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Abstract 37 

Loratadine and desloratadine are second-generation antihistaminic drugs. Because of human 38 

administration, they are continuously released via excreta into wastewater treatment plants and 39 

occur in surface waters as residues and transformation products (TPs).  40 

Loratadine and desloratadine residues have been found at very low concentrations (ng/L) in the 41 

aquatic environment but their toxic effects are still not well known. Both drugs are light-sensitive 42 

even under environmentally simulated conditions and some of the photoproducts have been isolated 43 

and characterized. The aim of the present study was to investigate the acute and chronic ecotoxicity 44 

of loratadine, desloratadine and their light-induced transformation products in organisms of the 45 

aquatic trophic chain. Bioassays were performed in the alga Pseudokirchneriella subcapitata, the 46 

rotifer Brachionus calyciflorus and in two crustaceans, Thamnocephalus platyurus and 47 

Ceriodaphnia dubia. Loratadine exerted its acute and chronic toxicity especially on Ceriodaphnia 48 

dubia (LC50: 600 µg /L, EC50: 28.14 µg/L) while desloratadine showed similar acute toxicity 49 

among the organisms tested and it was more chronically effective compound in Ceriodaphnia dubia 50 

and Pseudokirchneriella subcapitata. Generally, transformation products were less active both in 51 

acute and chronic assays. 52 

 53 

 54 

Keywords: antihistaminic drug; loratadine; desloratadine; acute toxicity; chronic toxicity; 55 

photoproducts. 56 

 57 

 58 

 59 

Highlights 60 

- Loratadine was irradiated by UVB and sunlight and its photoproducts were isolated and 61 

characterized. 62 

- Loratadine, desloratadine and light-induced TPs were tested in aquatic organisms. 63 

-Generally, transformation products were less active both in acute and chronic assays. 64 

-Desloratadine was the most chronically effective compound in C. dubia and P. subcapitata. 65 

 66 

 67 

 68 

 69 

 70 
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1. Introduction 71 

Drugs are continuously released as mixtures of parent compounds and metabolites and enter the 72 

aquatic environment through hospital and municipal wastewaters. Here, these mixtures may 73 

undergo transformations due to redox or light-induced reactions, hydrolysis, and other reactions 74 

leading to transformation products, in some cases more harmful than parent compounds 75 

(DellaGreca et al., 2014; Passananti et al., 2015; Isidori et al., 2016). The importance of these 76 

events in the breakdown of drugs has stimulated a large number of researches concerning kinetics, 77 

degradation mechanism, isolation and toxicity of the transformation products (Lambropoulou and 78 

Nollet, 2014). Generally, the most commonly occurring drugs in the aquatic systems are the most 79 

administered. However, some classes of drugs highly utilized by patients are not detected in the 80 

waters because rapidly degraded, while in some cases drugs less utilized are detected at high 81 

concentrations because resistant to biodegradation. Among the most administered drugs, 82 

antihistamines are detected in surface waters because of their poor removal by conventional 83 

wastewater treatments (Kosonen and Kronberg, 2009; Radjenovic’ et al., 2009; Valcarcel et al., 84 

2011) and due to their low polarity and scarce volatility, they may represent a hazard for the aquatic 85 

ecosystem (Berninger and Brooks, 2010; Kristofco and Brooks, 2017).  86 

Among antihistamines, ranitidine, difenidramine, cimetidine and loratadine are the most detected 87 

in the effluents of sewage treatment plants and the detection of loratadine in surface waters has 88 

exceeded therapeutic hazard values (THVs) showing the need of understanding the aquatic 89 

toxicology, hazards and risks associated with this drug (Kristofco and Brooks, 2017). Loratadine is 90 

a second-generation antihistaminic drug so called because it causes less sedation and drowsiness 91 

than the first-generation antihistamines used to treat allergic reactions, approved by US Food and 92 

Drug Administration in 1993. Loratadine is a selective inverse agonist of peripheral H1-receptors 93 

(Witiak, 1970, Peyrovi and Hadjmohammadi, 2015). It is mainly metabolized through the hepatic 94 

system to desloratadine, which is a pharmacologically active compound, deriving from the loss of 95 

carbamate moiety (Yumibe et al., 1996). Forty percent and 42% of the ingested loratadine dose 96 

is excreted unchanged in urine and the feces, respectively (Ramanathan et al., 2007). It has been 97 

detected in surface waters in Europe (in some Spanish river samples) in the low concentration range 98 

of 3.96-17.1 ng/L (Lopez-Serna et al., 2012) but also in wastewater effluents in Europe, North-99 

America and Asia-Pacific with a maximum concentration of 58.5 ng/L (Kristofco and Brooks, 100 

2017). Desloratadine has been detected in Europe with a maximum concentration of 81 ng/L 101 

(Kristofco and Brooks, 2017). Both drugs have also been recovered in lower amounts in marine 102 

water of Mediterranean coasts (Moreno-Gonzalez et al., 2015). Based on the antihistamines 103 

consumption data, loratadine and desloratadine should occur in wastewater at higher concentrations. 104 
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However, loratadine has low affinity for suspended matter (octanol/water partition coefficient 105 

log P equal to 5 for loratadine and 3.2 for desloratadine; El-Awady et al., 2013) and therefore  106 

does not accumulate appreciably in sediments and remains in the water column (Moreno-107 

