AperTO - Archivio Istituzionale Open Access dell'Università di Torino

CRYSTAL17

This is the author's manuscript
Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1709158
since 2019-08-09T18:08:45Z
Publisher:
Gruppo di Chimica Teorica, Dipartimento di Chimica

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

CRYSTAL17

User's Manual

April 20, 2018

R. Dovesi, ${ }^{1}$ V.R. Saunders, ${ }^{1}$ C. Roetti, ${ }^{1}$ R. Orlando, ${ }^{1}$ C. M. Zicovich-Wilson, ${ }^{2}$
F. Pascale, ${ }^{3}$ B. Civalleri, ${ }^{1}$ K. Doll, ${ }^{4}$ N.M. Harrison,,${ }^{5,6}$ I.J. Bush, ${ }^{7}$

Ph. D'Arco, ${ }^{8}$ M. Llunel, 1^{9} M. Causà, ${ }^{10}$ Y. Noël, ${ }^{8}$
L. Maschio, ${ }^{1}$ A. Erba, ${ }^{1}$ M. Rérat, ${ }^{11}$ S. Casassa ${ }^{1}$

1 Theoretical Chemistry Group - University of Turin
Dipartimento di Chimica IFM
Via Giuria 5 - I 10125 Torino - Italy
${ }^{2}$ Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca (Morelos) Mexico
3 Faculté des Sciences et Technologies, Université de Lorraine BP 70239, Boulevard des Aiguillettes 54506 Vandoeuvre-lés-Nancy Cedex, France
4 Institut für Elektrochemie, Universität Ulm Albert-Einstein-Allee 47, 89081 Ulm, Germany

5 Computational Science \& Engineering Department - STFC Daresbury Daresbury, Warrington, Cheshire, UK WA4 4AD
6 Department of Chemistry, Imperial College South Kensington Campus, London, U.K.
7 Oxford e-Research Centre, University of Oxford, 7 Keble Road, OX1 3QG, Oxford, UK
8 Institut des Sciences de la Terre de Paris (UMR 7193 UPMC-CNRS), UPMC, Sorbonne Universités, 4 Place Jussieu, 75232 Paris CEDEX 05, France

9 Departament de Química Física, Universitat de Barcelona Diagonal 647, Barcelona, Spain

10 Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione industriale, Università di Napoli "Federico I"
Via Cintia (Complesso di Monte S. Angelo) 21, Napoli - Italy
11 Equipe de Chimie Physique, IPREM UMR5254, Université de Pau et des Pays de l'Adour, 64000 Pau, France

Contents

1 Introductory Remarks 8
1.1 Introduction 8
1.2 CRYSTAL17 Program Features 10
Typographical Conventions 15
Acknowledgments 16
Getting Started - Installation and testing 16
2 Wave-function Calculation: 7
2.1 Geometry and symmetry information 17
Geometry input for crystalline compounds. 18
Geometry input for molecules, polymers and slabs 18
Geometry input for polymers with roto translational symmetry 19
Geometry input from external geometry editor 19
Comments on geometry input 20
2.2 Basis set 23
2.2.1 Standard route 23
2.2.2 Basis set input by keywords 26
2.3 Computational parameters, hamiltonian,
SCF control29
3 Wave-function Calculation - Advanced Input Route 32
3.1 Geometry editing 32
3.2 Basis set input 72
Effective core pseudo-potentials 75
Pseudopotential libraries 76
3.3 Computational parameters, Hamiltonian,
SCF control 79
4 Density Functional Methods 117
4.1 Choice of the exchange-correlation functional 117
4.2 Dispersion correction to DFT (DFT-D) 126
4.3 Integration grid and numerical accuracy control 126
4.4 Atomic parameters 131
5 Semi-classical corrections for HF and DFT 132
5.1 DFT-D3 - C_{6} based London dispersion correction 132
5.2 GCP - Geometrical counterpoise correction 137
5.3 HF-3C - Minimal basis HF composite method 140
5.4 PBEH-3C - Small basis DFT composite method 142
5.5 DFT-D3 - C_{6} based London dispersion correction 143
5.6 GCP - Geometrical counterpoise correction 148
5.7 HF-3C - Minimal basis HF composite method 151
5.8 PBEH-3C - Small basis DFT composite method 153
6 Geometry Optimization 156
6.1 Geometry optimization strategy 157
6.2 Default setting 157
6.2.1 Type of optimization 157
6.2.2 Convergence criteria 157
6.2.3 Initial Hessian guess 158
6.2.4 Hessian updating technique 158
6.2.5 SCF convergence and guess 158
6.2.6 Output files 159
6.3 General sub-keywords 159
6.3.1 Type of optimization 160
6.3.2 Initial Hessian 160
6.3.3 Tabulated atomic radii 161
6.3.4 Hessian updating technique 161
6.3.5 Optimization convergence criteria 161
6.3.6 Step control 162
6.3.7 Coordinate system related options 163
6.3.8 Optimization procedure control 163
6.3.9 Numerical first derivatives 165
6.3.10 Printing options 166
6.4 Notes on geometry optimization 176
6.4.1 On the integrals classification during a geometry optimization 176
6.4.2 Optimization of flat surfaces 177
6.4.3 Restart optimization 177
6.5 Searching a transition state 177
Searching a transition state 177
6.5.1 Transition state control keywords 178
6.5.2 Scan keywords 179
7 Lattice Dynamics - Vibration Frequencies 181
7.1 Calculation of Harmonic Vibration Frequencies 181
7.1.1 Symmetry exploitation 182
7.1.2 Equilibrium Geometry 182
7.1.3 Default settings 182
7.1.4 Output files 183
7.1.5 Optional keywords 183
7.2 Restart a calculation 188
7.3 IR Intensities 189
7.3.1 IR intensities through Berry phase [default] 189
7.3.2 \quad IR intensities through Wannier functions 190
7.3.3 IR intensities through CPHF/CPKS 191
7.4 Raman Intensities 191
7.4.1 Vibrational contribution to SHG and dc-Pockels tensors 193
7.5 Scanning of geometry along selected normal modes 194
7.5.1 Example 1 - Methane molecule 195
7.5.2 Example 2 - PbCO_{3} 196
7.6 Calculation of the infrared spectrum 197
7.7 Calculation of the Raman spectra 199
7.8 Phonon dispersion 201
7.9 Anisotropic Displacement Parameters (ADP) 203
7.10 Phonon Density-of-State (and Inelastic Neutron Scattering Spectra) 205
7.11 Anharmonic calculation of frequencies of X-H (X-D) bond stretching 206
8 Harmonic and Quasi-Harmonic Thermodynamics 209
8.1 A Few Theoretical Remarks 210
8.1.1 Phonon Dispersion 210
8.1.2 Harmonic Lattice Dynamics 211
8.1.3 Quasi-harmonic Quantities 211
8.1.4 Grüneisen Simplified Model 212
8.2 The Automated Algorithm: Some Computational Parameters 213
8.2.1 Optional Keywords 215
8.3 QHA: A Guided Tour of the Output 215
8.3.1 The Equation-of-State 215
8.3.2 Phonon Modes Continuity on Volume 217
8.3.3 Grüneisen Model 219
8.3.4 Main Results: Thermal Properties from Helmholtz Free Energy 220
8.3.5 Thermal Pressure: The P-V-T Equation-of-State 222
9 Dielectric Properties up to Fourth Order via the Coupled Perturbed HF/KS Method 224
9.1 Response to an Electric Field - Theoretical Framework of the Coupled-Perturbed
224
Treatment
9.2 Coupled-Perturbed HF/KS Calculation of Dielectric Properties up to Second 225
9.2.1 Tools for tuning convergence and accuracy in the Coupled-Perturbed iterations 226
9.2.2 Dynamic (Frequency-dependent) CPHF/KS 227
9.2.3 Static first hyperpolarizability 228
9.2.4 Dynamic first-hyperpolarizability tensors - Pockels and Second- Harmonic Generation 228
9.3 Fourth-Order CPHF/KS - second hyperpolarizability calculation 229
9.3.1 Tuning and control of the CPHF2 iterative procedure 230
9.4 Restart of first- or second- order CPHF 230
10 Tools for Studying Solid Solutions 231
10.1 Counting and Enumerating Configurations 232
10.2 Uniform Random Sampling of Symmetry Independent Configurations 234
10.3 Calculations on Predefined Configurations 235
10.4 Exploring the Neighborhood of a Configuration 236
11 Equations of State 237
11.1 A few theoretical remarks 237
11.2 Keywords, options and defaults 239
11.3 Output Information 240
12 Calculation of Elastic, Piezoelectric and Photoelastic Tensors 243
12.1 A few theoretical remarks 243
12.2 The algorithm 244
12.3 Second-order Elastic Constants 245
12.3.1 Elastic Tensor under Pressure 248
12.3.2 Nuclear-relaxation Term from Internal-strain Tensor 249
12.4 First-order Piezoelectric Constants 251
12.5 Piezoelectricity through CPHF/KS Approach 252
12.6 Elastic and Piezoelectric Constants 253
12.7 Photoelastic Constants 255
13 One-electron Properties and Wave-function Analysis 258
13.1 Preliminary calculations 258
13.2 Properties keywords 259
13.3 Electronic Band Structure 263
13.4 Compton Profiles - from $B(r)$ Function 264
13.5 Transport Properties 268
13.6 Electronic Density-of-State 274
13.7 Crystal Orbital Overlap/Hamiltonian Populations 275
13.8 3D Electron Charge Density 276
13.9 2D Electron Charge Density 277
13.10Electron Momentum Density 279
13.11Localized Crystalline Orbitals - Wannier Functions 285
13.123D plotting of crystalline (molecular) orbitals 300
13.13Density Matrix of Non-interacting Atoms 301
13.143D Electrostatic Potential 304
13.152D Electrostatic Potential 305
13.16Mulliken Population Analysis 307
13.17X-ray Structure Factors and XRD Spectra 309
13.18 Spontaneous polarization 313
13.19 Mössbauer Spectroscopy 315
13.20 Topological analysis 318
14 Running CRYSTAL in parallel 319
14.1 Running Pcrystal and Pproperties 319
14.2 Running MPPcrystal 320
15 Input examples 322
15.1 Standard geometry input 322
CRYSTAL 322
SLAB 326
POLYMER 328
MOLECULE 329
15.2 Basis set input 329
ECP - Valence only basis set input 330
15.3 SCF options 332
15.4 Geometry optimization 334
16 Basis set 343
16.1 Molecular BSs performance in periodic systems 343
16.2 Core functions 344
16.3 Valence functions 344
Molecular crystals 344
Covalent crystals. 344
Ionic crystals. 345
From covalent to ionics 346
Metals 346
16.4 Hints on crystalline basis set optimization 346
16.5 Check on basis-set quasi-linear-dependence 347
17 Theoretical framework 349
17.1 Basic equations 349
17.2 Remarks on the evaluation of the integrals 350
17.3 Treatment of the Coulomb series 351
17.4 The exchange series 352
17.5 Bipolar expansion approximation of Coulomb and exchange integrals 353
17.6 Exploitation of symmetry 353
Symmetry-adapted Crystalline Orbitals 354
17.7 Reciprocal space integration 355
17.8 Electron momentum density and related quantities 355
17.9 Elastic Moduli of Periodic Systems 358
Examples of ϵ matrices for cubic systems 360
Bulk modulus 362
17.10Spontaneous polarization through the Berry phase approach 363
Spontaneous polarization through the localized crystalline orbitals approach 363
17.11Piezoelectricity through the Berry phase approach 364
Piezoelectricity through the localized crystalline orbitals approach 364
17.12Eckart Conditions to the Hessian (Purifying Rotational and Translational De- grees of Freedom) 365
Eckart conditions to the Hessian 365
A Symmetry groups 367
A. 1 Labels and symbols of the space groups 367
A. 2 Labels of the layer groups (slabs) 370
A. 3 Labels of the rod groups (polymers) 371
A. 4 Labels of the point groups (molecules) 374
A. 5 From conventional to primitive cells: transforming matrices 375
B Summary of input keywords 376
C Printing options 389
D External format 393
E Normalization coefficients 406
F CRYSTAL09 versus CRYSTAL06 415
G CRYSTAL14 versus CRYSTAL09 418
H CRYSTAL17 versus CRYSTAL14 422
I Acronyms 426
Bibliography 428
Subject index 445

Chapter 1

Introductory Remarks

1.1 Introduction

The CRYSTAL package performs $a b$ initio calculations of the ground state energy, energy gradient, electronic wave function and properties of periodic systems. Hartree-Fock or KohnSham Hamiltonians (that adopt an Exchange-Correlation potential following the postulates of Density-Functional Theory) can be used. Systems periodic in 0 (molecules, 0D), 1 (polymers, 1D), 2 (slabs, 2D), and 3 dimensions (crystals, 3D) are treated on an equal footing. In each case the fundamental approximation made is the expansion of the single particle wave functions ('Crystalline Orbital', CO) as a linear combination of Bloch functions (BF) defined in terms of local functions (hereafter indicated as 'Atomic Orbitals', AOs). See Chapter 17 .

The local functions are, in turn, linear combinations of Gaussian type functions (GTF) whose exponents and coefficients are defined by input (section 2.2 . Functions of symmetry s, p, d and f can be used (see page 25). Also available are sp shells (s and p shells, sharing the same set of exponents). The use of sp shells can give rise to considerable savings in CPU time.
The program can automatically handle space symmetry: 230 space groups, 80 layer groups, 99 rod groups, 45 point groups are available (Appendix A). In the case of polymers it can treat helical structures (translation followed by a rotation around the periodic axis).
Point symmetries compatible with translation symmetry are provided for molecules.
Input tools allow the generation of slabs (2D system), nano-rods (1D system) or clusters (0D system) from a 3D crystalline structure, the elastic distortion of the lattice, the creation of a super-cell with a defect and a large variety of structure editing. See Section 3.1

Specific input options allow generation of special 1D (nanotubes) and 0D (fullerenes) structures from 2D ones.

Previous releases of the software in 1988 (CRYSTAL88, [60]), 1992 (CRYSTAL92, [63), 1996 (CRYSTAL95, [64), 1998 (CRYSTAL98, [194), 2003 (CRYSTAL03, [195), 2006 (CRYSTAL06, [65]), 2010 (CRYSTAL09, [58), and 2013 (CRYSTAL14, [59]) have been used in a wide variety of research applications. See "Applications" in

http://www.crystal.unito.it

The CRYSTAL package has been developed over a number of years. For basic theory and algorithms see "Theory" in:

http://www.crystal.unito.it/theorframe.html

The required citation for this work is:
R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, WIREs Comput. Mol. Sci., e1360 (2018) Quantum-Mechanical Condensed Matter Simulations with CRYSTAL

CRYSTAL17 output will display the references relevant to the property computed, when citation is required.

Updated information on the CRYSTAL code as well as tutorials to learn basic and advanced CRYSTAL usage are in:
http://www.crystal.unito.it/news.html

1.2 CRYSTAL17 Program Features

New features with respect to CRYSTAL14 are in bold-italics.

Hamiltonian

- Hartree-Fock Theory
- Restricted (RHF)
- Unrestricted (UHF)
- Restricted-Open (ROHF)
- Density Functional Theory
- Semilocal functionals: local [L], gradient-corrected [G] and meta-GGA (taudependent) [T]
- Hybrid HF-DFT functionals
* Global Hybrids: B3PW, B3LYP (using the VWN5 functional), PBE0, PBESOL0, B1WC, WC1LYP, B97H
* Range-Separated Hybrids:
- Screened-Coulomb (SC): HSE06, HSEsol, SC-BLYP
- Middle-range Corrected (MC): HISS
- Long-range Corrected (LC): LC- ω PBE, LC- ω PBEsol, LC- ω BLYP, ω B97, $\omega \mathrm{B} 97-\mathrm{X}, \mathrm{RSHXLDA}, \boldsymbol{L} \boldsymbol{C} \boldsymbol{- B L Y P}, \boldsymbol{C A M} \boldsymbol{M} \boldsymbol{B} \boldsymbol{L} \boldsymbol{Y} \boldsymbol{P}$
* Self-consistent Global Hybrid functionals (sc-hyb)
- Minnesota semilocal and hybrid functionals (mGGA):
* M05 family: M05, M05-2X
* M06 family: M06, M06-2X, M06-HF, M06-L
- User-defined hybrid functionals
- London-type empirical correction for dispersive interactions (DFT-D2 scheme)
- DFT-D3 correction for dispersive interactions. Automated, parameterfree implementation
- Grimme's geometrical CounterPoise (gCP) empirical correction to remove the BSSE
- Composite Methods for Molecular Crystals (HF3c, PBEh3c)

Analytical Energy Derivatives

- Analytical first derivatives with respect to the nuclear coordinates and cell parameters
- Hartree-Fock and Density Functional methods
- All-electron Basis Sets and Effective Core Pseudo-potentials
- Analytical derivatives, up to fourth order, with respect to an applied electric field (CPHF / CPKS)
- Dielectric tensor, polarizability (linear-optical properties)
- First Hyper-polarizability (non linear-optical property)
* Second-Harmonic Generation
* Pockels Effect
- Second Hyper-polarizability (non linear-optical property).
- Extended to Open-Shell Systems and some range-separated hybrid functionals
- Mixed analytical derivatives with respect to an applied electric field and either a nuclear displacement or a cell distortion (CPHF/CPKS)
- Born-charge tensor
- Raman polarizability tensors
- Direct Piezoelectric tensor (electronic term)

Type of Calculation

- Single-point energy calculation
- Broyden Convergence Accelerator
- Anderson Convergence Accelerator
- Fock Matrix-mixing Scheme
- DIIS Convergence Accelerator (default)
- Tools to define an Initial Guess for Magnetic Systems
- Fractionally-charged Systems
- Use of Fractional Spin
- Spin Contamination Correction
- Geometry optimizations
- Uses a quasi-Newton algorithm
- Optimizes in symmetry-adapted Cartesian coordinates
- Optimizes in redundant coordinates
* New internal coordinates handling and algorithm for back-transformation
- Full geometry optimization (cell parameters and atom coordinates)
- Freezes atoms during optimization
- Constant volume or pressure constrained geometry optimizations (3D only)
- Transition state search
- Harmonic vibrational frequencies
- Harmonic vibrational frequencies at Gamma point
- Phonon dispersion using a direct approach (efficient supercell scheme)
- Phonon band structure
- Calculation of Atomic Displacement Parameters and Debye-Waller factors
- IR intensities through localized Wannier functions and Berry phase
- IR and Raman intensities through CPHF/CPKS analytical approach
- Simulated reflectance, IR and Raman spectra
- Vibrational contribution to dielectric tensor
- Vibrational contribution to first-hyper-polarizability
- Exploration of the energy and geometry along selected normal modes
- Total and Projected Vibrational Density-of-States (VDOS)
- Neutron-weighted VDOS for Inelastic Neutron Scattering
- Anharmonic frequencies for X-H bonds
- Automated calculation of the elastic tensor of crystalline systems
- Generalized to 1D and 2D systems
- Calculation of directional elastic wave velocities
- Calculation of isotropic polycrystalline aggregates elastic properties via Voigt-ReussHill scheme
- Elastic Tensor under Pressure
- Complete Analysis of Elastic wave velocities through AWESOME Code
- Nuclear-relaxation Term through Internal-strain Tensor
- Automated E vs V calculation for Equation of State (EOS)
- Murnaghan, Birch-Murnaghan, Vinet, Poirer-Tarantola and polynomial
- Automated calculation of pressure dependence of volume and bulk modulus
- Automated Quasi-harmonic Approximation (QHA) for Thermal Properties
- Volume-dependent Thermodynamic properties
- Lattice Thermal Expansion (anisotropic)
- P-V-T Equation-of-State
- Constant-pressure thermodynamic properties
- Temperature dependence of Bulk modulus (isothermal and adiabatic)
- Grüneisen Parameters
- Automated calculation of piezoelectric and photoelastic tensors
- Direct and converse piezoelectricity (using the Berry phase approach)
- Elasto-optic tensor through the CPHF/CPKS scheme
- Electric field frequency dependence of photoelastic properties
- Nuclear-relaxation Term of Piezoelectric Tensor through Internal-strain Tensor
- Piezo-optic fourth-rank Tensor
- Analytical Piezoelectric Tensor through CPHF/KS Scheme
- Improved tools to model solid solutions
- Automated Generation of Symmetry-independent Configurations
- Automated algorithm for computing the energy (with or without geometry optimization) of selected configurations

Basis set

- Gaussian type functions basis sets
- s, p, d, and f GTFs
- Standard Pople Basis Sets
* STO-nG n=2-6 (H-Xe), 3-21G (H-Xe), 6-21G (H-Ar)
* polarization and diffuse function extensions
- Internal library of basis sets with simplified input
- User-defined External Library supported
- User-specified basis sets supported
- Pseudopotential Basis Sets
- Available sets are:
* Hay-Wadt large core
* Hay-Wadt small core
- User-defined pseudopotential basis sets supported

Periodic systems

- Periodicity
- Consistent treatment of all periodic systems
- 3D - Crystalline solids (230 space groups)
- 2D - Films and surfaces (80 layer groups)
- 1D - Polymers
* space group derived symmetry (75 rod groups)
* helical symmetry (up to order 48)
- 1D - Nanotubes (with any number of symmetry operators)
- 0D - Molecules (32 point groups)
- 0D - Fullerenes
- Automated geometry editing
- 3D to 2D - slab parallel to a selected crystalline face (hkl)
-3 D to 0D - cluster from a perfect crystal (H saturated)
-3 D to 0D - extraction of molecules from a molecular crystal
-3 D to n 3 D - supercell creation
- 2D to 1D - building nanotubes from a single-layer slab model
-2 D to 0 D - building fullerenes from a single-layer slab model
- 3D to 1D, 0D - building nanorods and nanoparticles from a perfect crystal
- 2D to 0D - construction of Wulff's polyhedron from surface energies
- Several geometry manipulations (reduction of symmetry; insertion, displacement, substitution, deletion of atoms)

Wave function analysis and properties

- Band structure
- Density of states
- Band projected DOSS
- AO projected DOSS
- All Electron Charge Density - Spin Density
- Density maps
- Mulliken population analysis
- Density analytical derivatives
- Hirshfeld-I Partitioning Scheme
- Electronic Transport Properties
- Atomic multipoles
- Electric field
- Electric field gradient
- Static structure factors and dynamic structure factors including Debye-Waller factor
- Electron Momentum Density and Compton profiles
- Electron momentum density maps
- Automated anisotropy maps
- Partitioning according to Wannier functions
- Electrostatic potential and its derivatives
- Quantum and classical electrostatic potential and its derivatives
- Electrostatic potential maps
- Fermi contact
- Localized Wannier Functions (Boys method)
- Mossbauer effect (isotropic effect and quadrupolar interaction)
- Topological analysis of the electron charge density via the TOPOND package, fully integrated in the program

Software performance

- Memory management: dynamic allocation
- Full parallelization of the code
- parallel SCF and gradients for both HF and DFT methods
- Replicated data version (MPI)
- Massive parallel version (MPI) (distributed memory) (Improved version: lower memory usage and better scaling)
- Parallel (replicated data) version of the "properties" module
- New parallelization strategy on IRREPs
- Enhanced exploitation of the point-group symmetry

Conventions

In the description of the input data which follows, the following notation is adopted:

-	\bullet	new record
-	*	free format record
-	$A n$	alphanumeric datum (first n characters meaningful)
-	atom label	sequence number of a given atom in the primitive cell, as printed in the output file after reading of the geometry input
	symmops	symmetry operators
	$\square,[]$	default values.
-	italic	optional input
-		_optional input records follow
-		additional input records follow

Arrays are read in with a simplified implied DO loop instruction of Fortran 77:
(dslist, $i=m 1, m 2$)
where: dslist is an input list; i is the name of an integer variable, whose value ranges from $m 1$ to m2.
Example (page 39): LB (L) , L=1, NL
NL integer data are read in and stored in the first NL position of the array LB.

All the keywords are entered with an A format (case insensitive); the keywords must not end with blanks.
conventional atomic number (usually called NAT) is used to associate a given basis set with an atom. The real atomic number is the remainder of the division NAT/100. See page 24. The same conventional atomic number must be given in geometry input and in basis set input.

Acknowledgments

Embodied in the present code are elements of programs distributed by other groups.
In particular: the atomic SCF package of Roos et al. [188, the GAUSS70 gaussian integral package and STO-nG basis set due to Hehre et al. [117, the code of Burzlaff and Hountas for space group analysis [35, Saunders' ATMOL gaussian integral package 147, the XCFun DFT library of exchange-correlation functionals 68].
We take this opportunity to thank these authors. Our modifications of their programs have sometimes been considerable. Responsibility for any erroneous use of these programs therefore remains with the present authors.

We are in debt with Cesare Pisani, who first conceived the CRYSTAL project in 1976, for his constant support of and interest in the development of the new version of the CRYSTAL program.

It is our pleasure to thank Piero Ugliengo, Massimo Delle Piane, Marta Corno and Michele Cutini for continuous help, useful suggestions, rigorous testing.

We thank Giuseppe Mallia for useful contribution to test parallel execution and to develop automatic testing procedures.

We kindly acknowledge Jorge Garza-Olguin for his invaluable help in testing and documenting the compilation of parallel executables from object files.

Contribution to the development of the current release has been given by: Matteo Ferrabone, Jacopo Baima, Jan Gerit Brandenburg, Marco De La Pierre, Valentina Lacivita, Michael F. Peintinger, Bernie Kirtman, Raffaella Demichelis, Giuseppe Sansone.

An invaluable contribution to test and validate the new features is recognized to Simone Salustro. Help in testing the code is also acknowledged to Giuseppe Sansone, Anna Ferrari, Francesco Gentile and Jacques Desmarais.

Specific contribution to coding is indicated in the banner of the new options.

Getting Started

Instructions to download, install, and run the code are available in the web site:
http://www.crystal.unito.it \rightarrow documentation

Program errors

A very large number of tests have been performed by researchers of a few laboratories, that had access to a test copy of CRYSTAL09. We tried to check as many options as possible, but not all the possible combinations of options have been checked. We have no doubts that errors remain.
The authors would greatly appreciate comments, suggestions and criticisms by the users of CRYSTAL; in case of errors the user is kindly requested to contact the authors, sending a copy of both input and output by E-mail to the Torino group (crystal@unito.it).

Chapter 2

Wave-function Calculation: Basic Input Route

2.1 Geometry and symmetry information

The first record of the geometry definition must contain one of the keywords:

CRYSTAL	3D system	page
SLAB	2D system	page
POLYMER	1D system	page
POL		
HELIX	1D system - roto translational symmetry	page
MOLECULE	0D system	page
EXTERNAL	geometry from external file	page
DLVINPUT	geometry from DLV [202] Graphical User Interface.	page
19		

Four input schemes are used.
The first is for crystalline systems (3D), and is specified by the keyword CRYSTAL.
The second is for slabs (2D), polymers (1D) and molecules (0D) as specified by the keywords SLAB, POLYMER or MOLECULE respectively.

The third scheme (keyword HELIX) defines a 1D system with roto-translational symmetry (helix).
In the fourth scheme, with keyword EXTERNAL (page 19) or DLVINPUT, the unit cell, atomic positions and symmetry operators may be provided directly from an external file (see Appendix D, page 400). Such an input file can be prepared by the keyword EXTPRT (crystal input block 1, page 46 properties).
Sample input decks for a number of structures are provided in section 15.1 page 322

rec	variable	value	meaning
- *	IFLAG	0	convention for space group identification (Appendix A.1, page 367): space group sequential number(1-230)
	IFHR	1	Hermann-Mauguin alphanumeric code type of cell: for rhombohedral groups, subset of trigonal ones, only (meaningless for non-rhombohedral crystals):
		0	hexagonal cell. Lattice parameters a, c
		1	rhombohedral cell. Lattice parameters a, α
	IFSO	0	setting for the origin of the crystal reference frame: origin derived from the symbol of the space group: where there are two settings, the second setting of the International Tables is chosen.
		1	standard shift of the origin: when two settings are allowed, the first setting is chosen
		>1	non-standard shift of the origin given as input (see test22) space group identification code (following IFLAG value):
- *	IGR		space group sequence number (IFLAG=0)
	or		
A	AGR		space group alphanumeric symbol (IFLAG=1) \qquad if IFSO >1 insert \qquad II
- *	IX,IY,IZ		non-standard shift of the origin coordinates (x, y, z) in fractions of the crystallographic cell lattice vectors times 24 (to obtain integer values).
- *	$\begin{aligned} & \mathrm{a},[\mathrm{~b}],[\mathrm{c}], \\ & {[\alpha],[\beta]} \\ & {[\gamma]} \end{aligned}$		minimal set of crystallographic cell parameters: translation vector[s] length [Ångstrom], crystallographic angle[s] (degrees)
- *	NATR		number of atoms in the asymmetric unit. \qquad insert NATR records \qquad II
- *	NAT		"conventional" atomic number. The conventional atomic number, NAT, is used to associate a given basis set with an atom. The real atomic number is the remainder of the division NAT100
	X,Y,Z		atom coordinates in fractional units of crystallographic lattice vectors
	- optio	1 key	ords terminated by END/ENDGEOM or STOP __II

Geometry input for molecules, polymers and slabs. Keywords: SLAB, POLYMER, MOLECULE

When the geometrical structure of 2D, 1D and 0D systems has to be defined, attention should be paid in the input of the atom coordinates, that are expressed in different units, fractional (direction with translational symmetry) or Ångstrom (non periodic direction).

translational	unit of measure of coordinates				
symmetry	X		Y		Z
3D	fraction	fraction	fraction		
2D	fraction	fraction	Ångstrom		
1D	fraction	Ångstrom	Ångstrom		
0D	Angstrom	Ångstrom	Ångstrom		

rec variable	meaning
- * IGR	point, rod or layer group of the system: 0D - molecules (Appendix A.4, page 374) 1D - polymers (Appendix A.3, page 371) 2D - slabs (Appendix A.2 page 370 if polymer or slab, insert
$\begin{gathered} \bullet * \mathrm{a},[\mathrm{~b}], \\ {[\gamma]} \\ \hline \end{gathered}$	minimal set of lattice vector(s)- length in Ångstrom (b for rectangular lattices only) $\widehat{A B}$ angle (degrees) - triclinic lattices only
- * NATR	number of non-equivalent atoms in the asymmetric unit \qquad insert NATR records \qquad II
- * NAT	conventional atomic number 3 atoms coordinates. Unit of measure: 0D - molecules: x, y, z in Ångstrom 1D - polymers : y, z in Ångstrom, x in fractional units of crystallographic cell translation vector 2D - slabs : z in Ångstrom, x, y in fractional units of crystallographic cell translation vectors \qquad optional keywords terminated by END or STOP \qquad

Geometry input for polymers with roto translational symmetry. Keyword: HELIX

rec variable	meaning
- * N1	order of rototranslational axis
* N2	to define the rototranslational vector
- * a_{0}	lattice parameter of 1D cell - length in Ångstrom
- * NATR	number of non-equivalent atoms in the asymmetric unit insert NATR records
$\begin{aligned} & \bullet \text { NAT } \\ & \mathrm{X}, \mathrm{Y}, \mathrm{Z} \end{aligned}$	conventional atomic number 3
	atoms coordinates. Unit of measure:
	1D - polymers : y, z in Ångstrom, x in fractional units of crystallographic cell translation vector
	_ optional keywords terminated by END or STOP ___ II

A helix structure is generated: each atom of the irreducible part is rotated by an angle $\beta=$ $n \cdot 360 / \mathrm{N} 1$ degrees and translated by a vector $\vec{t}=n \cdot a_{0} \frac{N 2}{N 1}$ with $n=1, \ldots .(N 1-1)$.
As an example let's consider the α-helix conformer of polyglycine whose structure is sketched in Figure 2.1 .

The helix structure is characterized by seven glycine residues per cell. The order of the rototranslational axis is therefore seven, $N 1=7$. In order to establish the value of $N 2$, look for instance at the atom labeled 7 in the Figure. The top view of the helix shows that upon rotation by $\beta=360 / 7$ degrees, atom 7 moves to atom 4 ; the side view clarifies that this movement implies a translational vector $\vec{t}=a_{0} \frac{4}{7}$: therefore $N 2=4$.

Geometry input from external geometry editor. Keywords: EXTERNAL, DLVINPUT

The fourth input scheme works for molecules, polymers, slabs and crystals. The complete geometry input data are read from file fort.34. The unit cell, atomic positions and symmetry operators are provided directly according to the format described in Appendix D, page

Figure 2.1: Side view (left) and top view (right) of an α-helix conformer of polyglycine

400 Coordinates in Ångstrom. Such an input file is written when OPTGEOM route for geometry optimization is chosen, and can be prepared by the keyword EXTPRT (program crystal, input block 1, page 46; program properties), or by the the visualization software DLV (http://www.cse.scitech.ac.uk/cmg/DLV/).
The geometry defined by EXTERNAL can be modified by inserting any geometry editing keyword (page 32) into the input stream after EXTERNAL.

Comments on geometry input

1. All coordinates in Ångstrom. In geometry editing, after the basic geometry definition, the unit of measure of coordinates may be modified by entering the keywords FRACTION (page 49) or BOHR (page 40).
2. The geometry of a system is defined by the crystal structure (96), Chapter 1 of ref. [171]). Reference is made to the International Tables for Crystallography 111 for all definitions. The crystal structure is determined by the space group, by the shape and size of the unit cell and by the relative positions of the atoms in the asymmetric unit.
3. The lattice parameters represent the length of the edges of the cell (a, b, c) and the angles between the edges $(\alpha=\widehat{b c} ; \beta=\widehat{a c c} ; \gamma=\widehat{a b})$. They determine the cell volume and shape.
4. Minimal set of lattice parameters to be defined in input:

cubic	a	
hexagonal		a, c
trigonal	hexagonal cell	a, c
	rhombohedral cell	a, α
tetragonal		a, c
orthorhombic	a, b, c	
monoclinic	a, b, c, β (b unique)	
	$a, b, c, \gamma(\mathrm{c}$ unique)	
	a, b, c, α (a unique - non standard)	
triclinic	$a, b, c, \alpha, \beta, \gamma$	

5. The asymmetric unit is the largest subset of atoms contained in the unit-cell, where no atom pair related by a symmetry operator can be found. Usually several equivalent subsets of this kind may be chosen so that the asymmetric unit needs not be unique. The asymmetric unit of a space group is a part of space from which, by application of all symmetry operations of the space group, the whole of space is filled exactly.
6. The crystallographic, or conventional cell, is used as the standard option in input. It may be non-primitive, which means it may not coincide with the cell of minimum volume (primitive cell), which contains just one lattice point. The matrices which transform the conventional (as given in input) to the primitive cell (used by CRYSTAL) are given in Appendix A.5, page 375, and are taken from Table 5.1 of the International Tables for Crystallography [111.
Examples. A cell belonging to the face-centred cubic Bravais lattice has a volume four times larger than that of the corresponding primitive cell, and contains four lattice points (see page 68, keyword SUPERCEL). A unit cell belonging to the hexagonal Bravais lattice has a volume three times larger than that of the rhombohedral primitive cell (R Bravais lattice), and contains three lattice points.
7. The use of the International Tables to identify the symmetry groups requires some practice. The examples given below may serve as a guide. The printout of geometry information (equivalent atoms, fractional and Cartesian atomic coordinates etc.) allows a check on the correctness of the group selected. To obtain a complete neighborhood analysis for all the non-equivalent atoms, a complete input deck must be read in (blocks 1-3), and the keyword TESTPDIM inserted in block 3, to stop execution after the symmetry analysis.
8. Different settings of the origin may correspond to a different number of symmetry operators with translational components.
Example: bulk silicon - Space group 227-1 irreducible atom per cell.

setting of the origin	Si coordinates	symmops with translational component	multiplicity
2nd (default)	$\begin{array}{lllll}1 / 8 & 1 / 8 & 1 / 8\end{array}$	36	2
1st	0.0 .0	24	2

NB With different settings, the same position can have different multiplicity. For instance, in space group 227 (diamond, silicon) the position (0., 0., 0.) has multiplicity 2 in 1 st setting, and multiplicity 4 in 2nd setting.
Second setting is the default choice in CRYSTAL.
The choice is important when generating a supercell, as the first step is the removal of the symmops with translational component. The keyword ORIGIN (input block 1, page 59) translates the origin in order to minimize the number of symmops with translational component.
9. When coordinates are obtained from experimental data or from geometry optimization with semi-classical methods, atoms in special positions, or related by symmetry are not correctly identified, as the number of significative digits is lower that the one used by the program crystal to recognize equivalence or special positions. In that case the coordinates must be edited by hand (see FAQ at www.crystal.unito.it).
10. The symbol of the space group for crystals (IFLAG=1) is given precisely as it appears in the International Tables, with the first letter in column one and a blank separating operators referring to different symmetry directions. The symbols to be used for the groups 221-230 correspond to the convention adopted in editions of the International Tables prior to 1983: the 3 axis is used instead of $\overline{3}$. See Appendix A.1 page 367 .

Examples:

Group number	input symbol	
137 (tetragonal)	$\mathrm{P}_{\sqcup} 42 / \mathrm{N}_{\sqcup} \mathrm{M}_{\sqcup} \mathrm{C}$	
10 (monoclinic)	$\mathrm{P}_{\sqcup} 1_{\sqcup} 2 / \mathrm{M}_{\sqcup} 1$	(unique axis b, standard setting)
	$\mathrm{P}_{\sqcup} 1_{\sqcup} 1_{\sqcup} 2 / \mathrm{M}$	(unique axis c)
	$\mathrm{P}_{\sqcup} 2 / \mathrm{M}_{\sqcup} 1_{\sqcup} 1$	(unique axis a)
25 (orthorhombic)	$\mathrm{P}_{\sqcup} \mathrm{M}_{\sqcup} \mathrm{M}_{\sqcup} 2$	(standard setting)

```
P
P
```

11. In the monoclinic and orthorhombic cases, if the group is identified by its number (3-74), the conventional setting for the unique axis is adopted. The explicit symbol must be used in order to define an alternative setting.
12. For the centred lattices (F, I, C, A, B and R) the input cell parameters refer to the centred conventional cell; the fractional coordinates of the input list of atoms are in a vector basis relative to the centred conventional cell.
13. Rhombohedral space groups are a subset of trigonal ones. The Hermann-Mauguin symbol must begin by 'R'. For instance, space groups 156-159 are trigonal, but not rhombohedral (their Hermann-Mauguin symbols begin by "P"). Rhombohedral space groups (146-148-155-160-161-166-167) may have an hexagonal cell ($a=b ; c ; \alpha, \beta=90^{\circ} ; \gamma=120^{\circ}$: input parameters a, c) or a rhombohedral cell $(a=b=c ; \alpha=\beta=\gamma$: input parameters $=a, \alpha)$. See input datum IFHR.
14. It is sufficient to supply the coordinates of only one of a group of atoms equivalent under centring translations (eg: for space group Fm3m only the parameters of the face-centred cubic cell, and the coordinates of one of the four atoms at $(0,0,0),\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ are required).
The coordinates of only one atom among the set of atoms linked by centring translations are printed. The vector basis is relative to the centred conventional cell. However when Cartesian components of the direct lattice vectors are printed, they are those of the primitive cell.
15. The conventional atomic number NAT is used to associate a given basis set with an atom (see Basis Set input, Section 2.2. page 23). The real atomic number is given by the remainder of the division of the conventional atomic number by 100 (Example: NAT=237, $\mathrm{Z}=37$; NAT=128, $\mathrm{Z}=28$). Atoms with the same atomic number, but in non-equivalent positions, can be associated with different basis sets, by using different conventional atomic numbers: e.g. $6,106,1006$ (all electron basis set for carbon atom); 206, 306 (core pseudo-potential for carbon atom, Section 3.2, page 75 .
If the remainder of the division is 0 , a "ghost" atom is identified, to which no nuclear charge corresponds (it may have electronic charge). This option may be used for enriching the basis set by adding bond basis function [10], or to allow build up of charge density on a vacancy. A given atom may be transformed into a ghost after the basis set definition (input block 2, keyword GHOSTS, page 74).
16. The keyword SLABCUT (Geometry editing input, page 64) allows the creation of a slab (2D) of given thickness from the 3D perfect lattice. See for comparison test4-test24; test5-test25; test6-test26; test7- test27.
17. For slabs (2D), when two settings of the origin are indicated in the International Tables for Crystallography, setting number 2 is chosen. The setting can not be modified.
18. Conventional orientation of slabs and polymers: Polymers are oriented along the x axis. Slabs are parallel to the $x y$ plane.
19. The keywords MOLECULE (for molecular crystals only; page 53) and CLUSTER (for any n-D structure; page 42) allow the creation of a non-periodic system (molecule(s) or cluster) from a periodic one.

2.2 Basis set

Two different methods are available to input basis set data:

- Standard route
- Basis set input by keywords

2.2.1 Standard route

rec	variable	value	meaning
	NAT	n	conventional atomic 3 number
	NSHL	<200> 1000	all-electron basis set (Carbon, all electron BS: 6, 106, 1006)
		>200	valence electron basis set (Carbon, ECP BS: 206, 306) . ECP
			(Effective Core Pseudopotential) must be defined (page 75)
		$=99$	end of basis set input section
		n	number of shells
		0	end of basis set input (when NAT=99)
			AT > 200 insert ECP input (page 75) __II
			NSHL sets of records - for each shell
- * ITYB			type of basis set to be used for the specified shell:
		0	general BS, given as input
		1	Pople standard STO-nG ($\mathrm{Z}=1-54$)
		2	Pople standard $3(6)-21 G(Z=1-54(18))$ Standard polarization functions are included.
LAT			shell type:
		0	1 s AO (S shell)
		1	$1 \mathrm{~s}+3 \mathrm{p}$ AOs (SP shell)
		2	3 p AOs (P shell)
		3	5 d AOs (D shell)
		4	7 f AOs (F shell)
NG			Number of primitive Gaussian Type Functions (GTF) in the contraction for the basis functions (AO) in the shell
		$1 \leq \mathrm{NG} \leq 10$	for $\mathrm{ITYB}=0$ and LAT ≤ 2
		$1 \leq \mathrm{NG} \leq 6$	for $\mathrm{ITYB}=0$ and LAT $=3$
		$2 \leq \mathrm{NG} \leq 6$	for $\mathrm{ITYB}=1$
		6	$6-21 \mathrm{G}$ core shell
		3	$3-21 \mathrm{G}$ core shell
		2	$\mathrm{n}-21 \mathrm{G}$ inner valence shell
		1	$\mathrm{n}-21 \mathrm{G}$ outer valence shell
SCAL			formal electron charge attributed to the shell
			scale factor (if ITYB $=1$ and $\mathrm{SCAL}=0$., the standard Pople scale factor is used for a STO-nG basis set.
		if ITY	$B=0$ (general basis set insert $N G$ records __II
- *	EXP		exponent of the normalized primitive GTF
	COE1		contraction coefficient of the normalized primitive GTF:
			LAT $=0,1 \rightarrow \mathrm{~s}$ function coefficient
			LAT $=2 \rightarrow$ p function coefficient
			LAT $=3 \rightarrow$ d function coefficient
			LAT $=4 \rightarrow \mathrm{f}$ function coefficient
	COE2		LAT $=1 \rightarrow$ p function coefficient
		optional key	words terminated by END/ENDB or STOP ___ II

The choice of basis set is the most critical step in performing ab initio calculations of periodic systems, with Hartree-Fock or Kohn-Sham Hamiltonians. Optimization criteria are discussed in Chapter 16. When an effective core pseudo-potential is used, the basis set must be optimized with reference to that potential (Section 3.2 page 75).

1. A basis set (BS) must be given for each atom with different conventional atomic number defined in the crystal structure input. If atoms are removed (geometry input, keyword ATOMREMO, page 39), the corresponding basis set input can remain in the input stream. The keyword GHOSTS (page 74) removes the atom, leaving the associated basis set.
2. The basis set for each atom has NSHL shells, whose constituent AO basis functions are built from a linear combination ('contraction') of individually normalized primitive Gaussian-type functions (GTF) (Chapter 17, page 349).
3. A conventional atomic number NAT links the basis set with the atoms defined in the crystal structure. The atomic number Z is given by the remainder of the division of the conventional atomic number by 100 (Example: $\mathrm{NAT}=108, \mathrm{Z}=8$, all electron; $\mathrm{NAT}=228$, $\mathrm{Z}=28$, ECP). See point 5 below.
4. A conventional atomic number 0 defines ghost atoms, that is points in space with an associated basis set, but lacking a nuclear charge (vacancy). See test 28.
5. Atoms with equal conventional atomic number are associated with the same basis set.

NAT $<200>1000$: all electron basis set. A maximum of two different basis sets may be given for the same chemical species in different positions: NAT=Z, $\mathrm{NAT}=\mathrm{Z}+100$, $\mathrm{NAT}=\mathrm{Z}+1000$.
NAT $>$ 200: valence electron basis set. A maximum of two different BS may be given for the same chemical species in positions not symmetry-related: $\mathrm{NAT}=\mathrm{Z}+200$, $\mathrm{NAT}=\mathrm{Z}+300$. A core pseudo-potential must be defined. See Section 3.2 page 75 , for information on core pseudo-potentials.
Suppose we have four non-equivalent carbon atoms in the unit cell. Conventional atomic numbers 61061006206306 mean that carbon atoms (real atomic number 6) unrelated by symmetry are to be associated with different basis sets: the first tree $(6,106,1006)$ all-electron, the second two $(206,306)$ valence only, with pseudo-potential.
6. The basis set input ends with the card:
$990 \quad$ conventional atomic number 99,0 shell.
Optional keywords may follow.
In summary:

1. CRYSTAL can use the following all electrons basis sets:
a) general basis sets, including s, p, d, f functions (given in input);
b) standard Pople basis sets [118] (internally stored as in Gaussian 94 [90]).

STOnG, $\quad Z=1$ to 54
$6-21 \mathrm{G}, \quad \mathrm{Z}=1$ to 18
$3-21 \mathrm{G}, \quad \mathrm{Z}=1$ to 54
The standard basis sets b) are stored as internal data in the CRYSTAL code. They are all electron basis sets, and can not be combined with ECP.
2. Warning The standard scale factor is used for STO-nG basis set when the input datum SCAL is 0.0 in basis set input. All the atoms of the same row are attributed the same Pople STO-nG basis set when the input scale factor SCAL is 1 .
3. Standard polarization functions can be added to $6(3)-21 \mathrm{G}$ basis sets of atoms up to $\mathrm{Z}=18$, by inserting a record describing the polarization shell (ITYB $=2, \mathrm{LAT}=2$, p functions on hydrogen, or $\mathrm{LAT}=3$, d functions on 2-nd row atoms; see test 12).

H		Polarization functions exponents					He	
1.1								1.1
Li	Be		B	C	N	0	F	Ne
0.8	0.8		0.8	0.8	0.8	0.8	0.8	--
Na	Mg		Al	Si	P	S	Cl	Ar
0.175	0.175		0.325	0.45	0.55	0.65	0.75	0.85

The formal electron charge attributed to a polarization function must be zero.

4. The shell types available are :

shell shell	n.	order of internal storage	
code	type	AO	
0	S	1	s
1	SP	4	s, x, y, z
2	P	3	x, y, z
3	D	5	$2 z^{2}-x^{2}-y^{2}, x z, y z, x^{2}-y^{2}, x y$
4	F	7	$\left(2 z^{2}-3 x^{2}-3 y^{2}\right) z,\left(4 z^{2}-x^{2}-y^{2}\right) x,\left(4 z^{2}-x^{2}-y^{2}\right) y$,

When symmetry adaptation of Bloch functions is active (default; NOSYMADA in block3 to remove it), if F functions are used, all lower order functions must be present (D, P, $S)$.

The order of internal storage of the AO basis functions is an information necessary to read certain quantities calculated by the program properties. See Chapter 13. Mulliken population analysis (PPAN, page 106), electrostatic multipoles (POLI, page 303), projected density of states (DOSS, page 274) and to provide an input for some options (EIGSHIFT, input block 3, page 88).
5. Spherical harmonics d-shells consisting of 5 AOs are used.
6. Spherical harmonics f-shells consisting of 7 AOs are used.
7. The formal shell charges CHE, the number of electrons attributed to each shell, are assigned to the AO following the rules:

shell	shell	max	rule to assign the shell charges
code	type	CHE	
0	S	2.	CHE for s functions
1	SP	8.	if $\mathrm{CHE}>2,2$ for s and $(\mathrm{CHE}-2)$ for p functions, 2
P	6.	CHE for p functions	
3	D	10.	CHE for d functions
4	F	14.	CHE for f functions - it may be $\neq 0$ in CRYSTAL09.

8. A maximum of one open shell for each of the s, p and or d atomic symmetries is allowed in the electronic configuration defined in the input. The atomic energy expression is not correct for all possible double open shell couplings of the form $p^{m} d^{n}$. Either must equal 3 or n must equal 5 for a correct energy expression in such cases. A warning will be printed if this is the case. However, the resultant wave function (which is a superposition of atomic densities) will usually provide a reasonable starting point for the periodic density matrix.
9. When extended basis sets are used, all the functions corresponding to symmetries (angular quantum numbers) occupied in the isolated atom are added to the atomic basis set for atomic wave function calculations, even if the formal charge attributed to that shell is zero. Polarization functions are not included in the atomic basis set; their input occupation number should be zero.
10. The formal shell charges are used only to define the electronic configuration of the atoms to compute the atomic wave function. The initial density matrix in the SCF step may be a superposition of atomic (or ionic) density matrices (default option, GUESSPAT, page 100 . When a different guess is required (GUESSP), the shell charges are not used, but checked for electron neutrality when the basis set is entered.
11. F shells functions are not used to compute the "atomic" wave function, to build an atomic density matrix SCF guess. If F shells are occupied by n_{f} electrons, the "atomic" wave function is computed for an ion (F electrons are removed), and the diagonal elements of the atomic density matrix are then set to $n_{f} / 7$. The keyword FDOCCUP (input block 3, page 92 allows modification of f orbitals occupation.
12. Each atom in the cell may have an ionic configuration, when the sum of formal shell charges (CHE) is different from the nuclear charge. When the number of electrons in the cell, that is the sum of the shell charges CHE of all the atoms, is different from the sum of nuclear charges, the reference cell is non-neutral. This is not allowed for periodic systems, and in that case the program stops. In order to remove this constraint, it is necessary to introduce a uniform charged background of opposite sign to neutralize the system 57. This is obtained by entering the keyword CHARGED (page 72) after the standard basis set input. The value of total energy must be carefully checked.
13. It may be useful to allow atoms with the same basis set to have different electronic configurations (e.g, for an oxygen vacancy in MgO one could use the same basis set for all the oxygens, but begin with different electronic configuration for those around the vacancy). The formal shell charges attributed in the basis set input may be modified for selected atoms by inserting the keyword CHEMOD (input block 2, page 72 .
14. The energies given by an atomic wave function calculation with a crystalline basis set should not be used as a reference to calculate the formation energies of crystals. The external shells should first be re-optimized in the isolated atom by adding a low-exponent Gaussian function, in order to provide and adequate description of the tails of the isolated atom charge density [42] (keyword ATOMHF, input block 3, page 83).

Optimized basis sets for periodic systems used in published papers are available in:

http://www.crystal.unito.it

2.2.2 Basis set input by keywords

A few predefined basis set data can be retrieved by simply typing a keyword. For the moment being the set of available basis sets includes (available atomic numbers in parentheses):

- Pople's STO-3G minimal basis set (1-53)
- Pople's STO-6G minimal basis set (1-36)
- POB double- ζ valence + polarization basis set for solid state systems (1-35, 49, 74)
- POB double- ζ valence basis set + a double set of polarization functions for solid state systems (1-35, 49, 83)
- POB triple- ζ valence + polarization basis set for solid state systems (1-35, 49, 83)

Features and performance of Peintinger-Oliveira-Bredow (POB) basis sets are illustrated in Ref. 138 .

In order to enable basis set input by keywords, the following keyword must replace the final keyword, END, of the structure input (input block 1):

BASISSET

This card must be followed by the selection of a basis set type. The following sets are presently available as internal basis sets:

Basis set label	Basis set type
CUSTOM	Standard input basis set: insert cards as illustrated in section 2.2 .1
STO-3G	Pople's standard minimal basis set (3 Gaussian function contractions) 118
STO-6G	Pople's standard minimal basis set (6 Gaussian function contractions) 118$]$
POB-DZVP	POB Double- $\zeta+$ polarization basis set 138
POB-DZVPP	POB Double- $\zeta+$ double set of polarization functions 138
POB-TZVP	POB Triple- $\zeta+$ polarization basis set 138

Input example for rock-salt:

```
NaCl Fm-3m ICSD 240598
CRYSTAL
0 0
225
5.6401
2
11 0.0 0.0 0.0
17 0.5 0.5 0.5
BASISSET
POB-TZVP
DFT
EXCHANGE
PWGGA
CORRELAT
PWGGA
HYBRID
20
CHUNKS
200
END
TOLINTEG
777714
SHRINK
8
END
```


Basis set input from external file

If the basis set specified after the BASISSET keyword is not found in the internal basis set library (i.e. it is not one of those listed above), the program will search for the presence of a file named BASISSETS.DAT in the temporary (scratch) working directory. If the file is found, it will search for a basis with that label in the file.
The BASISSETS.DAT file is an external basis set database file that can contain as many basis set and for as many elements as desired. The format of such file is a number of entries \#BASIS followed by a basis set name label and the basis set in the usual CRYSTAL format, as it would appear in input. This means the block is closed by a " 990 " line, as in the Crystal input.

Warning: the BASISSETS.DAT file does not currently support pseudopotentials, only allelectron basis sets can be used.

Here's an example of one entry in the BASISSETS.DAT file, containing custom basis sets for H and Li atoms

```
#BASIS
mybasis
1 3
0 0 5 1.0 1.0
    120.0 0.000267
    40.0 0.002249
    12.8 0.006389
    4.0 0.032906
    1.2 0.095512
0 0 1 0.0 1.0
    0.51.0
0 0 1 0.0 1.0
    0.131.0
3 3
0 0 6 2. 1.
    700.0 0.001421
    220.0 0.003973
    70.0 0.01639
    20.0 0.089954
    5.0 0.315646
    1.5 0.494595
0 0 1 1. 1.
    0.5 1.0
0 2 1 0. 1.
    0.6 1.0
    99 0
```

An example .d12 input using this basis set would be:

```
lih bulk
CRYSTAL
0 0
225
4.0170
2
    30. 0. 0.
    10.5 0.5 0.5
BASISSET
mybasis
DFT
PBEO
END
SHRINK
8
END
```

In the output the reading from external basis file will be marked by the lines
WARNING **** MYBASIS **** SEARCHING FOR REQUESTED BASIS SET IN FILE BASISSETS.DAT and

```
Loading basis set from BASISSETS.DAT: MYBASIS
```


2.3 Computational parameters, hamiltonian, SCF control

Default values are set for all computational parameters. Default choices may be modified through keywords. Default choices:

	default	keyword to modify	page
hamiltonian:	RHF	UHF (SPIN)	115
tolerances for coulomb and exchange sums :	666612	TOLINTEG	114
Pole order for multipolar expansion:	4	POLEORDR	106
Max number of SCF cycles:	50	MAXCYCLE	103
Convergence on total energy:	10^{-6}	TOLDEE	114

For periodic systems, $1 \mathrm{D}, 2 \mathrm{D}, 3 \mathrm{D}$, the only mandatory input information is the shrinking factor, IS, to generate a commensurate grid of \mathbf{k} points in reciprocal space, according to PackMonkhorst method [148. The Hamiltonian matrix computed in direct space, H_{g}, is Fourier transformed for each \mathbf{k} value, and diagonalized, to obtain eigenvectors and eigenvalues:

$$
\begin{aligned}
& H_{k}=\sum_{g} H_{g} e^{i \mathbf{g k}} \\
& H_{k} A_{k}=S k A_{k} E_{k}
\end{aligned}
$$

A second shrinking factor, ISP, defines the sampling of k points, "Gilat net" [98, 97], used for the calculation of the density matrix and the determination of Fermi energy in the case of conductors (bands not fully occupied).
The two shrinking factors are entered after the keyword SHRINK (page 108).
In 3D crystals, the sampling points belong to a lattice (called the Pack-Monkhorst net), with basis vectors:
$\mathrm{b} 1 / \mathrm{is} 1, \mathrm{~b} 2 / \mathrm{is} 2, \mathrm{~b} 3 / \mathrm{is} 3 \quad$ is $1=\mathrm{is} 2=\mathrm{is} 3=\mathrm{IS}$, unless otherwise stated
where $\mathrm{b} 1, \mathrm{~b} 2$, b 3 are the reciprocal lattice vectors, and is1, is2, is3 are integers "shrinking factors".
In 2D crystals, IS3 is set equal to 1 ; in 1D crystals both IS2 and IS3 are set equal to 1 .
Only points k_{i} of the Pack-Monkhorst net belonging to the irreducible part of the Brillouin Zone (IBZ) are considered, with associated a geometrical weight, w_{i}. The choice of the reciprocal space integration parameters to compute the Fermi energy is a delicate step for metals. See Section 17.7 , page 355 .
Two parameters control the accuracy of reciprocal space integration for Fermi energy calculation and density matrix reconstruction:

IS shrinking factor of reciprocal lattice vectors. The value of IS determines the number of \mathbf{k} points at which the Fock/KS matrix is diagonalized.
In high symmetry systems, it is convenient to assign IS magic values such that all low multiplicity (high symmetry) points belong to the Monkhorst lattice. Although this choice does not correspond to maximum efficiency, it gives a safer estimate of the integral.
The k-points net is automatically made anisotropic for $1 D$ and 2D systems.

The figure presents the reciprocal lattice cell of 2D graphite (rhombus), the first Brillouin zone (hexagon), the irreducible part of Brillouin zone (in grey), and the coordinates of the \mathbf{k}_{i} points according to a Pack-Monkhorst sampling, with shrinking factor 3 and 6 .

ISP shrinking factor of reciprocal lattice vectors in the Gilat net (see 175, Chapter II.6). ISP is used in the calculation of the Fermi energy and density matrix. Its value can be equal to IS for insulating systems and equal to $2 *$ IS for conducting systems.
The value assigned to ISP is irrelevant for non-conductors. However, a non-conductor may give rise to a conducting structure at the initial stages of the SCF cycle (very often with DFT hamiltonians), owing, for instance, to a very unbalanced initial guess of the density matrix. The ISP parameter must therefore be defined in all cases.
Note. The value used in the calculation is ISP $=\mathrm{IS} * \mathrm{NINT}(\mathrm{MAX}(\mathrm{ISP}, \mathrm{IS}) / \mathrm{IS})$
In the following table the number of sampling points in the IBZ and in BZ is given for a fcc lattice (space group 225, 48 symmetry operators) and hcp lattice (space group 194, 24 symmetry operators). The CRYSTAL code allows 413 k points in the Pack-Monkhorst net, and 2920 in the Gilat net.

IS	points in IBZ fcc	points in IBZ hcp	points BZ
6	16	28	112
8	29	50	260
12	72	133	868
16	145	270	2052
18	195	370	2920
24	413	793	6916
32	897	1734	16388
36	1240	2413	23332
48	2769	5425	55300

1. When an anisotropic net is user defined (IS=0), the ISP input value is taken as ISP1 (shrinking factor of Gilat net along first reciprocal lattice) and ISP2 and ISP3 are set to: ISP2 $=($ ISP $*$ IS2 $) /$ IS1, ISP3 $=($ ISP $*$ IS3 $) /$ IS1.
2. User defined anisotropic net is not compatible with SABF (Symmetry Adapted Bloch Functions). See NOSYMADA, page 106 .

Some tools for accelerating convergence are given through the keywords LEVSHIFT (page 102 and tests 29, 30, 31, 32, 38), FMIXING (page 95), SMEAR (page 110), BROYDEN
(page 85) and ANDERSON (page 83).
At each SCF cycle the total atomic charges, following a Mulliken population analysis scheme, and the total energy are printed.
The default value of the parameters to control the exit from the SCF cycle $\left(\Delta E<10^{-6}\right.$ hartree, maximum number of SCF cycles: 50) may be modified entering the keywords:
TOLDEE (tolerance on change in total energy) page 114
TOLDEP (tolerance on SQM in density matrix elements) page ??
MAXCYCLE (maximum number of cycles) page 103

Spin-polarized system

By default the orbital occupancies are controlled according to the 'Aufbau' principle.
To obtain a spin polarized solution an open shell Hamiltonian must be defined (block3, UHF or DFT/SPIN). A spin-polarized solution may then be computed after definition of the (α β) electron occupancy. This can be performed by the keywords SPINLOCK (page 113) and BETALOCK (page 84).

Chapter 3

Wave-function Calculation Advanced Input Route

3.1 Geometry editing

The following keywords allow editing of the crystal structure, printing of extended information, generation of input data for visualization programs. Processing of the input block 1 only (geometry input) is allowed by the keyword TEST[GEOM].
Each keyword operates on the geometry active when the keyword is entered. For instance, when a 2 D structure is generated from a 3 D one through the keyword $\mathbf{S L A B C U T}$, all subsequent geometry editing operates on the 2D structure. When a dimer is extracted from a molecular crystal through the keyword MOLECULE, all subsequent editing refers to a system without translational symmetry.

The keywords can be entered in any order: particular attention should be paid to the action of the keywords KEEPSYMM 3.1 and BREAKSYM 3.1, that allow maintaining or breaking the symmetry while editing the structure.
These keywords behave as a switch, and require no further data. Under control of the BREAKSYM keyword (the default), subsequent modifications of the geometry are allowed to alter (reduce: the number of symmetry operators cannot be increased) the point-group symmetry. The new group is a subgroup of the original group and is automatically obtained by CRYSTAL. However if a KEEPSYMM keyword is presented, the program will endeavor to maintain the number of symmetry operators, by requiring that atoms which are symmetry related remain so after a geometry editing (keywords: ATOMSUBS, ATOMINSE, ATOMDISP, ATOMREMO).
The space group of the system may be modified after editing. For 3D systems, the file FINDSYM.DAT may be written (keyword FINDSYM). This file is input to the program findsym (http://physics.byu.edu/ stokesh/isotropy.html), that finds the space-group symmetry of a crystal, given the coordinates of the atoms.

Geometry keywords

Symmetry information

ATOMSYMM	printing of point symmetry at the atomic positions	40
MAKESAED	printing of symmetry allowed elastic distortions (SAED)	51
PRSYMDIR	printing of displacement directions allowed by symmetry.	62
SYMMDIR	printing of symmetry allowed geom opt directions	70
SYMMOPS	printing of point symmetry operators	70
TENSOR	print tensor of physical properties up to order 4	70

Symmetry information and control			
BREAKELAS	symmetry breaking according to a general distortion	41	
BREAKSYM	allow symmetry reduction following geometry modifications	41	
KEEPSYMM	maintain symmetry following geometry modifications	51	
MODISYMM	removal of selected symmetry operators	52	
PURIFY	cleans atomic positions so that they are fully consistent with the group	62	
SYMMREMO	removal of all symmetry operators	70	
TRASREMO	removal of symmetry operators with translational components	71	
Modifications without reduction of symmetry			
ATOMORDE	reordering of atoms in molecular crystals	38	
NOSHIFT	no shift of the origin to minimize the number of symmops with translational components before generating supercell		
ORIGIN	shift of the origin to minimize the number of symmetry operators with translational components		
PRIMITIV	crystallographic cell forced to be the primitive cell		
ROTCRY	rotation of the crystal with respect to the reference system cell	63	
Atoms and cell manipulation - possible symmetry reduction (BREAKSYMM)			
ATOMDISP	displacement of atoms	38	
ATOMINSE	addition of atoms	38	
ATOMREMO	removal of atoms	39	
ATOMROT	rotation of groups of atoms	39	
ATOMSUBS	substitution of atoms	40	
ELASTIC	distortion of the lattice	44	
POINTCHG	point charges input	61	
SCELCONF	generation of supercell for configuration counting	66	
SCELPHONO	generation of supercell for phonon dispersion	66	
SUPERCEL	generation of supercell - input refers to primitive cell	67	
SUPERCON	generation of supercell - input refers to conventional cell	67	
USESAED	given symmetry allowed elastic distortions, reads δ	71	
From crystals to slabs (3D $\rightarrow 2 \mathrm{D}$)			
SLABINFO	definition of a new cell, with $x y \\|$ to a given plane	65	
SLABCUT	generation of a slab parallel to a given plane ($3 \mathrm{D} \rightarrow 2 \mathrm{D}$)	64	
From slabs to nanotubes (2D \rightarrow 1D)			
NANOTUBE	building a nanotube from a slab	56	
SWCNT	building a nanotube from an hexagonal slab	69	
From periodic structures to clusters			
CLUSTER	cutting of a cluster from a periodic structure ($3 \mathrm{D} \rightarrow 0 \mathrm{D}$)	42	
CLUSTSIZE	maximum number of atoms in a cluster	43	
FULLE	building a fullerene from an hexagonal slab ($2 \mathrm{D} \rightarrow 0 \mathrm{D}$)	49	
HYDROSUB	border atoms substituted with hydrogens (0D $\rightarrow 0 \mathrm{D}$)	51	
Molecular crystals			

OPTGEOM Geometry optimization input block - closed by END
Type of optimization (default: atom coordinates)
FULLOPTG full geometry optimization
CELLONLY cell parameters optimization
INTREDUN optimization in redundant internal coordinates
ITATOCEL iterative optimization (atom/cell)
CVOLOPT full geometry optimization at constant volume
Initial Hessian
HESSIDEN
HESSMOD1
HESSMOD2 initial guess for the Hessian - model 2
HESSNUM initial guess for the Hessian - numerical estimate
Convergence criteria modification
TOLDEG \quad RMS of the gradient $[0.0003]$ I
TOLDEX RMS of the displacement [0.0012] I
TOLDEE energy difference between two steps $\left[10^{-7}\right]$ I
MAXCYCLE max number of optimization steps I

Optimization control	trol	
FRAGMENT	partial geometry optimization	174
RESTART	data from previous run	
FINALRUN	Wf single point with optimized geometry	
Gradient calculation control		
NUMGRATO	numerical atoms first derivatives	165
NUMGRCEL	numerical cell first derivatives	165
NUMGRALL	numerical atoms and cell first derivatives	165
External stress		
EXTPRESS	apply external hydrostatic pressure	176
Printing options		
PRINTFORCES atomic gradients		
PRINTHESS	Hessian	
PRINTOPT	optimization procedure	
PRINT	verbose printing	

Vibrational Frequencies - see index for keywords full list
FREQCALC \quad Harmonic Γ-frequencies calculation input - closed by END $\quad 181 \quad$ I
Normal modes analysis
ANALYSIS 183
COMBMODE TO combination modes and overtones 184
I

CPHF - Coupled Perturbed Hartree-Fock

ELASTCON - Second order elastic constants

Geometry input optional keywords

ANGLES

This option prints the angle the $\widehat{A X B}$, where X is one of the irreducible (that is, non symmetry equivalent) atoms of the unit cell, and A and B belong to its m-th and n-th stars of neighbors.

rec	variable	meaning
$*$	NATIR	number of X atoms to be considered; they are the first NATIR in the list of irreducible atoms (flag "T" printed) generated by CRYSTAL
$*$	NSHEL	number of stars of neighbors of X to be considered; all the angles $\widehat{A X B}$, where A and B belong to the first NSHEL neighbors of X, are printed out

Though the keyword ANGLES can be entered in geometry input, full input deck must be supplied (block 1-2-3), in order to obtain information on bond angles, when neighbors analysis is printed.
Example. Bulk Silicon. There is 1 irreducible atom, and the first star of neighbors contain 4 atoms: (from CRYSTAL output):

```
COORDINATES OF THE EQUIVALENT ATOMS (FRACTIONAL UNITS)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & ATOM & ATOM & Z & X & Y & Z \\
\hline \multicolumn{7}{|c|}{IRR EQUIV} \\
\hline 1 & 1 & 1 & 14 SI & \(1.250000 \mathrm{E}-01\) & \(1.250000 \mathrm{E}-01\) & 1.250000E-01 \\
\hline 2 & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\(2{ }^{1}\)}} \\
\hline & & & & & & \\
\hline
\end{tabular}
STAR ATOM N R/ANG R/AU NEIGHBORS (ATOM LABELS AND CELL INDICES)
1 1 SI 4 2.3469 4.4351 2 SI 0 0 0 2 SI 1 1 0 0 2 SI 
                        2 SI 0 0 1
```

The number of angles having the irreducible Silicon as vertex is: $(4)^{*}(4-1) / 2=6$

```
aNGLES (DEGREES) ARE INDICATED AS A-X-B(I),I=1,L
at A cell at X at B cell angle at B cell angle at B cell angle
    AXB AXB AXB
2 SI( 0 0 0) 1 SI 2 SI( 1 0 0) 109.47 2 SI( 0 1 0) 109.47 2 SI( 0 0 1) 109.47
2 SI( 1 0 0) 1 SI 2 SI( 0 1 0) 109.47 2 SI( 0 0 1) 109.47
2 SI( 0 1 0) 1 SI 2 SI( 0 0 1) 109.47
```

If it is required to consider 6 stars of neighbors to compute all the angles having the irreducible Silicon as vertex, the number of angles computed will be: $(4+12+12+6+12+24)^{*}(4+12+12+6+12+24-1) / 2=2415$

ANGSTROM - unit of measure

The unit of length in geometry editing is set to \AA Angstrom, (default value).

ANHARM - Anharmonic calculation of frequencies of X-H (X-D) bond stretching

See Chapter 7. page 206.

ATOMBSSE - counterpoise for closed shell atoms and ions

rec	variable	meaning
$*$	IAT	label of the atom in the reference cell
	NSTAR	maximum number of stars of neighbors included in the calculation.
	RMAX	maximum distance explored searching the neighbors of the atom.

A cluster is defined including the selected atom and the basis functions belonging to the NSTAR sets of neighbors, when their distance R from the central atom is smaller than RMAX. The atomic wave function is not computed by the atomic package, but by the standard CRYSTAL route for 0D, 1 atom system. UHF and SPINLOCK must be used to define a reasonable orbital occupancy. It is suggested to compute the atomic wave function using a program properly handling the electronic configuration of open shell atoms.
Use keyword CLUSTER 43) to extend the number of atoms in the cluster if requested.
Warning. The system is 0D. No reciprocal lattice information is required in the scf input (Section 2.3. page 29).

