Formic Acid Photoreforming for Hydrogen Production on Shape-Controlled Anatase TiO2 Nanoparticles: Assessment of the Role of Fluorides, 101/001 Surfaces Ratio, and Platinization

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1709072 since 2020-07-27T16:05:27Z

Published version:
DOI:10.1021/acscatal.9b01861

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Formic Acid Photoreforming for Hydrogen Production on Shape-Controlled Anatase TiO$_2$ Nanoparticles: Assessment of the Role of Fluorides, $\{101\}/\{001\}$ Surfaces Ratio and Platinization

Francesco Pellegrino$^a$, Fabrizio Sordello$^b$, Lorenzo Mino$^a$, Claudio Minero$^a$, Vasile-Dan Hodoroba$^a$, Gianmario Martra$^a$, Valter Maurino$^a$

a) Dipartimento di Chimica and NIS Inter-departmental Centre, University of Torino, Via P. Giuria 7, Torino, 10125, Italy
b) Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany

ABSTRACT: Hydrogen production via formate photoreforming on TiO$_2$ is characterized by marked dependence on the ratio between $\{101\}$ and $\{001\}$ surfaces for anatase nanoparticles. We observed higher rates of hydrogen evolution with the increase of the $\{101\}$ facets presence, owing to their reductive nature. This helps the Pt photo-deposition in the early stages of irradiation, and then the hydrogen ion reduction reaction. The selective photo-deposition of 2 nm Pt nanoparticles on $\{101\}$ facets was confirmed by TEM micrographs. The results are confirmed also by experiments carried out without the use of Pt as co-catalyst and by photoelectrochemical measurements. The work also explains the marginal effect of the fluorination on the H$_2$ evolution.

KEYWORDS. Titanium Dioxide; Fluoride; Platinum; Controlled Shape; Hydrogen photoproduction; Surface; Photoreforming

INTRODUCTION

The conversion of solar energy into electricity and high added value chemicals is of paramount importance for a sustainable future$^1$. However, many challenges remain in order to exploit solar energy$^2$. The feasibility of photo-electrochemical water splitting was demonstrated long ago$^3$, but H$_2$ photoproduction efficiencies are still low$^4$, and improvements for photo-electrochemical cells for water splitting$^5$, organics reforming$^6$ and artificial photosynthesis$^7$ are actively pursued. The optimization of these systems requires a deep understanding of the phenomena and reaction mechanisms involved at the molecular level.

In this respect, TiO$_2$ is a key photoactive material, and in the last decades several works have been devoted to the modification and control of the TiO$_2$ structure$^8$, particle size and morphology$^9$, to maximize photogenerated charge carrier separation and interfacial charge transfer$^{6c, 6d, 10}$. Surface properties at molecular level, crystal faceting and reconstruction have revealed as key feature in controlling interfacial charge transfer in anatase nanoparticles$^{11}$. Surface states of the anatase $\{101\}$ surface seem to favor semiconductor to electrolyte electron transfer, e.g. cathodic processes, leading to faster H$_2$ photoproduction$^{9b, 10d, 12}$. Conversely, the $\{001\}$ facets were proposed to be the location of photo-induced anodic processes (e.g. oxygen evolution reaction, OER)$^{13}$. However, the reported results are somewhat contradictory, probably due to different surface terminations/reconstruction depending on the synthesis condition and post synthetic treatments of the anatase nanoparticle$^{13}$. Hydrogen Evolution Reaction (HER) on TiO$_2$ can be studied following two approaches: the first provides the use of a co-catalyst - usually a noble
metal - for improving the activity of the nanoparticles obtaining higher $H_2$ amounts, the second, instead, studies the bare nanoparticles for understanding the peculiar reactivity of the unaffected TiO$_2$ facets. Several works have deeply investigated the effect of different co-catalysts - and of their amount - as well as the role of exposed surface and morphology of TiO$_2$ nanoparticles, both in the HER and the wastewater remediation.$^{14, 15}$

