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Land Tessellation Effects in Mapping Agricultural Areas by Remote 8 

Sensing at Field Level 9 

While mapping agricultural areas by remote sensing it is quite common to operate at 10 

cadastral parcel level. Unfortunately this land tessellation is merely administrative: a 11 

single parcel can, in fact, be made of differently managed parts whose spectral properties 12 

can be significantly different, being often different their content. In this situation, 13 

approaches that aggregate spectral signals of pixels belonging to the same parcel to 14 

investigate their average behavior, can generate misleading results. In this work we 15 

evaluated how different field tessellation schemes can condition the interpretation of the 16 

spectral behavior of crops with special concern on time series of NDVI (Normalized 17 

Difference Vegetation Index) and NDWI (Normalized Difference Water Index) spectral 18 

indices, assumed as proxies of plant vigour and crop/soil water content, respectively. The 19 

study relies on Sentinel 2 and Landsat 8 data imaging a rice cultivated area sited in 20 

Piemonte (NW Italy). Two reference land tessellation geometries were taken into 21 

account: a) the local cadastral map (purely administrative land division criterion); b) a 22 

map obtained by image segmentation of the NDVI time series (purely spectral land 23 

division criterion). After signal aggregation some statistics were therefore computed to 24 

test differences both in time (within the same parcel along its temporal profile), and in 25 

space (within the same image at different positions at the same time). Results, obtained 26 

exploring the rice growing season 2016, showed that: a) in 23% (70% at 1 sigma) and 27 27 

% (70 % at 1 sigma) of segments (respectively for NDVI and NDWI) spectral differences, 28 

averagely along the year, are significant, possibly leading to wrong interpretation of 29 

occurring dynamics in the area; b) in rice cultivated fields, spectral differences suffer 30 

from seasonality with a higher incidence in Spring, when rice agronomic phases are more 31 

dynamic and, in the meantime, critical for management. 32 

 33 

Keywords: Spectral Indices; Image Time Series; Image Segmentation; Cadastral Parcels, 34 

Crop Monitoring 35 

 36 

1: Introduction 37 

Nowadays remote sensing techniques are widely used in agricultural applications due to 38 

the high availability of free pre-processed datasets, suggesting the implementation and 39 

supplying of services (possibly web-based) for crop monitoring tending to a better 40 
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agronomic management by farmers and a more rigorous control of practices by 41 

institutional administrations (Hatfiel et al.,2008; Karantzalos et al., 2015; Kliment et al., 42 

2014; Tey & Brindal, 2012). Nevertheless the adoption of remotely sensed images time 43 

series has proved to improve accuracy of classification of crops and surfaces during 44 

seasons (McNairn et al., 2009). While discussing about services for crop monitoring, it 45 

can be observed that, cadastral maps play an important role since, they are often used to 46 

aggregate spectral signal, thus assuming that no sub-parcel differentiated field 47 

management is possible (Erden & Öztürk, 2015; Erden & Töreyen, 2015; Zelaya et al., 48 

2016); in these situations deductions from remotely sensed data can be highly misleading. 49 

Crops, in general, are observed at parcel level by averaging the spectral behavior of 50 

contained pixels, mostly synthesized by spectral indices as NDVI, SAVI (Soil Adjusted 51 

Vegetation Index), EVI (Enhanced Vegetation Index) etc. intended as predictors of some 52 

agronomic parameters (Hively et al., 2009; Huang et al., 2004; O’ Connell et al., 2014; 53 

Zerbato et al., 2016).  54 

Unfortunately, especially in the Italian agricultural landscape, the favourable situation 55 

where a single cadastral parcel is homogeneously managed, is often missing. The high 56 

fragmentation of territory and the national slow process of cadastral maps updating are 57 

majorly responsible of this fact. In many cases sub-parcel field division simply results in 58 

a time shift of farming operations determined by a not contemporary seeding of the same 59 

crop. In other more critical cases, it can be related to different crops that were planted in 60 

the different parts of the same parcel. Whatever is the condition, signal aggregation at 61 

parcel level (in general obtained by averaging spectral signal of the included pixels) 62 

determines a not controllable error that generate unreliable deductions concerning crop 63 

properties. 64 
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This critical feature of Italian (and not only) agricultural landscape is at the basis of the 65 

EU regulation no. 809/2014 that binds payment claims related to CAP (Common 66 

Agricultural Policy) to an electronic format, based on GIS (Geographic Information 67 