ATOMDISP

rec	variable	meaning
$\bullet *$	NDISP	number of atoms to be displaced
insert NDISP records		
- $*$ LB	label of the atom to be moved	
DX,DY,DZ	increments of the coordinates in the primitive cell $[\AA]$.	

Selected atoms are displaced in the primitive cell. The point symmetry of the system may be altered (default value BREAKSYM, page 41). To displace all the atoms symmetry related, KEEPSYMM must be inserted before ATOMDISP.
Increments are in Ångstrom, unless otherwise requested (keyword BOHR, FRACTION, page 37). See tests 17, 20, 37.

ATOMINSE

rec variable	meaning
- * NINS	number of atoms to be added
	_ insert NINS records ___ II
- * NA	conventional atomic number
X,Y,Z	coordinates $[\AA]$ of the inserted atom. Coordinates refer to the primitive cell.

New atoms are added to the primitive cell. Coordinates are in Angstrom, unless otherwise requested (keyword BOHR, FRACTION, page 37). Remember that the original symmetry of the system is maintained, applying the symmetry operators to the added atoms if the keyword KEEPSYMM (page 41) was previously entered. The default is BREAKSYM (page 41). Attention should be paid to the neutrality of the cell (see CHARGED, page 72). See tests 16, 35, 36.

ATOMORDE

After processing the standard geometry input, the symmetry equivalent atoms in the reference cell are grouped. They may be reordered, following a chemical bond criterion. This simplifies the interpretation of the output when the results of bulk molecular crystals are compared with those of the isolated molecule. See option MOLECULE (page 53) and MOLSPLIT (page 54). No input data are required.

For molecular crystals only.

ATOMREMO

rec	variable	meaning
\bullet		NL
\bullet		lamber of atoms to remove

Selected atoms, and related basis set, are removed from the primitive cell (see test 16). A vacancy is created in the lattice. The symmetry can be maintained (KEEPSYMM), by removing all the atoms symmetry-related to the selected one, or reduced (BREAKSYM, default). Attention should be paid to the neutrality of the cell (see CHARGED, page 72).
NB. The keyword GHOSTS (basis set input, page 74) allows removal of selected atoms, leaving the related basis set.

ATOMROT

This option allows to rotate and/or translate the specified atoms. When the rotation of a molecule is required $(\mathrm{NA}<0)$, the value of the atomic radii must be checked, in order to obtain a correct definition of the molecule. It is useful to study the conformation of a molecule in a zeolite cavity, or the interaction of a molecule (methane) with a surface (MgO).
The translation of the selected group of atoms can be defined in three different ways:

1. Cartesian components of the translation vector (ITR <0);
2. modulus of the translation vector along an axis defined by two atoms $(\operatorname{ITR}=0)$;
3. sequence number of the atom to be translated to the origin. All the selected atoms are subjected to the same translation (ITR >0).

The rotation can be performed in three different ways:

1. by defining the Euler rotation angles α, β, γ and the origin of the rotating system (IRO <0). The axes of the rotating system are parallel to the axes of the Cartesian reference system. (The rotation is given by: $\mathrm{R}^{\alpha z} \mathrm{R}^{\beta x} \mathrm{R}^{\gamma z}$, where R are the rotation matrices).
2. by defining the rotation angle α around an axis defined by two atoms A and B . The origin is at A, the positive direction $A \rightarrow B$.
3. by defining a z^{\prime} axis (identified by two atoms A and B). The selected atoms are rotated, in such a way that the $\mathrm{A}-\mathrm{B} z^{\prime}$ axis becomes parallel to the z Cartesian axis. The origin is at A and the positive rotation anti clockwise ($\mathrm{IRO}>0, \alpha=0$).

The selected atoms are rotated according to the defined rules, the cell orientation and the cartesian reference frame are not modified. The symmetry of the system is checked after the rotation, as the new geometry may have a different symmetry.
See tests 15 , rotation of the NH_{3} molecule in a zeolite cavity, and 16, rotation of the $\mathrm{H}_{2} \mathrm{O}$ molecule in the zeolite cavity.

ATOMSUBS

rec	variable	meaning
$\bullet *$	NSOST	number of atoms to be substituted
insert NSOST records		
$*$	LB	label of the atom to substitute
	NA(LB $)$	conventional atomic number of the new atom

Selected atoms are substituted in the primitive cell (see test $17,34,37$). The symmetry can be maintained (KEEPSYMM), by substituting all the atoms symmetry-related to the selected one, or reduced (BREAKSYM, default). Attention should be paid to the neutrality of the cell: a non-neutral cell will cause an error message, unless allowed by entering the keyword CHARGED, page 72 .

ATOMSYMM

The point group associated with each atomic position and the set of symmetry related atoms are printed. No input data are required. This option is useful to find the internal coordinates to be relaxed when the unit cell is deformed (see ELASTIC, page 44).

BOHR

The keyword BOHR sets the unit of distance to bohr. When the unit of measure is modified, the new convention is active for all subsequent geometry editing.
The conversion factor Ångstrom/bohr is 0.5291772083 (CODATA 1998). This value can be modified by entering the keyword BOHRANGS and the desired value in the record following. The keyword BOHRCR98 sets the conversion factor to 0.529177 , as in the program CRYSTAL98.
CRYSTAL88 default value was 0.529167).

BOHRANGS

rec variable	meaning
$\bullet \quad$ BOHR	conversion factor Ångstrom/bohr

The conversion factor Ångstrom/bohr can be user-defined.
In CRYSTAL88 the default value was 0.529167 .
In CRYSTAL98 the default value was 0.529177 .

BOHRCR98

The conversion factor Ångstrom/bohr is set to 0.529177 , as in CRYSTAL98. No input data required.

BREAKSYM

Under control of the BREAKSYM keyword (the default), subsequent modifications of the geometry are allowed to alter (reduce: the number of symmetry operators cannot be increased) the point-group symmetry. The new group is a subgroup of the original group and is automatically obtained by CRYSTAL.
The symmetry may be broken by attributing different spin (ATOMSPIN, block34, page 83) to atoms symmetry related by geometry.
Example: When a CO molecule is vertically adsorbed on a (001) 3-layer MgO slab, $\left(D_{4 h}\right.$ symmetry), the symmetry is reduced to $C_{4 v}$, if the BREAKSYM keyword is active. The symmetry operators related to the σ_{h} plane are removed. However, if KEEPSYMM is active, then additional atoms will be added to the underside of the slab so as to maintain the σ_{h} plane (see page 38, keyword ATOMINSE).

BREAKELAS (for 3D systems only)

This keyword breaks the symmetry of 3D sysems according to a general distortion (3x3 adimensional matrix, not necessarily symmetric):

rec	variable	value	meaning
\bullet	$*$	D11 D12 D13	first row of the matrix.
-	D21 D22 D23	second row of the matrix.	
-	D31 D32 D33	third row of the matrix.	

BREAKELAS can be used when the symmetry must be reduced to apply an external stress not compatible with the present symmetry.

BREAKELAS reduces the symmetry according to the distortion defined in input, but does not perform a distortion of the lattice.

Another possibility is when you compute elastic constants, and you want to fix a reference geometry with FIXINDEX. If your reference geometry has a symmetry higher than the distorted one, then you had to break the symmetry by applying e.g. a tiny elastic distortion with ELASTIC. By using BREAKELAS you can reduce the symetry without distortion of the lattice.

Example - Geometry optimization of MgO bulk, cubic, with an applied uniaxial stress modifying the symmetry of the cell.

```
TEST11 - MGO BULK
CRYSTAL
O 0
    225
4.21
2
    12 0. 0. 0.
    80.5 0.5 0.5
BREAKELAS the number of symmops is reduced, from 48 to 16
0.001 0.0. the cell has a tetragonal symmetry now
0.0.0.
0.0.0.
OPTGEOM
FULLOPTG
0.001 0. 0.
0. 0. 0.
```

0 . 0.0 .
ENDOPT

CLUSTER - a cluster (0D) from a periodic system

The CLUSTER option allows one to cut a finite molecular cluster of atoms from a periodic lattice. The size of the cluster (which is centred on a specified 'seed point' A) can be controlled either by including all atoms within a sphere of a given radius centred on A, or by specifying a maximum number of symmetry-related stars of atoms to be included.
The cluster includes the atoms B (belonging to different cells of the direct lattice) satisfying the following criteria:

1. those which belong to one of the first N (input data) stars of neighbours of the seed point of the cluster.

and

2. those at a distance $R_{A B}$ from the seed point which is smaller then RMAX (input datum).

The resulting cluster may not reproduce exactly the desired arrangement of atoms, particularly in crystals with complex structures such as zeolites, and so it is possible to specify border modifications to be made after definition of the core cluster.
Specification of the core cluster:

Border modification:

rec variable value meaning			
- *	NMO		number of border atoms to be modified
			if NMO >0 insert NMO records __II
- *	IPAD		label of the atom to be modified (cluster sequence)
	NVIC		number of stars of neighbours of atom IPAD to be added to the cluster
	IPAR	$=0$	no hydrogen saturation
		$\neq 0$	cluster border saturated with hydrogen atoms
	BOND		bond length Hydrogen-IPAD atom (direction unchanged). \qquad if $N M O<0$ insert \qquad
- *	IMIN		label of the first atom to be saturated (cluster sequence)
	IMAX		label of the last atom to be saturated (cluster sequence)
	NVIC		number of stars of neighbours of each atom to be added to the cluster
	IPAR	$=0$	no hydrogen saturation
		$\neq 0$	cluster border saturated with hydrogen atoms
	BOND		H -cluster atom bond length (direction unchanged).

The two kinds of possible modification of the core cluster are (a) addition of further stars of neighbours to specified border atoms, and (b) saturation of the border atoms with hydrogen. This latter option can be essential in minimizing border electric field effects in calculations for covalently-bonded systems.
(Substitution of atoms with hydrogen is obtained by HYDROSUB).
The hydrogen saturation procedure is carried out in the following way. First, a coordination number for each atom is assumed (by default 4 for $\mathrm{Si}, 4$ for Al and 2 for O , but these may be modified in the input deck for any atomic number). The actual number of neighbours of each specified border atom is then determined (according to a covalent radius criterion) and compared with the assumed connectivity. If these two numbers differ, additional neighbours are added. If these atoms are not neighbours of any other existing cluster atoms, they are converted to hydrogen, otherwise further atoms are added until the connectivity allows complete hydrogen saturation whilst maintaining correct coordination numbers.
The label of the IPAD atoms refers to the generated cluster, not to the original unit cell. The preparation of the input thus requires two runs:

1. run using the CLUSTER option with $\mathrm{NMO}=0$, in order to generate the sequence number of the atoms in the core cluster. The keyword TESTGEOM should be inserted in the geometry input block. Setting NNA $\neq 0$ in the input will print a coordination analysis of all core cluster atoms, including all neighbours within a distance RNNA (which should be set slightly greater than the maximum nearest neighbour bond length). This can be useful in deciding what border modifications are necessary.
2. run using the CLUSTER option with NMO $\neq 0$, to perform desired border modifications.

Note that the standard CRYSTAL geometry editing options may also be used to modify the cluster (for example by adding or deleting atoms) placing these keywords after the specification of the CLUSTER input.
Use keyword CLUSTER 43) to extend the number of atoms in the cluster if requested.
Warning. The system is 0D. No reciprocal lattice information is required in the scf input (Section 2.3, page 29). See test 16.

CLUSTSIZE - maximum size of a cluster

rec	variable	meaning
$\bullet *$	NATOCLU	maximum number of atoms allowed in creating a cluster

This keyword sets a new limit to the maximum number of atoms allowed in a cluster created by keywords CLUSTER, ATOMBSSE and MOLEBSSE. Default value is equal to the number of atoms in the unit cell.

CONFCNT - Mapping of CRYSTAL calculations to model Hamiltonians

See Chapter 10.1, page 232 .

CIFPRT

This keyword, to be inserted in the geometry input block, generates a file GEOMETRY.CIF where the structure of a 3D system is written in .cif format. Symmetry is not taken into account.

CIFPRTSYM

This keyword, to be inserted in the geometry input block, generates a file GEOMETRY.CIF where the structure of a 3D system is written in .cif format. Symmetry is taken into account.

COORPRT

Geometry information is printed: cell parameters, fractional coordinates of all atoms in the reference cell, symmetry operators.
A formatted file, "fort.33" , is written. See Appendix D page 398. No input data are required. The file "fort. 33 " has the right format for the program MOLDEN [199] which can be downloaded from:
www.cmbi.ru.nl/molden/molden.html

CPHF - performs the Coupled Perturbed HF/KS calculation up to the second order

See Chapter 9.2, page 225

ELASTCON - Calculation of elastic constants

See Chapter 12, page 243 .

ELASTIC

An elastic deformation of the lattice may be defined in terms of the Z or ϵ strain tensors defined in section 17.9, page 358 .

The elastic constant is $\left.V^{-1} \frac{\partial^{2} E}{\partial \epsilon_{i}^{2}}\right|_{\epsilon_{i}=0}$, where V is the volume of the primitive unit cell. The symmetry of the system is defined by the symmetry operators in the new crystallographic cell. The keyword MAKESAED gives information on symmetry allowed elastic distortions. The calculation of the elastic constants with CRYSTAL requires the following sequence of steps:

1. select the $\epsilon_{i j}$ matrix elements to be changed (for example, $\epsilon_{4} \equiv \epsilon_{23}+\epsilon_{32}$), and set the others ϵ_{j} to zero;
2. perform calculations with different values of the selected matrix element(s) $\epsilon_{i}: 0.02,0.01$, $0.001,-0.001,-0.01,-0.02$, for example, and for each value compute the total energy E;
3. perform a polynomial fit of E as a function of ϵ_{i}.
ϵ is adimensional, Z in \AA (default) or in bohr (page 37). The suggested value for IDEF is -2 (deformation through equation 17.48 , not volume conserving). The examples refer to this setting.
Example
Geometry input deck to compute one of the energy points used for the evaluation of the C_{44} (page 361) elastic constants of $\mathrm{Li}_{2} \mathrm{O}$ 62].

CRYSTAL	
000	3D code
225	3D space group number
4.5733	lattice parameter (\AA)
2	2 non equivalent atoms in the primitive cell
$\begin{array}{llll}8 & 0.0 & 0.0 & 0.0\end{array}$	$\mathrm{Z}=8$, Oxygen; x, y, z
3 . 25.25 .25	$\mathrm{Z}=3$, Lithium; x, y, z
ATOMSYMM	printing of the point group at the atomic positions
ELASTIC	
-2	deformation not volume conserving through equation 17.48
0. 0.030 .03	ϵ matrix input by rows
0.03 0. 0.03	
$\begin{aligned} & 0.03 \quad 0.03 \quad 0 . \\ & \text { ATOMSYMM } \end{aligned}$	printing of the point group at the atomic positions after the defor-
	mation

A rhombohedral deformation is obtained, through the ϵ matrix. The printout gives information on the crystallographic and the primitive cell, before and after the deformation:

```
LATTICE PARAMETERS (ANGSTROMS AND DEGREES) OF
(1) ORIGINAL PRIMITIVE CELL
(2) ORIGINAL CRYSTALLOGRAPHIC CELL
(3) DEFORMED PRIMITIVE CELL
(4) DEFORMED CRYSTALLOGRAPHIC CELL
```

	A	B	C	ALPHA	BETA	GAMMA	VOLUME
(1)	3.233811	3.233811	3.233811	60.000000	60.000000	60.000000	23.912726
(2)	4.573300	4.573300	4.573300	90.000000	90.000000	90.000000	95.650903
(3)	3.333650	3.333650	3.333650	56.130247	56.130247	56.130247	23.849453
(4)	4.577414	4.577414	4.577414	86.514808	86.514808	86.514808	95.397811

After the deformation of the lattice, the point symmetry of the Li atoms is $\mathrm{C}_{3 v}$, where the C_{3} axis is along the (x, x, x) direction. The Li atoms can be shifted along the principal diagonal, direction (x, x, x) of the primitive cell without altering the point symmetry, as shown by the printing of the point group symmetry obtained by the keyword ATOMSYMM (page 40).
See test20 for complete input deck, including shift of the Li atoms.
See test38 $\left(\mathrm{KCoF}_{3}\right)$.

END

Terminate processing of block 1, geometry definition, input. Execution continues. Subsequent input records are processed, if required.
Processing of geometry input block stops when the first three characters of the string are "END". Any character can follow: ENDGEOM, ENDGINP, etc etc.

EXTPRT

A formatted input deck with explicit structural/symmetry information is written in file "fort. 34 ". If the keyword is entered many times, the data are overwritten. The last geometry is recorded. The file may be used as crystal geometry input to CRYSTAL through the EXTERNAL keyword.
For instance, to enter the final optimized geometry, or a geometry obtained by editing operations who modified the original space group or periodicity.
When geometry optimization is performed, the name of the file is "optc(a) $x x x$ ", being $x x x$ the number of the cycle, and it is automatically written at each cycle.
Please refer to the standard script for running CRYSTAL09 to handle input/output file names. See Appendix D, page 393 .

No input data are required.

FIELD - Electric field along a periodic direction

This option can be used with polymers, slabs and crystals and permits to apply an electric field along a periodic direction of the system.
The effect of a periodic electric field (\vec{E}) is taken into account according to a perturbation scheme. The Hamiltonian (Fock or Kohn-Sham) can be written as::

$$
\begin{equation*}
\hat{H}=\hat{H}_{0}+\hat{H}_{1}(\vec{E}) \tag{3.1}
\end{equation*}
$$

where \hat{H}_{0} is the unperturbed Hamiltonian and $\hat{H}_{1}(\vec{E})$ the electric potential term.
During the SCF procedure crystalline orbitals are relaxed under the effect of the field, leading to a perturbed wave function and charge density.

The applied electric field has a square-wave form, that corresponds to a triangular ("sawtooth") electric potential.
Due to the form of the potential, a single unit cell must contain both positive and negative part of the square wave electric field. Then, in order to maintain translational invariance of the system a new, expanded, unit cell is automatically created by adopting a supercell approach (see keywords SUPERCEL/SUPERCON, page 67).
This procedure consists in two automatic steps: the re-orientation of the c lattice parameter along the chosen field direction and the multiplication of this lattice vector according to the supercell expansion factor ($\vec{C}=\mathrm{SMFACT} \cdot \vec{c}$, see fig. 3.1). By varying this parameter is possible to control the period of the electric potential and therefore the length of the constant region of the electric field.

Then, for computational reasons, an automatic rotation of the crystal in the cartesian reference

Figure 3.1: Triangular electric potential ("sawtooth") in a supercell with $S M F A C T=4$.

system is performed by aligning \vec{C} (and therefore \vec{E}) along the z cartesian direction (see keyword ROTCRY, page 63). After these transformations the field is along the z direction, and the perturbation $\hat{H}_{1}(\vec{E})$ takes the form:

$$
\begin{equation*}
\hat{H}_{1}^{ \pm}\left(E_{z}\right)=V(z)=-q E_{0} \cdot f^{ \pm}(z) \tag{3.2}
\end{equation*}
$$

where the $f^{+}\left(f^{-}\right)$function is expanded as a Fourier series and is chosen according to the symmetry of the supercell in the direction of the applied field as follows:

$$
\begin{align*}
& f^{+}(z)=\frac{2 C}{\pi^{2}} \sum_{k=0}^{+\infty} \frac{1}{(2 k+1)^{2}} \cos \left(\frac{2 \pi(2 k+1) z}{C}\right) \tag{3.3}\\
& f^{-}(z)=\frac{2 C}{\pi^{2}} \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \sin \left(\frac{2 \pi(2 k+1) z}{C}\right) \tag{3.4}
\end{align*}
$$

1. In order to evaluate the dielectric constant of a material in the direction of the applied field it is necessary to run a PROPERTIES calculation with the keyword DIEL (see page 272 . In this way the perturbed wave function is used for the calculation of ϵ, following a macroscopic average scheme, as described in references 91, 50.
2. The field is along the z axis for 3D-crystal calculations; it is along the x for 1 D -polymer and 2D-slab calculations.
3. In calculations of the dielectric constant, more accurate results can be achieved by increasing the SMFACT value. This will lead to systems characterized by a high number of atoms with large computational costs. The option IORTO $=0$ allows to consider non-orthogonal supercells, characterized by the same dielectric properties of orthogonal cells, but with a lower number of atoms.
4. In 3D-crystals, the electric potential takes a triangular form to maintain translational symmetry and electric neutrality of cell. The symmetry of triangular potential has two options:
a) $\operatorname{ISYM}=+1$, triangular potential is symmetric with respect to the center of the supercell, along the z axis. Use this option if there is a symmetry plane orthogonal to the z axis.
b) $\mathrm{ISYM}=-1$, triangular potential is anti-symmetric. This option can be used when the supercell does not have a symmetry plane orthogonal to z axis.
5. MUL, the number of terms in the Fourier expansion, can take values between 1 and 60 . $\mathrm{MUL}=40$ is sufficient to adequately reproduce the triangular shape of the potential.

Figure 3.2: Left: symmetric triangular electric potential (ISIM $=1$). Right anti-symmetric triangular electric potential (ISYM=-1).

6. High E0MAX values are inconsistent with perturbation method, the choice of E0MAX depends on the dielectric susceptibility of the system and on the gap width. For small gap cases, use of eigenvalue level shifting technique is recommended (keyword LEVSHIFT, page 102 .
7. When an external field is applied, the system can become conducting during the SCF procedure. In order to avoid convergence problems, it is advisable to set the shrinking factor of the Gilat net ISP equal to $2 \times$ IS, where IS is the Monkhorst net shrinking factor (see SCF input, page 108).

Conversion factors for electric field:
$1 \mathrm{AU}=1.71527 \mathrm{E}+07 \mathrm{ESU} \cdot \mathrm{CM}^{-2}=5.72152 \mathrm{E}+01 \mathrm{C} \cdot \mathrm{M}^{-2}=5.14226 \mathrm{E}+11 \mathrm{~V} \cdot \mathrm{M}^{-1}$

FIELDCON - Electric field along non-periodic direction

rec	variable	meaning
$\bullet \quad$	$\mathrm{E}(\mathrm{I}), \mathrm{I}=\mathrm{N}, 3$	field components along $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions

For a brief theoretical introduction see keyword FIELD.
This option can be used with molecules, polymers, slabs and permits to apply an electric field along a non-periodic direction of the system.

1. For molecules $(\mathrm{N}=1)$ three components of the field must be supplied, as the field can be directed along any direction.
2. For polymers $(\mathrm{N}=2)$ two components (y, z) of the field must be defined; the x component of the field must be zero because the default orientation of polymers is along the x axis.
3. For slabs $(\mathrm{N}=3)$ just one component (z) of the field have to be defined; the x, y components must be zero because the default orientation of slabs in is in x-y plan.

Conversion factors for electric field:
$1 \mathrm{AU}=1.71527 \mathrm{E}+07 \mathrm{ESU} \cdot \mathrm{CM}^{-2}=5.72152 \mathrm{E}+01 \mathrm{C} \cdot \mathrm{M}^{-2}=5.14226 \mathrm{E}+11 \mathrm{~V} \cdot \mathrm{M}^{-1}$
This option can evaluate the dielectric response of the molecule, polymer or slab in a direction of non periodicity (see option FIELD for a field along a periodicity direction).
Consider the following expansion of the total energy of the system as a function of the applied field:

$$
\begin{equation*}
E\left(F_{0}\right)=E_{0}-\mu F_{0}-\frac{1}{2!} \alpha F_{0}^{2}-\frac{1}{3!} \beta F_{0}^{3}-\frac{1}{4!} \gamma F_{0}^{4}-\cdots \tag{3.5}
\end{equation*}
$$

By fitting the E vs F_{0} data the μ, α, β and γ values can be derived. See http://www.crystal.unito.it \rightarrow tutorials \rightarrow Static dielectric constants..

FINDSYM

Geometry information is written in file FINDSYM.DAT, according to the input format of the program FINDSYM.

> http://stokes.byu.edu/findsym.html

FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit cell. When geometry editing modifies the basic input space group, the symmetry of the system is identified by the symmetry operators only. The program FINDSYM allows identification of the space group.

FRACTION

The keyword FRACTION means input coordinates given as fraction of the lattice parameter in subsequent input, along the direction of translational symmetry:

```
x,y,z crystals (3D)
x,y slabs (2D; z in Ångstrom or bohr)
x polymers (1D; y,z in Ångstrom or bohr)
```

no action for 0D. When the unit of measure is modified, the new convention is active for all subsequent geometry editing.

FREQCALC - Harmonic frequencies at Γ

See Chapter 7, page 181 .

FULLE - Building a fullerene from a slab

Fullerenes are molecular cage-like structures. An effective way of constructing them exploiting all the possible symmetry is by starting from a 2 D periodic flat structure.
In this flat lattice, the vector $\mathbf{R}=n_{1} \overrightarrow{a_{1}}+n_{2} \overrightarrow{a_{2}}$ (where $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$ are the slab cell vectors) permits to define the side of a triangular face of the fullerene. Then, the indices ($n 1, n 2$) completely define the faces of the fullerene, and are used in the literature to characterise this type of systems. The case of a $(2,2)$ carbon fullerene is given in figure 3.3 as an example.
Once the face is defined, the second key information is the type of polyhedron to be constructed, and the corresponding point symmetry. CRYSTAL cuurently permits the automatic construction of the following combinations:

- Icosahedron: I, I_{h};
- Octahedron: $T, T_{d}, T_{h}, O, O_{h}$;
- Tetrahedron: T, T_{d}.

The FULLE keyword can only be used starting from hexagonal 2D lattices.
For further details and explanatory animations, please refer to the tutorial page:
http://www.crystal.unito.it \rightarrow tutorials \rightarrow Fullerene systems
Users of the fullerene construction options are kindly requested to cite the following paper [151]:

Figure 3.3: Building the $(2,2)$ fullerene from graphene.
Y. Noël, M. De La Pierre, C.M. Zicovich-Wilson, R. Orlando and R. Dovesi, Phys. Chem. Chem. Phys., 16, 13390 (2014). Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: insights from an ab initio hybrid DFT study.

rec variable	value	meaning
$\bullet n_{1}, n_{2}$		components of the \mathbf{R} vector in terms of the basis vectors \vec{a}_{1} and \vec{a}_{2} of the hexagonal unit cell
- * PG	T	point group for the fullerene
	TD	
	TH	
	0	
	OH	
	I	
	IH	
- * POLY	TETRA	type of polyhedron
	OCTA	
	ICOSA	

FULLEJMOL - Graphical visualisation of fullerenes with Jmol

A file named FULLEJMOL.DAT containing the fullerene structure is generated. This file can be directly used by the 3D structure viewer Jmol (www.jmol.org). This keyword must appear in the geometry block before all the keywords related to fullerene construction.

FULLESPHE - Spherical fullerenes

rec variable meaning
$\bullet *$ RSPHE distance from the origin $[\mathrm{A}]$

All the atoms of the fullerene are moved to the same radius RSPHE; this is the distance from the origin of the cartesian framework. RSPHE is in Ångstrom, unless otherwise requested (keyword BOHR, page 37). The symmetry of the fullerene is preserved. This option permits to construct spherical fullerenes.

This keyword can be used when building fullerenes from a slab (FULLE keyword, page 49), when generating a fullerene from molecular point groups with MOLECULE, page 18 (additional RADFULLE keyword required, page 62, or when recovering a fullerene geometry from an external file with EXTERNAL, page 19 (additional RADFULLE keyword required). FULLESPHE must always be inserted after the FULLE or RADFULLE keywords.

HYDROSUB - substitution with hydrogen atoms

rec	variable	meaning
$\bullet *$	NSOST	number of atoms to be substituted with hydrogen
		insert NSOST records
	$*$	LA
	LB	label of the atom to substitute
	BH	label of the atom linked to LA
bond length B-Hydrogen		

Selected atoms are substituted with hydrogens, and the bond length is modified. To be used after CLUSTER.

KEEPSYMM

In any subsequent editing of the geometry, the program will endeavour to maintain the number of symmetry operators, by requiring that atoms which are symmetry related remain so after geometry editing (keywords: ATOMSUBS, ATOMINSE, ATOMDISP, ATOMREMO) or the basis set (keywords CHEMOD, GHOSTS).
Example: When a CO molecule is vertically adsorbed on a (001) 3-layer MgO slab, $\left(D_{4 h}\right.$ symmetry) (see page 38, keyword ATOMINSE), the symmetry is reduced to $C_{4 v}$, if the BREAKSYM keyword is active. The symmetry operators related to the σ_{h} plane are removed. However, if KEEPSYMM is active, then additional atoms will be added to the underside of the slab so as to maintain the σ_{h} plane.

LATVEC - maximum size of the cluster of classified lattice vectors

rec	variable	meaning
$\bullet *$	MAXGSIZE	maximum number of lattice vectors to be classified

A very accurate CRYSTAL calculation may require the evaluation of interactions between atoms in very distant cells (when using very severe computational conditions). If the list of lattice vectors which were classified by default is incomplete with respect to the requirement, an error message appears. In this case it is necessary to extend MAXGSIZE beyond its default value (3500).

MAKESAED

Symmetry allowed elastic distortions are printed. No input data required.
MAXNEIGHB - maximum number of equidistant neighbours of an atom

rec	variable	meaning
\bullet *	MAXNEIG	maximum number of atoms allowed in creating a cluster

When printing of atom neighbouring relationship is requested (NEIGHBOR, page 59) for several orders of vicinity the number of equidistant atoms from a given atom in the unit cell can be large. If such a number exceeds 48 (default value), the program stops with an error message. Use of this keyword allows increasing the value of MAXNEIG.

MODISYMM

rec	variable	meaning
$\bullet \quad * \mathrm{~N}$	number of atoms to be attached a flag	
$\bullet \quad * \mathrm{LA}, \mathrm{LF}(\mathrm{LA}), \mathrm{L}=1, \mathrm{~N}$	atom labels and flags (n couples of integers in 1 record).	

The point symmetry of the lattice is lowered by attributing a different "flag" to atoms related by geometrical symmetry. The symmetry operators linking the two atoms are removed and the new symmetry of the system is analyzed. For instance, when studying spin-polarized systems, it may be necessary to apply different spins to atoms which are related by geometrical symmetry.

MOLDRAW

The last version of the program MOLDRAW reads crystal standard output, and can generate a movie from an optimization run. See:

```
http://www.moldraw.unito.it .
```


MOLEBSSE - counterpoise for molecular crystals

The counterpoise method [29] is applied to correct the Basis Set Superposition Error in molecular crystals. A molecular calculation is performed, with a basis set including the basis functions of the selected molecules and the neighbouring atoms. The program automatically finds all the atoms of the molecule(s) containing atom(s) ISEED (keyword MOLECULE, page 53). The molecule is reconstructed on the basis of the covalent radii reported in Table on page 63 . They can be modified by running the option RAYCOV, if the reconstruction of the molecule fails. The radius of the hydrogen atom is very critical when intermolecular hydrogen bonds are present.
All the functions of the neighbouring atoms in the crystal are added to the basis set of the selected molecule(s) such that both the following criteria are obeyed:

1. the atom is within a distance R lower than RMAX from at least one atom in the molecule

and

2. the atom is within the NSTAR-th nearest neighbours of at least one atom in the molecule.

For molecular crystals only.
Use keyword CLUSTER 43) to extend the number of atoms in the cluster if requested.

Warning Do not use with ECP
Warning. The system obtained is 0D. No reciprocal lattice information is required in the scf input (Section 2.3 page 29). See test 19.

MOLECULE - Extraction of n molecules from a molecular crystal

```
rec variable meaning
- * NMOL number of molecules to be isolated
II ____ insert NMOL records
```

\qquad

```
- * ISEED label of one atom in the n }\mp@subsup{}{}{th}\mathrm{ molecule
    J,K,L integer coordinates (direct lattice) of the primitive cell containing the
        ISEED atom
```

The option MOLECULE isolates one (or more) molecules from a molecular crystal on the basis of chemical connectivity, defined by the sum of the covalent radii (Table on page 63). The covalent radii can be modified by running the option RAYCOV, if the reconstruction of the molecule fails. The covalent radius of the hydrogen atom is very critical when intermolecular hydrogen bonds are present.
The input order of the atoms (atoms symmetry related are grouped) is modified, according to the chemical connectivity. The same order of the atoms in the bulk crystal is obtained by entering the keyword ATOMORDE (see Section 3.1, page 38). The total number of electrons attributed to the molecule is the sum of the shell charges attributed in the basis set input (input block 2, Section 2.2 page 23 to the atoms selected for the molecule.
The keyword GAUSS98, entered in input block 2 (basis set input), writes an input deck to run Gaussian 98 (see page 74)

For molecular crystals only.
Warning. The system is 0D. No reciprocal lattice information is required in the scf input (Section 2.3, page 29).
Test 18 - Oxalic acid. In the 3D unit cell there are four water and two oxalic acid molecules. The input of test 18 refers to a cluster containing a central oxalic acid molecule surrounded by four water molecules.

MOLEXP - Variation of lattice parameters at constant symmetry and molecular geometry

rec	variable	meaning
$* \quad \delta a,[\delta b],[\delta c]$,	increments of the minimal set of crystallographic cell parameters:	
$[\delta \alpha],[\delta \beta]$	translation vectors length [Ångstrom],	
$[\delta \gamma]$	crystallographic angles (degrees)	

The cell parameters (the minimum set, see page 20) are modified, according to the increments given in input. The volume of the cell is then modified. The symmetry of the lattice and the geometry (bond lengths and bond angles) of the molecules within the cell is kept. The fractional coordinates of the barycentre of the molecules are kept constant, the cartesian coordinates redefined according to the modification of the lattice parameters. Optimization of the geometry with reference to the compactness of the lattice is allowed, keeping constant the geometry of the molecules. When there are very short hydrogen bonds linking the molecules in the lattice, it may be necessary a modification of the atomic radii to allow proper identification of the molecules (see option RAYCOV, page 62)

MOLSPLIT - Periodic lattice of non-interacting molecules

In order to compare bulk and molecular properties, it can be useful to build a density matrix as a superposition of the density matrices of the isolated molecules, arranged in the same geometry as in the crystal. The keyword MOLSPLIT (no additional input required) performs an expansion of the lattice, in such a way that the molecules of the crystal are at an "infinite" distance from each other. The crystal coordinates are scaled so that the distances inside the molecule are fixed, and the distances among the molecules are expanded by a factor 100, to avoid molecule-molecule interactions. The 3D translational symmetry is not changed. Reciprocal lattice information is required in the scf input (Section 2.3, page 29).
A standard wave function calculation of the expanded crystal is performed. The density matrix refers to the non-interacting subsystems. Before running properties, the lattice is automatically contracted to the bulk situation given in input. If a charge density or electrostatic potential map is computed (ECHG, POTM options), it corresponds to the superposition of the charge densities of the isolated molecules in the bulk geometry.

This option must be used only for molecular crystals only (no charged fragments).
Warning: the DFT grid is not designed for the expanded lattice yet. Large memory allocation may be necessary.

See test 21.

NANOCRYSTAL (NANO)

rec	variable	meaning
- $*$	$h 1, k 1, l 1$	crystallographic (Miller) indices of the first plane parallel to the first nanocrys-
tal face		

The NANOCRYSTAL option is used to create a nanocrystal of given dimension, where three faces are parallel to given planes of the crystal. The other three faces are parallel to the first set.

Before the editing operated by NCUT directives, the nanocrystal is just a supercell of the 3D structure, with faces lying on the three crystallographic planes.
A new 3D crystal unit cell is defined, with three faces parallel to the given planes. The new 3D cell is generally not primitive: the program calculates and prints the multiplicity. Then the atoms of the new 3D cell are classified according their geometric distance from of the three faces parallel to the two given planes.
The thickness of the nanocrystal, the 0D system, is defined by the number of layers parallel to the faces. No reference is made to the chemical units in the nanocrystal. The neutrality is checked by the program.

1. The crystallographic (Miller) indices of the plane refer to the crystallographic cell .
2. A point group is derived from the 3D symmetry group of the original crystal structure: the origin may be shifted to maximize the order of the layer group (keyword ORIGIN, page 59 .

NANOJMOL - Graphical visualisation of nanotubes with Jmol

Obsolete keyword: Jmol now reads correctly the output of a nanotube calculation.
A file named NANOJMOL.DAT containing the nanotube structure is generated. This file can be directly used by the 3D structure viewer Jmol (www.jmol.org). This keyword must appear in the geometry block before all the keywords related to nanotube construction.

NANORE

Nanotube rebuild: to be used for tubes built with NANOTUBE (page 56). See the NANOTUBE keyword for a discussion of nanotube rebuild.

| rec | variable |
| ---: | :--- | meaning \quad| * nold $_{1}$, nold $_{2}$ | Nanotube rebuild: indices of the starting nanotube. |
| ---: | :--- |
| $* n_{1}, n_{2}$ | New indices of the rolling vector. |

Consider, for example, the $(8,8)$ and the $(10,10)$ carbon nanotubes (built with NANOTUBE, indices refer to the 120° unit cell choice). We have optimised the structure of the former, and we want to build the latter starting from its geometry. With NANORE the $(8,8)$ nanotube is unrolled and re-rolled as $(10,10)$. In order to do this, the information on geometry of both the starting slab (graphene) and the $(8,8)$ nanotube is required. The first one is given in input (or read with EXTERNAL from file fort.34), the second one is read with an EXTERNAL strategy from file fort. 35 . The input syntax is then:

```
SLAB
77
2.47
1
6 0.333333 0.666667 0.000000
NANORE
8 8
10 10
```

For nanotubes built with $S W C N T$ (page 69) see SWCNTRE (page 70).
NANOROD (ROD)

rec variable meaning

- * $h 1, k 1, l 1$ crystallographic (Miller) indices of the first plane parallel to the first nanorod face
- * $h 2, k 2, l 2$ crystallographic (Miller) indices of the second plane parallel to the second nanorod face
- * ISUP1 label of the surface layer of the first nanorod face

NL1 number of atomic layers parallel to the first nanorod face

- * ISUP2 label of the surface layer of the second nanorod face

NL2 number of atomic layers parallel to the second nanorod face

- * NCUT number of further cutting operations

The NANOROD option is used to create a nanorod of given thickness, where two faces are parallel to given planes of the crystal. The other two faces are parallel to the first pair.

A new 3D crystal unit cell is defined, with two faces parallel to the given planes. The new 3D cell is in general not primitive: the program calculates and prints the multiplicity. Then the atoms of the new 3D cell are classified according to their geometric distance from the two faces parallel to the two given planes.
The thickness of the nanorod, the 1D system, is defined by the number of layers parallel to the two faces. No reference is made to the chemical units in the nanorod. The neutrality is checked by the program.

1. The crystallographic (Miller) indices of the plane refer to the crystallographic cell .
2. A rod group is derived from the 3D symmetry group of the original crystal structure: the origin may be shifted to maximize the order of the layer group (keyword ORIGIN, page 59.

NANOTUBE - Building a nanotube from a slab

Nanotubes are cylindrical structures, periodic along one direction. They are therefore characterised by a single lattice vector. However, in order to study their symmetry and orientation, it is easier to start from a 2 D lattice where the additional periodicity becomes the cylinder period. This 2D periodic flat structure will be referred in the following, as the nanotube flat lattice.
In this flat lattice, 3 vectors are important for the structure description: the rolling vector, \vec{R}, the longitudinal vector, \vec{L} and the helical vector, \vec{H}.

- The rolling vector, $\vec{R}=n_{1} \overrightarrow{a_{1}}+n_{2} \overrightarrow{a_{2}}$ (where $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$ are the slab cell vectors), is sufficient to completely define a nanotube. It is used in the literature to characterise the systems (for example the (4,3) nanotube is a nanotube with a rolling vector $\vec{R}=4 \overrightarrow{a_{1}}+3 \overrightarrow{a_{2}}$). In the flat nanotube lattice, \vec{R} is a nanotube unit cell vector. Once the nanotube wrapped, the rolling vector becomes a circle normal to the cylinder axis; its norm corresponds to the cylinder perimeter. If \vec{R} passes \mathcal{N} times through the lattice nodes, a \mathcal{N}-order rotational axis will exist along the corresponding nanotube axis.
- The longitudinal vector, $\vec{L}=l_{1} \overrightarrow{a_{1}}+l_{2} \overrightarrow{a_{2}}$, is the shortest lattice vector normal to \vec{R}. In the nanotube, it becomes the 1D lattice parameter and gives the 1D periodicity along the tube axis.
- The helical vector, $\vec{H}=h_{1} \overrightarrow{a_{1}}+h_{2} \overrightarrow{a_{2}}$, is a lattice vector defining with \vec{R} an area which is \mathcal{N} times the area of the unit cell of the flat slab. It satisfies, then, the following relationship

$$
\begin{equation*}
\frac{S(\vec{R}, \vec{H})}{S\left(\overrightarrow{a_{1}}, \overrightarrow{a_{2}}\right)}=\left|n_{1} h_{2}-n_{2} h_{1}\right|=\mathcal{N} \tag{3.6}
\end{equation*}
$$

where $S\left(\overrightarrow{v_{i}}, \overrightarrow{v_{j}}\right)$ is the surface defined by the $\overrightarrow{v_{i}}$ and $\overrightarrow{v_{j}}$ vectors. The helical vector defines a correspondence between a translation in the flat slab and a roto-translation in the curved surface; \vec{H} has a rotational component along the circumference vector and a translational component along the lattice parameter.

The direct product between the rotational and roto-translational operations generates the full symmetry of the nanotube.
The three vectors listed previously are represented in figure 3.4 for graphene; the example refers to the construction of a $(4,2)$ single-walled carbon nanotube (SWCNT).
Further information about the implemented method, the computational costs and the symmetry features of nanotubes are found in Ref. [49] and [226, 12].
For further details and explanatory animations, please refer to the tutorial page:
http://www.crystal.unito.it \rightarrow tutorials \rightarrow Nanotube systems
Users of the nanotube construction options are kindly requested to cite the following paper 150:

Figure 3.4: Building the $(4,2)$ SWCNT from graphene.
Y. Noël, Ph. D'Arco, R. Demichelis, C.M. Zicovich-Wilson and R. Dovesi, J. Comput. Chem., 31, 855 (2010). On the Use of Symmetry in the Ab Initio Quantum Mechanical Simulation of Nanotubes and Related Materials.

rec variable	meaning
$\bullet n_{1}, n_{2}$	components of the roll-up-vector of the nanotube in the slab unit cell basis. The roll-up-vector, whose length corresponds to the tube circumference, is expressed as a linear combination of the unit cell vectors of the slab before rolling up, n_{1} and n_{2} being integer coeffi- cients.

The convention adopted in CRYSTAL is $n_{1} \geq n_{2}$. In cases when n_{2} is required to be larger than n_{1}, it is sufficient to exchange the x and y coordinates of the reference 2 D slab.
NANOTUBE can be used with the following 2D systems:

- square and hexagonal lattices: any $\left(n_{1}, n_{2}\right)$ combination
- rectangular lattices: any $n_{1}, n_{2}=0$
- rhombohedral lattices: $n_{2}= \pm n_{1}$

In the other cases, the existence of a lattice vector perpendicular to \vec{R} (so the 1D periodicity along the tube axis) is not guaranteed.
The orthogonality condition between \vec{R} and \vec{L} provides the following equation:
$\vec{L} \cdot \vec{R}=\left(l_{1} \overrightarrow{a_{1}}+l_{2} \overrightarrow{a_{2}}\right) \cdot\left(n_{1} \overrightarrow{a_{1}}+n_{2} \overrightarrow{a_{2}}\right)=n_{1} l_{1}\left|\overrightarrow{a_{1}}\right|^{2}+n_{2} l_{2}\left|\overrightarrow{a_{2}}\right|^{2}+\left(n_{1} l_{2}+n_{2} l_{1}\right)\left|\overrightarrow{a_{1}}\right|\left|\overrightarrow{a_{2}}\right| \cos (\gamma)=0(3.7)$
γ being the angle between $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$. From Equation 3.7 one obtains:

$$
\begin{equation*}
\frac{l_{1}}{l_{2}}=-\frac{n_{2}\left|a_{2}\right|^{2}+n_{1}\left|a_{1}\right|\left|a_{2}\right| \cos (\gamma)}{n_{1}\left|a_{1}\right|^{2}+n_{2}\left|a_{1}\right|\left|a_{2}\right| \cos (\gamma)} \tag{3.8}
\end{equation*}
$$

If the right term is divided and multiplied by $\left|a_{2}\right|^{2}$, one obtains

$$
\begin{equation*}
\frac{l_{1}}{l_{2}}=-\frac{n_{2}+n_{1} a_{q} \cos (\gamma)}{a_{q}\left(n_{1} a_{q}+n_{2} \cos (\gamma)\right)} \tag{3.9}
\end{equation*}
$$

with $a_{q}=\frac{\left|a_{1}\right|}{\left|a_{2}\right|}$.

The above equation cannot be satisfied for any $\left(\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \cos (\gamma)\right)$ combination. This observation is based on the fact that, as l_{1} and l_{2} are integers, $\frac{l_{1}}{l_{2}}$ is a rational number, whereas, in general, $\cos (\gamma)$ and a_{q} are real numbers. In the following the five 2 D Bravais lattices are considered separately, in order to show which conditions satisfy the periodicity along the tube axis and which do not.

- Hexagonal lattice: $\overrightarrow{a_{1}}=\overrightarrow{a_{2}}, \cos (\gamma)= \pm 1 / 2$. Equation 3.9 becomes:

$$
\begin{equation*}
\frac{l_{1}}{l_{2}}=-\frac{n_{2}+n_{1} / 2}{n_{1}+n_{2} / 2}=-\frac{2 n_{2}+n_{1}}{2 n_{1}+n_{2}} \tag{3.10}
\end{equation*}
$$

Any roll-up vector is possible.

- Square lattice: $\overrightarrow{a_{1}}=\overrightarrow{a_{2}}, \cos (\gamma)=0$.

$$
\begin{equation*}
\frac{l_{1}}{l_{2}}=-\frac{n_{2}}{n_{1}} \tag{3.11}
\end{equation*}
$$

Any roll-up vector is possible.

- Rectangular lattice: $\overrightarrow{a_{1}} \neq \overrightarrow{a_{2}}, \cos (\gamma)=0$.

$$
\begin{equation*}
\frac{l_{1}}{l_{2}}=-\frac{n_{2}\left|a_{2}\right|^{2}}{n_{1}\left|a_{1}\right|^{2}} \tag{3.12}
\end{equation*}
$$

In this case the right term corresponds to a rational number either if $\left|a_{1}\right|=n\left|a_{2}\right|$, with n being a rational number, or if $n_{2}=0$. More generally, for rectangular lattices, the periodicity along the tube axis is always satisfied for $(n, 0)$ and $(0, n)$ roll-up vectors.

- Rhombohedral (centred rectangular) lattice: $\overrightarrow{a_{1}}=\overrightarrow{a_{2}}$, any $\cos (\gamma)$.

$$
\begin{equation*}
\frac{l_{1}}{l_{2}}=-\frac{n_{2}+n_{1} \cos (\gamma)}{n_{1}+n_{2} \cos (\gamma)} \tag{3.13}
\end{equation*}
$$

The right term provides a rational number only when $n_{1}=n_{2}$ or $n_{1}=-n_{2}$, so that Equation 3.13 becomes:

$$
\begin{equation*}
\frac{l_{1}}{l_{2}}=-\frac{n_{1}[1+\cos (\gamma)]}{n_{1}[1+\cos (\gamma)]}=-1 \quad \frac{l_{1}}{l_{2}}=\frac{n_{1}[1-\cos (\gamma)]}{n_{1}[1-\cos (\gamma)]}=1 \tag{3.14}
\end{equation*}
$$

- Oblique lattice: $\overrightarrow{a_{1}} \neq \overrightarrow{a_{2}}$, any $\cos (\gamma)$. Equation 3.9 remains as such, and the right term is always an irrational number.

When the above conditions are not satisfied, however, it is possible to manipulate the geometry of the starting slab and force it to assume a suitable form, by building supercells or with minor modifications to the cell parameters.

Note that, in cases of hexagonal lattices, the standard convention adopted in CRYSTAL considers the reference flat lattice cell vectors forming a 120° angle. In the carbon nanotube literature, however, the rolling indices refer to a 60° angle. For this reason, the same input can be obtained with the following choices, where the $(6,3)$ indices in the 60° unit cell become $(9,3)$ in the 120° option:

```
Example I: (6,3) SWCNT from graphene, 60 degrees
SLAB
1
2.47 2.47 60.000
2
6 0.33333333333 0.33333333333 0.000
6 -0.33333333333-0.33333333333 0.000
NANOTUBE
6 3
```

```
Example II: (6,3) SWCNT from graphene, default choice
SLAB
77
2.47
1
6 0.333333 0.666667 0.000000
NANOTUBE
9 3
```

In order to avoid ambiguity in the choice of the carbon nanotubes indices, use the SWCNT (page 69) keyword.

Nanotube rebuild: build a nanotube starting from the structure of another one, with same directions but a different radius.

Two restart keywords, NANORE (page 55) and SWCNTRE (page 70), allow to build a (n_{1}, n_{2}) nanotube by starting from the structure of another one (a previously (nold $_{1}$, nold d_{2}) optimised one, read from file fort.35). The "old" nanotube is unrolled and re-rolled according to a "new" \vec{R} vector, with minor modifications to the structure. The rolling direction of the two tubes must be the same.

It is particularly helpful for the geometry optimisation of inorganic nanotubes (thick slabs, large systems, the geometry of the tubes is very different from the one of the slab), as the number of optimisation steps is reduced (see Ref. 52 for documentation of computational gain).

NEIGHBOR/NEIGHPRT

rec	variable meaning
$\bullet *$	INEIGH number of neighbours of each non-equivalent atom to be printed

The option is active when analyzing the crystal structure (bond lengths and bond angles) and when printing the bond populations following Mulliken analysis. Full input deck must be given (block 1-2-3), in order to obtain neighbors analysis of all the non-equivalent atoms
For each non-equivalent atom information on the first INEIGH neighbours is printed: number, type, distance, position (indices of the direct lattice cell).
Warning: the neighbors analysis is performed after the symmetry analysis and the screening of the integrals. If very soft tolerances for the integrals screening are given in input, it may happen that the information is not given for all the neighbors requested, as their are not taken into account when truncation criteria are applied.

NOSHIFT

It may be used before SUPERCEL keyword. It avoids shift of the origin in order to minimize the number of symmetry operators with finite translation component. No input data are required.

OPTGEOM - Full geometry optimization

See Chapter 6, page 156

ORIGIN

The origin is moved to minimize the number of symmetry operators with finite translation components. Suggested before cutting a slab from a 3D structure (option SLABCUT, page 64). No input data are required.

PBAND - Phonon Bands -

This keyword, to be inserted in the geometry input block, is specific for phonon dispersion calculations (the use of the DISPERSI keyword is then mandatory in the subsequent FREQCALC block, similarly to the SCELPHONO keyword, see page 66). It can be used for phonon band calculations, and allows for the specification of the path in reciprocal space along which the Hessian matrix is obtained.

rec	variable	meaning
- *	ISS	shrinking factor in terms of which the coordinates of the extremes of the segment are expressed. If ISS $=0$, input by label (see below).
	NK	total number of \mathbf{k}-points along the line.
	FLAG1	if >1, activates interpolation (see keyword INTERPHESS at page 201)
	FLAG2	coordinates given in terms of primitive (FLAG2=0) or conventional (FLAG2=1) lattice if ISS >0 then
- *	I1,I2,I3	integers that define the starting point of the line (I1/ISS $\mathbf{b}_{1}+$ I2 $/$ ISS
	J1,J2,J3	$\mathbf{b}_{2}+$ I3/ISS \mathbf{b}_{3}), with $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ reciprocal lattice vectors. integers that define the final point of the line (J1/ISS $\mathbf{b}_{1}+\mathrm{J} 2 / \mathrm{ISS}$ $\mathbf{b}_{2}+\mathrm{J} 3 / \mathrm{ISS} \mathbf{b}_{3}$) with $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ reciprocal lattice vectors. if ISS $=0$ then \qquad
- *	LABELA	label of the the starting point of the line (see tables 13.1 and 13.2 for a legend).
	LABELB	label of the the final point of the line (see tables 13.1 and 13.2 for a legend).

Given two points that define a line in reciprocal space, and the number of sampling points required along this line, a supercell is constructed to allow for the exact calculation of the Hessian matrix at these points. The formal relationship between the direct space supercell and the reciprocal space sampling can be found in the phonon dispersion section (page 201). Multiple runs on supercells constructed in this way allow for the complete calculation and plotting of phonon band structures.

FLAG1 is normally set to 1 . If FLAG1 >1 then $\mathrm{NK} \times$ FLAG1 k-points are obtained without building a bigger supercell. The assumptions are the same as those used for the keyword INTERPHESS (see page 201). FLAG2 is 1 if the input coordinates refer to the conventional cell, 0 if they refer to the primitive cell.

The computed frequencies at all the requested points are written in output and stored in units fort. 25 and PBANDS.DAT (in $x-y$ format) for plotting, in the same formats used for electronic band structures.

An input example is:

```
MGO BULK
CRYSTAL
0 0
225
4.16563249
2
12 0. 0. 0.
8
PBAND
O 10 1 0
G
X
FREQCALC
DISPERSI
END
```

which, in this particular case, will result in the supercell:

	EXPANSION MATRIX		OF PRIMITIVE CELL
E1	1.000	0.000	-1.000
E2	0.000	1.000	0.000
E3	0.000	0.000	18.000

PLANES

rec variable	meaning
$\bullet \mathrm{f}$	minimum of the interplane distance $d_{h k l}$ for the plane families to be printed and indexed, expressed as the fraction f

Crystallographic planes are indexed and printed, grouped in families of symmetry-related planes. All the $h k l$ planes are analyzed that have the interplane distance belonging to the interval $\left[f d_{h k l}^{\max }, d_{h k l}^{\max }\right]$, where $d_{h k l}^{m a x}$ is the maximum interplane distance for a given family $h k l$ and f a number between 0 and 1 . If the crystal structure has a primitive cell different from the crystallographic one, the plane indices are printed relatively to both frames.

POINTCHG

rec	variable	meaning
\bullet	NCH	number of point charges to be added
insert NCH records		
	$*$	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{QC}$

Dummy atoms with formal atomic number 93, mass zero, nuclear charge as given in input (file POINTCHG.INP), are added to the primitive cell. Data are read in free format.

```
record type of data content
    1 1 integer N, number of point charges
    2..2+N-1 4 real x y z charge
```

Coordinates are in Ångstrom, unless otherwise requested (keyword BOHR, page 37). Charges are net charges (1 electron $=-1$). The symmetry of the system must be removed by the keyword SYMMREMO.
As point charges are formally considered as "atoms", they must be the last addition of centres to the system.
No electron charge should be attributed to those atoms in basis set input (no atomic wave function calculation is possible). The default basis set defined by the program is a single s gaussian, with exponent 100000.
Attention should be paid to the neutrality of the cell. If the absolute value of the sum of the charges is less than 10^{-3}, the value of the charges is "normalized" to obtain 0 .
The data given in input are printed. To obtain printing of coordinates and neighbour analysis of the dummy atoms in geometry output, insert the keyword PRINTCHG.
Not compatible with: OPTGEOM, FREQCALC, ANHARM, ELASTCON, EOS, FIELD, FIELDCON, NOBIPOLA.

PRIMITIV

Some properties (XFAC, EMDL, EMDP, PROF) input the oblique coordinates of the \mathbf{k} points in the reciprocal lattice with reference to the conventional cell, though the computation refers to the primitive one. This option allows entering directly the data with reference to the primitive cell. The transformation matrix from primitive to crystallographic (Appendix A.5. page 375) is set to the identity. No effect on the CPU time: CRYSTAL always refers to the primitive cell. No input data are required.

PRINTCHG

Coordinates of the dummy atoms inserted after the keyword POINTCHG are printed in geometry output, basis set output, neighbor analysis. No input data required.

PRINTOUT - Setting of printing environment

Extended printout can be obtained by entering selected keywords in a printing environment beginning with the keyword PRINTOUT and ending with the keyword END. The possible keywords are found in the fifth column of the table on page 391 .
Extended printing request can be entered in any input block. Printing requests are not transferred from wave function to properties calculation.
See Appendix C page 389 .

PRSYMDIR

Printing of the so-called symmetry allowed directions adopted in the geometry optimization. The printing is done after the neighbor analysis, before computing the wave function. Full input must be supplied (3 blocks). Test run allowed with the keyword TESTPDIM.
No input data required.

PURIFY

This cleans up the atomic positions so that they are fully consistent with the group (to within machine rounding error). Atomic position are automatically redefined after basic geometry input. No input data are required.

RADFULLE

When printing atomic coordinates of the molecule, an additional column is added that contains the radial distances of the atoms from the origin. The FULLE (page 49) keyword constructs fullerenes and automatically displays the radius column. The present option is useful when running a fullerene calculation without using the FULLE keyword, i.e. by means of the MOLECULE (page 18) and EXTERNAL (page 19) keywords.

RADNANO

When printing atomic coordinates of a 1-D system, an additional column is added that contains the radial distances of the atoms from the x axis. The NANOTUBE (page 56) and SWCNT (page 69) keywords construct nanotubes and automatically display the radius column. The present option is useful when running a nanotube calculation without using the NANOTUBE/SWCNT keywords, i.e. by means of the MOLECULE (page 18) and EXTERNAL (page 19) keywords.

RAYCOV - covalent radii modification

\(\left.\begin{array}{lll}\hline rec \& variable \& meaning

\hline \bullet * \& NCOV \& number of atoms for which the covalent radius is redefined

insert NCOV records\end{array}\right]\)| - $*$ | NAT |
| :--- | :--- |
| | RAY |
| | atomic number $(0 \leq$ NAT $\leq 92)$
 covalent radius of the atom with atomic number NAT $([\AA]$, default, |

The option RAYCOV allows modification of the covalent radius default value for a given atom.

The choice of the covalent radius of hydrogen may be very critical when extracting a molecule from a hydrogen bonded molecular crystal. See test 15 .

ROTCRY - Rotation of the crystal with respect to the reference system - developers only

This option allows to rotate the crystal with respect to the original orthonormal Cartesian reference system. The SCF procedure, both for HF and DFT calculations, is performed in the rotated geometry.
The rotation can be performed in three different ways:

1. By defining the Euler rotation angles α, β, γ and the origin of the rotating system. (The rotation is given by: $\mathrm{R}_{z}^{\alpha} \mathrm{R}_{x}^{\beta} \mathrm{R}_{z}^{\gamma}$, where R_{t}^{θ} are the rotation matrices about t by angle θ).
2. By explicitly defining the rotation matrix.
3. An automatic procedure that reorient the crystal aligning \vec{c} along z Cartesian axis.

ANGROT	Rotation defined by Euler angles α, β, γ
rec variable	meaning
- * ALPHA,BETA,GAMMA	α, β, γ rotation Euler angles (dgrees) \qquad or \qquad
MATROT	Rotation matrix by input
rec variable	meaning
- * R11 R12 R13	first row of the matrix.
- * R21 R22 R23	second row of the matrix.
- * R31 R32 R33	third row of the matrix.
AUTO	Automatically align c along z

The rotation involves: direct and reciprocal lattice parameters, coordinates of atoms and symmetry operators. When a DFT calculation is performed also the points of the numerical integration grid are rotated in order to preserve numerical accuracy.
Note that this keyword is different from ATOMROT (see page 39) that rotates a group of atoms without affecting the reference system.

SETINF - Setting of INF values

rec	variable	meaning
$\bullet *$	NUM	number of INF vector positions to set
$\bullet \quad *$	$\mathrm{~J}, \mathrm{INF}(\mathrm{J}), \mathrm{I}=1, \mathrm{NUM}$	position in the vector and corresponding value

The keyword SETINF allows setting of a value in the INF array. It can be entered in any input section.

SETPRINT - Setting of printing options

rec	variable	meaning
$\bullet *$	NPR	number of LPRINT vector positions to set
- $* \mathrm{~J}, \mathrm{LPRINT}(\mathrm{J}), \mathrm{I}=1, \mathrm{NPR}$	prtrec; position in the vector and corresponding value	

The keyword SETPRINT allows setting of a value in the LPRINT array, according to the information given in Appendix C, page 391. It can be entered in any input section.

SLABCUT (SLAB)

rec	variable	meaning
$\bullet *$	h, k, l	crystallographic (Miller) indices of the plane parallel to the surface
\bullet	ISUP	label of the surface layer
	NL	number of atomic layers in the slab

The SLABCUT option is used to create a slab of given thickness, parallel to the given plane of the 3D lattice.
A new Cartesian frame, with the z axis orthogonal to the (hkl) plane, is defined. A layer is defined by a set of atoms with same z coordinate, with reference to the new Cartesian frame. The thickness of the slab, the 2D system, is defined by the number of layers. No reference is made to the chemical units in the slab. The neutrality of the slab is checked by the program.

1. The crystallographic (Miller) indices of the plane refer to the conventional cell (cubic and hexagonal systems).
2. A two-sided layer group is derived from the 3 D symmetry group of the original crystal structure: the origin may be shifted to maximize the order of the layer group (keyword ORIGIN, page 59).
3. The unit cell is selected with upper and lower surface parallel to the (hkl) plane.
4. The 2 D translation vectors $\mathbf{a}_{\mathbf{1}}$ and $\mathbf{a}_{\mathbf{2}}$ are chosen according to the following criteria:
(a) minimal cell area;
(b) shortest translation vectors;
(c) minimum $|\cos (\gamma)|$, where γ is the angle between $\mathbf{a}_{\mathbf{1}}$ and $\mathbf{a}_{\mathbf{2}}$.
5. The surface layer ISUP may be found from an analysis of the information printed by the

SLABINFO (page 65) option. This information can be obtained by a test run, inserting in the geometry input block the keyword TESTGEOM (page 71). Only the geometry input block is processed, then the program stops.

Two separate runs are required in order to get the information to prepare the input for a full SLABCUT option run:

1. keyword SLABINFO: Rotation of the 3D cell, to have the z axis perpendicular to the (hkl) place, with numbering of the atomic layers in the rotated reference cell, according to the z coordinate of the atoms (insert STOP after SLABINFO to avoid further processing).
2. keyword SLAB: Definition of the 2D system, a slab of given thickness (NL, number of atomic layers) parallel to the (hkl) crystallographic plane, with the ISUP-th atom on the surface layer

The SLABCUT option, combined with ATOMINSE (page 38), ATOMDISP (page 38), etc. can be used to create a slab of given thickness, with an atom (or group of atoms) adsorbed at given position. This is achieved by adding new atoms to the 2D structure, obtained after executing the SLAB option.

Test cases 5-6-7 refer to a 2D system; test cases 25-26-27 refer to the same system, but generated from the related 3D one. See also tests $35,36,37$.

SLABINFO - 3D cell with z axis orthogonal to a given plane

rec	variable	meaning
$\bullet \quad$	h,k,l	Crystallographic (Miller) indices of the basal layer of the new 3D unit cell

1. A new unit cell is defined, with two lattice vectors perpendicular to the [hkl] direction. The indices refer to the Bravais lattice of the crystal; the hexagonal lattice is used for the rhombohedral systems, the cubic lattice for cubic systems (non primitive).
2. A new Cartesian reference system is defined, with the $x y$ plane parallel to the (hkl) plane.
3. The atoms in the reference cell are re-ordered according to their z coordinate, in order to recognize the layered structure, parallel to the (hkl) plane.
4. The layers of atoms are numbered. This information is necessary for generating the input data for the SLABCUT option.
5. After neighboring analysis, the program stops. If the keyword ROTATE was entered, execution continues. The shape of the new cell may be very different, computational parameters must be carefully checked.
6. the keyword ORIGIN can be used to shift the origin after the rotation of the cell, and minimize the number of symmetry operators with translational component. Useful to maximize the point group of the 2 D system that can be generated from 3 D using the keyword SLABCUT (page 64).

STOP

Execution stops immediately. Subsequent input records are not processed.

STRUCPRT

A formatted deck with cell parameters and atoms coordinates (bohr) in cartesian reference is written in the file STRUC.INCOOR . See appendix D page 399.

SCELCONF

rec variable meaning

- * E expansion matrix E (IDIMxIDIM elements, input by rows: 9 reals (3D); 4 reals (2D); 1 real (1D)

This keyword is specific for configuration counting calculations for disordered systems or solid solutions. Always use SCELCONF instead of SUPERCELL/SUPERCON in calculations with CONFCOUNT and CONFRAND.

A supercell is constructed, as in the case of keyword SUPERCELL (see page 67), as linear combination of the primitive cell unit vectors.

The number of symmetry operators of the resulting supercell is higher compared to the SUPERCELL case. The product group is constructed between the space group of the original system and the group of translation operators associated with the chosen supercell.

SCELPHONO

rec variable meaning

- $* \mathrm{E}$ expansion matrix E (IDIMxIDIM elements, input by rows: 9 reals (3D); 4 reals (2D); 1 real (1D)

This keyword is specific for phonon dispersion calculations.
A supercell is constructed, as in the case of keyword SUPERCELL (see page 67), as linear combination of the primitive cell unit vectors.

The atomic ordering of the resulting supercell is different with respect to the SUPERCELL case. The first atoms in the list are the ones of the primitive cell, as required for phonon dispersion calculations. Example:

```
TEST11 - MGO BULK
CRYSTAL
O O
    225
4.21
2
120. 0. 0.
80.5 0.5 0.5
SCELPHONO
200
0 0
O O 
TESTGEOM
END
====================== output - atoms in the small cell first ================
    PRIMITIVE CELL - CENTRING CODE 1/O VOLUME= 149.236922 - DENSITY 3.559 g/cm^3
            A B C ALPHA BETA GAMMA
        5.95383910 5.95383910 5.95383910 60.000000 60.000000 60.000000
    *************************************************************************************
    ATOMS IN THE ASYMMETRIC UNIT 5 - ATOMS IN THE UNIT CELL: }1
        ATOM X/A Y/B Z/C
    *************************************************************************************
        1 T 12 MG 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
        2 T 8 O 2.500000000000E-01 2.500000000000E-01 2.500000000000E-01
        3 T 12 MG 0.000000000000E+00 -5.000000000000E-01 0.000000000000E+00
        4 F 12 MG 0.000000000000E+00 -5.000000000000E-01 -5.000000000000E-01
        5 F 12 MG -5.000000000000E-01 0.000000000000E+00 0.000000000000E+00
    6 F 12 MG -5.000000000000E-01 0.000000000000E+00 -5.000000000000E-01
    7 F 12 MG -5.000000000000E-01 -5.000000000000E-01 0.000000000000E+00
```

8	T	12 MG	$-5.000000000000 \mathrm{E}-01$	$-5.000000000000 \mathrm{E}-01$	$-5.000000000000 \mathrm{E}-01$	
9	F	12	MG	$0.000000000000 \mathrm{E}+00$	$0.000000000000 \mathrm{E}+00$	$-5.000000000000 \mathrm{E}-01$
10	T	8	0	$2.500000000000 \mathrm{E}-01$	$2.500000000000 \mathrm{E}-01$	$-2.500000000000 \mathrm{E}-01$
11	F	8	0	$2.500000000000 \mathrm{E}-01$	$-2.500000000000 \mathrm{E}-01$	$2.500000000000 \mathrm{E}-01$
12	F	8	0	$2.500000000000 \mathrm{E}-01$	$-2.500000000000 \mathrm{E}-01$	$-2.500000000000 \mathrm{E}-01$
13	F	8	0	$-2.500000000000 \mathrm{E}-01$	$2.500000000000 \mathrm{E}-01$	$2.500000000000 \mathrm{E}-01$
14	F	8	0	$-2.500000000000 \mathrm{E}-01$	$2.500000000000 \mathrm{E}-01$	$-2.500000000000 \mathrm{E}-01$
15	F	8	0	$-2.500000000000 \mathrm{E}-01$	$-2.500000000000 \mathrm{E}-01$	$2.500000000000 \mathrm{E}-01$
16	F	8	0	$-2.500000000000 \mathrm{E}-01$	$-2.500000000000 \mathrm{E}-01$	$-2.500000000000 \mathrm{E}-01$

```
TEST11 - MGO BULK
CRYSTAL
O O 
    225
4.21
2
120. 0. 0.
80.5 0.5 0.5
SUPERCEL
200
0 0
O O 
TESTGEOM
```

$======================$ output $-\mathrm{atoms} \mathrm{of} \mathrm{same} \mathrm{type} \mathrm{first} \mathrm{==================}$

VE CELL	CENTRING COD	10 VOLUME=	149.236922 ALPHA	DENSITY BETA	$3.559 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$
5.95383910	5.95383910	5.95383910	60.000000	60.00000	60.000000
ATOMS IN THE ASYMMETRIC UNIT $5-\operatorname{ATOMS}$ IN THE UNIT CELL:ATOMX/A					

**
$1 \mathrm{~T} 12 \mathrm{MG} \quad 0.000000000000 \mathrm{E}+00 \quad 0.00000000000 \mathrm{E}+00 \quad 0.000000000000 \mathrm{E}+00$
2 T 12 MG $0.000000000000 \mathrm{E}+00$ 0.000000000000E+00 -5.000000000000E-01
$3 \mathrm{~F} 12 \mathrm{MG} \quad 0.000000000000 \mathrm{E}+00-5.000000000000 \mathrm{E}-01 \quad 0.000000000000 \mathrm{E}+00$
4 F 12 MG $0.000000000000 \mathrm{E}+00-5.000000000000 \mathrm{E}-01-5.000000000000 \mathrm{E}-01$
5 F 12 MG $-5.000000000000 \mathrm{E}-01 \quad 0.000000000000 \mathrm{E}+00 \quad 0.000000000000 \mathrm{E}+00$
6 F 12 MG -5.000000000000E-01 0.000000000000E+00 -5.000000000000E-01
7 F 12 MG $-5.000000000000 \mathrm{E}-01-5.000000000000 \mathrm{E}-01 \quad 0.000000000000 \mathrm{E}+00$
8 T 12 MG $-5.000000000000 \mathrm{E}-01-5.000000000000 \mathrm{E}-01-5.000000000000 \mathrm{E}-01$
9 T 8 O $-2.500000000000 \mathrm{E}-01-2.500000000000 \mathrm{E}-01 \quad 2.500000000000 \mathrm{E}-01$
10 T $80-2.500000000000 \mathrm{E}-01-2.500000000000 \mathrm{E}-01-2.500000000000 \mathrm{E}-01$
$11 \mathrm{~F} 80 \quad-2.500000000000 \mathrm{E}-01 \quad 2.500000000000 \mathrm{E}-01 \quad 2.50000000000 \mathrm{E}-01$
$12 \mathrm{~F} 80-2.500000000000 \mathrm{E}-01 \quad 2.500000000000 \mathrm{E}-01-2.500000000000 \mathrm{E}-01$
$13 \mathrm{~F} 80 \quad 2.500000000000 \mathrm{E}-01-2.500000000000 \mathrm{E}-01 \quad 2.500000000000 \mathrm{E}-01$
$14 \mathrm{~F} 80 \quad 2.500000000000 \mathrm{E}-01-2.500000000000 \mathrm{E}-01-2.500000000000 \mathrm{E}-01$
$15 \mathrm{~F} 80 \quad 2.500000000000 \mathrm{E}-01 \quad 2.500000000000 \mathrm{E}-01 \quad 2.50000000000 \mathrm{E}-01$
$16 \mathrm{~F} 80 \quad 2.500000000000 \mathrm{E}-01 \quad 2.500000000000 \mathrm{E}-01-2.50000000000 \mathrm{E}-01$

It can be used to generate a supercell for a phonon dispersion calculation only (keyword DISPERSI, page 201.

