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IMPORTANCE Molecular diagnosis is difficult to achieve in disease groups with a highly
heterogeneous genetic background, such as cerebellar ataxia (CA). In many patients,
candidate gene sequencing or focused resequencing arrays do not allow investigators to
reach a genetic conclusion.

OBJECTIVES To assess the efficacy of exome-targeted capture sequencing to detect
mutations in genes broadly linked to CA in a large cohort of undiagnosed patients and to
investigate their prevalence.

DESIGN, SETTING, AND PARTICIPANTS Three hundred nineteen index patients with CA and
without a history of dominant transmission were included in the this cohort study by the
Spastic Paraplegia and Ataxia Network. Centralized storage was in the DNA and cell bank of
the Brain and Spine Institute, Salpetriere Hospital, Paris, France. Patients were classified into
6 clinical groups, with the largest being those with spastic ataxia (ie, CA with pyramidal signs
[n = 100]). Sequencing was performed from January 1, 2014, through December 31, 2016.
Detected variants were classified as very probably or definitely causative, possibly causative,
or of unknown significance based on genetic evidence and genotype-phenotype
considerations.

MAIN OUTCOMES AND MEASURES Identification of variants in genes broadly linked to CA,
classified in pathogenicity groups.

RESULTS The 319 included patients had equal sex distribution (160 female [50.2%] and 159
male patients [49.8%]; mean [SD] age at onset, 27.9 [18.6] years). The age at onset was
younger than 25 years for 131 of 298 patients (44.0%) with complete clinical information.
Consanguinity was present in 101 of 298 (33.9%). Very probable or definite diagnoses were
achieved for 72 patients (22.6%), with an additional 19 (6.0%) harboring possibly pathogenic
variants. The most frequently mutated genes were SPG7 (n = 14), SACS (n = 8), SETX (n = 7),
SYNE1 (n = 6), and CACNA1A (n = 6). The highest diagnostic rate was obtained for patients
with an autosomal recessive CA with oculomotor apraxia–like phenotype (6 of 17 [35.3%]) or
spastic ataxia (35 of 100 [35.0%]) and patients with onset before 25 years of age (41 of 131
[31.3%]). Peculiar phenotypes were reported for patients carrying KCND3 or ERCC5 variants.

CONCLUSIONS AND RELEVANCE Exome capture followed by targeted analysis allows the
molecular diagnosis in patients with highly heterogeneous mendelian disorders, such as CA,
without prior assumption of the inheritance mode or causative gene. Being commonly
available without specific design need, this procedure allows testing of a broader range of
genes, consequently describing less classic phenotype-genotype correlations, and post hoc
reanalysis of data as new genes are implicated in the disease.
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H ereditary cerebellar ataxias (CAs) are clinically and ge-
netically heterogeneous. All transmission modes have
been described. The cardinal cerebellar syndrome is

frequently part of a complex clinical spectrum with addi-
tional neurologic and/or extraneurologic symptoms.1

The most frequent autosomal recessive (AR) CAs are Fried-
reich ataxia, caused by GAA repeat expansions in intron 1 of
FXN (OMIM 606829),2 and ataxia-telangiectasia, caused by
loss-of-function mutations in ATM (OMIM 607585).3 Nonclas-
sic clinical pictures have been described for both.4,5 Autoso-
mal dominant (AD) CAs are most often caused by CAG repeat
expansions in ATXN1 (OMIM 601556), ATXN2 (OMIM 601517),
ATXN3 (OMIM 607047), CACNA1A (OMIM 601011), ATXN7
(OMIM 607640), TBP (OMIM 600075), or ATN1 (OMIM
607462).6 Overall, mutations in more than 140 genes have been
described, involving pathways such as mitochondrial func-
tions, DNA repair, transcription and translation, ciliary struc-
ture, and lipid biosynthesis.1,7

Sanger sequencing of candidate genes or panel approaches8

often fails to lead to a diagnosis.1 We aimed to evaluate the ef-
ficacy of exome-capture sequencing followed by targeted
analysis of genes broadly linked to CA9-12 to identify muta-
tions in 319 patients with undiagnosed CA and without an AD
transmission history. To our knowledge, this CA cohort is the
largest studied.

