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Abstract In the framework of alternative metric gravity
theories, it has been shown by several authors that a generic
Lagrangian depending on the Riemann tensor describes a the-
ory with 8 degrees of freedom (which reduce to 3 for f (R)

Lagrangians depending only on the curvature scalar). This
result is often related to a reformulation of the fourth-order
equations for the metric into a set of second-order equations
for a multiplet of fields, including – besides the metric – a
massive scalar field and a massive spin-2 field (the latter being
usually regarded as a ghost): this is commonly assumed to
represent the particle spectrum of the theory. In this article
we investigate an issue which does not seem to have been
addressed so far: in ordinary general-relativistic field theo-
ries, all fundamental fields (i.e. fields with definite spin and
mass) reduce to test fields in some appropriate limit of the
model, where they cease to act as sources for the metric cur-
vature. In this limit, each of the fundamental fields can be
excited from its ground state independently from the others
(which does not happen, instead, as long as the fields are cou-
pled through the gravitational interaction). We thus address
the following question: does higher-derivative gravity admit
a test-field limit for its fundamental fields? It is easy to show
that for a generic f (R) theory (carrying 3 d.o.f.) the test-field
limit does exist; then, we consider the case of Lagrangians
depending on the full Ricci tensor, relying on a previous anal-
ysis published several years ago. We show that, already for
a quadratic Lagrangian, the constraint binding together the
scalar field and the massive spin-2 field does not disappear in
the limit where they should be expected to act as test fields. A
proper test-field limit exists only for a particular choice of the
coefficients in the Lagrangian, which cause the scalar field to
disappear (so that the resulting model has only 7 d.o.f.). We
finally consider the possible addition of an arbitrary function
of the quadratic invariant of the Weyl tensor, Cα

βμνCα
βμν ,

showing that the appearance of the Weyl tensor does not add
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physical degrees of freedom (in accordance to the known
results for Lagrangians depending on the full Riemann ten-
sor) and the resulting model with 8 d.o.f. still lacks a proper
test-field limit: the differential constraints between the fun-
damental fields do not cancel out when gravitational interac-
tion is suppressed. We argue that the lack of a test-field limit
for the dynamics of the fundamental fields may constitute
a serious drawback of the full 8 d.o.f. higher-order gravity
models, which is not encountered in the restricted 7 d.o.f. or
3 d.o.f. cases.

1 Introduction

Alternative theories of gravity have appeared soon after the
advent of general relativity, the first of them was Weyl’s the-
ory (1919) and since then they have been copiously created.

This phenomenon on one hand resembles the situation
in other branches of physics, for example particle physics,
but on the other is very different. In particle physics, after
the discovery of the Higgs boson, there is no single direct
experimental evidence that the Standard Model (SM) should
be enlarged or modified. However, we know that it should:
first, because there are indirect observational hints from cos-
mology like matter-antimatter asymmetry in the Universe
and second, theoretical extrapolation of SM to high ener-
gies shows pathologies in the pure SM like instabilities or
Landau poles. Therefore there are many proposals of exten-
sions of SM, either within particle physics, mostly based on
supersymmetry (or conformal symmetry), or more radical,
like string theory, that were designed to cure these problems.
Within particle physics, under the assumption of renormal-
izability, our choice of possibilities is limited to different
gauge groups or different field content; within string the-
ory the fundamental theory is essentially unique but through
compactification we can have an almost continuous manifold
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of effective low-energy 4-dimensional theories. In either case
we know that SM should be extended.

In gravitational physics the situation is different. From the
experimental point of view we also don’t need any competing
theory to Einstein’s GR because of lack of any experimen-
tal evidence pointing to a necessity of supplementing the
Einstein-Hilbert action with higher order terms. However,
reasoning behind any modification of the simplest GR is not
as convincing and straightforward as in particle physics for
two reasons. First, higher order terms in Einstein’s theory
can be relevant only at gravitational curvatures many orders
of magnitude bigger than what we could imagine as even
indirectly observable in any foreseeable future (inside black
holes or in the very early Universe). Second, although there
are hints that such terms are necessary in quantum theory of
fields coupled to gravity we don’t have quantum theory of
gravity itself to make such a picture fully consistent.

The theoretical arguments pointing to a necessity of
adding higher order terms in gravity come from two sources.
The first one is string theory or (not yet fully constructed)
more general UV completion of the theory of particles, called
M theory. The theory of closed strings has a graviton as its
massless excitation. We can calculate N -point amplitudes
involving gravitons as external legs and these amplitudes can
be translated as coming from the effective theory of gravity
with higher order terms in the Riemann curvature expanded
around the flat geometry. There is however another approach
leading directly to these corrections without any expansion:
the calculation of the (2-dimensional) conformal anomaly of
string propagating on a curved background. Then the require-
ment of vanishing of this anomaly leads directly to the Ein-
stein equations with higher order corrections [1].

The second argument that points to higher order correc-
tions in GR comes from the theory of particles coupled
to gravity without invoking any UV completion. Then the
loop calculations with massive particles on internal lines
and gravitons as external legs lead at low curvatures to
local higher order corrections in the Riemann tensor. These
calculations produce infinities (in contrast to string the-
ory where amplitudes are finite due to modular invariance)
and require renormalization. Unfortunately, gravity is non-
renormalizable and at each level we have to introduce a new
renormalization prescription what makes such a theory use-
less from the physical point of view. Another issue is a (D-
dimensional) conformal anomaly that also contains higher
powers of the Riemann tensor but even at low curvatures the
anomaly is non-local and therefore has to vanish because of
potentially disastrous consequences for observable theory of
gravity [2].

All these arguments point to the fact that any quantum the-
ory of particles coupled to gravity leads to an effective theory
of gravity with higher order corrections. All effective theories
have a limited application range – they are good approxima-

tions only in certain interval of energies. In this case (barring
a possibility of conformal anomaly which is non-local even in
the IR regime) the limiting energy is presumably close to the
Planck scale where quantum gravity effects start to be impor-
tant and/or more massive particles should be added. It seems
worthwhile to consider consequences of adding higher order
corrections below the Planck scale, i.e. at a purely classical
level. For the purpose of this paper it is important to empha-
size that the effective theories even with higher order terms
or non-localities remain bona fide field theories (either clas-
sical or quantum). Therefore, assuming that there exists a
quantum version of these theories, in some appropriate limit
of coupling constants approaching 0 these theories should
admit an interpretation in terms of masses and spins (except
in 2 dimensions where there may exist some ’pathologies’
associated with the fact that the little group has continuous
representations). Even if the theory admits for non-vanishing
coupling constant g non-trivial classical solutions, like soli-
tons or instantons, that do not allow to take the limit g → 0,
in the quantum interpretation they are not treated as separate
particles but as an (infinite) collection of excitations out of
a vacuum that are saddle points in the path integral (either
Euclidean or Lorentzian).

In this paper we are dealing with one class of alterna-
tive theories, which differ from GR in only one axiom:
in gravitational field equations. Instead of Einstein–Hilbert
Lagrangian,1 L = R, one assumes that L is some smooth
scalar function of the Riemann tensor. These theories have
no commonly accepted name and they are dubbed either as
‘metric nonlinear gravity’ (NLG, Lagrangians nonlinear in
the curvature) or ‘higher derivative theory’ (though the field
equations need not be of fourth order); we shall use the first
term. A revival of these theories has taken place after the
discovery in 1999 of the apparent accelerated evolution of
the universe. Most of the researchers attempting to account
for this acceleration without resorting to the mysterious dark
energy or the fine tuned cosmological constant, have applied
various f (R) gravity theories (see [3] for a review). However,
once one rejects the simplest Lagrangian L = R, one is not
restricted to a function f (R) of the curvature scalar, and one
may investigate the generic case of L = f (gμν, Rα

βμν) and
pass over any dependence on derivatives of the tensor. Hence,
prior to any cosmological applications of any NLG theory
one should firmly establish on physical grounds (by theoret-
ical arguments since the observational data are insufficient)
the correct Lagrangian. From a mathematical viewpoint there
is nothing inappropriate in assuming that L depends on R,
the Ricci tensor Rμν and the Weyl tensor Cα

βμν apart from
that the field equations become formidably complicated in

1 Throughout this article we shall denote by L the scalar function which,
upon multiplication by

√−g (g being the determinant of the metric),
gives the Lagrangian density yielding the field equations.
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comparison to Einstein’s field equations. Yet from a physical
viewpoint severe doubts arise. All metric nonlinear gravity
theories are inherently ambiguous in their physical interpre-
tation due to possibility of performing various redefinitions
of their dynamical variables and only Einstein’s GR is free
of these ambiguities: this fact was gradually discovered in a
series of works (see [4–6] for full references).

It has been shown by various authors (starting with Stelle
[7]) that a Lagrangian depending on the Ricci tensor of a met-
ric – in dimension four and without external matter – corre-
sponds, generically, to a model with eight degrees of freedom
(in the field-theoretical sense). For a quadratic Lagrangian,
the inclusion of the Weyl tensor does not increase the number
of DOF. In the case of a (generically nonlinear) Lagrangian
f (R) depending only on the curvature scalar, the DOF
reduce to three. According to common wisdom, a Lagrangian
depending in a generic way on the Ricci tensor is equivalent
to a second-order field theory including a massless spin-two
field, a massive spin-two field and a massive scalar field. In
the f (R) case the massive spin-two field is absent.

Apart from the f (R) case, nearly all theories with higher
order terms in the Riemann tensor suffer from the presence
of ghosts, i.e. fields with negative coefficients in front of the
kinetic terms.2 Such a situation is quite common in gauge
theories where these fields are associated with gauge degrees
of freedom. There are two approaches to this problem in
quantum theory: either we gauge away these fields (what
usually results in a much more complicated theory, since we
explicitly break the symmetry to keep only positive kinetic
terms), or we allow for quantization of these terms as well but
later we decouple quantum states associated to these fields
from the rest (Gupta–Bleuler quantization). The presence of
ghosts is expected to lead to vacuum instability already at
the classical level. However, it has been shown in [8] that for
Lagrangian depending quadratically on the Ricci tensor the
ground-state solution, where the massive spin-two field is set
to zero, is linearly stable against small excitations of this field.
The consequences of the ghost nature of the massive spin-two
component of the multiplet are thus still an open question,
but we shall not deal with this problem in this article; we shall
only make a short comment on derivation of this property at
the end of Sect. 4.

Some recent investigations deal with observational tests of
nonlinear gravity. An attempt to impose restrictions on pos-
sible gravitational Lagrangians is to investigate the geodesic
and Lense-Thirring precessions in the weak-field approxi-
mation and compare them with the recent results of Gravity
Probe B and LARES experiments: in this way some con-
straints on the free parameters for models including nonlin-

2 Among gravitational theories with higher order terms there is a class
of theories that is free from ghosts: the Lovelock theories, based on
topological forms.

ear scalars of the Ricci tensor and a non-minimally coupled
scalar field were obtained in [9]. One may also try to get some
information on the gravitational theory directly from experi-
ment by measuring independent polarization modes of grav-
itational waves: a generic Lagrangian nonlinearly depending
on the Riemann tensor admits up to six polarization modes
[10,11] which are indeed expected to be related with the
multiplet decomposition. However, expected observational
consequences depend on the choice of the physical metric,
a well-known issue that we shall not deal with here. This is
illustrated, for instance, by the investigation of the existence
of the Newtonian limit. The case of a quadratic Lagrangian
L = (κR + aR2 + bRμνRμν) was studied in [12] and in
[13] with different outcomes: according to [12] the Newto-
nian limit exists whenever the ground state solution is linearly
stable and this occurs provided a > 0 and b = −3a, whereas
according to [13] the limit requires onlyb = −2a. Yet, in [13]
it is assumed that the physical metric which should reduce
in the limit to the Newtonian potential is the original metric
in the original Jordan frame, giving rise to fourth order field
equations, while in [12] one first decomposes the unifying
metric appearing in (8) into a triplet of fields, giving rise
to second order field equations, and then one seeks for the
Newtonian limit for these equations. Thus, the discrepancy
is likely to be due to the fact that in these two methods the
metrics required to provide the limit are different.