System): the “geo-spatial aided application form (GSAAF)”. GSAAF is intended to limit 68 

errors by beneficiaries when declaring their agricultural areas, making administrative 69 

cross-checks more efficient. In addition, more accurate spatial information provided by 70 

GSAAF will provide more reliable data to monitor and evaluate agronomic practices, 71 

since the effective spatial distribution and extension of crops within, or over, cadastral 72 

parcels will be considered and declared by applicants. This is a new trend in respect of 73 

the current one where contributions are  given with reference to the whole cadastral 74 

parcel. In Italy, GSAAF is expected to be based on aerial orthoimages supplied by 75 

National (AGEA) and Regional (ARPEA in Piemonte) agencies for payments in 76 

agriculture. 77 

A rice cultivation devoted area was assumed as reference for this work since rice 78 

cultivation is mostly extensive and, in the Italian agricultural context, it appears as the 79 

most homogeneously managed. Consequently, if significant differences can be observed 80 

in this situation, more reasonably they could be found monitoring other crops. Moreover, 81 

rice is the most common staple food and it represents a grounded base for food security 82 

for about 3 billion people on Earth, especially in low- and lower-middle income countries 83 

(Maclean et al., 2002) It is cultivated under a wide range of management conditions: 84 

highly mechanised, irrigated, single summer cropping (i.e. Italy, Japan, the U.S., 85 

Australia, Brazil); rainfed rice systems across Latin America, sub-Saharan Africa, and 86 

South and South-East Asia (Boschetti et al., 2014). In Europe, Italy is the first rice 87 

producer having about 2.2·105 ha of cultivated areas and a production of 1.4 ·106 t·y-1 88 

corresponding to the 52% of the rice devoted areas and 50% rice production in Europe, 89 
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respectively (http://www.enterisi.it). Due to its flooded condition, rice is one of the main 90 

consumers of world fresh water resources (Tuong & Bouman, 2003), making desirable 91 

an efficient management.  92 

The present work is part of a research project solicited by the Agriculture Department of 93 

the Piemonte Region Administration, that asked about an evaluation of effects that a 94 

different land tessellation scheme could generate while working with Normalized 95 

Difference Vegetation Index, NDVI (Rouse et al., 1974) and Normalized Difference 96 

Water Index, NDWI (McFeeters, 1996) time series. In particular Regional administrators 97 

were interested in monitoring the rice flooding phase at sub-parcel level to understand 98 

where and when water releases occur and how farmers use water. This is an important 99 

issue to deal with since water demand in rice-cultivation generates a high pressure on 100 

water resource especially during the rice-fields flooding step.  101 

Rice crop monitoring by spectral indices time series is known to be effective in describing 102 

main farming operations along the year: a) pre-seeding fields submersion , b) plant 103 

emersion from water, c) pre-harvest ripening. NDVI and NDWI were selected as 104 

reference indices being widely used to monitor crop phenology and crop irrigation 105 

dynamics. In particular, NDVI proved to be able to monitor plants vigour; NDWI to 106 

describe crop water status.  107 

A composite image time series from Sentinel 2 and Landsat 8 datasets were used for this 108 

purpose. According to the above mentioned tessellation schemes, differences affecting 109 

spectral indices temporal profiles were tested both in time (within the same parcel along 110 

its temporal profile), and in space (within the same image at different positions at the 111 

same time).  112 

Authors are conscious that results obtainable for a rice cultivated area cannot be 113 

completely generalized for whatever agricultural context. Nevertheless, results from this 114 
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situation are expected to be optimistic in respect of any other crop, since rice fields, here, 115 

are known to be homogeneously and extensively managed, reasonably limiting local 116 

differences, that, for other crops will be certainly higher. 117 

 118 

2: Materials and Methods 119 

2.1: Test Area 120 

The study area (about 8700 ha) is located in the Piemonte Region (NW Italy, Figure 1). 121 

From the agricultural point of view, it is mainly devoted to rice cultivation; ISTAT (Italian 122 

National Institute for Statistics) estimated that in 2016, rice crops took 116325 ha with a 123 

production of 499273 tons within the whole Vercelli province where this area is sited 124 

(ISTAT, 2018). 125 

[FIGURE 1] 126 

 127 

2.2: Available data 128 

Twenty-two optical satellite images, covering the 2016 rice growing season, were used 129 

for this work: twelve ESA (European Space Agency ) Sentinel-2 Level 2A images 130 