SUPERCEL

rec variable meaning

- * E expansion matrix E (IDIMxIDIM elements, input by rows: 9 reals (3D); 4 reals (2D); 1 real (1D)

A supercell is obtained by defining the new unit cell vectors as linear combinations of the
primitive cell unit vectors (See SUPERCON for crystallographic cell vectors reference). The point symmetry is defined by the number of symmetry operators in the new cell. It may be reduced, not increased.
The new translation vectors $\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \mathbf{b}_{3}^{\prime}$ are defined in terms of the old vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ and of the matrix E , read in input by rows, as follows:

$$
\begin{aligned}
& \mathbf{b}_{1}^{\prime}=e_{11} \cdot \mathbf{b}_{1}+e_{12} \cdot \mathbf{b}_{2}+e_{13} \cdot \mathbf{b}_{3} \\
& \mathbf{b}_{\mathbf{2}}^{\prime}=e_{21} \cdot \mathbf{b}_{1}+e_{22} \cdot \mathbf{b}_{2}+e_{23} \cdot \mathbf{b}_{3} \\
& \mathbf{b}_{\mathbf{3}}^{\prime}=e_{31} \cdot \mathbf{b}_{1}+e_{32} \cdot \mathbf{b}_{2}+e_{33} \cdot \mathbf{b}_{3}
\end{aligned}
$$

The symmetry is automatically reduced to the point symmetry operators without translational components and a further reduction of the symmetry is also possible.
Before building the supercell, the origin is shifted in order to minimize the number of symmetry operators with translational components (see page 21). To avoid this operation, insert
NOSHIFT before SUPERCEL
Atoms that are related by translational symmetry in the unit cell are considered nonequivalent in a supercell.
The supercell option is a useful starting point for the study of defective systems, of chemisorption and anti ferromagnetism, by combining the SUPERCELoption with the options described in this chapter: ATOMREMO (page 39), ATOMSUBS (page 40), ATOMINSE (page 38), ATOMDISP (page 38), SLAB (page 64).
To study anti ferromagnetic (AFM) states, it may be necessary to generate a supercell, and then attribute different spin to atoms related by translational symmetry (ATOMSPIN, input block 3, page 83). See tests $17,30,31,34,37,43,47$.

Example. Construction of supercells of face-centred cubic 3D system ($a=5.42 \AA$).
The crystallographic cell is non-primitive, the expansion matrix refers to primitive cell vectors. The E matrix has 9 elements:

E2	. 000	3.000	. 000	B2	8.130	. 000	8.130
E3	. 000	. 000	3.000	B3	8.130	8.130	. 000
32 UNITS SUPERCELL							
	EXPANS	MATRIX			DIRECT	LATTICE	VECTORS
E1	-2.000	2.000	2.000	B1	10.840	. 000	. 000
E2	2.000	-2.000	2.000	B2	. 000	10.840	. 000
E3	2.000	2.000	-2.000	B3	. 000	. 000	10.840

a), b) Different double cells
c) quadruple cell. It corresponds to the crystallographic, non-primitive cell, whose parameters are given in input (page 21).

Example. Construction of supercells of hexagonal $R \overline{3}$ (corundum lattice) cubic 3D system. The crystallographic cell is non-primitive: CRYSTAL refer to the primitive cell, with volume $1 / 3$ of the conventional one. The E matrix has 9 elements:

```
GEOMETRY INPUT DATA:
\begin{tabular}{cccccc} 
LATTICE & PARAMETERS & (ANGSTROMS & AND DEGREES) & - CONVENTIONAL CELL \\
A & B & C & ALPHA & BETA & GAMMA \\
4.76020 & 4.76020 & 12.99330 & 90.00000 & 90.00000 & 120.00000
\end{tabular}
```

TRANSFORMATION WITHIN CRYSTAL CODE FROM CONVENTIONAL TO PRIMITIVE CELL:

LATTICE	PARAMETERS	(ANGSTROMS		AND DEGREES)	- PRIMITIVE CELL	
A	B	C	ALPHA	BETA	GAMMA	VOLUME
5.12948	5.12948	5.12948	55.29155	55.29155	55.29155	84.99223

UNITS SUPERCELL crystallographic cell							
E1	1.000	-1.000	. 000	B1	4.122	-2.380	. 000
E2	. 000	1.000	-1.000	B2	. 000	4.760	. 000
E3	1.000	1.000	1.000	B3	. 000	. 000	12.993

| LATTICE | PARAMETERS | (ANGSTROM AND DEGREES) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | ALPHA | BETA | GAMMA | VOLUME |
| 4.76020 | 4.76020 | 12.99330 | 90.000 | 90.000 | 120.000 | 254.97670 |

SUPERCON

The first step in geometry definition in CRYSTAL is the transformation of the cell from crystallographic to primitive, according to the transformation matrices given in appendix A.5 when the crystallographic cell is non-primitive.
From the point of view of CRYSTAL, the crystallographic cell is a supercell, in that case.
Using the keyword SUPERCON, the crystallographic cell is built from the primitive one, before applying the expansion matrix.
See SUPERCEL, page 67 for expansion matrix input instructions.
Note - The easiest way to work on crystallographic cell is the following input:
SUPERCON

1. 0 . 0.

0 . 1. 0 .
0. 0. 1 .

The expansion matrix is the identity, leaving the crystallographic cell unmodified.
SWCNT - Building a nanotube from an hexagonal slab (60° unit cell choice)

rec variable	meaning
$\bullet n_{1}, n_{2}$	Only for hexagonal cells. Same as NANOTUBE keyword but the components of the rolling vector refer to a 60° hexagonal cell.

vspace 0.3 cm

```
Example: (6,3) SWCNT from graphene
SLAB
7 7
2.47
1
6 0.333333 0.666667 0.000000
SWCNT
6 3
```

See NANOTUBE (page56) for further details.

Nanotube rebuild: build a nanotube starting from the structure of another one, with same directions but a different radius.

Two restart keywords, NANORE and SWCNTRE, allow to build a (n_{1}, n_{2}) nanotube by starting from the structure of another one (a previously (nold $_{1}$, nold ${ }_{2}$) optimised one, read from file fort.35). The "old" nanotube is unrolled and re-rolled according to a "new" \vec{R} vector, with minor modifications to the structure. The rolling direction of the two tubes must be the same.

It is particularly helpful for the geometry optimisation of inorganic nanotubes (thick slabs, large systems, the geometry of the tubes is very different from the one of the slab), as the number of optimisation steps is reduced (see Ref. 52] for documentation of computational gain).

SWCNTRE

It is the same as NANORE (page 55), with the same input syntax, but for hexagonal lattices with 60° unit cell reference (see $S W C N T$, page 69).

SYMMDIR

The symmetry allowed directions, corresponding to internal degrees of freedom are printed. No input data are required.

SYMMOPS

Point symmetry operator matrices are printed in the Cartesian representation. No input data are required.

SYMMREMO

All the point group symmetry operators are removed. Only the identity operator is left. The wave function can be computed. No input data are required.
Warning: the CPU time may increase by a factor MVF (order of point-group), both in the integral calculation and in the scf step. The size of the bielectronic integral file may increase by a factor MVF^{2}.

TENSOR

rec	variable	meaning
$\bullet \quad$	IORD	order of the tensor (≤ 4)

This option evaluates and prints the non zero elements of the tensor of physical properties up to order 4.

TESTGEOM

Execution stops after reading the geometry input block and printing the coordinates of the atoms in the conventional cell. Neighbours analysis, as requested by the keyword NEIGHBOR, is not executed. The geometry input block must end with the keyword END or ENDG. No other input blocks (basis set etc) are required.

TRASREMO

Point symmetry operators with fractional translation components are removed. It is suggested to previously add the keyword ORIGIN (page 59), in order to minimize the number of symmetry operators with finite translation component. No input data are required.

USESAED

rec variable meaning

- * $\delta(\mathrm{i}), \mathrm{i}=1$, nsaed $\quad \delta$ for each distortion

Given the symmetry allowed elastic distortion (SAED), (printed by the keyword MAKESAED, page 51 δ for the allowed distortion are given in input.

WULFF

rec variable meaning

- * IPLN number of crystal planes insert IPLN records
- * h, k, l Miller indices of the plane
- * ESRF surface energy in $\mathrm{J} / \mathrm{m}^{2}$

The WULFF option is used to determine the equilibrium shape of real (finite) crystals by ensueing the minimization of the total surface free energy according to the Gibbs-Wulff theorem [230].
The execution stops after the Wulff construction is completed. It generates a three dimensional model, wulff.pms, that may be displayed with the free application Mesh Viewer (http://mview.sourceforge.net).

3.2 Basis set input

Symmetry control		
ATOMSYMM	printing of point symmetry at the atomic positions	40
Basis set modification		
CHEMOD GHOSTS	modification of the electronic configuration eliminates nuclei and electrons, leaving BS	72 74
Auxiliary and control keywords		
CHARGED NOPRINT PRINTOUT SETINF SETPRINT STOP SYMMOPS END/ENDB	allows non-neutral cell printing of basis set removed setting of printing options setting of inf array options setting of printing options execution stops immediately printing of point symmetry operators terminate processing of basis set definition keywords	72 74 62 64 64 65 70
Output of data on external units		
GAUSS98	printing of an input file for the GAUSS94/98 package	74

Basis set input optional keywords

ATOMSYMM

See input block 1, page 40

CHARGED - charged reference cell

The unit cell of a periodic system must be neutral. This option forces the overall system to be neutral even when the number of electrons in the reference cell is different from the sum of nuclear charges, by adding a uniform background charge density to neutralize the charge in the reference cell.

Warning - Do not use for total energy comparison.

CHEMOD - modification of electronic configuration

rec	variable	meaning
\bullet	NC	number of configurations to modify
\bullet	LA	label of the atom with new configuration
$*$	$\mathrm{CH}(\mathrm{L}), \mathrm{L}=1, \mathrm{NS}$	shell charges of the LA-th atom. The number NS of shells must coincide
		with that defined in the basis set input.

The CHEMOD keyword allows modifications of the shell charges given in the basis set input, which are used in the atomic wave function routines. The original geometric symmetry is checked, taking the new electronic configuration of the atoms into account. If the number of symmetry operators should be reduced, information on the new symmetry is printed, and the program stops. No automatic reduction of the symmetry is allowed. Using the information printed, the symmetry must be reduced by the keyword MODISYMM (input block 1, page 52 .

See test 37. MgO supercell, with a Li defect. The electronic configuration of the oxygen nearest to Li corresponds to O^{-}, while the electronic configuration of those in bulk MgO is O^{2-}. The basis set of oxygen is unique, while the contribution of the two types of oxygen to the initial density matrix is different.

END

Terminate processing of block 2, basis set, input. Execution continues. Subsequent input records are processed, if required.

GAUSS98 - Printing of input file for GAUSS98 package

The keyword GAUSS98 writes in file GAUSSIAN.DAT an input deck to run Gaussian (Gaussian 98 or Gaussian03) [89, 88]. The deck can be prepared without the calculation of the wave function by entering the keyword TESTPDIM in input block 3 (page 113). For periodic systems, coordinates and basis set for all the atoms in the reference cell only are written (no information on translational symmetry).
If the keyword is entered many times, the data are overwritten. The file GAUSSIAN.DAT contains the data corresponding to the last call.
The utility program gautocry reads basis set input in Gaussian format (as prepared by http://www.emsl.pnl.gov/forms/basisform.html) and writes it in CRYSTAL format. No input data required.

1. The route card specifies:

method	HF
basis set	GEN 5D 7F
type of job	SP
geometry	UNITS=AU GEOM=COORD

2. The title card is the same as in CRYSTAL input.
3. The molecule specification defines the molecular charge as the net charge in the reference cell. If the system is not closed shell, the spin multiplicity is indicated with a string "??", and must be defined by the user.
4. Input for effective core pseudopotentials is not written. In the route card PSEUDO $=$ CARDS is specified; the pseudopotential parameters used for the crystal calculation are printed in the crystal output.
5. The scale factors of the exponents are all set to 1., as the exponents are already scaled.
6. the input must be edited when different basis sets are used for atoms with the same atomic number (e.g., CO on MgO , when the Oxygen basis set is different in CO and in $\mathrm{MgO})$

Warning: Only for 0D systems! The programs does not stop when the keyword GAUSS98 is entered for $1-2-3 \mathrm{D}$ systems. Coordinates and basis set of all the atoms in the primitive cell are written, formatted, in file GAUSSIAN.DAT, following Gaussian scheme.

Warning If you run Gaussian 98 using the input generated by CRYSTAL with the keyword GAUSS98, you do not obtain the same energy. There are 3 main differences between a standard CRYSTAL run and a GAUSSIAN run.

1. CRYSTAL adopts by default bipolar expansion to compute coulomb integrals when the two distributions do not overlap. To compute all 2 electron integrals exactly, insert keyword NOBIPOLA in input block 3;
2. CRYSTAL adopts truncation criteria for Coulomb and exchange sums: to remove them, in input block 3 insert:

TOLINTEG
2020202020
3. CRYSTAL adopts the NIST conversion factor bohr/Angstrom CODATA98:
$1 \AA=0.5291772083$ bohr
To modify the value, in input block 1 insert:
BOHRANGS
value_of_new_conversion_factor

GHOSTS

rec	variable	meaning
$\bullet \quad *$ NA	number of atoms to be transformed into ghosts	
$\bullet \quad * \mathrm{LA}(\mathrm{L}), \mathrm{L}=1, \mathrm{NA}$	label of the atoms to be transformed.	

Selected atoms may be transformed into ghosts, by deleting the nuclear charge and the shell electron charges, but leaving the basis set centred at the atomic position. The conventional atomic number is set to zero., the symbol is "XX".
If the system is forced to maintain the original symmetry (KEEPSYMM), all the atoms symmetry related to the given one are transformed into ghosts.
Useful to create a vacancy (Test 37), leaving the variational freedom to the defective region and to evaluate the basis set superposition error (BSSE), in a periodic system. The periodic structure is maintained, and the energy of the isolated components computed, leaving the basis set of the other one(s) unaltered. For instance, the energy of a mono-layer of CO molecules on top of a MgO surface can be evaluated including the basis functions of the first layer of MgO , or, vice-versa, the energy of the MgO slab including the CO ad-layer basis functions.
See test36 and test37.
Warning Do not use with ECP.
Warning The keyword ATOMREMO (input block 1, page 39) creates a vacancy, removing nuclear charge, electron charge, and basis functions. The keyword GHOSTS creates a vacancy, but leaves the basis functions at the site, so allowing better description of the electron density in the vacancy.
Warning - Removal of nuclear and electron charge of the atoms selected is done after complete processing of the input. They look still as "atoms" in the printed output before that operation.

NOPRINT

Printing of basis set is removed. No input data required.

PRINTOUT - Setting of printing environment

See input block 1, page 62 .

SETINF - Setting of INF values

See input block 1, page 64 .

SETPRINT - Setting of printing options

See input block 1, page 64 .

STOP

Execution stops immediately. Subsequent input records are not processed.

TEST[BS]

Basis set input is checked, then execution stops. Subsequent input records (block3) are not processed.

SYMMOPS

See input block 1, page 70

Effective core pseudo-potentials - ECP

Valence-electron only calculations can be performed with the aid of effective core pseudopotentials (ECP). The ECP input must be inserted into the basis set input of the atoms with conventional atomic number >200.

The form of pseudo-potential $W_{p s}$ implemented in CRYSTAL is a sum of three terms: a Coulomb term (C), a local term (W0) and a semi-local term (SL):

$$
\begin{equation*}
W_{p s}=C+W 0+S L \tag{3.15}
\end{equation*}
$$

where:

$$
\begin{gather*}
C=-Z_{N} / r \tag{3.16}\\
W 0=\sum_{k=1}^{M} r^{n_{k}} C_{k} e^{-\alpha_{k} r^{2}} \tag{3.17}\\
S L=\sum_{\ell=0}^{4}\left[\sum_{k=1}^{M_{\ell}} r^{n_{k \ell}} C_{k \ell} e^{-\alpha_{k \ell} r^{2}}\right] P_{\ell} \tag{3.18}
\end{gather*}
$$

Z_{N} is the effective nuclear charge, equal to total nuclear charge minus the number of electrons represented by the ECP, P_{ℓ} is the projection operator related to the ℓ angular quantum number, and $M, n_{k}, \alpha_{k}, M_{\ell}, n_{k \ell}, C_{k \ell}, \alpha_{k \ell}$ are atomic pseudo-potential parameters.

1. Hay and Wadt (HW) ECP (116,114) are of the general form 3.15. In this case, the NKL value given in the tables of ref. [116, 114 must be decreased by $2(2 \rightarrow 0,1 \rightarrow-1$, $0 \rightarrow-2$).
2. Durand and Barthelat (DB) ([13] - [66], [14], [15]), and Stuttgart-Dresden [180] ECPs contain only the Coulomb term C and the semi-local SL term.
3. In Durand and Barthelat ECP the exponential coefficient α in SL depends only on ℓ (i.e. it is the same for all the M_{k} terms).

$$
\begin{equation*}
S L=\sum_{\ell=0}^{3} e^{-\alpha_{\ell} r^{2}}\left[\sum_{k=1}^{M_{\ell}} r^{n_{k \ell}} C_{k \ell}\right] P_{\ell} \tag{3.19}
\end{equation*}
$$

The core orbitals replaced by Hay and Wadt large core and Durand-Barthelat ECPs are as follows:

$\mathrm{Li}-\mathrm{Ne}$	$=[\mathrm{He}]$
$\mathrm{Na}-\mathrm{Ar}$	$=[\mathrm{Ne}]$
first series	$=[\mathrm{Ar}]$
second series	$=[\mathrm{Kr}]$
third series	$=[\mathrm{Xe}] 4 f^{14}$.

The core orbitals replaced by Hay and Wadt small core ECPs are as follows:

$$
\begin{array}{ll}
\mathrm{K}-\mathrm{Cu} & =[\mathrm{Ne}] \\
\mathrm{Rb}-\mathrm{Ag} & =[\mathrm{Ar}] 3 d^{10} \\
\mathrm{Cs}-\mathrm{Au} & =[\mathrm{Kr}] 4 d^{10} .
\end{array}
$$

The program evaluates only those integrals for which the overlap between the charge distribution $\varphi_{\mu}^{0} \varphi_{\nu}^{g}$ (page 349) and the most diffuse Gaussian defining the pseudopotential is larger than a given threshold $T_{p s}$ (the default value is 10^{-5}). See also TOLPSEUD (Section 2.3).

Pseudopotential libraries

The following periodic tables show the effective core pseudo-potentials included as internal data in the CRYSTAL code.

```
HAY AND WADT LARGE CORE ECP. CRYSTAL92 DATA
    ------- Na Mg -------------------
    K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
    Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
    -------------------------------------------------------
    Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi
```

HAY AND WADT SMALL CORE ECP. CRYSTAL92 DATA

```
K Ca Sc Ti V Cr Mn Fe Co Ni Cu
```


Rb $\operatorname{Sr} \mathrm{Y} \quad \mathrm{Zr} \mathrm{Nb}$ Mo Tc $\mathrm{Ru} \operatorname{Rh} \mathrm{Pd} \mathrm{Ag}$
Cs $\mathrm{Ba} \quad \mathrm{Hf} \mathrm{Ta} \mathrm{W}$ Re Os Ir Pt Au

BARTHE, HAYWSC and HAYWLC pseudopotential coefficients and exponents are inserted as data in the CRYSTAL code. The data defining the pseudo-potentials where included in CRYSTAL92, and never modified. The keyword INPUT allows entering updated pseudo-potentials, when available. An a posteriori check has been possible for HAYWLC and HAYWSC only, as the total energy of the atoms for the suggested configuration and basis set has been published [116, 115]. Agreement with published atomic energies data is satisfactory (checked from Na to Ba) for Hay and Wadt small core and large core pseudopotentials, when using the suggested basis sets. The largest difference is of the order of 10^{-3} hartree.
For Durand and Barthelat the atomic energies are not published, therefore no check has been performed. The printed data should be carefully compared with those in the original papers. The authors of the ECP should be contacted in doubtful cases.

Valence Basis set and pseudopotentials

Hay and Wadt ([116, 115]) have published basis sets suitable for use with their small and large core pseudopotentials. and in those basis set the s and p gaussian functions with the same quantum number have different exponent. It is common in CRYSTAL to use sp shells, where basis functions of s and p symmetry share the same set of Gaussian exponents, with a consequent considerable decrease in CPU time. The computational advantage of pseudopotentials over all-electron sets may thus be considerably reduced.
Basis set equivalent to those suggested by Hay and Wadt can be optimized by using CRYSTAL as an atomic package (page 83), or any atomic package with effective core pseudopotentials.

See Chapter 16 for general comments on atomic basis function optimization. Bouteiller et al [27] have published a series of basis sets optimized for Durand and Barthelat ECPs.

Stuttgart-Dresden ECP (formerly STOLL and PREUSS ECP)

The most recent pseudopotential parameters, optimized basis sets, a list of references and guidelines for the choice of the pseudopotentials can be found in:
http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html
The clickable periodic table supplies, in CRYSTAL format, ECP to be used in CRYSTAL via the INPUT keyword (basis set input, block2, page 75).
http://www.theochem.uni-stuttgart.de/pseudopotentials/clickpse.en.html

RCEP Stevens et al.

Conversion of Stevens et al. pseudopotentials An other important family of pseudopotentials for the first-, second-, third-, fourth and fifth-row atoms of the periodic Table (excluding the lanthanide series) is given by Stevens et al. [206, 207. Analytic Relativistic Compact Effective Potential (RCEP) are generated in order to reproduce the "exact" pseudo-orbitals and eigenvalues as closely as possible. The analytic RCEP expansions are given by:

$$
r^{2} V_{l}(r)=\sum_{k} A_{l k} r^{n_{l, k}} e^{-B_{l k} r^{2}}
$$

An example of data for Ga atom (Table 1, page 616 of the second paper) is:

$$
\begin{array}{rrrr}
& A_{l k} & n_{l k} & B_{l k} \\
V_{d} & -3.87363 & 1 & 26.74302 \\
V_{s-d} & 4.12472 & 0 & 3.46530 \\
& 260.73263 & 2 & 9.11130 \\
& -223.96003 & 2 & 7.89329 \\
V_{p-d} & 4.20033 & 0 & 79.99353 \\
& 127.99139 & 2 & 17.39114
\end{array}
$$

The corresponding Input file for the CRYSTAL program will be as follows:

INPUT

21. 132000

$$
\begin{array}{rrr}
26.74302 & -3.87363 & -1 \\
3.46530 & 4.12472 & -2 \\
9.11130 & 260.73263 & 0 \\
7.89329 & -223.96003 & 0 \\
79.99353 & 4.20033 & -2 \\
17.39114 & 127.99139 & 0
\end{array}
$$

Note that for the r-exponent $\left(n_{l k}\right)$, -2 has been subtracted to the value given in their papers, as in the case of Hay and Wadt pseudopotentials.

3.3 Computational parameters, Hamiltonian, SCF control

Single particle Hamiltonian

RHF	Restricted Closed Shell	107
UHF	Unrestricted Open Shell	115
MP2	Electron correlation energy	104
DFT	DFT Hamiltonian	115
	SPIN spin-polarized solution	124
	Choice of the exchange-correlation functionals	
	EXCHANGE exchange functional	118
	LDA functionals	
	LDA Dirac-Slater 53 (LDA)	
	VBH von Barth-Hedin [220] (LDA)	
	GGA functionals	
	BECKE Becke 1988[18 (GGA)	
	PBE Perdew-Becke-Ernzerhof 1996 [160 (GGA)	
	PBESOL GGA. PBE functional revised for solids [162]	
	mPW91 modified Perdew-Wang 91 (GGA)	
	PWGGA Perdew-Wang 91 (GGA)	
	SOGGA second order GGA. [238]	
	WCGGA GGA - Wu-Cohen [229]	
	CORRELAT correlation functional	118
	LDA functionals	

Global Hybrid functionals

Standalone keywords

B3PW	B3PW parameterization	119
B3LYP	B3LYP parameterization	119
PBE0	Adamo and Barone [6]	119
PBESOL0	Derived from PBE0	119
B1WC	see 22	119
WC1LYP	see 51	119
B97H	see [5, 81]	119
PBE0-13	see 36]	119
User defined global hybrids		
HYBRID	hybrid mixing	119
NONLOCAL	local term parameterization	119

Range-Separated Hybrid functionals		
Short-range Corrected RSH functionals		
HSE06	Screened-Coulonb PBE XC functional 3, 160	121
HSESOL	Screened-Coulomb PBESOL XC functional [132, 162	121
SC-BLYP	SC-RSH BLYP functional based on ITYH scheme 110,	121
231		
Middle-range Corrected RSH functionals		
HISS	MC based on PBE XC functional [210, 211]	121
Long-range Corrected RSH functionals		
RSHXLDA	LC LDA XC functional [2, 123]	121
wB97	Chai/Head-Gordon LC functional [124, 5]	121
wB97X	Chai/Head-Gordon SC/LC functional [124, [5]	121
LC-wPBE	LC hybrid based on PBE XC functional 67	121
LC-wPBESOL	LC hybrid based on PBESOL XC functional 67]	121
LC-wBLYP	LC hybrid based on BLYP XC functional 67]	121
LC-BLYP	LC-RSH BLYP functional based on ITYH scheme 110 ,	121
231		
CAM-B3LYP Coulomb-Attenuating method) 214 based on the BLYP 121		
XC functional		
User defined range separated hybrids		
SR-OMEGA	setting of $\omega_{S R}$ for SC hybrids	122
MR-OMEGA	setting of $\omega_{S R}$ and $\omega_{L R}$ for MC hybrids	122
LR-OMEGA	setting of $\omega_{L R}$ for LC hybrids	122
SR-HYB_WB90xtion to change the amount of SR-HF exchange in the 122 ω B97-X functional		
LSRSH-PBE	User-controllable RSH x-functional based on the PBE	122
meta-GGA functionals		
Pure mGGA functionals		
M06L	pure mGGA M06-type functional [233]	122
Global hybrid mGGA functionals		
M05	Minnesota 2005 functional [237]	122
M052x	M05-2X functional [236]	122
M06	Minnesota 2006 functional [235]	122
M062X	M06-2X functional [235]	122
M06HF	M06-type functional with 100% HF [233]	122
Double Hybrid functionals		
B2PLYP	DH method based on BLYP functional 190	123
B2GPPLYP	General purpose variant of B2PLYP [1]	123
mPW2PLYP	DH method based on mPW91-LYP functional [213]	123
DHYBRID	HF exchange and MP2-like mixing for double hybrids	123

Numerical accuracy control and convergence tools		
ANDERSON	Fock matrix mixing	83
BROYDEN	Fock matrix mixing	85
DIIS	Fock matrix mixing/convergence accelerator	86
FMIXING	Fock/KS matrix (cycle i and $i-1$) mixing 0	95
LEVSHIFT	level shifter no	102
MAXCYCLE	maximum number of cycles 50	103
SMEAR	Finite temperature smearing of the Fermi surface no	110
TOLDEE	convergence on total energy 6	114
Initial guess		
EIGSHIFT	alteration of orbital occupation before SCF no	88
EIGSHROT	rotation of the reference frame no	89
GUESSP	density matrix from a previous run	99
GUESSPAT	superposition of atomic densities	100
Spin-polarized system		
ATOMSPIN	setting of atomic spin to compute atomic densities	83
BETALOCK	beta electrons locking	84
SPINLOCK	spin difference locking	113
SPINEDIT	editing of the spin density matrix used as SCF guess	112

Auxiliary and control keywords		
END	terminate processing of block3 input	
FULLTIME	detailed report on running time	95
KSYMMPRT	printing of Bloch functions symmetry analysis	102
LOWMEM	inhibits allocation of large arrays	103
NOLOWMEM	allows allocation of large arrays	103
MAXNEIGHB	maximum number of equidistant neighbours from an atom	51
NEIGHBOR	number of neighbours to analyse in PPAN	59
MEMOPRT	Synthetic report about dynamic memory usage	103
MEMOPRT2	Detailed report about dynamic memory usage	104
PRINTOUT	setting of printing options	62
QVRSGDIM	maximum size of mutipole moment gradient array 90000000	107
NOSYMADA	No Symmetry Adapted Bloch Functions	106
SYMADAPT	Symmetry Adapted Bloch Functions (default)	113
SETINF	setting of inf array options	64
SETPRINT	setting of printing options	64
STOP	execution stops immediately	65
TESTPDIM	stop after symmetry analysis	113
TEST[RUN]	stop after integrals classification and disk storage estimate	113
Restricted to MPPcrystal		
CMPLXFAC	Overloading in handling matrices at "complex" k points with 86 respect to "real" k points $2 . \overline{3}$ to run MPPcrystal as Pcrystal Enable standard diagonalization method (D\&C method dis-113 abled)	
REPLDATA		
STDIAG		
Output of data on external units		
NOFMWF	wave function formatted output not written in file fort.98.	105
SAVEWF	wave function data written every two SCF cycles	107

Post SCF calculations		
POSTSCF	post-scf calculations when convergence criteria not satisfied	106
EXCHGENE	exchange energy evaluation (spin polarized only)	-
GRADCAL	analytical gradient of the energy	-
PPAN	population analysis at the end of the SCF	no

Computational parameters, Hamiltonian, SCF control optional keywords
 ANDERSON

Anderson's method [7, as proposed by Hamann [112], is applied. No input data are required. See test49_dft, a metallic Lithium 5 layers slab, PWGGA Hamiltonian.

ATOMHF - Atomic wave function calculation

The Hartree-Fock atomic wave functions for the symmetry unique atoms in the cell are computed by the atomic program [188. Full input (geometry, basis set, general information, SCF) is processed. No input data are required. The density matrix, constructed from a superposition of atomic densities, is computed and written on Fortran unit 9, along with the wave function information. The crystal program then stops. It is then possible to compute charge density (ECHG) and classical electrostatic potential (CLAS) maps by running the program properties. This option is an alternative to the keyword PATO in the program properties (page 301), when the calculation of the periodic wave function is not required. The atomic wave function, eigenvalues and eigenvectors, can be printed by setting the printing option 71.

1. The atomic basis set may include diffuse functions, as no periodic calculation is carried out.
2. A maximum of two open shells of different symmetry (s, p, d) are allowed in the electronic configuration. In the electronic configuration given in input the occupation number of the shells must follow the rules given in Section 2.2 .
3. For each electronic configuration, the highest multiplicity state is computed. Multiplicity cannot be chosen by the user.

Warning: DFT wave function for isolated atoms can not be computed.

ATOMSPIN - Setting of atomic spin

rec	variable	meaning
$\bullet \quad *$	NA	number of atoms to attribute a spin
-	LA,LS $(\mathrm{LA}), \mathrm{L}=1, \mathrm{NA}$	atom labels and spin $(1,0,-1)$

The setting of the atomic spins is used to compute the density matrix as superposition of atomic densities (GUESSPAT must be SCF initial guess); it does not work with GUESSP). The symmetry of the lattice may be reduced by attributing a different spin to geometrically symmetry related atoms. In such cases a previous symmetry reduction should be performed using the MODISYMM keyword. The program checks the symmetry taking the spin of the atoms into account. If the spin pattern does not correspond to the symmetry, the program prints information on the new symmetry, and then stops.

The formal spin values are given as follows:
1 atom spin is taken to be alpha;
0 atom spin is irrelevant;
-1 atom spin is taken to be beta.
In a NiO double-cell (four atoms, Ni 1 Ni 2 O 1 O 2) we might use:

atom	Ni1	Ni2		
spin	1	1	for starting ferromagnetic solutions:	$\uparrow \uparrow$
spin	1	-1	for starting anti ferromagnetic solutions:	$\uparrow \downarrow$

SPINLOCK forces a given $n_{\alpha}-n_{\beta}$ electrons value: to obtain a correct atomic spin density to start SCF process, the atomic spins must be set even for the ferromagnetic solution. See test 30 and 31 .

BETALOCK - Spin-polarized solutions

rec variable meaning

- * INF97 n_{β} electrons
* INF98 number of cycles the n_{β} electrons is maintained

The total number of of β electrons at all \mathbf{k} points can be locked at the input value. The number of α electrons is locked to $(N+$ INF95) $/ 2$, where N is the total number of electrons in the unit cell. INF95 must be odd when the number of electrons is odd, even when the number of electrons is even. See SPINLOCK for alternative way to define spin setting.

Note: if INF98 is <0, then the lock duration is controlled by energy difference between successive cycles (disappears when $<10^{-I N F 98}$) instead of by number of cycles. This is useful when the locking must be relaxed before the convergence of the SCF -otherwise there is a risk to arrive to a spurious solution- but at the same time one does not know exactly in which SCF cycle the density matrix can be considered to be close enough to the right electronic structure so as to avoid a divergent behavior after the locking finishes.
Situations like this may occur in geometry optimizations of ferromagnetic systems, for instance: the SCF of the first optimization point converges in CYC 20 with the locking finishing in CYC 12; in the remaining points, as the density matrix of the previous one is used as initial guess, the SCF converges in CYC 10 under locking and, so, the true convergence is not ensured. Using FINALRUN $=4$ this situation could lead to an extremely large or even non convergent optimization process.
On the other hand, to fix locking since the energy difference between cycles is less than a given threshold is a quite handy criterion that could be in several cases preferable than fixing the duration in terms of number of cycles.

BIESPLIT - Splitting of large bielectronic integral files

rec	variable	meaning		
\bullet	$*$	NFILE	number of files to be used	1

\hline\end{array}\right.\)

Very compact crystalline systems, and/or very diffuse basis functions and/or very tight tolerances can produce billions integrals to be stored. The storage of bielectronic integrals can be
avoided by running the direct SCF code scfdir rather than the standard SCF, at the expenses of a certain amount of CPU time.
When the standard SCF code is used, distributing the integrals on several disk files can improve performance.

BIPOLAR - Bipolar expansion approximation control

rec	variable meaning	
$\bullet *$	ITCOUL overlap threshold for Coulomb	18
$*$	ITEXCH overlap threshold for exchange	14

The bipolar approximation is applied in the evaluation of the Coulomb and exchange integrals (page 353 . ITCOUL and ITEXCH can be assigned any intermediate value between the default values (18 and 14) (see page 353) and the values switching off the bipolar expansion (20000 and 20000).
Note that default values have become tighter, 18 and 14, from Crystal14, whereas before they were 14 and 10 , respectively. Results are now expected to be more accurate but the program might be slower.

BIPOSIZE -Size of buffer for Coulomb integrals bipolar expansion

rec	variable	meaning
- $*$	ISIZE	size of the buffer in words

Size (words) of the buffer for bipolar expansion of Coulomb integrals (default value is 4000000, that is 32 Mb , per core). The size of the buffer is printed in the message:

```
BIPO BUFFER LENGTH (WORDS) = XXXXXXX
```

or
COULOMB BIPO BUFFER TOO SMALL - TO AVOID I/O SET BIPOSIZE = XXXXXX

BROYDEN

rec	variable	meaning
\bullet	W0	W0 parameter in Anderson's paper [125]
*	IMIX	percent of Fock/KS matrices mixing when Broyden method is switched on
*	ISTART	SCf iteration after which Broyden method is active (minimum 2)

A modified Broyden [32] scheme, following the method proposed by Johnson [125], is applied after the ISTART SCF iteration, with IMIX percent of Fock/KS matrices simple mixing. The value of $\%$ mixing given in input after the keyword FMIXING is overridden by the new one. Level shifter should be avoided when Broyden method is applied.
Suggested values:

FMIXING

80
BROYDEN
0.0001502

See test50_dft, a metallic Lithium 5 layers slab, PWGGA Hamiltonian.

CMPLXFAC - Weight for diagonalization time

This directive is supported by MPPcrystal only.

rec	variable	meaning
$*$	WEIGHT	estimated ratio of the computational time required to diagonalize complex and real matrices. Default value: $2 . \overline{3}$.

Fock matrix elements at a general k point in reciprocal space are complex numbers. At special k points (such as Γ, for example) those elements are real. Computational times required to diagonalize real $\left(t_{r}\right)$ and complex $\left(t_{c}\right)$ matrices are different. WEIGHT is an estimate of the ratio: WEIGHT $=t_{c} / t_{r}$.
An appropriate assessement of WEIGHT improves load balancing. The default value is: $2 . \overline{3}$.

DIIS - Direct Inversion of the Iterative Subspace convergence accelerator

The Direct Inversion of Invariant Subspace (DIIS) is a powerful technique to accelerate the SCF convergence that gained success in recent years. Initially proposed by Pulay in 1984 for SCF convergence, 184, 182, it gained considerable reputation during the last 30 years. This is a new Crystal17 feature, and is activated by default.

	keyword	meaning
	DIIS	Activates the Γ-point only DIIS procedure [default].
	DIIS1K	Equivalent to DIIS
	PRTDIIS	Activates detailed printing of the Fock mixing coefficients in the DIIS procedure.
	DIISALLK	DIIS is performed over all k-points of the Brillouin zone
	SLOSHING	DIIS is performed over all k-points of the Brillouin zone but weighted according to Kerker factors to avoid charge sloshing.
	NODIIS	Deactivates DIIS and restores FMIXING 30\% + LEVSHIFT
		optional additional keywords
rec	variable	meaning
A $*$	HISTDIIS NCYC	Limits DIIS mixing to the most recent $N C Y C$ cycles maximum number of previous cycles to be kept
$\begin{array}{r}\text { A } \\ \bullet \\ \hline\end{array}$	THREDIIS DEDIIS	Postpones the activation of DIIS by performing Fock mixing until the difference in energy is below DEDIIS. threshold for $\Delta \mathrm{E}$ to activate DIIS
A	THRKDIIS	All the Fock matrices having a weight lower than KDIISTHR are discarded from DIIS history.
- *	DIISTHR	threshold on DIIS weight for discarding earlier Fock matrices
A	SLOSHFAC	Sets Kerker factor if SLOSHING is active
- *	FKERK	Set the parameter used for Kerker factors (k-points weights) [Default: 1.2]

Note: DIISALLK and SLOSHING are not available in MPPcrystal

Let us consider an SCF iterative procedure. Cycle n starts with the definition of a density $\operatorname{matrix} \mathbf{D}_{n}(\mathbf{k})$, either obtained as an initial guess (at cycle 0) or from eigenvectors of the previous cycle. A Fock matrix $\mathbf{F}_{n}(\mathbf{k})$ is then obtained from this density matrix, and then diagonalized in each \mathbf{k} point to obtain eigenvectors $\mathbf{C}_{n}(\mathbf{k})$. These will form the $\mathbf{D}_{n+1}(\mathbf{k})$ density matrices and so on. In the DIIS procedure, at each iterative cycle n, instead of the Fock matrix $\mathbf{F}_{n}(\mathbf{k})$, an averaged effective Hamiltonian is generated as a linear combination of the Fock matrices of previous iterations:

$$
\begin{equation*}
\overline{\mathbf{F}}_{n}=\sum_{i=1}^{n} c_{i} \mathbf{F}_{i} \tag{3.20}
\end{equation*}
$$

The c_{i} coefficients are obtained by minimizing a suitable error functional \mathbf{e}, subject to the constraint that $\sum_{i=1}^{n} c_{i}=1$. This is obtained by solving the linear equation system:

$$
\left(\begin{array}{cc}
\mathbf{e} & \mathbf{1}^{T} \tag{3.21}\\
\mathbf{1} & 0
\end{array}\right)\binom{\mathbf{c}}{\lambda}=\binom{\mathbf{0}}{1}
$$

where \mathbf{e} is an error matrix having the size of the iterative space up to cycle n and λ is a Lagrange multiplier. The error matrix is defined through scalar products of suitable error vectors in each \mathbf{k} point of the Brillouin zone:

$$
\begin{equation*}
e_{n m}=\sum_{\mathbf{k}} f_{\mathbf{k}}<\mathbf{e}_{n}(\mathbf{k}) \mid \mathbf{e}_{m}(\mathbf{k})> \tag{3.22}
\end{equation*}
$$

where k-dependent factors $f_{\mathbf{k}}$ are introduced.

- By default, only gamma point is used in DIIS (DIIS1K), and in this case $f_{\mathbf{k}}=1$ and no summation is performed over k points.
- Sum can be extended to all k points, with factors set all equal to $1 / N_{\mathbf{k}}$, by using the keyword DIISALLK.
- The keyword SLOSHING is similar to DIISALLK, but different weights for different k-points are used, according to Kerker's formula

According to Pulay's commutator-DIIS (CDIIS) formulation, 182 we define the error vector for the SCF procedure as:

$$
\begin{equation*}
\mathbf{e}_{n}(\mathbf{k})=\mathbf{F}_{n}(\mathbf{k}) \mathbf{D}_{n}(\mathbf{k}) \mathbf{S}(\mathbf{k})-\mathbf{S}(\mathbf{k}) \mathbf{D}_{n}(\mathbf{k}) \mathbf{F}_{n}(\mathbf{k}) \tag{3.23}
\end{equation*}
$$

where $\mathbf{S}(\mathbf{k})$ is the overlap matrix. The CDIIS formulation is particularly convenient because it allows the number of occupied orbitals in a given \mathbf{k} point to vary during iterations.

DFT

The Kohn-Sham [129, 121 DFT code is controlled by keywords, that must follow the general keyword DFT, in any order.
The DFT input block ends with the keyword END or ENDDFT. Default values are supplied for all computational parameters. For further details see Chapter 4.

DOPING - Fractional charge doping

rec variable meaning

- * CHGDOPamount of electrons to be added to the system (real number)

The keyword allows to add (or remove) electrons from the system independently of the number of electrons given as initial guess in the basis set input or using CHEMOD (see page 72). The additional electronic charge is added after the first diagonalization of the SCF procedure. If the resulting cell is not neutral, a uniform compensating charge background is added automatically (similarly to keyword CHARGED, page 72). At difference with CHEMOD, through
this keyword it is possible to add a fractional amount of electrons to a periodic cell, obtaining equivalent results with respect to adding one electron to an appropriate supercell of the original cell.

Warning: when adding a fractional number of electrons to a cell, particular care must be taken in verifying that the sampling of reciprocal space is well converged. The appropriate value of the shrinking factor for such a system is in some cases several times larger than for the neutral cell, and is dependent on the amount of charge doping.

EIGS - Check of basis set linear dependence

In order to check the risk of basis set linear dependence, it is possible to calculate the eigenvalues of the overlap matrix. Full input (geometry, basis set, general information, SCF) is processed. No input data are required. The overlap matrix in reciprocal space is computed at all the kpoints generated in the irreducible part of the Brillouin zone, and diagonalized. The eigenvalues are printed.
The higher the numerical accuracy obtained by severe computational conditions, the closer to 0 can be the eigenvalues without risk of numerical instabilities. Negative values indicate numerical linear dependence. The crystal program stops after the check (even if negative eigenvalues are not detected).
The Cholesky reduction scheme [130, adopted in the standard SCF route, requires linearly independent basis functions.
MPP doesn' support EIGS.

EIGSHIFT - Alteration of orbital occupation before SCF

rec variable meaning		
- * NORB		number of elements to be shifted
		>0 level shift of diagonal elements only
		<0 off-diagonal level shift
		[_ insert NORB records _
\square if NORB $>0 \ldots$		
- * I	IAT	label of the atom
	ISH	sequence number of the shell in the selected atom Basis Set (as given in Basis
		Set input)
	IORB	sequence number of the AO in the selected shell (see Section 2.2 page 25.
	SHIF1	α (or total, if Restricted) Fock/KS matrix shift
	[SHIF2	β Fock/KS matrix shift - spin polarized only] if $\mathrm{NORB}<0$
- *	IAT	label of the atom
	ISH	sequence number of the shell in the selected atom Basis Set
	IORB1	sequence number of the AO in the selected shell
	IORB2	sequence number of the AO in the selected shell
	SHIF1	α (or total, if Restricted) Fock/KS matrix shift
	[SHIF2	β Fock/KS matrix shift - spin polarized only]

Selected diagonal Fock/KS matrix elements can be shifted upwards when computing the initial guess, to force orbital occupation. This option is particularly useful in situations involving d orbital degeneracies which are not broken by the small distortions due to the crystal field, but which are broken by some higher-order effects (e.g. spin-orbit coupling). The EIGSHIFT option may be used to artificially remove the degeneracy in order to drive the system to a stable, non-metallic solution. The eigenvalue shift is removed after the first SCF cycle.

If the shift has to be applied to matrix elements of atoms symmetry related, the input data must be repeated as many times as the atoms symmetry related.

Example: KCoF_{3} (test 38). In the cubic environment, two β electrons would occupy the threefold degenerate $\mathrm{t}_{2 g}$ bands. A state with lower energy is obtained if the degeneracy is removed by a tetragonal deformation of the cell (keyword ELASTIC), and the $\mathrm{d}_{x y}$ orbital (see page 25 for d orbital ordering) is shifted upwards by 0.3 hartree.
Warning EIGSHIFT acts on the atoms as specified in input. If there are atoms symmetryrelated to the chosen one, hamiltonian matrix elements shift is not applied to the others. The programs checks the symmetry compatibility, and, if not satisfied, stops execution. The matrix elements of all the atoms symmetry-related must be shifted, if the symmetry of the systems must be kept
The keyword ATOMSYMM (input block 1, page 40) prints information on the atoms symmetry related in the cell.

EIGSHROT

Consider now the case of CoF_{2}. The first six neighbors of each Co^{2+} ion form a slightly distorted octahedron (2 axial and 4 equatorial equivalent distances); also in this case, then, we are interested in shifting upwards the $\mathrm{d}_{x y}$ orbital, in order to drive the solution towards the following occupation:

$$
\begin{array}{ll}
\alpha: & \text { all five d orbitals } \\
\beta: & \mathrm{d}_{x z} \text { and } \mathrm{d}_{y z}
\end{array}
$$

The principal axis of the CoF_{6} octahedron, however, is not aligned along the z direction, but lies in the $x y$ plane, at 45° from the x axis. The cartesian reference frame must then be reoriented before the shift of the $\mathrm{d}_{x y}$ orbital.
To this aim the option EIGSHROT must be used. The reoriented frame can be specified in two ways, selected by a keyword:

	variable	meaning
	MATRIX	keyword - the rotation matrix R is provided
- *	R11 R12 R13	first row of the matrix.
- *	R21 R22 R23	second row of the matrix.
- *	R31 R32 R33	third row of the matrix.
or		
	ATOMS	keyword - the rotation is defined by three atoms of the crystal
		label of first atom in the reference cell
	AL,AM,AN	indices (direct lattice, input as reals) of the cell where the first atom is located
- *	IB	label of second atom in the reference cell
	BL,BM,BN	indices (direct lattice, input as reals) of the cell where the second atom is located
- *	IC	label of third atom in the reference cell
	CL, CM, CN	indices (direct lattice, input as reals) of the cell where the third atom is located
		t EIGSHIFT input records (Section 3.3, page 88)

When the rotation is defined by three atoms, the new reference frame is defined as follows :
Z-axis from atom 2 to atom 1
X -axis in the plane defined by atoms 1-2-3 (the vector joining atom 3 to atom 1, in general, is not orthogonal to the vectors joining atom 2 to atom 1 ; it is then orthogonalized.)
Y -axis orthogonal to Z - and X -axis

Notice that the wave function calculation is performed in the original frame: the aim of the rotation is just to permit a shift of a particular orbital. A rotation of the eigenvectors can be obtained in properties by entering the keyword ROTREF, allowing AO projected Density of States or Population Analysis orienting the cartesian frame along the principal axes of the octahedron.
Example:
CoF2
ROTREF
ATOMS
5
000
2
000
3
000
PPAN
END
END

END
Terminate processing of block 3,(last input block). Execution continues. Subsequent input records are not processed.

EXCHGENE - Exchange energy calculation

In RHF calculations Coulomb and exchange integrals are summed during their calculation, and there is no way to separate the exchange contribution to the total energy. In UHF / ROHF calculations, this option allows the independent calculation and printing of the exchange contribution to the total energy. See equation 17.19 , page 352 .
No input data are required. See tests 29, 30, 31, 38.

EXCHPERM - Use permutation of center in exchange integrals

In HF and hybrids calculations exact exchange integrals (see equation 17.19 , page 352) are normally calculated in the same routine that calculates Coulomb integrals, exploiting the symmetry of the system in order to reduce the number of computed integrals. In case of systems without symmetry (having only the identity as symmetry operator), this option separates the calculation of exchange from that of Coulomb integrals, and exploits invariance of bielectronic integrals under permutation of centers instead of symmetry.
Given a bielectronic integral $(\mu \rho \mid \nu \sigma)$, where $\mu \nu \rho \sigma$ label the four centers (see chapter 17), the integrals obtained with the permutations:

$$
\begin{equation*}
\mu \leftrightarrow \rho, \nu \leftrightarrow \sigma \text { and }(\mu \rho) \leftrightarrow(\nu \sigma) \tag{3.24}
\end{equation*}
$$

are related to the original one by hermiticity. Of the $2^{3}=8$ equivalent integrals only 4 are used to obtain the irreducible part of the Fock matrix, since hermiticity of the Fock matrix is already exploited. With this option the time required for the calculation of the exchange contribution to the Fock matrix is reduced to $40-50 \%$ of the normal value. The option is usable only in a SCFDIR run (see page 107) and it is automatically switched off in presence of symmetry.
No input data are required.

EXCHSIZE - Size of buffer for exchange integrals bipolar expansion

rec	variable	meaning
\bullet	ISIZE	size of the buffer in words

Size (words) of the buffer for bipolar expansion of exchange integrals (default value is 4000000, that is 32 Mb , per core).
The size of the buffer is printed in the message:

```
EXCH. BIPO BUFFER: WORDS USED = XXXXXXX
or
EXCH. BIPO BUFFER TOO SMALL - TO AVOID I/O SET EXCHSIZE = XXXXXX
```


FDAOSYM - f and d degeneracies analysis

rec	variable	meaning
\bullet	NA	number of atoms for which the AOs mixing check is performed
$\bullet \quad *$	ISCAT $(J), J=1, N A$	atomic label (output order) of atoms to be checked

This keyword performs the symmetry analysis that permits to know if AOs belonging to the same shell are mixed or not by the symmetry operators that don't move the atom, to which they belong to. This analysis is implemented for d and f shell types only. The FDAOSYM keyword must be inserted in the third block of the CRYSTAL input.

In the output, the subgroup of operators that do not move the atom is performed first (ATOMSYMM keyword). Then the AOs are listed with the indication of mixing with other AOs (if any).
This keyword is useful for partially occupied shells (d or f). AOs that mix will form a symmetry constrained degeneracy subset. If n AOs of the shell mix generating these subsets, and $m<n$ (open shell case) electrons are supposed to populate the shell, then Jahn-Teller symmetry breaking should be taken into account. If a guess AOs occupation is defined with FDOCCUP keyword or forced with EIGSHIFT keyword, information obtained by FDAOSYM can indicate which AOs will have the same occupation.
Example. $\mathrm{Ce}_{2} \mathrm{O}_{3}$ bulk. Structure $4 d$ shell is completely filled and $4 f$ shell contains one electron. Suppose Ce atom is labeled 1. Information produced by FDAOSYM indicates which AOs will have the same occupation. If combined with TESTRUN such information is obtained at zero cost and then a new input with FDOCCUP or EIGSHIFT keywords can be run. The input is

```
FDAOSYM
```

1
1

TESTRUN
Output obtained contains also d shell information, here just f part is reported.

That is: AOs 1,6 and 7 do not mix with any other AO, 2 and 3 mix as well as 4 and 5 . Label and characteristic polynomial for quantum angular symmetry d and f are reported in the FDOCCUP keyword description.

FDOCCUP - f and d orbital occupation guess

rec	variable	meaning	
_ insert INSELOC records ___ II		number of records describing the occupation of d or f shells	
	IATNUM	atom label, output order	
	ISHATO	shell label, atomic list	
	SHTYP	angular quantum label of ISHATO(I)	
- *	IAOCALP	α occupa	
*	IAOC BE	β occupa	

Label and characteristic polynomial for quantum angular symmetry d and f are reported in the following. Spherical harmonics are used, it follows that 5 and 7 functions are reported for d and f symmetry respectively.

| Symmetry d, label 3 | Symmetry f, label 4 |
| :---: | :--- | :--- |
| Label Polynomial | label Polynomial |
| 1 $\left(2 z^{2}-x^{2}-y^{2}\right)$ 1 $\left(2 z^{2}-3 x^{2}-3 y^{2}\right)$
 2 $x z$ 2 $\left.x\left(4 z^{2}-x^{2}-y^{2}\right)\right)$
 3 $y z$ 3 $y\left(4 z^{2}-x^{2}-y^{2}\right)$
 4 $\left(x^{2}-y^{2}\right)$ 4 $z\left(x^{2}-y^{2}\right)$
 5 $x y$ 5 $(x y z)$
 6 $x\left(x^{2}-3 y^{2}\right)$
 7 $y\left(3 x^{2}-y^{2}\right)$ | |

The option FDOCCUP permits to define the occupation of specific f or d orbitals in a given shell in the initial guess calculation. This option can be used only for open shell cases, where electrons belonging to partially filled shells can be assigned to selected AOs.

INSELOC specifies the number of shell occupation descriptions; for each shell, the atom IATNUM (output order) and the shell label ISHATO (basis set order) is specified. As a cross check, also the shell label type SHTYP (3 and 4 for d and f respectively) is required. Finally the α and β occupation for the $5(d)$ or $7(f)$ AOs in the shell is indicated. The occupation numbers in IAOCALPH (J) and IAOCBETA (J) are normalized a posteriori to the number of d or f electrons resulting from the input charges.
Note that the input information must be inserted just one time per atomic number (say 26 , Fe) and IATNUM can be any of the output order atom labels for the selected atom. See EXAMPLE 1 for test case.
To attribute different AOs guess occupation to atoms with the same atomic number, it is just needed to insert as many input as the number of different occupation one wants to set with IATNUM indicating atom labels of atoms with same atomic number but not symmetry related. If different AOs occupation for atoms symmetry related is required, the program stops and an indication of symmetry relations between atoms is reported (as the one obtained by the use of ATOMSYMM keyword).
FDOCCUP can be used in conjunction with EIGSHIFT, ATOMSPIN and SPINLOCK. Note that FDOCCUP and ATOMSPIN act at CYCLE 0, EIGSHIFT at CYCLE 1 and SPINLOCK works from CYCLE 1 for a defined number of cycles.
On the contrary FDOCCUP, as ATOMSPIN, is incompatible with SPINEDIT, where the initial guess calculation is bypassed because the initial guess is obtained by a previous calculation.

Example. $\mathrm{Ce}_{2} \mathrm{O}_{3}$. The Ce^{3+} ion is required to have one f electron. Suppose Ce is the first atom in the input list and that the seventh shell in the Basis Set list is the f shell with charge one. Suppose to distribute the f electron in two AOs with similar occupation: $f_{\left(2 z^{2}-3 x^{2}-3 y^{2}\right) z}$ (first $f \mathrm{AO}$) and $f_{\left(x^{2}-3 y^{2}\right) y}$ (sixth $f \mathrm{AO}$). Use of FDOCCUP in this case is reported in the following:

```
174
1000010
0000000
```

Output is printed in the ATOMIC WAVEFUNCTION(S) part and is reported in the following. Note that the nuclear charge is 30 instead of 58 because pseudopotential is used.

```
NUCLEAR CHARGE 30.0 SYMMETRY SPECIES S P D
N. ELECTRONS 27.0 NUMBER OF PRIMITIVE GTOS 11 11 5
NUMBER OF CONTRACTED GTOS 4 4 4 1
NUMBER OF CLOSED SHELLS 
ZNUC SCFIT TOTAL HF ENERGY KINETIC ENERGY VIRIAL THEOREM ACCURACY
30.0 7 -4.706164398E+02 1.769968771E+02 -3.658896854E+00 3.4E-06
FDOCCUP ACTIVE - ATOM 1 SHELL 6 F SYMMETRY WITH CHARGE 1.0
    DIAGONAL ELEMENTS OF DENSITY MATRIX FOR SHELL }
    ALPHA+BETA }0.5000.000 0.000 0.000 0.000 0.500 0.000
    ALPHA-BETA 0.500 0.000 0.000 0.000 0.000 0.500 0.000
```

Note: the printed information refers to $\alpha+\beta$ and $\alpha-\beta$, while in input α and β are inserted separately.

FIXINDEX

No input data required.
When the geometrical and/or the basis set parameters of the system are changed, maintaining the symmetry and the setting, the truncation criteria of the Coulomb and exchange series, based on overlap (Chapter 17) can lead to the selection of different numbers of bi-electronic integrals. This may be the origin of numerical noise in the optimization curve. When small changes are made on the lattice parameter or on the Gaussian orbital exponents, the indices of the integrals to be calculated can be selected for a reference geometry (or basis set), "frozen", and used to compute the corresponding integrals with the modified geometry (or basis set). This procedure is recommended only when basis set or geometry modifications are relatively small.

- The corresponding irreducible atoms in the two geometries must be entered in the same order, and their position in the second geometry must be slightly shifted in comparison with the first geometry (reference);
- the reference geometry must correspond to the most compact structure;
- the reference basis set must have the lowest outer exponent.

This guards against the loss of significant contributions after, for example, expansion of the lattice.

If estimate of resource is requested with TESTRUN, the reference geometry is used.
Two sets of input data must be given:

1. complete input (geometry, Section 2.1. basis set, Section 2.2; general information, Section 2.3. SCF, Section 2.3), defining the reference basis set and/or geometry;
2. "restart" option input, selected by one of the following keywords (format A) to be added after the SCF input:

GEOM	restart with new geometrical parameters
	insert geometry input, page 17

BASE: the only modification of the basis set allowed is the value of the orbital exponent of the GTFs and the contraction coefficient; the number and type of shells and AOs cannot change.

GEOM: geometry variation must keep the symmetry and the setting unchanged.
The resulting structure of the input deck is as follows:
$0 \longdiv { T i t l e }$
1 standard geometry input (reference geometry). Section 2.1

1b geometry editing keywords (optional; Section 3.1)

END
2 standard basis set input (reference basis set). Section 2.2

2b
basis set related keywords (optional; Section 3.2)
END
3 FIXINDEX
3

```
        block3 keywords
```

END

GEOM	BASE	GEBA
\Downarrow	\Downarrow	\Downarrow
geometry input(p17)	basis set input (p 23)	geometry input (p 17)
(block 1, 1b)	(block 2, 2b)	(block 1, 1b)
END	END	END
		basis set input(p23)
		(block 2, 2b)
		END

Warning: The reference geometry and/or basis set is overwritten by the new one, after symmetry analysis and classification of the integrals. If the reference geometry is edited through appropriate keywords, the same editing must be performed through the second input. Same for basis set input.

If the geometry is defined through the keyword EXTERNAL, the reference geometry data should be in file fort.34, the wave function geometry in file fort. 35 .

Note In geometry optimization (OPTGEOM, page 156 FIXINDEX is automatically set, with input geometry as reference geometry. See keyword FINALRUN, page 163 to redefine
the reference geometry.

See tests 5 and 20.

FMIXING - Fock/KS matrix mixing

rec variable meaning

- * IPMIX percent of Fock/KS matrices mixing 30

The Fock/KS matrix at cycle i is defined as:

$$
F_{i}^{\prime}=(1-p) F_{i}+p F_{i-1}^{\prime}
$$

where p, input datum IPMIX, is the $\%$ of mixing. Too high a value of $p(>50 \%)$ causes higher number of SCF cycles and can force the stabilization of the total energy value, without a real self consistency.
Note that from Crystal 14 , a Fock/KS mixing of $\mathbf{3 0} \%$ is activated by default. Set IPMIX $=0$ to switch this option off.

FULLTIME - Detailed timing report

A more detailed report of the timing data is generated:

| TTTTTTTTTTTTTTTTTTTTTTTTTTTT | SHELXG | TELAPSE | 19.68 | TCPU | 18.42 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WWWWWWWWWWWWWWW SHELXG | MX | 1.07 | MN | 1.07 | MD | 1.07 | |
| QQQQQQQQQQQQQQQ SHELXG | MX | 1.07 | MN | 0.92 | MD | 0.98 | |

The first line is the standard data. The second line reports the minimum, maximum and mean wall time since the last report. The last line reports the minimum, maximum and mean cpu time since the last report. The minimum, maximum and mean operations are across processors, and so this directive is most useful for parallel job.

GRADCAL

No input data required.
Analytic calculation of the nuclear coordinates gradient of the HF, UHF, DFT energies after SCF (all electrons and ECP).
If numerical gradient is requested for the geometry optimization (NUMGRALL, page 165 NUMGRATO, page 165 NUMGRCEL, page 165), analytical gradient is not computed.

GRIMME - Grimme dispersion correction for energy and gradient

The keyword GRIMME, inserted in third input block, calculates a London-type pairwise empirical correction to the energy as proposed by Grimme [103], to include long-range dispersion contributions to the computed ab initio total energy and gradients.

Therefore geometry optimization and vibrational frequency calculation can be carried out by including the empirical correction.

rec	variable	meaning	
- A	GRIMME	keyword	
- *	s_{6}	scaling factor	
*	d	steepness	
*	$R_{\text {cut }}$	cutoff distance to truncate direct lattice summation	
- *	NATS	number of atomic species	
II		_ insert NATS records	II
- *	NAT	"conventional" atomic number (page 24).	
*	C_{6}	dispersion coefficient for atomic number NAT ($\mathrm{Jnm}^{6} \mathrm{~mol}^{-1}$)	
*	$R_{v d w}$	van der Waals radius for atomic number NAT (\AA)	

The keyword GRIMME is followed by a set of computational parameters [i.e. scaling factor, steepness and cutoff radius for \mathbf{g} (direct lattice) summation], the number of atomic species and for each atomic species the "conventional atomic number" (page 24) and the value of C_{6} and $R_{v d w}$ (in $\mathrm{Jnm}^{6} \mathrm{~mol}^{-1}$ and \AA, respectively).

Note that the atomic number is defined as the "conventional atomic number". In this way, if one wants to use different atomic parameters for the same atomic species, a different conventional atomic number can be used. For example, 1 and 101 for hydrogen.

The current implementation has been mainly tested and used in combination with the B3LYP method [44, 45, 218, even if it can be applied to whatever level of theory.

The original proposal by Grimme was to augment DFT methods with an empirical London-type correction. To that purpose, Grimme defined a general set of atomic empirical parameters (see Table 1 of ref. [103]) and used an optimized scaling factor to adjust the dispersion correction for each DFT method.

The total energy is given by

$$
E_{D F T-D}=E_{K S-D F T}+E_{d i s p}
$$

where $E_{d i s p}$, the empirical dispersion correction, is given as

$$
E_{d i s p}=-s_{6} \sum_{i=1}^{N_{a t}-1} \sum_{j=i+1}^{N_{a t}} \sum_{\mathbf{g}} \frac{C_{6}^{i j}}{R_{i j, \mathbf{g}}} f_{d u m p}\left(R_{i j, \mathbf{g}}\right)
$$

The summation is over all atom pairs and \mathbf{g} lattice vectors with the exclusion of the $\mathrm{i}=\mathrm{j}$ contribution (i.e. self interaction) for $\mathbf{g}=0, C_{6}^{i j}$ is the dispersion coefficient for the atom pair $i j, s_{6}$ is a scaling factor that depends only on the adopted DFT method (e.g. s_{6} is 1.05 for B3LYP) and $R_{i j, \mathbf{g}}$ is the interatomic distance between atoms i in the reference cell and j in the neighbouring cells at distance $|\mathbf{g}|$. For a set of molecular crystals, a cutoff distance of 25.0 \AA was used to truncate the summation over lattice vectors which corresponds to an estimated error of less than $0.02 \mathrm{~kJ} / \mathrm{mol}$ on computed cohesive energies with respect to larger cutoffs [44, 45].

A damping function is used to avoid near-singularities for small interatomic distances:

$$
f_{\text {dump }}\left(R_{i j, \mathbf{g}}\right)=\frac{1}{1+e x p p_{-d\left(R_{i j, \mathbf{g}} / R_{v d w}-\right)}}
$$

where $R_{v d w}$ is the sum of atomic van der Waals radii (i.e. $R_{v d w}=R_{v d w}^{i}+R_{v d w}^{j}$) and d determines the steepness of the damping function $(d=20)$. Van der Waals radii and atomic C_{6} coefficients were taken from Table 1 of ref. [103]. From the latter, the $C_{6}^{i j}$ dispersion coefficients are computed by using a geometric mean:

$$
C_{6}^{i j}=\sqrt{C_{6}^{i} C_{6}^{j}}
$$

The input requires to specify all parameters that enter equations above and it looks like (urea molecular crystal):

```
Urea
CRYSTAL
0 0
113
5.565 4.684
5
6 0.0000 0.5000 0.3260
8 0.0000 0.5000 0.5953
7 0.1459 0.6459 0.1766
1 0.2575 0.7575 0.2827
1 0.1441 0.6441-0.0380
Optional keywords
END (ENDG)
Basis set input
END
DFT
END
. . . . .
GRIMME
1.05 20. 25.
1.05 20. 25. s6 (scaling factor) d (steepness) Rcut (cutoff radius)
4
1 0.14 1.001 Hydrogen Conventional Atomic number , C6 , Rvdw
6 1.75 1.452 Carbon Conventional Atomic number , C6 , Rvdw
7 1.23 1.397 Nitrogen Conventional Atomic number , C6 , Rvdw
0.70 1.342 Oxygen Conventional Atomic number , C6 ,'Rvdw
SHRINK
```

END

GUESDUAL - SCF guess (density matrix from a previous run with a different basis set)

The keyword is to be inserted in the third (Hamiltonian-SCF) input block. It defines how the basis set given in input differs from the one used to compute the density matrix used as SCF
guess. The two basis sets must be marginally different. It can be used to add polarization functions, or diffuse functions (see http://www.cryscor.unito.it).

The present calculation and the one used to compute the density matrix SCF guess have same symmetry and number of atoms, but different number of shells in the BS of some atoms. Different geometrical parameters and computational conditions are allowed.

The density matrix P^{0} (direct lattice) of the previous run, SCF guess, is read from external unit (copy file fort. 9 of the previous run in file fort.20). Density matrix is reorganized: elements corresponding to basis functions removed are removed, elements corresponding to basis functions added are set to 0 .

Warning. The efficiency of this guess can be dramatically compromised if not congruent BS modifications, i.e. insertion or elimination of significantly populated shells, are made. Check the normalization factor.

Example. LiH bulk. The BS of Li in the reference calculation is referred to as BS 1 and reported on the left, the modified one is referred to as BS2 and reported on the right. The GUESDUAL option following BS2 illustrates how BS2 differs with respect to BS1.

BS1			1	BS2		
33			1	34		
00	62.0	1.0	1	00	62.0	1.0
700.	. 001421		I	700.	. 001421	
220.	. 003973		I	220.	. 003973	
70.	. 01639		1	70.	. 01639	
20.	. 089954		1	20.	. 089954	
5.	. 31565		,	5.	. 31565	
1.5	. 4946		1	1.5	. 4946	
00	10.0	1.0	I	00	10.0	1.0
0.5	1.		1	0.5	1.	
02	10.0	1.0	1	02	10.0	1.0
0.6	1.		1	0.6	1.	
14			1	0310.	1.	
005	2. 1.		1	0.4	.	
120.	. 000267		1	15		
40.	. 002249		1	005	2. 1.	
12.	. 006389		1	120.	. 000267	
4.	. 032906		1	40.	. 002249	
1.2	. 095512		1	12.	. 006389	
001	0.1.		1	4.	. 032906	
0.45	1.		1	1.2	. 095512	
001	0.1.		1	001	0. 1.	
0.13	1.		1	0.45	1.	
021	0.1.		1	001	0. 1.	
0.3	1.		1	0.13		
990			1	021	0.1.	
END			1	0.6	1.	
			1	021	0. 1.	
			1	0.3	1.	

```
| 0
| END
    GUESDUAL
    20
    3 3 1
    1 3 1
    END
```

In this case two modifications ($\mathrm{NFR}=2$) has been introduced in BS 2 with respect to BS 1 . Complete SCF calculation ($\mathrm{IC}=1$) is required.
First modification in Li (formal atomic number $\mathrm{NAT}=3$) basis set, after the third shell ($\mathrm{NSH}=3$), one shell was added $(\mathrm{NU}=1)$.
Second modification in H (atomic number IA=1) basis set, after the third shell ($\mathrm{NSH}=3$), one shell $(\mathrm{NU}=1)$ was inserted.

GUESSP - SCF guess - Density matrix from a previous run

The density matrix from a previous run, P^{0} (direct lattice), is read from disk, and used as SCF guess. No input data are required.