Methods
Patient Recruitment and Clinical Evaluation
Three hundred nineteen index cases of CA were recruited
by the Spastic Paraplegia and Ataxia (SPATAX) network
(https://spatax.wordpress.com/) and examined using a
standardized form (https://spatax.files.wordpress.com/2013
/09/fichecliniquespatax-eurospa-2011.pdf). The sexes were
equally distributed. For the 210 patients with available
information, the national origin was mostly France (112
[53.3%]) and continental Europe (39 [18.6%]). We classified the
298 cases with full phenotypic information into the following
6 clinical groups: (1) pure ataxic phenotype (n = 62), (2)
additional spastic component (spastic ataxia) (n = 100), (3)
complex late-onset clinical picture with extrapyramidal signs
(n = 30), (4) metabolic presentation with mitochondrial
features (sensorineural hearing loss, ptosis, ophthalmoplegia,
optic atrophy, axonal neuropathy, cardiomyopathy, short
stature, and/or diabetes type 1) or white matter changes
(n = 70), (5) sensory ataxia (n = 19), or (6) a CA with oculomotor
apraxia (AOA)–like presentation (n = 17) (Table). The remaining
21 patients were unclassified. The patients’ familial anamneses
included no evidence of AD transmission. Recessive inheritance
was considered to be plausible based on consanguinity (101 of
298 [33.9%]) or family history consisting of at least 2 affected
siblings (59 of 298 [19.8%]) with no case in other generations.
According to a classic nonsystematic clinical approach,
expansions of FXN (80 patients) or ADCA genes (132 patients,
including ATXN1 in 129, ATXN2 in 129, ATXN3 in 130, CACNA1A
in 126, ATXN7 in 110, TBP in 47, and ATN1 in 102) and mutations
in various genes (eg, APTX [OMIM 606350], SETX [OMIM

608465], SPG7 [OMIM 602783], SACS [OMIM 604490], and
POLG [OMIM 174763]) were ruled out when the phenotype was
suggested by means of clinical presumption or biological
workup (ie, measurement of albumin, cholesterol, or
α-fetoprotein level). This study was approved by the Paris
Necker ethics committee. Written informed consent was
obtained in accordance with French ethics regulations.

Sequencing and Bioinformatics
Exome-enriched libraries were prepared with the rapid-
capture expanded exome kit (Nextera; Illumina) and se-
quenced on the manufacturer’s system (HiSeq 2000; Illu-
mina) (2 × 100–base pair paired-end reads). Sequence
alignment and variant calling were performed following the
Broad Institute’s Genome Analysis Toolkit (GATK)13-15 ver-
sion 3 best practices. Sequence reads were aligned against the
reference human genome (UCSC hg19) using the Burrows-
Wheeler Alignment tool.16 The Picard software toolset (http:
//broadinstitute.github.io/picard/) was used to calculate
summary alignment metrics and mark duplicate reads. Local
realignments near indels, base-score recalibration, variant
calling, joint genotyping, and variant quality score recalibration
were performed using GATK.

Variants were annotated with Annovar17 (http://annovar
.openbioinformatics.org/) and sorted with SnpSift18 (http:
//snpeff.sourceforge.net/SnpSift.html) based on (1) quality
(GATK filter pass, quality >30), (2) effect on the coding sequence
of a protein-coding gene (exonic nonsynonymous single-
nucleotide variant or splice variant), (3) frequency in public
databases of no greater than 1% (Exome Variant Server [http:
//evs.gs.washington.edu/EVS/] and Exome Aggregation
Consortium [http://exac.broadinstitute.org/, https://www
.biorxiv.org/content/early/2016/05/10/030338]), and (4)
internal frequency (allele count ≤30; ie, ≤4.7%). IntersectBed
(http://bedtools.readthedocs.io/en/latest/) allowed filtering
variants affecting known CA or hereditary spastic paraplegia
genes, because both overlap clinically, based on curation of
PubMed performed in February 2015 and in-house lists (209
genes) (eTable 1 in the Supplement). Variants in other genes
were not examined.