(hereinafter called S2) were obtained from the Copernicus Scientific Data Hub 131 

(https://scihub.copernicus.eu/); ten NASA (National Aeronautics and Space 132 

Administration) Landsat-8 images C1 Level 2 (hereinafter called L8) were obtained from 133 

the Earth Explorer (https://earthexplorer.usgs.gov/) archive of the USGS (US Geological 134 

Survey). Main technical features of both datasets are reported in Table 1.  135 

[TABLE 1] 136 

 137 

The above mentioned processing levels indicate that both the datasets were obtained as 138 

at-the-ground reflectance calibrated images. S2 and L8 images were jointly used to 139 

improve the temporal resolution of time series, especially during spring, when clouds 140 
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often cover the area. L8 images were preventively oversampled to the same Ground 141 

Sample Distance, GSD, of S2 (10 m). Temporal distribution of satellite images is reported 142 

in Figure 2 showing that the joint use of both datasets was helpful to reduce the effect of 143 

cloud cover in the study area. 144 

[FIGURE 2] 145 

 146 

As far as S2 and L8 image integration is concerned, and specifically focusing on the joint 147 

use of NDVI and NDWI spectral indices, it has already been demonstrated that they are 148 

consistent enough to be aligned along the same time series (Barazzetti et al., 2016,  Lessio 149 

et al., 2017; Munyati, 2017). 150 

A vector cadastral map (1:2000 scale, WGS84 UTM 32 N reference frame) was also 151 

available for this work from the Piemonte Region Agricultural Department.  152 

 153 

2.3: Data processing 154 

Starting from the available at-the-ground reflectance calibrated images, the correspondent 155 

NDVI and NDWI spectral indices were computed for both L8 and S2 images according 156 

to eq.1 and 2.  157 

 158 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷
      ;     𝑁𝐷𝑊𝐼 =  

𝜌𝐺𝑅𝐸𝐸𝑁−𝜌𝑁𝐼𝑅

𝜌𝐺𝑅𝐸𝐸𝑁+𝜌𝑁𝐼𝑅
 (1, 2) 159 

 160 

where ρNIR, ρRED, ρGREEN are the at-the-ground reflectances respectively for the Near 161 

Infrared, Red and Green bands, that are slightly different for the two datasets (Table 1).  162 

Two different time series of NDVI/NDWI images were obtained by averaging the local 163 

spectral profiles, of neighbor pixels, according to different land tessellation schemes: the 164 

first based on cadastral parcels as defined by the available cadastral map; the second 165 
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obtained by image segmentation of the original NDVI time series. Segmentation was 166 

operated by a region-growing based algorithm (Comaniciu & Meer, 2002) available in 167 

Orfeo ToolBox (OTB, v. 6.4.0). Image segmentation is known to detect homogeneous 168 

portions of land in terms of similar spectral properties. At this point it is worth to stress 169 

that spectral similarities of crops do not follow administrative boundaries. Consequently, 170 

segments can represent areas completely included in a single parcel (sub-parcels) or wider 171 

areas including portions of different adjacent parcels that behaves similarly. In this second 172 

case, the administrative geometric coherence (which part of segments does belong to a 173 

certain parcel?) can be easily recovered by intersection operations, involving cadastral 174 

parcels and segments vector layers, achieved by ordinary GIS tools. To give a description 175 

of the degree of sub-parcel potential fragmentation in the area we counted the number of 176 

segments that totally, or partially, fell into each cadastral parcel. The correspondent 177 

cumulative frequency distribution was therefore computed.  178 

Since authors’ hypothesis was that land portions of spectral homogeneity are different 179 

from cadastral parcels, expectation was that: a) segmented patches (objects) were more 180 

numerous than parcels; b) patches size was, generally, smaller. Consequently, some 181 

statistics concerning shape properties of both segmented polygons and cadastral parcels 182 

were computed by SAGA GIS software and compared. In particular patches area and 183 

Shape Index (SI, Forman & Godron, 1986) values (eq. 3) were compared computing the 184 

correspondent cumulative frequency distributions.  185 

 186 

𝑆𝐼 =
𝑃

2√𝜋𝐴
 (3) 187 

where P is the polygon perimeter and A its area. SI represent circular objects when equal 188 