In 2011, Yi and coworkers$^{16}$ investigated the role of the TiO$_2$ nanoparticles shape in the photocatalytic hydrogen evolution. They compared nano-spheres and nanorods using Pt as co-catalyst (1 wt %) and ethanol as sacrificial agent. They found that TiO$_2$ nanorods have higher photocatalytic activity due to a decreased probability of $e^-/h^+$ recombination. The authors, however, did not investigate the role of different surfaces present in their materials, probably responsible for different electron-hole recombination rates. More recent works carried out by D’Arienzo et al. in 2015$^{10a}$ and Liu et al. in 2017$^{10b}$ suggested the presence of a “surface heterojunction” between {101}, {010} and {001} facets, which favors the charge separation for nanoparticles with an intermediate amounts of the oxidative and reductive surfaces. Different electrochemical potential of electrons on {101} and {001} facets favors the charge carrier separation, acting as a junction with an associate potential drop. Conversely, in 2012 Gordon et al. found that bipyramidal nanoparticles that largely expose {101} facets present higher hydrogen evolution rate due to the reductive nature of these surfaces.$^{9b}$ While in the former cases $H_2$ photo-production was carried out on pristine TiO$_2$, in the absence of any co-catalyst, Gordon et al. employed Pt-loaded TiO$_2$ NPs. Therefore, the different behavior reported by different authors could be due to platinization.

To shed light on this ambiguity, here we investigated formic acid photoreforming (formally: $HCOOH \rightarrow H_2 + CO_2$) on shape-controlled TiO$_2$ NPs with different – and controlled – {101}:{001} surface ratios, both in the presence and in the absence of Pt as co-catalyst.$^{14, 17}$ Moreover, TiO$_2$ nano-sheets are typically obtained using F- as templating agents, which remain in significant amount both in the bulk and at the surface of these nanoparticles.$^{13b, 18}$

Due to the different redox behavior of anatase TiO$_2$ facets, HCOOH oxidation is expected to preferentially occur at the {001} facets, while Pt deposition and HER predominantly take place on the {101} facets.$^{12}$

In the absence of Pt, the $H_2O$ reduction to $H_2$ is a slow process, so electrons are less rapidly scavenged and they are prone to recombination with the photogenerated holes. Therefore, it can be proposed that HER is limiting the rate of the photocatalytic HCOOH reforming, at least in the absence of Pt.

To gain further insight, for the first time $H_2$ evolution was also described from an electrochemical point of view by means of open circuit potential (OCP) and cyclic voltammetry (CV). Furthermore, the effect of bulk and surface fluorination was considered.

RESULTS AND DISCUSSION

Table 1 summarizes the main morphological characteristics of the four considered materials, as determined in a previous work.$^{13b}$ Particle sizes of all the materials considered are similar. The only material that differs are the bipyramidal nanoparticles, which have a width (a-axis) of 35 (±5) nm, compared to 75 (±25) nm of the nanosheets (n-sh). The thickness (c-axis) of bipyramids and nanosheets are 45 nm and 10 nm respectively, reflecting the different morphology of the two materials. However, surface area and volumes of these NPs are very similar. Representative HR-SEM images are show in Figure 1. The sample n-sh is composed of anatase nanosheets, synthesized in the presence of fluorides as shape controllers and, therefore, mainly expose {001} facets (80%) and only 20% of {101} surfaces. Noteworthy, F were found both in the bulk and at surfaces (see SI and ref. 12b).
Table 1. Main morphological characteristics of the four considered materials.13b

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness, nm c-axis</th>
<th>Width, nm a and b-axis</th>
<th>SSA_{BET}, m^2 g^{-1}</th>
<th>% {101}</th>
<th>{101}:{001} Ratio</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-sh</td>
<td>9.4 ± 1.6</td>
<td>75 ± 25</td>
<td>53</td>
<td>22</td>
<td>~ 0.3</td>
<td>Anatase</td>
</tr>
<tr>
<td>n-sh_{NaOH}</td>
<td>8.4 ± 1.7</td>
<td>73 ± 23</td>
<td>57</td>
<td>21</td>
<td>~ 0.3</td>
<td>Anatase</td>
</tr>
<tr>
<td>n-sh_{873K}</td>
<td>10 ± 2</td>
<td>64 ± 25</td>
<td>34</td>
<td>42</td>
<td>~ 0.7</td>
<td>Anatase</td>
</tr>
<tr>
<td>bipy_{873K}</td>
<td>45 ± 9</td>
<td>35 ± 5</td>
<td>37</td>
<td>90</td>
<td>~ 9.0</td>
<td>Anatase</td>
</tr>
</tbody>
</table>