Key Points
Questions Is exome-targeted capture sequencing able to detect
mutations in genes broadly linked to ataxia, and what is the
prevalence of such mutations in a large cohort of undiagnosed
patients with various phenotypic presentations?

Findings This cohort study of 319 patients with undiagnosed
cerebellar ataxia used a sequencing approach that allowed the
identification of genetically relevant variants in known genes in 91
(28.5%). This approach had the highest success rate for patients
with spastic ataxia or a cerebellar ataxia with oculomotor
apraxia–like phenotype; SPG7, SACS, SETX, SYNE1, and CACNA1A
were the most frequently mutated genes.

Meaning Mutations were identified in a broad range of genes
implicated in ataxia and related neurologic diseases, even in
cohorts that underwent previous extensive screening.
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Variants Processing
Biallelic (homozygous or compound heterozygous) variants
were first sought because of the likelihood of AR inheritance.
Very rare (≤0.1% frequency in the aforementioned databases)
heterozygous variants were also considered in ADCA genes
(eTable 1 in the Supplement and Figure 1). The plausibility of
genotype-phenotype correlations was evaluated for all flagged
variants.

Sanger sequencing was performed if (1) the variant read
depth was below 10 × , (2) informative family members were
available for segregation (other affected members [n = 13] or

healthy relatives without biallelic mutations [n = 6]), or (3) it
allowed determining the cis- or trans-localization of com-
pound heterozygous variants (n = 7). All Sanger resequenced
variants and segregation results are reported in eTable 2 in the
Supplement.

Results
The 319 included patients had equal sex distribution (160 fe-
male [50.2%] and 159 male [49.8%] patients). Mean (SD) age

Table. Clinical Subgroups Among the Cohort

Clinical Group

No. of
Index
Patients

No. (%) of Patients

Age at Onset
<25 y

Age at Onset
>40 y Consanguinity

Very Probable
or Definite
Diagnosis

Very Probable
or Definite
Diagnosis
When Age at
Onset <25 y

Very Probable
or Definite
Diagnosis
When Age at
Onset >40 y

Possible
Diagnosis

AOA-like phenotype
(increased α-fetoprotein
level, low albumin level,
ocular apraxia)

17 15 (88.2) 1 (5.9) 7 (41.2) 6 (35.3) 6 (35.3) 0 2 (11.8)

Late complex
(MSA-like, parkinsonism,
not pyramidal)

30 0 20 (66.7) 7 (23.3) 3 (10.0) 0 0 1 (3.3)

Metabolic (mitochondrial
features, white matter
changes)

70 45 (64.3) 6 (8.6) 24 (34.3) 16 (22.9) 10 (14.3) 0 2 (2.9)

Pure (only cerebellar signs,
slow progression)

62 20 (32.3) 13 (21.0) 19 (30.6) 9 (14.5) 5 (8.1) 0 6 (9.7)

Sensory ataxia
(FRDA/PolG-like)

19 9 (47.4) 8 (42.1) 8 (42.1) 2 (10.5) 2 (10.5) 0 2 (10.5)

Spastic ataxia (cerebellar
and pyramidal signs)

100 42 (42.0) 15 (15.0) 36 (36.0) 35 (35.0) 18 (18.0) 4 (4.0) 6 (6.0)

Alla 298 131 (44.0) 63 (21.1) 101 (33.9) 72 (22.6)b 41 (31.3) 4 (6.4) 19 (5.9)

Abbreviations: AOA, cerebellar ataxia with oculomotor apraxia;
FRDA, Friedreich ataxia; MSA, multisystemic atrophy; PolG, polymerase gamma.
a Includes the 298 patients for whom complete clinical information was

available.

b Includes 1 patient with known SPG7 mutations lacking sufficient clinical
information for classification.