Here we shall instead focus on a different problem arising
when one tries to identify NLG theories with second-order
field theories involving a multiplet of fields, or – in a quan-
tum perspective – to attach particle degrees of freedom to
higher-derivative terms. A number of physical properties of
nonlinear gravity (e.g. polarization of gravitational waves)
are currently studied in the weak-field limit, but here we shall
assess the existence of a distinct field-theoretical limit, where
the non-geometrical massive fields behave as test fields. This
limit does not consist in a linear approximation, but rather in
the vanishing of the coupling between the metric curvature
and the energy-momentum tensor of the massive fields.

As we have already recalled, in standard field theory each
fundamental field is expected to have a definite mass and
spin: if definite values of these quantities cannot be assigned
to the field under consideration, this simply means that the
field is actually a unifying field (a kind of ‘mixture’) for a
number of distinct fundamental fields.

In the case of a NLG theory, this means that the metric
appearing in its Lagrangian is just a unifying field and should
be decomposed in a multiplet of gravitational fields of defi-
nite spin, that we have mentioned above. The physical metric
of the spacetime will be only one element of the multiplet
(and need not be identical to the original unifying metric). We
have mentioned above this decomposition; for f (R) gravity
theories the decomposition into a metric and a scalar field was
performed in [14–20]. The case of the quadratic Lagrangian
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(without the Weyl tensor), L = κR + aR2 + bRμνRμν , is
also relatively well understood [8] (for a completely differ-
ent approach to quadratic theory see [21]). In the case of
a fully generic Lagrangian L = f (gμν, Rαβμν) including
the conformal tensor an analogous decomposition has been
performed in the linear approximation around Minkowski
spacetime and the outcome is the same as in absence of the
Weyl tensor: a massless spin-two field, a massive scalar field
and a massive spin-two field being a ghost [10]. From the
physical viewpoint, the decomposition of the unifying met-
ric into two or three component fields having definite masses
and spins means establishing the particle content of the given
NLG theory.

However, this decomposition does not ensure by itself that
each field of the multiplet can be regarded as an independent
physical entity. In ordinary field theories, in fact, it is (tacitly)
assumed that physically distinct fields can, in principle, be
excited independently from each other. We write “in princi-
ple”, because if two fields are mutually interacting then an
excitation of either of them indeed produces, in general, an
excitation of the other: for instance, a charged matterfield
cannot be excited without affecting the state of the electro-
magnetic field. Nevertheless, we can claim that the two fields
are physically distinct – i.e. not merely two components of a
single physical entity – because, taking the appropriate limit
of the model parameters (in the easiest situations, by setting
some coupling constant equal to zero), we can produce a
consistent version of the model in which both fields can live
independently from each other.

When gravitation is involved the situation becomes more
subtle, because any field entering the stress-energy tensor,
when excited, may affect the spacetime metric and therefore
alter the state of all other fields, even in the absence of direct
coupling. Thus, as we discuss below in greater detail, in this
case the physical content of the model should be investigated
in a limit where both mutual interactions of fields and their
interactions with the spacetime metric are suppressed (notice
that we should not expect, in this limit, that all fields become
free fields: there is no reason, in fact, to require that the self-
interaction of each field be suppressed and in some cases it
is not).

If it turns out that even in this limit it is impossible to get
rid of constraints binding together the fundamental fields,
then one should conclude that the theory cannot be consis-
tently regarded as describing a multiplet of physically distinct
fields.

It has been already observed in [8] that for a quadratic
Lagrangian depending on the Ricci tensor the massive spin-
two field and the scalar field cannot be excited independently.
Here we address the question for a larger class of mod-
els, whereby a term nonlinearly depending on the quadratic
invariant of the Weyl tensor is added to the Lagrangian. In
Sect. 2 we discuss the general setting of the problem.

NLG theories do not comprise an inherent method of
decomposing the unifying metric into a gravitational mul-
tiplet of fields and in Sect. 3 we discuss the best known
decomposition procedure, based on a kind of generalized
Legendre transformation. The procedure must be covariant
and should not be confused with the (3+1) canonical formal-
ism applied in general relativity; actually, we employ a far
going generalization of known Legendre transformation to
obtain second-order field equations (and in consequence our
formalism cannot be applied to GR itself).

As a test of viability of the limit procedure, we apply it
in Sect. 4 to the quadratic Lagrangian L = κR + aR2 +
bRμνRμν . We stress that the procedure does not consist in
expanding equations around the flat space solution: no trun-
cation or linearization whatsoever is done. Instead, we push
the three parameters entering the Lagrangian to a limit that
decouples the two massive fields from the metric (this limit is
singular for the Lagrangian, but not for the field equations).
In this limit, the metric should be Ricci-flat, as a consequence
of the Einstein equation for the model. The (full) equations
for the massive fields holding in this limit show that, although
the two fields together carry six DOF as expected, the scalar
field cannot be excited independently of the massive spin-two
field. Hence, one cannot say that this NLG model is equiv-
alent to a theory where five DOF are carried by a massive
spin-two field and one DOF is carried by a massive scalar
field. We shall see that this procedure actually comprises
performing successively two independent operations to the
multiplet.

The subsequent sections are devoted to Lagrangians
explicitly depending on the Weyl tensor. For the fairly gen-
eral form of the Weyl contribution that we are considering
one can introduce, besides the tensorial momentum conju-
gate to the Weyl tensor itself, a scalar momentum which
subsumes the nonlinear dependence on the quadratic invari-
ant Cα

βμνCα
βμν . The procedure also depends on whether

the Lagrangian explicitly contains the Ricci tensor or not.
Accordingly, Sects. 5 to 8 consider the corresponding four
cases.

The common outcome of these cases is that the presence
of the conformal tensor makes the interpretation of the theory
in terms of a multiplet of fields (particles) obscure or even
impossible. The paper is focused on concepts, methods and
results whereas all calculations are reduced to the essential
minimum.

2 Physical fields, degrees of freedom and flat spacetime

The first assumption that we make is that any tenable theory
of gravitation is a specific field theory. This means that most
concepts and notions developed in standard classical field
theory in flat spacetime should adequately apply (except for
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energy!) to gravitation. This is the case of Einstein’s GR
which can be well approximated by a linear spin-two field in
Minkowski space (there are also attempts to formulate GR
as a nonlinear field in flat space). We therefore postulate that
any metric gravity theory should obey the tenet of Lagrangian
field theory (both classical and quantum): a fundamental field
should have a definite (nonnegative) mass and spin. If a field
appearing in the Lagrangian (and in this sense a fundamental
one [22]) does not satisfy this condition, it should be decom-
posed into a multiplet of interacting fundamental fields. Yet
if gravitation (NLG theory) does not obey this tenet, then
very little can be asserted about its physical interpretation.

Properties of fundamental fields (particularly masses and
spins) must be determined in the coupling-free limit. By this
expression we mean the following: in any field theory the
fundamental fields can be interacting with each other, but if
they are to be regarded as being physically distinguishable
(and not just an artificial representation of different degrees of
freedom of a single physical entity), then it should be possible
to remove their mutual interaction, by taking a suitable limit
of the coupling constants which appear in the Lagrangian.

In this limit, the fundamental fields should behave as inde-
pendent test fields: in particular, it should be possible to excite
any one of them while the others remain in their ground
state. This should be true for the full model, and not only
in the linear approximation. We remark that in the coupling-
free limit each fundamental field can still have a nontrivial
self-interaction: it is the mutual interaction between differ-
ent fields that should disappear. As we shall see, in our case
equations of motion for the fundamental fields become linear
in this limit, however one should not assume it in advance.

If a system of interacting fields is considered in flat space-
time, studying the coupling-free limit is relatively easy. Sup-
pose that fields φ1, φ2, . . . φn interact. In many cases one gets
φ1 free just by assuming that all other fields are in their ground
states, φi = 0 or φi are constant tensors for i = 2, . . . n. Then
all equations of motion for the system (including possible
constraints) are reduced to some equations for φ1 and one
determines the properties of the field in the standard way;
next one repeats this procedure for all other fields of the sys-
tem.

It may happen, however, that even after ‘switching off’
all interactions by canceling their corresponding coupling
constants, some fields in the system, say φ1 and φ2, are so
strictly coupled that φ1 cannot be excited if φ2 is in its ground
state. This may occur, for instance, due to a constraint relat-
ing φ1 to φ2. We then say that φ1 and φ2 are not independent
physical fields. We shall show that this case does occur in
most NLG theories, particularly if their Lagrangian contains
a Weyl tensor term. According to our viewpoint, in these
cases the original fourth-order theory cannot be legitimately
regarded as being equivalent to a physical second-order field
theory: equivalence holds only provided the Lagrangian is

restricted in such a way that the degrees of freedom are
reduced to those carried by physically independent fields.
We shall say that such restricted Lagrangian represents a
physically tenable theory.

This procedure of identifying a dependent field may be
equivalently expressed in terms of number of degrees of free-
dom (DOF). Counting of physical degrees of freedom in a
theory with higher order terms in gravity is given for example
in a seminal paper on conformal supergravity (i.e. with the
Weyl squared term in the bosonic sector) [23]. The counting
is quoted as an argument for the equal number of bosonic
and fermionic degrees of freedom but it illustrates the main
point advocated in the present paper for a general theory with
higher order terms in the Riemann tensor. It should be empha-
sized that in supergravity the couplings cannot be arbitrarily
put to 0 since the local supersymmetry provides strong con-
straints on such a procedure but still the counting works as
described below.