The density matrix can be edited to modify the spin state. See SPINEDIT, page 112
The density matrix used as SCF guess was written with wave function information in file fort. 9 at the end of a previous SCF run, and read as file fort.20.
The two cases, the present one and that used for the restart, must have same symmetry, and same number of atoms, basis functions and shells. Atoms and shells must be in the same order. The program does not check the 1:1 old-new correspondence.
Different geometrical parameters, computational conditions or exponents of the Gaussian primitives are allowed.
In geometry and/or basis set optimization, this technique will significantly reduce the number of SCF cycles. The following scheme shows how to proceed.

1. First run to generate the density matrix

Program	inp. block section	comments	
crystal	0	2	Title
	1	$\frac{2.1}{}$	geometry input
	2	$\frac{2.2}{}$	basis set input
	3	$\frac{2.3}{}$	computational parameters and SCF input
save wf in file fort.9 (binary) or file.98 (formatted)			

2. Second run - the density matrix is read in as a guess to start SCF

copy file fort. 9 to fort.20 (or convert file fort.98 and then copy)					
Program	inp. block	section	comments		
crystal	0	2	Title		
	1	2.1	geometry input		
	2	2.2	basis set input bomputational	parameters and	SCF
	3	2.3	input		
	(GUESSP)				

Warning The modification of the geometry may result in a different order in the storage of the matrix elements associated to each overlap distribution in the present and the previous run. To avoid the mismatch it is strongly recommended to classify the integrals of the present case using the geometry of the previous case (FIXINDEX, page 93).

Warning When wave function information are stored formatted in file fort.98, the data must be converted to binary by the keyword RDFMWF, page 282 of the properties program). Warning SCF guess from a density matrix computed with a different basis set is allowed by the keyword GUESDUAL, page 97 .

GUESSPAT - Superposition of atomic densities

The standard initial guess to start the SCF cycle is the superposition of atomic (or ionic) densities. No input data are required. The electronic configuration of the atoms is entered as a shell occupation number in the basis set input (page 23). Different electronic configurations may be assigned to atoms with the same atomic number and basis set (but not symmetry related) through the keyword CHEMOD (page 23).

GUESSYMP - Restart from a previous density matrix with higher or equal symmetry

This keyword allows for the use of a density matrix obtained from a previous run as initial guess for the SCF of a second calculation in which the symmetry of the system has been lowered. The symmetry-group of the second calculation must be a sub-group of the former one.
Both the fort. 9 and fort. 13 units (symmetry-reducible density matrix; see keyword SAVEPRED to generate it, page 108 from the first calculation are needed.
The two calculations must have the same number of atoms, basis functions and shells.
Slightly different geometrical parameters, computational conditions or exponents of the Gaussian primitive functions are allowed.
This option can be very useful when the inversion of one or more atomic spins (see the SPINEDIT keyword at page 112 leads to a symmetry reduction, as happens in the study of ferro-antiferromagnetic coupling constants or in defective structures where dangling bonds are present and different spin states are thus available, for instance.

HIRSHCHG/HIRSHBLK - Iterative Hirshfeld Population Analysis

The Hirshfeld-I analysis of atomic charge/electron population analysis is performed at the end of the SCF calculation. There are two possible strategies for the input structure. A blackblock form, ruled by the HIRSHCHG keyword, after which no input data are required and the default conditions concerning spatial integration and convergence are considered for computation of the atomic populations. And a second form in which a block, introduced by the keyword HIRSHBLK and completed by the keyword END, does contain several particular settings for the calculation of the Hirshfeld-I populations. In particular, the charge integration grid and the parameters of the iterative procedure can be redefined by the keywords described below.

Grids for charge integration

Integration in Hirshfeld-I exploits approaches similar to those considered in the DFT integration scheme (see page 126). The predefined options, that can be eventually used, are the followings:

SGRID: Small grid (default)
This grid correspond to a relatively cheap one that is in general enough for the evaluation of Hirshfeld-I electron population. It is equivalent to OLDGRID (see page 129). Other more accurate integration options are:

LGRID: See page 129
XLGRID: See page 129
XXLGRID: See page 129

General keywords to control the iterative procedure

ITCONV

rec	variable	value	meaning
$\bullet \quad *$	TOLHIRSH	NUMERR	Convergence tolerance

The iterative process stops when the RMS of the differences in atomic population between consecutive cycles is less than a given tolerance. By default, such a value (NUMERR) is actually the numerical error in the estimation of the number of electrons employing the chosen integration grid. As setting ITCONV a given real number, the iterative procedure stops when the most restrictive of both criteria is satisfied.

MXNUMITER

rec	variable	value	meaning
$\bullet *$	NHIRSHIT	200	Maximum number of allowed iterations

If none of the convergence criteria is satisfied, the iterative procedure stops at a NHIRSHIT number of steps.

DETLDINFO

Print a step-by-step detailed information of the iterative procedure. Recommended just for developers.

UNPRUNE

Change the integration grid from pruned to unpruned. This option sometimes provides a numerical integration better than the default but require substantially larger computational time and memory resources. Recommended just for developers.

ILASIZE - set the new size for array ILA used in the calculation of Coulomb 2-electron integrals

rec	variable	meaning
$\bullet *$	ISIZE	size of array ILA

ILA is an array containing a list of contributions to be computed in the evaluation of the Coulomb series. Use of this option is recommended upon receiving the following error message: "ILA DIMENSION EXCEEDED - INCREASE ILASIZE". Default value of ISIZE is: 6000 .

INTGPACK - Choice of bielectronic integrals package

rec	variable	value	meaning
\bullet	IPACK	$[0]$	$s, s p$ shells \rightarrow POPLE; p, d shells \rightarrow ATMOL
		1	ATMOL for Coulomb integrals; POPLE for exchange integrals
		2	POPLE for Coulomb integrals;
	3	ATMOL for exchange integrals ATMOL for Coulomb integrals; ATMOL for exchange integrals	

By default the bielectronic integrals are computed using a set of routines derived from Pople's GAUSSIAN 70 package [117, if s and $s p$ shells are involved, and by routines derived from ATMOL [147] for p and d shells. The value of IPACK allows different choices. Integrals involving p or d shells are always computed by ATMOL. The ATMOL package can compute integrals over functions of any quantum number, but the symmetry treatment implemented in the CRYSTAL package allows usage of s, p and d functions only. The use of $s p$ shells (s and p orbitals sharing the same exponent) reduces the time required to compute the integrals considerably.

KSYMMPRT

Symmetry Adapted Bloch Functions [239, 240, (page 113) are used as basis for the Fock/KS matrix diagonalization. The results of the symmetry analysis in reciprocal space are printed. At each k-point: number of point symmetry operators, number of active IRs, maximum IR dimension and maximum block dimension in the Fock/KS matrix factorization. TESTRUN stops execution after this information is printed.
No input data required.
Extended information can be obtained by setting the value N of LPRINT(47) (keyword SETPRINT, page 64 before KSYMMPRT.

N	information
0	Basic Symmetry Information - At each k-point: list of point symmetry operators, IR dimensions and number of Irreducible Sets.
>0	Symmetry Information - At each k-point $\leq \mathrm{N}:$ class structure, character table and IR information concerning the K-Little Group. For the rest of the k-point the same information as -1 is printed.
<-1	Full Symmetry Information - At each k-point: the same information as $\mathrm{N}>0$, together with the matrix representatives of the point operators.

MPP doesn't support KSYMMPRT.

LEVSHIFT - Eigenvalue level shifting

rec	variable	value	meaning
$\bullet *$	ISHIFT		The level shifter is set to ISHIFT *0.1 hartree.
	ILOCK	0	no locking
		1	causes a lock in a particular state (eg non-conducting) even if the so-
		lution during the SCF cycles would normally pass through or even con- verge to a conducting state.	

The eigenvalue level shifting technique is well known in molecular studies [109, 46, and may also be used for periodic systems. The technique involves the addition of a negative energy shift to the diagonal Fock/KS matrix elements (in the Crystalline Orbital basis) of the occupied orbitals and thus reducing their coupling to the "unoccupied" set. This shift may be maintained ($\mathrm{ILOCK}=1$) or removed $(\mathrm{ILOCK}=0)$ after diagonalization. The former case causes a
lock in a particular state (eg non- conducting) even if the solution during the SCF cycles would normally pass through or even converge to a conducting state.

This option provides an alternative damping mechanism to Fock/KS matrix mixing (FMIXING, page 95. The locking is effective only if ISHIFT is large enough. If locking is used, the Fermi energy and the eigenvalues are depressed by the value of the level shifter. Suggested values:

1. Normal cases require no mixing of Fock/KS matrices in successive cycles to converge: ISHIFT=0 (default).
2. When 20% to 30% mixing of Fock/KS matrices is necessary, an ISHIFT value of between 1 and 3 (giving a level shift of 0.1 to 0.3 hartree) may produce an equivalent or even superior convergence rate.
3. If serious convergence difficulties are encountered, ISHIFT $=10$ will normally be adequate, corresponding to a level shift of 1 hartree. But it may happen that the system moves towards an excited state, and no convergence is obtained.

Warning - Hamiltonian eigenvalues are modified by the level shifter. Take into account when looking at top and bottom bands eigenvalues printed.

See tests 29, 30, 31, 32, 38.

LOWMEM - Reduce memory storage requirements

When this option is active, none of the largest arrays is allocated and quantities are recalculated when needed. This option is very efficient in decreasing random access memory requirements for calculations with large unit cells. Usage of LOWMEM may affect running time. It is default in MPPcrystal calculations.

MAXCYCLE

rec variable meaning

- * NMAX maximum number of SCF cycles [50]

The possibility to modify the maximum number of SCF cycles allows: increasing the number of cycles in case of very slow convergence (metals, magnetic systems, DFT);
The keyword POSTSCF forces saving wave function data in file fort.9, even if SCF ends before reaching convergence for "too many cycles".

MADELIND - parameter for Madelung series

rec	variable	meaning
$\bullet *$	IIND	mql inf(103)

Maximum number of indices for reciprocal lattice vectors to be considered in reciprocal lattice Madelung sums. Default value of IIND: 50.

MEMOPRT - Synthetic report about dynamic memory usage

Memory usage is printed at every step of a CRYSTAL calculation, that is, every time runningtime information is also printed. Printed information includes: the total memory allocated by core 0 at that stage of the calculation and the maximum amount of memory required within that step, as well as the total amount of memory allocated by all cores.

MEMOPRT2 - Detailed report about dynamic memory usage

Memory status is printed at every allocation or deallocation of an array. Printed information includes: size of the allocated/deallocated array/matrix and the total amount of memory used by core 0 up to that stage of the calculation.

MONSPLIT - Splitting of large monoelectronic integral files

rec	variable	meaning
-	NFILE	number of files to be used [1] (max 10)

Very large basis sets can produce billions monoelectronic integrals to be stored, as the number of monoelectronic integrals scales as the square of basis set size. The multipolar expansion technique based on the atoms reduces the disk space up to a factor 3, compared to the value printed as estimate. The distribution of the integrals over several disk files may be necessary, if available disk space is limited.

MP2 - Electron correlation energy at second order Møller-Plesset

rec	variable	meaning
- A	MP2	Begin MP2 input block
- A	KNET	reconstruction of the HF Density Matrix
- I	8	Shrinking factor
- A	MEMORY	Memory required
- I	3000	Value in Mbytes
- A	DFITTING	Density Fitting input block
- A	PG-VTZ	Density Fitting auxiliarly basis set
- A	ENDDF	End Density Fitting input block
- A	DOMMOL	Definition of the excitation domains
- A	ENDMP2	End MP2 input block

The public CRyscor code, a post-HF local-correlation program for periodic crystals, 174 , 177 has been fully incorporated into the CRYSTAL14 package. This means that it is now possible to perform, on top of and HF-SCF run, a calculation of the electron correlation energy contribution for systems periodic in 1 to 3 dimensions. A simple input example is here reported: for more details about how to run a CRYSCOR calculation please refer to Cryscor User's Manual[74] and to CRYSCOR web page: www.cryscor.unito.it.
The post-HF method currently implemented is a perturbative method, namely Møller-Plesset at the second-order (MP2). Well localized Wannier Functions (WF) 243] are adopted instead of delocalized Bloch functions for the description of the occupied manifold; this permits the exploitation of the short-range nature $\left(E \propto r^{-6}\right)$ of electron correlation following the general Pulay scheme [183. An MP2 correction to the HF Density Matrix is feasible so that many of the Properties can be currently evaluated taking into account the effects of the dynamic correlation.

The code has been widely used to study, among others, the structure and stability of different polymorph, [38, 76] the energetic balance in van der Waals and hydrogen-bonded crystals, [145] interactions between molecules and surfaces, [140 and the upshot of electron correlation on some fundamental properties such as vibrational spectra, 69 electron density and Compton profiles. 78]
Note that the localization procedure and the MP2 technique implemented in

CRySCOR are not suitable for open-shell systems, for conductors, or for semiconductors with very small gap.

MYBIPOLA - Bipolar expansion approximation control

rec	variable meaning
- *	ILCOUL maximum multipole order for Coulomb
*	ITCOUL overlap threshold for Coulomb 14
*	IFCOUL reducing factor for Coulomb 90
*	ILEXCH maximum multipole order for exchange 2
*	ITEXCH overlap threshold for exchange 10
*	IFEXCH reducing factor for exchange 70

The bipolar approximation is applied in the evaluation of the Coulomb and exchange integrals (page 353 . Maximum values for ILCOUL and ILEXCH are 8 and 4, respectively. ITCOUL and ITEXCH can be assigned any intermediate value between the default values (14 and 10) (see page 353) and the values switching off the bipolar expansion (20000 and 20000). Increasing IFCOUL and IFEXCH the threshold is lightly modified in order to increase the number of approximated integrals, and vice versa.

Warning - for developers only

NEIGHBOR/NEIGHPRT

See input block 1, page 59

NOBIPOLA - Bipolar expansion approximation suppression

All the bielectronic integrals, coulomb and exchange, are evaluated exactly. The overlap threshold both for coulomb and exchange integrals is set to 2000000.
No input data required. The CPU time in the integrals program may increase up to a factor 3.

NOBIPCOU - Bipolar expansion approximation of coulomb integrals suppression

Coulomb bielectronic integrals are evaluated exactly. The overlap threshold for coulomb integrals is set to 2000000 .
No input data required.

NOBIPEXC - Bipolar expansion approximation of exchange integrals suppression

Exchange bielectronic integrals are evaluated exactly. The overlap threshold for exchange integrals is set to 2000000 . No input data required.

NOFMWF - Wave function formatted output

CRYSTAL writes the formatted wave function in file fort. 98 at the end of SCF by default. This keyword deletes this feature.

NOLOWMEM - Disable reduction of memory storage requirements

LOWMEM option (see page 103) is disabled. CRYSTAL calculations are speeded up but the amount of requested memory increases. It is default in Pcrystal calculations.

NOMONDIR - Monoelectronic integrals on disk

No input data required.
In the SCF step bielectronic integrals are computed at each cycle, while monoelectronic integrals are computed once and read from disk at each cycle.

NOSYMADA

The Symmetry Adapted Functions are not used in the Hamiltonian matrix diagonalization. No input data are required. This choice increases the diagonalization CPU time when the system has symmetry operators.

POLEORDR - Maximum order of multipolar expansion

rec	variable	meaning
\bullet	IDIPO	maximum order of pole $[4]$

Maximum order of shell multipoles in the long-range zone for the electron-electron Coulomb interaction. Maximum value $=6$. See Section 17.3, page 351 .

POSTSCF

Calculation to be done after scf (gradient, population analysis) are performed even if convergence is not reached. It may be useful when convergence is very slow, and scf ends for "TOO MANY CYCLES" very close to the convergence criteria required.
No input data are required.

PPAN/MULPOPAN - Mulliken Population Analysis

Mulliken population analysis is performed at the end of SCF process.
No input data are required.
Bond populations are analysed for the first n neighbours (n default value 3 ; see NEIGHBOR, page 59 , to modify the value).
Computed data:

1. $a_{\mu}=\sum_{\nu} \sum_{g} P_{\mu \nu}^{g} S_{\mu \nu}^{g}$ orbital charges
2. $s_{l}=\sum_{\mu \in l} a_{\mu}$ shell charges
3. $q_{A}=\sum_{l \in A} s_{l}$ atomic charges
4. $b\left(A^{0}, B^{g}\right)=\sum_{\mu \in A} \sum_{\nu \in B} P_{\mu \nu}^{g} S_{\mu \nu}^{g}$ bond populations between the non-equivalent atoms in the unit cell $\left(A^{0}\right)$ and their first NVI neighbours (B^{g} in cell g). The printed values must be multiplied by 2 when $\mathrm{B} \neq \mathrm{A}$ to compare with standard molecular calculations.

Formatted data are written in file PPAN.DAT (opened in forrtran unit 24).
See Appendix D, page 399 .

PRINTOUT - Setting of printing environment

See input block 1, page 62 .

QVRSGDIM - limiting size switch for multipole moments gradients

rec	variable	meaning
\bullet	NFILE	limiting size of multipole moment gradients to switch from generation by
		pairs to generation by shells. Default 90000000.

NFILE limits the maximum amount of data to be stored to memory. This is a way to reduce memory storage requirements with some possible reduction of performance.

REPLDATA - Replicated-data mode

This option is supported by MPPcrystal only. It allows the User to run MPPcrystal as Pcrystal. All computational parameters and settings are changed accordingly.

RHF [default]

A restricted closed-shell hamiltonian calculation is performed (189,175$]$, Chapter 8 of ref. [171]). Default choice.

ROHF

rec variable meaning

- * NSPIN $\mathrm{n}_{\alpha}-\mathrm{n}_{\beta}$ electrons (Section 3.3, page 113)

In the Restricted Open Shell[189] Hamiltonian, the variational space is split into three subspaces: doubly and singly occupied, and unoccupied. In order to correctly describe the two occupied subspaces, the difference between the amount of α and β electrons (NSPIN) must be locked at all \mathbf{k} points; this difference is kept until the end of the SCF. There are three main differences with respect to UHF: (1) only alpha electrons are allowed to be assigned to singly occupied states, (2) the imposed occupancy constraint allows the ROHF approach to provide solutions that are eigenfunctions of the spin operator, $\widehat{S^{2}}$, and (3) solutions are in general less stable than those obtained with the UHF method. It is important to underline that ROHF solutions never exhibit locally negative spin densities. In CRYSTAL the symmetry adaption of the crystal (molecular) orbitals is disabled for the ROHF method.

SCFDIR

No input data required.
In the SCF step monoelectronic and bielectronic integrals are evaluated at each cycle. No screening of the integrals is performed. This option is activated by default from CrysTAL14. It can be deactivated by inserting the NODIRECT keyword.

SAVEWF

The wave function is written in file fort. 79 every two cycles. The format is the same as in file fort.9, written at the end of SCF.
To restart SCF cycles using the density matrix written in file fort.79, it has to be copied in file fort. 20
No input data required.

SAVEPRED

The symmetry-reducible density matrix is written in unit fort. 13 at the end of the SCF. No input data required.

SETINF - Setting of INF values

See input block 1, page 64

SETPRINT - Setting of printing options

See input block 1, page 64 .

SHRINK - Pack-Monkhorst/Gilat shrinking factors

For periodic systems, 1D, 2D, 3D, the mandatory input information is the shrinking factor, IS, to generate a commensurate grid of \mathbf{k} points in reciprocal space, according to Pack-Monkhorst method. The Hamiltonian matrix computed in direct space, $\mathrm{H}_{\mathbf{g}}$, is Fourier transformed for each \mathbf{k} value, and diagonalized, to obtain eigenvectors and eigenvalues:

$$
\begin{aligned}
& H_{k}=\sum_{g} H_{g} e^{i \mathbf{g k}} \\
& H_{k} A_{k}=S k A_{k} E_{k}
\end{aligned}
$$

A second shrinking factor, ISP, defines the sampling of k points, "Gilat net" [98, 97], used for the calculation of the density matrix and the determination of Fermi energy in the case of conductors (bands not fully occupied).
In 3D crystals, the sampling points belong to a lattice (called the Pack-Monkhorst net), with basis vectors:
$\mathrm{b} 1 / \mathrm{is} 1, \mathrm{~b} 2 / \mathrm{is} 2, \mathrm{~b} 3 / \mathrm{is} 3 \quad \mathrm{is} 1=\mathrm{is} 2=\mathrm{is} 3=\mathrm{IS}$, unless otherwise stated
where b1, b2, b3 are the reciprocal lattice vectors, and is1, is2, is3 are integers "shrinking factors".

In 2D crystals, IS3 is set equal to 1 ; in 1D crystals both IS2 and IS3 are set equal to 1. Only points k_{i} of the Pack-Monkhorst net belonging to the irreducible part of the Brillouin Zone (IBZ) are considered, with associated a geometrical weight, w_{i}. The choice of the reciprocal space integration parameters to compute the Fermi energy is a delicate step for metals. See Section 17.7, page 355 Two parameters control the accuracy of reciprocal space integration for Fermi energy calculation and density matrix reconstruction:

IS shrinking factor of reciprocal lattice vectors. The value of IS determines the number of \mathbf{k} points at which the Fock/KS matrix is diagonalized. Multiples of 2 or 3 should be used, according to the point symmetry of the system (order of principal axes).

In high symmetry systems, it is convenient to assign IS magic values such that all low multiplicity (high symmetry) points belong to the Monkhorst lattice. Although this choice does not correspond to maximum efficiency, it gives a safer estimate of the integral.
The \mathbf{k}-points net is automatically made anisotropic for 1 D and 2 D systems.

The figure presents the reciprocal lattice cell of 2D graphite (rhombus), the first Brillouin zone (hexagon), the irreducible part of Brillouin zone (in grey), and the coordinates of the \mathbf{k}_{i} points according to a Pack-Monkhorst sampling, with shrinking factor 3 and 6.

ISP shrinking factor of reciprocal lattice vectors in the Gilat net (see [175], Chapter II.6). ISP is used in the calculation of the Fermi energy and density matrix. Its value can be equal to IS for insulating systems and equal to $2 *$ IS for conducting systems.

The value assigned to ISP is irrelevant for non-conductors. However, a non-conductor may give rise to a conducting structure at the initial stages of the SCF cycle, owing, for instance, to a very unbalanced initial guess of the density matrix. The ISP parameter must therefore be defined in all cases.
Note. The value used in the calculation is ISP $=$ IS*NINT(MAX(ISP,IS)/IS), a multiple integer of IS. For instance:

In the following table the number of sampling points in the IBZ and in BZ is given for a fcc lattice (space group 225, 48 symmetry operators) and hcp lattice (space group 194, 24 symmetry operators). The CRYSTAL code allows 413 k points in the Pack-Monkhorst net, and 2920 in the Gilat net.

IS	points in IBZ fcc	points in IBZ hcp	points BZ
6	16	28	112
8	29	50	260
12	72	133	868
16	145	270	2052
18	195	370	2920
24	413	793	6916
32	897	1734	16388
36	1240	2413	23332
48	2769	5425	55300

1. When an anisotropic net is user defined ($\mathrm{IS}=0$), the ISP input value is taken as ISP1 (shrinking factor of Gilat net along first reciprocal lattice) and ISP2 and ISP3 are set to: ISP2 $=($ ISP $*$ IS2 $) /$ IS1, ISP3 $=($ ISP $*$ IS3 $) /$ IS1.
2. User defined anisotropic net is not compatible with SABF (Symmetry Adapted Bloch Functions). See NOSYMADA, page 106 .

Some tools for accelerating convergence are given through the keywords LEVSHIFT (page 102 and tests 29, 30, 31, 32, 38), FMIXING (page 95), SMEAR (page 110), BROYDEN (page 85) and ANDERSON (page 83).
At each SCF cycle the total atomic charges, following a Mulliken population analysis scheme, and the total energy are printed.
The default value of the parameters to control the exit from the SCF cycle ($\Delta E<10^{-6}$ hartree, maximum number of SCF cycles: 50) may be modified entering the keywords:
TOLDEE (tolerance on change in total energy) page 114
TOLDEP (tolerance on SQM in density matrix elements) page ??;
MAXCYCLE (maximum number of cycles) page 103.

SMEAR

rec variable meaning

- * WIDTH temperature smearing of Fermi surface

Modifies the occupancy of the eigenvalues $\left(f_{j}\right)$ used in reconstructing the density matrix from the step function, (equation 17.9 , page 350) to the Fermi function;

$$
\begin{equation*}
f_{j}=\left(1+e^{\frac{\left(\epsilon_{j}-\epsilon_{F}\right)}{k_{b} T}}\right)^{-1} \tag{3.25}
\end{equation*}
$$

where ϵ_{F} is the Fermi energy and $k_{b} T$ is input as WIDTH in hartree.
The smearing of the Fermi surface surface may be useful when studying metallic systems in which the sharp cut-off in occupancy at ϵ_{F} can cause unphysical oscillations in the charge density. It may also result in faster convergence of the total energy with respect to k-point sampling.

In density functional theory the use of Fermi surface smearing finds a formal justification in the finite temperature DFT approach of Mermin [146. In this case the "free energy" of the system may be computed as:

$$
\begin{align*}
F & =E(T)-T S(T) \\
& =E+k_{b} T \sum_{i}^{N_{\text {states }}} f_{i} \ln f_{i}+\left(1-f_{i}\right) \ln \left(1-f_{i}\right) \tag{3.26}
\end{align*}
$$

where S is the electronic entropy. Often we wish to compute properties for the athermal limit $(\mathrm{T}=0)$. For the free electron gas the dependencies of the energy and entropy on temperature are:

$$
\begin{align*}
E(T) & =E(0)+\alpha T^{2} \\
S(T) & =2 \alpha T \tag{3.27}
\end{align*}
$$

and so the quantity

$$
\begin{equation*}
E 0=\frac{F(T)+E(T)}{2}=E(0)+O\left(T^{3}\right) \tag{3.28}
\end{equation*}
$$

may be used as an estimate of $\mathrm{E}(0)$.

Figure 3.5: The surface energy $\left(\mathrm{J} / \mathrm{M}^{2}\right)$ of $\mathrm{Li}(100)$ for various numbers of layers in a slab model showing the effects of WIDTH $(0.02 \mathrm{H}$ and 0.001 H$)$ and the use of $\mathrm{E}(\mathrm{T})$ or E0

Figure 3.5 shows the effect of WIDTH on the convergence of the Li(100) surface energy. Despite the dense k-space sampling ($\mathrm{IS}=24, \mathrm{ISP}=48$) the surface energy is rather unstable at low temperature $(0.001 \mathrm{H})$. There is a significant improvement in the stability of the solution for higher values of WIDTH $(0.02 \mathrm{H})$ but use of $\mathrm{E}(\mathrm{T})$ results in a surface energy of $0.643 \mathrm{~J} / \mathrm{M}^{2}$ significantly above that obtained by extrapolating $\mathrm{E}(\mathrm{T})$ to the $\mathrm{T}=0 \operatorname{limit}\left(0.573 \mathrm{~J} / \mathrm{M}^{2}\right)$. The use of E0 at WIDTH $=0.02 \mathrm{H}$ results in an excellent estimate of the surface energy $-0.576 \mathrm{~J} / \mathrm{M}^{2}$.

Note that for conducting systems analytic first derivatives are not fully implemented when the keyword SMEAR is used. In that case, numerical first derivatives should be computed (see page 165 . For very small value of smearing (around 0.001 hartree) analytical gradients should be reliable in geometry optimization.

SPINEDIT - Editing of the spin density matrix

rec	variable	meaning
- $* \mathrm{~N}$	number of atoms for which spin must be reversed	
- $\quad * \mathrm{LB}, \mathrm{L}=1, \mathrm{~N}$	atom labels	

The spin density matrix from a previous run is edited to generate an approximate guess for a new spin configuration. The sign of the elements of the spin density matrix of selected atoms is reversed. The keyword SPINEDIT must be combined with UHF (input block 3, page 115) or DFT/SPIN (input block 3, page 124) and GUESSP.
Example: the anti ferromagnetic solution for the spinel $\mathrm{MnCr}_{2} \mathrm{O}_{4}$ can be obtained by calculating the ferro magnetic solution, and using as guess to start the SCF process the density matrix of the ferromagnetic solution with reversed signs on selected atoms.

SPINLOCK - Spin-polarized solutions

rec	variable	meaning
\bullet	$*$	NSPIN
$*$	$\mathrm{n}_{\alpha}-\mathrm{n}_{\beta}$ electrons	
$*$	NCYC	number of cycles the difference is maintained

The difference between the number of α and β electrons at all \mathbf{k} points can be locked at the input value. The number of α electrons is locked to $(N+$ NSPIN $) / 2$, where N is the total number of electrons in the unit cell; the number of β electrons is locked to $(N$ - NSPIN $) / 2$. NSPIN must be odd when the number of electrons is odd, even when the number of electrons is even.
Example. Bulk NiO. If a anti ferromagnetic solution is required, a double cell containing 2 NiO units must be considered (test 30). The two Ni atoms, related by translational symmetry, are considered nonequivalent. The number of electron is 72 , each Ni ion is expected to have two unpaired electrons.

INF95	type of solution	corresponding to the spin setting
0	anti ferromagnetic	$\uparrow \downarrow \uparrow \downarrow$
4	ferromagnetic	$\uparrow \uparrow \uparrow \uparrow$

Warning To lock the difference between α and β electrons α and β eigenvalues are forced to be split. Their printed value is meaningless, until locking is active.

See tests 29, 30, 32, 33, 37, 38.
Note: if NCYC is <0, then the lock duration is controlled by energy difference between successive cycles (disappears when $<10^{-N C Y C}$) instead of by number of cycles. This is useful when the locking must be relaxed before the convergence of the SCF -otherwise there is a risk to arrive to a spurious solution- but at the same time one does not know exactly in which SCF cycle the density matrix can be considered to be close enough to the right electronic structure so as to avoid a divergent behavior after the locking finishes.
Situations like this may occur in geometry optimizations of ferromagnetic systems, for instance: the SCF of the first optimization point converges in CYC 20 with the locking finishing in CYC 12 ; in the remaining points, as the density matrix of the previous one is used as initial guess, the SCF converges in CYC 10 under locking and, so, the true convergence is not ensured. Using FINALRUN=4 this situation could lead to an extremely large or even non convergent optimization process.

On the other hand, to fix locking since the energy difference between cycles is less than a given threshold is a quite handy criterion that could be in several cases preferable than fixing the duration in terms of number of cycles.

SPINLOC2 - Spin-polarized solutions

The keyword functions similarly to SPINLOCK, but instead of shifting the eigenvalues in order to lock the system in a specific spin state, fills separately the α and β bands with the appropriate number of electrons. This allows the system to pass through or converge to a conducting state while the locking is active. Additionally, it is possible to set the value of SPIN to a real number.
Using this keyword the energies for the top of virtual and bottom of valence band, as well as the band gap, are printed for both α and β electrons. These values are not meaningless as in the case of SPINLOCK but should be interpreted with care, since if the spin state is unstable there may be α occupied states at higher energy with respect to β virtual states or vice versa.

STDIAG - Force standard diagonalization method

This option is supported by MPPcrystal only. Matrix diagonalization method in reciprocal space is switched from "Divide and Conquer method" (default, more efficient) to standard.

STOP

Execution stops immediately. Subsequent input records are not processed.

SYMADAPT

A computational procedure for generating space-symmetry-adapted Bloch functions, when BF are built from a basis of local functions (AO), is implemented. The method, that applies to any space group and AOs of any quantum number, is based on the diagonalization of Dirac characters [239, 240].
The Symmetry Adapted Functions are used in the Hamiltonian matrix diagonalization. No input data are required. This choice reduces the diagonalization CPU time when the system has symmetry operators. Default choice.
Not supported by MPP execution.

TESTPDIM

The program stops after processing of the full input (all four input blocks) and performing symmetry analysis. The size of the Fock/KS and density matrices in direct space is printed. No input data are required.
It may be useful to obtain information on the neighbourhood of the non equivalent atoms (up to 3 , default value; redefined through the keyword NEIGHBOR, input block 1, page 59 .

TEST[RUN] - Integrals classification and selection

Full input (geometry, basis set, general information, SCF) is processed.

The symmetry analysis is performed, and the monoelectronic and bielectronic integrals classified and selected, according to the the truncation criteria adopted. The size of the Fock/KS and density matrices (direct lattice) and the disk space required to store the bielectronic are printed. The value printed as "disk space for monoelectronic integrals" is an upper limit. The new technique of atomic multipolar expansion reduces the required space to about $1 / 3$ of the printed value.

No input data required.
This type of run is fast, and allows an estimate of the resources to allocate for the traditional SCF wave function calculation.

TOLDEE - SCF convergence threshold on total energy

rec	variable	meaning
$*$	ITOL	$10^{-I T O L}$ threshold for convergence on total energy

Different default values are set for different type of calculation:

SCF single point		6
Geometry optimization	OPTGEOM	7
Frequency calculation	FREQCALC	10
Elastic constants	ELASTCON	8
Equation of state	EOS	8

TOLINTEG - Truncation criteria for bielectronic integrals (Coulomb and HF exchange series)

rec	variable	meaning			
$\bullet *$	ITOL1	overlap threshold for Coulomb integrals- page	351	7	
	ITOL2	penetration threshold for Coulomb integrals-page	352	7	
	ITOL3	overlap threshold for HF exchange integrals-page	352	7	
	ITOL4	pseudo-overlap (HF exchange series-page	352	7	
	ITOL5	pseudo-overlap (HF exchange series-page	352	14	

The five ITOL parameters control the accuracy of the calculation of the bielectronic Coulomb and exchange series. Selection is performed according to overlap-like criteria: when the overlap between two Atomic Orbitals is smaller than $10^{-I T O L}$, the corresponding integral is disregarded or evaluated in a less precise way. Criteria for choosing the five tolerances are discussed in Chapter 17.

TOLPSEUD - Truncation criteria for integrals involving ECPs

rec	variable	meaning
$\bullet *$	ITPSE	overlap threshold for ECP integrals

The program evaluates only those integrals for which the overlap between the charge distribution $\varphi_{\mu}^{0} \varphi_{\nu}^{g}$ (page 349) and the most diffuse Gaussian defining the pseudopotential is larger than a given threshold $\mathrm{T}_{p s}=10^{- \text {ITPSE }}$ (default value 10^{-6}; it was 5 in CRYSTAL98).

Figure 3.6: Molecular Orbitals diagram for the Restricted Open Shell method (ROHF, left) and for the Unrestricted Open Shell method (UHF, right)

UHF - Hamiltonian for Open Shell Systems

For the description of systems containing unpaired electrons (such as molecules with an odd number of electrons, radicals, ferromagnetic and anti ferromagnetic solids) a single determinant is not an appropriate wave-function; in order to get the correct spin eigenfunction of these systems, it is necessary to choose a linear combination of Slater determinants (whereas, in closed shell systems, a single determinant gives always the appropriate spin eigenfunction) (175, 8, Chapter 6 of ref. [171]).
In the Restricted Open Shell [189] Hamiltonian, the same set of molecular (i.e. crystalline) orbitals describes alpha and beta electrons; levels can be doubly occupied (by one alpha and one beta electron, as in the RHF closed shell approach), singly occupied or left vacant. The wave-function is multi-determinantal; in the special case of half-closed shell systems, where we can define a set of orbitals occupied by paired electrons and a second set occupied by electrons with parallel spins, the wave-function is formed by a single determinant.
Another mono-determinantal approach for the study of open-shell systems is the UHF method [178]. In this theory, the constraint of double occupancy is absent and α electrons are allowed to populate orbitals other than those occupied by the β electrons. Energy levels corresponding to a ROHF and UHF description are plotted in fig. 3.6.
The double occupancy constraint allows the ROHF approach to obtain solutions that are eigenfunctions of the spin operator, $\widehat{S^{2}}$, whereas UHF solutions are formed by a mixture of spin states. The greater variational freedom allows the UHF method to produce wave-functions that are energetically more stable than the corresponding ROHF ones; another advantage of the UHF method is that it allows solutions with locally negative spin density (i.e. anti ferromagnetic systems), a feature that ROHF solutions can never exhibit.
ROHF solution is not supported by CRYSTAL any more.
Related keywords
SPINLOCK definition of $\left(\mathrm{n}_{\alpha}-\mathrm{n}_{\beta}\right.$ electrons)

BETALOCK definition of n_{β} electrons.

Chapter 4

Density Functional Methods

The Kohn-Sham [129, 121 DFT code is controlled by keywords, that must follow the general keyword DFT, in any order. These keywords can be classified into four groups:

1 Choice of the exchange-correlation functional
1 Dispersion correction to DFT (DFT-D)
2 Integration grid and numerical accuracy control (optional)
3 Atomic parameters (optional)

The DFT input block ends with the keyword END or ENDDFT. Default values are supplied for all computational parameters. Choice of exchange and/or correlation potential is mandatory.

4.1 Choice of the exchange-correlation functional

Many different approximate exchange-correlation functionals are available in CRYSTAL: from semilocal (i.e. LDA, GGA and mGGA) to global and range-separated hybrid functionals, as well as double hybrid methods.

EXCHANGE and CORRELAT keywords, each followed by an alpha-numeric record, allow the selection of the exchange and correlation functionals.
If the correlation potential is not set (keyword CORRELAT), an exchange-only potential is used in the Hamiltonian. If the exchange potential is not set (keyword EXCHANGE), the Hartree-Fock potential is used.
A list of the exchange and correlation functionals that can be select in input is reported below.

EXCHANGE	Exchange potential (default: Hartree-Fock exchange). \qquad Insert one of the following keywords \qquad
LDA functionals	
LDA	LSD. Dirac-Slater [53]
VBH	LSD. von Barth-Hedin [220]
GGA functionals	
BECKE	GGA. Becke 1988 functional [18]
mPW91	GGA. modified Perdew-Wang 1991 functional [?]
PBE	GGA. Perdew-Becke-Ernzerhof [160]
PBESOL	GGA. PBE functional revised for solids [162]
PWGGA	GGA. Perdew-Wang 161]
SOGGA	GGA. Second Order corrected GGA functional. It must be used in combination with the PBE correlation functional 238
WCGGA	GGA - Wu-Cohen 2006 functional [229]
CORRELAT	Correlation Potential (default: no correlation).
	_ Insert one of the following keywords _II
LDA functionals	
PWLSD	LSD. Perdew-Wang parameterization of the Ceperley-Alder free electron gas correlation results 163
PZ	LSD. Perdew-Zunger parameterization of the Ceperley-Alder free electron gas correlation results 166
VBH	LSD. von Barth-Hedin 220
VWN	LSD. Vosko-Wilk-Nusair parameterization of the Ceperley-Alder free electron gas correlation results. Also known as VWN5. 221
GGA functionals	
LYP	GGA. Lee-Yang-Parr 133]
P86	GGA. Perdew 86 [158]
PBE	GGA. Perdew-Burke-Ernzerhof 160
PBESOL	GGA. PBE functional revised for solids [162]
PWGGA	GGA. Perdew-Wang [161]
WL	GGA - Wilson-Levy [227]

Examples of possible selection of the correlation and exchange functionals are:

exchange	correlation	
-	PWGGA LDA	Hartree-Fock exchange, GGA Perdew-Wang correlation. probably the most popular LDA formulation, also known as S- VWN
VBH	VBH	was the most popular LDA scheme in the early LDA solid state applications (1975-1985). the well-known PBE XC functional
PBE	PBE	B-LYP
BECKE	LYP	

Standalone keywords for common exchange-correlation functionals are also available.

SVWN	Combination of Slater for exchange and VWN for correlation [53, 221]
BLYP	Combination of B88 for exchange and LYP for correlation [18, 133]
PBEXC	Full PBE XC GGA functional [160]
PBESOLXC XC GGA revised PBE functional for solids [162	
SOGGAXC	Combination of SOGGA for exchange and PBE for correlation [238]

Global Hybrid functionals

Global hybrid (GH) functionals have the general formula:

$$
E_{x c}^{G H}=(1-A) * E_{x}^{D F A}+A * E_{x}^{H F}+E_{c}^{D F A}
$$

They include a constant fraction of HF exchange (A).
Standalone keywords are available to define global hybrid functionals completely.
B3PW Becke's 3 parameter functional 19 combined with the non-local correlation PWGGA [159, 164, 165, 163 ,

B3LYP Becke's 3 parameter functional 19 combined with the non-local correlation LYP. B3LYP in CRYSTAL is based on the 'exact' form of the Vosko-Wilk-Nusair correlation potential (corresponds to a fit to the CeperleyAlder data). In the original paper [221]) it is reported as functional V, which is used to extract the 'local' part of the LYP correlation potential.

PBE0 Hybrid version of the PBE XC functional with 25% (1/4) of HF exchange. Adamo and Barone [6]

PBESOL0 Same as PBE0 but with the PBEsol XC functional instead of PBE
B1WC One-parameter hybrid functional which combines WC exchange functional with 16% of HF exchange and the PWGGA correlation functional (see [22])

WC1LYP As for the B1WC functional, but with the LYP correlation functional instead of the PWGGA (see [51])

B97H Hybrid functional based on the B97 XC functional [5, 81]
PBE0-13 Revised version of the PBE0 functional with $33.3333 \%(1 / 3)$ of HF exchange 36

User-defined global hybrid functionals
It is possible to define other global hybrid functionals by specifying an exchange functional (see the EXCHANGE keyword) and a correlation one (see the CORRELAT keyword) and then include a given amount of exact Hartree-Fock exchange into the exchange functional through the keyword HYBRID.

```
HYBRID Hybrid method - 1 record follows:
- A Fock exchange percentage (default 100.)
```

Any mixing ($0-100$) of exact Hartree-Fock and DFT exchange can be used.
The keyword HYBRID can also be used to modifiy the fraction of HF exchange in existing GH functionals.

NONLOCAL

- * B

C
setting of non-local weighting parameters - 1 record follows:
exchange weight of the non-local part of exchange
weight of the non-local correlation

NONLOCAL allows users to modify the relative weight of the local and non-local part both in the exchange and the correlation potential with respect to standard definition of Becke's 3
parameter functional types:
$E_{x c}=(1-A) *\left(E_{x}^{L D A}+B * E_{x}^{B E C K E}\right)+A * E_{x}^{H F}+(1-C) * E_{c}^{L D A}+C * E_{c}^{G G A}$
A, B, and C are the input data of HYBRYD and NONLOCAL. Becke's 3 parameter functionals currently implemented in CRYSTAL are B3PW and B3LYP.

For example, the following sequences correspond to the stand-alone keywords for some of the available GH functionals.

B3PW

corresponds to the sequence:
EXCHANGE
BECKE
CORRELAT
PWGGA
HYBRID
20
NONLOCAL
0.90 .81

PBE0
corresponds to the sequence:
EXCHANGE
PBE
CORRELAT
PBE
HYBRID
25
B1WC
corresponds to the sequence:
EXCHANGE
WCGGA
CORRELAT
PWGGA
HYBRID
16

B3LYP

corresponds to the sequence:
EXCHANGE
BECKE
CORRELAT
LYP
HYBRID
20
NONLOCAL
0.90 .81

PBESOL0

corresponds to the sequence:
EXCHANGE
PBESOL
CORRELAT
PBESOL
HYBRID
25
WC1LYP
corresponds to the sequence:
EXCHANGE
WCGGA
CORRELAT
LYP
HYBRID
16

Range-Separated Hybrid functionals

CRYSTAL offers a wide variety of range-separated hybrid (RSH) functionals in which the amount of HF exchange included depends on the distance between electrons
They are obtained from the separation of the Coulomb operator in different ranges (three ranges in the current implementation) by means of the error function as:

$$
\frac{1}{r_{12}}=\underbrace{\frac{\operatorname{erfc}\left(\omega_{S R} r_{12}\right)}{r_{12}}}_{S R}+\underbrace{\frac{1-\operatorname{erfc}\left(\omega_{S R} r_{12}\right)-\operatorname{erf}\left(\omega_{L R} r_{12}\right)}{r_{12}}}_{M R}+\underbrace{\frac{\operatorname{erf}\left(\omega_{L R} r_{12}\right)}{r_{12}}}_{L R}
$$

where ω is the length scale of separation. Then, the general form of a range-separated hybrid is:

$$
E_{x c}^{R S H}=E_{x c}^{D F A}+c_{S R}\left(E_{x, S R}^{H F}-E_{x, S R}^{D F A}\right)+c_{M R}\left(E_{x, M R}^{H F}-E_{x, M R}^{D F A}\right)+c_{L R}\left(E_{x, L R}^{H F}-E_{x, L R}^{D F A}\right)
$$

According to the values of $c_{S R}, c_{M R}, c_{L R}, \omega_{S R}$ and $\omega_{L R}$, short-, middle- and long-range corrected RSH functionals can be defined.

The following RSH functionals are available:

Short-range Corrected (SC) functionals	
HSE06	Screened-Coulomb PBE functional 3, 160 combined with PBE correlation
HSEsol	Screened-Coulomb PBEsol functional [132, 162] combined with PBEsol correlation
SC-BLYP	Short-range corrected RSH functional based on Iirikura-Tsuneda-YanaiHirao scheme 110, 231 of the BLYP XC functional
Middle-range Corrected (MC) functionals	
HISS	Middle-range corrected functional based on the PBE exchange hole [210, [211) combined with PBE correlation (labeled B in ref. [210])
Long-range Corrected (LC) functionals	
RSHXLDA	Long-range corrected LDA exchange functional [2, 123] combined with VWN for correlation
LC-wPBE	Long-range corrected RSH functional [67] based on PBE XC functional
LC-wPBEsol	Long-range corrected RSH functional [67] based on PBEsol XC functional
$\begin{aligned} & \text { LC-wBLYP } \\ & \text { wB97 } \end{aligned}$	Long-range corrected RSH functional 67] based on BLYP XC functional Chai-Head-Gordon long-range corrected RSH functional 124,5
wB97X	Chai-Head-Gordon long-range corrected RSH functional 124, 5 with a small contribution of HF exchange at short-range
LC-BLYP	Long-range corrected RSH functional based on Iirikura-Tsuneda-YanaiHirao scheme [110, 231] of the BLYP XC functional
CAM-B3LYP	Long-range corrected RSH functional (Coulomb-Attenuating method) 214 based on the BLYP XC functional

Details of the amount of RS-HF exchange and the length scale separation ω for the RSH functionals available in CRYSTAL are given in the table below:

Method	Exchange	$\mathrm{c}_{S R}$	$\mathrm{c}_{M R} \mathrm{c}_{L R} \omega^{\text {d }}$	${ }_{S R}\left(a_{0}^{-}\right.$	$\omega_{L R}\left(a_{0}^{-1}\right)$	Correlation	Ref.
HSE06	PBE	0.25	0.000 .00	0.11	0.11	PBE	[3, 160]
HSEsol	PBEsol	0.25	0.000 .00	0.11	0.11	PBEsol	[132, 162
SC-BLYP	B88	0.20	0.000 .00	0.11	0.11	LYP	110, 231, 18, 133
HISS	PBE	0.00	0.600 .00	0.84	0.20	PBE	[210, 211, 160
LC- ω PBE	PBE	0.00	0.001 .00	0.40	0.40	PBE	[67, 160
LC- ω PBEsol	PBEsol	0.00	0.001 .00	0.60	0.60	PBEsol	67, 162
LC- ω BLYP	B88	0.00	0.001 .00	0.60	0.60	LYP	67, 18, 133
RSHXLDA	S	0.00	0.001 .00	0.40	0.40	VWN	[2, 123, 221]
$\omega \mathrm{B} 97$	B97	0.00	0.001 .00	0.40	0.40	B97	[124, 5]
$\omega \mathrm{B} 97-\mathrm{X}$	B97	0.157706	60.001 .00	0.30	0.30	B97	[124, 5]
LC-BLYP	B88	0.00	0.001 .00	0.47	0.47	LYP	110, 231, 18, 133
CAM-B3LYP	B88	0.157706	0.001 .00	0.33	0.33	LYP	[214, 18, 133]

Notes for RSH functionals:
(i) the bipolar expansion is not active in the calculation of the exchange integrals (on average, the cost can increase by a factor 2 to 3);
(ii) one- and two-electron repulsion integrals are computed in direct mode;
(iii) implementation of HSE06, HISS, LC-wPBE and related RSH methods is based on the Henderson-Janesko-Scuseria model of the PBE exchange hole 212.

For available RSH functionals, the value(s) of the length scale separation ω can be modified in input by using the following keywords.

$\begin{aligned} & \text { SR-OMEGA } \\ & \bullet \quad * \omega_{S R} \end{aligned}$	For screened-Coulomb RSH methods - 1 record follows: value of the length scale separation ω at short-range (default $0 . a_{0}^{-1}$)
MR-OMEGA - $* \omega_{S R}$ $\omega_{L R}$	For middle-range corrected RSH methods - 1 record follows: value of the length scale separation ω at short-range (default $0 . a_{0}^{-1}$) value of the length scale separation ω at long-range (default $0 . a_{0}^{-1}$)
$\begin{aligned} & \text { LR-OMEGA } \\ & \bullet \quad * \omega_{L R} \\ & \hline \end{aligned}$	For long-range corrected RSH methods - 1 record follows: value of the length scale separation ω at long-range (default $0 . a_{0}^{-1}$)
SR-HYB_WB97X Option to change the amount of SR-HF exchange in the ω B97-X functional - 1 record follows: - $* c_{S R}$ value of the coefficient for the SR-HF exchange term	
The amount of keyword (see ab	exhange (i.e. $\mathrm{c}_{S R}, \mathrm{c}_{M R}, \mathrm{c}_{L R}$) can be modified by specifying the HYBRYD or details).
User-controllable RSH x-functional based on the PBE functional	
LSRSH-PBE - $* \omega$ $c_{S R}$ $c_{L R}$	User-controllable RSH x-functional based on the PBE functional - 1 record follows: value of the length scale separation ω (default $0 . a_{0}^{-1}$) value of the coefficient for the SR-HF exchange term value of the coefficient for the LR-HF exchange term

The keyword LSRSH-PBE allows users to specify the value of omega, $c_{S R}$ and $c_{L R}$ for a generic RSH functional based on the PBE functional. So, the input looks like:

```
DFT
LSRSH-PBE
0.11 0.25 0.00001
END
```

...
For instance, this corresponds to the HSE06 functional.
According to the general form of the RSH functional, one can also obtain the LC- $\omega \mathrm{PBE}$ functional as: $\omega=0.4 a_{0}^{-1} ; c_{S R}=0.00001 ; c_{L R}=1.00$.
Note that $c_{S R}$ and $c_{L R}$ can be small but not zero (threshold: 1E-06).

meta-GGA functionals

Both pure and hybrids meta-GGA (mGGA) functionals are available. In the current version, all implemented mGGA functionals belong to the Minnesota set of functionals as proposed by Truhlar and co-workers[], in particular the M05 and M06 families.

Pure $m G G A$ functionals

M06L pure mGGA version of the M06 hybrid functional [233]
Global hybrid mGGA functionals
M05
Minnesota 2005 global hybrid mGGA XC functional hybridized with 28% of HF exchange 237.
M052X as M05 but with a doubled amount of HF exchange [236]
M06 Minnesota 2006 global hybrid mGGA XC functional hybridized with 27%
of HF exchange 235]
M062X as M06 but with twice amount of HF exchange [235]
M06HF global hybrid mGGA with 100% HF exchange [234]

Double Hybrid functionals

Double hybrid (DH) functionals implemented in CRYSTAL have the general formula:

$$
E_{x c}^{D H}=(1-A) * E_{x}^{D F A}+A * E_{x}^{H F}+(1-B) * E_{c}^{D F A}+B * E_{c}^{M P 2}
$$

as proposed by S. Grimme 190 .
The following DH functionals are currently available:
B2PLYP Becke88's exchange functional 18 combined with the LYP correlation $53 \quad 27$ functional 190

B2GPPLYP General purpose (GP) version of B2PLYP DH functional [1] $\begin{array}{llll}63 & 36\end{array}$
mPW2PLYP Modified PW91 exchange functional[] combined with the LYP corre- $55 \quad 25$ lation functional[213]

DH functionals can only be used in combination with a post-SCF MP2-like calculation through the CRYSCOR program.

Notes:
(i) the total energy printed at the end of the SCF process is meaningless because it does not include the MP2 correlation correction;
(ii) current implementation is limited to the LYP correlation functional;
(iii) there are neither numeric nor analytic gradients for DH functionals;
(iv) the MP2 correlation correction is available for closed shell systems, only;
(v) DH methods have the same computational cost as MP2, rather than that of DFT;
(vi) DH methods are available only for sequential runnings.

See the CRYSCOR User's Manual for further details on the post-SCF MP2-like calculation.
The amount of HF exchange and MP2 correlation correction can be modified by means of the DHYBRYD keyword.

DHYBRID	Double Hybrid method -1 record follows:
$\bullet * A$	Fock exchange percentage (default 100.)
B	MP2 correlation correction percentage (default 0.)

Availability of XC functionals

Not all functionals are available for all types of calculations and computed properties. A summary is given in the following table ($\mathrm{Y}=\mathrm{Yes}, \mathrm{N}=\mathrm{Not}$)

DFA	Energy Gradients CPKS		
LDA	Y	Y	Y
GGA	Y	Y	Y
mGGA	Y	Y	N
Global hybrids (LDA,GGA)	Y	Y	Y
Global hybrids (mGGA)	Y	Y	N
Range-separated hybrids	Y	Y	Y
Double hybrids	Y	N	N

Note that only a subset of the pure and hybrid LDA/GGA XC functionals can be used in the CPKS scheme, namely:

LDA/GGA	Global hybrids Range-separated hybrids	
LDA	B3LYP	RSHXLDA
VWN	PBE0	$\omega B 97$
BECKE	PBEsol0	ω B97-X
PBE (XC)	B1WC	LC-BLYP
PBEsol (XC)	WC1LYP	SC-BLYP
SOGGA	B97H	CAM-B3LYP
WCGGA		
LYP		

The calculation of properties that require the solution of the CPKS equations, such as linear and non-linear electric susceptibilities (e.g. dielectric constant), Raman intensities and photoelasticity, is then limited to that subset of XC functionals.

Spin-polarized systems

All functionals are formulated in terms of total density and spin density. Default is total density. To use functionals of spin density insert the keyword SPIN.

SPIN unrestricted spin DF calculation (default: restricted)

Self-consistent Hybrids

For a long time, hybrid functionals (either global or screened-exchange) have been characterized by a fixed, system-independent Fock exchange fraction α (0.2 in B3LYP and B3PW91, 0.25 in PBE0 and HSE06, 0.16 in B1WC, for instance). Many properties of solids turn out to be significantly affected by the α parameter, which makes the identification of its optimal value both conceptually and practically important. For instance, it is known that the electronic band structure of small or large band gap solids is better reproduced by use of smaller or larger values of α, respectively.
In recent years, the use of a system-specific optimal Fock fraction, as linked to the static electronic screening of the system, has been proposed, whose practical prescription implies defining α as inversely proportional to the static electronic dielectric constant ϵ_{∞} of the material. The dielectric constants entering the definition of these functionals have been either taken from the experiment or computed with different techniques. In this respect, Skone et al. [Phys. Rev. B 89, 195112 (2014)] have recently proposed a promising iterative scheme for the calculation of the optimal Fock exchange fraction of global hybrids, where the static electronic dielectric response of the material and α are self-consistently determined. Self-consistent hybrids are becoming popular in solid state applications mainly because of their reliable description of the electronic band structure and some optical properties.
The system-specific character of self-consistent hybrid functionals on the one hand has the advantage of bringing into the exchange-correlation functional the electronic screening proper of the material but, on the other hand, it makes it necessary to determine α for each system as a pre-step to any calculation, which implies a higher computational cost and a reduced user-friendliness compared to standard hybrids, unless computationally-efficient, automated strategies are devised for their definition.
In Crystal17, a fully-automated (i.e. requiring a single calculation), computationally-efficient implementation of self-consistent hybrid functionals has been implemented. The static electronic dielectric tensor of the system is computed by adopting a Coupled-Perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) approach and full advantage is taken of internal guesses of perturbed and unperturbed density matrices from previous iterations to achieve high computational efficiency.
A schematic representation of the fully-automated algorithm for the determination of the optimal Fock exchange of self-consistent hybrid functionals is reported in Figure 4.1, as implemented into Crystal17. The procedure starts with a guess for the exact exchange fraction α

Figure 4.1: Flow chart of the automated algorithm for the system-specific definition of selfconsistent hybrid functionals, as implemented in Crystal17.
(any value in the range from 0 to 1) and with the choice of the adopted exchange-correlation DFT functional. At each iteration n of the procedure, the static electronic dielectric tensor of the system is computed, from which an average dielectric constant $\epsilon_{\infty}^{(n)}$ is evaluated. At the end of each iteration n, the Fock exchange fraction is updated according to $\alpha=1 / \epsilon_{\infty}^{(n)}$ and convergence of the whole process is checked on the average dielectric constant (i.e. convergence is reached when ϵ_{∞} changes by less than 0.1% between two subsequent iterations).

The optimal fraction of exact exchange is self-consistently determined by performing a preliminary calculation activated by the keyword SCHYBRID, to be inserted at the end of the geometry input block. This keyword opens a block that must be terminated by a keyword END.
A possible input reads as follows:

```
...geometry...
SCHYBRID Keyword to compute the optimal exchange fraction of self-consistent hybrid
END End of Self-consistent hybrid input
END End of geometry input block
...basis set...
END End of basis set input block
DFT Keyword to set a DFT calculation
PBEO The PBEO global hybrid functional is selected, for instance
END End of DFT input block
END End of computational parameter input block
```

At the end of the output file, the following information is found:
SCH

```
based on the paper by J.H. Skone, M. Govoni and G. Galli
```

 Phys. Rev. B, 89, 195112 (2014)
 SCH

CONVERGENCE ON DIELECTRIC CONSTANT REACHED AFTER 4 CYCLES

```
AVERAGE DIELECTRIC CONSTANT: 2.7355
    OPTIMAL EXCHANGE FRACTION: 36.5473
```


Users of this module are kindly requested to cite the following reference:

A. Erba, J. Phys.: Condens. Matter, 29, 314001 (2017) Self-consistent Hybrid Functionals for Solids: A fully-automated Implementation

The optimal fraction of Fock exchange is given in the last row. At this point, all one needs to do is to use this Fock exchange fraction in the calculation. To do that, the HYBRID keyword of the DFT block can be used:

```
...geometry...
END End of geometry input block
...basis set...
END End of basis set input block
DFT Keyword to set a DFT calculation
PBEO The PBEO global hybrid functional is selected, for instance
HYBRID Keyword to set the Fock exchange fraction
36.5473
END End of DFT input block
END End of computational parameter input block
```


4.2 Dispersion correction to DFT (DFT-D)

The proper description of noncovalent interactions requires the inclusion of long-range electron correlation effects that are missing in both HF and DFT methods. In particular, the treatment of the weak London forces is crucial because of their attractive and ubiquitous nature.

In CRYSTAL, empirical and semi-classical corrections D2/D3 as proposed by S. Grimme 102, 104 are available to take into account dispersive interactions.
For a range of common density functionals, the D3 correction can be invoked by simply specifying the XC functional with the suffix '-D3' in the DFT input block by means of stand-alone keywords. For more details, users are referred to Chapther 5.5 .

The older D2 corrections can still be used by means of either the option "version 2 " of the DFTD3 keyword (see 5.5) or the keyword GRIMME (see 3.3). 44, 45, 218,

4.3 Integration grid and numerical accuracy control

No input data are required: Becke weights are chosen by default, as well as a set of safe values for the computational parameters of integration.
The generation of grid points in CRYSTAL is based on an atomic partition method, originally developed by Becke [16] for molecular systems and then extended to periodic systems [216]. Each atomic grid consists of a radial and an angular distribution of points. Grid points are generated through a radial and an angular formula: Gauss-Legendre radial quadrature and Lebedev two-dimensional angular point distribution are used.

Lebedev angular grids are classified according to progressive accuracy levels, as given in the following table:

LEV CR98	$\ell \mathrm{N}_{\text {ang }}$	LEV CR98 $\ell \mathrm{N}_{\text {ang }}$	
11	938	$16 \quad 53974$	
$2 \quad 2$	1150	$17 \quad 591202$	
3	1374 *	$18 \quad 651454$	Index of Lebedev accuracy levels
4	1586	$19 \quad 711730$	LEV: Lebedev accuracy level
53	17110	$20 \quad 772030$	CR98: corresponding index in CRYSTAL98
6	19146	$21 \quad 832354$	ℓ : maximum quantum number of spher-
7	21170	$22 \quad 892702$	ical harmonics used in Lebedev
84	23194	$23 \quad 953074$	derivation
9	25 230*	241013470	$\mathrm{N}_{\text {ang }}$: number of angular points generated
105	27 266*	$25 \quad 107389$	per radial point
116	29302	$26 \quad 1134334$	* sets with negative weights, to be
12	31350	$27 \quad 1194802$	avoided
$13 \quad 7$	35434	$28 \quad 1255294$	
14	41590	$29 \quad 1315810$	
15	47770		

If one Lebedev accuracy level is associated with the whole radial range, the atomic grid is called unpruned, or uniform. In order to reduce the grid size and maintain its effectiveness, the atomic grids of spherical shape can be partitioned into shells, each associated with a different angular grid. This procedure, called grid pruning, is based on the assumption that core electron density is usually almost spherically symmetric, and surface to be sampled is small.
Also, points far from the nuclei need lower point density, as associated with relatively small weights, so that more accurate angular grids are mostly needed within the valence region than out of it.
The choice of a suitable grid is crucial both for numerical accuracy and need of computer resources.

Different formulae have been proposed for the definition of grid point weights. In CRYSTAL Becke and Savin weights are available; Becke weights are default, and provide higher accuracy.
[BECKE] Becke weights [17. Default choice.

SAVIN Savin weights 198

A default grid is available in CRYSTAL, however the user can redefine it by the following keywords:

RADIAL	Radial integration information
rec variable	meaning
$\begin{array}{lll} \text { - } & * & \mathrm{NR} \\ \text { - } & * \mathrm{RL}(\mathrm{I}), \mathrm{I}=1, \mathrm{NR} \\ \text { - } & * \mathrm{IL}(\mathrm{I}), \mathrm{I}=1, \mathrm{NR} \end{array}$	```number of intervals in the radial integration [default 1] radial integration intervals limits in increasing sequence [default 4.0] (last limit is set to m) number of points in the radial quadrature in the I-th interval [default 55].```
ANGULAR	Angular integration information
rec variable	meaning
$\begin{array}{lll} \hline \text { • } & * \mathrm{NI} \\ \bullet & * & \mathrm{AL}(\mathrm{I}), \mathrm{I}=1, \mathrm{NI} \\ \text { • } & \\ & \mathrm{LEV}(\mathrm{I}), \mathrm{I}=1, \mathrm{NI} \end{array}$	number of intervals in the angular integration [default 1] upper limits of the intervals in increasing sequence. The last limit must be 9999.0 [default 9999.0] accuracy level in the angular integration over the I-th interval; positive for Lebedev level (see Lev in page 127) [default 13]

Note: A new default grid has been set. It corresponds to the XLGRID in CRYSTAL09

The default grid is a pruned $(75,974)$ grid, having 75 radial points and a maximum number of 974 angular points in regions relevant for chemical bonding. Each atomic grid is split into five shells with different angular grids.

This grid guarantees accurate integration of the XC potential when numerical derivatives of energy or related properties (i.e. spontaneous polarization) and gradients have to be computed (e.g. bulk modulus, elastic constants, piezoelectric tensor, ferroelectric transitions). It also provides accurate results for atoms up to fourth-row and heavier.
Default grid - corresponds to the sequence:

RADIAL	Keyword to specify the radial grid
1	Number of intervals in the radial part
4.0	Radial integration limits of the i-th interval
75	Number of radial points in the i-th interval
ANGULAR	Keyword to specify the angular grid
5	Number of intervals in the angular part
0.16670 .50 .93 .59999 .0	Angular integration limits of the i-th interval
48121612	Angular grid accuracy level of the i-th interval

Information on the size of the grid, grid thresholds, and radial (angular) grid is reported in the CRYSTAL output with the following format:

```
SIZE OF GRID= 44707
BECKE WEIGHT FUNCTION
RADSAFE = 2.00
TOLERANCES - DENSITY:10**- 6; POTENTIAL:10**- 9; GRID WGT:10**-14
RADIAL INTEGRATION - INTERVALS (POINTS,UPPER LIMIT): 1( 75, 4.0*R)
ANGULAR INTEGRATION - INTERVALS (ACCURACY LEVEL [N. POINTS] UPPER LIMIT):
    1(4[ 86] 0.2) 2( 8[ 194] 0.5) 3(12[ 350] 0.9) 4(16[ 974] 3.5)
    5( 12[ 350]9999.0)
```

Three more pre-defined grids are available which can be selected to improve accuracy (or reduce the cost) by inputing the following global keywords:

OLDGRID Old default grid

This is the old default grid in CRYSTAL09. It is a pruned $(55,434)$ grid, having 55 radial points and a maximum number of 434 angular points in regions relevant for chemical bonding. Each atomic grid is split into ten shells with different angular grids.
This grid is good enough for either single-point energy calculations or medium-accuracy geometry optimizations. Due to the large pruning, the cost of the calculation is modest.
Default grid - corresponds to the sequence:
RADIAL Keyword to specify the radial grid
1 Number of intervals in the radial part
4.0 Radial integration limits of the i-th interval

55 Number of radial points in the i-th interval
ANGULAR Keyword to specify the angular grid
10 Number of intervals in the angular part
0.40 .60 .80 .91 .12 .32 .42 .62 .8 9999.0 Angular integration limits of the i-th interval
$1258111311851 \quad$ Angular grid accuracy level of the i-th interval

LGRID Large grid

Global keyword to choose a smaller grid than default, corresponding to the sequence:
RADIAL
1
4.0

75
ANGULAR
5
0.16670 .50 .93 .059999 .0

268138
The large grid is a pruned $(75,434)$ grid, having 75 radial points and a maximum number of 434 angular points in the region relevant for chemical bonding. Five shells with different angular points are adopted to span the radial range as proposed by Gill et al. 99.
[XLGRID] Extra large grid (default)

XXLGRID Extra extra large grid

The extra-extra-large grid is a pruned $(99,1454)$ grid, consisting of 99 radial points and 1454 angular points in the region of chemical interest. This is very large and accurate grid which can be used for benchmark calculations. It corresponds to:

```
RADIAL
1
4 . 0
99
ANGULAR
5
0.1667 0.5 0.9 3.5 9999.0
6 10 14 18 14
```


Unpruned grids

To switch from a pruned grid to the corresponding unpruned grid, only one shell must be defined in the radial part and the same angular accuracy is used everywhere. The use of unpruned grids increases the cost of the calculations by about $50-60 \%$ with respect to the pruned grid.
For example, to transform the default grid to the corresponding unpruned grid input the following data:

```
ANGULAR
1
```

9999.0
13

Numerical accuracy and running time are also controlled by the following keywords:

TOLLGRID

- * IG DFT grid weight tolerance [default 14]

TOLLDENS

- * ID DFT density tolerance [default 6]

The DFT density tolerance ID controls the level of accuracy of the integrated charge density $N_{e l}$ (number of electron per cell):

$$
N_{e l}=\int_{c e l l} \rho(\mathbf{r}) d \mathbf{r}=\sum_{\mu, \nu, \mathbf{g}, \mathbf{l}} P_{\mu, \nu}^{\mathbf{g}+\mathbf{g}^{\prime}} \sum_{i} w\left(\mathbf{r}_{i}\right) \varphi_{\mu}^{\mathbf{g}}\left(\mathbf{r}_{i}\right) \varphi_{\nu}^{\mathbf{g}^{\prime}}\left(\mathbf{r}_{i}\right)
$$

all contributions where $\left|\varphi_{\mu}\left(\mathbf{r}_{i}\right)\right|<10^{-I D}$ or $\left|\varphi_{\nu}\left(\mathbf{r}_{i}\right)\right|<10^{-I D}$ are neglected (see Chapter 17.12 for notation). The default value of ID is 6 .
Grid points with integration weights less than $10^{-I G}$ are dropped. The default value of IG is 14.

RADSAFE

- * RAD for developers only [default 2]

BATCHPNT

- * BATCH average number of points in a batch for numerical integration [default 100]

In CRYSTAL (serial and parallel versions), in the calculation of the exchange-correlation contribution to the Kohn-Sham Hamiltonian matrix elements and energy gradients, a grid of NPOINT points is partitioned into batches of points as suggested by Ahlrichs [217. The unit cell volume is then divided into a number of equivalent sub-volumes which approximates the following ratio: NPOINT/BATCH. Each grid point is assigned to a sub-volume and the set of points inside a sub-volume forms a batch. Since the distribution of grid points is not uniform in the unit cell (it is an atomic grid) the population of batches may vary from a few points to a few thousands. For this reason BATCH does not correspond to the maximum number of points in a batch. For example, batches of grid points close to the nuclei contain many more points than batches in internuclear regions. This may produce load unbalancing in parallel calculations (see CHUNKS).
The number of sub-volumes into which subdivided rhe unit cell is altered by changing BATCH. Reducing BATCH may result in some degree of inefficiency (minimum value: 1). Changing the value of BATCH can also affect results at some extent if TOLDENS is not sufficiently accurate, as the selection of contributions to the total density at a point can be influenced by the definition of the sub-volumes.
Default value of BATCH is 100, as averagely good balance between accuracy and efficiency.

CHUNKS

- * NCHU maximum number of points allowed in a batch for numerical integration [default 10000000]

This option is available for replicated-data calculations (Pcrystal only). Since different batches can contain a different number of points in a rather wide range, task farming can be unbalanced. CHUNKS allows user to set the maximum number of points per batch so improving load balancing. Recommended value of NCHU: 200.
CHUNKS is not implemented under DISTGRID.

DISTGRID

This option is available for both replicated-data and massive-parallel calculations. It forces the code to distribute the DFT grid information, which becomes huge for large unit cell cases, across all available processors. This permits a reduction in memory usage per processor.

LIMBEK

- * LBEK size of local arrays for integration weights [default 400]

4.4 Atomic parameters

The radius attributed to each atom for the integration is computed from the formal charge as specified in the initial electronic configuration. It is possible to enter for selected atoms a given atomic radius or a different formal charge.