Gonzales et al., 2015). Loratadine is known as photolabile, in fact it is stated that the drug should 108 

be stored protected from light (Parfitt, 1999). Its UV spectrum shows an absorption band at λ 280 109 

nm with a tail up to 300 nm, hence the drug is able to adsorb sunlight at ground level and to 110 

undergo light-induced transformations in the aquatic compartment. While its photostability has been 111 

investigated, no data on photoproducts identification are reported (Abounassif et al., 2005). In this 112 

context, we have examined the photochemical behavior of loratadine and desloratadine in aqueous 113 

medium under UVB and sunlight irradiation in order to isolate and fully characterized the 114 

photoproducts. For this purpose, concentrated solutions, far from environmental concentrations, 115 

were used (DellaGreca et al., 2014). The ecotoxicological effects of the parent drug, its metabolite 116 

and its transformation products were evaluated in producers and primary consumers.  117 

 118 

2. Materials and methods 119 

2.1 Chemicals 120 

Loratadine (99.4%, CAS Number: 79794-75-5) and desloratadine (99.6%, CAS Number: 100643-121 

71-8) were purchased by Kemprotec. All chemicals were used without further purification unless 122 

otherwise indicated. Solvents (acetonitrile, methanol and diethylether) were of HPLC grade and 123 

were purchased from Sigma Aldrich. Water was of Milli-Q quality and was obtained from a Milli-Q 124 

gradient system (Millipore). 125 

2.2 Apparatus 126 

2.2.1 Spectroscopic techniques 127 

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian Inova-500 instrument 128 

operating at 499.6 and 125.6 MHz for 1H and 13C, respectively, and referenced with CDCl3. The 129 

carbon multiplicity was evidenced by DEPT experiments. The proton couplings were evidenced by 130 

1H-1H COSY experiments. The heteronuclear chemical shift correlations were determined by 131 

HMQC and HMBC pulse sequences. 132 

IR spectra were recorded on a Jasco FT/IR-430 instrument equipped with single reflection ATR 133 

using CHCl3 as solvent.  134 

UV–Vis spectra were recorded with a Varian Cary 300 UV–Vis spectrophotometer or on a 135 

PerkinElmer Lambda 7 spectrophotometer. 136 

2.2.2 Chromatographic analysis 137 
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HPLC experiments were carried out on an Agilent 1100 HPLC system, equipped with an UV 138 

detector set at 254 nm, using a RP-18 column (Gemini, 5 µm, 110 A, 250 mm × 4.6 mm). at a flow 139 

rate of 0.8 mL min-1.  140 

The analysis of the solutions used for determining the kinetic constant of loratadine 141 

photodegradation was carried out using the gradient elution as follows: at initial time 30 % 142 

acetonitrile and 70 % water for 7 min, followed by an increase of acetonitrile up to 70% in two 143 

minutes. Then, the same ratio was maintained constant for 24 minutes; finally, the initial ratio (30 144 

% acetonitrile and 70 % water) was reached in two minutes. 145 

In other cases HPLC analysis was performed under isocratic conditions and H2O /CH3CN  4:6 v/v 146 

was used as eluent.  147 

GC-MS analyses were performed on a 6890 MSD quadrupole mass spectrometer (Agilent 148 

technologies) equipped with a gas chromatograph by using a Zebron ZB-5HT Inferno (5%-Phenyl-149 

95%-Dimethylpolysiloxane) fused silica capillary column (Column 30 m x 0.32 mm x 0.10 µm) 150 

from Phenomenex. The injection temperature was 250°C, the oven temperature was held at 50°C 151 

for 3 min and then increased to 150°C at 12°C/min, increasing to 230°C at 18°C/min, to 280°C at 152 

10°C/min and finally to 300°C at 30°C/min and held for 3 min. Electron Ionization mass spectra 153 

were recorded by continuous quadrupole scanning at 70eV ionization energy, in the mass range of 154 

m/z 30-600. 155 

2.2.3  Irradiation apparatus 156 

The photoreactor (Multirays, Helios Italquartz) was equipped with six 15W lamps with a maximum 157 

at 310 nm (UV-B). Open quartz tubes (1 cm optical path) and open and closed pyrex tubes (20 cm x 158 

1 cm, 25 mL) were used. 159 

2.3 Chromatographic separation materials  160 

Analytical and preparative Thin Layer Chromatography (TLC) was made on Kieselgel 60 F254 161 

plates with 0.2 mm, 0.5 or 1 mm layer thickness, respectively (Merck). 162 

2.4 Experiments 163 

2.4.1  Stability in aqueous solution in the dark 164 

Loratadine (1) solutions (1 x 10-4 M) in H2O/CH3CN (9:1, v/v) at pH 4, 7 and 9 were prepared. The 165 

acid and alkaline solutions were made using NaOH 2M and HCl 2M to adjust pH level. All 166 

solutions were kept in the dark and analyzed by HPLC (isocratic conditions) at 12 h and 48 h. 167 