The standard way of determining the number F of DOF
carried by the system is by applying the Hamiltonian for-
malism, which not only allows one to count the degrees of
freedom, but first of all identifies them. However in the case
of nonlinear field systems the formalism is intricate (it is more
intricate for NLG theories, see [24], than the approach devel-
oped here) and for our purposes explicit identification of DOF
is unnecessary; what we actually need is their number F . To
this end one computes the number of independent initial data
on a Cauchy surface, which is equal to the number of alge-
braically independent components of all the fields multiplied
by the order of the Lagrange equations minus the number
of all constraints imposed on these equations and following
from them (as we recall in the next section, these include the
conservation laws originating from coordinate invariance);
F is one half of this number [25,26]. This approach is non-
algorithmic (whereas the canonical Hamiltonian formalism
is algorithmic, but in our case is too complex to be useful)
because there is no general method of checking if all con-
straints have already been found; some constraints may be
hard to recognize. For simple gravitational Lagrangians we
study here this approach works effectively; moreover due
to decomposition of gravitation into a multiplet of fields,
some DOF may be precisely identified. Then one determines
the number of DOF carried by each field of the system. To
this end, as above, one first ensures that all the fields may
be decoupled by canceling their interactions and this may
require taking appropriate limits in all coupling constants.
Next one takes one field of the system, assumes that all others
are in their ground state and studies the resulting equation of
motion for it. This equation together with possible constraints
determines the number of DOF for the field. Repeating this
procedure for all other fields one gets the total number of
DOF of fundamental fields of the system.
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This analysis should be done in flat spacetime, for two rea-
sons. Firstly, physical properties of ordinary fields – to which
one should compare the properties of the gravitational mul-
tiplet – are currently formulated in the framework of special
relativity, i.e. in Minkowski space. Secondly, gravitational
interaction of a field (even if it is a test field) may increase
the number of its DOF (usually it is believed that an interac-
tion may decrease the number of DOF, yet curvature may do
the opposite) [26]. This may occur for simple Lagrangians
for vector fields since spacetime curvature may cancel some
of the constraints satisfied by the field in flat spacetime. In
any NLG theory the corresponding gravitational multiplet,
whatever way it has been defined (we discuss this issue in
the next section), is given together with its Lagrange equa-
tions in a curved spacetime and making a transition to the
flat one is a subtle problem. In the framework of GR one
recovers the standard physics as follows. Clearly one cannot
merely replace gμν by Minkowski metric ημν in Einstein field
equations (EFE) because they then imply Tμν = 0. Physical
fields have positive energy density and flat spacetime triv-
ially implies that it is empty. Instead one must ‘trivialize’
EFE by breaking the coupling of any matter to geometry
by taking the limit G → 0; this mathematically makes all
matter a test one. Gravitation (curvature) is then free, but
one cannot assume that the spacetime is any fixed solution
of Rμν = 0 or any other fixed metric. This is so because
in a fixed but curved spacetime it is impossible to recover
the standard physics, e.g. the integral energy and momentum
conservation laws for continuous matter do not hold; more-
over physics in a plane gravitational wave spacetime or in
anti-de Sitter space is bizarre [27]. Gravitation may be also
switched off in the framework of GR by two other methods
in the full Lagrangian: (i) by putting R = 0 and replacing
gμν by ημν in the matter Lagrangian, (ii) since the gravita-
tional Lagrangian is c3R(16πG)−1, one can take the limit
1/G → 0 and insert the flat metric. Clearly these two meth-
ods cannot be applied to NLG theories, where one is inter-
ested in the gravitational multiplet and introducing ordinary
matter is a subtle problem (which in most papers is circum-
vented by an arbitrary assumption) and merely makes the
picture more intricate.

We therefore investigate pure gravity with L =
f (gμν, Rα

βμν); this Lagrangian must depend on at least
two dimensional constants (besides c). Take for instance an
analytic function L = f (R) = ∑

n qn R
n . Dimensional-

ity of any Lagrangian is ML−2T−1 (M— mass, L—length
and T—time), hence dimensionality of the coefficients is
[qn] = ML2n−2T−1 = [c3/G]L2n−2 and one needs one
additional independent constant of dimensionality of length.
Contributions of the Ricci and Weyl tensors to the Lagrangian
may require further dimensional constants. All these cou-
pling constants appear in the equations of motion for the
gravitational multiplet of fields (these equations are equiv-

alent to the fourth-order field Lagrange equations for the
unifying metric gμν). For both mathematical simplicity and
physical interpretation the multiplet fields are so defined as
to make their equations of motion second-order ones; in par-
ticular, the equations contain the Riemann tensor but are free
of its derivatives and in this sense they are analogous to Ein-
stein field equation (EFE) in GR. The gravitational multi-
plet consists of a spacetime metric (identical or not to the
unifying gμν) and a number of non-geometric fields3 which
act in these equations as sources for this metric. Crucial for
the issue of tenability of the Lagrangian are properties of
these non-geometric components of the multiplet and these
features must be studied in flat spacetime, what means that
one forgets their geometrical origin (as they arise from L
depending solely on gμν) and regards them as ordinary fields
consistently defined in Minkowski space. As in the case of
GR, one cannot simply insert flat metric into the equations of
motion since this makes them trivial: the equations of motion
“remember” the geometric origin of these fields and enforce
them to remain in the ground state if the metric is flat. The
transition to flat spacetime requires a procedure of break-
ing all couplings of these fields to the curvature. In GR the
coupling is only in EFE and to break it, it is sufficient to
put G → 0 whereas the form of matter propagation equa-
tions remains untouched, for example the electromagnetic
field satisfies standard Maxwell equations. In a NLG the-
ory, instead, the removal of the coupling affects the entire
system of equations of motion (and some of them just dis-
appear). This is accomplished by taking appropriate limits
in all coupling constants. Furthermore one must assume that
the constants tend to a limit at the same rate, so that their
ratios remain finite in the limit.

To summarize, our method of determining the physical
properties of a gravitational multiplet of fields4 comprises
two operations which are independent, consistent and unique
in providing the required outcome if performed in the follow-
ing order.

(i) For the coupling constants of the multiplet fields (orig-
inally being essential dimensional parameters in the
Lagrangian for the unifying metric) one takes the limits
such that the multiplet fields cease to act as sources in all
equations involving the Riemann tensor of the spacetime
metric. In the model resulting from this limit, the multi-
plet fields (other than the metric itself) become devoid of
geometrical interpretation and propagate as test fields in
a fixed spacetime.

(ii) The physical nature of these fields is investigated upon
choosing, in particular, Minkowski spacetime (to avoid

3 We do not know a short adequate name for these fields.
4 Clearly the method need not be restricted to Lagrangians considered
in the present work.
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bizarre physical effects occurring e.g. in anti-de Sitter
space). This amounts to merely identifying the fixed
metric with the flat one and then studying equations of
motion.

To avoid any misinterpretation we stress once more that
the method is exact, there are no approximations.

Up to now these are qualitative principles: to make them
precise one should introduce a concrete decomposition pro-
cedure and make some simplifying assumptions on the
Lagrangian.

3 Decomposition, various generalized Legendre
transformations and the Weyl tensor

The fourth-order equations arising from any NLG Lagrangian
clearly show that one cannot assign a definite mass and spin to
the metric appearing in it,5 implying that it should be decom-
posed into a multiplet of gravitational fields. In the linear
approximation it was first done by Stelle [7]. The method of
decomposition in the exact theory is not inherent to it and
should be selected in such a way as to provide the required
outcome – a well defined collection of fields with definite
masses and spins. The correctness of the method is verified
by counting the degrees of freedom and this is closely related
to showing the equivalence of the equations of motion for the
multiplet to those for the unifying field.

In other terms, first one should compute the number of
DOF for the original NLG Lagrangian including the “unify-
ing metric” alone (and its curvature components); we shall
denote this number by F . After decomposing the model into
field variables of definite spin and mass, one should find that
the number of mathematical DOF carried by the whole mul-
tiplet (in curved space, counting the metric itself in the mul-
tiplet) coincides with F : this is a necessary condition for the
correctness of the decomposition. Having verified this one
should study individual fields of the multiplet, in flat space,
to identify fields which are not physically independent (in
the sense described in Sect. 2). If such fields do exist, the
underlying Lagrangian should be appropriately modified or
rejected.

By inspection of the Lagrange equations for a generic
metric NLG theory with L = f (gμν, Rαβμν) one finds that
the initial metric gμν carries F = 8 DOF (see [7,28–30] for
quadratic Lagrangians, [31] for a perturbative method and
[32] for a generic proof) and the above procedure is applied.

Here two comments on counting the number of DOF in
this way are in order.

5 In GR, instead, one takes the linear approximation gμν = ημν + hμν

and the equations for hμν show that this is a massless field with spin
(helicity) two.

1. In general relativity, the metric carries two DOF; in vac-
uum, there are four constraint equations G0

α = 0. If any
matter is present these are replaced by G0

α = T 0
α and in

general the energy–momentum tensor does contain sec-
ond time derivatives (of the metric and matter compo-
nents) and these equations are no longer constraint ones.
However if the matter is in the form of a scalar, vector
or tensor (of second rank) field, it may be shown that the
second time derivatives of the field may be removed from
T 0

α with the aid of the Lagrange equations and the four
constraints are restored [42]. A fully generic proof of that
is lacking, nonetheless disregarding possible very exotic
forms of matter being a counterexample, the metric has
two DOF also in the presence of sources. The case of any
NLG theory is more subtle. Due to the inherent ambiguity
of these theories concerning their physical interpretation
(i.e. which set, or ‘frame’, of field variables is physically
measurable), it is unclear whether matter should be (min-
imally) coupled to the unifying metric or to the metric
appearing in an appropriately redefined multiplet of fun-
damental fields (the latter choice is advocated in [19]).
Depending on the choice, the matter source of gravity
might be a priori different from T αβ (be a function of the
tensor) and the required four constraints might disappear.
Fortunately, it may be argued that this is not the case [19].

2. We emphasize that independently of the actual form of the
Lagrangian, four equations among the Lagrange ones are
always constraints. Let the fourth order field equations
of any NLG theory be denoted Eμν(g) = 0. The invari-
ance of the corresponding action functional under any
infinitesimal coordinate transformation gives rise to the
strong Noether conservation law (‘generalized Bianchi
identity’) ∇β Eβ

α ≡ 0 and this implies that the com-
ponents E0

α involve at most third time derivatives, then
E0

α = 0 are constraint equations.

To the best of our knowledge, the best (fully covariant)
decomposition method derives from the idea, first introduced
by J. Kijowski [33], of a “canonical formalism” where the
metric is regarded as the “conjugate momentum” to the con-
nection in a purely affine Lagrangian theory and the second-
order form of the equations is obtained through some kind of
generalized Legendre transformation. The idea to generalize
the Legendre transformation in this direction is mathemat-
ically correct and was applied to physics in the book [34]
and later appeared many times in the literature. The choice
of this formalism is strongly supported by a theorem that the
dynamics of the unifying metric with the generic Lagrangian
is equivalent to equations of motion for the resulting mul-
tiplet of fields and these equations necessarily contain the
Einstein field equations for (the original or a transformed)
metric [4].
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In the usual Legendre transformation, the first step con-
sists in the definition of conjugate momenta as function of
the “velocities” (i.e. the highest derivatives of the dynamical
variables occurring in the Lagrangian). Then one should (at
least locally) invert the mapping, so that all “velocities” in
the Lagrangian can be replaced by suitable functions of the
momenta.

However, if one starts from a covariant second-order
Lagrangian and aims at a covariant decomposition, the role
of “velocities”cannot be played by the second derivatives
of the metric components. In fact, the corresponding “con-
jugate momenta” would not be tensors; moreover, it would
be impossible to invert the relation between “velocities” and
“momenta”, because a covariant Lagrangian can depend on
second derivatives of a metric only through the components
of the Riemann curvature. Then, one should consider a more
general setting and introduce the conjugate momenta to the
curvature components.To this end we first briefly recall the
procedure introduced in [35,36].