Figure 1. General Study Results
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Variants were sorted based on classic criteria (detailed in the Variant Analysis
subsection of the Results section), then analyzed assuming an autosomal
recessive (AR) transmission mode (including homozygous and heterozygous
compound variants), which allowed identifying possibly to definitely causative
variants in 74 patients (23.2%). Combining this analysis with one based on

presumed autosomal dominant (AD) transmission (including heterozygous
varients and a frequency �0.1%) improved this number to 91 patients (28.5%)
for AD and AR inheritance modes, with 10 additional patients carrying very
probable to definite pathogenic mutations. VUS indicates variant of unknown
significance.
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at onset was 27.9 (18.6) years; the age at onset was younger than
25 years for 131 of 298 patients (44.0%) with complete clini-
cal data.

Sequencing
Approximately 8 gigabases of alignable sequence data were gen-
erated per sample. On average, 95% of exome capture baits had
at least a 10 × depth and 70% at least a 30 × depth. A total of
488 393 single-nucleotide polymorphisms and 69 480 indels
were included. We deliberately retained patients with low cov-
erage to avoid distorting the percentage of positive findings.

Variant Analysis
The aforementioned analysis (Figure 1) provided 0 to 4 (AR)
or 0 to 2 (AD) candidate genes per patient. We defined the fol-
lowing 4 pathogenicity groups: (1) probable or definitive caus-
ative variant(s), including a known or a recurrent variant, 3 or
4 concordant pathogenicity predictions by sorting intolerant
from tolerant (SIFT), polymorphism phenotyping 2 (Poly-
Phen2) HumDiv, LRT, and Mutation Taster and Genomic Evo-
lutionary Rate Profiling (GERP++) score of greater than 3 and
plausible genotype-phenotype association, or compatible bio-
marker values (such as hexaminidase levels); (2) possibly caus-

ative variant(s), including most of the above but at least 1 cri-
terion missing, or a slightly discordant phenotype for the gene
spectrum; (3) variant(s) of clinically unknown significance
(VUS); and (4) no diagnosis, including no variant in a known
gene or a variant in known genes without convincing genet-
ics arguments to match the clinical phenotype or the ad-
equate inheritance mode.

We obtained very probable or definite diagnoses for 72 pa-
tients (22.6%; including 62 with AR and 10 with AD inheri-
tance) (Figure 1). We identified possibly causative variants for
an additional 19 patients (6.0%; 12 with AR and 7 with AD in-
heritance). The most frequently encountered recessive muta-
tions were in SPG7 (n = 14), followed by SACS (n = 8), SETX
(n = 7), and SYNE1 (OMIM 608441) (n = 6) (Figure 2). Domi-
nant mutations were most numerous in CACNA1A (n = 6), fol-
lowed by PRKCG (OMIM 176980) (n = 3). Possible to definite
variants are listed in eTable 2 in the Supplement, with argu-
ments for their classification; VUS are available in eTable 3 in
the Supplement.

Diagnostic Yield per Clinical Group
The best diagnositic yields were found for AOA-like presenta-
tions with positive biological biomarkers (6 of 17 [35.3%]) and

Figure 2. Number of Possible to Definite Diagnoses per Gene and Disease Group
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The left part of the Figure plots the number of patients identified with possible
to definite mutations for each gene listed. The right part shows the repartition
of these patients among the 6 disease subgroups. Disease groups are described

in the Patient Recruitment and Clinical Evaluation subsection of the Methods
section. AD indicates autosomal dominant; AR, autosomal recessive;
AOA, cerebellar ataxia with oculomotor apraxia.
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spastic ataxias (35 of 100 [35.0%]) as very probable or defi-
nite and 2 of 17 (11.8%) and 6 of 100 (6%), respectively, as pos-
sible (Table). Patients with late complex CA then were the least
frequently diagnosed, with 3 of 30 (10.0%) as very probable
or definite and 1 of 30 (3.3%) as possible. Early disease onset
and consanguinity were associated with better chances of di-
agnoses (41 of 131 [31.3%] with very probable or definite with
onset before 25 years vs 4 of 63 [6.4%] after 40 years; 31 [30.7%]
with consanguinity vs 41 [18.8%] without).