2.4.2 Kinetic constant and quantum yield determination  168 

Kinetics data were obtained by irradiating the drug (1x10-4 M solution in H2O/CH3CN 9:1, v/v) in 169 

open quartz tubes and monitoring the solution at fixed time intervals by HPLC using the proposed 170 

gradient elution. The time evolution was fitted with a pseudo-first order equation C0 = Ct x e-Kt 171 
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where C0 is the initial drug concentration, Ct the concentration at time t and k the pseudo-first order 172 

degradation rate constant. 173 

The incident photon flux (4.98 x 1021 photons m−2 s−1) in solution, used to calculate the quantum 174 

yield of loratadine, was calculated using p-nitroanisole/pyridine actinometer (Dulin and Mill, 1982).  175 

2.4.3 Irradiation experiments. Two solutions of loratadine in H2O/CH3CN (9:1, v/v, 1 x 10-4 M) and 176 

H2O/CH3CN (75:25, v/v, 1 x 10-4 M) were irradiated in open quartz tube and analysed by HPLC at 177 

selected times. The photoproducts were identified by HPLC comparing their Rt values with those of 178 

standard compounds which were isolated and characterized by performing preparative 179 

photochemical experiments (see below). An aliquot of the H2O/CH3CN (75:25, v/v, 1 x 10-4 M) was 180 

analyzed by GC-MS after 6 min irradiation. 181 

2.4.4 Preparative experiments for photoproducts isolation  182 

The photoproducts were isolated by means of preparative TLCs of irradiation mixtures obtained by 183 

appropriate experiments. Their structures were determined by spectroscopic analyses (Hesse et al., 184 

2008). The presence of functional groups was deduced by IR spectra and identification of all 185 

different protons and carbons was obtained by NMR spectra.    186 

2.4.4.1. Isolation of isoloratadine 2 187 

Loratadine (35 mg) was dissolved in 92 mL of H2O/CH3CN (75:25 v/v, 1 x 10-3 M) and divided in 188 

four closed quartz tubes. Each solution was saturated with argon and irradiated by UV-B lamps. 189 

After 20 min of irradiation the solvents were evaporated under vacuum and the residue was 190 

analysed by 1H NMR and separated by preparative TLC. Elution with Et2O gave a fraction 191 

consisting of 3 and 4 (2 mg), isoloratadine 2 (6 mg), loratadine 1 (3 mg) and an intractable polar 192 

material (11 mg). 193 

Ethyl 4-(8-chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-yl)-5,6-194 

dihydropyridine-1(2H)-carboxylate  (2): EI-MS m/z 382/384 ; UVλmax (CH3OH) nm 266 (log ε 3.8); 195 

IRνmax (CHCl3) 1690 (-N-CO-O- ), 1606 (stretching vibrations of aromatic rings), 1371  (C-O 196 

stretching) cm-1; 1H NMR (500 MHz, CDCl3) δ 8.39 (1H, d, J = 4.0  Hz, H-2), 7.42 (1H, d, J = 7.3  197 

Hz, H-4), 7.20-7.12 (4H, m, H-3, H-7, H-9 and H-10), 4.84-4.80 (2H, m, H-11 e H-3’), 4.10 (2H, q, 198 

J = 7.0 Hz, CH2O), 3.88 (2H, m, H-2’), 3.50-3.45 (4H, m,), 2.88-2.74 (2H, m  ), 1.94-1.71 (2H, m,), 199 

1.23 (3H, t, J = 7.0 Hz, CH3). 
13C NMR (126 MHz, CDCl3) δ 157.0 (C-1a), 155.5 (CO), 146.8 (C-200 

2), 141.8 (C-6a), 138.5 (C-4), 135.9 (C-10a), 135.0 (C-4a), 133.1 (C-7), 133.0 (C-8), 131.1 (C-4’), 201 

129.8 (C-10), 126.3 (C-9), 122.4 (C-3), 121.1 (C-3’), 62.3 (C-11), 61.2 (CH2O), 43.4 (C-2’), 40.5 202 

(C-6’), 31.3 (x2, C-5 e C-6), 28.0 (C-5’), 14.9 (CH3). 203 

2.4.4.2 Isolation of compounds 3 and 4 204 
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Loratadine (50 mg) was dissolved in 130 mL of H2O/CH3CN (75:25, v/v, 1 x 10-3 M) and irradiated 205 

by UV-B lamps. The irradiation mixture was analyzed at different time by HPLC. After 40 min of 206 

irradiation the solvents were evaporated under vacuum, and the residue was analysed by 1H NMR 207 

and separated by preparative TLC. Elution with Et2O gave a fraction consisting of 3 and 4 in ca. 3:1 208 

molar ratio (11 mg), tricycle 3 (2 mg), isoloratadine 2 (2 mg), loratadine 1 (5 mg) and an intractable 209 

polar residue (8 mg).  210 

8-Chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine (3): EI-MS m/z 229/231; UVλmax 211 

(CH3OH) nm: 279 (log ε 3.1); IR νmax (CHCl3) 1580 (stretching vibrations of aromatic ring), 1070 212 

(aryl C-halogen stretching) cm-1; 1H NMR (500 MHz, CDCl3)  8.35 (1H, d, J = 4.9 Hz, H-2), 7.40 213 