Consider a Lagrangian L = L(φ, ∂φ, ∂2φ), where φ

is a tensor field of some rank. L is assumed to depend
on a set of k independent linear combinations ωA, A =
1, 2, . . . , k, of the second derivatives ∂α∂βφ, i.e. L =
L[φ, ∂φ, ωA(φ, ∂φ, ∂2φ)]. Provided that L is regular in ωA,

det

(
∂2L

∂ωA∂ωB

)

�= 0

(the Hessian matrix is of rank k), one defines momenta canon-
ically conjugate to ωA,

π A ≡ ∂L

∂ωA

and these equations can be inverted (solved w.r.t. ωA), ωA =
�A(φ, ∂φ, π). Then one constructs an auxiliary function
H playing here a role analogous to the Hamiltonian in the
standard canonical formalism of a field theory (this func-
tion should not be confused with the physical Hamiltonian
generating the time evolution of the fields),

H(φ, π) ≡ π A�A − L[φ, ∂φ,�(φ, ∂φ, π)]
and a Helmholtz Lagrangian (originally introduced by
Helmholtz in mechanics [37–39])

LH (φ, π, ω) ≡ π AωA − H(φ, π).

The dynamical variables are now φ and π A and LH is a
specific Lagrangian depending on φ, ∂φ and π A, but not on
∂π A. The variation δπ A gives rise to second order equations

δLH

δπ A
= 0 ⇒ ωA = �A,

whereas the fact that LH is linear in ωA (and in consequence
in ∂2φ) makes the equations δLH/δφ = 0 third order ones.
The two sets of equations for LH are equivalent to fourth

order Lagrange equations for the original L , showing that this
generalization of a Legendre transformation makes sense.
Nevertheless it raises the problem: in the standard Hamil-
tonian formalism the canonical momenta are derivatives of
a Lagrangian with respect to time derivatives of dynami-
cal variables and carry independent degrees of freedom. The
conjugate momenta defined above comprise both first and
second time and spatial derivatives, then can they be carriers
of physical DOF, or are they merely mathematically conve-
nient auxiliary fields?

We claim (and this becomes evident when the theory
of gravitational multiplets is developed in the following
sections) that the equations arising from the Helmholtz
Lagrangian involve derivatives of these auxiliary fields that
cannot be integrated to give algebraic equations. Therefore
we have all the reasons to treat these conjugate momenta
(except χ below) as bona fide physical degrees of freedom.

The case of a generic NLG theory with L = f (gμν, Rαβμν)

is more complicated than that above. The curvature tensor
has altogether 14 independent scalar invariants and if one
wishes to study NLG theories in full generality, then f is
a generic (transcendental) smooth function of these 14 vari-
ables. It is clear that if a theory is to be of any practical use, its
Lagrangian should be simple. Long ago Einstein expressed
this idea as a principle stating that Lagrangians of verified
theories are the simplest possible functions of the field vari-
ables. In the case of NLG theories this principle is broken by
definition, nevertheless their Lagrangians should be possibly
simple and our task — proving that the Weyl tensor should not
be present in L — requires a proof for quite simple f , with-
out entangling into a generic L . In the case of L = f (R) it
was shown [19,32,40] using physical arguments that if f (R)

is analytic at R = 0 (as it should be), then it should be of the
form R + aR2 + . . ., with a > 0. For this Lagrangian it is
not easy to find out constraints following from the field equa-
tions and in order to determine the number of DOF one first
applies a version of this canonical formalism to decompose
the unifying metric into a doublet comprising the metric and
a scalar; this system has three DOF. This system is dynami-
cally consistent showing that no DOF have been lost due to
the appropriate generalized Legendre transformation. In our
opinion the fact that it is quite easy to count the DOF for
the doublet shows the advantage of dealing with these two
fundamental fields instead of the unifying metric.

If L explicitly depends on the Ricci tensor, one views it as
an additive ‘correction’ to f (R): since any linear dependence
on Rμν is already incorporated in the term f (R), the simplest
additional term containing the Ricci tensor is quadratic; the
quadratic term RμνRμν , on the other hand, should necessar-
ily be present to ensure that the Lagrangian be regular with
respect to Rμν around the ground state (flat) solution. The
resulting Lagrangian L = κR + aR2 + bRμνRμν was stud-
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ied in [8]. It is clear that for this L the linear combinations
ωA(∂2gμν) are R and the traceless Sμν ≡ Rμν − Rgμν/4.

Next, if one admits a further correction due to the Weyl
tensor, this should be expected to depend on the simplest
Weyl invariant, W ≡ 1

2CαβμνCαβμν ; however, this invariant
by itself does not provide a useful additional term, because
(in dimension four) it can always be removed from the
action integral by subtracting a full divergence (in accordance
with the Gauss–Bonnet theorem). Even in higher dimen-
sions, however, constraints arising from Bianchi identities
are known to affect the DOF of a quadratic Lagrangian con-
taining the Weyl tensor [36]). We shall therefore investigate
L of the form

L = κR + aR2 + bRμνR
μν + f (W ), (1)

where f is a nonlinear function ( f ′′(W ) �= 0), and we shall
argue that the term f (W ) is physically redundant. We claim
that this simple Lagrangian is sufficient for our task and that
it is unlikely that a more intricate dependence of L on R, Rμν

and Cαβμν will make the Weyl tensor dependence physical.
In general the term, f (W ) may be dealt with in two different
ways:

(i) either one defines a tensorial momentum conjugate to
the linear combination of the second derivatives ωA =
Cα

βμν (Sects. 5 and 7),
(ii) or one defines a scalar momentum conjugate to W

(Sects. 6 and 8). We shall show that none of these ways
provides a satisfactory physical theory (independently of
whether some solutions may fit the observational data).

The method referred as (ii) requires a preliminary explana-
tion. The generalized Legendre transformation, described
above in this section, relies on the assumption that the
Lagrangian depends (in a regular way) on a linear combi-
nation of the highest (in our case, the second) derivatives of
a dynamical variable. To our knowledge, the definition of a
momentum conjugate to a nonlinear (e.g. quadratic) func-
tion of the highest derivatives has not been considered so far.
Yet, it works: the procedure yields an equivalent Lagrangian,
but there is a substantial difference w.r.to a genuine Legendre
transformation: here, the highest derivatives do not disappear,
but the dependence of the Lagrangian on these derivatives is
“standardized”. To clarify the procedure, let us show a simple
(first-order) example from classical particle mechanics.

On a finite-dimensional configuration space Q, consider
a holonomic system described by a Lagrangian of the form

L(qλ, q̇λ) = f (K ) +U (qλ) (2)

where K ≡ 1
2gμν q̇μq̇ν (the Lagrangian for an ordinary

mechanical system corresponds to the case where f is linear).
For simplicity, assume that the configuration space metric
gμν is constant. The Euler–Lagrange equations are

d

dt

(
f ′(K ) · gμν q̇

μ
) − ∂U

∂qν
= 0. (3)

Let us now introduce the variable

p = ∂L

∂K
= f ′(K ). (4)

Provided f ′′(K ) �= 0, this relation can be inverted, i.e. one
can locally define a function S(p) = K such that f ′(S(p)) ≡
p. Let us then introduce the Helmholtz Lagrangian

LH (qλ, q̇λ, p) = 1

2
p gμν q̇

μq̇ν + V (p) +U (qλ), (5)

where V (p) = f (S(p)) − p S(p). The Euler–Lagrange
equations for LH are

1

2
gμν q̇

μq̇ν + (
f ′(S) − p

) dS

dp
− S(p) = 0

d

dt

(
f ′(S) gμν q̇

μ
) − ∂U

∂qν
= 0 (6)

and are manifestly equivalent to (3), on account of f ′(S(p)) =
p.

We have not added a new degree of freedom, because LH

is degenerate: it does not depend on ṗ, and therefore the first
of the E-L equations is actually a constraint. We have merely
shown that the the original Lagrangian L , which depends in
a nonlinear way on the kinetic energy K (and thus is not
quadratic in the velocity components q̇λ) is equivalent to
a Lagrangian LH which is quadratic in the velocity compo-
nents, but is written in an extended configuration space Q×R:
the number of degrees of freedom is unchanged because all
solutions in T (Q×R) entirely lie on the submanifold defined
by the equations p = f ′(K ) and ṗ = f ′′(K )K̇ , which has
the same dimension as T Q.

The observation above should be contrasted with the
proper Legendre transformation. For a generic Lagrangian
L = L(qλ, q̇λ), one sets pμ = ∂L/∂q̇μ, and if the
Lagrangian is hyperregular, i.e. a global inverse Legen-
dre map q̇μ = Wμ(qλ, pλ) exists, one ends up with the
Helmholtz Lagrangian

LH (qλ, q̇λ, pλ) = pμq̇
μ − pμW

μ + L(qλ,W λ). (7)

The Helmholtz Lagrangian is now a function on T (T ∗Q).
Apparently, the configuration space Q has been enlarged to
T ∗Q, but the Lagrangian is now doubly degenerate: not only
it does not depend on ṗμ, but it is also linear in q̇μ. There-
fore, the Euler–Lagrange equations are first-order (instead of
second-order) in both qλ and pλ. These equations define a
vector field on T ∗Q, while the E–L equations for the original
Lagrangian L (assumed to be hyperregular) define a vector
field on T Q. In other words, after the Legendre transforma-
tion, the momenta pλ have completely replaced the velocity
components q̇λ as coordinates in the space of physical states
of the system.
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On the contrary, in the Helmholtz Lagrangian (5) the
velocities q̇λ are still present, but the new Lagrangian
depends linearly on K : the original nonlinear dependence
f (K ) in (2) has been “absorbed” by the auxiliary (non-
dynamical) variable p; the coupling between p and K in
(5) is “universal”, and the only vestige of the original form
of the Lagrangian is the “potential” V (p) which generates a
constraint.

In Sects. 6 and 8 we exploit this method to show that the
scalar momentum conjugate to W contributes to a mathe-
matically correct dynamical description of the correspond-
ing gravitational multiplet. It is a purely physical argument,
rather than a mathematical one, that shows that the momen-
tum conjugate to W should be rejected.

In conclusion we state that the formalism developed in this
work is applied to prove that if a metric nonlinear gravity the-
ory such as that investigated here is not equivalent to GR plus
a number of fields which represent non-geometric, physically
distinct DOF, then the theory is not tenable from the field-
theoretical viewpoint. In precisely this sense we shortly say
that it is unphysical. And we emphasize that contrary to the
common belief this equivalence does not hold for a generic
gravitational Lagrangian.