The predefined clinical group was generally concordant
with the genetic diagnosis (Figure 2), with some exceptions.
One patient with an AOA-like presentation (AAR-211-3) had el-
evated α-fetoprotein levels, no variant in the APTX gene, and
pathogenic mutations in the ANO10 gene (NM_018075.4:
c.132dupA:p.D45fs;c.1537T>C:p.C513R). Patients with ANO10
mutations usually develop cerebellar symptoms in adult-
hood (aged 17-43 years19), whereas patients with AOA show ear-
lier onset. Onset at 24 years of age in this patient was coher-
ent with ANO10 mutations. We classified the diagnosis as
possible because the clinical presentation was slightly un-
usual. Other patients with biallelic loss-of-function ANO10 vari-
ants had classic spastic ataxia.

One patient (AFT-76-10) with epilepsy, thus classified in
the metabolic group, carried a CACNA1A frameshift (NM
_001127222.1:c.2493dupC:p.N832fs). Autosomal recessive in-
heritance was first assumed because of a consanguineous pedi-
gree, but a dominant history later appeared, with ataxic signs
in the daughter of a cousin, for whom no DNA was available
for testing.

One patient with spastic ataxia (SAL-399-573) harboured
2 nonsense variants in SYNE1 (NM_182961.3:c.14273T>G:
p.L4758X;c.23346G>A:p.W7782X). Pyramidal signs were clas-
sically limited in the SYNE1 spectrum, but recent results have
established that spasticity is part of the phenotype.20

Reports of Peculiar Phenotypes
We classif ied a prev iously reported PDYN variant
(NM_001190898.2:c.616C>T:p.R206C21) as VUS. Its fre-
quency in the Exome Aggregation Consortium (0.026%, or 16
heterozygous individuals), the lack of an effect on prodynor-
phin processing to dynorphin A and B,21 and the discordant
phenotype of this French patient (AAR-287-4 with childhood-
onset ataxia, intellectual disability, and behavioral abnormali-
ties) relative to the previously reported late-onset spastic ataxia
cast its pathogenicity in doubt.

We found a possibly causative KCND3 variant (NM
_004980.4:c.641A>G:p.K214R) in a patient with an unusual epi-
sodic gait disorder. The onset of relapsing limb paraesthesia
at 30 years of age first evoked multiple sclerosis. Vertigo and
episodic occurrences of gait disorder appeared thereafter with-
out interictal ataxia. Increased reflexes, the Hoffmann sign, uni-
lateral extensor plantar reflexes, and saccadic ocular pursuit
were observed. Magnetic resonance imaging showed supe-
rior cerebellar vermis atrophy. The unaffected mother car-
ried the variant, suggesting incomplete penetrance. This find-
ing might be in accordance with its prevalence in public
databases (28 of 119 072 alleles; ie, 28 heterozygous among
59 536 individuals [0.05%]).

One patient (AAR-180-11) harbored a previously
reported homozygous frameshift variant of ANO10
(NM_018075.4:c.132dupA:p.D45fs).19 This specific variant
was always found in compound heterozygosity with others
and assumed to be too severe when homozygous. The onset
at 22 years in this homozygous patient and a mild spastic
ataxic phenotype (stage 1 disability with no functional
handicap) after 5 years of disease evolution is in accordance
with previous reports for ANO10 showing it to not be more
severe.