The sample n-sh_{NaOH} derives from n-sh, by substitution of surface F- with OH-. Nevertheless, the morphology does not change compared with n-sh, and then the sample n-sh_{NaOH} still exposes 20% of {101} facets.

The sample n-sh_{873K} is obtained from sample n-sh by calcination at 873 K, which induces a (1x4) reconstruction of {001} surface (see SI) and an almost complete removal of F-. The fluorides content in the three kinds of nanosheets nanoparticles is reported in the SI. Previous investigations revealed that a sintering between pair of platelets occurred through their basal {001} facets, and, therefore, an increase in the relative abundance of the {101} surfaces, corresponding now to 40% of the exposed terminations.

The last sample, bipy_{873K}, is made of truncated bipyramids, prepared in the absence of F-, mainly exposing {101} surfaces (90%). Details on the preparation and characterization are in SI and ref 13b.

For all materials, platinization was carried out by photoreduction of H_2PtCl_6 (further information in SI). The amount of deposited Pt was of ca. 0.2 wt%, in form of nanoparticles 2-3 nm in size (Figure 2; additional images and size distribution in Supporting Information).

By controlling the shape of the TiO_2 NPs, it is possible to confine Pt nanoparticles in limited regions, as it is the case of TiO_2 nanosheets, where Pt deposition mainly occurs at the sheet {101} edges, being the reductive surface.12 Conversely, in the case of bipyramids, which mainly expose the reducing {101} facets, Pt nanoparticles are widespread across the whole particles.

Figure 1. SEM micrographs of the 4 four materials considered: A) n-sh; B) n-sh_{NaOH}; C) n-sh_{873K} D) bipy_{873K}. Scale bars: A and B) 20 nm; C and D) 100 nm

Figure 2. TEM micrographs of the Pt nanoparticles deposited on n-sh (A), n-sh_{NaOH} (B), n-sh_{873K} (C) and bipy_{873K} (D). Scale bar: 5 nm in all the panels.
For all materials, a constant H$_2$ photoproduction vs time was observed (and consequently also for CO$_2$, Figure 3 and Figure S5). The obtained values are listed in Table 2.

Table 2. Photocatalytic H$_2$ evolution rate, normalized with respect to the total surface area, from the four considered materials in the presence and in the absence of Pt as co-catalyst under irradiation of 15 W m$^{-2}$ centered at 365 nm.

<table>
<thead>
<tr>
<th>Material</th>
<th>Bare TiO$_2$ Rate, mmol H$_2$ m$^{-2}$ TiO$_2$ min$^{-1}$</th>
<th>Pt/TiO$_2$ Rate, mmol H$_2$ m$^{-2}$ TiO$_2$ min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-sh</td>
<td>(2.5±0.8)x10$^{-6}$</td>
<td>(2.9±0.1)x10$^{-4}$</td>
</tr>
<tr>
<td>n-sh NaOH</td>
<td>(1.4±0.8)x10$^{-6}$</td>
<td>(2.9±0.1)x10$^{-4}$</td>
</tr>
<tr>
<td>n-sh 873K</td>
<td>(1.6±0.1)x10$^{-5}$</td>
<td>(7.0±0.3)x10$^{-4}$</td>
</tr>
<tr>
<td>bipy 873K</td>
<td>(3.0±0.2)x10$^{-5}$</td>
<td>(1.8±0.1)x10$^{-3}$</td>
</tr>
</tbody>
</table>