\bullet	A RADIUS	
\bullet	NUMAT	number of atoms selected
insert NUMAT records		
	$*$	NA
	RAD (LB)	(formal) atomic number of the atom
radius (\AA) attributed to the atom		

- A FCHARGE
- * NUMAT number of atoms selected
__ insert NUMAT records __ II
- * NA (formal) atomic number of the atom
$\mathrm{FCH}(\mathrm{LB})$ formal charge attributed to the atom
The atomic radius or formal charge set in this way is used only the construction of the DFT grid. The value is applied to all atoms with the same formal atomic number.

Chapter 5

Semi-classical corrections for HF and DFT

Abstract

iiiiiii .mine HF and semi-local approximations to DFT have well known limitations in the description on noncovalent interactions, mainly due to the lack of long-range Coulomb correlation. These effects lead to the omnipresent attractive London dispersion interaction (also known as attractive part of the van der Waals force). Though considered as a relatively 'weak' London dispersion interactions play a major role in all organic (organo-metallic) systems and influence the geometry, noncovalent binding energy (lattice energy), frequencies, and even reactivities, i.e. the whole potential energy surface. Thus, for these systems it is crucial to include this interaction. Varies different correction schemes are described and compared in Ref. [106]. In CRYSTAL, the D3 London dispersion correction, which has been mainly developed in the group of Prof. Grimme, is implemented including three-body dispersion contributions with fast analytical gradients. 104 Due to restrictions in the computational resources, small atomic orbital basis set expansions are widely used. As the set of orbitals is neither complete nor independent of the geometry, artificial interactions occur, typically referred to as basis set superposition error. A critical analysis of the error sources and its' implications is given in Ref. [208]. Apart from the standard BoysBernardi couterpoise correction (see keywords GHOSTS and MOLEBSSE), a semi-empirical geometric counterpoise correction (gCP) has been implemented in CRYSTAL. 131 While both dispersion and counterpoise corrections can be applied independently, e.g. with a B3LYP-D3-gCP/6-31G* calculation, the performance is best when the parametrization is done together and basis set incompletenesses errors are simultaneously treated by an additional semiclassical correction or by compensating them with an adjusted exchange-correlation functional. Two of these 'composite' methods are implemented in CRYSTAL and described below, namely a minimal basis set HF with corrections (HF-3c) [209] and a hybrid density functional evaluated in small double- ζ type orbitals with dispersion and counterpoise correction (PBEh-3c). [107] The following schemes have been carefully tested for molecular dimers, larger molecular assemblies, host-guest-complexes, and molecular crystals.

Note that studies on inorganic crystals and metals are less well tested and should be treated carefully.

5.1 DFT-D3 - C_{6} based London dispersion correction

For a range of common density functionals, the D3 correction can be invoked by simply specifying the XC functional with the suffix '-D3' in the DFT input block by means of stand-alone keywords. Here an example follows for the common B3LYP functional.

DFT

B3LYP-D3

END
.
By default, the D3 correction includes a damped (BJ damping) atom-atom pairwise term (no three-body term) to the KS-DFT energies (and atomic and cell gradients) (see below for details). 104]
Note that not all functionals available in CRYSTAL have been parametrized. A list of available D3 dispersion corrected DFT methods follows: BLYP, PBE, B97, B3LYP, PBE0, PW1PW, M06, HSE06, HSEsol, LC-wPBE. For other XC functionals, parameters must be provided in input (see below)

Additionally, the keyword DFTD3, inserted in the third input block and closed by END, allows users to include the three-body term, modify/specify all free method parameters, change the damping function and other options as detailed in the following.

D3 correction

The D3 augmented KS-DFT energies are obtained as

$$
\begin{equation*}
E_{\mathrm{DFT}-\mathrm{D} 3}=E_{\mathrm{KS}-\mathrm{DFT}}+E_{\mathrm{disp}} \tag{5.1}
\end{equation*}
$$

with $E_{\text {disp }}$ being the sum of the two- and three-body contributions to the dispersion energy:

$$
\begin{align*}
E_{\text {disp }} & =E^{(2)}+E^{(3)} \tag{5.2}\\
& =-\frac{1}{2} \sum_{n=6,8} \sum_{A, B}^{\text {atoms }} s_{n} \frac{C_{n}^{A B}}{R_{A B}^{n}} \cdot f_{n}^{d}\left(R_{A B}\right)-\frac{1}{6} \sum_{A, B, C}^{\text {atoms }} \frac{C_{9}^{A B C}}{\bar{R}_{A B C}^{9}} \cdot f_{9}^{d}\left(R_{A B C}, \theta_{A B C}\right) . \tag{5.3}
\end{align*}
$$

This expression assumes dispersion coefficients that can be distributed to isotropic atom contributions. While the series should in principle incorporate higher orders, they were shown to be of less importance for many systems. 106
In order to match the long- and midrange correlation of D3 with the semilocal correlation computed by the functional, an adequate damping function f_{n}^{d} must be included. $C_{n}^{A B}$ denotes the averaged (isotropic) n th-order dispersion coefficient for atom pair $A B$, and $R_{A B}$ is their internuclear distance. s_{n} is a functional-dependent scaling factor (see below). In contrast to the D2 method, here the $C_{6}^{A B}$ coefficients are estimated from first principles by TD-DFT computation of the dynamical polarizability α for model hydrides of all elements and using the Casimir-Polder integration

$$
\begin{equation*}
C_{6}^{A B}=-\frac{3}{\pi} \int \mathrm{~d} \omega \alpha_{A}(i \omega) \alpha_{B}(i \omega) \tag{5.4}
\end{equation*}
$$

These reference C_{6} are then mapped to the real system via a geometric coordination number.

Damping functions

In order to avoid near singularities for small distances $\left(R_{A B}\right)$, the dispersion contribution needs to be damped at short distances. One possible way is to use rational Becke-Johnson damping as proposed by Becke and Johnson [20, 126, 127, which is the recommended option for the two-body contributions as it avoids artificial repulsive forces:

$$
\begin{equation*}
f_{n=6,8}^{d}\left(R_{A B}\right)=\frac{R_{A B}^{n}}{R_{A B}^{n}+f\left(R_{0}^{A B}\right)^{n}} \tag{5.5}
\end{equation*}
$$

with 127

$$
\begin{equation*}
R_{0}^{A B}=\sqrt{\frac{C_{8}^{A B}}{C_{6}^{A B}}} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(R_{0}^{A B}\right)=a_{1} R_{0}^{A B}+a_{2} \tag{5.7}
\end{equation*}
$$

In the literature this is typically used as D3(BJ).

Damping the dispersion contribution to zero for short ranges (as in Ref.[104]) is also possible:

$$
\begin{equation*}
f_{n=6,8}^{d}=\frac{1}{1+6\left(R_{A B} /\left(s_{r, n} R_{0}^{A B}\right)\right)^{-\alpha_{n}}} \tag{5.8}
\end{equation*}
$$

Note that the $R_{0}^{A B}$ used with this damping are from Ref.[104], the scheme is typically abbreviated as $\mathrm{D} 3(0)$. For more information on the supported damping functions, see Ref [105].

The Axildor-Teller-Muto type three-body term is used in the following form:

$$
\begin{equation*}
f_{9}^{d}=\left(3 \cos \theta_{a} \cos \theta_{b} \cos \theta_{c}+1\right) \times \frac{1}{1+6\left(\bar{R}_{A B C} /\left(s_{r, n} \bar{R}_{0}^{A B C}\right)\right)^{-\alpha_{n}}} \tag{5.9}
\end{equation*}
$$

where θ_{a}, θ_{b} and θ_{c} are the internal angles of the triangle formed by $R_{A B}, R_{B C}$ and $R_{C A}, \bar{R}_{A B C}$ is the geometric mean of $R_{A B}, R_{B C}$ and $R_{A B}$. The C_{9} coefficient is approximated by:

$$
\begin{equation*}
C_{9}^{A B C} \approx-\sqrt{C_{6}^{A B} C_{6}^{A C} C_{6}^{B C}} \tag{5.10}
\end{equation*}
$$

The damping function is similar to the zero damping and has not been revised. Inclusion of the three-body term is often denoted by D3 $3^{\text {atm }}$.

DFTD3 - opens D3 input block
VERSION - chooses between D2, D3 and the different damping functions

rec	variable	meaning
$*$	NAT	(2) Old D2 correction, (3) D3 with zero-damping, (4) D3 with Becke-
		Johnson damping (default)

FUNC - chooses the functional for automatic parameter loading

| rec | variable | meaning | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| \bullet^{*} | CHAR | List of parametrized functionals available on the homepage
 http://www.thch.uni-bonn.de/tc/dftd3 | | |

$\underline{\text { ABC - switches on the three-body dispersion term }}$

S6 - define s_{6} manually

rec	variable	meaning
\bullet^{*}	REAL	define s_{6} scaling parameter manually (should be always 1.0 for GGA and hybrid functionals)
$\mathbf{S 8}$ - define s_{8} manually		
rec		variable
${ }^{*}$	REAL	meaning

A1 - define a_{1} manually

rec	variable	meaning
\bullet^{*}	REAL	define a_{1} parameter of rational Becke-Johnson damping manually

A2 - define a_{2} manually

rec	variable	meaning
\bullet^{*}	REAL	define a_{2} parameter of rational Becke-Johnson damping manually

$\mathbf{A 2}$ - define a_{2} manually

rec	variable	meaning
$\bullet *$	REAL	define a_{2} parameter of rational Becke-Johnson damping manually

RS6 - define $r s_{6}$ manually

rec	variable	meaning
$\bullet *$	REAL	define $r s_{6}$ parameter of zero-damping manually

RS8 - define $r s_{8}$ manually

rec	variable	meaning
\bullet^{*}	REAL	define $r s_{8}$ parameter of zero-damping manually

RADIUS - define two-body real-space cutoff manually

rec	variable	meaning
${ }^{*}$	REAL	define distance cutoff for real-space summation of two-body contribu- tions [a.u.]

CNRADIUS - define tree-body real-space cutoff manually

rec	variable	meaning
$*$	REAL	define distance cutoff for real-space summation of three-body contri- butions and of the coordination number function [a.u.]

$\underline{\text { PRINTC6 - extensive output with individual } C_{6}^{A A} \text { and } R_{0}^{A A} \text { values }}$

END - closes D3 input block
The older D2 corrections can still be used by means of either the option "version 2 " of the DFTD3 keyword or the keyword GRIMME (see 3.3). 44, 45, 218

Examples

A typical input looks like (urea molecular crystal):
Urea
CRYSTAL
000
113
5.5654 .684

5
$60.0000 \quad 0.5000 \quad 0.3260$
$80.0000 \quad 0.5000 \quad 0.5953$
70.14590 .64590 .1766
10.25750 .75750 .2827
$10.1441 \quad 0.6441-0.0380$
ENDG
BASISSET
def2-SV (P)
DFT
B3LYP-D3
END
SHRINK
44
END

This is a simplified version of the explicit input.

```
Urea
CRYSTAL
O 0
113
5.565 4.684
5
6 0.0000 0.5000 0.3260
80.0000 0.5000 0.5953
7 0.1459 0.6459 0.1766
1 0.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
ENDG
BASISSET
def2-SVP
DFT
PBE0
END
DFTD3
VERSION
4
S6
1.0000
S8
1.9889
A1
0.3981
A2
4.4211
END
SHRINK
4
END
```

A change of the damping parameter should be generally avoided as they have been carefully optimized individually for all functionals.
A more useful test is the impact of the Axilrod-Teller-Muto type three body dispersion, e.g. via

Urea
CRYSTAL
000
113
5.5654 .684

5
$60.0000 \quad 0.5000 \quad 0.3260$
$80.0000 \quad 0.5000 \quad 0.5953$
$70.1459 \quad 0.6459 \quad 0.1766$
10.25750 .75750 .2827
$10.1441 \quad 0.6441-0.0380$
ENDG
BASISSET
def2-SVP
DFT
PBEO
END
DFTD3

More input examples can be found at the CRYSTAL tutorials web page.
Note that cohesive energies at the given level will suffer severely from basis set superposition errors.

5.2 GCP - Geometrical counterpoise correction

The keyword GCP, inserted in the last section of the CRYSTAL input and closed by END, calculates atom-pair wise counterpoise corrections which are added to the KS-DFT energies (and atomic and cell gradients). 131

Note that the gCP scheme has been carefully tested for molecular crystals. Applications to inorganic crystals and metals are less well tested and should be treated carefully.

gCP correction

The central idea is to add in a semi-empirical fashion an energy correction $\Delta E_{g C P}$ to the energies of molecular (or periodic) systems in order to remove artificial overbinding effects from BSSE. 131, 30 As the focus lies on the contribution of individual atoms a natural outcome is its ability to yield also intramolecular BSSE corrections. The parametrization is constructed such that it approximates the Boys and Bernadi[28] counterpoise (CP) correction $\Delta E_{C P}$ in the intermolecular case

$$
\begin{equation*}
\Delta E_{\mathrm{CP}} \approx \Delta E_{\mathrm{gCP}} \tag{5.11}
\end{equation*}
$$

where e.g. for a complexation reaction $A+B \rightarrow C$ our correction is given by

$$
\begin{equation*}
\Delta E_{\mathrm{gCP}}=E_{\mathrm{gCP}}(C)-E_{\mathrm{gCP}}(A)-E_{\mathrm{gCP}}(B) \tag{5.12}
\end{equation*}
$$

In practice, E_{gCP} can simply be added to the HF/DFT energy

$$
\begin{equation*}
E_{\mathrm{total}}=E_{\mathrm{HF} / \mathrm{DFT}}+E_{\mathrm{gCP}} \tag{5.13}
\end{equation*}
$$

The central equation over all atoms N reads:

$$
\begin{equation*}
E_{\mathrm{gCP}}=\sigma \cdot \sum_{A}^{N} \sum_{\mathbf{g}}{ }^{\prime} \sum_{B}^{N} e_{A}^{\mathrm{miss}} \cdot f_{\mathrm{dec}}\left(R_{A B}+\mathbf{g}\right) \tag{5.14}
\end{equation*}
$$

where the energy $e_{A}^{\text {miss }}$ is a measure for the incompleteness for the chosen target basis set (that is typically small), and $f_{\mathrm{dec}}\left(R_{A B}\right)$ is a decay function that depends on the inter-atomic distance $R_{A B}$.

$$
\begin{equation*}
f_{\mathrm{dec}}\left(R_{A B}\right)=\frac{\exp \left(-\alpha R_{A B}^{\beta}\right)}{\sqrt{A_{A B} N_{\mathrm{virt}}^{B}}} \tag{5.15}
\end{equation*}
$$

The potential is normalized by the Slater-type overlap $S_{A B}$, the number of virtual orbitals $N_{\text {virt }}^{B}$, and the empirical parameters α and β. In molecular systems, the sum over the translation invariant vectors \mathbf{g} is omitted. For periodic systems, a sum over all atompairs inside a supercell is utilized with default distance-cutoff of 60 Bohr analogue to the non-periodic version. The
prime (${ }^{\prime}$) indicates that for $\mathbf{g}=0, A \neq B$. The scaling factor σ is one out of 4 parameters needed for every <method>/<basis set> combination.

Small basis sets show not only a large BSSE, but general shortcomings. These effects are not always clearly distinguishable. If computationally affordable, large basis sets (triple- ζ and higher) are always preferable for a given system.
The gCP has been developed for a range of standard basis sets, including MINIS, def2-SV(P), def2-SVP, def-TZVP, def2-TZVP, 6-31G*, pob-TZVP. The parametrization distinguishes between generalized gradient approximated functionals 'GGA', hybrid functionals 'DFT', and pure Hartree-Fock 'HF'. The DFT parametrization will often also work GGA functionals, but the couterpoise correction is typically underestimated. The following combinations are parametrized:

	GGA	DFT	HF
MINIS	yes	no	yes
SV	yes	yes	yes
SV(P)	no	yes	yes
SVP	yes	yes	yes
def-TZVP	no	yes	yes
def2-TZVP	no	yes	yes
$6-31 G^{*}$	no	yes	yes
pob-TZVP	no	yes	no

A more extensive list can be found at the web page:
http://www.thch.uni-bonn.de/tc/?section=downloads.

The gCP correction can be invoked by a single line in the third CRYSTAL input block
GCPAUTO - It includes the gCP correction with automatic parameter setup
This is however only possible if the basis set has been defined with a general BASISSET keyword. Then, the routine automatically selects the most suitable available parametrization. Otherwise, the gCP correction has to be defined by an individual input block:

GCP - opens gCP input block
METHOD - choose gCP method combination

rec	variable	meaning
\bullet^{*}	CHAR	Choose between different gCP parametrization. The method distin- guishes between different types of Hamiltonians (HF, GGA, DFT) and the used basis set name, separated by a slash. E.g., dft/svp

SIGMA - define σ manually

rec	variable	meaning
\bullet	REAL	define σ scaling parameter manually

ALPHA - define α manually

rec	variable	meaning
$\bullet *$	REAL	define α parameter manually

BETA - define β manually

rec	variable	meaning
$\bullet{ }^{*}$	REAL	define β parameter manually

ETA - define η manually

rec	variable	meaning
\bullet^{*}	REAL	define η parameter manually

RADIUS - define real-space cutoff manually

rec	variable	meaning
\bullet^{*}	REAL	define distance cutoff for real-space summation [a.u.]

$\underline{\text { PRINTEMISS - extensive output with } e_{\text {miss }}, N_{v i r t} \text {, and individual } E_{g c p} \text { contributions }}$

END - closes gCP input block

Examples

A typical input looks like (urea molecular crystal):
Urea
CRYSTAL
000
113
5.5654 .684

5
$60.0000 \quad 0.5000 \quad 0.3260$
$80.0000 \quad 0.5000 \quad 0.5953$
$70.1459 \quad 0.6459 \quad 0.1766$
10.25750 .75750 .2827
$10.14410 .6441-0.0380$
BASISSET
def2-SVP
DFT
PBEO
END
DFTD3
ABC
END
GCPAUTO
SHRINK
44
END
This is a simplified version of the following explicit input.
Urea
CRYSTAL
000
113
5.5654 .684

5
$60.0000 \quad 0.5000 \quad 0.3260$
$80.0000 \quad 0.5000 \quad 0.5953$
$70.1459 \quad 0.6459 \quad 0.1766$
$10.2575 \quad 0.7575 \quad 0.2827$
$10.14410 .6441-0.0380$

```
BASISSET
def2-SVP
DFT
PBEO
END
DFTD3
VERSION
4
S6
1.0000
S8
1.9889
A1
0.3981
A2
4.4211
END
GCP
METHOD
DFT/SVP
SIGMA
0.2424
ETA
1.2371
ALPHA
0.6076
BETA
1.4078
END
SHRINK
44
END
```


5.3 HF-3C - Minimal basis HF composite method

The keyword HF3C, inserted in the last section of the CRYSTAL input and closed by the keyword END, calculates three semi-classical corrections (D3, gCP, SRB), which are added to the HF energies (and atomic and cell gradients). 209]

The HF-3c method

This composite method is based on a minimal basis set HF calculation as:

$$
\begin{equation*}
E_{\mathrm{HF}-3 \mathrm{c}}=E_{\mathrm{HF} / \mathrm{MINIX}}+E_{\mathrm{D} 3}+E_{\mathrm{gCP}}+E_{\mathrm{SRB}} \tag{5.16}
\end{equation*}
$$

It is designed to compete with semi-empirical (tight-binding or NDO) methods without neglecting any of the many-center integrals. This keyword should only be used in combination with a pure HF calculation in the MINIX orbital basis set. Its original design targeted organic complexes [209], but it has been used for periodic systems [31], and specifically tested as implemented in CRYSTAL. 47.

Note that the HF-3c method has been carefully tested for molecular crystals. Applications to inorganic crystals and metals are less well tested and should be treated carefully.

The keyword HF3C automatically switches on all needed correction schemes with proper parameter setup. While the D3 and gCP schemes have been described before (see sections 5.5),
a third short-range basis (SRB) correction is introduced. This correction mainly improves the bond distances of electronegative elements that have a systematic error in the restricted basis set expansion.

HF3C - opens HF-3c input block
RESCALES8 - scale C_{8} contribution in D3 correction

rec	variable	meaning
$*$	REAL	scales the C_{8} contribution in the D3 dispersion correction. Can also be adjusted individually in the DFTD3 input block.

SCALEGCP - scale contribution from gCP correction

rec	variable	meaning
$*$	REAL	scales the contribution from the gCP correction. Can also be adjusted individually in the GCP input block.

END - closes HF-3c input block

Examples

The urea crystal can be treated like
Urea
CRYSTAL
000
113
5.5654 .684

5
$60.0000 \quad 0.5000 \quad 0.3260$
$80.0000 \quad 0.5000 \quad 0.5953$
$70.1459 \quad 0.6459 \quad 0.1766$
10.25750 .75750 .2827
$10.14410 .6441-0.0380$
BASISSET
MINIX
HF3C
END
SHRINK
44
END
The scaled s-HF-3c with scaled down C_{8} dispersion contribution as introduced in Ref. 47] can be defined by

```
Urea
CRYSTAL
0 0
113
5.565 4.684
5
60.0000 0.5000 0.3260
80.0000 0.5000 0.5953
70.1459 0.6459 0.1766
10.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
BASISSET
```

MINIX
HF3C
RESCALES8
0.70

END
SHRINK
44
END

5.4 PBEH-3C - Small basis DFT composite method

The keyword PBEH3C, inserted in the DFT Hamiltonian input block as a standalone keyword (see section 4), corresponds to a modified global hybrid functional PBEh with semi-classical corrections (D3, gCP). 107.

$$
\begin{equation*}
E_{\mathrm{PBEh}-3 \mathrm{c}}=E_{\mathrm{PBEh} / \mathrm{def} 2-\mathrm{mSVP}}+E_{\mathrm{D} 3}+E_{\mathrm{gCP}} \tag{5.17}
\end{equation*}
$$

This composite method is based on a modified double- ζ orbital set dubbed def2-mSVP, which should be always used when performing PBEh-3c calculations. The basis set development and explicit definition is given in Ref [107. The PBE type correlation and exchange enhancement factors have been optimized to absorb certain incompleteness errors of the restricted basis set. The percentage of HF exchange (42%) is adjusted to get covalent bond length that are on average correct.

Note that the PBEh-3c method has been carefully tested for molecular crystals. Applications to inorganic crystals and metals are less well tested and should be treated carefully.

The keyword PBEH3C automatically switches on all needed correction schemes with proper parameter setup. The D3 and gCP schemes have been described before (see sections 5.5), in order to avoid contributions of the gCP for covalent bond length and thermochemistry, a short-range damping has been introduced. The D3 correction is used in its rational Becke-Johnson damping scheme and includes per default the three-body Axilrod-Teller-Muto term.

Note that vibrational frequencies computed with PBEh-3c will be scaled by 0.95 as recommended in its original publication. See section (7.1) for changing the frequency scaling factor manually.

Example

The urea crystal can be treated like

```
Urea
CRYSTAL
O 0
113
5.565 4.684
5
6 0.0000 0.5000 0.3260
80.0000 0.5000 0.5953
7 0.1459 0.6459 0.1766
1 0.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
BASISSET
def2-mSVP
DFT
PBEH3C
```

HF and semi-local approximations to DFT have well known limitations in the description on noncovalent interactions, mainly due to the lack of long-range Coulomb correlation. These effects lead to the omnipresent attractive London dispersion interaction (also known as attractive part of the van der Waals force). Though considered as a relatively 'weak' London dispersion interactions play a major role in all organic (organo-metallic) systems and influence the geometry, noncovalent binding energy (lattice energy), frequencies, and even reactivities, i.e. the whole potential energy surface. Thus, for these systems it is crucial to include this interaction. Different correction schemes are described and compared in Ref. 106. In CRYSTAL, the D3 London dispersion correction, which has been mainly developed in the group of Prof. Grimme, is implemented including three-body dispersion contributions with fast analytical gradients. 104
Due to restrictions in the computational resources, small atomic orbital basis set expansions are widely used. As the set of orbitals is neither complete nor independent of the geometry, artificial interactions occur, typically referred to as basis set superposition error. A critical analysis of the error sources and its' implications is given in Ref. [208. Apart from the standard BoysBernardi couterpoise correction (see keywords GHOSTS and MOLEBSSE), a semi-empirical geometric counterpoise correction (gCP) has been implemented in CRYSTAL. 131
While both dispersion and counterpoise corrections can be applied independently, e.g. with a B3LYP-D3-gCP/6-31G* calculation, the performance is best when the parametrization is done together and basis set incompletenesses errors are simultaneously treated by an additional semiclassical correction or by compensating them with an adjusted exchange-correlation functional. These 'composite' methods are implemented in CRYSTAL and described below, namely: a minimal basis set HF with corrections (HF-3c) [209], a hybrid density functional evaluated in small double- ζ type orbitals with dispersion and counterpoise correction (PBEh-3c) 107, a screened exchange variant of PBEh-3c, dubbed HSE-3c, specifically designed to be numerically robust for molecular solids,[?] and a pure GGA functional based on the B97 XC functional evaluated in medium sized triple- ζ type orbitals with dispersion and short-range correction (B97-3c)[?].
The following schemes have been carefully tested for molecular dimers, larger molecular assemblies, host-guest-complexes, and molecular crystals.
Note that studies on inorganic crystals and metals are less well tested and should be treated carefully. In particular when using a triple- ζ basis set.

5.5 DFT-D3 - C_{6} based London dispersion correction

For a range of common density functionals, the D3 correction can be invoked by simply specifying the XC functional with the suffix '-D3' in the DFT input block by means of stand-alone keywords. Here an example follows for the common B3LYP functional.

DFT
B3LYP-D3
END

By default, the D3 correction includes a damped (BJ damping) atom-atom pairwise term (no three-body term) to the KS-DFT energies (and atomic and cell gradients) (see below for details). 104
Note that not all functionals available in CRYSTAL have been parametrized. A list of available D3 dispersion corrected DFT methods follows: BLYP, PBE, B97, B3LYP, PBE0, PW1PW, M06, HSE06, HSEsol, LC-wPBE. For other XC functionals, parameters must be
provided in input (see below)

Additionally, the keyword DFTD3, inserted in the third input block and closed by END, allows users to include the three-body term, modify/specify all free method parameters, change the damping function and other options as detailed in the following.

D3 correction

The D3 augmented KS-DFT energies are obtained as

$$
\begin{equation*}
E_{\mathrm{DFT}-\mathrm{D} 3}=E_{\mathrm{KS}-\mathrm{DFT}}+E_{\mathrm{disp}} \tag{5.18}
\end{equation*}
$$

with $E_{\text {disp }}$ being the sum of the two- and three-body contributions to the dispersion energy:

$$
\begin{align*}
E_{\text {disp }} & =E^{(2)}+E^{(3)} \tag{5.19}\\
& =-\frac{1}{2} \sum_{n=6,8} \sum_{A, B}^{\text {atoms }} s_{n} \frac{C_{n}^{A B}}{R_{A B}^{n}} \cdot f_{n}^{d}\left(R_{A B}\right)-\frac{1}{6} \sum_{A, B, C}^{\text {atoms }} \frac{C_{9}^{A B C}}{\bar{R}_{A B C}^{9}} \cdot f_{9}^{d}\left(R_{A B C}, \theta_{A B C}\right) . \tag{5.20}
\end{align*}
$$

This expression assumes dispersion coefficients that can be distributed to isotropic atom contributions. While the series should in principle incorporate higher orders, they were shown to be of less importance for many systems. 106]
In order to match the long- and midrange correlation of D3 with the semilocal correlation computed by the functional, an adequate damping function f_{n}^{d} must be included. $C_{n}^{A B}$ denotes the averaged (isotropic) n th-order dispersion coefficient for atom pair $A B$, and $R_{A B}$ is their internuclear distance. s_{n} is a functional-dependent scaling factor (see below). In contrast to the D 2 method, here the $C_{6}^{A B}$ coefficients are estimated from first principles by TD-DFT computation of the dynamical polarizability α for model hydrides of all elements and using the Casimir-Polder integration

$$
\begin{equation*}
C_{6}^{A B}=-\frac{3}{\pi} \int \mathrm{~d} \omega \alpha_{A}(i \omega) \alpha_{B}(i \omega) \tag{5.21}
\end{equation*}
$$

These reference C_{6} are then mapped to the real system via a geometric coordination number.

Damping functions

In order to avoid near singularities for small distances $\left(R_{A B}\right)$, the dispersion contribution needs to be damped at short distances. One possible way is to use rational Becke-Johnson damping as proposed by Becke and Johnson [20, [126, 127, which is the recommended option for the two-body contributions as it avoids artificial repulsive forces:

$$
\begin{equation*}
f_{n=6,8}^{d}\left(R_{A B}\right)=\frac{R_{A B}^{n}}{R_{A B}^{n}+f\left(R_{0}^{A B}\right)^{n}} \tag{5.22}
\end{equation*}
$$

with [127]

$$
\begin{equation*}
R_{0}^{A B}=\sqrt{\frac{C_{8}^{A B}}{C_{6}^{A B}}} \tag{5.23}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(R_{0}^{A B}\right)=a_{1} R_{0}^{A B}+a_{2} . \tag{5.24}
\end{equation*}
$$

In the literature this is typically used as D3(BJ).

Damping the dispersion contribution to zero for short ranges (as in Ref. [104]) is also possible:

$$
\begin{equation*}
f_{n=6,8}^{d}=\frac{1}{1+6\left(R_{A B} /\left(s_{r, n} R_{0}^{A B}\right)\right)^{-\alpha_{n}}} \tag{5.25}
\end{equation*}
$$

Note that the $R_{0}^{A B}$ used with this damping are from Ref. [104], the scheme is typically abbreviated as $\mathrm{D} 3(0)$. For more information on the supported damping functions, see Ref 105 .

The Axildor-Teller-Muto type three-body term is used in the following form:

$$
\begin{equation*}
f_{9}^{d}=\left(3 \cos \theta_{a} \cos \theta_{b} \cos \theta_{c}+1\right) \times \frac{1}{1+6\left(\bar{R}_{A B C} /\left(s_{r, n} \bar{R}_{0}^{A B C}\right)\right)^{-\alpha_{n}}} \tag{5.26}
\end{equation*}
$$

where θ_{a}, θ_{b} and θ_{c} are the internal angles of the triangle formed by $R_{A B}, R_{B C}$ and $R_{C A}, \bar{R}_{A B C}$ is the geometric mean of $R_{A B}, R_{B C}$ and $R_{A B}$. The C_{9} coefficient is approximated by:

$$
\begin{equation*}
C_{9}^{A B C} \approx-\sqrt{C_{6}^{A B} C_{6}^{A C} C_{6}^{B C}} \tag{5.27}
\end{equation*}
$$

The damping function is similar to the zero damping and has not been revised. Inclusion of the three-body term is often denoted by D3 ${ }^{\text {atm }}$.

DFTD3 - opens D3 input block
VERSION - chooses between D2, D3 and the different damping functions

rec	variable	meaning
• *	NAT	(2) Old D2 correction, (3) D3 with zero-damping, (4) D3 with Becke-
		Johnson damping (default)

FUNC - chooses the functional for automatic parameter loading

rec	variable	meaning
${ }^{*}$	CHAR	List of parametrized functionals available on the homepage http://www.thch.uni-bonn.de/tc/dftd3

$\underline{\text { ABC - switches on the three-body dispersion term }}$

S6 - define s_{6} manually

rec	variable	meaning
${ }^{*}$	REAL	define s_{6} scaling parameter manually (should be always 1.0 for GGA and hybrid functionals)

S8 - define s_{8} manually

rec	variable	meaning
\bullet^{*}	REAL	define s_{8} scaling parameter manually

A1 - define a_{1} manually

rec	variable	meaning
${ }^{*}$	REAL	define a_{1} parameter of rational Becke-Johnson damping manually

$\mathbf{A 2}$ - define a_{2} manually

rec	variable	meaning
$\bullet *$	REAL	define a_{2} parameter of rational Becke-Johnson damping manually

$\underline{\text { A2 - define } a_{2} \text { manually }}$

rec	variable	meaning
\bullet^{*}	REAL	define a_{2} parameter of rational Becke-Johnson damping manually

$\underline{\text { RS6 - define } r s_{6} \text { manually }}$

rec	variable	meaning
$\bullet{ }^{*}$	REAL	define $r s_{6}$ parameter of zero-damping manually

RS8 - define $r s_{8}$ manually

rec	variable	meaning
$\bullet *$	REAL	define $r s_{8}$ parameter of zero-damping manually

RADIUS - define two-body real-space cutoff manually

rec	variable	meaning
${ }^{*}$	REAL	define distance cutoff for real-space summation of two-body contribu- tions [a.u.]

CNRADIUS - define tree-body real-space cutoff manually

rec	variable	meaning
$*$	REAL	define distance cutoff for real-space summation of three-body contri- butions and of the coordination number function [a.u.]

$\underline{\text { PRINTC6 - extensive output with individual } C_{6}^{A A} \text { and } R_{0}^{A A} \text { values }}$

END - closes D3 input block
The older D2 corrections can still be used by means of either the option "version 2 " of the DFTD3 keyword or the keyword GRIMME (see 3.3). 44, 45, 218]

Examples

A typical input looks like (urea molecular crystal):

```
Urea
CRYSTAL
O 0
113
5.565 4.684
5
60.0000 0.5000}00.326
8 0.0000 0.5000 0.5953
7 0.1459 0.6459 0.1766
10.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
ENDG
BASISSET
def2-SV(P)
DFT
B3LYP-D3
END
SHRINK
44
END
```

This is a simplified version of the explicit input.
Urea
CRYSTAL
000
113
5.5654 .684

```
5
6 0.0000 0.5000 0.3260
80.0000 0.5000 0.5953
7 0.1459 0.6459 0.1766
1 0.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
ENDG
BASISSET
def2-SVP
DFT
PBEO
END
DFTD3
VERSION
4
S6
1.0000
S8
1.9889
A1
0.3981
A2
4.4211
END
SHRINK
44
END
A change of the damping parameter should be generally avoided as they have been carefully optimized individually for all functionals.
A more useful test is the impact of the Axilrod-Teller-Muto type three body dispersion, e.g. via
Urea
CRYSTAL
000
113
5.5654 .684
5
\(60.0000 \quad 0.5000 \quad 0.3260\)
\(80.0000 \quad 0.5000 \quad 0.5953\)
\(70.1459 \quad 0.6459 \quad 0.1766\)
10.25750 .75750 .2827
\(10.14410 .6441-0.0380\)
ENDG
BASISSET
def2-SVP
DFT
PBEO
END
DFTD3
ABC
END
SHRINK
44
END
```

More input examples can be found at the CRYSTAL tutorials web page.

Note that cohesive energies at the given level will suffer severely from basis set superposition errors.

5.6 GCP - Geometrical counterpoise correction

The keyword GCP, inserted in the last section of the CRYSTAL input and closed by END, calculates atom-pair wise counterpoise corrections which are added to the KS-DFT energies (and atomic and cell gradients). 131

Note that the gCP scheme has been carefully tested for molecular crystals. Applications to inorganic crystals and metals are less well tested and should be treated carefully.

gCP correction

The central idea is to add in a semi-empirical fashion an energy correction $\Delta E_{g C P}$ to the energies of molecular (or periodic) systems in order to remove artificial overbinding effects from BSSE. 131, 30 As the focus lies on the contribution of individual atoms a natural outcome is its ability to yield also intramolecular BSSE corrections. The parametrization is constructed such that it approximates the Boys and Bernadi [28] counterpoise (CP) correction $\Delta E_{C P}$ in the intermolecular case

$$
\begin{equation*}
\Delta E_{\mathrm{CP}} \approx \Delta E_{\mathrm{gCP}} \tag{5.28}
\end{equation*}
$$

where e.g. for a complexation reaction $A+B \rightarrow C$ our correction is given by

$$
\begin{equation*}
\Delta E_{\mathrm{gCP}}=E_{\mathrm{gCP}}(C)-E_{\mathrm{gCP}}(A)-E_{\mathrm{gCP}}(B) \tag{5.29}
\end{equation*}
$$

In practice, $E_{g C P}$ can simply be added to the HF/DFT energy

$$
\begin{equation*}
E_{\mathrm{total}}=E_{\mathrm{HF} / \mathrm{DFT}}+E_{\mathrm{gCP}} \tag{5.30}
\end{equation*}
$$

The central equation over all atoms N reads:

$$
\begin{equation*}
E_{\mathrm{gCP}}=\sigma \cdot \sum_{A}^{N} \sum_{\mathbf{g}}^{\prime} \sum_{B}^{N} e_{A}^{\mathrm{miss}} \cdot f_{\mathrm{dec}}\left(R_{A B}+\mathbf{g}\right) \tag{5.31}
\end{equation*}
$$

where the energy $e_{A}^{\text {miss }}$ is a measure for the incompleteness for the chosen target basis set (that is typically small), and $f_{\operatorname{dec}}\left(R_{A B}\right)$ is a decay function that depends on the inter-atomic distance $R_{A B}$.

$$
\begin{equation*}
f_{\mathrm{dec}}\left(R_{A B}\right)=\frac{\exp \left(-\alpha R_{A B}^{\beta}\right)}{\sqrt{A_{A B} N_{\mathrm{virt}}^{B}}} \tag{5.32}
\end{equation*}
$$

The potential is normalized by the Slater-type overlap $S_{A B}$, the number of virtual orbitals $N_{\text {virt }}^{B}$, and the empirical parameters α and β. In molecular systems, the sum over the translation invariant vectors \mathbf{g} is omitted. For periodic systems, a sum over all atompairs inside a supercell is utilized with default distance-cutoff of 60 Bohr analogue to the non-periodic version. The prime (${ }^{\prime}$) indicates that for $\mathbf{g}=0, A \neq B$. The scaling factor σ is one out of 4 parameters needed for every <method>/<basis set> combination.

Small basis sets show not only a large BSSE, but general shortcomings. These effects are not always clearly distinguishable. If computationally affordable, large basis sets (triple- ζ and higher) are always preferable for a given system.
The gCP has been developed for a range of standard basis sets, including MINIS, def2-SV(P), def2-SVP, def-TZVP, def2-TZVP, 6-31G*, pob-TZVP. The parametrization distinguishes
between generalized gradient approximated functionals 'GGA', hybrid functionals 'DFT', and pure Hartree-Fock 'HF'. The DFT parametrization will often also work GGA functionals, but the couterpoise correction is typically underestimated. The following combinations are parametrized:

	GGA	DFT	HF
MINIS	yes	no	yes
SV	yes	yes	yes
SV(P)	no	yes	yes
SVP	yes	yes	yes
def-TZVP	no	yes	yes
def2-TZVP	no	yes	yes
$6-31 G^{*}$	no	yes	yes
pob-TZVP	no	yes	no

A more extensive list can be found at the web page:
http://www.thch.uni-bonn.de/tc/?section=downloads.

The gCP correction can be invoked by a single line in the third CRYSTAL input block
GCPAUTO - It includes the gCP correction with automatic parameter setup
This is however only possible if the basis set has been defined with a general BASISSET keyword. Then, the routine automatically selects the most suitable available parametrization. Otherwise, the gCP correction has to be defined by an individual input block:

GCP - opens gCP input block
METHOD - choose gCP method combination

rec	variable	meaning
\bullet^{*}	CHAR	Choose between different gCP parametrization. The method distin- guishes between different types of Hamiltonians (HF, GGA, DFT) and the used basis set name, separated by a slash. E.g., dft/svp

SIGMA - define σ manually

rec	variable	meaning
\bullet^{*}	REAL	define σ scaling parameter manually

ALPHA - define α manually

rec	variable	meaning
$\bullet *$	REAL	define α parameter manually

BETA - define β manually

rec	variable	meaning
• *	REAL	define β parameter manually

ETA - define η manually

rec	variable	meaning
\bullet^{*}	REAL	define η parameter manually

\qquad

RADIUS - define real-space cutoff manually

rec	variable	meaning
$\bullet{ }^{*}$	REAL	define distance cutoff for real-space summation $[$ a.u. $]$

PRINTEMISS - extensive output with $e_{\text {miss }}, N_{v i r t}$, and individual $E_{g c p}$ contributions

END - closes gCP input block

Examples

A typical input looks like (urea molecular crystal):

```
Urea
CRYSTAL
0 0 0
113
5.565 4.684
5
60.0000 0.5000}00.326
80.0000 0.5000 0.5953
7 0.1459 0.6459 0.1766
10.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
BASISSET
def2-SVP
DFT
PBEO
END
DFTD3
ABC
END
GCPAUTO
SHRINK
44
END
```

This is a simplified version of the following explicit input.

```
Urea
CRYSTAL
0 0 0
113
5.565 4.684
5
60.0000 0.5000}00.326
80.0000 0.5000}00.595
7 0.1459 0.6459 0.1766
10.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
BASISSET
def2-SVP
DFT
PBE0
END
DFTD3
VERSION
4
S6
```

1.0000

S8
1.9889

A1
0.3981

A2
4.4211

END
GCP
METHOD
DFT/SVP
SIGMA
0.2424

ETA
1.2371

ALPHA
0.6076

BETA
1.4078

END
SHRINK
44
END

5.7 HF-3C - Minimal basis HF composite method

The keyword HF3C, inserted in the last section of the CRYSTAL input and closed by the keyword END, calculates three semi-classical corrections (D3, gCP, SRB), which are added to the HF energies (and atomic and cell gradients). 209

The HF-3c method
This composite method is based on a minimal basis set HF calculation as:

$$
\begin{equation*}
E_{\mathrm{HF}-3 \mathrm{c}}=E_{\mathrm{HF} / \mathrm{MINIX}}+E_{\mathrm{D} 3}+E_{\mathrm{gCP}}+E_{\mathrm{SRB}} \tag{5.33}
\end{equation*}
$$

It is designed to compete with semi-empirical (tight-binding or NDO) methods without neglecting any of the many-center integrals. This keyword should only be used in combination with a pure HF calculation in the MINIX orbital basis set. Its original design targeted organic complexes [209], but it has been used for periodic systems [31], and specifically tested as implemented in CRYSTAL. 47.

Note that the HF-3c method has been carefully tested for molecular crystals. Applications to inorganic crystals and metals are less well tested and should be treated carefully.

The keyword HF3C automatically switches on all needed correction schemes with proper parameter setup. While the D3 and gCP schemes have been described before (see sections 5.5), a third short-range basis (SRB) correction is introduced. This correction mainly improves the bond distances of electronegative elements that have a systematic error in the restricted basis set expansion.

HF3C - opens HF-3c input block
RESCALES8 - scale C_{8} contribution in D3 correction

rec	variable	meaning
	REAL	scales the C_{8} contribution in the D3 dispersion correction. Can also be adjusted individually in the DFTD3 input block.

SCALEGCP - scale contribution from gCP correction

rec	variable	meaning
${ }^{*}$	REAL	scales the contribution from the gCP correction. Can also be adjusted individually in the $\mathbf{G C P}$ input block.

END - closes HF-3c input block

Examples

The urea crystal can be treated like
Urea
CRYSTAL
000
113
5.5654 .684

5
$60.0000 \quad 0.5000 \quad 0.3260$
$80.0000 \quad 0.5000 \quad 0.5953$
70.14590 .64590 .1766
10.25750 .75750 .2827
$10.1441 \quad 0.6441-0.0380$
BASISSET
MINIX
HF3C
END
SHRINK
44
END
The scaled s-HF-3c with scaled down C_{8} dispersion contribution as introduced in Ref. 47] can be defined by
Urea
CRYSTAL
000
113
5.5654 .684

5
$60.0000 \quad 0.5000 \quad 0.3260$
$80.0000 \quad 0.5000 \quad 0.5953$
$70.1459 \quad 0.6459 \quad 0.1766$
10.25750 .75750 .2827
$10.1441 \quad 0.6441-0.0380$
BASISSET
MINIX
HF3C
RESCALES8
0.70

END
SHRINK
44
END

5.8 PBEH-3C - Small basis DFT composite method

The keyword PBEH3C, inserted in the DFT Hamiltonian input block as a standalone keyword (see section 4), corresponds to a modified global hybrid functional PBEh with semi-classical corrections (D3, gCP). 107

$$
\begin{equation*}
E_{\mathrm{PBEh}-3 \mathrm{c}}=E_{\mathrm{PBEh} / \mathrm{def} 2-\mathrm{mSVP}}+E_{\mathrm{D} 3}+E_{\mathrm{gCP}} \tag{5.34}
\end{equation*}
$$

This composite method is based on a modified double- ζ orbital set dubbed def2-mSVP, which should be always used when performing PBEh-3c calculations. The basis set development and explicit definition is given in Ref 107. The PBE type correlation and exchange enhancement factors have been optimized to absorb certain incompleteness errors of the restricted basis set. The percentage of HF exchange (42%) is adjusted to get covalent bond length that are on average correct.
Note that the PBEh-3c method has been carefully tested for molecular crystals. Applications to inorganic crystals and metals are less well tested and should be treated carefully.

The keyword PBEH3C automatically switches on all needed correction schemes with proper parameter setup. The D3 and gCP schemes have been described before (see sections 5.5), in order to avoid contributions of the gCP for covalent bond length and thermochemistry, a short-range damping has been introduced. The D3 correction is used in its rational Becke-Johnson damping scheme and includes per default the three-body Axilrod-Teller-Muto term.

Note that vibrational frequencies computed with PBEh-3c will be scaled by 0.95 as recommended in its original publication. See section (7.1) for changing the frequency scaling factor manually.

Example

The urea crystal can be treated like

```
Urea
CRYSTAL
0 0
113
5.565 4.684
5
60.0000 0.5000}00.326
80.0000 0.5000 0.5953
7 0.1459 0.6459 0.1766
1 0.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
BASISSET
def2-mSVP
DFT
PBEH3C
END
SHRINK
44
END
```


HSE-3C - Small basis DFT composite method

The keyword HSE3C, inserted in the DFT Hamiltonian block as standalone keyword (see section 4), corresponds to a modified screened exchange hybrid functional HSE with semiclassical corrections (D3, gCP).[?]

$$
\begin{align*}
E_{H S E-3 c} & =E_{\mathrm{HSE} / \mathrm{def} 2-\mathrm{mSVP}}+E_{D 3}+E_{g C P} \\
E_{\mathrm{xc}}^{\mathrm{HSE}-3 \mathrm{c}} & =a E_{\mathrm{x}}^{\mathrm{HF}, \mathrm{SR}}(\omega)+(1-a) E_{\mathrm{x}}^{\mathrm{PBEh}-3 c, S R}(\omega)+E_{\mathrm{x}}^{\mathrm{PBEh}-3 \mathrm{c}, \mathrm{LR}}(\omega)+E_{\mathrm{c}}^{\mathrm{PBEh}} 3 \mathrm{c} \tag{5.35}
\end{align*}
$$

In close correspondence to PBEh-3c, this composite method is based on the modified double- ζ basis set def2-mSVP, which should be always used when performing HSE-3c calculations. 107. The Henderson-Janesko-Scuseria (HJS) exchange hole model [212, 67] has been parametrized to closely reproduce the PBEh-3c exchange enhancement factor. The correlation enhancement is kept fixed, the short-range HF exchange is $a=0.42$, and the standard error function separation (controlled via the parameter $\omega=0.11$) [3] switches the HSE-3c potential to a pure generalized gradient approximation (GGA) at long-range.
Note that the HSE-3c method has been carefully tested for molecular crystals. Applications to inorganic crystals and metals are less well tested and should be treated carefully.

The keyword HSE-3c automatically switches on all needed correction schemes with proper parameter setup. The D3 and (SR-damped) gCP schemes have been described before (see sections 5.5), The D3 correction is used in its rational Becke-Johnson damping scheme and includes per default the three-body Axilrod-Teller-Muto term. The accuracy of HSE-3c has been shown to be identical to PBEh-3c, but we see a significantly computational speed-up. This holds especially for organic solids with smaller band gaps (e.g. oligoacenes).[?] Note that frequencies computed with HSE-3c will be scaled by 0.95 as recommended in its original publication. See section (7.1) for changing the frequency scaling faction manually.

The urea crystal can be treated like

```
Urea
CRYSTAL
0 0
113
5.565 4.684
5
6 0.0000 0.5000 0.3260
80.0000 0.5000 0.5953
7 0.1459 0.6459 0.1766
1 0.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
BASISSET
def2-mSVP
DFT
HSE3C
END
SHRINK
44
END
```


B97-3C - Medium basis DFT composite method

The keyword B973C, inserted in the DFT Hamiltonian block as standalone keyword (see section (4), corresponds to a modified GG functional of the B97 form with semi-classical corrections (D3, SRB).[?]

$$
\begin{equation*}
E_{\mathrm{B} 97-3 \mathrm{c}}=E_{\mathrm{B} 97 / \mathrm{def} 2-\mathrm{mTVP}}+E_{\mathrm{D} 3}+E_{\mathrm{SRB}} \tag{5.36}
\end{equation*}
$$

This composite method is based on a modified triple- ζ orbital set dubbed mTZVP, which should be always used when performing B97-3c calculations. The basis set development and
explicit definition is given in Ref[?]. The B97 type correlation and exchange enhancement factors have been optimized to absorb certain incompleteness errors of the still not converged basis set. Due to the rather large basis set and the flexible exchange-correlation form most basis set errors can be absorbed into the functional parametrization. Thus, the semi-empirical gCP scheme is not needed. However, all bond-length are systematically too long, which actually holds for all GGA functionals. To correct this, the SRB atom-pair correction (see section 5.7) has been adopted.

Note that the B97-3c method has been carefully tested for molecular crystals. Applications to inorganic crystals and metals are less well tested and should be treated carefully..

The keyword B973C automatically switches on all needed correction schemes with proper parameter setup. The D3 and SRB schemes have been described before (see sections 5.5), The D3 correction is used in its rational Becke-Johnson damping scheme and includes per default the three-body Axilrod-Teller-Muto term.
The urea crystal can be treated like

```
Urea
CRYSTAL
O 0
113
5.565 4.684
5
60.0000 0.5000}00.326
80.0000 0.5000 0.5953
70.1459 0.6459 0.1766
1 0.2575 0.7575 0.2827
1 0.1441 0.6441 -0.0380
BASISSET
mTZVP
DFT
B973C
END
SHRINK
44
END
¿¿¿¿¿&¿ .r1199
```


Chapter 6

Geometry Optimization

Geometry optimization at constant symmetry is invoked by the keyword OPTGEOM in input block 1 (geometry). OPTGEOM must be the last keyword in geometry input. OPTGEOM input block admits several options (sub keywords), and terminates with keyword END (or END[OPT], END[-]: the first three characters only are processed).
crystal allows geometry optimization of systems with any periodicity: molecules, polymers, slabs, and crystals. Unconstrained relaxation of the structure and different optimizations with constraints can be carried out. The full symmetry of the system is preserved.
Geometry optimization can be performed in either symmetrized fractional coordinates with [default] and without cell parameters, or redundant internal coordinates (optional choice, page 166 .

OPTGEOM sub keywords can be classified as follow:

1. General sub keywords:

A - Optimization type (page 160)
B - Initial Hessian (page 160)
C - Hessian updating technique (page 158)
D - Convergence criteria (page 157)
E - Step control (page 162)
F - Coordinate system related options (page 163)
G - Optimization procedure control (page 163)
H - Numerical (first) derivatives (page 165)
I - Printing options (page 166
2. Geometry optimization in redundant coordinates (page 166).
3. Geometry optimization with constraints (page 170).
A - Constant volume optimization (page 171)
B - Fixing lattice deformations (page 171)
C - Linear constraints between atomic coordinates (page 173)
D - Partial optimization of atomic positions (page 174)
E - Fixing internal coordinates (page 174)
4. Geometry optimization with application of an external stress (page 176)
5. Searching a transition state (page 177)

Default values are supplied for all computational parameters.

By default a full geometry optimization (atomic positions and cell) is performed. This was not the case with previous versions of the program, where atomic positions only were optimized by default.

Users can find supplementary information and input examples in the CRYSTAL Tutorials Project web page at the CRYSTAL web site (http://www.crystal.unito.it/tutorials).

6.1 Geometry optimization strategy

A Quasi-Newton optimization scheme is implemented. Gradients are evaluated every time the total energy is computed; the second derivative matrix (i.e. Hessian matrix) is built from the gradients. The default choice for the initial Hessian matrix is obtained from a model Hessian, as proposed by Schlegel and updated by using the BFGS algorithm 33, 34, 87, 100, 204,

By default the step considered is the Newton step (direction and length) controlled by the Trust Radius scheme (see ALLOWTRUSTR page 162). NOTRUSTR to remove trust radius control (CRYSTAL06 default choice).
HF and DFT (pure and hybrid functionals) analytical gradients for atomic positions and cell parameters, are used for insulators and conductors, both for all-electron and ECP calculations. Note that for conducting systems analytic first derivatives are not fully implemented when the keyword SMEAR (page 110) is used. In that case, numerical first derivatives should be computed (see page 165). For very small value of smearing (around 0.001 hartree) analytical gradients can be used.

For atomic positions (ATOMONLY option), geometry optimization is performed in symmetrized fractional coordinates, in order to exploit the point group symmetry of the lattice. The keyword PRSYMDIR (input block 1, page 62 may be used to print the so-called symmetry allowed directions adopted in the geometry optimization. If there are no symmetry allowed directions, the program prints a warning message and stops.

To optimize the lattice parameters a set of symmetry preserving cell deformations (see Symmetry Allowed Elastic Distortions, USESAED, page 71) related to changes of isotropic volume and of axial ratios is defined. By default, the symmetry allowed deformations are printed in the output file.

When a full optimization of atom positions and cell parameters is carried out, a conveniently normalized combined set of symmetrized directions and deformations is adopted.

Optional choice (keyword INTREDUN, page 166) is the geometry optimization in redundant internal coordinates. In such a case, atomic displacements and cell deformations are implicitly determined by the internal coordinate system.

6.2 Default setting

6.2.1 Type of optimization

The default geometry optimization type is the relaxation of both the nuclear coordinates and the lattice parameters. Optional choices: see page 160 .

6.2.2 Convergence criteria

A stationary point on the potential energy surface is found when the forces acting on atoms are numerically zero. Geometry optimization is usually completed when the gradients are below a given threshold.
In crystal, the optimization convergence is checked on the root-mean-square (RMS) and the absolute value of the largest component of both the gradients and the estimated displacements. When these four conditions are all satisfied at a time, optimization is considered complete.

In some cases (see page. 177), the optimization process stops with a warning message controlled by the threshold in the energy change between consecutive optimization steps.

Default values are set for all computational parameters, and they may be modified through keywords. Default choices:

	default	keyword
RMS on gradient	0.000300 a.u.	TOLDEG
largest component of gradient	$1.5^{*} 0.000300$	1.5^{*} TOLDEG
RMS on estimated displacements	0.0012 a.u.	TOLDEX
absolute value of largest displacement	$1.5^{*} 0.0012$	1.5^{*} TOLDEX
max number of optimization cycles	100	MAXCYCLE
energy change between optimization steps threshold	$10^{-7} \mathrm{a} . \mathrm{u}$.	TOLDEE

Optimization convergence criteria are set to different values according to the context where geometry optimization is performed.

	RMS on gradient	RMS on displacement
Standard geometry opt	0.0003	0.0012
preopt in frequency calculation	0.00003	0.00012
preopt in EOS	0.00006	0.00012
preopt in elastic constants	0.00006	0.00012

6.2.3 Initial Hessian guess

The initial Hessian is generated by means of a classical model as proposed by Schlegel.
H.B. Schlegel, Theoret. Chim. Acta 66 (1984) 333
J.M. Wittbrodt and H.B. Schlegel, J. Mol. Struct. (Theochem) 398-399 (1997) 55

It adopts a simple valence force field. Empirical rules are used to estimate the diagonal force constants for a set of redundant internal coordinates (stretches, bends and torsions). Parameters are available from H to At.

Warning - To define bonds the sum of covalent radii (see page 63) is used. For ionic systems it may be necessary to modify the default values (see RAYCOV, page 63).

6.2.4 Hessian updating technique

BFGS Broyden-Fletcher-Goldfarb-Shanno scheme [33, 34, 87, 100, 204].
Optional choices:

1. Schlegel's updating scheme 200], (OLDCG, page 161), optimization scheme as in CRYSTAL03
2. Powell's updating scheme (POWELL, page 161)

6.2.5 SCF convergence and guess

The default value for SCF convergence criterion on total energy is set to 10^{-7} (TOLDEE in input block 3 to modify it: never reduce accuracy).
After the first step, at each SCF cycle, the density matrix is recovered from the previous geometry optimization step (implicit GUESSP, page 99 option).
This choice may be modified by inserting the keyword NOGUESS. A superposition of atomic densities is then adopted on each step as SCF initial guess.

If the SCF solution at a given optimization step does not correspond to real convergence,
but to an energy stabilization due to the techniques applied to help convergence (LEVSHIFT, FMIXING, BROYDEN..), the hamiltonian eigenvalues may be unphysical, and there is no chance to recover the SCF process. In those cases it may be better to use an atomic guess (keyword NOGUESS).

6.2.6 Output files

The following formatted files are written during geometry optimization, and may be saved for further processing.
fort. 33 Cartesian coordinates of the atoms in the unit cell and total energy for each geometry optimization step are written to file fort. 33 in a simple $x y z$ format (see Appendix D page 398). This file is suitable to be read by molecular graphics programs (e.g. Molden...) to display the animation of a geometry optimization run.
fort. 34 If optimization is successful, the last geometry in written in file fort. 34 (format described in Appendix D page 400 .
The file can be read to define the basic geometry input. See EXTERNAL, page 19
opta(c)xxx At each xxx optimization step, the geometry is written in file optaxxx (optimization of atoms coordinates only), or optcxxx (optimization of cell parameters or full optimization) in the format of "fort.34" file (see Appendix D page 400. The file must be renamed "fort. 34 " if used to enter geometry input (keyword EXTERNAL).
The "history" of the optimization allows restarting from a given step with different parameters, when the procedure did not converge.

OPTINFO.DAT contains information to restart optimization. (see keyword RESTART in OPTGEOM input block, page 165 .

HESSOPT.DAT The hessian matrix is written, and can be read to define the initial guess for the Hessian (keyword HESSOPT) in geometry optimization of a system with same geometry and symmetry (it may have different BS, Hamiltonian, computational parameters).

SCFOUT.LOG SCF and optimization process printout is routed to file SCFOUT.LOG after the first cycle. Keyword ONELOG: full printing on standard output.

6.3 General sub-keywords

A number of optional keywords allow tuning of the optimization procedure.
A - Type of optimization (page 160)
B - Initial Hessian (page 160)
C - Hessian updating technique (page 161)
D - Convergence criteria (page 157)
E - Step control (page 162)
F - Coordinate system related options (page 163)
G - Optimization procedure control (page 163)
H - Numerical first derivatives (page 165)
I - Printing options (page 166)

6.3.1 Type of optimization

Optional choices:

ATOMONLY Only atomic coordinates are optimized. This was the default before CrysTAL14

FULLOPTG full optimization, atom coordinates and cell parameters (default in Crystal14). The cell volume may change (see CVOLOPT, page 171, to optimize at constant volume)

CELLONLY only cell parameters are optimized. Default: the cell volume may change (see CVOLOPT, page 171 , to optimize at constant volume)

ITATOCEL full optimization, iterative procedure optimization: atoms-cell-atoms-cell....

INTREDUN

full optimization of atomic positions and cell parameters in redundant internal coordinates (page 166).

6.3.2 Initial Hessian

By default an estimated model Hessian is adopted. The Hessian matrix is stored in file HESSOPT.DAT at each optimization step. This may be useful to restart the optimization from a previous run performed at a lower level of theory (e.g. a smaller basis set). An initial Hessian can also be obtained as numerical first-derivative (HESSNUM), but this process can be very expensive.

```
HESSFREQ initial guess for the hessian - input from file HESSFREQ.DAT obtained
``` from frequencies calculations (developers only)

HESSIDEN initial guess: identity matrix

HESSOPT external guess (read from file HESSOPT.DAT)

\section*{HESSMOD1 initial guess: Lindh's model Hessian 136}

A model Hessian based on a simple 15-parameter function of the nuclear positions as proposed by Lindh et al. is used as initial Hessian. Parameters are available for the first three rows of the periodic table.
R. Lindh, A. Bernhardsson, G. Karlstrom and P.-A. Malmqvist, Chem. Phys. Lett. 241 (1996) 423

HESSMOD2 initial guess: Schlegel's model Hessian [201, 228] [default]
The initial Hessian is generated by means of a classical model as proposed by Schlegel.
H.B. Schlegel, Theoret. Chim. Acta 66 (1984) 333
J.M. Wittbrodt and H.B. Schlegel, J. Mol. Struct. (Theochem) 398-399 (1997) 55

It adopts a simple valence force field. Empirical rules are used to estimate the diagonal force constants for a set of redundant internal coordinates (stretches, bends and torsions). Parameters are available from H to At.

Warning - To define bonds the sum of covalent radii (see page 63) is used. For ionic systems it may be necessary to modify the default values (see IONRAD in what follows in order to use tabulated ionic radii in place of the covalent ones provided by default or RAYCOV, page 63, for customizing the value of covalent radii, page 63).

HESSNUM initial guess: numerical estimate

\subsection*{6.3.3 Tabulated atomic radii}

The construction of the set of internal coordinates which is used in the definition of the Schlegel model Hessian relies on tabulated values for the atomic radii, according to which bonds, angles and dihedrals are defined. Two different tables can be choosen in input with the following keywords:

COVRAD The covalent radii table is used in the construction of the internal coordinates. This is the default choice, which is reasonable in most cases but may lead to a ill defined Schlegel model Hessian in some compact ionic structures.

IONRAD The ionic radii table is used in the construction of the internal coordinates. This leads to a better initial Schlegel model Hessian in ionic compounds.

\subsection*{6.3.4 Hessian updating technique}

Different Hessian updating schemes are available for minimization:
\begin{tabular}{ll}
BFGS & Hessian update - Broyden-Fletcher-Goldfarb-Shanno scheme [33, 34, 87, \\
\(100,204-\) [default]
\end{tabular} 100, 204 - [default]
\begin{tabular}{ll}
OLDCG & Hessian updating - old Schlegel updating scheme 200 (CRYSTAL03) \\
BERNY & Synonym
\end{tabular}

\section*{POWELL Hessian update - symmetric Powell scheme 179}

\subsection*{6.3.5 Optimization convergence criteria}

These options are available to modify the default values:
TOLDEE
threshold on the energy change between optimization steps
- * IG
\[
|\Delta E|<10^{-I G} \text { (default: } 7 \text {) }
\]

The value of IG must be larger or equal to the threshold adopted for the SCF convergence. The value is checked when input block 3, defining the SCF convergence criteria, is processed.
\begin{tabular}{ll}
TOLDEG & convergence criterion on the RMS of the gradient \\
- \(*\) TG
\end{tabular}
convergence criterion on the RMS of the displacement
- * TX
max RMS of the displacement (default: 0.0012)

\subsection*{6.3.6 Step control}

To avoid the predicted step size being too large, two options are available:

\section*{Simple scaling}

Simple scaling of the displacement vector. Each component is scaled by a factor that makes the largest component of the displacement vector equal to 0.5 a.u.

Trust Radius [default]
A more sophisticated and accurate technique to control the step size is the trust radius region scheme. The trust radius limits the step length of the displacement at each cycle, according to the quadratic form of the surface in the actual region. The default maximum value for minimization is 0.5 .

To run CRYSTAL06 as CRYSTAL09 the keyword ALLOWTRUSTR must be specified along with BFGS.

To run CRYSTAL09 as CRYSTAL06, the keyword NOTRUSTR must be specified in geometry optimization input

Related keywords are discussed below:

ALLOWTRUSTR activate the trust radius technique to control the step size [0.5 for geometry optimization; 0.1 for transition state search] [default]

The step at each cycle is computed by means of a Newton-like scheme, in case it exceeds trust radius it is re-scaled using the scheme proposed by Simmons and Nichols [Simmons, J., and Nichols, J.: , Int. J. Quantum Chem. Symp. 24, volume 24, 263, (1990)] (see also page 177).

MAXTRADIUS optional
- * TRMAX maximum value allowed for the trust radius

This is useful in transition state optimizations or in minimizations along flat potential surfaces in order to avoid too large displacements from one point to the next one. Default value: geometry optimization: 4.0 ; transition states search: 0.3.

NOTRUSTR not using trust radius to limit displacement

\section*{TRUSTRADIUS}
- * TRADIUS set the initial value for trust radius

Set the initial value of the trust radius to [TRADIUS]. The trust radius limitates the step length of the displacement at each cycle. The value is updated at each optimization point by analysis of the local quadraticity of the potential energy function.
Default: geometry optimization 0.5 ; transition state search 0.1 .

Warning - When the Trust Radius technique is active, the value of the trust radius could become too small and the geometry optimization process stops with an error message:
"TRUST RADIUS TOO SMALL".
In this case, we suggest to restart the optimization from the last geometry, written to file optc(a)xxx, being xxx the optimization cycle number.

\subsection*{6.3.7 Coordinate system related options}

Geometry optimization can be performed in fractional (default) or redundant internal coordinates (see INTREDUN). Default fractional coordinates are defined as symmetry allowed directions (atomic positions) and deformations (cell). The latter are related to changes of isotropic volume and of axial ratios.

Some options related to the choice of the coordinate systems are also available:

CRYDEF crystallographic-like symmetrized cell deformations, corresponding to symmetrized strains of the unit-cell edges (consistent with symmetry). This set of deformations is useful for fixing lattice parameters in constrained optimizations in combination with the keyword FIXDEF (page 171) - 3D only.

FRACTION optimization in fractional coordinates

FRACTIOO optimization in normalized fractional coordinates [default when FULLOPTG is requested]

FRACTCOOR third type of symmetrized fractional coordinates (non-orthogonal; the origin on polar axes must be explicitly fixed by the FIXCOOR option [to be used with constraints])

RENOSAED renormalize symmetry allowed deformations [default when FULLOPTG is requested]

\subsection*{6.3.8 Optimization procedure control}

EXPDE
- * DE
expected energy change used to estimate the initial step [default \(10^{-3} \mathrm{Ha}\), if model 1 initial hessian; \(10^{-4} \mathrm{Ha}\), otherwise]

FINALRUN
- * ICODE
action after geometry optimization - integrals classification is based on the last geometry. See page 176 . Note that in the previous versions of the program the default choice was 0 . Now it is 4 .
Action type code:
the program stops
single-point energy calculation
single-point energy and gradient calculation
single-point energy and gradient calculation - if convergence criteria on gradients are not satisfied, optimization restarts
step 3 is iterated until full stable optimization (default)

\section*{FIXDELTE}
- * IE
\(10^{-i e}\) hartree: threshold on the total energy change for redefining the geometry to which integral classification is referred - see FIXINDEX, page 93- [default -1000, no reclassification]

\section*{FIXDELTX}
- * DX

RMS (bohr) of the displacement for redefining the geometry to which integral classification is referred - [default: -1 , no reclassification]

FIXDEIND the reference geometry for integrals classification does not change during optimization [default choice]

\section*{FITDEGR}
- N degree of polynomial fitting function for linear search:

2 parabolic fit [default]
3 cubic polynomial function
4 constrained quartic fitting

\section*{HESEVLIM limits for the allowed region of hessian eigenvalues (hartree)}
```

-     * VMIN lower limit [default 0.001]
VMAX upper limit [default 1000.]

```

\section*{ITACCONV}
- * DE
energy difference threshold for ITATOCEL [default 0.1 * TOLDEE between 2 optimization cycles]

MAXITACE
- * MAXI max number of iteration cycles in atom/cell iterative optimization [default 100]

\section*{MAXCYCLE}
- * MAX maximum number of optimization steps [default 100]
N.B. When optimization is restarted, the first restarted optimization cycle number is the last of the previous run +1 . Set MAXCYCLE value accordingly.

NOGUESS SCF guess at each geometry point: superposition of atomic densities at each SCF calculation (default choice in geometry optimization: GUESSP

\section*{NRSTEPS}
- * DE number of stored steps to be used in the OLDCG Hessian updating scheme [default: number of degrees of freedom]

RESTART restart geometry optimization from a previous run. See page 177

SORT sorting of the previous optimization steps information when the OLDCG scheme is active [default:nosort]

\subsection*{6.3.9 Numerical first derivatives}

The nuclear coordinate gradients of the energy can also be computed numerically. A three-point numerical derivative formula is adopted. A finite positive (and then negative) displacement is applied to the desired coordinate and a full SCF calculation is performed. The gradient is then computed as
\[
g_{i}=\frac{E_{\Delta x_{i}}-E_{-\Delta x_{i}}}{2 \Delta x_{i}}
\]
where \(\Delta x_{i}\) is the finite displacement along the \(i\)-coordinate.
Such a computation is very expensive compared to analytical gradients, since the cost is \(2 \cdot N \cdot t\), where \(N\) is the number of coordinates to be optimized and \(t\) the cost of the SCF calculation. Numerical first-derivatives should be avoided whenever possible, but sometimes they are the only way to obtain gradients (i.e. for conducting systems and the SMEAR option - page 110) and therefore to optimize the atoms coordinates.

One choice only, NUMGRCEL, NUMGRATO, NUMGRALL, is allowed.

NUMGRALL geometry optimization - numerical atomic and cell gradient

NUMGRATO geometry optimization - numerical atomic gradients

NUMGRCEL geometry optimization - numerical cell gradients

\section*{STEPSIZE modify step for numerical gradient [default 0.001 au] (developers only)}
- * STEP new stepsize value

\subsection*{6.3.10 Printing options}

\section*{ONELOG This causes all output to be sent to the standard \(\log\) file, instead of to SCFOUT.LOG}

NOXYZ printing of cartesian coordinates at the end of optimization removed

NOSYMMOPS printing of symmetry operators at the end of optimization removed

PRINTFORCES printing atomic gradients

PRINTHESS printing Hessian information

PRINTOPT prints information on optimization process

\section*{PRINT verbose printing}

\section*{2-Optimization in redundant internal coordinates}

INTREDUN geometry optimization in valence internal redundant coordinates

An optimization in redundant internal coordinates is performed when the keyword INTREDUN is inserted in OPTGEOM input block.

Optional keywords related to geometry optimization in redundant internal coordinates must follow.