4 Lagrangian quadratically depending on R and the
Ricci tensor

This case was discussed in detail in [8] and here we present a
modified version of those calculations focused on properties
of the resulting gravitational triplet. There is no matter and
the Lagrangian contains three coupling constants,

L = κR + aR2 + bRμνR
μν

= κR +
(

a + b

4

)

R2 + bSμνS
μν. (8)

Here

Rμν = Sμν + 1

4
gμνR, κ ≡ c3

16πG
. (9)

Positivity of energy in Einstein frame for L = f (R) grav-
ity requires a > 0 [19], whereas it is suggested in [8] that
one should have b < 0 and 3a + b ≥ 0, for the reasons
that we recall below. Dimensionalities are: [L] = [κR] =
ML−2T−1, [κ] = MT−1, [a] = [b] = ML2T−1 and
[κ/b] = L−2. The fourth-order field equations were first (?)
derived in [7] and then in many other works (see e.g. [8,41]);
clearly they are equivalent to second-order equations derived
below. One introduces one scalar and one tensor momentum,

χ ≡ ∂L

∂R
− κ = 2

(

a + b

4

)

R, (10)

πμν ≡ ∂L

∂Sμν

= 2bSμν, (11)

hence πμνgμν = 0. The fields χ and πμν are of the same
dimensionality equal to [χ ] = [πμν] = [κ] = MT−1. For
convenience we set c = 1. In this way the original metric
gets decomposed into a triplet forming the Helmholtz–Jordan
frame (HJF) {gμν, π

μν, χ}. The metric remains unchanged
(the signature is −+++), only its dynamics will be described
by equations of motion of different form. The function H
(pseudo-Hamiltonian) is

H ≡ ∂L

∂R
(χ)R(χ) + ∂L

∂Sαβ

(π)Sαβ(π) − L(g, χ, π)

= 1

4a + b
χ2 + 1

4b
παβπαβ. (12)

It generates the Helmholtz Lagrangian

LH (g, R, χ, Sμν, π) ≡ ∂L

∂R
(χ)R(g) + ∂L

∂Sαβ
(π)Sαβ(g) − H

= κR + χR + παβ Sαβ − 1

4a + b
χ2 − 1

4b
παβπαβ.

(13)

The Lagrange equations for the momenta χ and πμν are
algebraic and recover the definitions of the fields,

δLH

δχ
= 0 ⇒ R = 2

4a + b
χ, (14)

δLH

δπμν
= 0 ⇒ Sμν = 1

2b
πμν, (15)

Equation (15) confirms that πμν is traceless. Equations (14)
and (15) are together composed into quasi-Einsteinian field
equations,

Gμν = 1

2b
πμν − 1

2(4a + b)
χgμν, (16)

and these give rise to four differential constraints (due to
Bianchi identities)

πμν
;ν − b

4a + b
χ;μ = 0. (17)

The metric variation of LH generates EFE Gμν = 8πG
Tμν(g, χ, π) comprising an energy–momentum tensor for
the two momenta. One sees comparing (16) and EFE that for
solutions these equations provide two expressions for Tμν

which may be used both as equations for the metric and for
the momenta χ and πμν . Dividing (16) by 8πG one gets
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Tμν = 1

16πGb
(πμν − b

4a + b
χgμν)

= 2χ;μν + 2πα
(μ;ν);α − πμν;α ;α

+gμν[−2�χ − παβ ;αβ + 1

4b
παβπαβ ]

−1

b
πα

μπαν − 2(2a + b)

b(4a + b)
χπμν. (18)

First the trace of (18) generates an equation of motion for χ .
Applying the divergence to eq. (17) and inserting the resulting
expression into this equation one gets

(3a + b)�χ − 1

32πG
χ = 0. (19)

For 3a + b > 0 the mass of χ is real, m2
χ = [32πG(3a +

b)]−1.
If 3a + b = 0 the scalar χ is constrained to vanish [8].

Now assuming 3a + b > 0 for a > 0 and b < 0 (negative
b gives rise to real mass for πμν in the case 3a + b = 0 [8])
one can eliminate χ from (18). To this end one again takes
the divergence of (17) which reads

�χ = 4a + b

b
παβ ;αβ (20)

and applies it to eliminate �χ from (19) and finally arrives
at

χ = 32πG

b
(3a + b)(4a + b)παβ ;αβ. (21)

This shows that χ is not an independent physical field, being
completely determined by values of the double divergence
of πμν . One would be led to regard the scalar momentum as
being spurious and remove it by the appropriate restriction
of Lagrangian (8), 3a + b = 0. However, (21) was obtained
using (16), so this relationship between χ and πμν might be
an outcome of their interaction with the metric. As we have
discussed in the previous section, to prove that this is not the
case we need to envisage the behavior of these fields in the
decoupling limit in flat spacetime.

Before taking this limit we exhibit the complete dynamical
structure of the model. To this end one replaces in Eq. (18)
χ by (21), χ;μν by the derivative of (17) and �χ by (20) and
arrives at

Tμν = 1

16πGb
πμν − 2

b
(3a + b)παβ ;αβgμν

= 2

b
(4a + b)πα(μ

;α;ν) + 2πα
(μ;ν);α

−πμν;α ;α − 1

b
πα

μπαν

+gμν[−1

b
(8a + 3b)παβ ;αβ + 1

4b
παβπαβ ]

−64πG

b2 (2a + b)(3a + b)παβ ;αβπμν. (22)

Notice that the symbol Tμν is shown here merely to indicate
the origin of this equation, but is otherwise irrelevant. After
elimination of the scalar the system of equations of motion
consists of:

• 9 quasi-linear Eq. (22) for πμν (their trace vanishes iden-
tically),

• EFE Eq. (16) for gμν ,
• expression (21) for the auxiliary scalar, to be inserted into

(16).

These equations do not directly follow from a Lagrangian
according to the standard formalism, instead one has to
perform the above more involved procedure. The fact
that the procedure generates two different expressions for
Tμν(g, χ, π) which are equal for solutions, plays essential
role in it. These equations are independent. In fact, (16) suc-
cessively generate (17) and (20), but one cannot derive (21)
from them and from (22). Yet applying (21) to (16) and (22)
one can invert the whole procedure. The fact that equation
(19) can be integrated to yield (21) shows that the initial data
for χ are determined by initial data for πμν and the scalar
carries no its own degrees of freedom. It is likely that the
possibility of integrating of (19) is due to the fact that the
Lagrangian is quadratic in R and Rμν ; in presence of higher
order terms an analogous equation for χ is not expected to
be integrable to an algebraic expression. Yet it is unclear
at this point whether an algebraic relationship such as (21)
does imply that the number of available DOF for the dou-
blet {gμν, πμν} is decreased from 8 to 7. This issue must be
determined in the decoupling limit in flat spacetime and we
shall see that there are still 8 DOF (including the metric).

To get the physical interpretation we now consider the
gravity-free system in flat spacetime. Since the system of
Eqs. (16), (22) and (21) is equivalent to (16), (17), (18) and
(20), we take the decoupling limit in the first system and
parallelly observe its outcomes in the latter system.

1. By analogy to taking the limit in GR coupled to ordi-
nary matter, we first decouple all physical fields from
the spacetime metric by putting G → 0 in EFE Gμν =
8πGTμν . Here Tμν is the variational energy-momentum
tensor generated by LH ; in principle it might include the
contribution from ordinary matter. In this limit the space-
time is a fixed solution to Gμν = 0 and Tμν describes
test fields in it.

2. Vanishing of Gμν implies that RHS of (16) vanishes for
arbitrary πμν and χ(π). This is possible only in the limit
1/b → 0 ⇔ b → −∞. Formally it is sufficient and the
constant a might remain finite, |a| < ∞, but it would
break the condition 3a + b > 0. This shows that also a
must go to infinity and at the same rate as b. Let a =
−ξb for dimensionless ξ , then ξ > 1/3 and let ξ remain
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constant for b → −∞. In this limit Eqs. (14) and (15)
reduce to R(g) = 0 and Sμν(g) = 0.

3. To take the limit of G, a and b in formula (21) (and
respectively in (19)) one assumes that G and 1/b tend
to 0 at the same rate, so that the product Gb is finite
and negative in this limit. Let κ/b → −λ−2 < 0 with
[λ] = L . One finds in the limit that eq. (19) reads

�χ = χ

2(3ξ − 1)λ2 (23)

and formula (21) takes the form

χ = −2(3ξ − 1)(4ξ − 1)λ2παβ ;αβ, (24)

showing that also in the gravity-free system the scalar is
not independent and is just a name for the double diver-
gence of πμν . For further use we show the constraint (17)
which reads now

πμν
;ν = 1

1 − 4ξ
χ;μ. (25)

4. Finally one takes the limit of the three coupling constants
in Eq. (22). After some manipulations one arrives at

Eμν ≡ −4(1 − 2ξ)πα(μ
;α;ν) + πμν;α ;α

−(2ξ − 1)gμνπ
αβ ;αβ − 1

λ2 πμν = 0. (26)

The whole system gets reduced to a test linear massive
field πμν subject to Eq. (26), whereas one preserves Eqs.
(23), (24) and (25) as auxiliary formulae to be applied
later on.

Now one performs the second procedure of the two funda-
mental ones described in Sect. 2, namely one studies the
dynamics in flat spacetime. In this spacetime one may deter-
mine the physical properties of πμν by solving the above
system of equations in terms of arbitrary initial data. In a
chosen inertial reference frame and using Cartesian coordi-
nates one gives initial data at t = 0: πμν(t = 0) = fμν(x)

and ∂0πμν(t = 0) = hμν(x). These are together 18 func-
tions since πμνη

μν = 0 = πμν,0η
μν imply f00 = ∑

j f j j
and h00 = ∑

j h j j for i, j = 1, 2, 3. To show that these
Cauchy data uniquely determine a solution to Eq. (26) one
first solves eq. (23) for χ as if it were an independent variable,
applying (25). The initial data define a scalar and a 3-vector
at t = 0,

π0ν
,ν =

∑

j

(−h j j + f0 j, j ) ≡ H(x) and

πiν
,ν = −h0i +

∑

j

fi j, j ≡ Ki (x), (27)

these are known functions. The constraints (25) determine
initial data for χ ,

χ,0 = (1 − 4ξ)H(x), ∂iχ = (1 − 4ξ)Ki (x). (28)

One sees that Ki must be a gradient and the functions fi j
and h0i are subject to Ki, j = K j,i . If these constraints hold,
the components Ki uniquely determine (up to an additive
constant) the function K (x) such that Ki = ∂i K . Then the
initial value of χ is χ(t = 0) = (1−4ξ)K (x) and the integra-
tion constant is eliminated by imposing appropriate boundary
conditions at infinity on h0i , fi j and χ(0). The Cauchy data
χ(t = 0) and χ,0 uniquely determine the solution χ(xμ) of
(23). Now one returns to Eq. (26) and employing (24) and
(25) one finds that in flat space they read

Eμν = πμν,α
,α − 1

λ2 πμν − 4(1 − 2ξ)

1 − 4ξ
χ,μν

+ 1 − 2ξ

2(1 − 4ξ)(3ξ − 1)λ2 ημνχ

≡ πμν,α
,α − 1

λ2 πμν + τμν(χ) = 0. (29)

Although χ fully depends on πμν , we have seen that the solu-
tion for χ can be fully determined from initial data, without
knowing the solution for πμν : doing so, the term τμν becomes
an explicitly known source for unknown πμν . Physically this
is a bizarre situation, yet mathematically there is nothing
inconsistent here; (29) is a kind of tensorial Klein–Gordon
equation and its solution is uniquely determined by the initial
data.