1, square objects when around 1.128 and tends to increase for complex objects having 189 

highly moved borders (a long perimeter in respect of a limited area).  190 
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Successively, the following four time series of locally averaged spectral indices were 191 

obtained: NDVI and NDWI in respect of cadastral map (NDVI(x,y,t)c, NDWI(x,y,t)c); 192 

NDVI and NDWI in respect of segmentation result (NDVI(x,y,t)s, NDWI(x,y,t)s). 193 

Comparison was achieved at both temporal and spatial level.  194 

Investigation at “spatial level” was achieved computing the local NDVI and NDWI Mean 195 

Absolute Errors (MAE, Willmott & Matsuura, 2005), obtaining two maps of MAE, 196 

hereinafter called 𝑀𝐴𝐸(𝑥, 𝑦)𝑁𝐷𝑉𝐼 and 𝑀𝐴𝐸(𝑥, 𝑦)𝑁𝐷𝑊𝐼 (eq. 4, 5).  197 

 198 

𝑀𝐴𝐸(𝑥, 𝑦)𝑁𝐷𝑉𝐼 =  
∑ |𝑁𝐷𝑉𝐼(𝑥,𝑦,𝑖)𝑠−𝑁𝐷𝑉𝐼(𝑥,𝑦,𝑖)𝑐|𝑛

𝑖=1

𝑛_𝑖𝑚𝑎𝑔𝑒𝑠
 (4) 199 

𝑀𝐴𝐸(𝑥, 𝑦)𝑁𝐷𝑊𝐼 =  
∑ |𝑁𝐷𝑊𝐼(𝑥,𝑦,𝑖)𝑠−𝑁𝐷𝑊𝐼(𝑥,𝑦,𝑖)𝑐|𝑛

𝑖=1

𝑛_𝑖𝑚𝑎𝑔𝑒𝑠
 (5) 200 

 201 

where n_images is the total number of images (dates) belonging to the compared time 202 

series.  203 

𝑀𝐴𝐸(𝑥, 𝑦)𝑁𝐷𝑉𝐼 and 𝑀𝐴𝐸(𝑥, 𝑦)𝑁𝐷𝑊𝐼 were used to explore if differences were 204 

homogeneously distributed in the area.  205 

Investigation “at time level” was, differently, performed by computing, for each explored 206 

date, the correspondent 𝑀𝐴𝐸(𝑡)𝑁𝐷𝑉𝐼/𝑁𝐷𝑊𝐼 from differences of the same time layer (eq. 207 

6 and 7). 208 

 209 

𝑀𝐴𝐸(𝑡)𝑁𝐷𝑉𝐼 =  
∑ ∑ |𝑁𝐷𝑉𝐼(𝑖,𝑗,𝑡)𝑠−𝑁𝐷𝑉𝐼(𝑖,𝑗,𝑡)𝑐|𝑟

𝑖=1
𝑐
𝑖=1

𝑛_𝑝𝑖𝑥𝑒𝑙𝑠
 (6) 210 

 𝑀𝐴𝐸(𝑡)𝑁𝐷𝑊𝐼 =  
∑ ∑ |𝑁𝐷𝑊𝐼(𝑖,𝑗,𝑡)𝑠−𝑁𝐷𝑊𝐼(𝑖,𝑗,𝑡)𝑐|𝑟

𝑖=1
𝑐
𝑖=1

𝑛_𝑝𝑖𝑥𝑒𝑙𝑠
 (7) 211 

where c and r are, respectively, the number of columns and rows of the raster layer of 212 

differences at the single date, NDVI/NDWI(x,y,t) the local index value over the image at 213 
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the date t and n_pixels the number of “good” image pixels (excluded cloudy or failed 214 

pixels).  215 

This resulted into a time series made of 22 MAE(t) numerical values, each synthesizing 216 

the average difference over image at the single date.  217 

Both MAE maps and  temporal profiles were finally analysed looking for an interpretation 218 

key able to detect the main factors that, eventually, made an object-based approach more 219 

desirable than the one based on cadastral parcels.  220 

 221 

3. Results and Discussions 222 

Concerning segmentation of the original NDVI time series by OTB, the “mean-shift” 223 

algorithm was used with the following parameters: spatial radius = 5 pixels; range radius 224 

= 0.1; minimum region size = 25 pixels (i.e. 0.25 ha, assumed as the minimum mapping 225 

unit (MMU). Parameters properness was tested through some repeated tests. In figure 3 226 

cadastre- and segmentation-based tessellation schemes are shown together with maps 227 

resulting from NDVI values averaged at field level (example area at April 2016). 228 

