from (25). In this paper the 

relationships among DNA methyltransferase genotype (polymorphism rs406193), DNA 

methylation, tumor aggressiveness (measured through Gleason score) and long-term mortality for 

prostate cancer were studied. It was hypothesized that rs406193 affected prostate-cancer mortality 

directly and indirectly via tumor tissue methylation and Gleason score. In fact it is known that 

DNA methylation is affected by the family of DNA methyltransferase enzymes, among which 

DNA methyltransferase 3b (DNMT3b) that was considered in the study. Furthermore in a 
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previous study (26) an association was found between tumor tissue DNA methylation in three 

selected genes (GSTP1, APC, RUNX3) and prostate cancer-specific mortality. It was hypothesized 

that: i) the activity of DNMT3b affects the methylation status of such genes; ii) their methylation 

status affects the Gleason score and not viceversa; iii) their DNA methylation affects prostate 

cancer mortality directly and indirectly through Gleason score (Figure 1). In mediation analysis 

terms, the exposure was the DNMT3b variant (carriers of at least one T compared to CC carriers), 

the two mediators were DNA methylation (coded with three levels: 0-1, 2 or 3 methylated genes 

respectively) and the Gleason score (coded with two levels, having or not a score 8) and the 

outcome was the time to death for prostate cancer. The DNMT3b variant and the DNA 

methylation were measured by analyzing DNA from slides of tumor tissue obtained at recruitment 

and also used to assign the Gleason score. The sequential temporality of the variables involved in 

the mediation pathway is plausible, being the DNMT3b variant time-independent, the DNA 

methylation an epigenetic process over time and the Gleason score a marker of tumour 

aggressiveness assumed to be affected by DNA methylation and not viceversa. Age at diagnosis, 

source for tumor tissue typing and period of diagnosis were considered potential confounders of 

exposure-outcome, mediators-outcome and exposure-mediators association.  

The analyses of the reference paper highlighted clues on the role of genotype in prostate cancer 

mortality, however they did not decompose the total effect into direct and indirect effects. The 

study was based on 451 prostate cancer patients of any age diagnosed between 1982 and 1988 and 

between 1993 and 1996 at the San Giovanni Battista Hospital, Turin, Italy. Here we analyzed 

only subjects with complete information (n=393).  

Having this example an educational purpose, our analyses focused on mortality from any cause in 

order not to consider the presence of competing risks (out of 333 observed events, 172 were 

deaths from prostate cancer and 161 from other causes). Doing so, we expect all the effects to be 
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diluted. Hence a further extension of the methodology to competing risks needs to be developed 

and it is the object of future research.  

Firstly we carried out standard analyses to evaluate exposure-outcome, exposure-mediators, and 

mediators-outcome associations. Then we performed the mediation analysis using the weighting 

approach. We estimated the causal effects over about 100 equidistant epochs between the 

minimum and the maximum values of observed survival times. Confidence intervals were 

constructed using non-parametric percentile bootstrap.  

By fitting a Royston-Parmar model adjusted only for confounders, T carriers had an hazard 

ratio of dying of 0.96 (95% confidence interval (CI): 0.77, 1.20). There was no evidence of 

association between carriers of the T allele and the number of methylated genes (adjusted odds 

ratio of each increase in the number of methylated genes = 0.84, 95% CI: 0.57, 1.23), while an 

association was found with Gleason score (adjusted odds ratio of having a score of 8 or more = 

0.57, 95% CI: 0.39, 0.85). Moreover, there was an association between the two mediators 

(adjusted odds ratio of having a higher Gleason score = 1.45, 95% CI: 1.08, 1.94, the DNMT3b 

variant was considered among the covariates). Two Royston-Parmar models were fitted to 

estimate the associations between the two mediators and the outcome. Both models were adjusted 

for the exposure and the confounders. The model for Gleason score was also adjusted for DNA 

methylation. Subjects with 2 or 3 methylated genes had an increased risk of mortality compared 

to those with 0-1 methylated genes (adjusted hazard ratio: 1.25, 95% CI: 0.96, 1.61 for 2 versus 0-

1 and 1.48, 95% CI: 1.08, 2.02 for 3 versus 0-1). For subjects with higher Gleason score the 

adjusted hazard ratio was 1.50, 95% CI: 1.20, 1.89. It is important to underline that the 

comparability of these estimates may be affected by non-collapsibility of hazard and odds ratios. 