Having this knowledge one counts the degrees of freedom
for πμν . The constraints Ki, j = K j,i reduce the number of
independent functions Ki to one, K (x), hence the number of
independent data is diminished by 2. Then there are dynami-
cal constraints since not all of Eμν = 0 are hyperbolic prop-
agation equations. From (25) one finds that

π00,0 =
∑

j

π0 j, j − χ,0

1 − 4ξ
, πi0,0 =

∑

j

πi j, j − χ,i

1 − 4ξ

and four equations Eμ0 = 0 read

∑

j

(πμ0, j j − πμj,0 j ) − 1

λ2 πμ0 + τμ0 − 1

4ξ − 1
χ,μ0 = 0,

(30)

hence these equations are constraints ones. However E00 = 0
is not an independent equation, since ημνEμν ≡ 0 yields
E00 = ∑

j E j j and the independent dynamical constraints
are Ei0 = 0 and

∑
j E j j = 0. Together the number of inde-

pendent initial data is 18 − 2 − 4 = 12 corresponding to six
DOF for πμν . Yet a massive quantum spin-two particle has
five DOF [43–47] indicating that the hypothetical particles
of the quantized field πμν do not have a definite spin. This is
unphysical.
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In the case 3a+b = 0 the scalar momentum is eliminated
by its equation of motion and πμν is subject to the tensorial
Klein–Gordon equations with the mass mπ = 1/λ and con-
straints ημνπμν = 0 = ∂νπ

μν in flat space. This field carries
5 DOF [47] and the doublet {gμν, π

μν} has 7 DOF (since
for πμν = 0 the metric satisfies Gμν = 0 and carries two
DOF). This agrees with the fact that the unifying metric has
seven DOF: the original fourth order equations, beyond the
standard constraints giving rise to 8 DOF, satisfy in this case
two additional constraints, R = 0 and ∂R/∂t = 0, which
diminish the number to seven. For the Lagrangian (8) we pre-
viously assumed in [8], just for convenience, that 3a+b = 0,
then we got dynamically χ = 0 and 7 DOF for the doublet.
However, the choice 3a + b = 0 is not a matter of conve-
nience, we emphasize that it is required by physics: though
the scalar χ inevitably appears at an intermediate step in the
Legendre transformation formalism, it is not only spurious
as being determined by πμν , moreover it must vanish (due to
equations of motion), otherwise one cannot assign a definite
spin to πμν .

For the sake of completeness we make a comment on
physical properties of πμν in this case. Eq. (16) shows that
the field is not fully satisfactory physically: for solutions its
energy–momentum tensor is linear, hence its energy den-
sity is indefinite. Its properties were investigated in [8]. Its
ground state solution πμν = 0 is at least linearly stable (the
mass is positive if b > 0); the problem of nonlinear sta-
bility (the exact nonlinear πμν interacts with the metric) is
hard and open. Whether or not πμν is a ghost field can-
not be established in the exact theory since its (Helmholtz)
Lagrangian (13) does not contain at all derivative terms.
The field turns out a ghost in a linear approximation [8]
and this is proven in a rather intricate way. Thus πμν is
not a typical ghost. Furthermore there are arguments [48]
that being a ghost is not so disastrous as it was formerly
believed.

Conclusion: the gravitational theory based on (8) is equiv-
alent to GR interacting with a massive spin-2 field only in the
case 3a + b = 0 and only in this case may be tenable from
the field-theoretical viewpoint.

5 Tensorial momentum conjugate to the Weyl tensor

From the fact that both L = f (gμν, Rαβμν) and L =
R + aR2 + bRμνRμν (prior to excluding the scalar) have
8 DOF (in the mathematical sense) one would be tempted
to conclude that the presence of the Weyl tensor is redun-
dant. Yet, we have just shown that the latter Lagrangian can-
not represent a physical field theory with 8 DOF, so one
may wonder if adding to (8) (with 3a + b = 0) a term
involving the conformal tensor would restore the expected
8 DOF.

We thus apply the approach developed in previous sections
to a Lagrangian of the form (1), with 3a + b = 0:

L = κR + 1

3m2 (R2 − 3RμνR
μν) + 1

k
f (W ); (31)

the theory has three coupling constants. Here [m2] =
M−1L−2T and W ≡ 1

2CαβμνCαβμν with [W ] = L−4; f
is a smooth function. The dimension of k depends on the
form (dimensionality) of f so that [ 1

k f (W )] is the same as
[κR].

We assume that f (W ) contains no dimensional constants
and that f (W ) is analytic at W = 0, f (0) = 0 = f ′(0) and
f ′′(W ) �= 0.

In the sequel, to avoid making the computations point-
lessly cumbersome we assume that f (W ) is a simple func-
tion, say

f (W ) = 1

n
Wn, (32)

with n some even positive integer: this allows us to invert
f ′(W ) explicitly and thus to spell out all terms in the sub-
sequent computations. The theory for the momentum σα

βμν

should be consistent for any such n.
The “traditional” strategy that we have adopted so far con-

sisted in introducing conjugate momenta which carry definite
spin. This suggests to introduce again the scalar and the tensor
momenta conjugate to the Ricci tensor, χ and πμν respec-
tively, as in (10) and (11) (the unwanted scalar momentum
may be eliminated only at the level of equations of motion),
and in addition a new tensorial conjugate momentum corre-
sponding to the Weyl tensor [36]:

σα
βμν ≡ ∂L

∂Cα
βμν

= ∂L

∂W

∂W

∂Cα
βμν

= 1

k
f ′(W )Cα

βμν. (33)

All momenta have dimensionality as MT−1. Following from
their definitions, πμν is traceless and σα

βμν has all symme-
tries of the conformal tensor: thus, at first sight, σα

βμν would
be expected to correspond to a spin-two field as well. Yet, we
know that the model has at most 8 DOF, so it is evident that
there is no place for two independent spin-two fields; how-
ever, we need to understand how πμν and σα

βμν are con-
strained to each other (in the coupling-free limit where they
should behave as test fields, if they were physically indepen-
dent) to assess whether non-independent components can be
identified and eliminated, to obtain – if possible – a viable
covariant field theory which may saturate the 8 mathemati-
cally available DOF.

To invert the relationship (33) one introduces the square
of σ , Z ≡ 1

2σαβμνσαβμν and finds that it equals

Z = W

k2 [ f ′(W )]2. (34)
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We denote the inverse of the function (34) by W = v(Z),
hence

Cαβμν(σ ) = k

f ′(v(Z))
σαβμν. (35)

The function H is

H(χ, π, σ ) ≡ ∂L

∂R
(χ)R(χ) + ∂L

∂Sμν

(π)Sμν(π)

+ ∂L

∂Cα
βμν

(σ )Cα
βμν(σ )

−L(g, χ, π, σ ) = 3m2χ2 − m2

4
παβπαβ

+ 2kZ

f ′(v(Z))
− 1

k
f (v(Z)) (36)

and the Helmholtz Lagrangian reads

LH ≡ ∂L

∂R
(χ)R(g) + ∂L

∂Sμν

(π)Sμν(g)

+ ∂L

∂Cα
βμν

(σ )Cα
βμν(g) − H(χ, π, σ,ψ)

= κR + χR + παβ Sαβ + σα
βμνCα

βμν − 3m2χ2

+m2

4
παβπαβ − 2kZ

f ′(v(Z))

+1

k
f (v(Z)). (37)

LH does not contain derivatives of the momenta, hence the
Lagrange equations for them are algebraic and recover their
definitions,

R(g) = 6m2χ, Sμν(g) = −m2

2
πμν (38)

and (35). Equation (38) combine together in quasi-Einsteinian
field equations,

Gμν = −m2

2
(πμν + 3χgμν) (39)

and Bianchi identities imply 4 differential constraints

πμν
;ν + 3χ;μ = 0. (40)

While taking variations w.r.t. metric gμν one assumes, as
always, that the components σα

βμν , as they are defined in
(33), are independent of the metric, δgσα

βμν ≡ 0. After a
number of manipulations one arrives at the following system
of equations of motion, again having the form of EFE. If we
assume (32), these read

κGμν − 2

3
πα(μ

;α;ν) + 1

6
παβ ;αβgμν

−m2

2
χπμν + 1

2
πμν;α ;α − Rαμνβπαβ + m2

8
παβπαβgμν

−2σαμνβ
;αβ + m2

2
σαμνβπαβ

+n − 1

2n
(kZn)

1
2n−1 gμν ≡ κGμν − 1

2
Tμν(g, χ, π, σ ) = 0.

(41)

All the terms in (41) explicitly depending on the three
momenta should be interpreted as a collective energy–
momentum tensor for them. In practice RHS of (39) is an
effective total energy–momentum tensor 8πGTμν expressed
in terms of solutions.

The trace of Eq. (41) determines the scalar χ as a function
of the scalar Z(σ ),

χ = 16πG

3nm2 (n − 1)(kZn)
1

2n−1 , (42)

hence the scalar momentum is eliminated from the field equa-
tions (if f (W ) = 0, χ ≡ 0). We emphasize that this elimi-
nation is possible due to the presence of two expressions for
the energy–momentum tensor Tμν , which are equal for solu-
tions. One can therefore employ (41) as propagation equa-
tions for the remaining two momenta, whereas Eq. (39) take
the role of Einstein equations for the metric. (Whether or not
this stress tensor has positive definite energy density may be
determined if the space of solutions is known.) In the propa-
gation equations one should replace Gμν according to (39).

However Eq. (35) form another set of equations for the
metric where the momentum σ is a source for the Weyl ten-
sor Cαβμν(g). Hence the full Riemann tensor is expressed
as an algebraic function of the momenta. This shows that
the formulated here second-order dynamics is different from
the standard GR dynamics comprising EFE and equations
of motion for interacting matter fields. Equation (35) is con-
sistent with (39) provided Cαβμν satisfies the standard dif-
ferential identities for the conformal tensor. The first order
identity in four dimensions, upon employing (35), (38) and
(32) reads

1 − n

2n − 1
Z−1Z ;νσαβμν + σαβμν

;ν

= m2

4
(k−1Zn−1)

1
2n−1

× (
πμβ;α − πμα;β + gαμχ;β − gβμχ;α

)
. (43)

Since the scalar χ is merely a function of the other fields,
the degrees of freedom are associated with the gravitational
triplet of fields {gμν, π

μν, σαμνβ} and are subject to the fol-
lowing equations of motion:

• 10 EFE (39), equivalent to (38),
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• 10 Equation (35) which are not viewed as propagation
equations for the metric and instead are interpreted as
generating equations for necessary constraints imposed
on the momenta,

• the constraints (43),
• 9 differential propagation Eq. (41) for 9 momenta πμν

and 10 momenta σαμνβ (one equation, the trace, has been
used up to provide an algebraic expression eliminating
the scalar χ ),

• expression (42) for χ .

Notice that for these equations there is no limit (such as n →
0) which would reduce this system to that studied in Sect. 4.

This is a determined system of equations of motion which
are equivalent to the 10 fourth order equations for the metric
gμν directly following from the Lagrangian (31).

Mathematically this is OK, yet this is inconsistent with
field theory in flat spacetime requiring that each physical
field, when its couplings to other fields are switched off,
should be determined by a propagation equation (possibly
containing self-interaction terms). In fact, to elucidate the
issue, one decouples the two momenta from the metric, then
it turns out that the decoupling makes the spacetime flat. As
we shall see below it follows that 9+10 fields πμν and σαμνβ

are underdetermined.

1. First, one decouples all the momenta from the curvature
by putting G → 0 in Eq. (41) written in the form Gμν −
8πGTμν = 0 and gets Gμν = 0.

2. Consistency of the effective Einsteinian Eq. (39) with
Gμν = 0 requires taking the limit m2 → 0.

3. The momentum σαμνβ is fully decoupled from the cur-
vature if k → 0 in Eq. (35). Then Cαμνβ = 0 and the
spacetime is flat, Rαμνβ = 0. In general relativity, if
matter does not gravitate, Rμν = 0 and gravitational
waves may exist. Here one sees that inclusion of the
conformal tensor in the Lagrangian as an independent
field in gravitational multiplet has very restrictive conse-
quences.