(1H, dd, J = 7.5, 1.4  Hz, H-4), 7.20 (1H, d, J = 8.1 Hz, H-10), 7.16 (3H, m, H-4, H-7 and H-9), 214 

4.35 (2H, s, H-11), 3.33 (4H, brs, H-5 and H-6);13C NMR (50 MHz, CDCl3) δ 156.9 (C-1a), 146.5 215 

(C-2), 140.8 (C-6a), 137.7 (C-4), 136.0 (C-10a), 133.8 (C-4a), 132.3 (C-8), 130.7 (C-10), 128.9 (C-216 

7), 126.3 (C-9), 122.0 (C-3), 35.7 (C-11), 31.3 (C-5 and C-6). 217 

Spectral data of piperidinone 4 were deduced by those of the mixture of 3 and 4 after the signals of 218 

tricycle 3 were subtracted; it was identified by comparison of its signals with those reported in 219 

literature (Hirsch and Havinga, 1976). 220 

Ethyl 4-oxopiperidine-1-carboxylate (4) (in mixture with 3 in ca. 1:3 molar ratio): EI-MS m/z 171; 221 

1H NMR (500 MHz, CDCl3) δ 4.19 (2H, q, J = 7.1 Hz, CH2O), 3.76 (4H, t, J = 6.1 Hz, H-2 and H-222 

6), 2.45 (4H, t, J = 6.1 Hz, H-3 e H-5), 1.29 (3H, t, J = 7.1 Hz, CH3). 
13C NMR (125 MHz, CDCl3) 223 

δ 207.1 (C-4), 155.0 (CO), 61.8 (CH2O), 43.0 (C-2 and C-6), 41.1, (C-3 and C-5), 14.6 (CH3). 224 

2.4.4.3.UV-B irradiation experiments for mechanistic purposes 225 

Two 1 x 10−3 M solutions of loratadine in pure CH3CN were prepared by dissolving 5 mg in 13 mL. 226 

A solution was irradiated in open quartz tubes and the other one in closed quartz tubes after 227 

saturating with argon. After 15 min the solvent was evaporated and each residue analysed by 1H 228 

NMR.  229 

A similar procedure was used for two 1 x 10−3 M solutions of loratadine in methanol and for two 230 

solutions of loratadine in H2O/CH3CN (7:3 v/v). 231 

2.4.4.4 Irradiation of isolaratadine 2 232 

A 1 x 10-4 M solution of compound 2 in H2O/CH3CN (9:1 v/v) was irradiated in open quartz tubes 233 

with UV-B lamps and analysed by HPLC and 1H-NMR.  234 

2.4.4.5 Irradiation of desloratadine 5 235 

1 x 10−3 M solution of desloratadine 5 was prepared by dissolving 5 mg in 16 mL of H2O/CH3CN 236 

7:3 v/v. The solution was irradiated by UV-B lamps and analysed by 1H-NMR. 237 

2.5 Toxicity testing 238 
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Samples were dissolved in dimethylsulphoxide (DMSO, 3% v/v), stored in the dark at 4 °C, further 239 

diluted in deionized water (Elix 10, Millipore, Milan, Italy) and sonicated for 30 minutes to obtain 240 

stock solutions. The test solutions were prepared by mixing the appropriate volumes of the stock 241 

solutions and ISO test media. Toxicity assays were performed in the following organisms: the green 242 

alga Pseudokirchneriella subcapitata, the planktonic rotifer Brachionus calyciflorus abundant in 243 

freshwaters, the anostracan crustacean Thamnocephalus platyurus, highly sensitive in acute toxicity 244 

testing and the cladoceran crustacean Ceriodaphnia dubia, worldwide distributed and often 245 

employed in acute and chronic toxicity testing. 246 

2.5.1 Determination of drugs concentration in test samples 247 

The concentrations of drugs were measured (n=1) using the solid phase extraction (SPE) coupled 248 

with HPLC. Each test solution containing drugs at the beginning of each toxicity test and after 24 h, 249 

48 h and 72h passed through a C18 Sep-Pak® light column (Waters) used as a solid phase extraction 250 

cartridge, previously conditioned with 5.0 mL methanol followed by 5.0 mL water. The cartridge was 251 

then eluted with 5 mL methanol. The eluate was evaporated to dryness under reduced pressure and 252 

the residue was suspended in 1.0 mL acetonitrile. Portions of 200 L volume were then injected into 253 

the HPLC system.  254 

2.5.2 Acute toxicity tests 255 

B. calyciflorus organisms were hatched from cysts (MicroBioTest Inc., Nazareth, Belgium) in 256 

synthetic moderately hard freshwater (80-100mg/L CaCO3, pH7.5 ± 0.3) at 25 ± 1 °C under 257 

continuous illumination (3000-4000 lux) for 16-18 h prior to test initiation, as reported in the 258 

ASTM E 1440-91 guidelines. Six replicates with five animals/well, less than 2h old, were 259 

performed for each concentrations (0.3mL of test solution for each test well in 36-well plates, 260 