 229 

[FIGURE 3] 230 

 231 

In figure 4 the cumulative frequency distribution of segments per parcel (totally, or 232 

partially, contained) is reported to highlight the degree of sub-parcel divisions in the area. 233 

 234 

[FIGURE 4] new addition 235 

 236 

From a strictly geometrical point of view, the different type of landscape tessellation 237 

scheme (cadastre- and object- based) determined a significantly different number of 238 

patches: 4111 cadastral parcels showed an area greater or equal to 0.25 ha (consistent 239 
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with the segmentation algorithm parameters); 6788 objects were obtained by 240 

segmentation (+ 65% in respect of cadastral parcels). Polygons area mean value (> 0.25 241 

ha) passed from 1.20 ha (cadastre) to 0.80 ha (segmentation) with a reduction of 33%. SI 242 

mean value passed from 1.50 to 1.74 moving geometries from a more regular (squared) 243 

shape to a more irregular one.  Cumulative distribution functions of both Area and SI 244 

values were computed and reported in figure 5. 245 

 246 

[FIGURE 5] 247 

 248 

Looking at the Area distribution (figure 5, left) it can be observed that: a) no significant 249 

changes occurred for smaller parcels (as expected) being, reasonably, always managed 250 

unitarily; they represent the 50% of the total, suggesting that, the proposed methodology 251 

will not affect this percentage of parcels; b) starting from parcels that were sized over 252 

0.75 ha, the two compared distributions tended to differentiate much more, showing that, 253 

in terms of homogeneity of spectral response (NDVI, i.e. vigor), cadastral parcels are 254 

often managed differently (sub-parcel approach).  255 

Looking at the distribution of SI (figure 5, right) it can be observed that in general, 256 

cadastral parcels show a more regular shape (tending to a squared geometry) as the 257 

highest percentage of polygons with lower SI demonstrate. Segmentation result was 258 

compared, by photointerpretation, with a false color composite RGB from the S2 dataset 259 

(R=b8, G=b4, B=b3; acquisition date: 21st July 2016), showing that the most of sub-parcel 260 

segments were related to the country roads and channels networks, whose traits are often 261 

included in the parcel, determining a significant variation of its average spectral response 262 

together with an obvious geometrical decomposition of the whole parcel. Some other sub-263 

parcel segments, differently, were related to different local spectral responses of the same 264 

parcel, possibly indicating a different intra-parcel behavior of crop. The consequent 265 
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question is therefore: is the average spectral response of the parcel homogeneously shifted 266 

from the expected value due to the inclusion of channels/roads? Or, possibly, is a 267 

differentiated management of parcels the responsible of sub-parcel spectral differences 268 

occurrences? 269 

 To answer this question some samples temporal profiles were extracted from the NDVI 270 

and NDWI averaged images and compared. In general, the spatial decomposition 271 

generated by segmentation within a parcel generated significantly different temporal 272 

profiles of spectral indices, indicating that, commonly in the area, a single large cadastral 273 

parcel cannot be considered unitary from the agronomic point of view. Differences 274 

between spectral index temporal profiles averaged over the whole parcel, and those 275 

averaged separately for the segments falling within the parcel can be interactively tested 276 

singularly. An example of these differences is given, for an example  parcel, in figure 6, 277 

where NDVI (left) and NDWI (right) profiles averaged at segment level (black lines) are 278 

compared with those averaged at parcel level (red line). It can be easily noted that profile 279 

shapes are significantly different (sometime higher than 0.1 and 0.2 points for NDVI and 280 

NDWI, corresponding to a percentage difference of about 40% (0.1/0.25) and 100% 281 

(0.2/(-0.2)), respectively. 282 

 283 

[FIGURE 6] 284 

 285 

Moreover, sample profiles reported in figure 6 suggest a seasonality in differences: NDVI 286 

highest differences mainly affect the starting part of the growing season (beginning of 287 

March - end of June), indicating that crop proceeds on with different velocities at different 288 

times, especially during its germination and tillering phases. In the same way NDWI 289 

highest differences occur in April when water releases from the local Irrigation 290 