4. The power of k in (42) is positive and in the limit k = 0
the scalar vanishes, χ = 0. In consequence the constraint
(40) reads πμν

;ν = 0.
5. To proceed further one assumes that G, m2 and k vanish

at the same rate, so that both m2κ = m2/(16πG) ≡ λ−2

and m2/k ≡ μ remain constant and positive in this limit;
λ has the dimension of length.

6. Under this assumption the constant factor in RHS of (43)
vanishes in the limit,

m2 k− 1
2n−1 = μ k

2(n−1)
2n−1 → 0

and these constraints are reduced to

1 − n

2n − 1
Z−1Z ;νσαβμν + σαβμν

;ν = 0. (44)

7. Finally, Eq. (41) as the propagation ones, are reduced in
these limits to

πμν;α ;α − 4σαμνβ
;αβ − 1

λ2 πμν = 0. (45)

The fields π and σ are subject to only nine Eq. (45) and
to the constraints πμν

;ν = 0 and (44).

We now check if in this limit, where all gravitational cou-
plings have been removed, the two fields can exist indepen-
dently. If we set σαμνβ = 0, constraints (44) vanish identi-
cally. The field πμν is subject to the standard tensorial Klein–
Gordon equations and to the same constraints as in the case
where the term f (W ) is absent in the Lagrangian: hence,
it has the same properties. If we instead set πμν = 0, the
tensorial momentum is subject to

σαμνβ
;αβ = 0 (46)

and to the constraints (44). It is well known [49] that if a
massless field Hαμνβ has all algebraic symmetries of the
conformal curvature tensor and satisfies linear field equa-
tions Hαμνβ

;β = 0, then it has spin two. Therefore, eq.(46)
would be compatible with σαμνβ being a massless spin-two
field, however Eqs. (46) and (44) are inconsistent. In fact, take
divergence ∇α of (44) and symmetrize the resulting equation
in βμ, then (46) may be applied. One arrives at a system of
9 nonlinear second order equations,

(Z Z;αβ − n

2n − 1
Z;αZ;β) σαμνβ = 0. (47)

These depend on the power n in f (W ) whereas solutions of
(46) are n-independent. Consistency of solutions to (47) with
those to (46) requires the former be n-independent and this
implies that the n-dependent term in (47) must vanish,

Z;αZ;β σαμνβ = 0, (48)

then (47) is reduced to

Z;αβ σαμνβ = 0. (49)

Furthermore, multiplying (44) by Z ;α and applying (48) one
gets a new constraint, Z ;ασαβμν

;ν = 0. This constraint,
together with the constraint (48) and Eqs. (46) and (49), form
a system which is consistent only for σαμνβ = 0. Clearly
this inconsistency is due to truncating Eqs. (41) and (43)
and invalidating Eq. (35). The inconsistency shows that the
momentum σα

βμν , unlike the momentum πμν , does not exist
as an autonomous physical field in flat spacetime. It makes
sense only as an auxiliary notion derived from the conformal
curvature.
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We conclude this section by stating that the description of
the gravitational system (31) in terms of the momenta πμν

and σα
βμν is defective. There are too few propagation equa-

tions for the momenta and the definition of σ gives rise to con-
straints which exclude nonzero σ in flat spacetime. In other
terms NLG theory (31) is not equivalent to Einstein’s gravity
generated by fields πμν and σα

βμν carrying real masses and
definite spins. Degrees of freedom associated with f (W ), if
there are any, cannot be expressed by σα

βμν .

6 A scalar momentum conjugate to the Weyl tensor

The other way of dealing with the Weyl tensor contribution
to (31) is to assume that it carries one independent degree
of freedom described by a scalar conjugate momentum. One
introduces the momenta χ and πμν as previously, according
to (10) and (11), and

σ ≡ ∂L

∂W
= 1

k
f ′(W ). (50)

Dimensionality of σ is [σ ] = [κR/W ] = ML2T−1. The
inverse transformation to (50) isW = v(σ ) and actually v(σ )

is a function of the product kσ . We stress that this procedure,
that we have already outlined in Sect. 3, is beyond the setup of
the generalized Legendre transformation described in [35].
Here, we expect that one of the two scalar fields, χ and σ , has
no independent dynamics, but we need to assess whether the
other scalar field can become physically independent from
πμν and thus provide the 8th DOF.

Again, to be able to perform explicit calculations we adopt
the ansatz (32) for f (W ); then

W = v(σ ) = (kσ)
1

n−1 . (51)

The scalar function H is

H ≡ ∂L

∂R
(χ)R(χ) + ∂L

∂Sαβ

(π)Sαβ(π)

+ ∂L

∂W
(σ )W (σ ) − L(g, χ, π, σ )

= 3m2χ2 − m2

4
παβπαβ + σv(σ ) − 1

k
f (v(σ )) (52)

and it generates the Helmholtz Lagrangian

LH (g, R, χ, Sμν, π,W, σ ) ≡ ∂L

∂R
(χ)R(g)

+ ∂L

∂Sαβ

(π)Sαβ(g) + ∂L

∂W
(σ )W (g) − H

= κR + χR + παβ Sαβ − 3m2χ2 + m2

4
παβπαβ

+σW − σv(σ ) + 1

k
f (v(σ )). (53)

The Lagrange equations for the momenta are (38) and
W = v(σ ), hence once again they are equivalent to quasi-
Einsteinian ones (39) and generate the constraints (40). The
metric variation of LH generates a second system of Einstein
field equations with the energy–momentum tensor being a
sum of uniquely defined tensors tμν(g, χ, π) and τμν(g, σ ).
Clearly tμν is equal to Tμν given in (41) with all the σ -
dependent terms discarded. From gμνπμν = 0 it follows
that tμν is traceless, gμν tμν(g, χ, π) = 0. Yet τμν is defined
in the standard way by

−1

2

√−gτμν(g, σ ) ≡ δ

δgμν

[√−g[σW − σv(σ )

+1

k
f (v(σ ))]

]
, (54)

is equal to

τμν(g, σ ) =
[

1

k
f (v(σ )) − σv(σ )

]

gμν + 2σCαμνβ R
αβ

+4∇α∇β(σCα(μν)β) (55)

and its trace is

gμντμν(g, σ ) = 4

[
1

k
f (v(σ )) − σv(σ )

]

. (56)

This trace cannot identically vanish, otherwise employing
d f
dv

= kσ one gets a differential equation for f ,v d f
dv

− f (v) =
0, having the unique solution f (v) = Cv, contrary to the
assumption f ′′(v) �= 0. For (32) the trace is

τμνg
μν = 4

(
1

n
− 1

)

(kσ n)
1

n−1 , (57)

requiring n > 1. For solutions one replaces Gμν in
8πG(tμν + τμν) = Gμν according to (39) and gets

8πG(tμν + τμν) = −m2

2
(πμν + 3χgμν) (58)

and this equality is crucial. Firstly, the trace of (58), upon
applying gμν tμν = 0 and (56), provides an expression for χ ,

χ = 16πG

3m2

[

σv(σ ) − 1

k
f (v(σ ))

]

. (59)

The momentum χ is eliminated as being a function of σ

analogous to (42). One computes from (59) the derivative
χ;μ and constraints (40) read now

πμν
;ν + 16πG

m2 vσ;μ = 0. (60)

Secondly, as in the tensorial case, Eq. (58) serve as a system
of propagation equations for the doublet {πμν, σ }. To this end
one recasts the Weyl tensor terms in τμν . It is well known that
the Bianchi identities generate expressions for the single and
double divergence of the conformal tensor and one replaces
in them the Ricci tensor in terms of πμν and χ(σ) according
to (38) and finally arrives at

123



Eur. Phys. J. C           (2019) 79:631 Page 17 of 20   631 

τμν = m2[2(πμν;α − πα(μ;ν) + gα(μχ;ν) − gμνχ;α)σ ;α

+(πμν;α ;α − πα
(μ;ν)α + χ;μν − gμνχ

;α;α) σ

−σCαμνβπαβ ]
+4Cαμνβσ ;αβ +

[
1

k
f (v) − σv(σ )

]

gμν. (61)

Unlike the χ(σ)-dependence, the πμν-dependence of τμν

cannot be eliminated and this shows that the interpretation of
τμν as an energy–momentum tensor for the field σ is of lim-
ited sense. Next one inserts tμν and (61) into (58) and after a
number of longer manipulations one arrives at the following
system of equations for the complex {πμν, σ }:
−m2κ(πμν + 3χgμν) = (m2σ − 1)

×
[

πμν;α;α + 4χ;μν − gμνχ
;α;α−

− 2Cαμνβπαβ − 2m2χπμν + m2πα
μπνα

−1

4
m2παβπαβgμν

]

+ 4Cαμνβσ ;αβ + 2m2
[ (

πμν;α − πα(μ;ν)

−gμνχ;α
)
σ ;α + σ(;μχ;ν)

]
+

[
1

k
f (v) − σv(σ )

]

gμν.

(62)

The factor m2σ −1 is nonzero since otherwise the definition
of σ implies that f (W ) = (k/m2)W and the linear function
is excluded. The full system of independent equations for the
complex consists of:

• 10 equations (39) for the metric,
• 9 equations (62) for 9 + 1 momenta πμν and σ (the trace

of (62) gives expression (59) for χ ),
• algebraic expression (59) for χ as a function of σ ;

these are equivalent to a system of ten fourth-order equations
for gμν directly derived from (31).

To investigate of whether πμν and σ may independently
live in flat spacetime, one assumes, as in Sect. 5, that G, m2

and k tend to 0 at the same rate, so that in this limit their
ratios m2κ ≡ λ−2 and m2/k ≡ μ are finite and positive.

1. Tensors tμν and τμν get decoupled from the curvature for
G = 0 in EFE. This implies Gμν = 0.

2. Equations (39) are consistent with Gμν = 0 if m2 = 0.
3. The Weyl scalar W must be independent of the scalar

momentumσ �= 0 and for f (W ) = Wn/n this is possible
iff k = 0 in W = v(σ ) given in (51). Then the spacetime
satisfies Rμν = 0 and CαβμνCαβμν = 0. This comprises
Minkowski space, any plane–parallel (p–p) gravitational
wave and few other spacetimes.

4. For f (W ) as in (32), RHS of (59) is proportional to a
positive power of k and vanishes for k = 0, hence χ = 0.
In consequence, Eq. (62) are reduced to

πμν;α ;α − 4Cαμνβσ ;αβ − 2Cαμνβπαβ − 1

λ2 πμν = 0;
(63)

these are traceless. The constraints (40) are simplified
to πμν

;ν = 0 (since G/m → 0 in (60)). Now the sys-
tem comprises (63) and the constraints and is underde-
termined since there are only 9 Eq. (63) for 10 functions
πμν and σ .
In flat spacetime (as this case is crucial for the phys-
ical interpretation) the scalar σ disappears from the
field equations and it is clear that it has no physi-
cal existence. Yet πμν is the standard massive spin-2
field. Just for pure curiosity one may study the dynam-
ics of σ in a plane gravitational wave for πμν = 0.
It turns out that Cαμνβσ ;αβ = 0 is reduced in this
spacetime to one physically bizarre propagation equa-
tion which does not uniquely determine σ for given initial
data.