MicroBioTest Inc., Nazareth, Belgium) of each compound.  261 

The T. platyurus test was performed in according to ISO 14380 (2011) using larvae hatched from 262 

cysts (Thamnotoxkit F, MicroBioTest Inc., Nazareth, Belgium) in 20-22 h before the assay in the 263 

standard freshwater (dilution 1:8 with deionized water) at 25°C under continuous illumination 264 

(3000-4000 lux). Tests were performed in 24-well plates with 10 crustaceans/well (1.0 mL of test 265 

solution), in three replicates. 266 

The C. dubia test was performed over 24 h of exposure using young organisms less than 24 h old 267 

following test conditions reported in EPA-600-4-90 (US EPA 1993) with slight modifications. 268 

Neonates of at least third generation coming from a healthy mass culture (starting organisms were 269 

purchased from Aquatic Research Organisms, Inc., Hampton, NH, USA) were maintained at 25 ± 1 270 

°C in synthetic medium (hardness 250 mg/L expressed as CaCO3) with a 16:8 h light:dark cycle 271 
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(600 lux) Tests were performed in 24-well plates with 10 crustaceans per well (1.0 mL of test 272 

solution), in three replicates. 273 

For each test considered above, both a negative control (only test-medium) and a solvent control  274 

(DMSO 1% v/v related to the maximum concentration of compounds tested equal to 100 mg/L) 275 

were performed. The plates were incubated in darkness at 25 °C for 24 h.  276 

The end-point considered was mortality, and the concentration resulting in a 50% effect in 24 h-277 

exposure was indicated as Median Lethal Concentration (LC50). 278 

In acute assays, compounds were tested for a maximum of eight dilutions depending on the 279 

respective sensitivity of the organisms (100-31.25-9.76-3.15-0.98-0.31-0.09 mg/L) starting from the 280 

highest concentration of 100 mg/L with a geometric progression of 3.2. 281 

2.5.3 Chronic toxicity tests 282 

The B. calyciflorus chronic test was based on the offspring reduction over 48 h exposure (ISO, 283 

20666, 2008) and was performed on young organisms less than 2 h old. Cysts were hatched as 284 

previously described for the acute test. Tests were performed in 48-well plates with one rotifer/well 285 

(0.9 mL of test solution prepared in moderately hard dilution water, ASTM E1440-91), in six 286 

replicates. The organisms were fed with a fresh suspension (0.1 mL) of 107 cells/mL of the 287 

unicellular alga P. subcapitata. Plates were incubated in darkness at 25 °C. 288 

The chronic test in C. dubia was performed with female neonates < 24 h old from at least the third 289 

generation of a stock culture maintained in synthetic water with ISO medium were individually 290 

exposed to 25 mL of test solution in beakers over 7 days (ISO, 20665, 2008). Tests were conducted 291 

in semi-static conditions (all test media were exchanged five times per week) and, from the fourth 292 

day-exposure onward, the offspring produced by each parent organism were counted and removed 293 

daily. The organisms were fed daily with 200 L of a combination of yeast Saccharomyces 294 

cerevisiae, alfalfa and flake food in addition to the unicellular green alga P. subcapitata (108 295 

cells/mL). Ten replicates per concentration were incubated at 25 ± 1 °C with a 16:8 h light:dark 296 

cycle (600 lux).  297 

The P. subcapitata growth inhibition test was performed according to OECD 201, 2011 with slight 298 

modifications reported by Paixao et al., 2008. The single samples were incubated with 104 cells/mL 299 

of algal suspension in 96-well microplates in six replicates under continuous illumination at 25 ± 1 300 

°C on a microplate shaker (450 rpm). The plates were read at 450 nm (SpectraFluor, Tecan, 301 

Switzerland) immediately before the test and after 24 h, 48 h and 72 h.  302 

For all chronic tests, a negative control (test-medium control) was used to the test series. Only for P. 303 

subcapitata growth inhibition test, the % DMSO exceeded the maximum % recommended in 304 

toxicity testing (0.01%). Thus, for this kind of assay, a solvent control (DMSO 0.1% v/v related to 305 
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the maximum concentration of compounds tested equal to 10000 µg/L) was performed. The number 306 

of the offspring or the algal growth outputs were compared to the values obtained for the negative 307 

control in order to determine the chronic effective percentages and to evaluate the chronic Effective 308 

Concentrations (ECx). 309 

In B. calyciflorus and C. dubia chronic assays, compounds were tested for a maximum of nine 310 

dilutions (1000-312.5-97.66-30.52-9.54-2.98-0.93-0.29-0.09 µg/L) starting from the highest 311 

concentrations of 1000 µg/L with a geometric progression of 3.2. For the P. subcapitata growth 312 

inhibition test, compounds were tested for a maximum of ten dilutions (10000-3125-976.56-305.17-313 

95.37-29.80-9.31-2.91-0.91-0.28 µg/L) starting from the highest concentration of 10000 µg/L with 314 

a geometric progression of 3.2. 315 

2.5.4 Ecotoxicological data analysis 316 

For each kind of assay, three independent experiments were performed. For each independent 317 

experiment, the effect percentages were calculated comparing each specific negative control. For 318 

each assay, the effect percentages coming from three independent experiments were pooled using 319 