Finally, 2 siblings (AAR-73-3 and AAR-73-4) with spastic
ataxia from a consanguineous pedigree carried a causative ho-
mozygous nonsense ERCC5 variant (NM_000123.3:c.3004C>T:
p.Q1002X). The index patient (AAR-73-4) presented with spas-
tic paraparesis, proximal and distal weakness, and severe
sensory-motor demyelinating neuropathy at 24 years of age.
She used a walking aid at 48 years of age, was wheelchair bound
at 52 years of age, and had limited upward gaze and cognitive
impairment at 54 years of age. The Scale for the Assessment
and Rating of Ataxia score (18 of 40 at 46 years of age and 29
of 40 at 54 years of age) denoted clear progressivity. Mag-
netic resonance imaging of the brain showed slight cerebellar
atrophy and white matter anomalies (Figure 3). Her brother
(AAR-73-3) started to show signs of the disease at 15 years of
age, used a walking aid at 39 years of age, and was bedridden
and died at 51 years of age. The ERCC5 gene belongs to a DNA
repair pathway; biallelic mutations have been associated with
xeroderma pigmentosum, Cockayne syndrome, and com-
bined xeroderma pigmentosum–Cockayne syndrome
phenotypes.22,23 Major characteristics from classic xero-
derma pigmentosum–Cockayne syndrome presentations (in-
creased photosensitivity, skin pigmentation abnormalities, en-
ophthalmos, progressive microcephaly, deafness, or retinitis)
were absent. Our finding is nevertheless consistent with the
ataxic gait of some patients with ERCC5 mutations.24

Discussion
We used exome-targeted capture sequencing followed by tar-
geted analysis of genes broadly linked to CA to study 319 pa-
tients with undiagnosed CA, the largest such cohort to date,
to assess the possibility of detecting mutations with this ap-
proach and their prevalence. Previously reported cohorts in-
cluded no more than 76 patients.9

Ourdiagnosticyieldwas22.6%(72of319patients),with5.9%
(19of319)possibleadditionaldiagnoses(Figure1).Thisratemight
be lower because our cohort, recruited through a specialized
university-based network of reference centers for rare diseases,
has undergone extensive screening previously. However, these
findings are similar to those of previous reports using targeted
gene panels (18%8) or exome sequencing (21%-46%8-12,25) and
other mendelian diseases (34% diagnoses in heterogeneous
patients26; 33% in hereditary spastic paraplegia27).

The diagnostic yield was highly variable among clinical
subgroups, being the highest for AOA-like phenotypes and
spastic ataxias and the lowest for late-onset complex cases. It
was also lower in patients with onset after 40 years of age
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(6.4%), in accordance with other observations.8,25 This find-
ing may be explained by less extensive knowledge of genes im-
plicated in late-onset ataxias or by the more frequent involve-
ment of nongenetic causes.

In 9 cases, the diagnosis was established during the study
but not confirmed. Five patients carried disease-causing repeat
expansions, which cannot be detected by short-read techniques
owing to the limited read length. These 5 patients included 1 with
a heterozygous ATXN7 polyglutamine expansion, 1 with a het-
erozygous and 1 with a homozygous ATXN3 polyglutamine ex-
pansion, and 2 with pathogenic expansions in FXN. In this pre-
dominantly AR-assumed population, CAG repeat expansions in
ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, and ATN1 were
sought based only on suggestive clinical elements on examina-
tion, as were GAA repeats in FXN. A sixth patient harboured a ho-
mozygous 31-kb deletion in ANO10 encompassing exon 12 that
was not detected by our approach. Mutations in NDRG1 (OMIM
605262) were reported in another patient during the study pro-
cess. This gene, mostly implicated in Charcot-Marie-Tooth dis-
ease type 4D, was not included in our list. Finally, 2 patients
flagged by quality check metrics were diagnosed with APTX-
linked and SPG7-linked CA, but low global coverage prohibited
from detecting the variants.