A symmetrized set of internal coordinates (i.e. bonds, angles and torsions) is automatically defined, which contains much more coordinates than the requisite internal degrees of freedom.

Redundant internal coordinates are generated according to a hierarchical scheme: bond lengths are firstly identified by using covalent radii. Then, angles are determined on the basis of the irreducible set of distances and, finally, dihedral angles are defined. Note that to define bonds the sum of covalent radii (see page 63 is used. For ionic systems the default values can be automatically set by using the IONRAD directive (see pag. 161), or explicitly setting them with the RAYCOV keyword (page 63). In case of systems constituted by unconnected fragments (ie some molecular crystals or adsorption complexes), fragments are automatically linked to each other by pseudo "bond lengths" between the closest pair of atoms belonging to each fragment.

There has been substantial controversy in recent years concerning the optimal coordinate system for optimizations. For molecular systems, it is now well-established that redundant internal coordinates require fewer optimization steps than Cartesian coordinates. However, this is not definitely demonstrated for periodic systems. Nevertheless, the use of internal coordinates can be very useful in several respects: for a chemical intuitive view (e.g. internal
coordinates can easily be added), for constrained geometry optimization (see below) and for searching transition states.

By default, optimization of internal redundant coordinates involves both atomic positions and cell parameters. To avoid optimizing cell parameters the keyword FIXCELL page 170 must be specified.

Before running a geometry optimization in redundant internal coordinates, the set of coordinates generated automatically by CRYSTAL should be checked for consistency. This can be done by specifying the keyword TESTREDU.

Optional keywords related to the geometry optimization in redundant internal coordinates are listed below.

INTLMIXED geometry optimization in selected valence internal mixed with or embedded in a full set of general symmetrized fractional and cell parameters

The optimization is performed in a mixed coordinate system made up of a set of selected valence internal parameters (bond length, angles and dihedrals) and the full set of symmetry adapted fractional displacements and elastic distortions. As in the previous case, the coordinate system is redundant but the number of parameters generated is in general substantially smaller than in the case of INTREDUN. Therefore, it is convenient for calculations with a large number of atoms in which the automatic generation of valence internal parameters makes the dimension of the optimization parameters space huge. It is also useful when the lack of connectivity of the system causes quasi-linear dependencies reflected in a very high condition number of the Wilson B-Matrix. The latter fact usually makes the optimization either to fail or to exhibit an erratic behavior. It is recommended in transition state optimizations of large systems, in particular when freezing selected valence parameters, SCANREDU, or PATHFOLLOW/FITTOPATH options.
This option does not generate automatically valence internal coordinates unless the user explicitly indicate atomic connections through keywords DEFLNGS and DEFANGLS. The tree is automatically completed generating the necessary lengths, angles or dihedrals. For the back-transformation to the non-redundant set, the BKTRNSF2 algorithm is considered. This option is not compatible with DBANGLIST, page 168 .

\section*{Managing with almost linear angles}

Linear or almost linear angles (i.e. close to \(180^{\circ}\)) can lead to numerical instabilities in the computation of the dihedrals. To avoid this problem a common practice is to split the angle in two ones. Double angles are defined as a couple of angles obtained by projection of the vectors onto two suitable perpendicular planes. This avoids the indetermination around \(180^{\circ}\). The threshold value, beyond which the almost linear angle is split, is controlled by the keyword ANGTODOUBLE.

ANGTODOUBLE minimum value (degrees) beyond which a double angle is defined - \(*\) AL value of the angle (degrees) - default [165 \({ }^{\circ}\)]

The default value is set to \(165^{\circ}\). This means that all angles larger than \(165^{\circ}\) are automatically split into two.
This option can be required, for instance, when optimizing zeolitic structures where siloxane bridges could change a lot during the geometry minimization. In that case, it is better to reduce the default value to \(150^{\circ}\).

A list of angles to be converted into two can also be explicitly given by specifying
```

DBANGLIST
list of angles chosen to be converted in double angles - advanced option

-     * MU number of angles to convert in double
-     * (IN(I), list of the angles
I=1,MU)

```

This keyword provides the list of angles chosen to be converted in double angles (i.e. defined by the angles obtained by projection of the vectors onto two suitable perpendicular planes) in order to avoid the indetermination around 180 degrees). This option is not compatible with INTLMIXED, page 167 . The labels used for the angles are those provided by a previous automatic generation of internal coordinates computed in a test run (TESTREDU keyword).

Double angles have to be defined at the starting of the optimization. If any single angle approaches \(180^{\circ}\) the program stops with a message. For this reason, it is strongly recommended foresee before the optimization which are the angles that may evolve to close to \(180^{\circ}\) degree and protect them making them explicitly double. A less recommendable alternative is to set an ANGTODOUBLE value very small \(\left(<90^{\circ}\right)\) so as to make double any eventual tricky angle. Such a procedure requires less effort to the user but must be used with caution as the number of angles and dihedrals based on them may explode.

\section*{Explicitly defining internal coordinates - bonds and angles}

When some relevant internal coordinates are missing (e.g. intermolecular bonds) they can be explicitly defined by means of two keywords: DEFLNGS and DEFANGLS.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
DEFLNGS \\
- * NL
\end{tabular} & definition of bond lengths number of bonds to be added __ insert NL sets of 5 data to define the bond \(\overline{A B}\) & II \\
\hline LA & label of the atom A (it must be in the reference cell) & \\
\hline LB & label of the atom B & \\
\hline I1, I2, I3 & indices of the cell where the atom B is located & \\
\hline
\end{tabular}

DEFANGLS definition of bond angles
- * NL number of angles to be defined
\begin{tabular}{ll}
& insert NL sets of 9 data to define the angle \(\widehat{A B C}\) \\
LA & label of the atom A (it must be in the reference cell) \\
LB & label of the atom B \\
I1, I2, I3 & indices of the cell where the atom B is located \\
LC & label of the atom C \\
I1, I2, I3 & indices of the cell where the atom C is located
\end{tabular}

\section*{Choosing method for back-transformation}

By default CRYSTAL employs an iterative method (P. Pulay and G. Fogarasi, "Geometry optimization in redundant internal coordinates", J. Chem. Phys. 96, 2856 (1992)) so as to compute the atomic positions and cell parameters corresponding to the set of redundant internal coordinates obtained at each optimization point. For those periodic systems in which
the generated internal coordinates have a high degree of redundancy and/or the displacement is relatively large (for instance in the starting points of the optimization when geometry is very far from the target one) such a method may fail for large steps and provide inaccurate displacements making the whole optimization less efficient. As an alternative you might change the strategy for back-transformation using the keyword BKTRNSF2

Under such an option, the program performs back-transformations from redundant (internal) to fractional+cell coordinate systems through an alternative procedure based on the conjugate gradient (CG) algorithm. The idea of the method is as follows. Given a reference set of redundant parameters, the best point in terms of atomic positions and lattice parameters is the one that is the closest as possible to the reference one in the redundant parameter space. The distance function is defined as a weighted mean square of the differences betwen redundant parameters of the trial and reference sets. This function is fastly minimized by the CG strategy.

The main drawback is that the new method is slightly more costly in cpu time and memory space than the default iterative one.

In all tests done, this new scheme for the back-transformation works better than the iterative procedure originally proposed by Pulay for molecules and extended in Crystal to periodic systems:
1. It is safer in its convergence; specially when the displacement step in terms of redundant coordinates is very large and the structure displays a large number of connectivity loops (this happens in most natural crystals). In such cases the "old" method fails and the program performs a rough conversion that is often very poor in accuracy.
2. As concerns the optimization process, the use of this more accurate alterative allows in most cases to save a few points leading to an overall gain in computational time, even if the conjugate gradient scheme is a bit more costly than the simple iterative procedure.

An additional advantage of the algorithm is that it allows to set weights to the squared deviations of the redundant parameters used in the deviation function so as to force some of them to be better approched than the others in the back-transformation procedure. This permits a more controlled definition of the steps in terms of internal redundant coordinates. The choice is optative in the MODINTCOOR option, and during the optimization it can be set by means of the keyword WGHTDREDU.

WGHTDREDU Assign weights for back-transformation
- * NMODI Number of internal coordinates to be given an specific weight

DEFWGTH Default weight for internal coordinates not explicitly defined
- * NRED(I), WEIGHT(I), \(\mathrm{I}=1, \mathrm{NMODI}\) Label of coordinate (in the list of internal redundants coordinates produced in output with directive TESTREDU) and specific weight.

Specific weights may be used to provide priorities when different internal coordinates are in conflict in the back-transformation, as the corresponding redundant set of values does not correspond to any real atomic arrangement. This typically occurs for instance when the connectivity graph exhibits a high degree of nested loops.

Modifying geometry before the optimization through internal coordinates

Geometry modification in terms of internal coordinates. This option allows to modify the value of any internal coordinate. The keyword is set in the OPTGEOM block (together with INTREDUN/INTLMIXED and the syntaxis is as follows:

\section*{MODINTCOOR Modification of internal coordinates (ADJUSTGEO)}
- * NMODI Number of internal coordinates to be modified

IWGHT \(>0\) Weight given to the parameters to be modified using BKTRNSF2 as back-transformation scheme. The min value (1) means the new parameters will be approached trying to move as less as possible the values of the remaining ones in the redundant set. The max value is 1000 and means the new value of the chosen parameters will be as close as possible to the new provided values while the rest of redundant parameters will accomodate to allow this.
\(<0\) Use the old back-transformation; no weight is actually assigned.
- * NRED(I),

\section*{VALNEW(I),}
\(\mathrm{I}=1, \mathrm{NMODI}\) Label (in the list of internal redundants coordinates produced in output with directive TESTREDU) and new value of the internal coordinates to be modified.

Together with TESTREDU it allows to perform geometry modifications in terms of internal coordinates without performing any optimization. In such a case, a file called "optc000" is written in the execution directory that contains the modified geometry in external format. Conveniently renamed, this file can be used with the keyword EXTERNAL (page 19) as starting geometry for a new calculation.

Other optional keywords

FIXCELL keep cell parameters fixed in internal coordinates optimization

STEPBMAT step used for numerical bmat calculation (developers only)
- * I
integer - step \(=10^{I}\left(\right.\) default 7: step \(\left.=10^{7}\right)\)

TESTREDU request test run for checking automatic definition of internal coordinates .

TOLREDU
tolerance used to eliminate redundancies (developers only)
- * I
\(\qquad\)
tolerance \(10^{-I}\) (default: \(7,10^{-7}\))

\section*{3-Geometry optimization with constraints}

Along with an unconstrained relaxation of the crystalline structure, options are available to perform different optimizations with constraints.
In particular:
\(A\) - Constant volume optimization (page 171)
\(B-\) Fixing lattice deformations (page 171)
\(C-\) Linear constraints between atomic coordinates (page 173)
\(D\) - Partial optimization of atomic positions (page 174)
\(E\) - Fixing internal coordinates (page 174)
Constraining strategies \(A-D\) are compatible with any choice of coordinate system adopted for the optimization process to perform the optimization process. On the other hand, option \(E\) is only operative together with the choice of a redundant internal coordinate system (INTREDUN page 166).
The examples in the CRYSTAL Tutorial Project web page illustrate the use of the available keywords for constrained geometry optimizations.

\section*{\(A\) - Constant volume optimization}

CVOLOPT constant volume optimization.

Only active with CELLONLY (cell parameters only optimization), FULLOPTG (atom coordinates and cell parameters optimization) or INTREDUN (redundant coordinates optimization).

The volume is kept fixed at the value corresponding to the input unit cell; all cell angles and ratios between cell edges unconstrained by the point-group symmetry are optimized.
Examples: in the tetragonal symmetry, only the c/a ratio, and in the monoclinic symmetry the \(\mathrm{a} / \mathrm{b}\) and \(\mathrm{b} / \mathrm{c}\) ratios and the beta angle, respectively, are optimized.

This option is useful for computing E vs V curves point-by-point by relaxing the crystalline structure at different values of the cell volume. In this case, the keyword FIXINDEX must be used to obtain a smooth curve. The reference geometry must correspond either to the smallest volume to be explored, or to the equilibrium structure obtained from a prior optimization run (FULLOPTG).

Warning: if large changes of the individual unit-cell parameters occur in the optimization process, the linear strain approximation may not be strictly obeyed and very small volume variations (of the order of \(0.01 \%\)) may ensue.

\section*{\(B-\) Fixing lattice deformations}

Linear constraints between unit cell deformations can be set up during optimization by means of the keyword FIXDEF:

FIXDEF optimization with constrained symmetrized cell deformation - 3D only
- * NFIXC number of constraints relating pairs of cell deformations
- * LA,LB
integer sequence number of the two constrained symmetrized cell deformations.
CA, CB real coefficients multiplying the two cell deformations in the linear combination constraint. If \(\mathrm{LA}=0\), the cell deformation denoted by the second integer (LB) is kept fixed during the optimization (the coefficients in this case can take any value).

FIXDEF can also be combined with the keyword CRYDEF (p. 163 that sets crystallographic-like cell deformations (i.e. \(a, b, c, \alpha, \beta, \gamma\)) to fix lattice parameters. Integer sequence number given as input refer to the minimal set of lattice parameters:
\begin{tabular}{lllllll}
\hline & & & & & & \\
cubic & 1 & 2 & 3 & 4 & 5 & 6 \\
hexagonal & \(a\) & & & & & \\
rhombohedral & hexagonal cell & \(a\), & \(c\) & & & \\
rhombohedral cell & \(a\), & \(c\) & & & & \\
tetragonal & \(a\), & \(\alpha\) & & & & \\
orthorhombic & \(a\), & \(c\) & & & & \\
monoclinic & \(a\), & \(b\), & \(c\) & & & \\
& \(a\), & \(b\), & \(c\), & \(\beta\) & & \\
triclinic & \(a\), & \(b\), & \(c\), & \(\gamma\) & & \\
& \(a\), & \(b\), & \(c\), & \(\alpha\) & & \\
\hline
\end{tabular}

Note that the labels of the symmetry allowed deformations must correspond to the ones printed in the output file.

For instance, the following symmetry-allowed elastic deformations reported in the output correspond to the sequence: \(1 a, 2 \gamma, 3 b, 4 \beta, 5 \alpha, 6 c\).
\begin{tabular}{llll}
\multicolumn{4}{c}{ SYMMETRY ALLOWED ELASTIC DISTORTION 1} \\
1.0000000 & 0.0000000 & 0.0000000 & \\
0.0000000 & 0.0000000 & 0.0000000 \\
0.0000000 & 0.0000000 & 0.0000000 \\
& & & \\
\multicolumn{1}{l}{ SYMMETRY ALLOWED ELASTIC DISTORTION 2} \\
0.0000000 & 0.7071068 & 0.0000000 \\
0.7071068 & 0.0000000 & 0.0000000 \\
0.0000000 & 0.0000000 & 0.0000000 \\
& & \\
SYMMETRY ALLOWED ELASTIC DISTORTION & 3 \\
0.0000000 & 0.0000000 & 0.0000000 \\
0.0000000 & 1.0000000 & 0.0000000 \\
0.0000000 & 0.0000000 & 0.0000000 \\
& & \\
SYMMETRY ALLOWED ELASTIC DISTORTION & 4 \\
0.0000000 & 0.0000000 & 0.7071068 \\
0.0000000 & 0.0000000 & 0.0000000 \\
0.7071068 & 0.0000000 & 0.0000000
\end{tabular}

SYMMETRY ALLOWED ELASTIC DISTORTION 5
\(0.0000000 \quad 0.0000000 \quad 0.0000000\)
\(0.0000000 \quad 0.0000000 \quad 0.7071068\)
\(0.0000000 \quad 0.7071068 \quad 0.0000000\)
\begin{tabular}{cll}
\multicolumn{4}{c}{ SYMMETRY ALLOWED ELASTIC DISTORTION 6} \\
0.0000000 & 0.0000000 & 0.0000000 \\
0.0000000 & 0.0000000 & 0.0000000 \\
0.0000000 & 0.0000000 & 1.0000000
\end{tabular}

As an example, a constrained optimization of the crystalline structure of \(\alpha\)-quartz (hexagonal) with the \(c\) unit cell edge kept fixed follows

QUARTZ ALFA STO-3G
CRYSTAL
```

0 0 2
154
0 0 16
4.916 5.4054
2
14 0.4697 0. 0.
8 0.4135 0.2669 0.1191
OPTGEOM
FULLOPTG
CRYDEF
FIXDEF
1
020.0 0.0 : the second lattice parameter, c, is kept fixed
ENDOPT
END

```

\section*{\(C\) - Linear constraints between atomic coordinates}

Linear constraints between atomic coordinates can be set up during optimization by using the keyword FIXCOOR.

FIXCOOR optimization with constrained symmetrized coordinates
- * NFIX number of constraints relating pairs of coordinates
- * LA,LB integer sequence number of the two constrained symmetrized coordinates (sequence numbers are read from the output of PRSYMDIR)
CA, CB real coefficients multiplying the two coordinates in the linear combination constraint. If \(\mathrm{LA}=0\), the coordinate denoted by the second integer (LB) is kept fixed during the optimization (the coefficients in this case can take any value).

Note that the labels of the symmetry allowed directions must correspond to the one printed in the output file (PRSYMDIR keyword for coordinates).

In the following example on \(\alpha\)-quartz, two constraints are set up on coordinates
```

QUARTZ ALFA - Linear constraints between atomic coordinates
CRYSTAL
0 02
154
0 0 16
4.916 5.4054
2
14 0.4697 0. 0.
8 0.4135 0.2669 0.1191
OPTGEOM
FULLOPTG
FRACTCOOR
FIXCOOR
2
2 3 1.0 1.0
040.00.0
ENDOPT
END

```
1. The \(x\) and \(y\) fractional coordinates of Oxygen are forced to change by the same amount, so that their difference remains constant.
2. The \(z\) coordinate of Oxygen is kept fixed.

In general, any of the structural parameters can be kept fixed in the optimization process by the combined use of FIXCOOR and FIXDEF keywords.

\section*{\(D\) - Partial optimization of atomic positions}

FRAGMENT Partial geometry optimization (default: global optimization)
- * NL number of atoms "free"
- * \(\mathrm{LB}(\mathrm{L}), \mathrm{L}=1, \mathrm{NL}\) label of the atoms to move

Optimization is limited to an atomic fragment (synonym ATOMFREE). Symmetrized cartesian coordinates are generated according to the list of atoms allowed to move. Note that no advantage is taken in the gradient calculation to reduce the number of atoms, i.e. gradients are calculated on the whole system. The symmetrized forces are then computed by using the new set of symmetrized coordinates. See example in section 15.4 , page 334

\section*{\(E\) - Fixing internal coordinates}

Constraints on internal coordinates can be easily imposed during geometry optimization. The following two options allow users to both define and freeze one or more bond lengths or angles:

LNGSFROZEN explicitly freezes bond lengths
\begin{tabular}{ll}
\(\bullet\) MU & \begin{tabular}{l}
number of bond lengths to freeze \\
insert NL sets of 5 data to define the bond \(\overline{A B}\) \\
\hline LA
\end{tabular} \\
\begin{tabular}{ll}
LB & label of the atom A (it must be in the reference cell) \\
I1, I2, I3 & \begin{tabular}{l}
label of the atom B
\end{tabular} \\
indices of the cell where the atom B is located
\end{tabular}
\end{tabular}

ANGSFROZEN definition of bond angles to be frozen
- * NL number of angles to be frozen
\begin{tabular}{ll}
& insert NL sets of 9 data to define the angle \(\widehat{A B C}\) \\
\hline LA & label of the atom A (it must be in the reference cell) \\
LB & label of the atom B \\
I1, I2, I3 & indices of the cell where the atom B is located \\
LC & label of the atom C \\
I1, I2, I3 & indices of the cell where the atom C is located
\end{tabular}

According to the list of redundant internal coordinates automatically generated by the code, bond lengths or angles can also be frozen by means of the FREEZINT option:
```

FREEZINT freeze internal coordinates (active with INTREDUN only):

- NB first NB bond length are frozen
NA first NA bond angles are frozen
ND first ND dihedral angles are frozen (not active)

```

The list of redundant coordinates can be obtained from a prior run, by inserting the keyword TESTREDU (the program stops after printing internal coordinates).

Note that for a better control over the selected frozen internal coordinates we suggest using the keywords LNGSFROZEN and ANGSFROZEN. These options reorder the internal coordinates list so as the frozen parameters to be the first ones in the lengths and angles entries of the output. The frozen coordinates will appear with the label (T) in the FRZ column.

Constrained optimization combining internal coordinates and fractional coordinates can also be performed.

For instance, one can keep fixed a bond angle together with the constraint that the \(x\) and \(y\) fractional coordinates of a given atom change by the same amount. Such a combination of constraining strategies must be used with caution, as it may lead to undesired behavior in the optimization process.

The constraining of internal coordinates is performed with numerical techniques (particularly in the back-transformation from redundant internal to cell/atomic coordinate systems) and the fixed values may be affected by some small changes (in general of the order of \(10^{-4} \mathrm{au}\)). The use of BKTRNSF2 (page 168) may improve the numerical behaviour.

The following example corresponds to a rigid tetrahedral geometry optimization of \(\alpha\)-quartz:
```

QUARTZ ALFA fixing internal coordinates
CRYSTAL
0 0 2
154
0 0 16
4.916 5.4054
2
14 0.4697 0. 0.
8 0.4135 0.2669 0.1191
OPTGEOM
INTREDUN
LGNSFROZEN
2
4 1 0 0 0
5 1 -1 0 0
ANGSFROZEN
4
4}10100000%7000
4}1
4}101000008100
5
ENDOPT
END

```

The two independent \(\mathrm{Si}-\mathrm{O}\) bond lengths and then the four \(\mathrm{O}-\mathrm{Si-O}\) angles of the \(\mathrm{SiO}_{4}\) tetrahedron are frozen in order to relax just the Si-O-Si bridges and the dihedral angles.
```

FREEZDIH

-     * NDH number of dihedrals to be frozen
-     * IFR(I), list of dihedrals to be frozen
I=1,NDH)
freeze a list of dihedral (active with INTREDUN only):

```

The list of dihedrals, to choose the ones to be frozen, is obtained performing a previous run with the keyword TESTREDU into OPTGEOM input block (the program stops after the
printing of the internal coordinates, see page 170 .
After using FREEZINT (page 174) it turns out that the order of the dihedral angles in the output changes: the frozen parameters appear at the beginning of the list. All of them are now labeled as frozen ("FRZ \(=\mathrm{T} "\)) in the printed list of redundant coordinates.

\section*{4-Geometry optimization with application of an external stress}

Geometry optimization can be done under an hydrostatic pressure (EXTPRESS).
```

EXTPRESS to apply external, hydrostatic pressure

-     * pres pressure in hartree/bohr }\mp@subsup{}{}{3

```

Input example:
EXTPRESS
0.001 hydrostatic pressure of hartree/bohr^3 s applied

The directive should be introduced in any place within the OPTGEOM block.

\subsection*{6.4 Notes on geometry optimization}

\subsection*{6.4.1 On the integrals classification during a geometry optimization}

Truncation of infinite Coulomb and exchange series, based on the overlap between two atomic functions (see chapter 17.12), depends on the geometry of a crystal. With default thresholds, different selection of integrals are evaluated with different geometries. This introduces small discontinuities in the PES, producing artificial noise in the optimization process. To avoid noise in interpolation of PES, the FIXINDEX option is always active during optimization. The adopted selection pattern refers to the starting geometry.

If equilibrium geometry is significantly different from the starting point, reference truncation pattern may be inappropriate and the use of proper truncation becomes mandatory.

Since both total energy and gradients are affected by the integrals classification, a single-point energy calculation ought to be run always with the final structure, and integrals classified according to the new final geometry, to calculate correct total energy and gradients.
If during the final run the convergence test on the forces is not satisfied, optimization has to be restarted, keeping the integrals classification based on the new geometry. The FINALRUN option has been implemented to this aim.
The four different options of FINALRUN allow the following actions, after classification of integrals:
1. single-point energy calculation (correct total energy),
2. single-point energy and gradient calculation (correct total energy and gradients),
3. single-point energy and gradient computation, followed by a new optimization process, starting from the final geometry of the previous one, (used to classify the integrals), if the convergence test is not satisfied.
4. step 3 is iterated until full stable optimization

If the starting and final geometry are close, the energy and gradient calculated from the final geometry, with integral classification based on the initial geometry, are not very different from the values obtained with correct classification of integrals. In some cases (e.g. optimization of
the geometry of a surface, with reconstruction) the two geometries are very different, and a second optimization cycle is almost mandatory (ICODE \(=4\) in FINALRUN input). This is the default in crystal.

\subsection*{6.4.2 Optimization of flat surfaces}

Flat regions of surfaces often behave as non quadratic. This may give rise to erratic optimization paths when using the linear minimization to control the step length. In these cases it is recommendable using the trust radius strategy set by the keyword ALLOWTRUSTR. Under this scheme the step is controlled so as to never go out from the quadratically behaved regions of the surface (the trust regions). Additionally, one can set the maximum trust radius to a given value MAXTRADIUS [def \(\infty\)], in order to avoid too large displacements from one point to the next one.
Additional combined test on gradient and energy are adopted for treating special cases:
1. If the gradient criteria are satisfied (but not the displacement criteria) and the energy difference between two steps is below a given threshold (see TOLDEE), the optimization stops with a warning message;
2. If both the gradient and displacements criteria are not satisfied, but the energy does not change (TOLDEE parameter) for four subsequent steps, the optimization stops with a warning message.

\subsection*{6.4.3 Restart optimization}

Restart of geometry optimization is possible for a job which is abruptly terminated (e.g. number of steps exceeded, available cpu time exceeded,...).

The optimization restarts from the last complete step of the previous run.
The geometry at each step is written to file optc_number_of_step, and can be read by EXTERNAL (see page 19).
If optimization ended successfully, the optimized geometry is written to file fort. 34 (EXTERNAL format).
When restarting an optimization, information on previous optimization steps is read from file OPTINFO.DAT. Optimization then proceeds, saving information in the same file at each step.

The SCF guess, read from file fort. 20 , is the density matrix written in file fort. 9 at the end of SCF of the last successful step of the optimization process.

The same input deck as for the initial geometry optimization must be used when the RESTART keyword is added.

\section*{Visualizing the optimization process}

CRYSTAL output is read by the software MOLDRAW:
http://www.moldraw.unito.it to visualize the optimization process.
File fort. 33 contains the geometry at each step, in \(x y z\) format.

\subsection*{6.5 Searching a transition state}

TSOPT transition state search requested [default: false]
Transition state optimization is invoked by the keyword TSOPT in OPTGEOM input block.
The reference to be quoted is:
C. M. Zicovich-Wilson, M. L. San-Romn, A. Ramrez-Sols,

Mechanism of \(F^{-}\)Elimination from Zeolitic D4R Units: A Periodic B3LYP Study on the Octadecasil Zeolite
J. Phys. Chem. C 114 (2010) 2989-2995.

An example of transition state search is presented in http://www.crystal.unito.it/tutorials
By default the eigenvector that corresponds to the lowest eigenvalue is followed uphill according to the scheme proposed by Simmons and Nichols [Simmons, J., and Nichols, J.: , Int. J. Quantum Chem. Symp. 24, volume 24, 263, (1990)].
To adopt other choices for directions to be followed uphill see keywords: MODEFOLLOW, PATHFOLLOW, FITTOPATH and CHNGTSFOL.

\subsection*{6.5.1 Transition state control keywords}

\section*{MODEFOLLOW}
- * MODEFOL mode to follow
\(\mathrm{ABS}(\mathrm{MODEFOL})\) is the label of the eigenvector to be followed uphill initially, namely \(\operatorname{DIR}(0)\).
If MODEFOL \(<0\), the initial uphill direction, \(\operatorname{DIR}(0)\), is the opposite to that of the eigenvector of label ABS(MODEFOL)

In a general optimization step, NSTEP, the current uphill direction DIR(NSTEP) is chosen as the hessian eigenvector of maximum overlap with the direction chosen in the previous step, DIR(NSTEP-1). In this scheme the uphill direction is allowed to smoothly change along the optimization. Some problems might appear when there are quasi-degeneracies between the Hessian eigenvalue of the uphill direction and other that corresponds to a direction to be followed downhill. In such a case the optimization might go in troubles. Using PATHFOLLOW is a safer way to define the uphill direction and so the reaction path.

PATHFOLLOW only with redundant internal coords
- * NPATHFOL max coord to choose the mode to follow

Only valid together with INTREDUN/INTLMIXED.
The uphill direction is the eigenvector that has maximal absolute contribution of the internal valence coordinate labeled \(\mathrm{ABS}(\mathrm{NPATHFOL})\), which is thus supposed to dominate the reaction path.

If NPATHFOL \(<0\), the uphill search is such that the value of coordinate ABS(NPATHFOL) decreases along the reaction coordinate, otherwise the opposite direction is chosen.

At variance with the MODEFOLLOW case, where the reference direction changes from step to step, here the same strategy is employed in every step of the optimization. This prevents troubles when near-degeneracies occur (see keyword MODEFOLLOW).
\begin{tabular}{ll}
FITTOPATH & only with redundant internal coords \\
\(\bullet *\) & NPATHFOL2 \\
NPATHWEIGHT & integer \\
\hline \multicolumn{2}{c}{ NPATHER } \\
\hline
\end{tabular}

Only valid together with INTREDUN/INTLMIXED and PATHFOLLOW
ABS(NPATHFOL2) is the label of a second internal valence coordinate, namely coordinate (II), that together with the one labeled ABS(NPATHFOL), coordinate (I), mostly contributes to the reaction coordinate.

Once the eigenvector with maximum contribution of coordinate (I), namely XMAXCONTR, is
obtained (see PATHFOLLOW keyword), the eigenvectors are once more scanned and those having a contribution of this coordinate larger in absolute value than XMAXCONTR*(100NPATHWEIGHT)/ 100 selected. If NPATHFOL2 \(>0\) the previously selected eigenvector with maximum contribution of coordinate (II) with the same sign of XMAXCNTR is chosen as uphill direction. Otherwise, the one with maximum contribution having opposite sign is considered.

CHNGTSFOL only with redundant internal coords
Valid together with INTREDUN/INTLMIXED, PATHFOLLOW (FITTOPATH).
The optimization follows uphill the path according to the PATHFOLLOW (+FITTOPATH) scheme while the chosen eigenvector is not the first one in the list ordered by increasing eigenvalues, i.e. it has not the lowest eigenvalue. Once such a situation reverts, the scheme changes to MODEFOLLOW in the following steps and the uphill direction is chosen according to the criterion of maximum overlap with the previous uphill direction (see MODEFOLLOW keyword).

\subsection*{6.5.2 Scan keywords}

\section*{SCANATOM}
\begin{tabular}{ll}
- & NATSCAN \\
TARGET & (integer): label of the atom to be scanned \\
(real array dim 3): last position of the atom in the scan \\
MSCAN & number of steps in which the previous displacement is carried out \\
\hline
\end{tabular}

Only for P1 structures.
Perform a series of optimizations in which one atom is kept fixed at different contiguous positions and the remainder of the structure fully or partially relaxed.
Compatible with the optimization of atomic positions (default) and atoms+cell (FULLOPTG).

Not compatible with INTREDUN/INTLMIXED. The atom chosen for scan and any other one with the only condition that belongs to that part of the system chosen to remain associated to the center of mass, must be defined as fixed with the FRAGMENT option.

This directive may be used associated with FRAGSCAN. The keyword has the same syntax as FRAGMENT and defines a set of atoms that after each step of the scan have the same displacement of the scanned atom, NATSCAN, so as to set the geometry of the starting point of the next optimization of the sequence.

SCANREDU To be used with INTREDUN/INTLMIXED only
- * IREDSCA (integer): type of valence coordinate to be scanned (1, bond length; 2 angle; 3 dihedral)
ENDSCA (real): last value taken by the chosen coordinate along the scan The initial value is the current one with the geometry defined for the structure.
MAXSCA number of points considered in the scan
Perform a series of optimizations (scan) in which one (or two) redundant valence internal coordinate(s) are kept fixed at different values while the remainder are fully relaxed.
To be used only with INTREDUN/INTLMIXED.
The directive SCANREDU must be accompanied with freezing the redundant valence internal coordinate(s) one wants to scan (see keywords FREEZINT (page 174), FREEZDIH (page 175), ANGSFROZEN (page 174), LNGSFROZEN (page 174).

According to the order of the coordinates given in the output (see INTREDUN, TESTREDU) the scan is performed on the last frozen coordinate (indicated in the output by a "T") of type IREDSCA. If SCANREDU is requested twice with the same IREDSCA, the second time it refers to the last but one frozen coordinate of type IREDSCA.
SCANREDU may be requested at maximum twice so as to carry out a bidimensional scan.
The use of BKTRNSF2 (see pag. 168) may improve the accuracy in the displacements between two consecutive optimizations of the scan, particularly when they are rather large.

\section*{Chapter 7}

\section*{Lattice Dynamics - Vibration Frequencies}

\subsection*{7.1 Calculation of Harmonic Vibration Frequencies}

The calculation of the vibration harmonic frequencies is invoked by the keyword FREQCALC in input block 1 (geometry). FREQCALC must be the last keyword in the geometry input block. FREQCALC admits several options (subkeywords) listed below and terminates with keyword END (or END[FREQ], END[-]: only the first three characters are processed).
References to be quoted when using this module:
F. Pascale, C.M. Zicovich-Wilson, F. Lopez, B. Civalleri, R. Orlando, R. Dovesi

The calculation of the vibration frequencies of crystalline compounds and its implementation in the CRYSTAL code., J. Comput. Chem. 25 (2004) 888-897
C.M. Zicovich-Wilson, F. Pascale, C. Roetti, V.R. Saunders, R. Orlando, R. Dovesi

The calculation of the vibration frequencies of alpha-quartz: the effect of Hamiltonian and basis set., J. Comput. Chem. 25 (2004) 1873-1881

Besides harmonic vibration frequency calculation at the \(\Gamma\)-point [default] it allows:
1. Calculation of infrared (IR) intensities (INTENS, page 189 .
2. Calculation of Raman intensities (INTRAMAN, page 191).
3. Scanning of geometry along selected normal modes (SCANMODE, page 194).
4. Calculation of the infrared spectra (IRSPEC, page 197).
5. Calculation of the Raman spectra (RAMSPEC, page 199).
6. Phonon dispersion at the harmonic level (DISPERSION, page 201).
7. Calculation of the atomic Anisotropic Displacement Parameters (ADP) at any temperature (ADP, page 203).
8. Calculation of total and projected vibrational density-of-states (PDOS, page 205) and neutron-weighted PDOS for comparison with Inelastic Neutron Scattering spectra (INS, page 205.
9. Calculation of the vibrational contribution to Second-Harmonic Generation (SHG) and Pockels tensors (BETAVIB, page 193 .
10. Thermodynamic properties at different temperatures and pressures (see page 187).

The second derivatives of the energy are computed numerically by using the analytical first derivatives (gradients). Frequencies are obtained by diagonalizing the mass-weighted Hessian in Cartesian coordinates.

\subsection*{7.1.1 Symmetry exploitation}

The point group symmetry of the lattice is used to reduce the number of SCF+ gradient calculations to be performed. At each point, the residual symmetry is exploited for the SCF calculation.
Second derivatives calculations are done on the irreducible atoms only. The full Hessian matrix is then generated by applying the point group symmetry to the irreducible part. The mass-weighted Hessian matrix is diagonalized to obtain eigenvalues, which are converted in frequencies \(\left(\mathrm{cm}^{-1}\right)\), and eigenvectors, i.e. the normal modes.

\subsection*{7.1.2 Equilibrium Geometry}

The first step to compute frequencies is the calculation of the wave function at the equilibrium geometry. The geometry of the system must correspond to a stationary point on the potential energy surface.
Geometry optimization can be either performed on a previous run (recommended) or controlled by two sub-keywords of FREQCALC:

NOOPTGEOM do not perform previous optimization in FREQCALC job [default]

PREOPTGEOM perform optimization before starting the vibrational modes calculation.
\(\qquad\) insert OPTGEOM keywords (close with END) \(\qquad\)
keyword END
An input block is opened that must finish with keyword END. The numerical conditions for the optimization are controlled by means of the same keywords as documented in page 156 (keyword OPTGEOM).
The conditions adopted by default in geometry optimization before frequency calculation are different than those considered for normal optimizations in order to obtain much more accurate minima numerical second derivatives. This ensures a good accuracy in the computation of the frequencies and modes. The defaults are:
\begin{tabular}{ll}
TOLDEG & 0.00003 \\
TOLDEX & 0.00012 \\
FINALRUN & 4 \\
MAXTRADIUS & 0.25 \\
TRUSTRADIUS &. TRUE.
\end{tabular}

If frequency calculation is restarted (keyword RESTART, page 188) the input geometry must be the final optimized geometry found by PREOPTGEOM.

\subsection*{7.1.3 Default settings}

The SCF wave-function starting guess for the calculations of all the displaced geometries necessary to compute the numerical second derivatives of the total energy is the density matrix obtained at the equilibrium geometry.

The default value for SCF convergence criterion on total energy is set to \(10^{-9}\) (use the TOLDEE keyword in input block 3 to modify it).
The default choice for DFT grid, when a DFT Hamiltonian is used, corresponds to XLGRID (page 129).
The calculation of longitudinal-optical (LO) frequencies and infrared (IR) intensities is not performed by default. If the INTENS (page 189) keyword is used, intensities are evaluated. The FREQCALC input block must be closed by the keyword END (or ENDFREQ). All additional keywords (see below) to be put in between are optional.

\subsection*{7.1.4 Output files}

Here is a list of the files that are written during a frequency calculation, to be saved in order to restart a calculation:

SCFOUT.LOG The output from the wave function and gradient calculation is printed in standard output for the reference geometry only. The output for the displaced configurations is then written in file SCFOUT.LOG.

FREQINFO.DAT Formatted. Contains information on the Hessian. Updated at each point, it is necessary to restart a frequency calculation.

HESSFREQ.DAT Formatted. Contains the Hessian in Cartesian coordinates to be read by HESSFREQ in geometry optimization input block.
fort. 9 Binary. Wave function computed at the equilibrium geometry. Full symmetry exploited by default. When those data are used to restart, file fort. 9 is read as file fort. 20 (SCF guess).
fort. 13 Binary. Reducible density matrix at central point. To exploit maximum symmetry in numerical second derivatives calculations.
fort. 28 Binary. Data for restart of IR intensities calculation through Berry phase approach.
fort. 80 Binary. Localized Wannier functions, computed only if IR intensities are computed through Wannier functions.

\subsection*{7.1.5 Optional keywords}

This is a list of some possible (optional) subkeywords to be inserted after FREQCALC. This is just a partial list since the main subkeywords are described into details in the following sections of this chapter:
- A ANALYSIS Analysis of the vibrational modes
- A CHI2TENS
to be used if INTRAMAN is active (pages 189191). Reads the second-order anisotropic dielectric tensor for the calculation of the LO Raman intensities.
- * TENS(1:27) second-order dielectric tensor matrix TENS (3x9 elements, input by rows: 27 reals (3D)).
The tensor elements can be computed using the CPHF keyword (see page 225) at THIRD or FOURTH order (page 9.3). The tensor elements should be inserted in the following order:
```

xxx xxy xxz
xyx xyy xyz
xzx xzy xzz
yxx yxy yxz
yyx yyy yyz
yzx yzy yzz
zxx zxy zxz
zyx zyy zyz
zzx zzy zzz

```
- A COMBMODE
- A ..
- A END

List of optional sub-keywords
- A IR
- A RAMAN
- A IRRAMAN
- A ALL
- A FREQ
- A IRREP
- A FREQRANGE
- * FMIN,FMAX

Evaluation of transverse optical combination modes and overtones at the \(\Gamma\) point. A set of options are available, which are described below. This keyword opens an input block that must be closed by END. Optional sub-keywords

Only infrared (IR) active combination modes and overtones are displayed in the output.
Only Raman active combination modes and overtones are displayed in the output.
IR and Raman active combination modes and overtones are displayed in the output.[default]
All vibrational combination modes and overtones are displayed in the output.
Combination modes and overtones are sorted according to the frequency value. [default]
Combination modes and overtones are sorted according to the IRREP. Only combination modes and overtones with frequency included within FMIN and FMAX are displayed in the output.
Boundaries of the frequency range. Default: [0., \(\left.1.3 \nu_{\max }\right]\).
- A DIELISO
- * DIEL
- A DIELTENS
to be used if INTENS is active (page 189). Reads the anisotropic dielectric tensor for the calculation of the LO/TO splitting. In some low-symmetry systems the polarization of LO modes is not determined by symmetry. In this case, LO frequencies are computed only if symmetry analysis of the vibrational modes is inactive (see keyword NOKSYMDISP). If INTRAMAN is active, the keyword CHI2TENS should also be declared.
- * TENS(1:9) Dielectric tensor matrix TENS (3x3 elements, input by rows: 9 reals (3D).
The dielectric tensor elements can be obtained from the literature or computed using the CPHF keyword (see page 225) or the SUPERCEL - FIELD keywords (see page 46).

\footnotetext{
A ECKART
Eckart conditions imposed to project out of the Hessian matrix purely translational and rotational degrees of freedom (see page 365 for more details). Note that this option is now active by default. This was not the case in the previous versions
}
```

- A FRAGMENT Frequency calculation on a moiety of the system
- NL number of atoms active for frequencies
-     * LB(L), L=1,NL label of the active atoms

```

Frequency calculation can be limited to an atomic fragment, instead of the whole system. Symmetry is removed. If a fragment contains symmetry related atoms, they must be explicitly defined. A reduced Hessian is computed, according to the list of atoms belonging to the fragment. A chemically sound moiety of the system must be considered to avoid random results.
```

- A ISOTOPES atomic masses modified
- NL number of atoms whose atomic mass must be modified
II insert NL recordsII
-     * LB,AMASS label and new atomic mass (amu) of the atom.
II

```

When the isotopic mass of one atom symmetry related to others is modified, the symmetry of the electronic wave function is not modified, as the mass of the atoms is not present in the single particle electronic Hamiltonian. For instance, if in a methane molecule (point group \(T_{d}\)) we want to substitute H with D , we can redefine the mass of the \(1,2,3,4\) hydrogen atoms; if C is the first atom, the corresponding input are:
\begin{tabular}{llllll}
1 H atom & 2 H atoms & 3 H atoms & 4 H atoms \\
& & & & \\
ISOTOPES & ISOTOPES & ISOTOPES & ISOTOPES \\
1 & & 2 & & 3 & \\
2 & 2.000 & 2 & 2.000 & 2 & 2.000 \\
4 & 3 & 2.000 & 3 & 2.000 & 2 \\
\\
& & & & 4 & 2.000 \\
& & & & & 4 \\
& & & & 2.000 \\
& & & & & 2.000 \\
& & &
\end{tabular}

If a single D is inserted, the symmetry is reduced, (point group \(\mathrm{C}_{3 v}\)), the three-fold degeneracy becomes two-fold. When all the four hydrogens are substituted, the three-fold degeneracy is restored.
If a frequency calculation was performed with standard atomic masses, new frequencies values with different atomic masses for selected atoms can be computed from the Hessian already computed, at low computational cost, by inserting the keyword RESTART in FREQCALC input block, and supplying the file FREQINFO.DAT written by the previous run.
- A MODES Printing of eigenvectors [default]
- A MULTITASK This keyword allows the simultaneous execution of independent \(\mathrm{SCF}+\mathrm{G}\) calculations. It is aimed at the exploitation of the large processor counts available on High Performance Computing facilities. Allocation of too many processors results in performance degradation due to the communication overhead between the processors. When many independent tasks are usually performed sequentially, MULTITASK performs N tasks at the same time, so that an N -fold increase in the number of allocated processors can be requested, without losing performance.
- * N

Number of tasks. For example if \(\mathrm{N}=8\) is requested and the job is running on a total of NCPU \(=128\) cores, 8 tasks with 16 cores each will be created. N should be greater than one and smaller than the total number of cores NCPU \((1<\mathrm{N} \leq \mathrm{NCPU})\). N should be a divider of NCPU, so that each task will run on the same amount of processors.
- A NEGLEFRE Reads the number of lowest vibration frequencies to be neglected in the computation of the thermodynamical properties. By default, the (rotational)+translational degrees of freedom are automatically neglected. This keyword allows to neglect further soft vibrations with low frequencies which may carry numerical issues on the computation of thermodynamical properties.
- N Number of frequencies to be neglected
- A NOANALYSIS No analysis of the vibrational modes [default]
- A NOECKART Eckart conditions not imposed to the Hessian.
- A NOINTENS No calculation of the IR intensities [default choice].
- A NOMODES No printing of eigenvectors
- A NORMBORN

Normalize Born tensor to fulfill sum rule
- A NOUSESYMM Symmetry is removed, the space group is set to \(\mathrm{P}_{1}\)

\section*{- A NUMDERIV}
specifies the technique to compute the numerical first-derivatives \(\mathrm{h}(\mathrm{x})=\mathrm{dg}(\mathrm{x}) / \mathrm{dx}\) of the gradient \(\mathrm{g}(\mathrm{x})=\mathrm{dE}(\mathrm{x}) / \mathrm{dx}\)
- \(* \mathrm{~N} 1\) different quotient formula: \(\mathrm{h}(\mathrm{x})=(\mathrm{g}(\mathrm{x}+\mathrm{t})-\mathrm{g}(\mathrm{x})) / \mathrm{t} \mathrm{t}=0.001 \AA\) (one displacement for each atom along each cartesian direction) 2 Central-difference formula: \(\mathrm{h}(\mathrm{x})=(\mathrm{g}(\mathrm{x}+\mathrm{t})-\mathrm{g}(\mathrm{x}-\mathrm{t})) / 2 \mathrm{t} \mathrm{t}=0.001 \AA\) (two displacements for each atom along each cartesian direction)
- A PRESSURE Pressure range for thermodynamic analysis
- * NP,P1,P2 3 reals, NP is the number of intervals in the pressure range P1 to P2 (MPa) [1,0.101325,0.101325]
- A PRINT Extended printing active (Hessian and Hessian eigenvectors)
- A RAMANEXP Takes into account experimental conditions (temperature, incoming laser) in the calculation of Raman intensities, according to Eq. 7.9 (see page 192).
- * T,FREQ 2 reals, T is the temperature, FREQ is the frequency (in nm) of the incoming laser.
- A RESTART Restart frequency calculation from a previous run. See page 188
- A STEPSIZE
- * STEP

Modify the step size of displacement along each cartesian axis step \((\AA)\) for numerical derivatives [0.003]
- A TEMPERAT
- * NT,T1,T2

Temperature range for thermodynamic analysis
3 reals, NT is the number of interval in the range T1 to T2 temperature (K) [1,298.0,298.0]
- A TEST[FREQ] Frequency test run
- A USESYMM Maximum space group symmetry used to compute wave function at each point [default]

\section*{Partition of the modes into Building Unit contributions}

The external portion of the motion of the \(b\)-th Building Unit (BU) in mode \(i\) is quantified by means of
\[
\begin{equation*}
\epsilon_{b i}=\frac{\left(\mathbf{P}^{(b)} \mathbf{e}_{i}\right)^{2}}{N_{b i}} \tag{7.1}
\end{equation*}
\]
where matrix \(\mathbf{P}^{(b)} \equiv P_{A \alpha, B \beta}^{(b)}\), with atoms \(A, B\) belonging to the \(b\)-th BU , is the projector onto the roto-translational degrees of freedom of the unit taken as an isolated fragment and \(N_{b i}=\sum_{A \in b} \sum_{\alpha=1}^{3} e_{i, A \alpha}^{2}\) is a normalization factor. Accordingly, the corresponding internal contribution is given by \(1-\epsilon_{b i}\).

The contribution of the \(b\)-th BU to mode \(i\) is computed as
\[
\begin{equation*}
\xi_{b i}=\sum_{\alpha=1}^{3} \sum_{A \in b} \frac{e_{i, A \alpha}^{2}}{m_{A}} \tag{7.2}
\end{equation*}
\]
where \(m_{A}\) is the number of BUs to which atom \(A\) belongs. If the mode vector is normalized Eq. 7.2) ensures that \(\sum_{b} \xi_{b i}\) gives the portion of the mode covered by the partition (1 if a full partition is considered). By adopting such partitions, the internal and external contributions (per cent) of the \(b\)-th BU to mode \(i\) are given by \(\Gamma_{b i}^{(n)}=\left(1-\epsilon_{b i}\right) \times \xi_{b i} \times 100\) and \(\Gamma_{b i}^{(x)}=\) \(\epsilon_{b i} \times \xi_{b i} \times 100\), respectively. In some cases one may be interested in considering the overall external contribution under a given BU partition. This is given by
\[
\begin{equation*}
\Xi_{i}=\frac{\sum_{b} \Gamma_{b i}^{(x)}}{\sum_{b} \xi_{b i}} \tag{7.3}
\end{equation*}
\]
where \(\sum_{i} \Xi_{i}\) is not \(100 \%\), but the percentage of the structure covered by the BUs considered in the partition.
Though this analysis may be somehow arbitrary, the resulting indices provide a systematic and clear description of most of the significant features of the vibrational modes of the system under study.

The keyword BUNITSDECO performs a building unit decomposition of the vibrational modes. The vibrational modes are decomposed in terms of internal and external motions of some units defined by input. The latter correspond to rotations and translations of the units behaving like rigid, while the former to the relative motions of the constitutive atoms.

\section*{BUNITSDECO}
- * NBDNGUNIT
perform a building unit decomposition of the vibrational modes.
number of building units irreducible by symmetry considered (the units symmetry-equivalent are automatically generated)
number of atoms of each unit. The sum defines NATOMS, the I=1,NBDNGUNIT total number of atoms considered
- * (LBDNGUNIT(JA,IU), identification of the atoms: for each atom, the sequence number \(\mathrm{JA}=1,4), \mathrm{IU}=1\), NATOMSand three cell indexes, in the order given in MBDNGUNIT

\subsection*{7.2 Restart a calculation}

A frequency calculation for a job abruptly terminated (e.g. machine crash, exceeded the available cpu time,....). can be restarted exactly from the last point of the previous run.

The same input deck used for the incomplete calculation, with the keyword RESTART in the FREQCALC input block is submitted. The following files, written by the previous job, must be present:

FREQINFO.DAT formatted - information on the part of the hessian already computed.
fort. 20 binary - wave function at the equilibrium geometry, with no symmetry, as guess for SCF process (fort. 9 saved at the end of single point calculation).
fort. 28 (binary) Data for restart of IR intensities calculation through Berry phase approach.
fort. 80 (binary) localized Wannier functions (if IR intensities through Wannier cunctions are computed).
fort. 13 binary - Reducible density matrix at central point. To exploit maximum symmetry in numerical second derivatives calculations.

IR intensities calculation using Berry phase or Wannier functions must be present in the first frequency calculation, it can not be inserted in restart only. It is however possible to do so with CPHF analytical intensities.
The restart option can be used to modify the algorithm used to compute gradients (switch from different quotient formula to Central-difference formula, keyword NUMDERIV). In this case the new points only are calculated. The same input deck as for the initial frequency calculation must be used.
Restart can be used to evaluate frequencies for a system with different isotopes of selected atoms (keyword RESTART followed by ISOTOPES 185 .

\subsection*{7.3 IR Intensities}

Calculation of IR intensities is invoked by the keyword INTENS in FREQCALC input block.

Three different techniques can be adopted:
- IR intensities through Berry phase - keyword INTPOL [default]
- IR intensities through Wannier functions - keyword INTLOC
- IR intensities through CPHF approach - keyword INTCPHF

The first two approaches imply numerical differentiations, while the latter is entirely analytical. Atomic Born tensors are the key quantities for the calculation of the IR intensities, the oscillator strengths, the LO/TO splitting and the static dielectric tensor. Such quantities are written in the external formatted unit BORN.DAT.
In order to compute the LO/TO splitting, the high frequency dielectric tensor must be provided. See keyword DIELTENS, page 184 .

The integrated IR intensity \(I_{p}\) for the \(p-t h\) mode is computed according to:
\[
\begin{equation*}
I_{p}=\frac{\pi}{3} \frac{N_{A}}{c^{2}} \cdot d_{p} \cdot\left|\vec{Z}_{p}\right|^{2} \tag{7.4}
\end{equation*}
\]
where \(N_{A}\) is the Avogadro's number, \(c\) is the speed of light, \(d_{p}\) is the degeneracy of the mode, \(\vec{Z}_{p}\) is the mass-weighted effective mode Born charge vector.
The oscillator strength tensor \(f_{p}\) for the \(p-t h\) mode is computed according to:
\[
\begin{equation*}
f_{p, i j}=\frac{4 \pi}{\Omega} \frac{\vec{Z}_{p, i} \vec{Z}_{p, j}}{\nu_{p}^{2}} \tag{7.5}
\end{equation*}
\]
here \(\Omega\) is the unit cell volume, \(\nu_{p}\) is the mode TO frequency and \(\vec{Z}_{p}\) is again the mass-weighted effective mode Born charge vector.

\subsection*{7.3.1 IR intensities through Berry phase [default]}

Calculation of IR intensities through Berry Phase approach, keyword INTPOL, is the default choice.
This is possible for \(3 \mathrm{D}, 2 \mathrm{D}, 1 \mathrm{D}\) and 0 D systems, but only for insulating system.

The Berry phase approach consists in evaluating the atomic Born tensors, that is the derivative of the dipole moment with respect to the atomic displacements, as polarization differences between the central and the distorted geometries: the polarization difference is then equal to the time-integrated transient macroscopic current that flows through the insulating sample during the vibrations.
The scheme operates on the crystalline-orbital eigenfunctions in the reciprocal space. As a
consequence of that, the accuracy of IR intensities might be sensitive to the density of the Monkhorst net.

There are no additional keywords related to this method.

\subsection*{7.3.2 IR intensities through Wannier functions}

Calculation of IR intensities through Wannier functions is invoked by the keyword INTLOC following INTENS in FREQCALC input block.

Many keywords are related to the Wannier functions calculation that should be used by developers and very experienced users only.

If keyword INTLOC is activated in FREQCALC input block, IR intensities, atomic Born tensors and LO/TO splitting are evaluated through the Wannier functions, obtained by localizing the crystalline orbitals. This is possible for insulators only.

IR intensities calculation through localization is very demanding, in terms of memory allocation. NOINTENS, default choice, avoids intensity calculation, when not necessary.

As regards the computation of the IR intensities, they are obtained by means of the Wannier Function (WF) approach, in which those functions span the occupied manifold and are explicitly constructed in real space. They are at time obtained from the eigenvectors of the oneelectron Hamiltonian (Bloch Functions) by numerical integration in reciprocal space through the definition of a Pack-Monkhorst net. The system must be an insulator. By default the dipole moment in the non central points are computed with Wannier Functions that are the projection onto the occupied space of the current point of those obtained by localization at the central point. If RELOCAL is requested these WFs are relocalized at each point

This procedure leads not to real WFs, but to an approximation contained into a cyclic space. In the mapping (unfolding) that permits to convert cyclic to real WFs, CRYSTAL exploits the classification of the lattice vectors made at the very beginning of the SCF calculation that, obviously, does not involve the infinite space, but just a cluster of a finite number of cells, ordered by increasing length (i.e. it covers a close to spherical region of the real space).

In all the tested cases, this classification provides sufficient room to represent the matrices needed in the SCF part within the required accuracy. This is also so in what concerns the (post-SCF) computation of the WFs, apart from very particular cases in which the primitive cell is oblong and the corresponding unfolded cyclic cluster associated to the Monkhorst-Pack net (also very elongated in one direction) does not fit into the real cluster (always close to spherical shape).

A set of keywords can be used to modify the localization process (see properties input, keyword LOCALWF, page 285) They are entered after the DIPOMOME keyword. Modification of default choices is not recommended, it should be restricted to developers only.

The keyword DIPOMOME defines an input block (closed by END) with keywords allowing modification of the localization process.
To be modified by developers only.
- A DIPOMOME Calculation of the dipole moment - see Localisation part (properties, keyword LOCALWF, page 285
To be modified by developers only.
- A END end of the DIPOMOME block.
_ all keywords are optional \(\qquad\)
- A DMACCURA
- * NTOL
(Optional) Change the final dipole moment tolerance
Value of the new tolerance as TOLWDM \(=0.1^{-N T O L}\)
- A RELOCAL
(Optional) Relocalize all points in frequency calculations
- A BOYSCTRL see LOCALWF, page 288
- A CAPTURE see LOCALWF, page 291
- A WANDM see LOCALWF, page 295
- A FULLBOYS
see LOCALWF, page 295
- A MAXCYCLE
see LOCALWF, page 288
- A CYCTOL
- A ORTHNDIR
see LOCALWF, page 286
see LOCALWF, page 295
see LOCALWF, page 294
- A CLUSPLUS
see LOCALWF, page \(\overline{286}\)
see LOCALWF, page 286
- A RESTART
see LOCALWF, page 290
- A IGSSBNDS
see LOCALWF, page 290
- A IGSSVCTS
see LOCALWF, page 290

\subsection*{7.3.3 IR intensities through CPHF/CPKS}

Calculation of IR intensities through Coupled-Perturbed Hartree-Fock/Kohn-Sham approach, keyword INTCPHF, allows for completely analytical calculation of Born charges and, hence, IR intensities.

A few optional keywords are available:
- IRREA: reads the tensor of Born charges from file TENS_IR.DAT. Note that if a frequency restart is performed, the tensor is automatically retrieved from file FREQINFO.DAT unless the keyword DOINTCPHF is used (see below).
- IRSPEC: The IR spectrum is produced using Lorentzian broadening and stored in file IRSPEC.DAT

The INTCPHF keyword opens a CPHF input block, that must be closed by END. Here all keywords proper to the CPHF keyword (page 225) can be adopted.

> all keywords are optional
- A FMIXING see CPHF, page 225
- A RESTART see CPHF, page 225
- A TOLALPHA see CPHF, page 225
- A MAXCYCLE see CPHF, page 225

Alternatively to the INTCPHF keyword, users can use DOINTCPHF. It has the same meaning and optional keywords, but in a case of a frequency restart it forces the calculation of Born (or Raman, see below) tensor instead of reading it from FREQINFO.DAT

\subsection*{7.4 Raman Intensities}

The calculation of analytical Raman intensities [142, 143] can be activated through the INTRAMAN keyword. If the Raman tensor is not already available (on unit TENS_RAMAN.DAT or inside FREQINFO.DAT) it must be computed by inserting the keyword INTCPHF (page 191). As for IR intensities, INTCPHF opens a CPHF block that
must be closed by the END keyword. Be careful that the INTRAMAN should be always used together with the INTENS keyword. A Coupled-Perturbed Hartree-Fock/Kohn-Sham approach calculation up to fourth-order (CPHF2) will be performed, prior to the calculation of frequencies. The Raman tensor, after a successful calculation, is written in a formatted unit named TENS_RAMAN.DAT. The same information is stored in the file FREQINFO.DAT The simplest possible input of the frequency block is, then:
```

FREQCALC
INTENS
INTRAMAN
INTCPHF
END
END

```

For an oriented single-crystal the Raman Stokes scattering intensity associated with, for instance, the \(x y\) component of the polarizability tensor corresponding to the \(i\)-vibrational mode of frequency \(\omega_{i}\) may be calculated as:
\[
\begin{equation*}
I_{x y}^{i} \propto\left(\frac{\alpha_{x y}}{\partial \mathcal{Q}_{i}}\right)^{2} \tag{7.6}
\end{equation*}
\]
where \(\mathcal{Q}_{i}\) is the the normal mode coordinate for mode \(i\).
While the intensity of the transverse optical (TO) modes is straightforwardly computed once the appropriate polarizability derivative is obtained, the corresponding calculation for longitudinal optical (LO) modes requires a correction [128, 219] due to \(\chi_{b c d}^{(2)}\) :
\[
\begin{align*}
\left.\frac{\partial \alpha_{b, c}}{\partial \mathcal{R}_{a}^{A}}\right|_{\mathcal{R}_{0}}= & \left.\frac{1}{V} \frac{\partial^{3} E^{T O T}}{\partial \mathcal{R}_{a}^{A} \partial \mathcal{E}_{b} \partial \mathcal{E}_{c}}\right|_{\mathcal{E}=0, \mathcal{R}_{0}} \\
& -2 \sum_{b^{\prime}} Z_{b^{\prime} a A}^{*} \sum_{d^{\prime}} \epsilon_{b^{\prime}, d^{\prime}}^{-1} \chi_{b c d^{\prime}}^{(2)} \tag{7.7}
\end{align*}
\]

In Eq. 7.7 \(\epsilon^{-1}\) is the inverse of the high-frequency (i.e. pure electronic) dielectric tensor. \(\chi^{(2)}\) is defined as in Eq. (69) of Ref. [82. All these quantities \(\left(Z_{b^{\prime} a A}^{*}, \epsilon^{-1}\right.\) and \(\left.\chi_{b c d^{\prime}}^{(2)}\right)\) are saved in FREQINFO.DAT file for restart, since they are obtained as a byproduct of the Raman intensities calculation. Otherwise, the first and second-order dielectric tensors can be provided in input through the keywords DIELTENS and CHI2TENS, respectively.
Finally, as commonly done in the reporting of experimental data, the intensities are normalized to the highest peak, arbitrarily set to 1000.00 .
A few optional keywords are available:
- RAMANEXP: In the case the user desires to reproduce experimental conditions, Eq. 7.6 is substituted by
\[
\begin{equation*}
I_{x y}^{i} \propto C\left(\frac{\alpha_{x y}}{\partial \mathcal{Q}_{i}}\right)^{2} \tag{7.8}
\end{equation*}
\]

The prefactor \(C\) depends [219] on the laser frequency \(\omega_{L}\) and the temperature \(T\) :
\[
\begin{equation*}
C \sim\left(\omega_{L}-\omega_{i}\right)^{4} \frac{1+n\left(\omega_{i}\right)}{30 \omega_{i}} \tag{7.9}
\end{equation*}
\]
with the Bose occupancy factor \(n\left(\omega_{i}\right)\) given by
\[
\begin{equation*}
1+n\left(\omega_{i}\right)=\left[1-\exp \left(-\frac{\hbar \omega_{i}}{K_{B} T}\right)\right]^{-1} \tag{7.10}
\end{equation*}
\]

The polycrystalline (powder) spectrum can be computed by averaging over the possible orientations of the crystallites as described in Eq. (4) and (5) of Ref. [181], which we used for our implementation.
- RAMANREA: reads the Raman tensor from file TENS_RAMAN.DAT.Note that if a frequency restart is performed, the tensor is automatically retrieved from file FREQINFO.DAT unless the keyword DOINTCPHF is used (see below)
- NORENORM: Turns off renormalization of the Raman intensity to the highest peak
- RAMSPEC: The Raman spectrum is produced using Lorentzian broadening and stored in file RAMSPEC.DAT
- TENSONLY: After the calculation of the IR and Raman tensors, and their storage in files TENS_IR.DAT and TENS_RAMAN.DAT, the calculation stops
- ROTRAMAN
\(\theta, \varphi, \psi\)
The Raman tensor is rotated according to the three angles (in degrees) provided in input. For the meaning of such angles and see the effect of the rotations see http://www.cryst.ehu.es/cryst/transformtensor.html

Here all keywords proper to the CPHF keyword (page 225) can be adopted.
Note that in the case of a DFT calculation the CPHF defaults are set to FMIXING=FMIXING2=60, MAXCYCLE=MAXCYCLE2=200. all keywords are optional
- A FMIXING2 see CPHF, page 225
- A TOLGAMMA see CPHF, page 225
- A MAXCYCLE2 see CPHF, page 225

Alternatively to the INTCPHF keyword, users can use DOINTCPHF. It has the same meaning and optional keywords, but in a case of a frequency restart it forces the calculation of Born and Raman tensor instead of reading it from FREQINFO.DAT

\subsection*{7.4.1 Vibrational contribution to SHG and dc-Pockels tensors}
\begin{tabular}{rl}
\hline rec variable & meaning \\
\hline - A BETAVIB & \begin{tabular}{l}
Activates the calculation of the vibrational contribution to the SHG \\
and Pockels tensor
\end{tabular} \\
\(*\) BVIB_FRQ & Wavelength (in nm) of the frequency \(\omega_{1}\) \\
\hline
\end{tabular}

The double harmonic vibrational \([\mu \alpha]^{(0,0)}\) (or ionic) contribution to the SHG or Pockels tensors (see Section about DYNAMIC CPHF on page 228 for the electronic part of the tensor) is obtained by a simple generalization of the molecular formula [25, 186]:
\[
\begin{equation*}
d_{t u v}^{v i b}\left(-\omega_{\sigma} ; \omega_{1}, \omega_{2}\right)=\frac{1}{2} \frac{2 \pi}{V} \sum_{i=1}^{3 N-6} P_{-\frac{t}{-\omega_{\sigma}}, \frac{u}{\not \omega_{1}}, \frac{v}{\neq \omega_{2}}} \frac{\left(\frac{\partial \mu_{t}}{\partial Q_{i}}\right)\left(\frac{\partial \alpha_{u v}}{\partial Q_{i}}\right)}{\omega_{i}^{2}-\omega_{\sigma}^{2}} \tag{7.11}
\end{equation*}
\]
where \(\mu_{t}\) and \(\alpha_{u v}\) are dipole moment and polarizability components, while \(\omega_{i}\) and \(Q_{i}\) are phonon frequencies and normal modes of the \(i\)-th vibration at the \(\Gamma\)-point. In SHG, \(\omega_{1}=\omega_{2}\) and \(\omega_{\sigma}=2 \omega_{1}\), while in Pockels, \(\omega_{\sigma}=-\omega_{1}\) and \(\omega_{2}=0\) The operator \(P_{-t}, \frac{u}{-\omega_{\sigma}}, \frac{v}{+\omega_{1}}, \frac{v}{+\omega_{2}}\) which permutes the pairs \(\left(t /-\omega_{\sigma}\right),\left(u /+\omega_{1}\right)\), and \(\left(v /+\omega_{2}\right)\) has been discussed, for example, by Bishop (24)
The terms \(\frac{\partial \mu_{t}}{\partial Q_{i}}\) and \(\frac{\partial \alpha_{w v}}{\partial Q_{i}}\) are the same tensors needed for the evaluation of infrared and Raman intensities and are computed as described in Refs. [141] and [144, respectively. As a consequence, this keyword can be activated only if INTENS and INTRAMAN keywords are present in the same input.

\subsection*{7.5 Scanning of geometry along selected normal modes}

Scanning of geometry along selected normal modes is invoked by the keyword SCANMODE in FREQCALC input block. Preliminary frequency calculation is required to single out the selected mode.
\begin{tabular}{ll}
\hline rec variable & meaning \\
\(0 *\) NMO & \begin{tabular}{l}
\(|N M O|\) number of modes to be scanned. \\
\\
\\
INI \\
IFI SCF calculation at each point along the path - energy is computed \\
STEP
\end{tabular} \begin{tabular}{l}
Initial point for the scan
\end{tabular} \\
& \begin{tabular}{l}
Final point for the scan \\
Step given as a fraction of the maximum classical displacement, that \\
corresponds to the 1.0 value
\end{tabular}
\end{tabular}
- * \(\mathrm{N}(\mathrm{I}), \mathrm{I}=1, \mathrm{NMO}\) sequence number of the modes selected.

Let \(\mid r_{0}>\) be the equilibrium configuration; then the following configurations are explored: \(\left|r_{i}>=\left|r_{0}>+i \Delta\right| u>\right.\), where \(| u>\) is the eigenvector of the selected mode, \(i\) is a positive or negative integer, running from \(I N I\) to \(I F I\), and \(\Delta\) is the step. \(I F I-I N I+1\) is the number of points that will be considered in the \(I N I * S T E P-I F I * S T E P\) interval. If the STEP variable is set to 1.0 , the maximum classical displacement is computed. This displacement corresponds to the point where the potential energy in the harmonic approximation is equal to the energy of the fundamental vibrational state as follows:
\[
\begin{gathered}
V=E_{0}^{v i b} \\
\frac{1}{2} k x^{2}=\frac{1}{2} \hbar \omega
\end{gathered}
\]

Where \(x=\left|r_{\max }\right\rangle-\left|r_{0}\right\rangle\) and the force constant \(k\) is given by:
\[
k=\omega^{2} \mu
\]

The final expression of the maximum classical displacement is therefore:
\[
x=\sqrt{\frac{\hbar}{\omega \mu}}
\]

This option can be useful in two different situations.
Let us consider \(\nu_{i}\) as the frequency of the \(Q_{i}\) normal mode:
\(\nu_{i}>0\) we want to explore the energy curve along \(Q_{i}\) normal mode and check the deviation of the energy from the harmonic behaviour. See example 1;
\(\nu_{i}<0\) the system is in a transition state. We want to explore the \(Q_{i}\) normal mode in order to find a total energy minimum; usually \(Q_{i}\) is not total-symmetric, the symmetry of the structure needs to be reduced. CRYSTAL determines automatically the subgroup of the original group to which the symmetry of the mode belongs. See example 2.

At each point, the geometry is written in file "SCANmode_number_frequencyvalue_DISP_ \(i \Delta\) " (see below), in a format suitable to be read by the keyword EXTERNAL (geometry input, page 19 .
The geometry of the system then has to be re-optimized in this new subgroup using as a starting geometry one of those external files (better the one corresponding to the minimum). Frequencies can then be evaluated in the new minimum and the new set of frequencies should contain only positive values (apart from the three referring to translations).