Focusing on bare TiO$_2$ nanoparticles, no differences within the uncertainty range of the measurements were obtained for n-sh and n-sh NaOH, indicating that the substitution of surface F$^-$ with OH$^-$ has negligible impact on the H$_2$ production. This is not obvious since it is well known that the presence of F$^-$ ions can strongly impact the surface properties of the nanoparticles, altering the adsorption energy, the diffusion length of charge carriers, etc.$^{19}$ The reason for such a small influence can be ascribed to the low coverage of the fluorides on the {101} facets, which are mainly involved in the H$_2$ production and Pt photodeposition. Indeed, fluorides are used as shape controllers for obtaining {001} surfaces, so the majority of the F$^-$ present in the n-sh material are bound to these facets, which are marginally involved in the photocatalytic H$_2$ evolution. However, they can affect the formic acid degradation, hindering the surface of the nanoparticles and reducing the photocatalytic oxidation of this substrate$^{20}$. Nevertheless, because the overall rate is limited by the reduction semi-reaction, the effect is negligible. Conversely, F$^-$ free n-sh 873K showed a H$_2$ photoproduction rate at least 5 times larger. As reported above, the obtained removal of fluorides from both bulk and surfaces was accompanied by a doubling of the relative amount of exposed {101} terminations. Thus, the obtained increase in the H$_2$ photoproduction rate cannot be related to a change of only one feature of the nanoparticles. Finally, a further increase of ca. 2 times of H$_2$ photoproduction rate was measured for bipy 873K, limited by an almost double relative amount of {101} facets.

Platinization improved significantly the H$_2$ photoproduction rate of all samples, with a gain of ca. 2 orders of magnitude for n-sh and n-sh NaOH, whilst for n-sh 873K and bipy 873K was limited to 50-60 times. The importance of the Pt role is also confirmed by the CO$_2$ evolution rates. In fact, in the presence of Pt the ratio between the CO$_2$ production and H$_2$ production is near 1 (though slightly in favor of CO$_2$, Figure 3). Whereas in the absence of Pt the rate of CO$_2$ production is significantly higher compared to the H$_2$ production (Figure S5). This could be ascribed to the presence of residual O$_2$ (constantly monitored and always lower than 0.04%) that, acting as electrons scavenger, can decouple H$_2$ production from CO$_2$ evolution without Pt, pointing out the crucial role of the co-catalyst in HER.

This results confirm the increase of the H$_2$ production rates with the increase of the {101} percentage in the materials for both bare and platinized TiO$_2$ nanoparticles. Indeed, the highest rate is obtained for the bipy 873K, with a ca. 90% of {101} terminations. Whereupon, among nanosheets NPs, the calcined sample has the highest photoactivity and the largest amount of {101} surfaces, and n-sh and n-sh NaOH, that have nearly the same amount of {101} surface, show almost the same photocatalytic H$_2$ evolution rate.

In order to evaluate the possible effect of additional factors with respect to the relative amount of exposed {101} surfaces, the H$_2$ evolution rates were normalized for the fraction of specific surface area due to only {101} (i.e total SSA$_{BET}$ times the % of {101}). The results are shown in Figure 4, highlighting the presence of a maximum in the trend obtained for bare TiO$_2$ nanoparticles, corresponding
to the n-sh 873K, which exposes nearly the same amount of \{101\} and \{001\} facets.

![Figure 3](image-url) Photocatalytic H\textsubscript{2} (A) and CO\textsubscript{2} (B) production curves obtained at pH 3.5 for the studied materials in presence of Pt as co-catalyst.

This seems in agreement with the possible role of “surface heterojunction”.\textsuperscript{10a, 10b, 14, 21} Conversely, the same trend already observed in Table 2 was obtained for platinized TiO\textsubscript{2} nanoparticles. This behavior could be ascribed to the higher density of Pt nanoparticles on the \{101\} surface of the nanosheets (see Supporting Information, Table S2). Such high density might play a detrimental role because in this case metal nanoparticles could act as recombination centers, as already observed for high loading of metal nanoparticles deposited on TiO\textsubscript{2}.\textsuperscript{15b}

![Figure 4](image-url) Photocatalytic H\textsubscript{2} production rates normalized for the \{101\} specific surface area only as functions of the \{101\}:\{001\} ratio in the presence (red) and in the absence (black) of Pt.