Figure 2 shows the causal effects estimated as a function of time. The PDE was close to the null 

value over the whole follow-up time (Figure 2A). There was evidence of a protective TIE only in 

the first years (Figure 2B). The TE showed an increasing pattern although there was no evidence 
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of a difference from the null value (Figure 2C). Table 3 shows the causal effects estimated at 

 and years (approximately the median and the 95th percentile of the observed 

survival times). At 5 years from diagnosis, the TE was 0.98 (95% CI: 0.81, 1.18), the TIE 0.96 

(95% CI: 0.91, 1.02) and the PDE 1.02 (95% CI: 0.85, 1.21). At 13 years, the TE was 1.07 (95% 

CI: 0.90, 1.28), the TIE was 1.06 (95% CI: 0.97, 1.18) and the PDE was 1.01 (95% CI: 0.89, 

1.15).  

The positivity assumption was checked (27, 28) and the analyses did not suggest violations (range 

of the estimated propensity score: 0.24, 0.60). We assumed the absence of unmeasured 

confounders of exposure-outcome, exposure-mediators, mediators-outcome associations and the 

absence of an effect of the exposure that confounds mediators-outcome relationship. However the 

estimates of PDE and TIE and, hence, of the TE could be biased by the presence of some 

unmeasured mediator-outcome confounders such as possible non-epigenetic molecular signatures 

pointing toward Gleason score and mortality. 

To explore the role of single mediators, we conducted an additional analysis including only DNA 

methylation. The models with and without Gleason score may be not directly comparable because 

of non-collapsibility of hazard ratio. However if this is assumed not to affect greatly the estimates 

and the models’ aptness, this analysis may suggest how the addition of Gleason score modifies 

the effect estimates. Figure 3 and Table 4 report the estimated effects. Similarly to the results 

obtained previously, PDE was always close to the null value (Figure 3A) and the TIE showed a 

protective effect only in the first years, although further attenuated (Figure 3B). The PDE now 

captures also the effect of the genetic variant on mortality through the Gleason score 

independently from DNA methylation, and the TIE incorporates all the pathways through DNA 

methylation. 

 
 
 

Discussion 
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In this article we have introduced a procedure to estimate pure direct and total indirect effects 

through multiple mediators in a survival setting by showing how to extend the weighting 

approach proposed in (13) to survival outcomes.  
 

Few methods have been introduced in literature for multiple mediation analysis with survival 

data. A simple approach that can be used with any generalized linear model was developed in 

(14). Such method has the advantage of overcoming the need to specify possible exposure-

mediators interactions and it can be implemented with standard software (29). However 

difficulties may arise in detecting small indirect effects. In (15) a weighting approach for multiple 

mediation was proposed that can be used for most types of outcomes. It requires distinct causal 

pathways for the mediators and shows a worse performance in the case of continuous mediators. 

Despite being a weighting approach, the estimation procedure requires besides a model for the 

exposure also a model for each mediator in the construction of the weights. In (17) another multi-

mediator model was devised specifically for survival data with continuous mediators and a 

continuous or binary exposure. Its main advantage is that it allows the examination of path-

specific effects of each mediator. However it is employable only in a low-dimensional setting 

(one or two mediators). More recently, in (18) methods for multi-mediator analyses have been 

proposed using Aalen models, Cox models with rare outcomes and semiparametric probit models. 

Closed-form expressions for path-specific effects are provided requiring models for the mediators 

with normal errors. In (19) an approach to estimate interventional analogues of direct and indirect 

effects through a survival mediational g-formula is developed. The approach can be used with 

time-varying exposures, mediators, and confounders. However the outcome only focuses on 

survival probability at the end of follow-up and the extension to different survival models is 

proposed as a future perspective. Similarly, in (20) the effect of a time-varying exposure mediated 

by a time-varying mediator is studied in a survival setting, proposing a formulation in terms of 

random interventions. Three different double robust semi-parametric efficient estimators are 

presented, among which one based on inverse probability weighting.  
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The approach described in the present paper allows the estimation of marginal causal effects on 

the hazard function scale. The estimation performance is highly dependent on the validity of its 

assumptions among which the correct specification of the model for the outcome. In particular we 

used a flexible parametric Cox model, though alternative survival models including accelerated 

failure time and additive hazards models could be applied. Furthermore, the methodology needs 

to be extended in order to model appropriately the competing risks. Finally a sensitivity analysis 

should be performed to test the unmeasured confounding assumptions, but further studies are still 

needed. To our knowledge, Tchetgen Tchetgen and Shpitser (30) proposed a semiparametric 

sensitivity analysis technique for the presence of unmeasured confounding on the estimation of 

the effects for several types of outcomes, including common survival ones. Our aim is to extend it 

in the near future to take into account multiple mediators simultaneously as well as the time-

dependent effects. 