\subsection*{7.5.1 Example 1 - Methane molecule}

First run: optimization of the geometry (full input at page 340 .
Second run: calculation of the vibrational frequencies of \(\mathrm{CH}_{4}\) in the optimized geometry. The optimized geometry corresponds to a minimum, as all frequencies are positive (modes 1-3, translational mode; modes 4-6, rotational modes).
\begin{tabular}{rrcrrrrr}
MODES & EIGV & \multicolumn{2}{c}{ FREQUENCIES } & IRREP & IR RAMAN \\
& & (HARTREE**2) & \((\mathrm{CM} * *-1)\) & (THZ) & & & \\
\(1-\) & 3 & \(-0.1863 \mathrm{E}-11\) & -0.2995 & -0.0090 & (F2) & A & A \\
\(4-\) & 6 & \(0.7530 \mathrm{E}-07\) & 60.2270 & 1.8056 & (F1) & I & I \\
\(7-\) & 9 & \(0.4821 \mathrm{E}-04\) & 1523.8308 & 45.6833 & (F2) & A & A \\
\(10-\) & 11 & \(0.6302 \mathrm{E}-04\) & 1742.3056 & 52.2330 & (E) & I & A \\
\(12-\) & 12 & \(0.2099 \mathrm{E}-03\) & 3179.3763 & 95.3153 & (A) & I & A \\
\(13-\) & 15 & \(0.2223 E-03\) & 3272.4193 & 98.1047 & (F2) & A & A
\end{tabular}

Third run: Scanning of a selected mode.
To explore the 12 th normal mode, corresponding to C-H symmetric stretching, the following lines must be inserted before the end of geometry input (RESTART to read from external file vibrational modes, computed in 2nd run):
```

FREQCALC
RESTART
SCANMODE
1 -10 10 0.2
12
END

```

The potential energy function as well as its harmonic approximation is computed are represented in the figure. The anharmonicity of \(\mathrm{C}-\mathrm{H}\) stretching is evident.

Figure 7.1: Scanning of the energy along normal mode \(12, \nu=3179.3763 \mathrm{~cm}^{-1}\), corresponding to C-H symmetric stretching

\subsection*{7.5.2 Example 2- \(\mathrm{PbCO}_{3}\)}

The space group of this carbonate, as it can be found in the literature [ICSD database], is Pmen (orthorhombic lattice).
First run: full optimization of the geometry in Pmcn space group (full input at page 340). Second run: frequency calculation. The output would look as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MODES}} & EIGV & \multicolumn{2}{|r|}{FREQUENCIES} & \multirow[t]{2}{*}{IRREP} & \multirow[t]{2}{*}{IR} & \multirow[t]{2}{*}{RAMAN} \\
\hline & & (HARTREE**2) & (CM**-1) & (THZ) & & & \\
\hline 1- & 1 & -0.3212E-07 & -39.3362 & -1.1793 & (AU) & I & I \\
\hline \(2-\) & 2 & -0.1388E-09 & -2.5858 & -0.0775 & (B3U) & A & I \\
\hline \(3-\) & 3 & -0.6924E-10 & -1.8262 & -0.0547 & (B2U) & A & I \\
\hline 4- & 4 & -0.2405E-11 & -0.3404 & -0.0102 & (B1U) & A & I \\
\hline \(5-\) & 5 & \(0.4141 \mathrm{E}-07\) & 44.6637 & 1.3390 & (AG) & I & A \\
\hline 6- & 6 & \(0.4569 \mathrm{E}-07\) & 46.9137 & 1.4064 & (B3G) & I & A \\
\hline \(7-\) & 7 & \(0.5304 \mathrm{E}-07\) & 50.5476 & 1.5154 & (B1G) & I & A \\
\hline 53- & 53 & \(0.4245 \mathrm{E}-04\) & 1429.9950 & 42.8702 & (AU) & I & I \\
\hline \(54-\) & 54 & \(0.4338 \mathrm{E}-04\) & 1445.5993 & 43.3380 & (B1G) & I & A \\
\hline 55- & 55 & \(0.4340 \mathrm{E}-04\) & 1445.8649 & 43.3459 & (AG) & I & A \\
\hline 56- & 56 & \(0.4401 \mathrm{E}-04\) & 1455.9714 & 43.6489 & (B1U) & A & I \\
\hline 57- & 57 & \(0.4408 \mathrm{E}-04\) & 1457.1539 & 43.6844 & (B3G) & I & A \\
\hline 58- & 58 & \(0.4417 \mathrm{E}-04\) & 1458.5583 & 43.7265 & (B3U) & A & I \\
\hline 59- & 59 & \(0.4475 \mathrm{E}-04\) & 1468.2070 & 44.0157 & (B2U) & A & I \\
\hline 60- & 60 & 0.5007E-04 & 1553.0286 & 46.5586 & (B2G) & I & A \\
\hline
\end{tabular}

Four negative frequencies are present. Modes 2, 3 and 4 are translations, as results from their small values (\(<2 \mathrm{~cm}^{-1}\)) and from a visual analysis (program MOLDRAW [157); mode 1, frequency \(-39.3362 \mathrm{~cm}^{-1}\), corresponds to a maximum along the \(Q_{1}\) normal coordinate.
Third run: scanning of the first normal mode. The input lines for the frequency calculation

Figure 7.2: Scanning of the energy along normal mode 1, corresponding to a frequency of -39.3362 \(\mathrm{cm}^{-1}\) (L. Valenzano, unpuplished results)

block are now the following:
```

FREQCALC
RESTART
SCANMODE
1 -10 10 0.4 scanning of 1 mode, initial point -10, final +10, step 0.4
1
END

```
where we are asking to perform the scan of 1 mode (mode 1), computing energy in 21 points in the interval \(-10 /+10\) with a step equal to 0.4 . Figure 2 shows the energy computed, and the energy in the harmonic approximation.
The optimized geometry of \(\mathrm{PbCO}_{3}\) in Pmcn space group corresponds to a transition state.
Fourth run:
We need to fully re-optimize the geometry of the system with symmetry as a subgroup (\(P_{2} \mathcal{L}_{1} \mathcal{L}_{1}{ }_{2}\), space group number 19) of the original space group (Pmcn). The geometry, with correct reduced symmetry, is read (EXTERNAL, page 19) from one of the files written during the scan, copied as file fort.34. For instance SCAN1_-39.3361_DISP_-2.400 (scan of mode 1, frequency \(-39.3361 \mathrm{~cm}^{-1}\), displacement -2.4 the classical amplitude).
Please refer to the standard script for running CRYSTAL09 to handle input/output file names.
Fifth run: After full geometry optimization, we are ready to run a new frequency calculation. The new frequency output looks like (just the first four lines are given):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MODES} & EIGV & \multicolumn{2}{|l|}{FREQUENCIES} & \multirow[t]{2}{*}{IRREP} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{IR}} & \multirow[t]{2}{*}{\begin{tabular}{l}
INTENS \\
(KM/MOL)
\end{tabular}} & \multirow[t]{2}{*}{RAMAN} \\
\hline & (HARTREE**2) & (CM**-1) & (THZ) & & & & & \\
\hline 1- 1 & -0.1504E-09 & -2.6917 & -0.0807 & (B1) & A & (& 0.00) & A \\
\hline 2- 2 & -0.1414E-09 & -2.6097 & -0.0782 & (B3) & A & (& 0.00) & A \\
\hline 3- 3 & -0.1690E-11 & -0.2853 & -0.0086 & (B2) & A & (& 0.00) & A \\
\hline 4- 4 & \(0.4363 \mathrm{E}-07\) & 45.8409 & 1.3743 & (A) & I & (& 0.00) & A \\
\hline [. . & - & & & & & & & \\
\hline
\end{tabular}

Only the three expected negative (translational) modes are present, the fourth negative frequency is not present any more. The \(\mathrm{PbCO}_{3}\) structure corresponds now to a minimum in the potential energy surface.

\subsection*{7.6 Calculation of the infrared spectrum}

Keyword IRSPEC, inserted in the FREQCALC input block, activates the calculation of the infrared spectra. Prior calculation of IR intensities is required (keyword INTENS, page 189 and definition of the dielectric tensor matrix (keyword DIELTENS, page 184) or of the isotropic dielectric constant (keyword DIELISO, page 184).
The keyword IRSPEC defines an input block (closed by END).
The key quantity is the complex dielectric tensor \(\epsilon(\nu)\), which is computed for each inequivalent polarization direction on the basis of a classical Drude-Lorentz model:
\[
\begin{equation*}
\epsilon_{i i}(\nu)=\epsilon_{\infty, i i}+\sum_{p} \frac{f_{p, i i} \nu_{p}^{2}}{\nu_{p}^{2}-\nu^{2}-i \nu \gamma_{p}} \tag{7.12}
\end{equation*}
\]
where \(i i\) indicates the polarization direction, \(\epsilon_{\infty}\) is the optical dielectric tensor, \(\nu_{p}, f_{p}\) and \(\gamma_{p}\) are the TO frequency, oscillator strength and damping factor for the \(p^{t h}\) vibrational mode, respectively. The real and imaginary parts of \(\epsilon(\nu)\) are computed; the maxima of the latter function correspond to the TO frequencies. The imaginary part of \(1 / \epsilon(\nu)\) is computed as well, whose maxima correspond to the LO frequencies.

The real and imaginary parts of the refractive index \(n(\nu)\) are obtained for each inequivalent polarization direction by exploiting the relations:
\[
\begin{array}{r}
\left\{\operatorname{Re}\left[n_{i i}(\nu)\right]\right\}^{2}-\left\{\operatorname{Im}\left[n_{i i}(\nu)\right]\right\}^{2}=\operatorname{Re}\left[\epsilon_{i i}(\nu)\right] \\
2 \cdot \operatorname{Re}\left[n_{i i}(\nu)\right] \cdot \operatorname{Im}\left[n_{i i}(\nu)\right]=\operatorname{Im}\left[\epsilon_{i i}(\nu)\right] \tag{7.13}
\end{array}
\]

The reflectance curve \(R(\nu)\) is computed for each inequivalent polarization direction through:
\[
\begin{equation*}
R_{i i}(\nu)=\left|\frac{\sqrt{\epsilon_{i i}(\nu)-\sin ^{2}(\theta)}-\cos (\theta)}{\sqrt{\epsilon_{i i}(\nu)-\sin ^{2}(\theta)}+\cos (\theta)}\right|^{2} \tag{7.14}
\end{equation*}
\]
where \(\theta\) is the angle between the incident beam and the normal to the crystal surface.
The absorbance spectrum \(A(\nu)\) is calculated according to four different models:
1. raw superposition of Lorentzian (or Gaussian) peaks; this is the only quantity not requiring the dielectric function, as it only requires the TO frequencies \(\nu_{p}\) and the integrated intensities \(I_{p}\) computed as described from page 189 on:
\[
\begin{gather*}
A_{\text {raw }, \text { Lor }}(\nu)=\sum_{p} \frac{I_{p}}{\pi} \frac{\gamma_{p} / 2}{\left(\nu-\nu_{p}\right)^{2}+\gamma_{p}^{2} / 4} \tag{7.15}\\
A_{\text {raw }, \operatorname{Gau}}(\nu)=\sum_{p} 2 \sqrt{\frac{\ln 2}{\pi}} \frac{I_{p}}{\gamma_{p}} \exp \left[-\frac{4 \ln 2\left(\nu-\nu_{p}\right)^{2}}{\gamma_{p}^{2}}\right] \tag{7.16}
\end{gather*}
\]
2. classical absorption formula, averaged over the polarization directions 1,2 , and 3 (according to Voigt notation, page 360):
\[
\begin{equation*}
A_{\text {clas }}(\nu)=\frac{1}{3} \sum_{i i=1}^{3} \frac{4 \pi}{\lambda \rho} \operatorname{Im}\left[n_{i i}(\nu)\right] \tag{7.17}
\end{equation*}
\]
where \(\lambda\) is the wavelength of the incident beam and \(\rho\) is the crystal density;
3. Rayleigh approximation of spherical particles [26], averaged over the directions 1,2 and 3 :
\[
\begin{equation*}
A_{s p h}(\nu)=\frac{1}{3} \sum_{i i=1}^{3} \frac{2 \pi}{\lambda \rho} \operatorname{Im}\left[\frac{\epsilon_{i i}(\nu)-1}{\epsilon_{i i}(\nu)+2}\right] \tag{7.18}
\end{equation*}
\]
4. Rayleigh approximation of particles as continuous distribution of ellipsoids (CDE) [26], averaged over the directions 1,2 and 3 :
\[
\begin{equation*}
A_{C D E}(\nu)=\frac{1}{3} \sum_{i i=1}^{3} \frac{2 \pi}{\lambda \rho} \operatorname{Im}\left[\frac{2 \epsilon_{i i}(\nu)}{\epsilon_{i i}(\nu)-1} \log \epsilon_{i i}(\nu)\right] \tag{7.19}
\end{equation*}
\]

Reflectance spectrum, dielectric function and refractive index are at the moment limited to:
- frequency-independent optical dielectric tensor (CPHF) and frequency-dependent vibrational (IR) contributions
- directions 1, 2 and 3 only (Voigt notation, \(\epsilon_{11}, \epsilon_{22}, \epsilon_{33}\))

Generalization is in progress.
IRSPEC data are written in files IRSPEC.DAT, IRREFR.DAT and IRDIEL.DAT and can be directly plotted with gnuplot (http://www.gnuplot.info, appendix D, page 402).

Once the vibrational frequencies, IR intensities and dielectric tensor are calculated, the infrared spectra can be calculated at almost zero computational time with a RESTART in the FREQCALC input block (the FREQINFO.DAT file is required):
```

FREQCALC
RESTART
INTENS
DIELTENS or DIELISO

```
```

[input dielectric tensor or constant]
IRSPEC
[optional keywords for IRSPEC]
END [end IRSPEC]
END [end FREQCALC]

```

By default, only the absorption and reflectance spectra are generated.
If the dielectric tensor is omitted, only the raw absorption spectrum is computed.
To enable the generation of the dielectric function and refractive index, specific keywords are required:
\begin{tabular}{lll}
\hline rec & variable & meaning \\
\hline - & REFRIND & \begin{tabular}{l}
Activates the generation of the refractive index (same directions than \\
reflectance spectrum).
\end{tabular} \\
- & DIELFUN & \begin{tabular}{l}
Activates the generation of the dielectric function (same directions \\
than reflectance spectrum).
\end{tabular}
\end{tabular}

There are several keywords which allow to modify the default values.
rec variable meaning
- A LENSTEP
- * X
- * N
- A RANGE
- * X1,X2
- GAUSS

Step size used for the spectra \(\left[1 \mathrm{~cm}^{-1}\right]\).

Number of points used for the spectra [no default]. To be used as an alternative to LENSTEP.

Frequency range used for the spectra Default: [0., \(\nu_{\max }+400\).], where \(\nu_{\max }\) is the frequency of the highest calculated mode. Gaussian line shape is adopted for the raw absorbance spectrum, instead of the Lorentzian one [which is the default].
- A DAMPFAC
- GAMMA Damping factor (related to peak width) used for the spectra [8.0].
- A ANGLE
- * ALPH

Angle of incidence used for the reflectance spectrum (degrees) [10.0].

\subsection*{7.7 Calculation of the Raman spectra}

Keyword RAMSPEC, inserted in the FREQCALC input block, activates the calculation of the Raman spectra. Prior calculation of Raman intensities is required (keyword INTENS with INTRAMAN option, page 189 .

The keyword RAMSPEC defines an input block (closed by END).
The Raman spectra \(A(\nu)\) are computed for both the cases of polycrystalline powder (total intensity, parallel polarisation, perpendicular polarisation) and single crystal (\(x x, x y, x z, y y\), \(y z, z z\) polarisations). They are constructed by using the Transverse Optical (TO) modes and by adopting a pseudo-Voigt functional form:
\[
\begin{equation*}
A(\nu)=\eta \cdot L(\nu)+(1-\eta) \cdot G(\nu) \tag{7.20}
\end{equation*}
\]
with:
\[
\begin{gather*}
L(\nu)=\sum_{p} \frac{I_{p}}{\pi} \frac{\gamma_{p} / 2}{\left(\nu-\nu_{p}\right)^{2}+\gamma_{p}^{2} / 4} \tag{7.21}\\
G(\nu)=\sum_{p} 2 \sqrt{\frac{\ln 2}{\pi}} \frac{I_{p}}{\gamma_{p}} \exp \left[-\frac{4 \ln 2\left(\nu-\nu_{p}\right)^{2}}{\gamma_{p}^{2}}\right] \tag{7.22}
\end{gather*}
\]
where \(\nu_{p}\) and \(I_{p}\) are the computed TO frequencies and Raman intensities, respectively, for each mode \(p ; \gamma_{p}\) is the full width at half maximum; \(\eta\) is the Lorentz factor, with values in the range \(0-1\). Raman intensities in CRYSTAL are normalized, so that the largest value is set to 1000 (non-normalized intensities can be obtained by inserting the NORENORM sub-keyword). Note that \(\eta\) values of 1 and 0 correspond to pure Lorentzian and pure Gaussian functional forms, respectively.
RAMSPEC data are written in file RAMSPEC.DAT and can be directly plotted with gnuplot (http://www.gnuplot.info, appendix D, page 403).

Once the vibrational frequencies and Raman intensities are calculated, the Raman spectra can be calculated at almost zero computational cost with a RESTART in the FREQCALC input block (the FREQINFO.DAT and TENS_RAMAN.DAT files are required):
```

FREQCALC
RESTART
INTENS
INTRAMAN
RAMANREA
RAMSPEC
[optional keywords for RAMSPEC]
END [end RAMSPEC]
END [end FREQCALC]

```

There are several keywords which allow to modify the default values.
rec variable meaning
- A LENSTEP
- * X Step size used for the spectra \(\left[1 \mathrm{~cm}^{-1}\right]\).
- A NUMSTEP
- * N

Number of points used for the spectra [no default]. To be used as an alternative to LENSTEP.
- A RANGE
- * X1,X2

Frequency range used for the spectra \(\left[0 ., 1.3 \nu_{\max }\right]\), where \(\nu_{\max }\) is the frequency of the highest calculated mode.
- A VOIGT
- * ETA

Lorentz factor, determining mixing between Lorentzian and Gaussian contributions [1.0].
- A DAMPFAC
- * FWHM

Full width at half maximum used for the spectra [8.0].

\subsection*{7.8 Phonon dispersion}

The keyword DISPERSION, inserted in the FREQCALC input block, activates the calculation of vibration frequencies and normal modes on a set of points in reciprocal space, defined in terms of a direct-space supercell to be generated in input with the SCELPHONO keyword (page 66).

In the presence of interatomic interactions the static (non-vibrating) crystal assumes an equilibrium configuration \(\mathcal{R}_{0} \equiv\left\{\ldots,\left[\left(\mathbf{R}_{0}\right)_{a}+\mathbf{g}\right], \ldots\right\}\) that is unambiguously defined by the equilibrium positions \(\left\{\left(\mathbf{R}_{0}\right)_{a}\right\}\) of the \(N\) atoms of the cell \((a=1, \ldots, N)\); the lattice vector \(\mathbf{g}=\sum_{m=1}^{3} l{ }_{m}^{g} \mathbf{a}_{m}\) identifies the general crystal cell where \(\mathbf{a}_{m}\) are the direct lattice basis vectors: within Born von Kármán periodic boundary conditions the integers \(l_{m}^{g}\) run from 0 to \(L_{m}-1\). The parameters \(\left\{L_{m}\right\}\) define the size and shape of a supercell (SC) in direct space (to be generated with the SCELPHONO keyword).
When nuclear motion (due to Heisenberg principle, finite temperature or other external perturbations) is considered, the atomic equilibrium positions become the static average positions of the atoms displaced by \(\mathbf{u}_{a}^{\mathbf{g}}\) which define the general configuration \(\mathcal{R} \equiv\left\{\ldots,\left[\left(\mathbf{R}_{0}\right)_{a}+\mathbf{g}+\right.\right.\) \(\left.\left.\mathbf{u}_{a}^{\mathrm{g}}\right], \ldots\right\}\).
Let us introduce the \(L=L_{1} \times L_{2} \times L_{3}\) Hessian matrices \(\left\{\mathbf{H}^{\mathbf{g}}\right\}\) whose elements are the second derivatives of the total energy per cell with respect to the atomic displacements:
\[
\begin{equation*}
H_{a i, b j}^{\mathbf{g}}=\left(\frac{\partial^{2} E}{\partial u_{a i}^{\mathbf{0}} \partial u_{b j}^{\mathbf{g}}}\right) \tag{7.23}
\end{equation*}
\]
where atom \(a\) in the reference cell is displaced along the \(i\)-th Cartesian direction and atom \(b\) in cell \(\mathbf{g}\) is displaced, along with all its periodic images in the crystal, along the \(j\)-th Cartesian
direction. First derivatives are computed analytically while second derivatives are computed numerically.
The set of \(L\) Hessian matrices \(\left\{\mathbf{H}^{\mathbf{g}}\right\}\) can be Fourier transformed into a set of dynamical matrices \(\left\{\mathbf{W}^{\mathbf{k}}\right\}\) each one associated with a wavevector \(\mathbf{k}=\sum_{n=1}^{3}\left(\kappa_{n} / L_{n}\right) \mathbf{b}_{n}\) where \(\mathbf{b}_{n}\) are the reciprocal lattice vectors and the integers \(\kappa_{n}\) run from 0 to \(L_{n}-1\) :
\[
\begin{equation*}
\mathbf{W}^{\mathbf{k}}=\sum_{\mathbf{g}=1}^{L} \mathbf{M}^{-\frac{1}{2}} \mathbf{H}^{\mathbf{g}} \mathbf{M}^{-\frac{1}{2}} \exp (\imath \mathbf{k} \cdot \mathbf{g}) \tag{7.24}
\end{equation*}
\]
where \(\mathbf{M}\) is the diagonal matrix of the nuclear masses. The diagonalization of the dynamical matrices
\[
\begin{equation*}
\left(\mathbf{U}^{\mathbf{k}}\right)^{\dagger} \mathbf{W}^{\mathbf{k}} \mathbf{U}^{\mathbf{k}}=\boldsymbol{\Lambda}^{\mathbf{k}} \quad \text { with } \quad\left(\mathbf{U}^{\mathbf{k}}\right)^{\dagger} \mathbf{U}^{\mathbf{k}}=\mathbf{I} \tag{7.25}
\end{equation*}
\]
provides with the vibration frequencies \(\nu_{i}^{\mathbf{k}}=\sqrt{\lambda_{i}^{\mathbf{k}}}\) (from the eigenvalues) and the normal modes (from the columns of \(\mathbf{U}^{\mathbf{k}}\)):
\[
\mathbf{q}^{\mathbf{k}}=\mathbf{M}^{\frac{1}{2}}\left(\mathbf{U}^{\mathbf{k}}\right)^{\dagger} \mathbf{u}^{\mathbf{k}} \quad \text { with } \quad \mathbf{u}^{\mathbf{k}}=\frac{1}{\sqrt{L}} \sum_{\mathbf{g}=1}^{L} \mathbf{u}^{\mathbf{g}} \exp (\imath \mathbf{k} \cdot \mathbf{g})
\]

To each k-point in the first Brillouin zone, \(3 N\) oscillators (i.e. phonons) are associated which are labeled by a phonon band index \(i(i=1, \ldots, 3 N)\).
In principle, equation 7.24 can be used to compute, and then diagonalize according to equation 7.25 , the dynamical matrices of just the \(L\) k-points defined above. However, if the energy second derivatives \(\left\{\mathbf{H}^{\mathbf{g}}\right\}\) vanish within the supercell (SC) defined by the keyword SCELPHONO then such an expression can be used to construct the dynamical matrices of a denser set of k-points represented by three parameters \(\left\{L_{m}^{\prime} \geq L_{m}\right\}\), with \(m=1, \ldots, D\) (where \(D\) is the dimensionality of the system: \(1,2,3\) for \(1 \mathrm{D}, 2 \mathrm{D}, 3 \mathrm{D}\) periodic systems). The quantum contributions to the second derivatives of the total energy usually vanish within a SC of radius \(\approx 10-15 \AA\). Such an interpolation technique, can be easily activated with the INTERPHESS keyword (to be inserted after DISPERSION) and can be quite effective in the case of a fully covalent crystal without long-range electrostatic contribution to the total energy.
On the contrary, when such electrostatic contributions become relevant (as in ionic crystals), they have to be explicitly accounted for with appropriate corrections (see the WANG keyword below). In this case one should use a SC large enough to contain all relevant quantum contributions and the two keywords INTERPHESS and WANG.
Phonon bands and phonon density of states can be computed with sub-keywords BANDS and PDOS, respectively.
A detailed description of these options follows:
- A NOKSYMDISP The dynamical matrices \(\left\{\mathbf{W}^{\mathbf{k}}\right\}\) in reciprocal space are not factorized according to the irreducible representations of the Space Group when diagonalized. Phonons are not labeled according to symmetry.
\begin{tabular}{|c|c|}
\hline - A BANDS
- \(*\) ISS & \begin{tabular}{l}
Phonon bands calculation for plotting purposes. Phonon bands are sampled along given directions in reciprocal space. Data is stored in files fort. 25 (Crgra format) and PHONBANDS.DAT (xmgrace format). Note: BANDS implies NOKSYMDISP. \\
Shrinking factor in terms of which the coordinates of the extremes of the segments are expressed.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { NSUB } \\
& \text { NLINE }
\end{aligned}
\] & Total number of k points along each of the lines in the path. Number of lines in reciprocal space to be explored. if ISS \(>0\) then \(\qquad\) \\
\hline & add NLINE records \\
\hline - * I1,I2,I3 & Integers that define the starting point of the line (I1/ISS \(\mathbf{b}_{1}+\) I2 \(2 /\) ISS \(\mathbf{b}_{2}+\mathrm{I} 3 /\) ISS \(\mathbf{b}_{3}\)), with \(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\) reciprocal lattice vectors. \\
\hline J1,J2, J3 & Integers that define the final point of the line (J1/ISS \(\mathbf{b}_{1}+\mathrm{J} 2 / \mathrm{ISS}\) \(\mathbf{b}_{2}+\mathrm{J} 3 / \mathrm{ISS} \mathbf{b}_{3}\)) with \(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\) reciprocal lattice vectors.
\(\qquad\) if ISS \(=0\) then \(\qquad\) \\
\hline & - add NLINE records \\
\hline - * LABELA & Label of the starting point of the line (see tables 13.1 and 13.2 below for a legend). \\
\hline LABELB & Label of the final point of the line (see tables 13.1 and 13.2 below for a legend). \\
\hline
\end{tabular}
- A INTERPHESS Activates the Hessian Fourier interpolation that permits the calculation of vibration frequencies on a denser set of points in reciprocal space. This option has to be used only if the starting supercell (SC) is sufficiently large (radius \(\approx 10-15 \AA\)) so that any quantum contribution to the energy second derivatives vanishes within it. This keyword has to be combined with the keyword WANG if long-range electrostatic contributions to the energy exist (ionic crystals).
- * \(L_{m}^{\prime} m=1, \ldots, D\) where \(D\) is the dimensionality of the system: \(1,2,3\) for \(1 \mathrm{D}, 2 \mathrm{D}, 3 \mathrm{D}\) periodic systems. These three integers are the expansion parameters of the starting SC.
* IPRINT 0 Output printings disabled for each \(\mathbf{k}\)-point.

1 Output printings active for each \(\mathbf{k}\)-point.
- A WANG For 3D systems only. Used in combination with INTERPHESS,

BANDS and PDOS when dealing with polar materials, activates the correction to the dynamical matrices to take into account the long range Coulomb interactions. The mixed-space approach as proposed by Wang and coworkers [222] is implemented. Born tensor charges are read from the external file BORN.DAT which is obtained by performing a \(\Gamma\) only vibrational frequencies calculation with IR intensities active (see INTENS subkeyword, page 189 .
- \(*\) TENS (1:9) Dielectric tensor matrix TENS (3x3 elements, input by rows: 9 reals (3D). Can be obtained with a CPHF calculation (see page 225).

\subsection*{7.9 Anisotropic Displacement Parameters (ADP)}

The keyword ADP, inserted in the FREQCALC block, allows to compute the anisotropic displacement parameters (ADP) as \(3 \times 3\) tensors \(\mathbf{U}_{A}\) associated to each atom \(A\) of the cell. Such tensors can be used for computing Debye-Waller thermal factors and obtaining dynamic structure factors (see the XFAC keyword). Each \(3 \times 3\) atomic tensor \(\mathbf{U}_{A}\) can be diagonalized as \(\mathbf{U}_{A} \mathbf{E}_{A}=\mathbf{e}_{A} \mathbf{E}_{A}\) where \(\mathbf{e}_{A}\) is the diagonal matrix of the eigenvalues. If the three eigenvalues
are positive, then the surfaces of constant probability are ellipsoids enclosing some definite probability for atomic displacement. The lengths of the principal axes of the ellipsoids are proportional to the eigenvalues \(e_{1}, e_{2}\) and \(e_{3}\) of \(\mathbf{U}_{A}\) which are usually expressed in \(10^{-4} \AA^{2}\). The orientation of the ellipsoid with respect to the reference Cartesian frame is given by the eigenvectors \(\mathbf{E}_{A}\).
Let us consider the set of \(L\) (number of cells in the cyclic crystal) \(3 n \times 3 n\) (with \(n\) number of atoms per cell) Hessian matrices \(\mathbf{H}(\mathbf{g})\) whose elements are the second derivatives of the energy \(E\) with respect to the atomic displacements \(\mathbf{u}\) :
\[
H_{A \mathbf{0} i, A^{\prime} \mathbf{g} i^{\prime}}(\mathbf{g})=\frac{\partial^{2} E}{\partial u_{A \mathbf{0} i} \partial u_{A^{\prime} \mathbf{g}^{\prime}{ }^{\prime}}}
\]
where \(\mathbf{g}\) labels a crystal cell and \(i\) a Cartesian component of \(\mathbf{u}\). The usual way of dealing with lattice dynamics is considering the set of \(L 3 n \times 3 n\) dynamical matrices \(\mathbf{D}(\mathbf{k})\) defined as the (mass-weighted) Fourier transform of the \(\mathbf{H}(\mathbf{g})\) :
\[
\mathbf{D}(\mathbf{k})=\sum_{\mathbf{g}}^{L} \mathbf{M}^{-\frac{1}{2}} \mathbf{H}(\mathbf{g}) \mathbf{M}^{-\frac{1}{2}} e^{i \mathbf{k} \cdot \mathbf{g}}
\]
where \(\mathbf{M}\) is a \(3 n \times 3 n\) real symmetric (diagonal) matrix with the nuclear masses on the diagonal. To each \(\mathbf{k}, 3 n\) oscillators (phonons) are associated whose label is \(s=1, \ldots, 3 n\) and whose frequencies and eigenvectors are obtained by diagonalizing \(\mathbf{D}(\mathbf{k})\) :
\[
\mathbf{D}(\mathbf{k}) \mathbf{W}(\mathbf{k})=\boldsymbol{\Omega}(\mathbf{k}) \mathbf{W}(\mathbf{k}) \quad \text { with } \quad \mathbf{W}^{\dagger}(\mathbf{k}) \mathbf{W}(\mathbf{k})=\mathbf{I}
\]

To each phonon \(k \equiv(\mathbf{k} s)\), an atomic displacement vector \(\mathbf{u}_{k}\) can be associated. Let us introduce the frequency-scaled normal coordinate proper of each phonon \(k\) : \(\xi_{k}=\boldsymbol{\Omega}^{\frac{1}{4}}(\mathbf{k}) \mathbf{W}^{\dagger}(\mathbf{k}) \mathbf{M}^{\frac{1}{2}} \mathbf{u}_{k}\). The Boltzman probability density function \(p\left(\left\{\xi_{k}\right\} ; T\right)\) for the nuclei, at a given temperature \(T\) can be expressed as the product of independent probabilities, associated to the different phonons \(p\left(\left\{\xi_{k}\right\} ; T\right)=\prod_{k} p\left(\xi_{k} ; T\right)\). Let us introduce the so-called Gaussian approximation that consists in expressing such probabilities as Gaussian functions with standard deviations \(\sigma_{k, T}\) (\(k_{B}\) is Boltzman's constant):
\[
p\left(\xi_{k} ; T\right) \approx G\left(\xi_{k} ; \sigma_{k, T}\right) \quad \text { with } \quad\left(\sigma_{k, T}\right)^{2}=\left|\xi_{k}\right\rangle\left\langle\xi_{k}\right|=\left[\frac{1}{e^{\frac{\omega_{k}}{k_{B} T}}-1}+\frac{1}{2}\right]
\]

Within such an approximation, \(p\left(\left\{\xi_{k}\right\} ; T\right)=e^{-\sum_{\mathbf{k}}\left\langle\mathbf{u}_{\mathbf{k}}\right| \mathbf{U}(\mathbf{k} ; T)^{-1}\left|\mathbf{u}_{\mathbf{k}}\right\rangle}\) with
\[
\mathbf{U}(\mathbf{k} ; T)=\mathbf{M}^{-\frac{1}{2}} \mathbf{W}(\mathbf{k}) \boldsymbol{\Omega}^{-\frac{1}{4}}(\mathbf{k}) \boldsymbol{\Xi}(T) \boldsymbol{\Omega}^{-\frac{1}{4}}(\mathbf{k}) \mathbf{W}^{\dagger}(\mathbf{k}) \mathbf{M}^{-\frac{1}{2}}
\]
where \(\boldsymbol{\Xi}(T)\) is a \(3 n \times 3 n\) diagonal matrix with \(\left(\sigma_{k, T}\right)^{2}\) as diagonal elements, so that we can define the total mean square displacement tensors \(\mathbf{U}(\mathbf{g} ; T)=1 / L \sum_{\mathbf{k}} \mathbf{U}(\mathbf{k} ; T) e^{-i \mathbf{k} \cdot \mathbf{g}}\). The \(3 \times 3\) diagonal blocks of \(\mathbf{U}(\mathbf{g}=\mathbf{0} ; T)\) are the \(\operatorname{ADPs} \mathbf{U}_{A}\).
The default temperature at which the ADPs are computed is 298.15 K. Different temperatures can be defined with the keyword TEMPERAT. The ADPs are saved (in atomic units) in the external formatted unit ADP.DAT that can be used by the keyword XFAC of Properties for computing Debye-Waller thermal factors for dynamic structure factors.

\section*{Users of this option are kindly requested to cite the following paper [73]:}
A. Erba, M. Ferrabone, R. Orlando and R. Dovesi, J. Comput. Chem., 34, 346 (2013). Accurate dynamical structure factors from ab initio lattice dynamics: The case of crystalline silicon.
\begin{tabular}{rlll}
\hline rec & variable & value & meaning \\
\hline \multirow{1}{*}{ NTYP 0} & Recommended algorithm for the computation of the ADPs \\
& NNEGL & \begin{tabular}{l}
Number of additional modes at the \(\Gamma\)-point to be neglected (others than \\
rotations+translations that are already neglected) in the computation \\
of the ADPs
\end{tabular} \\
\hline
\end{tabular}

\subsection*{7.10 Phonon Density-of-State (and Inelastic Neutron Scattering Spectra)}

Knowledge of the vibration frequencies of a system also allows to compute the phonon density-of-states (PDOS) and to simulate the results of inelastic neutron scattering (INS) experiments. The total PDOS \(g(\omega)\) is defined by the equation:
\[
\begin{equation*}
g(\omega)=\frac{1}{V_{\mathrm{BZ}}} \int_{\mathrm{BZ}} \sum_{p=1}^{3 N} \delta\left(\omega_{\mathbf{k} p}-\omega\right) d \mathbf{k} \tag{7.26}
\end{equation*}
\]
where \(\omega_{\mathbf{k} p}\) is the vibration frequency of a phonon with wave-vector \(\mathbf{k}\), of branch \(p\), and \(V_{\mathrm{BZ}}\) is the volume of the Brillouin zone, and the integration is performed over it. From equation (7.26), the PDOS is normalized to \(3 N\), being \(N\) the number of atoms per cell \(\left(\int g(\omega) d \omega=3 N\right)\). The total PDOS can be partitioned into atomic contributions \(g(\omega)=\sum_{a} g_{a}(\omega) x_{a}\) where the sum runs over the atomic species of the system, \(x_{a}\) is the fraction of atomic species \(a\) with respect to \(N\), and
\[
\begin{equation*}
g_{a}(\omega)=\frac{1}{n_{\mathbf{k}}} \sum_{p, \mathbf{k}}\left|\mathbf{e}_{p, \mathbf{k} ; a}\right|^{2} \delta\left(\omega_{\mathbf{k} p}-\omega\right) \tag{7.27}
\end{equation*}
\]
where \(\mathbf{e}_{p, \mathbf{k}}\) are the eigenvectors of the dynamical matrices \(W^{\mathbf{k}}\) defined in equation 7.24 and the integral in equation 7.26 has been replaced by the sum over the sampled points within the FBZ.
From atomic projected PDOS, a neutron-weighted phonon density-of-states (NW-PDOS) may be defined, which can be compared to the outcomes of INS experiments:
\[
\begin{equation*}
g^{\mathrm{NW}}(\omega)=C \sum_{a} \frac{\sigma_{a}}{M_{a}} g_{a}(\omega) x_{a} \tag{7.28}
\end{equation*}
\]
where \(C\) is a normalization factor such that \(\int g^{\mathrm{NW}}(\omega) d \omega=3 N\), and the weight of each atomic species \(a\) is given by the ratio of the atomic scattering cross-section \(\sigma_{a}\) and the atomic mass \(M_{a}\) [156, 137]. Depending on whether the inelastic scattering is coherent or incoherent, different cross-sections have to be considered, which are tabulated and available on-line [203, 122 .
The phonon density-of-state can be computed also from a \(\Gamma\)-only calculation but the cell on which the vibration frequencies are computed should be large in that case.

Users of this module are kindly asked to cite the following reference:
J. Baima, M. Ferrabone, R. Orlando, A. Erba and R. Dovesi, Phys. Chem. Minerals, 43, 137-149 (2016)
- A PDOS

Phonon density-of-states is computed.
- * NUMA

Maximum frequency considered (value in \(\mathrm{cm}^{-1}\)).
NBIN
Number of intervals in which the frequency range \(0<\omega<\) NUMAX is partitioned for the representation of the PDOS [recommended value \(>50]\).
* LPRO 0 No projected atomic DOS.

1 Projected atomic DOS enabled.
```

- A INS Neutron-weighted phonon density-of-states is computed, which can
IN
-     * NUMA
NBIN
        * NWTYPE 0 Coherent cross-section.
1 Incoherent cross-section.
2 Coherent + Incoherent cross-section.

```

Input examples are as follows:
```

FREQCALC
DISPERSI [optional: to run a phonon dispersion calculation rather than a Gamma-only one]
PDOS
2500 250
[Range: 0-2500 cm^-1 subdivided into 250 intervals for histogram representation]
1 [Atomic partitioning of the PDOS active]
END

```

Another one
```

FREQCALC
DISPERSI [optional: to run a phonon dispersion calculation rather than a Gamma-only one]
INS
3000 300 [Range: 0-3000 cm^-1 subdivided into 300 intervals for histogram representation]
2
END

```

\subsection*{7.11 Anharmonic calculation of frequencies of X-H (X-D) bond stretching}

Anharmonic calculation of frequencies of X-H, or X-D, bond stretching (where H and D stand for hydrogen and deuterium and X for any element) is invoked by the keyword ANHARM that has to be inserted outside from the FREQCALC block (a FREQCALC run is not needed at all for this purpose).
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - \(*\) LB & \begin{tabular}{l}
label of the atom to be displaced (it must have atomic number 1, Hydrogen \\
or Deuterium. The first neighbour (NA) of the LB atom is identified. LB \\
moves along the (NA-LB) direction.
\end{tabular} \\
- A END & End of ANHARM input block
\end{tabular}

This keyword allows the calculation of the anharmonic X-Y stretching. The selected X-Y bond is considered as an independent oscillator. This condition is fulfilled when H or D are involved. It can be used for X-H (or X-D) only.
S. Tosoni, F. Pascale, P. Ugliengo, R. Orlando, V.R. Saunders and R. Dovesi, "Vibrational spectrum of brucite, \(\operatorname{Mg}(\mathrm{OH})(2)\) : a periodic ab initio quantum mechanical
calculation including OH anharmonicity"
Chem. Phys. Lett. 396, 308-315 (2004)].
Frequencies are calculated as follows:
i) the X-H distance is varied around the equilibrium value, \(\mathrm{d}_{0}\) [default: \(\mathrm{d}_{0}+(-0.2,-0.16,-0.06\), \(0.00,0.16,0.24,0.3 \AA\))], all other geometrical features being constant (only H moves);
ii) the total potential energy is calculated for each value of the \(\mathrm{X}-\mathrm{H}\) distance [default 7 points]; iii) a polynomial curve of sixth degree is used to best fit the energy points; the root mean square error is well below \(10^{-6}\) hartree;
iv) the corresponding nuclear Schrödinger equation is solved numerically following the method proposed in reference [135]. See P. Ugliengo, "ANHARM, a program to solve the mono dimensional nuclear Schrödinger equation", Torino, 1989.

The anharmonicity constant and the harmonic XH stretching frequency are computed from the first vibrational transitions \(\omega_{01}\) and \(\omega_{02}\), as:
\[
\begin{gathered}
\omega_{e} x_{e}=\left(2 \omega_{01}-\omega_{02}\right) / 2 \\
\omega_{e}=\omega_{01}+2 \omega_{e} x_{e}
\end{gathered}
\]

Stretching of the X-H bond may reduce the symmetry (default). If keyword KEEPSYMM is inserted, all equivalent \(\mathrm{X}-\mathrm{H}\) bonds will be stretched, to maintain the symmetry. For example, in \(\mathrm{CH}_{4}\) (point group \(T_{d}\)), KEEPSYMM forces the four CH bonds to stretch in phase; otherwise only the selected C-H bond is stretched, and the symmetry reduced (point group \(\mathrm{C}_{3 v}\)).

\section*{Optional keywords of ANHARM input block}
```

ISOTOPES atomic mass of selected atoms modified

-     * NL number of selected atoms
II__insert NL records___II
-     * LB,AMASS label and new atomic mass (amu) of the atom.
II

```
\(\qquad\)

KEEPSYMM all atoms symmetry equivalent to the selected one are displaced

NOGUESS scf guess at each geometry point: superposition of atomic densities at each scf calculation

POINTS26 \(\quad 26\) points: \(\mathrm{d}_{X-H}\) range: \(\mathrm{d}_{0}-0.2 \div \mathrm{d}_{0}+0.3\) with a step of \(0.02 \AA\).

PRINT extended printing

PRINTALL printing for programmers

TEST[ANHA] Preliminary test to check if the neighbour(s) of the selected atom is correctly identified and the X-Y direction properly set. No energy calculations is performed.

It has been verified that calculations with 7 points provides very similar results to the ones obtained with 26 points. In the following table, results for POINTS \(=7\) and 26 are reported for three systems. All values are in \(\mathrm{cm}^{-1}\).
\begin{tabular}{llll}
system & & NPOINTS 26 & NPOINTS 7 \\
\hline \multirow{3}{*}{ HF (molecule) } & \(\mathrm{W}_{01}\) & 4358.6 & 4359.0 \\
& \(\mathrm{~W}_{02}\) & 8607.3 & 8608.1 \\
& \(\mathrm{~W}_{e}\) & 4468.6 & 4468.8 \\
& \(\mathrm{~W}_{e} \mathrm{X}_{e}\) & 55.0 & 54.9 \\
\hline \multirow{3}{*}{\((\mathrm{OH})_{2}\) (bulk) } & \(\mathrm{W}_{01}\) & 3325.3 & 3325.8 \\
& \(\mathrm{~W}_{02}\) & 6406.3 & 6407.4 \\
& \(\mathrm{~W}_{e}\) & 3569.5 & 3569.9 \\
& \(\mathrm{~W}_{e} \mathrm{X}_{e}\) & 122.1 & 122.1 \\
\hline & \(\mathrm{~W}_{01}\) & 3637.2 & 3637.5 \\
\(\mathrm{Ca}(\mathrm{OH})_{2}\) (bulk) & \(\mathrm{W}_{02}\) & 7111.4 & 7111.9 \\
& \(\mathrm{~W}_{e}\) & 3800.3 & 3800.7 \\
& \(\mathrm{~W}_{e} \mathrm{X}_{e}\) & 81.5 & 81.6 \\
\hline
\end{tabular}

\section*{Chapter 8}

\section*{Harmonic and Quasi-Harmonic Thermodynamics}

\begin{abstract}
Within the frame of standard quantum-chemical methods, temperature can be modeled by explicitly treating the lattice dynamics. To do so, a harmonic approximation (HA) to the lattice potential is commonly adopted, which proves extremely effective in predicting vibration properties (such as Infrared and Raman spectroscopic features, for instance) of a variety of materials, particularly so when very light atoms are not involved.
However, when the lattice dynamics of a crystal is solved within the purely HA, vibration frequencies are described as independent of interatomic distances and the corresponding vibrational contribution to the internal energy of the crystal turns out to be independent of volume. It follows that, within such an assumption, a variety of physical properties would be wrongly described: thermal expansion would be null, elastic constants would not depend on temperature, constant-pressure and constant-volume specific heats would coincide with each other, thermal conductivity would be infinite as well as phonon lifetimes, etc.
A simple and powerful approach for correcting most of the above mentioned deficiencies of the HA is represented by the so-called Quasi-Harmonic Approximation (QHA), which introduces the missing volume dependence of phonon frequencies by retaining the harmonic expression for the Helmholtz free energy. This approach allows for the natural combination of temperature and pressure effects. Depending on the temperature and pressure ranges to be explored, the lattice dynamics has to be solved at few volumes in the expansion and compression regime, respectively.
Harmonic vibration frequencies and harmonic thermodynamic functions are computed by using the FREQCALC keyword since the CRystal03 version of the program.
A fully-automated algorithm has been implemented in the Crystalif program for computing a wealth of quasi-harmonic thermal properties of solids, which is activated by use of the keyword QHA (to be inserted at the end of the geometry input block), which opens a sub-block where optional keywords can be inserted and that must be closed by a keyword END. Default values are set for all computational parameters so that the simplest input reads as:
\end{abstract}
```

Title
Geometry input block
QHA \# Keyword to perform a Quasi-harmonic calculation
[Optional sub-keywords]
END \# End of the Quasi-harmonic input block
END \# End of the Geometry input block
Basis set block

```

A direct-space approach is used in CRYSTAL for sampling phonon-dispersion, which requires supercells to be used. While harmonic thermodynamic properties generally require large supercells to be used for their convergence, quasi-harmonic properties show a much faster convergence. However, in some cases (particularly when small cell systems are studied), also
quasi-harmonic properties must be computed on supercells of the original primitive one, to make sure of their convergence, by use of the keyword SCELPHONO to be inserted right before the QHA one:
```

Title
Geometry input block
SCELPHONO \# Keyword to build a supercell
2 0 0 \# supercell expansion matrix
0 0 \# supercell expansion matrix
0 2 \# supercell expansion matrix
QHA \# Keyword to perform a Quasi-harmonic calculation
[Optional sub-keywords]
END \# End of the Quasi-harmonic input block
END \# End of the Geometry input block
Basis set block

```

In the example above, an isotropic \(2 \times 2 \times 2\) supercell is considered. With a quasi-harmonic calculation, a wealth of quasi-harmonic physical quantities are computed:
- Isotropic and anisotropic thermal expansion coefficients;
- P-V-T equation-of-state;
- Temperature-dependent elastic bulk modulus (both isothermal and adiabatic);
- Difference between constant-pressure and constant-volume specific heats;
- Combined effect of pressure and temperature on structural, thermodynamic and average elastic properties;
- Grüneisen parameters;

\section*{References to be cited when using this module:}
A. Erba, J. Chem. Phys., 141, 124115 (2014)
A. Erba, M. Shahrokhi, R. Moradian and R. Dovesi, J. Chem. Phys., 142, 044114 (2015)
A. Erba, J. Maul, M. De la Pierre and R. Dovesi, J. Chem. Phys., 142, 204502 (2015)
A. Erba, J. Maul, R. Demichelis and R. Dovesi, Phys. Chem. Chem. Phys., 17,11670-11677 (2015)

\subsection*{8.1 A Few Theoretical Remarks}

\subsection*{8.1.1 Phonon Dispersion}

The calculation of the harmonic thermodynamic properties of crystals requires the knowledge of phonon modes over the complete first Brillouin zone (FBZ) of the system; phonons at points different from \(\Gamma\) can be obtained by building a supercell (SC) of the original unit cell, following a direct-space approach.
Given the usual reciprocity between direct and reciprocal spaces, the size of the adopted SC (within the direct space approach) corresponds to the sampling of the FBZ. Use of the primitive cell would allow for the description of \(\Gamma\) modes only while a \(3 \times 3 \times 3 \mathrm{SC}\) would correspond to a \(3 \times 3 \times 3\) mesh of \(\mathbf{k}\)-points in the FBZ, for instance. Increasing the size of the SC simply corresponds to increasing the sampling of the phonon dispersion in the FBZ in reciprocal space.

\subsection*{8.1.2 Harmonic Lattice Dynamics}

To each k-point in the first Brillouin zone, 3 M harmonic oscillators (i.e. phonons) are associated, which are labeled by a phonon band index \(p(p=1, \ldots, 3 M)\) and whose energy levels are given by the usual harmonic expression:
\[
\begin{equation*}
\varepsilon_{m}^{p, \mathbf{k}}=\left(m+\frac{1}{2}\right) \omega_{\mathbf{k} p} \tag{8.1}
\end{equation*}
\]
where \(m\) is an integer, \(\omega_{\mathbf{k} p}=2 \pi \nu_{\mathbf{k} p}\) and M is the number of atoms per primitive cell. The overall vibrational canonical partition function of a crystal, \(Q_{v i b}(T)\), at a given temperature \(T\), can be expressed as follows:
\[
\begin{equation*}
Q_{v i b}(T)=\prod_{\mathbf{k}} \prod_{p=1}^{3 M} \sum_{m=0}^{\infty} \exp \left[-\frac{\varepsilon_{m}^{p, \mathbf{k}}}{k_{B} T}\right] \tag{8.2}
\end{equation*}
\]
where \(k_{B}\) is Boltzmann's constant. According to standard statistical mechanics, thermodynamic properties of crystalline materials such as entropy, \(S(T)\), and thermal contribution to the internal energy, \(\mathcal{E}(T)\), can be expressed as:
\[
\begin{align*}
S(T) & =k_{B} T\left(\frac{\partial \log \left(Q_{v i b}\right)}{\partial T}\right)+k_{B} \log \left(Q_{v i b}\right) \tag{8.3}\\
\mathcal{E}(T) & =k_{B} T^{2}\left(\frac{\partial \log \left(Q_{v i b}\right)}{\partial T}\right) \tag{8.4}
\end{align*}
\]

From the above expression for \(\mathcal{E}(T)\), the constant-volume specific heat, \(C_{V}(T)\), can also be computed according to \(C_{V}(T)=\partial \mathcal{E}(T) / \partial T\). By casting equation 8.2 into equations 8.3) and (8.4) one gets the following harmonic expressions:
\[
\begin{align*}
S(T) & =k_{B} \sum_{\mathbf{k} p}\left[\frac{\hbar \omega_{\mathbf{k} p}}{k_{B} T\left(e^{\frac{\hbar \omega_{\mathbf{k}} p}{k_{B} T}}-1\right)}-\log \left(1-e^{-\frac{\hbar \omega_{\mathbf{k} p}}{k_{B} T}}\right)\right] \tag{8.5}\\
\mathcal{E}(T) & =\sum_{\mathbf{k} p} \hbar \omega_{\mathbf{k} p}\left[\frac{1}{2}+\frac{1}{e^{\frac{\hbar \omega_{\mathbf{k} p}}{k_{B} T}}-1}\right] \tag{8.6}\\
C_{V}(T) & =\sum_{\mathbf{k} p} \frac{\left(\hbar \omega_{\mathbf{k} p}\right)^{2}}{k_{B} T^{2}} \frac{e^{\frac{\hbar \omega_{\mathbf{k} p}}{k_{B} T}}}{\left(e^{\frac{\hbar \omega_{\mathbf{k}} p}{k_{B} T}}-1\right)^{2}} \tag{8.7}
\end{align*}
\]

An explicit harmonic expression of Helmholtz's free energy, \(F(T)\), can also be derived (see below).

\subsection*{8.1.3 Quasi-harmonic Quantities}

The limitations of the HA are well-known: zero thermal expansion, temperature independence of elastic constants and bulk modulus, equality of constant-pressure and constant-volume specific heats, infinite thermal conductivity and phonon lifetimes, etc. The simplest way for correcting most of the above mentioned deficiencies of the HA is represented by the QHA, according to which the Helmholtz free energy of a crystal is written retaining the same harmonic expression but introducing an explicit dependence of vibration phonon frequencies on volume:
\[
\begin{equation*}
F^{Q H A}(T, V)=U_{0}(V)+F_{v i b}^{Q H A}(T, V), \tag{8.8}
\end{equation*}
\]
where \(U_{0}(V)\) is the zero-temperature internal energy of the crystal without any vibrational contribution (a quantity commonly accessible to standard \(a b\) initio simulations via volumeconstrained geometry optimizations) and the vibrational part reads:
\[
\begin{equation*}
F_{v i b}^{Q H A}(T, V)=E_{0}^{Z P}(V)+k_{B} T \sum_{\mathbf{k} p}\left[\ln \left(1-e^{-\frac{\hbar \omega_{\mathbf{k} p}(V)}{k_{B} T}}\right)\right] \tag{8.9}
\end{equation*}
\]
where \(E_{0}^{Z P}(V)=\sum_{\mathbf{k} p} \hbar \omega_{\mathbf{k} p}(V) / 2\) is the zero-point energy of the system. The equilibrium volume at a given temperature \(T, V(T)\), is obtained by minimizing \(F^{Q H A}(V ; T)\) with respect to volume \(V\), keeping \(T\) as a fixed parameter. A volumetric thermal expansion coefficient \(\alpha_{V}(T)\) can be defined as:
\[
\begin{equation*}
\alpha_{V}(T)=\frac{1}{V(T)}\left(\frac{\partial V(T)}{\partial T}\right)_{P=0} \tag{8.10}
\end{equation*}
\]

For cubic crystals, a linear thermal expansion coefficient \(\alpha_{l}(T)\) is commonly considered which is simply \(\alpha_{l}(T)=\alpha_{V}(T) / 3\). Directional thermal expansion coefficients \(\alpha_{x}(T)=\) \(1 / x(T)[\partial x(T) / \partial T]\) can also be computed where \(x\) can be the \(a, b\) or \(c\) lattice parameter. The anisotropy of the thermal expansion is obtained by optimizing the lattice parameters as a function of the purely internal energy \(E\) at different volumes. A more accurate optimization of the lattice parameters with respect to the free energy \(F\) could be considered, which, however, would require a much larger set of calculations to be performed.
The temperature-dependent isothermal bulk modulus of the system, \(K_{T}(T)\), can be obtained as an isothermal second derivative of equation 8.8 with respect to the volume:
\[
\begin{equation*}
K_{T}(T)=V(T)\left(\frac{\partial^{2} F^{Q H A}(V ; T)}{\partial V^{2}}\right)_{T} \tag{8.11}
\end{equation*}
\]

Some experimental techniques for measuring the bulk modulus of a crystal involve elastic waves and are characterized by very short time-scales that prevent the system from reaching a thermal equilibrium; in these cases, an adiabatic bulk modulus, \(K_{S}\), is measured. Adiabatic and isothermal bulk moduli do coincide with each other at zero temperature only, \(K_{S}\) always being larger than \(K_{T}\) at any finite temperature. The QHA also offers a way to compute the adiabatic bulk modulus from the isothermal one, given that:
\[
\begin{equation*}
K_{S}=K_{T}+\frac{\alpha_{V}^{2} V T K_{T}^{2}}{C_{V}} \tag{8.12}
\end{equation*}
\]
where the dependence of all quantities on temperature is omitted for clarity sake.
One of the powerful advantages of the QHA is that of allowing for a natural combination of pressure and temperature effects on structural and elastic properties of materials. By differentiating equation \(\sqrt{8.9}\) with respect to the volume and changing sign, the thermal pressure is obtained:
\[
\begin{equation*}
P(V ; T)=-\frac{\partial F^{Q H A}(V ; T)}{\partial V} \tag{8.13}
\end{equation*}
\]

The description of the isothermal bulk modulus of the system at simultaneous hightemperatures and high-pressures, \(K_{T}(P, T)\), can be obtained as an isothermal second derivative of equation 8.9 with respect to the volume and by exploiting relation 8.13):
\[
\begin{equation*}
K_{T}(P, T)=V(P, T)\left(\frac{\partial^{2} F^{Q H A}(V(P, T) ; T)}{\partial V(P, T)^{2}}\right)_{T} \tag{8.14}
\end{equation*}
\]

Let us finally recall that the QHA allows for computing the difference between constant-pressure and constant-volume specific heats as follows:
\[
\begin{equation*}
C_{P}(T)-C_{V}(T)=\alpha_{V}^{2}(T) K(T) V(T) T \tag{8.15}
\end{equation*}
\]

\subsection*{8.1.4 Grüneisen Simplified Model}

Grüneisen formalism assumes a linear dependence of vibration phonon frequencies on volume, in the vicinity of the zero temperature equilibrium volume \(V_{0}\). The key quantity is here represented by the dimensionless mode Grüneisen parameter, which for each phonon reads:
\[
\begin{equation*}
\gamma_{\mathbf{k} j}=-\frac{V_{0}}{\omega_{\mathbf{k} j}\left(V_{0}\right)}\left(\frac{\partial \omega_{\mathbf{k} j}(V)}{\partial V}\right)_{V=V_{0}} \tag{8.16}
\end{equation*}
\]

An overall thermal Grüneisen parameter, \(\gamma(T)\) can be defined as the weighted average of the various mode Grüneisen parameters in terms of the corresponding mode contribution to the specific heat:
\[
\begin{equation*}
\gamma(T)=\sum_{\mathbf{k} j} \frac{\gamma_{\mathbf{k} j} C_{V, \mathbf{k} j}(T)}{C_{V, \mathbf{k} j}(T)} \tag{8.17}
\end{equation*}
\]

Within Grüneisen approach, the volumetric thermal expansion is given by:
\[
\begin{equation*}
\alpha_{V}^{g r u}(T)=\frac{1}{K V_{0}} \sum_{\mathbf{k} j} \gamma_{\mathbf{k} j} C_{V, \mathbf{k} j}(T) \tag{8.18}
\end{equation*}
\]

\subsection*{8.2 The Automated Algorithm: Some Computational Parameters}

A fully-automated algorithm for computing quasi-harmonic thermal properties of solids has been implemented in the Crystal program, which relies on the direct fitting of individual phonon frequencies, \(\omega_{\mathbf{k} p}(V)\), versus volume. Once phonon frequencies are known continuously as a function of volume, all other properties can indeed be analytically derived through the expressions reported above. In order to uniquely determine the continuity of phonon frequencies among different volumes, correctly accounting for possible crossings, scalar products of the corresponding normal modes are performed. The definition of both the explored volume range and the number of considered volumes has been devised so as to make it as black-box as possible.
Here, this fully-automated computational procedure is briefly sketched and the main computational parameters one can play with are introduced:
- The starting geometrical structure of the system must be the zero-temperature, zeropressure one. One can either start from a previously fully-optimized structure or use the PREOPTGEOM sub-keyword, within the QHA input block to activate an accurate initial optimization as concerns both lattice parameters and atomic positions. The zerotemperature, zero-pressure equilibrium volume \(V_{0}\) is determined (note that zero-point motion is neglected at this stage);
- A volume range is defined from a \(-s \%\) compression to a \(+2 s \%\) expansion with respect to \(V_{0}\), where \(N_{V}\) equidistant volumes are considered (possible values for \(N_{V}\) are 4,7 and 13 , corresponding to equidistances of \(s \%, s / 2 \%\) and \(s / 4 \%\), respectively). At each volume, the structure is fully relaxed via a volume-constrained geometry optimization and phonon frequencies are computed. By default, the step \(s\) is set to \(3 \%\) and \(N_{V}\) to 4 , which means that vibration frequencies are actually computed at 4 volumes covering a volume range from a \(-3 \%\) compression to a \(+6 \%\) expansion. The step amplitude \(s\) can be modified with the STEP sub-keyword and the number of considered volumes for frequency calculation \(N_{V}\) with the POINTS sub-keyword as:

Title
Geometry input block
QHA \# Keyword to perform a Quasi-harmonic calculation
STEP \# Keyword to change volume step
3.5 \# New step [3.5\%]

POINTS \# Keyword to change number of volumes
7 \# New number of volumes
END \# End of the Quasi-harmonic input block
END \# End of the Geometry input block
Basis set block

This is a graphical representation of the standard definition of the volume interval and number of volumes where vibration frequencies are actually computed:

Figure 8.1: Definition of volume step and number

It is recommended to use the above standard definition for the explored volume range. However, if different volume ranges have to be explored (for instance more oriented towards compression than expansion), the sub-keyword VRANGE can be used, which allows for a more customized definition (the syntax is the same as for the same option in the EOS, equation-of-state, block);
- Once all volumes have been considered, purely electronic internal energies as a function of volume are fitted to various equations-of-state. The third-order Birch-Murnaghan is the one to be used for subsequent thermodynamic purposes. The continuity of phonon frequencies on volume is determined before individually fitting them as a function of volume with polynomial functions of different orders, up to third order (a second-order polynomial fit is used as a default). For each phonon mode \(p\), a coefficient of determination \(R_{p}^{2}\) is computed, which measures the goodness-of-fit (the closer \(R^{2}\) to 1 , the better the fitting). An average index over all modes \(\bar{R}^{2}\) is also defined which gives an overall measure of the regularity of all computed frequencies on volume. If low values of \(R_{p}^{2}\) are found for some modes, warnings will be printed in the output as one can not expect a good quasi-harmonic description from irregular vibration frequencies as a function of volume;
- From fitted frequencies, at any considered temperature \(T\) the Helmholtz free energy is evaluated through equations (8.8 and 8.9 at several volumes, minimized for determining the corresponding equilibrium volume \(V(T)\) and fitted for getting \(K(T)\) from its second derivative. By fitting \(V(T)\) data to a polynomial function and by taking its temperature derivative, the thermal expansion coefficient \(\alpha_{V}(T)\) of equation 8.10 can then be computed numerically.

All computed thermal properties are evaluated at a series of temperature values to be defined by means of the TEMPERAT sub-keyword (by default 50 temperatures would otherwise be considered from 10 K to 300 K). Given that some properties are obtained as numerical derivatives with respect to temperature (as the thermal expansion coefficient), at least 50 temperature values must be considered. The desired set of temperatures can be modified as:
```

Title
Geometry input block
QHA
TEMPERAT
100 10 2000
END
END \# End of the Geometry input block

# Keyword to perform a Quasi-harmonic calculation

# Keyword to change temperature range

# 100 temperature values from 10 K to 2000 K

# End of the Quasi-harmonic input block

Basis set block

```
. . .

\subsection*{8.2.1 Optional Keywords}

This is a list of some possible (optional) sub-keywords to be inserted after QHA. This is just a partial list since the main sub-keywords have been described above.
- A RESTART Activates a restart from a previous incomplete run. The file EOSINFO.DAT from the previous run must be provided.
- A RESTART2 Activates a restart from a previous complete run. The file EOSINFO.DAT from the previous run must be provided. Useful when the temperature range needs to be changed, which can be done a posteriori at almost no additional cost.
- A NEGLEFRE
- NFREQ Number of frequencies to be neglected
- * FREQ(1:NFREQ) List of frequencies to be neglected

\subsection*{8.3 QHA: A Guided Tour of the Output}

In order to illustrate how to prepare an Input file for the calculation of quasi-harmonic properties with Crystal and how to extract the corresponding information from the Output file, let us consider the simple crystal of \(\mathrm{Al}_{2} \mathrm{O}_{3}\) corundum. The geometry block of the Input file reads as follows:
```

CORUNDUM
CRYSTAL
O O
167
4.82860168 13.11488905
2
13 3.333333333333E-01 -3.333333333333E-01 1.955179055198E-02
8 -3.617448850731E-01 -3.333333333333E-01 -8.333333333333E-02
SCELPHONO
1 -1 0
0 1-1
1 1 1
QHA
TEMPERAT
100 10 1200
END
END

```

The keyword QHA must be inserted at the end of the geometry input block and in turn opens a sub-block that must be terminated with an END keyword. Note that the structure given in input is assumed to be fully optimized. If not, one can perform a preliminary geometry optimization by inserting the PREOPTGEOM keyword after QHA. The calculation in this case is performed on the conventional super-cell.

\subsection*{8.3.1 The Equation-of-State}

At 4 (by default) volumes (the equilibrium one, a compressed one and two expanded ones) the structure of the system is relaxed by means of volume-constrained geometry optimizations. At
each optimized structure, phonon vibration frequencies are computed. Once the four vibration frequency calculations have been performed, the actual quasi-harmonic elaboration starts. The internal energy of the system as a function of volume is first fitted to various equations of state and the corresponding information reported in the output (no thermal contributions are included at this stage, not even zero-point terms). See the EOS Tutorial for more details on this part:

For each EOS, the athermal P-V equation-of-state is given (at 0 K , with no zero-point term). This is the Birch-Murnaghan third-order one, for instance:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{THERMODYNAMIC FUNCTIONS OBTAINED AT O K WITH EOS: BIRCH-MURNAGHAN 1947}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\(\mathrm{V}=\mathrm{VOLUME}, \mathrm{P}=\) PRESSURE, E = ENERGY, \(\mathrm{G}=\mathrm{GIBBS}\) FREE ENERGY, B = BULK MODULUS} \\
\hline V (\(\mathrm{A}^{\wedge} 3\)) & P (GPa) & E (a.u.) & G (a.u.) & B (GPa) \\
\hline 256.87 & 7.56 & -4263.43717037 & -4262.99197328 & 260.73 \\
\hline 257.88 & 6.54 & -4263.43880796 & -4263.05211322 & 256.74 \\
\hline 258.89 & 5.54 & -4263.44021102 & -4263.11133295 & 252.82 \\
\hline 259.91 & 4.56 & -4263.44138406 & -4263.16964689 & 248.95 \\
\hline 260.92 & 3.60 & -4263.44233147 & -4263. 22706920 & 245.14 \\
\hline 261.93 & 2.65 & -4263.44305757 & -4263. 28361377 & 241.40 \\
\hline 262.95 & 1.73 & -4263.44356658 & -4263. 33929423 & 237.71 \\
\hline 263.96 & 0.82 & -4263.44386265 & -4263. 39412397 & 234.08 \\
\hline 264.97 & -0.07 & -4263.44394982 & -4263.44811612 & 230.50 \\
\hline 265.99 & -0.94 & -4263.44383209 & -4263.50128358 & 226.98 \\
\hline 267.00 & -1.80 & -4263.44351335 & -4263.55363902 & 223.51 \\
\hline 268.01 & -2.64 & -4263.44299741 & -4263.60519485 & 220.10 \\
\hline 269.03 & -3.46 & -4263.44228803 & -4263.65596329 & 216.74 \\
\hline 270.04 & -4.27 & -4263.44138888 & -4263.70595632 & 213.43 \\
\hline 271.05 & -5.06 & -4263.44030355 & -4263.75518571 & 210.17 \\
\hline 272.07 & -5.84 & -4263.43903558 & -4263.80366301 & 206.96 \\
\hline 273.08 & -6.61 & -4263.43758843 & -4263.85139958 & 203.80 \\
\hline 274.10 & -7.36 & -4263.43596549 & -4263.89840657 & 200.68 \\
\hline 275.11 & -8.09 & -4263.43417008 & -4263.94469491 & 197.61 \\
\hline 276.12 & -8.81 & -4263.43220547 & -4263.99027538 & 194.59 \\
\hline 277.14 & -9.52 & -4263.43007487 & -4264.03515853 & 191.61 \\
\hline 278.15 & -10.21 & -4263.42778140 & -4264.07935474 & 188.68 \\
\hline 279.16 & -10.89 & -4263.42532814 & -4264.12287421 & 185.79 \\
\hline 280.18 & -11.56 & -4263.42271812 & -4264.16572696 & 182.94 \\
\hline 281.19 & -12.22 & -4263.41995429 & -4264. 20792284 & 180.14 \\
\hline
\end{tabular}

\subsection*{8.3.2 Phonon Modes Continuity on Volume}

The QHA results are printed after the following header:
```

*******************************************************************************
*******************************************************************************
*******************************************************************************
QUASI-HARMONIC APPROXIMATION
A. Erba (2014)
Please do cite the following references when using this module:
A. Erba, J. Chem. Phys., 141, 124115 (2014)
A. Erba, M. Shahrokhi, R. Moradian, R. Dovesi, J. Chem. Phys., 142, 044114 (2015)
A. Erba, J. Maul, M. De la Pierre, R. Dovesi, J. Chem. Phys., 142, 204502 (2015)
A. Erba, J. Maul, M. Itou, R. Dovesi, Y. Sakurai, Phys. Rev. Lett., 115, 117402 (2015)

```
```

*******************************************************************************

```



```

*******************************************************************************

```

As a first step, the continuity of phonon modes on volume is established by computing scalar products of the corresponding eigenvectors. The evolution of each vibration frequency on volume is reported. If the program fails at establishing the required continuity, warnings are printed:

ESTABLISHING CONTINUITY OF NORMAL MODES ON VOLUME
ANALYSIS OF NORMAL MODE SCALAR PRODUCTS:
WHEN TWO OR MORE SCALAR PRODUCTS ARE CLOSER THAN 0.4 THEY ARE REPORTED as they may cause a mismatch. otherwise, the continuity is considered as safe

FOUND CONTINUITY OF FREQUENCIES WITH VOLUME:
\begin{tabular}{ccc}
FREQUENCY \# & 1 & \\
VOL (A~3) & FREQ (\(\left.\mathrm{cm}^{\wedge}-1\right)\) & IRREP \\
& & \\
256.8676 & 0.0000 & 4 \\
264.8122 & 0.0000 & 4 \\
272.9187 & 0.0000 & 4 \\
281.1886 & 0.0000 & 4 \\
& & \\
FREQUENCY \# & 2 & \\
VOL (A~3) & FREQ (cm^-1) & IRREP \\
& & \\
256.8676 & 0.0000 & 3 \\
264.8122 & 0.0000 & 3 \\
272.9187 & 0.0000 & 3 \\
281.1886 & 0.0000 & 3
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FREQUENCY \# & & \\
\hline VOL (\(A^{\wedge} 3\)) & FREQ (\(\mathrm{cm}^{\sim}-1\)) & IRREP \\
\hline 256.8676 & 0.0000 & 3 \\
\hline 264.8122 & 0.0000 & 3 \\
\hline 272.9187 & 0.0000 & 3 \\
\hline 281.1886 & 0.0000 & 3 \\
\hline FREQUENCY \# & 4 & \\
\hline VOL (\(\mathrm{A}^{\text {~ }}\)) & FREQ (\(\mathrm{cm}^{\sim}-1\)) & IRREP \\
\hline 256.8676 & 154.0503 & 3 \\
\hline 264.8122 & 146.8375 & 3 \\
\hline 272.9187 & 139.3457 & 3 \\
\hline 281.1886 & 131.6465 & 3 \\
\hline FREQUENCY \# & 5 & \\
\hline VOL (\(\mathrm{A}^{\text {-3 }}\)) & FREQ (\(\mathrm{cm}^{\wedge}-1\)) & IRREP \\
\hline 256.8676 & 154.0503 & 3 \\
\hline 264.8122 & 146.8375 & 3 \\
\hline 272.9187 & 139.3457 & 3 \\
\hline 281.1886 & 131.6465 & 3 \\
\hline FREQUENCY \# & 6 & \\
\hline VOL (A^3) & FREQ (\(\mathrm{cm}^{\sim}-1\)) & IRREP \\
\hline 256.8676 & 154.0503 & 1 \\
\hline 264.8122 & 146.8375 & 1 \\
\hline 272.9187 & 139.3457 & 1 \\
\hline 281.1886 & 131.6465 & 1 \\
\hline FREQUENCY \# & 7 & \\
\hline VOL (\(A^{\wedge} 3\)) & FREQ (\(\mathrm{cm}^{\wedge}-1\)) & IRREP \\
\hline 256.8676 & 154.0503 & 1 \\
\hline 264.8122 & 146.8375 & 1 \\
\hline 272.9187 & 139.3457 & 1 \\
\hline 281.1886 & 131.6465 & 1 \\
\hline FREQUENCY \# & 8 & \\
\hline VOL (\(A^{\wedge} 3\)) & FREQ (\(\mathrm{cm}^{\wedge}-1\)) & IRREP \\
\hline 256.8676 & 264.1931 & 4 \\
\hline 264.8122 & 256.7193 & 4 \\
\hline 272.9187 & 249.7118 & 4 \\
\hline 281.1886 & 242.5474 & 4 \\
\hline FREQUENCY \# & 9 & \\
\hline VOL (\(A^{\wedge} 3\)) & FREQ (\(\mathrm{cm}^{\wedge}-1\)) & IRREP \\
\hline 256.8676 & 264.1931 & 2 \\
\hline 264.8122 & 256.7193 & 2 \\
\hline 272.9187 & 249.7118 & 2 \\
\hline 281.1886 & 242.5474 & 2 \\
\hline
\end{tabular}

Each frequency is then fitted as a function of volume with different polynomial functions and a coefficient of determination is computed to measure the goodness-of-fit (the closer to 1 , the better). If low values of this parameter are obtained, warnings are printed in the output.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{FITTING FREQUENCIES VERSUS VOLUME FOR MAX. NUMBER THE COEFFICIENT OF DETERMINATION R^2 IS REPORTED FOR DIFFERENT POLYNOMIAL FITTING ORDERS. ONLY ONE FREQ PER MODE IS REPORTED.} \\
\hline FREQ \# & R^2 LINEAR & R^2 QUADRATIC & R^2 CUBIC \\
\hline 4 & 0.999968 & 0.999999 & 1.000000 \\
\hline 6 & 0.999968 & 0.999999 & 1.000000 \\
\hline 8 & 0.999580 & 0.999921 & 1.000000 \\
\hline 9 & 0.999580 & 0.999921 & 1.000000 \\
\hline 10 & 0.999960 & 0.999998 & 1.000000 \\
\hline 12 & 0.999960 & 0.999998 & 1.000000 \\
\hline 14 & 0.997897 & 0.999994 & 1.000000 \\
\hline 15 & 0.997897 & 0.999994 & 1.000000 \\
\hline 16 & 0.999307 & 1.000000 & 1.000000 \\
\hline 17 & 0.999916 & 0.999997 & 1.000000 \\
\hline 19 & 0.999208 & 0.999990 & 1.000000 \\
\hline 20 & 0.999208 & 0.999990 & 1.000000 \\
\hline 21 & 0.997294 & 0.999999 & 1.000000 \\
\hline 22 & 0.999971 & 0.999998 & 1.000000 \\
\hline 24 & 0.999790 & 0.999994 & 1.000000 \\
\hline 26 & 0.999790 & 0.999994 & 1.000000 \\
\hline 28 & 0.998933 & 0.999980 & 1.000000 \\
\hline 84 & 0.999068 & 0.999992 & 1.000000 \\
\hline 85 & 0.997886 & 0.999999 & 1.000000 \\
\hline 87 & 0.998882 & 1.000000 & 1.000000 \\
\hline 88 & 0.998882 & 1.000000 & 1.000000 \\
\hline 89 & 0.998838 & 0.999979 & 1.000000 \\
\hline 90 & 0.998838 & 0.999979 & 1.000000 \\
\hline AVERAGE & 0.998794 & 0.999971 & 1.000000 \\
\hline
\end{tabular}

In this case, excellent coefficients of determination are obtained (to second order; to third order they are ideal just because we fit over 4 points), which means that vibration frequencies are varying very regularly with volume, a necessary prerequisite to a good quasi-harmonic description of the system.