Exome-targeted capture sequencing is widely available and
has several advantages compared with other sequencing ap-
proaches. If targeted gene panel sequencing is a cost-
effective alternative to focus on many genes in 1 run, it re-
quires an additional design step and redesign as new genes are
linked to CA. Conversely, exome capture allows post hoc re-
analysis of data as other groups identify mutations in new (CA)
genes. For example, 2 patients not included in the claimed di-
agnosed group carried mutations in CAPN128 and 2 others car-
ried mutations in SLC25A46.29

This approach also allows a broader range of genes to be
tested. When AR inheritance is the prime hypothesis, genes
with AD-transmitted mutations might be overlooked. Even
without a dominant transmission history, AD analysis yielded

a significant amount of additional diagnoses (Figure 1 and
Figure 2), including 3 in consanguineous pedigrees. Two di-
agnoses were pathogenic, including a previously reported
PRKCG mutation and a CACNA1A frameshift, which is classic
for this gene.30 Possible explanations include the de novo oc-
currence of the variant, incomplete penetrance, a censor ef-
fect owing to premature death, or paternity issues. Autoso-
mal dominant analysis significantly raised the number of VUS
because missense heterozygous variations are difficult to in-
terpret. Our results confirm CACNA1A as a prominent gene in
CA, which we also confirmed in an independent AD cohort.31

We often did not have access to DNA from relatives because
patients were from an adult neurologic clinic and were en-
rolled during the course of several years. Access to DNA from
relatives would have allowed the detection of de novo vari-
ants or confirmation of the localization of heterozygous com-
pound mutations in trans. Whenever possible, sequencing a
trio might prove to be more efficacious.

In general, next-generation approaches circumvent the is-
sue of gene prioritization based on phenotypic presump-
tions, with the limitation of the aforementioned expansions.
This nonsystematic, time-consuming, classic approach missed
the diagnosis in the prescreened patients in the absence of
pathognomonic signs. Most genes mutated in our cohort were
implicated in only 1 or 2 patients (Figure 2). Furthermore,
exome-targeted capture sequencing allows a broader range of
genes to be tested, including genes associated with neuro-
logic diseases but not typically with ataxia. We enlarged the
clinical spectrum linked to genes for which the phenotype is
not primarily CA, such as ERCC5, PLA2G6, or SPG7. Careful ex-
amination of clinical records revealed suggestive signs of these
syndromes in most cases. However, they were not suffi-
ciently suggestive to have been evoked at first glance. More-
over, mutations in a given gene can lead to divergent pheno-
types spread over several clinical groups (≤4 for SYNE1, SETX,
and ADCK3). Capturing the exome makes it possible to avoid
prior assumptions about the causative gene.10

Figure 3. Magnetic Resonance Image of the Brain in a Patient

T1-weighted imageA Fluid-attenuated inversion recovery imageB

A woman in her 40s harbored
homozygous nonsense mutations in
ERCC5 (p. Q1002X). After 22 years of
disease evolution, the sagittal section
of a T1-weighted image (A) showed
mild atrophy of the upper cerebellar
vermis (white arrowhead), and the
axial fluid-attenuated inversion
recovery section (B) showed slight
white matter blurring (black
arrowheads).
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Spastic paraplegia genes are the most frequent example of
phenotype broadening, with mutations in SPG7 and SACS as well
as CYP7B1, SPG11, and PLA2G6 (Figure 2 and eTable 2 in the
Supplement). SPG7 mutations were recently recognized to be a
major cause of CA32; most patients, however, develop pyrami-
dal signs along with disease progression. In our cohort, 9 of 14
patients with SPG7 mutations had a spastic phenotype (64.3%)
and 2 of 14 had pyramidal signs, although they were classified
as metabolic. Six of 8 patients with SACS mutations (75.0%) pre-
sented with spastic ataxia, and 1 presented with pyramidal signs
and demyelinating neuropathy. One patient harbouring possi-
bly causative variants had a less classic phenotype of peripheral
neuropathy, epilepsy, and myoclonus. Testing for a trait biomark-
er, such as an alteration of mitochondrial network morphology
in fibroblasts,33 might help to reach a definite conclusion.