The method has been implemented under the assumption of proportionality for the conditional 

hazard functions and it can be applied in the presence of both non-rare and rare outcomes, with 

estimated marginal effects respectively varying or nearly constant over time. The causal 

mediation effects on the hazard function scale are estimated over a grid of times. For this aspect, 

the method is similar to that proposed in (11), but has the advantage of being applicable with 

multiple mediators of any nature, also not normally distributed. It allows exposure-mediators 

interactions and interactions between mediators and it does not require models for the mediators 

nor their independence.  

A limitation is its inability to characterize the path-specific effects of each mediator (31). Several 

procedures have been proposed in literature under various settings (16, 32-35) but few explicitly 

for survival analysis (17, 18). Since proportional hazards models are commonly used in 

biomedical research, the development of methodologies enabling to incorporate multiple 

mediators and to characterize path-specific effects is an important direction for future research. 
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Our procedure requires the computation of weights, which are particularly sensitive to bias due to 

data sparsity. Bias can arise due to positivity violations or because some confounders-exposure 

combinations are not represented or under-represented in the finite sample by chance. Diagnosis 

and quantification of this bias is recommended (27, 28, 36). Finally this approach can be only 

used with binary or categorical exposures. In fact, although the paper primarily focuses on binary 

exposures, the approach equally applies for categorical ones considering a fixed reference 

category and estimating the causal effects for each of the others with respect to that one. 
 

The main contribution of this paper is to give a useful tool in mediation analysis in the 

presence of multiple mediators and survival outcomes. The proposed approach involves 

probability weights that relate exposure, mediators and confounders and therefore can be 

implemented in most standard software. 
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Figure legends 
 

 
Figure 1: Direct acyclic graph representing the assumed causal relationships between DNMT3b 

(A), DNA methylation in APC, GSTP1, RUNX3 (M1), Gleason score (M2), and prostate cancer 

mortality (T). C is the vector of confounders: age at diagnosis, source for tumor tissue typing and 

period of diagnosis. 

Figure 2: Plots of causal effects (PDE in Figure 2A, TIE in Figure 2B, TE in Figure 2C) of 

genetic variant on mortality as a function of time, considering DNA methylation and Gleason 

score as mediators. 
 

Figure 3: Plots of causal effects (PDE in Figure 3A, TIE in Figure 3B, TE in Figure 3C) of the 

effect of genetic variant on mortality as a function of time, considering only DNA methylation as 

mediator.  
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Table 1: Simulation statistics for the estimated effects in the first scenario (two binary mediators).a 

 
 

   PDE(  TIE( ) TE( ) 
   True Mean 

(sd) 
Bias Cov 

Prob 
True Mean 

(sd) 
Bias Cov 

Prob 
True Mean 

(sd) 
Bias Cov 

Prob 

0.05 0.6 0.7 1.044 1.042 
(0.05) 

-0.002 0.96 1.473 1.476 
(0.04) 

0.003 0.95 1.538 1.536 
(0.08) 

-0.002 0.94 

0.5 0.06 0.07 1.645 1.644 
(0.10) 

-0.001 0.95 1.043 1.044 
(0.03) 

0.003 0.95 1.716 1.715 
(0.10) 

-0.001 0.95 

0.05 0.06 0.07 1.051 1.049 
(0.07) 

-0.002 0.96 1.044 1.045 
(0.03) 

0.001 0.94 1.097 1.096 
(0.06) 

-0.001 0.95 

0.5 0.6 0.7 1.545 1.543 
(0.08) 

-0.002 0.96 1.459 1.461 
(0.04) 

0.002 0.95 2.254 2.254 
(0.12) 

0.000 0.95 

0.5 0.06 0.7 1.590 1.589 
(0.09) 

-0.001 0.96 1.338  1.340 
(0.04) 

0.002 0.96 2.127 2.128 
(0.12) 

0.001 0.94 

0.5 0.6 0.07 1.610 1.608 
(0.09) 

-0.002 0.97 1.171 1.172 
(0.03) 

0.001 0.94 1.886 1.884 
(0.10) 