Consortium enter the fields to operate the pre-seeding submersion, suggesting a not 291 
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homogeneous distribution of water at parcel level. Consequently, it can be said that 292 

segmentation improve crop behaviour interpretation, permitting a better management of 293 

fields (farmer’s point of view) or a more punctual control of water releases (Consortium’s 294 

point of view).  A generalization of the reading key offered by figure 6 can be somehow 295 

achieved by aggregating measures of differences through the synthetic statistic 296 

parameters of equations 4-7. 297 

Maps showing the spatial distribution of NDVI/NDWI MAE (𝑀𝐴𝐸(𝑥, 𝑦)𝑁𝐷𝑉𝐼 and 298 

𝑀𝐴𝐸(𝑥, 𝑦)𝑁𝐷𝑊𝐼) were obtained by averaging differences at pixel level along its temporal 299 

profile (eq. 4,5). A subset of the generated maps is reported in figure 6, where it can be 300 

observed that the mean MAE local value is spatially varying. Maps confirm that MAE 301 

values are higher for NDWI; they can be used to investigate, over the area, where the 302 

most critical situations are located. This is an important issue especially when monitoring 303 

water releases for control purposes from institutional players (like Consortium);  304 

moreover this represents a further demonstration that a parcel-based approach it is not 305 

enough to satisfyingly describe actual behaviors of crop/water dynamics.  306 

 307 

[FIGURE 7] 308 

 309 

At the moment authors are not able to give an interpretation key to robustly explain why 310 

some areas are more critical than others. The different behaviors of the various parts of 311 

the same parcel can rely on many motivations: different crop type, different treatments 312 

times, different terrain properties, position of fields in respect of the channel network, etc.  313 

An important issue to deal with when testing significance of differences, is the expected 314 

theoretical accuracy of NDVI/NDWI measures. Reference values for accuracy of 315 

NDVI/NDWI measures from satellite imagery can be found in literature (Borgogno-316 

Mondino et al., 2016). For vegetated areas, they are told to be reasonably about 0.02 (1 317 
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sigma) - 0.04 (2 sigma) points of NDVI/NDWI. Consequently, only differences higher 318 

than these values have to be taken into account to demonstrate the impact of the different 319 

approaches in reading crop and water dynamics in the area. 320 

To test this condition, the cumulative frequency distribution function was computed for 321 

both the above mentioned MAE maps and reported in figure 8 in respect of the number 322 

of segments.  323 

 324 

[FIGURE 8] 325 

 326 

From the graph, it can be noted that: about 77 % of segments, averagely along the year, 327 

have a  NDVI value that, in respect of the correspondent cadastral parcel, is lower than 328 

0.04 points, i.e. not significant;  from these, ~ 30% is lower than 0.02.  Similarly, about 329 

73 % of segments, averagely along the year, show an NDWI value that, in respect of the 330 

correspondent cadastral parcel, is lower than 0.04 points, i.e. not significant; but, again, 331 

~ 30% is lower than 0.02.  332 

Conversely, in 23% (70% at 1 sigma) and 27 % (70 % at 1 sigma) of segments 333 

(respectively for NDVI and NDWI) spectral differences, averagely along the year, are 334 

significant, possibly leading to wrong interpretation of occurring dynamics in the area. 335 

 It is worth to remind that maps and statistics of figure 7 and 8, respectively, just point 336 

out average occurrences and values of spectral index differences along the year. 337 

Consequently, they cannot point out eventual criticalities related to a specific moment 338 

along the growing season. 339 

Trying to give a preliminary answer to this question, seasonality of NDVI/NDWI MAE 340 

was explored computing  the correspondent average profiles by eq. 6, 7. In figure 9, the 341 

average MAE profile is reported (gray line) together with maximum and minimum 342 

differences recorded at the single explored date.  The average trend confirms what was 343 
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locally observed in the sample parcel of figure 6. The comparison of the average MAE 344 

profile with those representing the maximum and minimum differences at the same time 345 

over the scene, demonstrates that differences can reach values higher and higher than the 346 

average one, making more desirable the adoption of segments in place of parcels to reduce 347 

the risk of misunderstanding of measures. 348 

 349 

[FIGURE 9] 350 

 351 

Focusing on the MAE average time profile (MAE(t)NDVI/NDWI), it can be observed that 352 

maximum values were detected on the 19/04/2016 (start of growing season) and 353 

21/05/2016 (during the typical first flooding step) for NDVI (about 0.07) and NDWI 354 

respectively (about 0.11), corresponding, in terms of farming operations, to flooding and 355 

plants development phases. Reported profiles show that, all along the year, average MAE 356 

is always higher than NDVI/NDWI reference value (1 sigma = 0.02), demonstrating that 357 

no measured difference is actually negligible; conversely, an approach based aggregating 358 

spectral signal at parcel level can lead to interpretation errors while monitoring crop and 359 

water dynamics in rice fields, especially in Spring, where differences appear to be higher.   360 