Convincing genetic data, however, usually correlated with
a characteristic phenotype. In some cases, the clinical fea-
tures reinforced the genetic diagnostic presumption. We did
not use the clinicogenetic correlation as an exclusion crite-
rion when the variant was genetically convincing, as sug-
gested by others,9,34 although we classified patients with dis-
cordant clinical signs as possibly diagnosed, except for 1
CACNA1A frameshift. Instead, we used clinicogenetic corre-
lation to strenghten evidence of pathogenicity. Genotype-
phenotype correlations are highly challenged by next-
generation sequencing,7 but clinical presentation, including
neuroimaging findings, such as the degree of cerebellar atro-
phy or abnormal basal ganglia signal, should remain a promi-
nent criterion in deciphering the pathogenicity of a given vari-
ant for a given patient.35

When available, trait biomarkers also aid the establish-
ment of the pathogenicity of variants, as shown by the well-
known example of elevated α-fetoprotein levels in ataxia-
telangiectasia linked to ATM mutations. Oxysterol levels in
patients harbouring CYP7B1 mutations are usually elevated,
as in 1 patient carrying a homozygous nonsense variant (NM
_004820.4:c.524G>A:p.W175X). Individuals with mutations in
HEXA have low levels of hexaminidase A, as in 1 patient with
an AOA-like presentation and a homozygous missense muta-
tion (NM_000520.5:c.1511G>A:p.R504H) who was consid-
ered to be diagnosed despite discordant in silico pathogenic-
ity estimates. Another patient with a spastic phenotype carried
2 missense variants (NM_000520.5:c.739C>T:p.R247W;
c.1033G>A:p.G345S) for which pathogenicity could not be con-
firmed by hexaminidase dosage and that we thus labeled pos-

sibly pathogenic. TTPA mutations are usually accompanied by
vitamin E deficiency. This was confirmed in one patient with
a homozygous frameshift (NM_000370.3:c.744delA:
p.E248fs) but not in another with compound heterozygous mis-
sense variants and a slightly divergent clinical profile (NM
_000370.3:c.265C>T:p.P89S;c.515C>G:p.T172S). The
characteristic magnetic resonance imaging sign of a pallidal T2-
weighted hyposignal was observed on reexamination for 1 pa-
tient with PLA2G6 mutations (NM_003560.3:c.1903C>T:
p.R635X;c.T2411C:p.L804P), allowing us to classify the variants
as probably causative. Trait biomarkers, although not obliga-
tory, are invaluable diagnostic tools when present. In the ab-
sence of such biomarkers, it is often difficult to reach a defi-
nite conclusion, as for the 49 VUS that we identified (eTable 3
in the Supplement).

Limitations
The major limitations of our approach rely in the fact that we
missed some variants (ie, trinucleotide repeats expansions that
cannot be detected by short-read sequencing and variants in
genes not included in our design). The first fallback is inher-
ent to the sequencing technique and can only be avoided by
choosing another sequencing approach. The second limita-
tion is a bioinformatics issue that can be solved by updating
the gene list. Compared with the panel techniques, the cov-
erage of all human genes might also not be optimized and the
sequencing might be more expensive.

Conclusions
We aimed at assessing the efficacy of exome-targeted cap-
ture sequencing followed by analysis of genes known to be
broadly linked to ataxia to identify mutations in undiag-
nosed patients. This technique is not optimized for sequenc-
ing a specific subset of genes, contrary to focused resequenc-
ing arrays, but is commonly available and allows the post hoc
reanalysis of data as new causative genes are identified and
the inclusion of a broader range of genes in the study design.
We focused on a set of 209 genes, which allowed 30% of ad-
ditional diagnoses in our otherwise extensively prescreened
cohort. Our results confirm the genetic heterogeneity of CA,
with many genes still to discover in ongoing work with this large
cohort. Our strategy may be efficacious for obtaining results
for known genes and for future development.
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