Electrochemical measurements were carried out on the different TiO\textsubscript{2} deposited on ITO electrodes to evaluate the rate of photoelectron transfer to solution. For this purpose, we applied the method developed by Gomez.\textsuperscript{23} This combines CVs in the dark and OCP relaxation tests (Figure 5 and Figures S7-S8). Details on this data treatment are in SI. In this way, it is possible to obtain the density of charge carriers generated and their recombination or transfer rate.

![Figure 5](image-url) OCP measurements carried out on the TiO\textsubscript{2} electrodes prepared starting from the material n-sh in the absence (top) and in the presence (bottom) of Pt as co-catalyst. N\textsubscript{2} atmosphere. pH 3.7, formate buffer 0.1 M.
Several characteristics (morphology, platinization, and fluorination) of the TiO\textsubscript{2} nanoparticles can influence the charge transfer rate. Figure 6 reports the photoelectron decay rate constant ($k_d$) of the considered materials in the presence and in the absence of Pt as co-catalyst.

Electrochemical measurements show that photogenerated electron decay increases up to four times upon platinization. The increase of the steady state H\textsubscript{2} photoproduction rate on Pt/TiO\textsubscript{2} means that the faster photoelectron decay is due to their increased transfer to solution species, namely H\textsuperscript{+} (fast reaction, but limited by proton concentration) and water (slower reaction, but very large concentration $\geq 55$ M).

The photoelectrochemical measurements are coherent with the H\textsubscript{2} evolution trends obtained during formic acid photoreforming. Indeed, the higher is the amount of the \{101\} surface on the material, the higher is $k_d$ (again with a saturating trend). This clearly indicates the crucial role of the \{101\} surface as cathodic site for H\textsubscript{2} evolution.

**CONCLUSIONS**

The work presents the study of the H\textsubscript{2} production from formate buffer photoreforming using four shape controlled TiO\textsubscript{2} anatase nanoparticles with and without Pt as co-catalyst under UV irradiation. The results highlight the importance of the TiO\textsubscript{2} particle shape on H\textsubscript{2} evolution, and confirm the increase of the H\textsubscript{2} production rates with the increase of the \{101\} surfaces amount in the material, due to the reducing character of this facet. A deeper investigation of the surface \{101\} reactivity highlights that, in the absence of a co-catalyst, an optimal ratio between \{101\} and \{001\} surface occurs when the two facets are present in a similar amount, confirming the presence of a “surface heterojunction” that increase the reactivity of the \{101\} surface. Pt as co-catalyst partially limits this maximum of reactivity, giving a saturative trend of the reactivity (see Figure 4), thanks to the increased rate of electrons transfer. TEM micrographs show that 2-3 nm Pt nanoparticles are almost selectively deposited on the \{101\} surfaces. The effect of superficial fluorination for this type of samples remains, instead, marginal. Finally, photoelectrochemical experiments clearly confirmed the high impact of the TiO\textsubscript{2} nanoparticles morphology on the charge carriers’ transfer rate. Therefore, we demonstrated that tuning the shape of TiO\textsubscript{2} NPs and modulating the ratio between the surfaces \{101\} and \{001\} allows the improvement of the photocatalytic hydrogen production.

**ASSOCIATED CONTENT**

Supporting Information includes data about the synthesis and characterization of the nanoparticles, experimental set-up for hydrogen detection and supplementary photoelectrochemical tests.

**AUTHOR INFORMATION**

**Corresponding Authors**
*E-mail: francesco.pellegrino@unito.it valter.maurino@unito.it*

**Author Contributions**
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

**Funding Sources**
The authors acknowledge funding from SETNanoMetro, EU Project, FP7-NMP-2013\_LARGE-7. Project number: 604577

**REFERENCES**
2. (a) Tributsch, H.; Neumann, B., Material Research Challenges Towards a Corrosion Stable Photovoltaic Hydrogen-


21. (a) Ding, X. J.; An, T. C.; Li, G. Y.; Zhang, S. Q.; Chen, J. X.; Yuan, J. M.; Zhao, H. J.; Chen, H.; Sheng, G. Y.; Fu, J. M.,


**TABLE OF CONTENTS**