 361 

4. Conclusions 362 

The current period is showing an increasing demand and offer of services for agriculture 363 

based on the continuous monitoring of crops at regional level by remote sensing. Free 364 

archives of satellite imagery (both optical and radar) from main institutional suppliers 365 

(NASA/USGS and ESA), is accelerating the transfer of this type of technology to the 366 

operational compart. Scenarios for remote sensing adoption in agriculture are various, 367 

ranging from plant, to field up to region level, each defining its proper players and data.  368 

This work explore a criticality mainly related to the region level approaches, where 369 
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applications are mainly devoted to management of wide areas where, in many cases, the 370 

minimum mapping unit to be investigated is assumed to be the cadastral parcel. 371 

Unfortunately this land tessellation is merely administrative: a single parcel can, in fact, 372 

be made of differently managed parts whose spectral properties can be significantly 373 

different, being often different their content. In this situation, approaches that aggregate 374 

spectral signals of pixels belonging to the same parcel to investigate their average 375 

behavior, can generate misleading results. In this work, focusing on time series of NDVI 376 

and NDWI spectral indices obtained from Sentinel 2 and Landsat 8 datasets, a cadaster-377 

based landscape tessellation is compared with an image segmentation-based one, with 378 

special concerns about rice crops sited in the NW part of Italy. Since tessellation is 379 

assumed to drive the local aggregation of spectral signal, differences affecting NDVI and 380 

NDWI time series  where tested at both spatial and temporal level by computing the above 381 

mentioned statistics. Results, obtained for the rice growing season 2016, showed that 382 

yearly-averaged local differences were significant (> 0.04 points of spectral index) in 383 

about the 23 % and 27 % of segments (respectively for NDVI and NDWI). At the moment 384 

authors are not able to give an interpretation key to robustly explain why some areas are 385 

more critical than others. The different behaviors of the various parts of the same parcel 386 

can rely on many motivations: different crop type, different treatments times, different 387 

terrain properties, position of fields in respect of the channel network, etc. Further 388 

investigation should be done, whenever the technology transfer occurred, based on local 389 

features of the monitored area.  390 

Results about the yearly trend of differences, showed that they suffer from seasonality 391 

with a higher incidence in Spring, when rice agronomic phases are more dynamic and, in 392 

the meantime, critical for management. MAEx,y(t), in fact, showed that highest differences 393 

were concentrated at the beginning of the growing season: mid-April for NDVI, mid-May 394 
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for NDWI. Moreover they proved to be, averagely in the area, significant, therefore, not 395 

negligible. 396 

Consequently, authors retain that, whenever a monitoring service based on time series of 397 

spectral indices was developed and launched, cadastral parcels could not be assumed as 398 

reference unit to average spectral measures, since the actual agronomic tessellation 399 

context (for the study area) is different from the administrative one. From this point of 400 

view, image segmentation based on NDVI time series proved to be reliable enough to 401 

describe a land division more consistent with the actual field management practices.  402 

Authors are conscious that results cannot be generalized for whatever agricultural context. 403 

Nevertheless, the quantification of differences, even if specifically related to the study 404 

area, support the general idea that precision farming or administrative controls in 405 

agriculture, cannot rely on cadastre basis. Moreover, since the study area is historically 406 

devoted to rice cultivation, the results we found in this situation are expected to be 407 

optimistic in respect of any other agricultural context: rice fields, here, are known to be 408 

homogeneously and extensively managed, reasonably limiting local differences.   409 

Finally, it is worth to remind that, recently, AGEA, the Italian paying agency for 410 

agriculture (EU contributions), according to the art. 17, paragraph.2 of the European 411 