Prism5 software (Graphpad Inc., CA, USA) to estimate the concentrations giving x% effect 320 

(L(E)Cx) by non-linear regression (log agonist vs. normalized response-variable slope). The LC50 321 

value, corresponding to the 50% of mortality for each test-organism, was the test parameter for 322 

acute tests, whereas EC50, EC20, and EC10 were the concentrations giving 50%, 20% or 10% of 323 

the effect used in chronic tests to evaluate the inhibition of reproduction or the inhibition of the 324 

algal growth.  325 

 326 

3. Results 327 

 328 
The SPE coupled with HPLC analysis revealed a non-appreciable difference between nominal 329 

and actual concentrations: the actual concentrations of tested chemicals diverged from the 330 

nominal concentrations by 5% after 24h, around 10% after 48h, and around 15% after 72h. 331 

According to Li (2012), when the actual concentrations are at least 80% of the nominal 332 

concentrations, the measured and the expected concentrations are considered to be very close and 333 

no significantly different, so that in the present study the effective concentrations are reported as 334 

nominal concentrations. 335 

3.1 Photochemical behaviour of loratadine 336 

Loratadine 1 is slightly soluble in water, hence acetonitrile was chosen as co-solvent to obtain clear 337 

solutions (Figure 1). Preliminary experiments were carried out in the dark using 1 x 10-4 M 338 

solutions in H2O/CH3CN 9:1 v/v. The drug was stable after 48 h even when tested in acidic (pH 4) 339 
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and alkaline (pH 9) solutions. These pH ranges are usually considered in environmental analysis 340 

(Valenti et al., 2009). 341 

Loratadine solution was then irradiated in a photoreactor with UV-B lamps. HPLC analysis 342 

showed the formation of photoproducts already after 2 min (Figure 2): compound 2 at Rt16.2 min 343 

and compound 3 at Rt10.2 min (Figure 1). The photoproducts were identified comparing their Rt 344 

values with those of standard compounds which were isolated and characterized by performing 345 

preparative photochemical experiments. 346 

Kinetic experiment under these conditions showed that loratadine has a half-life of 137.4 347 

seconds and a polychromatic quantum yield of 5.89 x 10-4 (Table S1). 348 

Preparative experiments to isolate and characterize the photoproducts were carried out by UV-B 349 

irradiation of 1 x 10-3 M solutions of the drug in H2O/CH3CN 75:25 v/v.  HPLC analysis confirmed 350 

the trend observed in dilute conditions and revealed the presence of the peaks of products 2 and 3 351 

together with other minor products. After 40 min of irradiation, TLC on silica gel afforded three 352 

photoproducts: compounds 2 and 3 and a new product 4. Structures 2-4 (Figure 1) were assigned on 353 

the basis of spectral data. In particular, 1D and 2D NMR spectroscopy was used because it is a 354 

powerful technique for identification and structure elucidation of small organic molecules 355 

(Elyashberg, 2015; Fuloria and Fuloria, 2013). 356 

The mass spectrum of photoproduct 2 (Rt 16.5 min) shows a molecular peak at 382/384 m/z 357 

corresponding to the molecular formula C22H23ClN2O2, hence suggesting that it is a loratadine 358 

isomer. The mass spectrum evidences a peak at m/z 154, absent in the mass spectrum of loratadine, 359 

attributable to the tetrapyridine fragment C8H12NO2.The 1H-NMR spectrum shows significant 360 

differences only in the aliphatic proton region. In particular, two overlapping signals due to protons 361 

H-11 and H-3’ (singlet + multiplet, respectively) are observed at δ 4.80 as expected due to the shift 362 

of the double bond. The shift of the double bond produces, in the 13C-NMR spectrum, the 363 

disappearance of the singlet carbon signal at δ 133.3 (C-11 of 1) and the appearance of a doublet 364 

carbon signal at δ 120.8 (C-3’ of 2).  365 

The structure of photoproduct 3 (Rt 10.2 min) was confirmed by the presence in the mass spectrum 366 

of molecular peak at 229/231 m/z corresponding to the molecular formula C14H12ClN2. The 1H-367 

NMR spectrum shows the presence of six aromatic protons in the  range 8.40-7.10, of signals at δ 368 

4.35 and at δ 3.33 due to di-benzylic methylene proton H-11 and to benzylic methylene protons H-5 369 

and H-6, respectively.  370 

Piperidinone 4 was obtained by TLC in mixture with compound 3 (ca. 1:3 molar ratio) and its data 371 

were deduced by comparison with those reported in literature (Hirsch and Havinga, 1976). It was 372 

not observed by HPLC analysis since it is transparent at the selected wavelength (254 nm) of the 373 
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detector. Its presence in the irradiation mixture was confirmed by GC-MS (Figure 2) and 1H-NMR 374 

analysis of the crude irradiation mixture. 375 

NMR analysis was particularly useful to examine the irradiation mixtures since loratadine and its 376 

photoproducts 2-4 have characteristic identifiable signals. 377 

Aqueous solutions of the drug were also exposed to sunlight in Naples (Italy) in July 2017, under 378 

environmental-like conditions. As expected, degradation was slower. HPLC analysis showed a 379 

decrease of drug concentration to approximately 50% after 2 days and a complex mixture of 380 

photoproducts. The chromatographic and spectroscopic analysis of the irradiation mixture showed 381 

the presence of photoproducts 2-4. 382 

3.2 Mechanistic interpretation  383 

In order to gain more mechanistic information on photoproducts formation, UV-B irradiation 384 

experiments were performed under various conditions (in different solvents such as acetonitrile, 385 

methanol, water/acetonitrile; in the presence and absence of oxygen) and the reactions were 386 

monitored by HPLC and 1H NMR. The experimental conditions and the results are reported in 387 