We conclude that the scalar momentum σ cannot be inter-
preted as a classical counterpart of a quantum particle and
should not be introduced into the theory.

7 The tensorial momentum in the case where the Ricci
tensor is absent

The discussion above has shown that the Ricci term con-
tribution to the Lagrangian consumes all degrees of freedom
available to nongeometric components of a gravitational mul-
tiplet leaving no space for the Weyl tensor contribution. We
therefore investigate now the case where only R and the con-
formal tensor are present in a gravitational Lagrangian and
assume

L = κR + aR2 + 1

k
f (W ). (64)

The aR2 term with a > 0 is necessary on physical grounds
[19]. We shall also usually assume f (W ) = Wn/n for integer
n > 1. Again the momentum associated to f (W ) may be
either tensorial or scalar one and in this section we study the
tensorial case. One defines χ and σα

βμν according to (10)
and (33) respectively, introduces the scalar Z as in Sect. 5,
then Z(W ) is given in (34) and the latter is inverted to W =
v(Z) giving rise to (35) for Cαβμν . The pseudo-Hamiltonian
is

H(g, χ, σ ) = 1

4a
χ2 + 2kZ

f ′(v(Z))
− 1

k
f (v(Z)) (65)
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and the Helmholtz Lagrangian reads

LH = κR(g) + χR(g) + σα
βμνCα

βμν(g)

− 1

4a
χ2 − 2kZ

f ′(v(Z))
+ 1

k
f (v(Z)). (66)

The Lagrange equations read χ = 2aR and (35) whereas for
the metric one finds

(χ + κ)Gμν − χ;μν + gμνχ;α;α − 2σαμνβ
;α;β

−Rαβσαμνβ + gμν

[
χ2

8a
+ V (Z)

]

= 0, (67)

where the potential term is defined as

V (Z) ≡ −1

k
v(Z) f ′(v)

−1

2

d

dZ

[

− 2kZ2

f ′(v(Z))
+ 1

k
Z f (v(Z))

]

= n − 1

2n
k

1
2n−1 Z

n
2n−1 , (68)

it is significant that k is here in a positive power. One sees
a substantial difference to the case where the Ricci term is
present: there is no analogue to quasi-Einsteinian Eq. (39)
and one cannot eliminate Gμν from (67). The trace of Eq.
(67) provides a propagation equation for χ ,

�χ − κ

6a
χ + 4

3
V (Z) = 0; (69)

χ is an independent variable and also cannot be eliminated.
The triplet {gμν, χ, σαβμν} is subject to χ = 2aR, ten Eq.
(35), now interpreted as propagation equations for the metric
with field σα

βμν as a source, nine Eq. (67) and one equation
(69) for χ . There are no constraints.

To establish whether χ and σ are classical counterparts
of quantum particles one considers the case of test fields by
putting G = 0 = k and a−1 = 0. The first three steps in the
sequence are the same as in Sect. 5 and one gets Rαβμν = 0
and V (Z) = 0. Then assuming that both G and 1/a vanish
at the same rate, so that κ/a → λ−2 > 0, one finds that (69)
is simplified to

�χ − 1

6λ2 χ = 0 (70)

and χ is the standard massive scalar field. Yet the lack of
equations analogous to (39) causes that in the flat space
limit Eq. (67) do not form equations of motion for σαμνβ .
In a curved spacetime Eq. (67), written in the form of EFE,
Gμν = 8πGTμν(g, χ, σ ), define the energy–momentum
tensor subject to ∇νTμν = 0 and these are four equations
equivalent to a subset of the full system of equations of
motion for the two momenta. In flat spacetime the tensor
reads (after applying (70))

Tμν = 2χ,μν − 1

3λ2 χημν + 4σαμνβ
,αβ (71)

and is subject to ∂νTμν = 0. It is easy to show that ∂νTμν

is identically zero and hence gives rise to no equations of
motion for σαμνβ , which is completely arbitrary. The descrip-
tion of the system (64) in terms of the tensorial momentum
conjugate to the Weyl tensor is defective.

8 The scalar momentum conjugate to the Weyl
invariant if there is no Ricci tensor

Finally we envisage the scalar momentum conjugate to the
Weyl tensor contribution to the gravitational system (64).
Now one introduces two scalar momenta, χ as in (10) and σ

according to (50); the inverse to (50) is W = v(σ ) as in (51).
In analogy to (52) and (53) one computes

H = χ2

4a
+ σv(σ ) − 1

k
f (v(σ )) and

LH = κR(g) + χR(g) + σW (g) − χ2

4a

−σv(σ ) + 1

k
f (v(σ )). (72)

The Lagrange equations comprise χ = 2aR, W (g) = v(σ )

and

κGμν − 1

2
(tμν + τμν) = 0 (73)

where

tμν(g, χ) = −2χGμν + 2χ;μν − 2gμνχ;αα + χ2

4a
gμν (74)

and τμν(g, σ ) is given in (55) and the trace gμντμν �= 0 is
shown in (56) and (57). Tensor τμν involves fourth order
derivatives of the metric via Cα(μν)β

;αβ which cannot be
expressed in terms of derivatives of the momenta. This means
that the alleged Einstein field equations (73) are inherently
of fourth order.

Again the trace of (73) results in a propagation equation
for χ ,

χ;μ;μ − 1

3a
χ2 − κ

6a
χ + 2

(

1 − 1

n

)

(kσ n)
1

n−1 = 0; (75)

it is quasi-linear and contains a source. The full system of
equations of motion consists of R = χ/(2a), W (g) = v(σ ),
one eq. (75) for χ and nine Eq. (73) for 11 components of
gμν and σ ; there are no constraints.

Next one derives the flat spacetime limit for G → 0,
a−1 → 0 and k → 0; this makes sense provided κ

a →
λ−2 > 0. In this way one arrives at R = 0 = Gμν and
2W = CαβμνCαβμν = 0, as in Sect. 6. The fact that tμν(η, χ)

is linear indicates that both the metric and χ require a redef-
inition [19,32,40]. Furthermore, one gets the Klein–Gordon
equation (70) for χ , whereas for σ one may seek for four
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equations arising from ∇ν(tμν + τμν) = 0. In flat space-
time τμν = 0 showing that σ carries no energy and has no
equation of motion. Yet ∂ν tμν ≡ 0 when (70) holds.

9 Summary and conclusions

It is natural to expect that gravitational interactions are akin to
all known physical fields (fundamental fields of the Standard
Particle Model) which on the quantum level are interpreted
as particles with definite masses and spins. Even without an
explicit quantization, the particle interpretation should hold
for gravitation. The particle interpretation makes sense if
each particle species (actually a classical field) may indi-
vidually exist when its gravitational interactions, as well
as the interaction with other particle species, are switched
off (by taking a suitable limit of the coupling constants) in
Minkowski space.

In our discussion, we focused on theories of gravity which
are envisaged as possible variants to general relativity: we
write “variants”, rather than “alternatives”, to mean that such
models share with general relativity the fundamental postu-
lates – in particular, the idea of describing gravitation in terms
of metric curvature. In general relativity, one expects that the
“particle spectrum” of gravitational interactions reduces to a
single massless spin-two particle, the graviton, correspond-
ing to excitations of the spacetime metric around the ground
state. For metric nonlinear gravity theories, where one gets
fourth-order equations for the metric, one is led to regard the
metric itself (with its higher derivatives) as a unifying field,
and gravitation should be described by a multiplet of funda-
mental fields, each with definite mass and spin. According
to common wisdom these include, besides the graviton field
(the physical spacetime metric), a massive scalar field and a
massive spin-two field (the latter is a ghost, since its kinetic
term has negative sign in its quadratic Lagrangian).

Here we have adopted a general decomposition method
which is exact (no approximations) and again we got the
graviton and two massive fields, a scalar and a spin-two one
(the latter may be shown to coincide dynamically, in a linear
approximation, with the ghost field mentioned above, though
the issue is subtle). Thus gravitation in these theories is not
interpreted as pure curvature, since the gravitational multi-
plet comprises, besides the metric, other fields that should
not be viewed as determined by the geometry. Most known
results in this direction concern Lagrangians which depend
quadratically on the Ricci tensor. We explored the conse-
quences of a possible Weyl tensor dependence, starting from
the following assumptions:

• each of the fundamental fields should carry a definite
number of degrees of freedom and should correspond to
a field which in flat spacetime, once gravitational inter-

actions are switched off, can exist independently of the
other ones (i.e. can be excited while other fields remain
in their ground states);

• to obtain (for the full nonlinear model) a proper decom-
position of the dynamical variables into a multiplet of
fields, one should not rely on ad hoc tricks: instead, one
should rely on a method which can be formulated inde-
pendently of any particular Lagrangian. We identify this
method with a generalized Legendre transformation, fol-
lowing and extending Kijowski’s original proposal [33]
(although the version we exploit here is based on the vari-
ational formalism, not on the introduction of a symplec-
tic structure). Still, for Lagrangians depending on curva-
ture, the application of the method is not unique and one
should consider different possibilities: the correctness of
the choice is verified by counting degrees of freedom for
both the unifying metric and the multiplet fields. (Once
the multiplet fields have been generated from the uni-
fying metric, then they may be subject to further redef-
initions which, however, do not alter their masses and
spins. The freedom of the redefinitions makes any exper-
imental test of the theory ambiguous: in contrast with
General Relativity, it is unclear which set – or “frame” –
of multiplet fields is actually measurable; thus, we stress
that here we consider gravity theories from purely field-
theoretical viewpoint and do not take into account obser-
vational tests);

• we restrict our investigation to Lagrangians which are
reasonably simple: in particular, we consider Lagrangians
depending on linear and quadratic invariants of the met-
ric curvature. It is known that if the Lagrangian depends
linearly on both the square of the Ricci tensor and the
square of the Weyl tensor, then the latter can be eliminated
by subtracting a full divergence: therefore we allow the
square of the Weyl tensor to enter the Lagrangian through
a nonlinear term, added to the usual generic quadratic
Lagrangian.

Under these assumptions we have shown that whatever gen-
eralized Legendre transformation is used to determine the
fundamental field associated to the Weyl contribution, the
resulting field has no independent existence in flat spacetime
and carries no degrees of freedom.

We conclude that within this framework the Weyl tensor
does not contribute to the multiplet of gravitational fields.
Only R and Rμν may contribute and the number of degrees of
freedom is either seven if the traceless part of Ricci is explic-
itly present, or three if it is not (and the R-dependence is non-
linear). The form of the Lagrangian cannot be fully general,
since the requirement of forming a particle multiplet imposes
strict restrictions on both R and Rαβ dependence. The math-
ematically allowed maximal number of 8 DOF is physically
unattainable for a second-order field-theoretical model satis-
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fying the above assumptions. In other terms, we have shown
that contrary to the common wisdom mentioned above, a
generic nonlinear metric Lagrangian does not describe grav-
ity which is equivalent to Einstein’s general relativity com-
prising as a source of the metric a number of matter fields (in
the sense of being non-geometric quantities) with real masses
and definite spins. The equivalence only holds for specific
Lagrangians and in particular it does not hold if there is any
explicit Weyl tensor contribution.
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