Union Regulation n. 809/2014, has made mandatory for farmers, starting from the 2018 412 

growing season, the redaction of the so called “graphic application”: they are, in fact, 413 

requested to supply, as much precisely as possible, the georeferenced map of the field 414 

they are going to request contribution for,  drawing its actual border within a single (or 415 

over many) cadastral parcel. Contributions will not anymore be accorded at cadastral 416 

parcel level, but in reference of the actual managed field area. In this new legislative 417 

context, the suggested approach appears to be more interesting, moving field detection 418 

by remote sensing in such a direction consistent with the expected future controls that 419 
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AGEA will operate systematically to test consistency of declared areas by farmers, 420 

making deductions more reliable.  421 

 422 

 423 
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Figure 1. Study area. White lines = cadastral parcels of rice-cultivated fields. Reference frame is WGS-84 UTM 32N. 506 

 507 

Figure 2. Temporal distribution of datasets. The joint use of optical data from different missions (S2 black, L8 grey) 508 

improves the acquisition rate especially when datasets are compromised by cloud cover (S2 series from March to 509 

July). 510 

 511 

Figure 3. Cadaster-based Vs segmentation-based tessellation of rice fields. A: NDVI original image (S2, April 2016); 512 

B: Cadaster-based tessellation scheme (cadastral vector map); C: segmentation-based tessellation scheme as 513 

generated by OTB; D: at-field level averaging of NDVI (April 2016)based on cadastral parcels; E: at-field level 514 

averaging of NDVI (S2, April 2016) based on segmented polygons. 515 

 516 

Figure 4. Cumulative frequency distribution of the number of segments per parcel (totally o partially included). The 517 

percentage is referred to the total number of cadastral parcels. 518 

 519 

Figure 5. Cumulative frequency distributions of Area (left) and SI (right) values computed for the two compared 520 

tessellation schemes. 521 

 522 

Figure 6. Effects of different tessellation schemes in respect of the local temporal profiles of both NDVI and NDWI. 523 

Red line = average spectral index profile of the whole parcel. Segm 1,2,3,4 are the average spectral index profiles of 524 

respectively sub-parcels 1,2,3,4. Left: NDVI profiles; Right: NDWI profiles. 525 

 526 

Figure 7. Example subsets of MAE maps of NDVI (A) and NDWI (B). Maps are useful to interpret where the most 527 

significant differences are located, when  monitoring rice fields through a cadaster- or segments-based approach 528 

based on remote sensing techniques. 529 

 530 

Figure 8. Cumulative frequency distribution functions of NDVI and NDWI MAE maps (count is given considering 531 

the number of segments). Significant differences are, precautionary, those higher than 0.04 (vertical line). 532 

 533 

Figure 9. MAE(t) temporal profiles of NDVI (left) and NDWI (right). Red line = MAE(t), black triangles = 534 

maximum differences at the single date, black squares = minimum differences at the single date.  Graphs are useful to 535 

interpret if spectral differences are somehow time-dependent, i.e. if and how agronomic phases can heavily be 536 

conditioned by the different type of NDVI/NDWI averaging tessellation scheme. 537 

 538 

 539 
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 540 

 541 

 542 

Table 1. Technical features of L8 and S2 datasets. 543 

L8 S2 

Temporal resolution: 16 Days Temporal resolution: 5 Days 

Bands  GSD (m) Wavelength (µm) Bands 
GSD 

(m) 

Wavelength 

(µm) 
Bands 

GSD 

(m) 

Wavelength 

(µm) 

Band 1 30 0.433-0.453 Band 1 60 0.423-0.463 Band 8 10 0.727-0.957 

Band 2 30 0.450-0.515 Band 2 10 0.425-0.555 

Band 

8a 20 0.845-0.885 

Band 3 30 0.525-0.600 Band 3 10 0.525-0.595 Band 9 60 0.925-0.965 

Band 4 30 0.630-0.680 Band 4 10 0.635-0.695 

Band 

10 60 1.350-1.410 

Band 5 30 0.845-0.885 Band 5 20 0.690-0.720 

Band 

11 20 1.520-1.700 

Band 6 30 1.560-1.660 Band 6 20 0.725-0.755 

Band 

12 20 2.010-2.370 

Band 7 30 2.100-2.300 Band 7 20 0.760-0.803    

Radiometric resolution: 16 bit Radiometric resolution: 12 bit 

544 
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Figure 1 546 
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Figure 2 550 
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Figure 3 553 
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Figure 4 (new addition) 558 
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Figure 5 561 
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Figure 6 565 
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Figure 7  568 

 569 
Figure 8 (Changed – ex fig. 7) 570 
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 572 

 573 
Figure 9 (changed – ex fig.8) 574 