Table S2. 388 

Accordingly with previous data (Abounassif et al., 2005), loratadine degraded faster in solutions 389 

containing water (after 15 min of irradiation only 5% photodegradation in methanol or acetonitrile 390 

vs. 55% in H2O/CH3CN 7:3 v/v, Table S2 runs c, e, g). In all irradiation conditions, especially 391 

under argon, photoproduct 2 was present while the formation of compounds 3 and 4 was 392 

observed only in aqueous solution. Control experiments showed that isoloratadine 2 was 393 

photolabile and converted to unidentified material after 20 min of UV-B irradiation.    394 

On the basis of literature data, a plausible mechanistic interpretation is reported in Figure 3. 395 

Compound 2 should derive from a 1,3-hydrogen shift, probably via a radical pair, from an 396 

excited triplet state of loratadine 1, as suggested by the quenching with oxygen. The radical 397 

recombination can give loratadine 1 or its isomer 2 (Turro et al., 2010a). Addition of water to 398 

give intermediate 6 and -cleavage of the alkoxy radical intermediate 7 should give products 399 

3 and 4. -Cleavage of alkoxy radicals to give ketones and stable radicals is well known (Turro et 400 

al., 2010b).   401 

In all the experimental irradiation conditions, desloratadine 5 was not observed. This result is 402 

not surprising considering that the carbamate function is quite photostable and it does not absorb 403 

light in the UV-C and UV-B regions (Iesce et al., 2006). However, control experiments showed 404 

that when a 1 x 10-3 M solution of desloratadine 5 in H2O/CH3CN 7:3 v/v was irradiated by 405 

UV-B lamps as reported above for loratadine, it was photodegraded within 60 min and gave a 406 

complex mixture of products among which the sole identifiable product was tricycle 3. 407 
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3.3 Ecotoxicological experiments 408 

Tests were performed with loratadine 1, and its photoisomer 2 and the mixture of compounds 3 and 409 

4 (in ca. 3: 1 molar ratio) obtained by preparative experiments (see 2.4.4). We also examined 410 

desloratadine 5 and its photodegradation mixture (DPM) obtained as reported in 2.4.4.5. 411 

3.4 Acute toxicity results 412 

In order to verify that the acute effects were not DMSO-dependent, a solvent control was performed 413 

for each kind of assay, at the highest tested percentage (1% v/v), and referred to the highest tested 414 

concentration of 100 mg/L, observing no significant difference with the negative control, with a 415 

survival higher than the 90% both in negative and in solvent controls (Table S3) as recommended 416 

by test validity criteria. The parent compound loratadine, its metabolite desloratadine, the 417 

transformation products and the degradation mixture of desloratadine were found to cause mortality 418 

in both crustaceans and rotifers and the LC50 values, obtained after 24 h exposure (coming from 419 

three independent experiments pooled using Prism5) are reported in Table 1. In addition, LC50 420 

values espressed as mean ± SD of the indipendent experiments are reported in Table S4. Loratadine 421 

was able to cause the 50% of mortality in C. dubia at hundreds of µg/L, differently from the effects 422 

found at dozens of mg/L in the rotifers and in the anostracan crustacean. On the other hand, all the 423 

aquatic organisms showed the same sensitivity to the metabolite, with LC50 values found at units of 424 

mg/L, while DPM was more active in the rotifer B. calyciflorus (LC50 equal to 2.02 mg/L) than in 425 

crustaceans. Transformation products such as isoloratadine 2 and the mixture of tricycle 3 and 426 

piperidinone 4 showed different acute effects. In fact, albeit isoloratadine was more effective in C. 427 

dubia (LC50= 1.19 mg/L), the mixture of tricycle 3 and piperidinone 4 caused 50% mortality at 428 

units of mg/L not only in the cladoceran crustacean but also in the rotifer and it is more lethal than 429 

parent loratadine 1 for B. calyciforus (Table 1). To the best of our knowledge, scientific data on the 430 

aquatic toxicity of the compounds here tested is rather scarce. Nevertheless, there are several data 431 

on diphenhydramine (DPH), the same histamine H1-receptor antagonist as loratadine. In 2013 432 

Goolsby and collaborators found that the diphenhydramine (DPH) was acutely toxic in C. dubia 433 

with an LC50 value equal to 3.94 mg/L, while in 2015 Kristofco at al., found that DPH caused a 434 

50% immobilisation in the cladoceran crustacean Daphnia magna at 374 µg/L after 48h-exposure 435 

and the 50% mortality in the fish Danio rerio at 45.5 mg/L after 72h exposure. In the 2011, 436 