-0.002 0.95 

 
 

Abbreviations: pure direct effect (PDE), total indirect effect (TIE), total effect (TE), standard 
deviation (sd), coverage probability (Cov prob). 
 
aFor each configuration of the parameters the true value of the effects (true), the mean and the 
standard deviation of the estimates obtained on 500 simulated datasets, the bias (difference 
between the true value and the average estimate) and the coverage probability (the percentage of 
simulated data sets for which the 95% confidence interval for estimated causal quantities covered 
the true value) are reported. The effects are assessed at the median survival time .   
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Table 2: Simulation statistics for the estimated effects in the second scenario (a continuous and a binary 
mediators).a 

 
   PDE(  TIE( ) TE( ) 

   True Mean 
(sd) 

Bias Cov 
Prob 

True Mean 
(sd) 

Bias Cov 
Prob 

True Mean 
(sd) 

Bias Cov 
Prob 

0.05 0.6 0.7 1.044 1.047 
(0.06) 

0.003 0.94 1.488 1.488 
(0.04) 

0.000 0.96 1.554 1.557 
(0.08) 

0.003 0.95 

0.5 0.06 0.07 1.646 1.654 
(0.11) 

0.008 0.94 1.044 1.045 
(0.03) 

0.001 0.96 1.718 1.726 
(0.10) 

0.008 0.95 

0.05 0.06 0.07 1.052 1.055 
(0.07) 

0.003 0.94 1.044 1.045 
(0.03) 

0.001 0.97 1.097 1.102 
(0.06) 

0.005 0.94 

0.5 0.6 0.7 1.551 1.557 
(0.09) 

0.006 0.92 1.482 1.482 
(0.04) 

0.000 0.95 2.298 2.306 
(0.13) 

0.008 0.94 

0.5 0.06 0.7 1.590 1.596 
(0.10) 

0.003 0.93 1.339  1.336 
(0.04) 

-0.003 0.95 2.129  2.131 
(0.13) 

0.002 0.93 

0.5 0.6 0.07 1.614 1.620 
(0.10) 

0.006 0.94 1.183 1.185 
(0.03) 

0.002 0.96 1.919 1.919 
(0.11) 

0.000 0.94 

 
 
   

Abbreviations: pure direct effect (PDE), total indirect effect (TIE), total effect (TE), standard 
deviation (sd), coverage probability (Cov prob). 
 
aFor each configuration of the parameters the true value of the effects (true), the mean and the 
standard deviation of the estimates obtained on 500 simulated datasets, the bias (difference 
between the true value and the average estimate) and the coverage probability (the percentage of 
simulated data sets for which the 95% confidence interval for estimated causal quantities covered 
the true value) are reported. The effects are assessed at the median survival time .   
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Table 3: Causal effects at times  = 5 (median) and  = 13 (95th percentile) years considering 
DNA methylation and Gleason score as mediators. 

 
Estimated effects DNMT3b rs406193 

 CC carriers CT+TT 95% CI 

PDE(  = 5) 1 1.02 0.85, 1.21 

TIE(  = 5)a 1 0.96 0.91, 1.02 

TE(  = 5) 1 0.98 0.81, 1.18 

PDE(  = 13) 1 1.01 0.89, 1.15 

TIE(  = 13)a 1 1.06 0.97, 1.18 

TE(  = 13) 1 1.07 0.90, 1.28 

Abbreviations: confidence interval (CI), carriers of at least one T (CT+TT), pure direct effect 
(PDE), total indirect effect (TIE), total effect (TE). 
 
athrough DNA methylation and Gleason score 

 
Table 4: Causal effects at times  = 5 (median) and  = 13 (95th percentile) years considering 
only DNA methylation as mediator. 
 

Estimated effects DNMT3b rs406193 

 CC carriers CT+TT 95% CI 

PDE(  = 5) 1 0.98 0.82, 1.17 

TIE(  = 5)a 1 1.00 0.97, 1.04 

TE(  = 5) 1 0.98 0.82, 1.17 

PDE(  = 13) 1 0.98 0.87, 1.13 

TIE(  = 13)a 1 1.07 0.99, 1.18 

TE(  = 13) 1 1.05 0.90, 1.25 

Abbreviations: confidence interval (CI), carriers of at least one T (CT+TT), pure direct effect 
(PDE), total indirect effect (TIE), total effect (TE). 
 
a through only DNA methylation 
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