Berninger et al. found a median acute effect in D. magna at 0.37 mg/L after DPH exposure and 437 

from units to dozens of mg/L in the fish Pimephales promelas.  Differently from vertebrates which 438 

are known to possess some degree of genetic homology for DPH targets like histamine-H1 439 

receptors, with a similarity from 40 to 70% (Gunnarsson et al., 2008, Berninger et al., 2011), the 440 

effects of the antihistamines in invertebrates may likely be related to other mechanisms of actions 441 
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affecting histamine ion channel transporters, as suggested by Haas et al., 2008 and Berninger et al., 442 

2011. Regarding transformation products, they were found to be slightly toxic for all aquatic 443 

organisms tested excepted isoloratadine 2 in C. dubia. Although acute toxicity data are generally 444 

very far from those of environmental concern and from the water solubility of chemicals, they 445 

are still relevant regarding the assessment of environmental risk since chronic data are often 446 

lacking.  447 

3.5 Chronic toxicity results 448 

The chronic toxicity data for the five samples, reported as EC50, EC20, and EC10 values (coming 449 

from three independent experiments pooled using Prism5) and expressed in µg/L, are shown in 450 

Table 2. In addition, EC50 values espressed as mean ± SD of the indipendent experiments are 451 

reported in Table S5. In order to verify that the chronic effects were not DMSO-dependent, a 452 

solvent control was performed only for P. subcapitata growth inhibition assay, at the highest tested 453 

percentage (0.1% v/v), and referred to the highest tested concentration of 10000 µg/L, as explained 454 

above. No significant difference with the negative control was found, with a growth higher than the 455 

90% both in negative and in solvent controls (Table S3) as recommended by test validity criteria. 456 

Loratadine 1 was the most chronically active compound in the rotifer (EC50= 51.32 mg/L), while 457 

its metabolite desloratadine 5 was the most active both in C. dubia, with a median effective 458 

concentration at few units of µg/L, and in the green alga P. subcapitata (EC50 = 220.20 µg/L), as 459 

also depicted in Figure 4, where the concentration/effect curves of samples are reported for each 460 

aquatic organism. As shown in Figure 4, the parent compound was less active in C. dubia than its 461 

metabolite but more active than the transformation products. Furthermore, DPM determined a 462 

median chronic toxic effect at hundreds or thousands µg/L, in the case of aquatic consumers and 463 

producers, respectively (Table 2). In fact, as also reported in Figure 4, differently from consumers 464 

(C. dubia and B. calyciflorus), in producers (P. subcapitata) there is a slow increase in 465 

concentration/effect relationship with an evident response only at the highest concentrations.  466 

 In 2015 Watanabe and collaborators tested the diphenhydramine histamine H1-receptor antagonist 467 

in the alga P. subcapitata finding an EC50 value equal to 1240 µg/L, the same order of magnitude 468 

of the EC50 obtained in this study.  469 

In the 2009, Isidori and collaborators tested the ranitidine, a histamine H2-receptor antagonist in the 470 

consumers C. dubia and B. calyciflorus finding a median offspring reduction in the order of 471 

thousands of µg/L, therefore underlining a higher sensitivity of these aquatic organisms to 472 

histamine H1- than to histamine H2-receptor antagonists. The environmental chronic toxicity of the 473 

histamine H1-receptor antagonist such as loratadine and its derivatives towards the aquatic tested 474 

organisms is observable already at few units-dozens µg/L (EC20 values, Table 2), however these 475 
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residues occur in surface waters at ng/L levels which are too low to cause an immediate threat to 476 

exposed organisms but can pose delayed long term effects interfering with organism metabolic 477 

pathways.  478 

The EC10 and EC20 values of loratadine and EC10, EC20 and EC50 values of desloratadine 479 

(Table 2) are lower than their respective water solubility equal to 11 µg/L and 3950 µg/L, 480 

making the results of this study interesting to understand the behaviour of these drugs in real 481 

water samples. At the best of our knowledge, no data of photoproducts water solubility is 482 

available. 483 

4. Conclusion 484 

Loratadine 1 is transformed either under UVB or by sunlight exposure. The reactive site is the 485 

double bond while the carbamate moiety is unreactive. Transformation products derive by 486 

photoisomerization and water photoaddition followed by a cleavage reaction. Photolability is also 487 

observed in desloratadine 5 but this drug leads to a complex photodegradation mixture.  488 

The toxic effects of loratadine 1 and desloratadine 5 occur in both acute and chronic assays at 489 

concentrations higher than their environmental occurring concentrations differently affecting the 490 

organisms selected from two trophic levels. However, the environmental transformations of the 491 

parent compounds, here simulated by the UV-irradiation treatments, lead to the formation of a 492 

bioactive mixture of residues and transformation products, which could represent a harmful 493 

combination to some of the organisms tested. In order to define water quality criteria protective 494 

for all aquatic species, further toxicity studies towards other aquatic species are needed 495 

especially to increase species sensitivity diagrams used in EU and North American approach 496 

to anti-histamine management to derive water quality benchmark, and to broaden knowledges 497 

of mechanisms involved in the different biological responses of the organisms.  498 
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