\subsection*{8.3.3 Grüneisen Model}

Some thermal properties are then printed as obtained from the simplified Grüneisen model. The thermal expansion coefficient, the overall Grüneisen parameter, and the difference between constant-pressure and constant-volume specific heat are reported as a function of temperature:
\begin{tabular}{rrcc}
\multicolumn{1}{r|}{ T (K) } & ALPHA (1/K) & GRUNEISEN & Cp-Cv (J/mol*K) \\
& & & \\
10.00 & \(0.44781 \mathrm{E}-12\) & 1.662 & 0.0000 \\
22.02 & \(0.94330 \mathrm{E}-08\) & 1.661 & 0.0000 \\
34.04 & \(0.12057 \mathrm{E}-06\) & 1.650 & 0.0000 \\
46.06 & \(0.37164 \mathrm{E}-06\) & 1.622 & 0.0002 \\
58.08 & \(0.73774 \mathrm{E}-06\) & 1.582 & 0.0012 \\
70.10 & \(0.12272 \mathrm{E}-05\) & 1.540 & 0.0039 \\
82.12 & \(0.18530 \mathrm{E}-05\) & 1.502 & 0.0104 \\
94.14 & \(0.26122 \mathrm{E}-05\) & 1.473 & 0.0236 \\
106.16 & \(0.34862 \mathrm{E}-05\) & 1.450 & 0.0475 \\
118.18 & \(0.44475 \mathrm{E}-05\) & 1.433 & 0.0860 \\
130.20 & \(0.54659 \mathrm{E}-05\) & 1.419 & 0.1432 \\
142.22 & \(0.65134 \mathrm{E}-05\) & 1.409 & 0.2221 \\
154.24 & \(0.75658 \mathrm{E}-05\) & 1.401 & 0.3249 \\
166.26 & \(0.86042 \mathrm{E}-05\) & 1.395 & 0.4530 \\
178.28 & \(0.96141 \mathrm{E}-05\) & 1.389 & 0.6065 \\
190.30 & \(0.10585 \mathrm{E}-04\) & 1.385 & 0.7848 \\
202.32 & \(0.11512 \mathrm{E}-04\) & 1.381 & 0.9867 \\
214.34 & \(0.12389 \mathrm{E}-04\) & 1.378 & 1.2108 \\
226.36 & \(0.13216 \mathrm{E}-04\) & 1.376 & 1.4550 \\
238.38 & \(0.13992 \mathrm{E}-04\) & 1.373 & 1.7175 \\
250.40 & \(0.14718 \mathrm{E}-04\) & 1.371 & 1.9963 \\
262.42 & \(0.15396 \mathrm{E}-04\) & 1.370 & 2.2894 \\
274.44 & \(0.16029 \mathrm{E}-04\) & 1.368 & 2.5951 \\
286.46 & \(0.16618 \mathrm{E}-04\) & 1.367 & 2.9115 \\
298.48 & \(0.17167 \mathrm{E}-04\) & 1.366 & 3.2373 \\
310.51 & \(0.17677 \mathrm{E}-04\) & 1.364 & 3.5710
\end{tabular}

\subsection*{8.3.4 Main Results: Thermal Properties from Helmholtz Free Energy}

Then, the main results of the quasi-harmonic calculation are reported: thermal properties as derived from the Helmholtz free energy. Several properties are reported as a function of temperature: volume (V), isothermal bulk modulus (Bt), thermal expansion coefficient (ALPHA), difference between constant-pressure and constant-volume specific heats (\(\mathrm{Cp}-\mathrm{Cv}\)), adiabatic bulk modulus (Bs), difference between constant-pressure and constant-volume entropy (SpSv):

\footnotetext{

THERMAL PROPERTIES FROM HELMHOLTZ FREE ENERGY
** *
}

ZERO-POINT ENERGY INCLUDED

NUMBER OF POINTS: 4

ORDER OF POLYNOMIALS: 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline T (K) & \(V\) (Ang^3) & Bt (GPa) & ALPHA (\(1 / \mathrm{K}\)) & \(\mathrm{Cp}-\mathrm{Cv}\) (\(\mathrm{J} / \mathrm{mol} * \mathrm{~K}\)) & Bs (GPa) & \(\mathrm{Sp}-\mathrm{Sv}\) (J/mol \\
\hline 10.00 & 267.4132 & 225.407 & \(0.00000 \mathrm{E}+00\) & 0.000 & 225.407 & 0.000 \\
\hline 22.02 & 267.4132 & 225.406 & \(0.24715 \mathrm{E}-07\) & 0.000 & 225.407 & 0.004 \\
\hline 34.04 & 267.4132 & 225.405 & \(0.24684 \mathrm{E}-06\) & 0.000 & 225.411 & 0.046 \\
\hline 46.06 & 267.4148 & 225.395 & \(0.49375 \mathrm{E}-06\) & 0.000 & 225.405 & 0.139 \\
\hline 58.08 & 267.4164 & 225.378 & \(0.93795 \mathrm{E}-06\) & 0.002 & 225.402 & 0.274 \\
\hline 70.10 & 267.4196 & 225.350 & \(0.13823 \mathrm{E}-05\) & 0.005 & 225.387 & 0.456 \\
\hline 82.12 & 267.4259 & 225.300 & \(0.20736 \mathrm{E}-05\) & 0.013 & 225.364 & 0.689 \\
\hline 94.14 & 267.4323 & 225.241 & \(0.29126 \mathrm{E}-05\) & 0.029 & 225.341 & 0.972 \\
\hline 106.16 & 267.4434 & 225.155 & \(0.37520 \mathrm{E}-05\) & 0.054 & 225.292 & 1.302 \\
\hline 118.18 & 267.4577 & 225.046 & \(0.47896 \mathrm{E}-05\) & 0.098 & 225.240 & 1.670 \\
\hline 130.20 & 267.4736 & 224.923 & \(0.58747 \mathrm{E}-05\) & 0.163 & 225.181 & 2.064 \\
\hline 142.22 & 267.4942 & 224.774 & \(0.69609 \mathrm{E}-05\) & 0.250 & 225.104 & 2.479 \\
\hline 154.24 & 267.5197 & 224.602 & \(0.81466 \mathrm{E}-05\) & 0.370 & 225.020 & 2.906 \\
\hline 166.26 & 267.5467 & 224.419 & \(0.92323 \mathrm{E}-05\) & 0.512 & 224.926 & 3.338 \\
\hline 178.28 & 267.5784 & 224.216 & 0.10268E-04 & 0.679 & 224.814 & 3.772 \\
\hline 190.30 & 267.6134 & 223.998 & \(0.11354 \mathrm{E}-04\) & 0.886 & 224.703 & 4.206 \\
\hline 202.32 & 267.6515 & 223.769 & \(0.12242 \mathrm{E}-04\) & 1.094 & 224.567 & 4.636 \\
\hline 214.34 & 267.6928 & 223.527 & \(0.13178 \mathrm{E}-04\) & 1.341 & 224.433 & 5.061 \\
\hline 226.36 & 267.7357 & 223.281 & \(0.14064 \mathrm{E}-04\) & 1.612 & 224.298 & 5.479 \\
\hline 238.38 & 267.7834 & 223.018 & \(0.14950 \mathrm{E}-04\) & 1.916 & 224.158 & 5.895 \\
\hline 250.40 & 267.8327 & 222.751 & \(0.15788 \mathrm{E}-04\) & 2.242 & 224.016 & 6.304 \\
\hline 262.42 & 267.8851 & 222.475 & \(0.16524 \mathrm{E}-04\) & 2.572 & 223.858 & 6.709 \\
\hline 274.44 & 267.9391 & 222.194 & \(0.17164 \mathrm{E}-04\) & 2.899 & 223.688 & 7.107 \\
\hline 286.46 & 267.9963 & 221.905 & \(0.17849 \mathrm{E}-04\) & 3.269 & 223.526 & 7.503 \\
\hline
\end{tabular}

Directional thermal expansion coefficients are then reported, as well as the \(\mathrm{a}, \mathrm{b}\) and c lattice parameters as a function of temperature:
**
LINEAR THERMAL EXPANSION OF CONVENTIONAL LATTICE PARAMETERS
\begin{tabular}{rrlllll}
\(\mathrm{T}(\mathrm{K})\) & \(\mathrm{a}(\mathrm{Ang})\) & ALPHA_a (1/K) & b (Ang) & ALPHA_b (1/K) & c (Ang) & ALPHA_c (1/K) \\
& & & & & & \\
10.00 & 4.8438 & \(0.00000 \mathrm{E}+00\) & 4.8438 & \(0.00000 \mathrm{E}+00\) & 13.1605 & \(0.00000 \mathrm{E}+00\) \\
22.02 & 4.8438 & \(0.79935 \mathrm{E}-08\) & 4.8438 & \(0.79935 \mathrm{E}-08\) & 13.1605 & \(0.87281 \mathrm{E}-08\) \\
34.04 & 4.8438 & \(0.79835 \mathrm{E}-07\) & 4.8438 & \(0.79835 \mathrm{E}-07\) & 13.1605 & \(0.87171 \mathrm{E}-07\) \\
46.06 & 4.8439 & \(0.15969 \mathrm{E}-06\) & 4.8439 & \(0.15969 \mathrm{E}-06\) & 13.1605 & \(0.17436 \mathrm{E}-06\) \\
58.08 & 4.8439 & \(0.30336 \mathrm{E}-06\) & 4.8439 & \(0.30336 \mathrm{E}-06\) & 13.1605 & \(0.33123 \mathrm{E}-06\) \\
70.10 & 4.8439 & \(0.44709 \mathrm{E}-06\) & 4.8439 & \(0.44709 \mathrm{E}-06\) & 13.1606 & \(0.48816 \mathrm{E}-06\) \\
82.12 & 4.8439 & \(0.67066 \mathrm{E}-06\) & 4.8439 & \(0.67066 \mathrm{E}-06\) & 13.1607 & \(0.73223 \mathrm{E}-06\) \\
94.14 & 4.8440 & \(0.94204 \mathrm{E}-06\) & 4.8440 & \(0.94204 \mathrm{E}-06\) & 13.1608 & \(0.10285 \mathrm{E}-05\) \\
106.16 & 4.8440 & \(0.12136 \mathrm{E}-05\) & 4.8440 & \(0.12136 \mathrm{E}-05\) & 13.1610 & \(0.13248 \mathrm{E}-05\) \\
118.18 & 4.8441 & \(0.15492 \mathrm{E}-05\) & 4.8441 & \(0.15492 \mathrm{E}-05\) & 13.1613 & \(0.16912 \mathrm{E}-05\) \\
130.20 & 4.8442 & \(0.19002 \mathrm{E}-05\) & 4.8442 & \(0.19002 \mathrm{E}-05\) & 13.1615 & \(0.20742 \mathrm{E}-05\) \\
142.22 & 4.8443 & \(0.22517 \mathrm{E}-05\) & 4.8443 & \(0.22517 \mathrm{E}-05\) & 13.1619 & \(0.24575 \mathrm{E}-05\) \\
154.24 & 4.8445 & \(0.26353 \mathrm{E}-05\) & 4.8445 & \(0.26353 \mathrm{E}-05\) & 13.1623 & \(0.28759 \mathrm{E}-05\) \\
166.26 & 4.8446 & \(0.29867 \mathrm{E}-05\) & 4.8446 & \(0.29867 \mathrm{E}-05\) & 13.1628 & \(0.32588 \mathrm{E}-05\) \\
178.28 & 4.8448 & \(0.33218 \mathrm{E}-05\) & 4.8448 & \(0.33218 \mathrm{E}-05\) & 13.1634 & \(0.36240 \mathrm{E}-05\) \\
190.30 & 4.8450 & \(0.36734 \mathrm{E}-05\) & 4.8450 & \(0.36734 \mathrm{E}-05\) & 13.1640 & \(0.40069 \mathrm{E}-05\) \\
202.32 & 4.8452 & \(0.39610 \mathrm{E}-05\) & 4.8452 & \(0.39610 \mathrm{E}-05\) & 13.1646 & \(0.43198 \mathrm{E}-05\) \\
214.34 & 4.8455 & \(0.42640 \mathrm{E}-05\) & 4.8455 & \(0.42640 \mathrm{E}-05\) & 13.1653 & \(0.46493 \mathrm{E}-05\)
\end{tabular}
\begin{tabular}{lllllll}
226.36 & 4.8457 & \(0.45512 \mathrm{E}-05\) & 4.8457 & \(0.45512 \mathrm{E}-05\) & 13.1661 & \(0.49614 \mathrm{E}-05\) \\
238.38 & 4.8460 & \(0.48382 \mathrm{E}-05\) & 4.8460 & \(0.48382 \mathrm{E}-05\) & 13.1669 & \(0.52732 \mathrm{E}-05\) \\
250.40 & 4.8463 & \(0.51098 \mathrm{E}-05\) & 4.8463 & \(0.51098 \mathrm{E}-05\) & 13.1678 & \(0.55679 \mathrm{E}-05\) \\
262.42 & 4.8466 & \(0.53486 \mathrm{E}-05\) & 4.8466 & \(0.53486 \mathrm{E}-05\) & 13.1687 & \(0.58267 \mathrm{E}-05\) \\
274.44 & 4.8469 & \(0.55561 \mathrm{E}-05\) & 4.8469 & \(0.55561 \mathrm{E}-05\) & 13.1696 & \(0.60514 \mathrm{E}-05\) \\
286.46 & 4.8473 & \(0.57785 \mathrm{E}-05\) & 4.8473 & \(0.57785 \mathrm{E}-05\) & 13.1706 & \(0.62921 \mathrm{E}-05\) \\
298.48 & 4.8476 & \(0.59855 \mathrm{E}-05\) & 4.8476 & \(0.59855 \mathrm{E}-05\) & 13.1716 & \(0.65159 \mathrm{E}-05\)
\end{tabular}

\subsection*{8.3.5 Thermal Pressure: The P-V-T Equation-of-State}

While previous properties refer to zero pressure, from now on pressure will be included. The P-V-T EOS is explicitly given (for each T, the corresponding P-V relation is reported):

PRESSURE-VOLUME-TEMPERATURE RELATION
\begin{tabular}{lcccc}
T (K) & \(\mathrm{V}\left(\mathrm{Ang}^{\wedge} 3\right)\) & \(\mathrm{P}(\mathrm{GPa})\) & \(\mathrm{F}(\mathrm{Ha} / \mathrm{cell})\) & \(\mathrm{G}(\mathrm{Ha} / \mathrm{cell})\) \\
& & & & \\
10.00 & 256.868 & 9.828 & \(-0.4263336025683 \mathrm{E}+04\) & \(-0.4262756991487 \mathrm{E}+04\) \\
10.00 & 257.706 & 8.973 & \(-0.4263337833759 \mathrm{E}+04\) & \(-0.4262807436702 \mathrm{E}+04\) \\
10.00 & 258.545 & 8.132 & \(-0.4263339478696 \mathrm{E}+04\) & \(-0.4262857251925 \mathrm{E}+04\) \\
10.00 & 259.384 & 7.303 & \(-0.4263340963054 \mathrm{E}+04\) & \(-0.4262906445377 \mathrm{E}+04\) \\
10.00 & 260.222 & 6.488 & \(-0.4263342289350 \mathrm{E}+04\) & \(-0.4262955025140 \mathrm{E}+04\) \\
10.00 & 261.061 & 5.686 & \(-0.4263343460057 \mathrm{E}+04\) & \(-0.4263002999190 \mathrm{E}+04\) \\
10.00 & 261.900 & 4.896 & \(-0.4263344477610 \mathrm{E}+04\) & \(-0.4263050375359 \mathrm{E}+04\) \\
10.00 & 262.738 & 4.118 & \(-0.4263345344399 \mathrm{E}+04\) & \(-0.4263097161377 \mathrm{E}+04\) \\
10.00 & 263.577 & 3.353 & \(-0.4263346062779 \mathrm{E}+04\) & \(-0.4263143364837 \mathrm{E}+04\) \\
10.00 & 264.416 & 2.599 & \(-0.4263346635064 \mathrm{E}+04\) & \(-0.4263188993224 \mathrm{E}+04\) \\
10.00 & 265.254 & 1.857 & \(-0.4263347063528 \mathrm{E}+04\) & \(-0.4263234053927 \mathrm{E}+04\) \\
10.00 & 266.093 & 1.127 & \(-0.4263347350410 \mathrm{E}+04\) & \(-0.4263278554182 \mathrm{E}+04\) \\
10.00 & 266.931 & 0.408 & \(-0.4263347497912 \mathrm{E}+04\) & \(-0.4263322501161 \mathrm{E}+04\)
\end{tabular}
\begin{tabular}{lllll}
22.02 & 256.868 & 9.828 & \(-0.4263336025695 \mathrm{E}+04\) & \(-0.4262756991317 \mathrm{E}+04\) \\
22.02 & 257.706 & 8.973 & \(-0.4263337833771 \mathrm{E}+04\) & \(-0.4262807436523 \mathrm{E}+04\) \\
22.02 & 258.545 & 8.132 & \(-0.4263339478709 \mathrm{E}+04\) & \(-0.4262857251732 \mathrm{E}+04\) \\
22.02 & 259.384 & 7.303 & \(-0.4263340963068 \mathrm{E}+04\) & \(-0.4262906445182 \mathrm{E}+04\) \\
22.02 & 260.222 & 6.488 & \(-0.4263342289364 \mathrm{E}+04\) & \(-0.4262955024933 \mathrm{E}+04\) \\
22.02 & 261.061 & 5.686 & \(-0.4263343460072 \mathrm{E}+04\) & \(-0.4263002998975 \mathrm{E}+04\) \\
22.02 & 261.900 & 4.896 & \(-0.4263344477626 \mathrm{E}+04\) & \(-0.4263050375125 \mathrm{E}+04\) \\
22.02 & 262.738 & 4.118 & \(-0.4263345344416 \mathrm{E}+04\) & \(-0.4263097161136 \mathrm{E}+04\) \\
22.02 & 263.577 & 3.353 & \(-0.4263346062797 \mathrm{E}+04\) & \(-0.4263143364578 \mathrm{E}+04\) \\
22.02 & 264.416 & 2.599 & \(-0.4263346635082 \mathrm{E}+04\) & \(-0.4263188992958 \mathrm{E}+04\) \\
22.02 & 265.254 & 1.857 & \(-0.4263347063548 \mathrm{E}+04\) & \(-0.4263234053632 \mathrm{E}+04\) \\
22.02 & 266.093 & 1.127 & \(-0.4263347350431 \mathrm{E}+04\) & \(-0.4263278553875 \mathrm{E}+04\) \\
22.02 & 266.931 & 0.408 & \(-0.4263347497933 \mathrm{E}+04\) & \(-0.4263322500838 \mathrm{E}+04\) \\
\(\ldots\) & & & & \\
\(\ldots\) & & & & \\
34.04 & 256.868 & 9.828 & \(-0.4263336026331 \mathrm{E}+04\) & \(-0.4262756985744 \mathrm{E}+04\) \\
34.04 & 257.706 & 8.973 & \(-0.4263337834427 \mathrm{E}+04\) & \(-0.4262807430739 \mathrm{E}+04\) \\
34.04 & 258.545 & 8.132 & \(-0.4263339479387 \mathrm{E}+04\) & \(-0.4262857245733 \mathrm{E}+04\)
\end{tabular}
\begin{tabular}{lllll}
34.04 & 259.384 & 7.304 & \(-0.4263340963767 \mathrm{E}+04\) & \(-0.4262906438954 \mathrm{E}+04\) \\
34.04 & 260.222 & 6.488 & \(-0.4263342290087 \mathrm{E}+04\) & \(-0.4262955018473 \mathrm{E}+04\) \\
34.04 & 261.061 & 5.686 & \(-0.4263343460818 \mathrm{E}+04\) & \(-0.4263002992271 \mathrm{E}+04\) \\
34.04 & 261.900 & 4.896 & \(-0.4263344478396 \mathrm{E}+04\) & \(-0.4263050368173 \mathrm{E}+04\) \\
34.04 & 262.738 & 4.118 & \(-0.4263345345211 \mathrm{E}+04\) & \(-0.4263097153918 \mathrm{E}+04\) \\
34.04 & 263.577 & 3.353 & \(-0.4263346063618 \mathrm{E}+04\) & \(-0.4263143357091 \mathrm{E}+04\) \\
34.04 & 264.416 & 2.599 & \(-0.4263346635930 \mathrm{E}+04\) & \(-0.4263188985184 \mathrm{E}+04\) \\
34.04 & 265.254 & 1.858 & \(-0.4263347064423 \mathrm{E}+04\) & \(-0.4263234045569 \mathrm{E}+04\) \\
34.04 & 266.093 & 1.127 & \(-0.4263347351335 \mathrm{E}+04\) & \(-0.4263278545503 \mathrm{E}+04\) \\
34.04 & 266.931 & 0.408 & \(-0.4263347498868 \mathrm{E}+04\) & \(-0.4263322492144 \mathrm{E}+04\) \\
\(\ldots\) & & & \\
\(\ldots\) & & &
\end{tabular}

After that, for various values of pressure, some thermal properties are reported (volume, thermal expansion coefficient and isothermal bulk modulus):

\section*{***}
thermal properties from helmholtz free energy at p \(=4.37\)

\begin{tabular}{rccc}
T (K) & V (Ang \({ }^{\wedge}\) 3) & ALPHA (1/K) & B (GPa) \\
& & & \\
10.00 & 262.467 & \(0.23273 \mathrm{E}-07\) & 242.677 \\
22.02 & 262.467 & \(0.29239 \mathrm{E}-07\) & 242.677 \\
34.04 & 262.468 & \(0.17305 \mathrm{E}-06\) & 242.675 \\
46.06 & 262.468 & \(0.39004 \mathrm{E}-06\) & 242.668 \\
58.08 & 262.470 & \(0.72023 \mathrm{E}-06\) & 242.653 \\
70.10 & 262.473 & \(0.11652 \mathrm{E}-05\) & 242.628 \\
82.12 & 262.477 & \(0.17278 \mathrm{E}-05\) & 242.589 \\
94.14 & 262.483 & \(0.24072 \mathrm{E}-05\) & 242.533 \\
106.16 & 262.492 & \(0.31923 \mathrm{E}-05\) & 242.459 \\
118.18 & 262.503 & \(0.40635 \mathrm{E}-05\) & 242.365 \\
130.20 & 262.517 & \(0.49970 \mathrm{E}-05\) & 242.251 \\
142.22 & 262.535 & \(0.59686 \mathrm{E}-05\) & 242.116 \\
154.24 & 262.555 & \(0.69562 \mathrm{E}-05\) & 241.963 \\
166.26 & 262.579 & \(0.79417 \mathrm{E}-05\) & 241.792 \\
178.28 & 262.605 & \(0.89103 \mathrm{E}-05\) & 241.606 \\
190.30 & 262.635 & \(0.98513 \mathrm{E}-05\) & 241.404 \\
202.32 & 262.668 & \(0.10757 \mathrm{E}-04\) & 241.190 \\
214.34 & 262.703 & \(0.11623 \mathrm{E}-04\) & 240.964 \\
226.36 & 262.741 & \(0.12445 \mathrm{E}-04\) & 240.727 \\
238.38 & 262.782 & \(0.13224 \mathrm{E}-04\) & 240.481 \\
250.40 & 262.825 & \(0.13959 \mathrm{E}-04\) & 240.227 \\
262.42 & 262.870 & \(0.14650 \mathrm{E}-04\) & 239.966 \\
274.44 & 262.917 & \(0.15300 \mathrm{E}-04\) & 239.698 \\
286.46 & 262.967 & \(0.15910 \mathrm{E}-04\) & 239.424 \\
298.48 & 263.018 & \(0.16483 \mathrm{E}-04\) & 239.145 \\
\(\ldots\) & & & \\
\hline 1 & & &
\end{tabular}

\section*{Chapter 9}

\section*{Dielectric Properties up to Fourth Order via the Coupled Perturbed HF/KS Method}

\subsection*{9.1 Response to an Electric Field - Theoretical Framework of the Coupled-Perturbed Treatment}

The total energy \(E\) of a crystal in a constant static electric field \(\varepsilon\) can be expressed as
\[
\begin{align*}
E(\varepsilon)= & E(0)-\sum_{t} \mu_{t} \varepsilon_{t}-\frac{1}{2!} \sum_{t u} \alpha_{t u} \varepsilon_{t} \varepsilon_{u}+ \\
& -\frac{1}{3!} \sum_{t u v} \beta_{t u v} \varepsilon_{t} \varepsilon_{u} \varepsilon_{v}-\frac{1}{4!} \sum_{t u v w} \gamma_{t u v w} \varepsilon_{t} \varepsilon_{u} \varepsilon_{v} \varepsilon_{w}+\ldots \tag{9.1}
\end{align*}
\]
with \(E(0)\) the field-free energy and \(\boldsymbol{\mu}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \ldots\) the total energy derivative tensors of order \(1,2,3,4 \ldots\) with respect to the electric field (Cartesian components indicated by Roman subscripts \(t, u, v, w)\) :
\[
\begin{array}{r}
\mu_{t}=-\left.\frac{\partial E}{\partial \varepsilon_{t}}\right|_{0} \\
\alpha_{t u}=-\left.\frac{\partial^{2} E}{\partial \varepsilon_{t} \partial \varepsilon_{u}}\right|_{0} \\
\beta_{t u v}=-\left.\frac{\partial^{3} E}{\partial \varepsilon_{t} \partial \varepsilon_{u} \partial \varepsilon_{v}}\right|_{0} \\
\gamma_{t u v w}=-\left.\frac{\partial^{4} E}{\partial \varepsilon_{t} \partial \varepsilon_{u} \partial \varepsilon_{v} \partial \varepsilon_{w}}\right|_{0} \tag{9.5}
\end{array}
\]

As for the corresponding physical properties, \(\boldsymbol{\mu}\) represents the dipole moment, \(\boldsymbol{\alpha}\) the polarizability, \(\boldsymbol{\beta}\) the first hyperpolarizability and \(\boldsymbol{\gamma}\) the second hyperpolarizability.
By default, the perturbative series 9.1 is truncated at the second order and only the second energy derivatives \(\alpha_{t u}\) are calculated (the dipole moment \(\mu_{t}\) is ill-defined in the reciprocal space) using the expression
\[
\begin{equation*}
\alpha_{t u}=-\frac{4}{n_{k}} \sum_{\vec{k}}^{B Z} \Re\left\{\sum_{\mu \nu} \sum_{a}^{\text {occ }} \sum_{p}^{\text {virt }} C_{a \mu}^{\vec{k} *} \Omega_{\mu \nu}^{\vec{k}, t} C_{\nu p}^{\vec{k}} \mathrm{U}_{p a}^{\vec{k}, u}\right\} \tag{9.6}
\end{equation*}
\]
where \(n_{k}\) is the number of \(\vec{k}\) points in the first Brillouin Zone (BZ) and the indices \(a(b, c \ldots)\) and \(p(q, r \ldots)\) run over the occupied and virtual crystalline orbitals, respectively.
\(\mathrm{U}^{\vec{k}, u}\) is the unknown anti-Hermitian off-diagonal-block matrix that linearly transforms the unperturbed eigenvectors \(C^{\vec{k}}\) under the effect of the electric field perturbation represented by the matrix \(\Omega^{\mathbf{k}}\) :
\[
\begin{equation*}
\left.\mathbb{C}_{\mu i}^{\mathbf{k}, u} \equiv \frac{\partial C_{\mu i}^{\mathbf{k}}}{\partial \varepsilon_{u}}\right|_{0}=\sum_{j}^{\text {all }} C_{\mu j}^{\mathbf{k}} \mathrm{U}_{j i}^{\mathbf{k}, u} \tag{9.7}
\end{equation*}
\]

The off-diagonal blocks \(\mathrm{U}_{a p}^{\mathbf{k}, u}\) are defined as
\[
\begin{equation*}
\mathrm{U}_{a p}^{\mathbf{k}, u}=\sum_{\mu \nu} \frac{C_{a \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, u} C_{\nu p}^{\mathbf{k}}}{E_{p}^{\mathbf{k}}-E_{a}^{\mathbf{k}}} \tag{9.8}
\end{equation*}
\]
and are functions of both the energy gap \(\left(E_{p}^{\mathbf{k}}-E_{a}^{\mathbf{k}}\right)\), and the perturbed Fock matrix,
\[
\begin{align*}
\left.\mathbb{F}_{\mu \nu}^{\mathbf{k}, u} \equiv \frac{\partial F_{\mu \nu}^{\mathbf{k}}}{\partial \varepsilon_{u}}\right|_{0}=\Omega_{\mu \nu}^{\mathbf{k}, u}+\sum_{\mathbf{g}} e^{\imath \mathbf{k} \cdot \mathbf{g}} \sum_{\lambda \rho} \sum_{\mathbf{k}^{\prime}}^{B Z} & \sum_{\mathbf{g}^{\prime}} e^{-\imath \mathbf{k}^{\prime} \cdot \mathbf{g}^{\prime}} \sum_{a}\left(\mathbb{C}_{a \lambda}^{\mathbf{k}^{\prime}, u *} C_{\rho a}^{\mathbf{k}^{\prime}}+C_{a \lambda}^{\mathbf{k}^{\prime} *} \mathbb{C}_{\rho a}^{\mathbf{k}^{\prime}, u}\right) \times \\
& \times \sum_{\mathbf{g}^{\prime \prime}}\left[\left(\mu^{\mathbf{0}} \nu^{\mathbf{g}} \mid \lambda^{\mathbf{g}^{\prime}} \rho^{\mathbf{g}^{\prime \prime}}\right)-\frac{1}{2}\left(\mu^{\mathbf{0}} \lambda^{\mathbf{g}^{\prime}} \mid \nu^{\mathbf{g}} \rho^{\mathbf{g}^{\prime \prime}}\right)\right] \tag{9.9}
\end{align*}
\]

Hence, according to Eq. (9.7), a Self-Consistent Coupled-Perturbed procedure (SC-CP) is to be carried out. For details about the CPHF/KS method and its implementation see Refs. [83, 84, 85, 185].

\subsection*{9.2 Coupled-Perturbed HF/KS Calculation of Dielectric Properties up to Second Order}

The CPHF keyword activates the calculation of the the polarizability (and optionally the first and second order hyper-polarizabilities - see below) via the Coupled Perturbed HF/KS method. CPHF (or CPKS) must be the last keyword in the geometry input block:
```

. . . geometry input . . . .
CPHF
END ! close CPHF input block
END ! close geometry input block

```

The density functionals that are currently available for CPHF calculations are:
\begin{tabular}{ll}
\hline CORRELAT & Correlation Potential (default: no correlation). \\
\hline LYP & GGA. Lee-Yang-Parr [133] \\
PBE & GGA. Perdew-Burke-Ernzerhof [160] \\
PBESOL & GGA. PBE functional revised for solids [162] \\
PWLSD & LSD. Perdew-Wang parameterization of the Ceperley-Alder free electron \\
& gas correlation results [163] \\
PWGGA & GGA. Perdew-Wang [161] \\
VWN & LSD. Vosko-Wilk-Nusair parameterization of the Ceperley-Alder free elec- \\
& tron gas correlation results [221] \\
\hline EXCHANGE & Exchange potential (default: Hartree-Fock exchange). \\
\hline BECKE & GGA. Becke [18] \\
LDA & LSD. Dirac-Slater [53] \\
PBE & GGA. Perdew-Becke-Ernzerhof \([160\) \\
PBESOL & GGA. PBE functional revised for solids \([162]\) \\
PWGGA & GGA. Perdew-Wang [161] \\
SOGGA & second order GGA. 238 \\
WCGGA & GGA - Wu-Cohen 229\(]\)
\end{tabular}

All combinations of the above mentioned exchange-correlation functionals are allowed as well as corresponding standalone keywords as: SVWN, BLYP, PBEXC, SOGGAXC, ...
\begin{tabular}{|c|c|}
\hline HYBRID & Hybrid method \\
\hline \multicolumn{2}{|l|}{Global hybrids} \\
\hline B3PW & Becke's 3 parameter functional [19] combined with the non-local correlation PWGGA 159, 164, 165, 163 \\
\hline B3LYP & Becke's 3 parameter functional [19] combined with the non-local correlation LYP \\
\hline PBE0 & Adamo and Barone [6] \\
\hline PBESOL0 & Same than PBE0 but with PBEsol instead of PBE \\
\hline B1WC & see 22 \\
\hline WC1LYP & see [51] \\
\hline B97H & see 51 \\
\hline \multicolumn{2}{|l|}{Range-separated hybrids} \\
\hline RSHXLDA & see [2, 123] \\
\hline wB97 & see [124, 5] \\
\hline wB97X & see [124, 5] \\
\hline LC-BLYP & see [110, 231] \\
\hline CAM-B3LYP & see 214 \\
\hline SC-BLYP & see [110, 231] \\
\hline
\end{tabular}

Users of this module are kindly requested to cite the following papers:
M. Ferrero, M. Rérat, R. Orlando and R. Dovesi

Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects
J. Chem. Phys. 128, Art.N. 014100 (2008)
M. Ferrero, M. Rérat, R. Orlando and R. Dovesi

The calculation of static polarizabilities in 1-3D periodic compounds. The implementation in the CRYSTAL code
J. Comput. Chem. 29, 1450-1459 (2008)
M. Ferrero, M. Rérat, B. Kirtman and R. Dovesi

Calculation of first and second static hyper-polarizabilities of 1-3D periodic compounds. Implementation in the CRYSTAL code
J. Chem. Phys. 129, Art.N. 244110 (2008)

\subsection*{9.2.1 Tools for tuning convergence and accuracy in the CoupledPerturbed iterations}

Starting from Crystal17, the DIIS accelerator is activated by default in the SC-CP iterations. This improves considerably stability with respect to previous implementations. However, difficult situations might arise, in which the user might want to act in order to achieve convergence. Convergence of the SC-CP cycle might be helped and/or tuned using the following optional keywords within the CPHF input block:
\begin{tabular}{|c|c|}
\hline rec variable & meaning \\
\hline - \(A\) DIIS & activates DIIS convergence accelerator for mixing Fock/KS matrix derivatives [default] (page 86) \\
\hline A NODIIS & deactivates DIIS convergence accelerator (page 86) \\
\hline - \(A\) DIISALLK & DIIS is performed over all k -points of the Brillouin zone \\
\hline - \(A\) HISTDIIS & Limits DIIS mixing to the most recent \(N C Y C\) cycles \\
\hline - * NCYC & maximum number of previous cycles to be kept \\
\hline - \(A\) PRTDIIS & Activates detailed printing for the DIIS procedure \\
\hline - A ANDERSON & mixing of Fock/KS matrix derivatives (page 83) \\
\hline - \(A\) BROYDEN & mixing of Fock/KS matrix derivatives (page 85) \\
\hline * W0 & W0 parameter in Anderson's paper [125] \\
\hline * IMIX & percent of Fock/KS derivative matrices mixing \\
\hline * ISTART & SC-CP iteration after which Broyden method is active (minimum 2) \\
\hline \begin{tabular}{l}
- \(A\) FMIXING \\
* IPMIX
\end{tabular} & mixing of Fock/KS matrix derivatives from iterations \(n\) and \(n-1\) percentage of cycle \(n-1\) [IPMIX \(=0\), no mixing] \\
\hline \(A\) MAXCYCLE & modify the maximum number of SC-CP iterations \\
\hline * NMAX & maximum number of iterations [default: 100] \\
\hline - A SELEDIR & set the maximum number of iterations along each cartesian direction \\
\hline - * NX, NY, NZ & maximum number of SC-CP iterations along \(x, y, z\) \\
\hline - \(A\) TOLALPHA & threshold on \(\alpha\) variation between two SC-CP iterations \\
\hline * ITOL & \(|\Delta \alpha|<10^{-I T O L}\) [default: 3] \\
\hline
\end{tabular}

The keyword TOLALPHA tunes the desired accuracy to be achieved in the SC-CP iterative procedure.
The DIIS procedure requires the storage of error matrices for each cycle of the history. By default the information of all the previous iterations is kept, which can result in a significant occupation of disk space if the procedure goes on for several \((50,100)\) cycles. The maximum number of cycles to be used as an history can be set by the HISTDIIS keyword.

By default DIIS evaluates errors only in the gamma-point of the Brillouin zone. DIISALLK activates the DIIS procedure in all k-points with a resulting better accuracy - in principle at least - at the price of significantly increased memory/storage requirements. From the experience gathered so far, the default (gamma-point) DIIS proved to work well in most - if not all - cases.

\subsection*{9.2.2 Dynamic (Frequency-dependent) CPHF /KS}

The CPHF/KS procedure described above refers to the response to a static field. If a dynamic polarizability response is desired, that is, dependent on the frequency of the oscillating field, the DYNAMIC keyword has to be inserted in the CPHF block:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - A DYNAMIC & \begin{tabular}{l}
Solution of frequency-dependent SC-CP equations for a series of fre- \\
quencies
\end{tabular} \\
\hline Number of frequency steps from FRQ to FRQ2 \\
* FRQ & Wavelength (in nm \()\)
\end{tabular}

If the damping factor is not set, no imaginary part of the polarizability will be observed. Due to technical reasons, the use of the DYNAMIC keyword in CPHF is restricted, in CRYSTAL17, to the use of non-hybrid functionals. The program will issue an error and stop if

Hartree-Fock or a hybrid functional (such as B3LYP or PBE0) is chosen for the calculation and the DYNAMIC keyword is active.

\subsection*{9.2.3 Static first hyperpolarizability}

The CPHF calculation can also be extended up to the third perturbative order by including the optional keyword:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline\(\bullet A\) THIRD & computes energy derivatives up to the third order \\
\hline
\end{tabular}

THIRD provides third order energy derivatives (see Eq. 9.4) calculated through the \((2 n+1)\) scheme:
\[
\begin{align*}
\beta_{t u v}=- & \frac{2}{n_{k}} \sum_{\mathbf{k}} \Re \sum_{a} \sum_{p} \mathcal{P}_{t, u, v} \times \\
& \times\left\{\mathrm{U}_{a p}^{\mathbf{k}, t *}\left[\sum_{\mu \nu}\left(\sum_{q} C_{p \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, u} C_{\nu q}^{\mathbf{k}} \mathrm{U}_{q a}^{\mathbf{k}, v}-\sum_{b} \mathrm{U}_{p b}^{\mathbf{k}, u} C_{b \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, v} C_{\nu a}^{\mathbf{k}}\right)+\imath \frac{\partial \mathrm{U}_{p a}^{\mathbf{k}, v}}{\partial k_{u}}\right]\right\} \tag{9.10}
\end{align*}
\]

The operator \(\mathcal{P}\) permutes the indices of derivation. The derivative \(\partial \mathbf{U}_{p a}^{\mathbf{k}, v} / \partial k_{u}\) depends on the derivative of the coefficients \(C_{\mu i}^{\mathbf{k}}\) with respect to \(\mathbf{k}\), that is
\[
\begin{equation*}
\frac{\partial C_{\mu i}^{\mathbf{k}}}{\partial k_{u}}=\sum_{j}^{\text {all }} C_{\mu j}^{\mathbf{k}} \mathrm{Q}_{j i}^{\mathbf{k}, \mathbf{u}} \tag{9.11}
\end{equation*}
\]
similarly to Eq. 9.7. When \(i \neq j\), the expression for matrix \(\mathrm{Q}^{\mathbf{k}, \mathbf{u}}\) elements is
\[
\begin{equation*}
\mathrm{Q}_{i j}^{\mathbf{k}, u}=\frac{\sum_{\mu \nu}\left[C_{i \mu}^{\mathbf{k} * \frac{\partial F_{\mu \nu}^{\mathbf{k}}}{\partial k_{u}}} C_{\nu j}^{\mathbf{k}}-C_{i \mu}^{\left.\mathbf{k} * \frac{\partial S_{\mu \nu}^{\mathbf{k}}}{\partial k_{u}} C_{\nu j}^{\mathbf{k}} E_{j}^{\mathbf{k}}\right]}\right.}{E_{j}^{\mathbf{k}}-E_{i}^{\mathbf{k}}} \tag{9.12}
\end{equation*}
\]

A threshold value (\(10^{-6}\), by default) is defined below which eigenvalues are considered degenerate. Users can change this threshold using the keyword TOLUDIK as follows:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline\(\bullet A\) TOLUDIK & minimum allowed difference between non-degenerate unperturbed \\
eigenvalues
\end{tabular}

\subsection*{9.2.4 Dynamic first-hyperpolarizability tensors - Pockels and Second-Harmonic Generation}

If the keyword DYNAMIC is present in input together with THIRD, a frequency-dependent field is considered for the third order tensor. The general expression for the first hyperpolarizability of closed-shell periodic systems in the presence of frequency-dependent fields may be written as:
\[
\begin{array}{r}
\left.\beta_{t u v\left(-\omega_{\sigma} ; \omega_{1}, \omega_{2}\right.}\right)=-\frac{2}{n_{k}} \mathcal{K}_{-\omega_{\sigma}, \omega_{1}, \omega_{2}} \sum_{\vec{k}} \Re \sum_{i} \sum_{a} P_{\frac{t}{-\omega_{\sigma}}, \frac{u}{+\omega_{1}}, \frac{v}{+\omega_{2}}} \\
\left\{U _ { a i (- \omega _ { \sigma }) } ^ { (t) * } (\vec { k }) \left[\sum_{b} G_{a b\left(+\omega_{1}\right)}^{(u)}(\vec{k}) U_{b i\left(+\omega_{2}\right)}^{(v)}(\vec{k})\right.\right. \\
\left.\left.-\sum_{j} U_{a j\left(+\omega_{2}\right)}^{(v)}(\mathbf{k}) G_{j i\left(+\omega_{1}\right)}^{(u)}(\mathbf{k})+\imath \frac{\partial U_{a i\left(+\omega_{2}\right)}^{(v)}(\mathbf{k})}{\partial k_{u}}\right]\right\} \tag{9.13}
\end{array}
\]
where \(i, j\) and \(a, b\) run over occupied and virtual crystalline orbitals (CO), respectively, and \(t, u, v\) indicate directions of the field. \(\omega_{\sigma}=\omega_{1}+\omega_{2}\) and \(\mathcal{K}_{-\omega_{\sigma} ; \omega_{1}, \omega_{2}}\) depend on the non linear optical process [155] \(\left(\mathcal{K}_{0,0,0}=1, \mathcal{K}_{-2 \omega, \omega, \omega}=1 / 2, \mathcal{K}_{-\omega, 0, \omega}=2, \mathcal{K}_{0, \omega,-\omega}=1 / 2, \mathcal{K}_{\omega,-2 \omega, \omega}=1\right.\), and \(\mathcal{K}_{-\omega_{\sigma}, \omega_{1}, \omega_{2}}=1\) if neither \(\omega_{\sigma}\), nor \(\omega_{1}\) nor \(\omega_{2}\) are null).
The two situations are considered in the code for each frequency \(\omega\) :
- Second Harmonic Generation (SHG): \(\omega_{1}=\omega_{2}=\omega\) and \(\omega_{\sigma}=-2 \omega\)
- dc-Pockels (dc-P): \(\omega_{1}=\omega, \omega_{2}=0\) and \(\omega_{\sigma}=-\omega\)

Warning: In the current version of the code the calculation of dynamic hyperpolarizability is implemented only for pure (GGA, LDA) functionals, while it is not possible within hybrid functionals (e.g. PBE0, B3LYP, HSE) or Hartree-Fock.
A vibrational contribution to dc-Pockels and SHG tensors can be computed via the BETAVIB keyword - see the frequency calculation section of this manual.

\subsection*{9.3 Fourth-Order CPHF/KS - second hyperpolarizability calculation}

Calculation of the second hyperpolarizability tensor \(\gamma\) is performed only if required:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - \(A\) FOURTH & computes energy derivatives up to fourth order
\end{tabular}

The keyword FOURTH activates a second Self-Consistent Coupled-Perturbed procedure (SCCP 2) to provide matrix \(\mathrm{U}^{\mathbf{k}, u v}\) such that
\[
\begin{equation*}
\left.\mathbb{C}_{\mu i}^{\mathbf{k}, u v} \equiv \frac{\partial^{2} C_{\mu i}^{\mathbf{k}}}{\partial \varepsilon_{u} \partial \varepsilon_{v}}\right|_{0}=\sum_{j}^{a l l} C_{\mu j}^{\mathbf{k}} \mathrm{U}_{j i}^{\mathbf{k}, u v} \tag{9.14}
\end{equation*}
\]

By means of \(\mathrm{U}^{\mathbf{k}, u v}\), both derivatives \((9.4)\) and 9.5 are defined:
\[
\begin{equation*}
\beta_{t u v}=-\frac{1}{n_{k}} \sum_{\mathbf{k}} \Re\left\{\mathcal{P}_{t, u, v} \sum_{a} \sum_{p}\left(\sum_{\mu \nu} C_{a \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, t} C_{\nu p}^{\mathbf{k}} \cup_{p a}^{\mathbf{k}, u v}-\sum_{\mu \nu} C_{a \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, u v} C_{\nu p}^{\mathbf{k}} \cup_{p a}^{\mathbf{k}, t}\right)\right\} \tag{9.15}
\end{equation*}
\]
in the \(n+1\) formulation (equivalent to Eq. 9.10), and
\[
\begin{align*}
& \gamma_{t u v w}=-\frac{1}{n_{k}} \sum_{\mathbf{k}} \Re\left\{\mathcal{P}_{t, u, v, w} \sum_{a} \sum_{p} \sum_{\mu \nu} \mathrm{U}_{a p}^{\mathbf{k}, t *} \times\right. \\
& \times\left[\sum_{q} C_{p \mu}^{\mathbf{k} *}\left(\mathbb{F}_{\mu \nu}^{\mathbf{k}, u} C_{\nu q}^{\mathbf{k}} \mathrm{U}_{q a}^{\mathbf{k}, v w}+\frac{1}{2} \mathbb{F}_{\mu \nu}^{\mathbf{k}, v w} C_{\nu q}^{\mathbf{k}} \mathrm{U}_{q a}^{\mathbf{k}, u}\right)+\right. \\
&-\sum_{b}\left(\mathrm{U}_{p b}^{\mathbf{k}, v w} C_{b \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, u}+\frac{1}{2} \mathrm{U}_{p b}^{\mathbf{k}, u} C_{b \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, v w}\right) C_{\nu a}^{\mathbf{k}}+ \\
&\left.\left.-\sum_{b} \mathrm{U}_{p b}^{\mathbf{k}, u} C_{b \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, v} \sum_{q} C_{\nu q}^{\mathbf{k}} \mathrm{U}_{q a}^{\mathbf{k}, w}\right]+{ }^{2} \mathrm{U}_{a p}^{\mathbf{k}, t w *} \frac{\partial \mathrm{U}_{p a}^{\mathbf{k}, u}}{\partial k_{v}}\right\} \tag{9.16}
\end{align*}
\]

The off-diagonal blocks of matrix \(U^{\mathbf{k}, u v}\),
\[
\begin{align*}
\mathrm{U}_{a p}^{\mathbf{k}, u v}=\frac{1}{E_{p}^{\mathbf{k}}-E_{a}^{\mathbf{k}}}\left\{\mathcal{P}_{u, v}\right. & {\left[\sum_{b} \sum_{\mu \nu} C_{a \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, u} C_{\nu b}^{\mathbf{k}} \mathrm{U}_{b p}^{\mathbf{k}, v}+\right.} \\
& \left.\left.-\sum_{q} \sum_{\mu \nu} \mathrm{U}_{a q}^{\mathbf{k}, u} C_{q \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, v} C_{\nu p}^{\mathbf{k}}+\imath \frac{\partial \mathrm{U}_{a p}^{\mathbf{k}, v}}{\partial k_{u}}\right]+\sum_{\mu \nu} C_{a \mu}^{\mathbf{k} *} \mathbb{F}_{\mu \nu}^{\mathbf{k}, u v} C_{\nu p}^{\mathbf{k}}\right\} \tag{9.17}
\end{align*}
\]
depend on themselves through the second derivative of the Fock matrix
\[
\begin{align*}
& \left.\mathbb{F}_{\mu \nu}^{\mathbf{k}, u v} \equiv \frac{\partial^{2} F_{\mu \nu}^{\mathbf{k}}}{\partial \varepsilon_{u} \partial \varepsilon_{v}}\right|_{0}=\sum_{\mathbf{g}} e^{\imath \mathbf{k} \cdot \mathbf{g}} \sum_{\lambda \rho} \sum_{\mathbf{k}^{\prime}}^{B Z} \sum_{\mathbf{g}^{\prime}} e^{-\imath \mathbf{k}^{\prime} \cdot \mathbf{g}^{\prime}} \sum_{a}\left(\mathbb{C}_{a \lambda}^{\mathbf{k}^{\prime}, u v *} C_{\rho a}^{\mathbf{k}^{\prime}}+\right. \\
& \left.+\mathcal{P}_{u, v} \mathbb{C}_{a \mu}^{\mathbf{k}^{\prime}, u *} \mathbb{C}_{\nu a}^{\mathbf{k}^{\prime}, v}+C_{a \lambda}^{\mathbf{k}^{\prime} *} \mathbb{C}_{\rho a}^{\mathbf{k}^{\prime}, u v}\right)\left[\left(\mu^{\mathbf{0}} \nu^{\mathbf{g}} \mid \lambda^{\mathbf{g}^{\prime}} \rho^{\mathbf{g}^{\prime \prime}}\right)-\frac{1}{2}\left(\mu^{\mathbf{0}} \lambda^{\mathbf{g}^{\prime}} \mid \nu^{\mathbf{g}} \rho^{\mathbf{g}^{\prime \prime}}\right)\right] \tag{9.18}
\end{align*}
\]
and therefore, must be determined iteratively.

\subsection*{9.3.1 Tuning and control of the CPHF2 iterative procedure}

Convergence of the SC-CP2 cycle is controlled with the following optional keywords:
\begin{tabular}{cl}
\hline rec variable & meaning \\
\hline - A DIIS2 & activates DIIS convergence accelerator for mixing Fock/KS matrix \\
& 2nd derivatives
\end{tabular}

\section*{(page 86)}
- A NODIIS deactivates DIIS convergence accelerator (page 86)
- A DIIS2ALLK DIIS is performed over all k-points of the Brillouin zone
- \(A\) HISTDIIS2 Limits DIIS mixing to the most recent \(N C Y C\) cycles
- NCYC maximum number of previous cycles to be kept
- A PRTDIIS2 Activates detailed printing for the DIIS2 procedure
- A ANDERSON2 mixing of Fock/KS matrix 2nd derivatives (page 83)
- A BROYDEN2 mixing of Fock/KS matrix 2nd derivatives (page 85)
* W02 W0 parameter in Anderson's paper [125]
* IMIX2 percentage of Fock/KS second derivative matrices mixing
* ISTART2 SC-CP2 iteration after which Broyden method is activated (minimum 2)
- A FMIXING2 mixing of Fock/KS matrix second derivatives from SC-CP2 iterations \(n\) and \(n-1\)
* IPMIX2 percentage of cycle \(n-1\) [IPMIX2 \(=0\), no mixing]
- A MAXCYCLE2 modify the maximum number of SC-CP2 iterations
* NMAX2 maximum number of iterations [default: 100]
- A SELEDIR2 set the maximum number of SC-CP2 iterations along each couple of cartesian indices
- * NXX, NXY, NXZ, maximum number of SC-CP2 iterations along mixed directions NYY, NYZ, NZZ \(x x, x y, x z, y y, y z, z z\)
- A TOLGAMMA threshold on \(\mathrm{U}^{\mathbf{k}, t u}\) variation between two SC-CP2 iterations
* ITOL2 \(\left|\Delta \mathbf{U}^{\mathbf{k}, t u}\right|=10^{-I T O L 2}\) [default: 3]

Also in the case of CPHF2, DIIS is the default since CRYSTAL17. The meaning of optional DIIS keywords is the same as discussed for the first-oder CPHF case.
Dynamic (frequency-dependent) second hyperpolarizability is not yet implemented.

\subsection*{9.4 Restart of first- or second- order CPHF}

\section*{RESTART}

A static CPHF/KS run can be restarted from a previous run (even an incomplete run) by using the RESTART keyword. This works for both the first- and second-order perturbed iterative procedures. Every CPHF/KS run writes the necessary information for a restart to file fort.31. This file must be provided as file fort. 32 before running the new calculation with the RESTART keyword. GUESSP (SCF guess from density matrix of a previous run, input block 3, page 99 is not applied by default, but its use is recommended.

In the case of a DYNAMIC calculation, restart will not be possible.

\section*{Chapter 10}

\section*{Tools for Studying Solid Solutions}

The theoretical modeling of disordered systems and solid solutions relies on obtaining average properties over a number of configurations, namely distributions of different species (atoms or vacancies) at a given set of atomic positions. Symmetry plays a key role in this context as shown in the following reference papers:
S. Mustapha, Ph. D'Arco, M. De La Pierre, Y. Noel, M. Ferrabone and R. Dovesi

On the use of symmetry in configurational analysis for the simulation of disordered solids
J. Phys.: Condens. Matter 25, 105401 (2013)

Ph. D'Arco, S. Mustapha, M. Ferrabone, Y. Noel, M. De La Pierre and R. Dovesi
Symmetry and random sampling of symmetry independent configurations for the simulation of disordered solids
J. Phys.: Condens. Matter 25, 355401 (2013)

See also http://www.crystal.unito.it \(\Rightarrow\) tutorials \(\Rightarrow\) Disordered systems and solid solutions

Consider, for example, a structure (any dimension) of symmetry group \(G\), characterized by one irreducible crystallographic position \(d\) of multiplicity \(|D|\). Such a \(|D| d\) position (in Wyckoff's notation) is occupied by the atomic species \(\mathcal{A}\). Suppose that a different atomic species \(\mathcal{X}\) can replace \(\mathcal{A}\) in any proportion on \(d\). Then, \(|D|+1\) compositions are possible:
\[
\begin{equation*}
\mathcal{A}_{|D|-\alpha} \mathcal{X}_{\alpha} \quad, \quad \alpha=0 \ldots|D| \tag{10.1}
\end{equation*}
\]

For each composition, there exist
\[
\begin{equation*}
\left|S_{\alpha}\right|=\binom{|D|}{\alpha}=\frac{|D|!}{\alpha!(|D|-\alpha)!} \tag{10.2}
\end{equation*}
\]
different possibilities to place atoms \(\mathcal{A}\) and \(\mathcal{X}\), that are different configurations. Overall, we expect a total number of \(|S|=|2|^{|D|}\) configurations for \(|D|+1\) compositions. Figure 10.1 shows the set of configurations for two atomic species \((\mathcal{A}\) and \(\mathcal{X})\) distributed over four positions.
As the group of symmetry \(G\) acts on the whole set of configurations \((S)\), the latter is partitioned in \(|\Delta(S)|\) classes of equivalence, each one being a symmetry-independent class (SIC). Two configurations belong to the same SIC if there exists at least one element of \(G\) that transforms one configuration into the other. Figure 10.2 shows the partitioning of the configurations under the action of \(\mathrm{C}_{4 v}\) group.
All the configurations of a given class are degenerate and share the same properties (composition, symmetry group...). Therefore, in order to fully characterize the system, it is sufficient to determine:
- the number of SIC,

Figure 10.1: Possible configurations for 2 atomic species sitting on 4 positions. The two species are represented by red and blue circles. Configurations are ordered per composition. The number of configurations \(\left(\left|S_{\alpha}\right|\right)\) per composition is indicated.
- the number of configurations per SIC;
- one representative configuration for each SIC.

Such analysis is performed by the CRYSTAL alternative options CONFCNT (232) and CONFRAND (234). In order to study supercell configurations, the keyword SCELCONF (66) is to be coupled with the above mentioned options.

\subsection*{10.1 Counting and Enumerating Configurations}

The keyword CONFCNT must be inserted in the geometry input block. It allows to calculate the number of classes as a function of the composition and provides a representative for each class.
In the present implementation:
- the number of different atomic species is restricted to two \((\mathcal{A}\) and \(\mathcal{X})\);
- substitutions might take place on one or more crystallographic irreducible sites; for each irreducible site, all the symmetry equivalent positions are involved.

The minimal CONFCNT input is as follows:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - \(A\) CONFCNT & \\
- \(*\) NIS & number of irreducible sites \\
- \(*\) IAT(I),I=1,NIS & atomic label of each irreducible site \\
- \(A\) END & end of the CONFCNT sub-block \\
\hline
\end{tabular}

This yields the number of SIC over the full range of (NIS +1) compositions corresponding to NIS irreducible crystallographic positions. For each SIC, a representative configuration is given, along with its multiplicity and the number of symmetry operators of its group (being a subgroup of the group of the original cell). The representative configurations are printed in lexicographic order. By default, the replacing species is labeled as 'XX'.
The following optional keywords may be adopted for tuning CONFCNT calculations:

Figure 10.2: The six symmetry independent classes of configurations resulting of the action of the \(C_{4 v}\)
group on the set of 2 -color configurations on 4 positions. The number of configurations per class or multiplicity is indicated. The number of symmetry operators in the group of each configuration is given \(\left(\left|G_{s}\right|\right)\). The multiplicty of each class equals \(|G| /\left|G_{s}\right|\).
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - \(A\) ATOMB & identifies the species \(\mathcal{X}\) \\
- \(*\) NATB & atomic number of \(\mathcal{X}\) (default ' \(\mathrm{XX'}^{\prime}\)) \\
\hline - \(A\) ONLYCOMP & selects certain compositions \\
- \(*\) NC & number of compositions to be considered \\
- \(*\) TC \((\mathrm{I}), \mathrm{I}=1, \mathrm{NC}\) & number of atoms \(\mathcal{X}\) in composition I \\
\hline - \(A\) CONFPRT & prints information about the configurations \\
- \(*\) IP1 & integer \(0 \div 2\) \\
& 0 - number of SIC only \\
& 1 - listing in compact form \\
& 2 - extended output [default] \\
\hline
\end{tabular}

Further options exist for counting and enumerating two-body interactions.
Two-body interactions are presented as:
label At. 1 - label At. 2 [I J L]
At. 1 is supposed to be in the reference cell \(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\) but At. 2 can be in another cell whose position is given by [I J L]. Interactions are presented adding the so-called empty and one-body terms, that are related to the cluster expansion formalism. These two terms are configuration independent; they depend only on chemistry.
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - A INTPRT & prints information about the interactions \\
- \(\quad\) IP2 & integer \(0 \div 2\) \\
& 0 - no information printed [default] \\
& 1 - condensed output (symmetry-independent interactions) \\
& 2 - extended output (full set of interactions) \\
\hline - A INTMAXDIST & defines the distance cut-off for 2-body interactions \\
- \(*\) RLIM & distance in \(\AA[\) default \(6 \AA]\) \\
\hline
\end{tabular}

\subsection*{10.2 Uniform Random Sampling of Symmetry Independent Configurations}

When the number of classes is too large, a symmetry adapted Monte Carlo uniform at random sampling of the symmetry independent classes may be performed. In this case, the keyword CONFRAND must be inserted in the geometry input block and terminated by END. CONFRAND switches on a symmetry-adapted sampling of the SIC at a given composition IX (equivalent to \(\alpha\) in equations 10.1) and 10.2):
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - \(A\) CONFRAND & \\
- \(*\) NIS & number of irreducible sites \\
- \(*\) IAT(I),I=1,NIS & atomic label of each irreducible site \\
- * IX & number of positions occupied by the 2nd species \\
- \(A\) END & end of the CONFRAND sub-block \\
\hline
\end{tabular}

A file named CONFIGURATIONS.DAT is generated (see RUNCONFS at page 235) containing the following information:
- structure and symmetry of the aristotype supercell (written the same way as in a regular unit fort.34);
- number of equivalent crystallographic sites involved for substitutions \((|D|)\) and number of substitutions (IX);
- labels of the atoms involved for substitutions;
- number of SIC found;
- list of the configurations. Each configuration is identified by its multiplicity and its rank.

For example:

For each configuration found by sampling the SIC space, the corresponding canonical configuration (that is the equivalent configuration of minimum rank) is detected as well. One may consider only canonical configurations (and thus save the canonical rank in file CONFIGURATIONS.DAT) by entering the keyword CANONIC within the CONFRAND block.
By default, the SIC space is sampled entirely and uniformly at random. The user may limit either the number of tries or the number of SIC to be searched by exploiting the UNIFORM option (see below). Further optional keywords, namely SYMONLY and SYASYM, manage a tuned probability distribution according to whether the SIC are symmetric (that is having symmetry operators other than the identity) or not. SYMONLY, in particular, sets to 0 the probability of asymmetric SIC. Then, by using a large number of tries NTC, all the simmetric SIC might be found at no significant computational cost. Few runs are enough to establish the exact number of symmetric SIC, the less the larger the total number of SIC.
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - A UNIFORM & uniform at random selection \\
- \(*\) NTC & integer number \\
& NTC \(>0\) number of tries to be performed \\
& NTC \(<0\) number of SIC to be searched; (maximum number of \\
& tries set to \(10 \times\) NTC) \\
\hline rec variable & meaning \\
\hline - A SYMONLY & search for symmetric SIC only \\
- \(*\) NTC & NTC \(>0\) number of tries to be performed \\
& NTC \(<0\) number of SIC to be found \\
\hline - A SYASYM & search for symmetric SIC first; then for any SIC \\
- \(*\) NTCS,NTCA & \(>0\), NTCS tries on symmetric SIC and NTCA tries on any other \\
& SIC \\
& \(<0\), search NTCS symmetric SIC and NTCA other the SIC \\
\hline
\end{tabular}
N.B. In case you are interested in studying supercell configurations, the keyword SCELCONF 66) must be used, and it must be inserted before the CONFRAND sub-block.

\subsection*{10.3 Calculations on Predefined Configurations}

The keyword RUNCONFS must be inserted in the geometry input block. It opens the following minimal input sub-block:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - A RUNCONFS & \\
- A ATOMSUBS & identify the species involved for substitutions \\
- \(*\) IZA IZB & atomic numbers
\end{tabular}
- \(A\) END
\(\overline{\text { By default, once specified the two elements involved for substitutions, RUNCONFS builds }}\) a set of configurations from the list of ranks written in file CONFIGURATIONS.DAT (234) and performs single point calculations. Geometry optimizations are also allowed, and may be activated with the keyword OPTGEOM (for the relative options see page 156).
The basis set complete with the functions for atom IZB must be given in input after the SCF block: the keyword BASE opens a new input block where a standard basis set must be inserted (Section 3.2).
Independent calculations on different configurations might be carried on simultaneously exploiting the option
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - \(A\) MULTITASK & perform multiple tasks simultaneously \\
- \(* \mathrm{~N}\) & number of tasks \\
\hline
\end{tabular}

Further optional keywords are:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - A SYMORDER & \begin{tabular}{l}
sort SIC from file CONFIGURATIONS.DAT in order of increas- \\
ing multiplicity
\end{tabular} \\
\hline - A INICO & select the first configuration to be considered \\
- \(*\) IB & 1st configuration label \\
\hline - A IFICO & select the last configuration to be considered \\
- \(*\) IE & last configuration label
\end{tabular}

The order of execution follows that of the list of configurations written in file CONFIGURATIONS.DAT unless the option SYMORDER is introduced which rearranges the SIC in order of increasing multiplicity (that is with a decreasing number of symmetry operators).
The options INICO and IFICO allow to perform "multi-step" calculations by consecutively selecting different subsets of configurations from file CONFIGURATIONS.DAT or from the list rearranged by SYMORDER. This possibility might be useful not only to manage wall-time
queues, but also to restart RUNCONFS from the configuration closest to the point where it eventually failed.

\subsection*{10.4 Exploring the Neighborhood of a Configuration}

The keyword CONFNEIG allows to explore the potential energy surface around one particular SIC. The minimal input sub-block is the following:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - A CONFNEIG & search for neighboring configurations \\
- \(*\) IRANK & rank of the SIC of interest \\
- A END & \\
\hline
\end{tabular}

The only requirement is reading a unit CONFIGURATIONS.DAT with the same aristotype structure. Therefore, it necessary to perform a CONFRAND preliminarly (see 234). Then, CONFNEIG writes a file named CONFNEIGHBORS.DAT, which contains a list of canonical configurations generated from the specified SIC (i.e., IRANK), by exchange of a couple of atoms of different colors. The unit CONFNEIGHBORS.DAT has the same file format as CONFIGURATIONS.DAT. So, it can be read by the option RUNCONFS for running calculations on the configurations listed therein 235 .
Suppose you have already run calculations on a certain number of SICs among those found by CONFRAND in the first place. You may want to exclude these SICs from the subsequent listing performed by CONFNEIG, in order to avoid making duplicate calculations. The optional keyword RANKLIST (to be inserted in the CONFNEIG sub-block) serves the purpose, when the list of SICs to be avoided is provided in a file named RANK.LST. The structure of RANK.LST must be the following:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline\(\bullet *\) NRNK & number of SICs listed \\
& \\
\hline \multirow{9}\text{IRNK}{} & rank of each SIC \\
\hline
\end{tabular}

\section*{Chapter 11}

\section*{Equations of State}

The program can perform an automated scan over the volume in order to compute energy \(E\) vs. volume \(V\) curves that are then fitted to various Equations of State (EOS) as Murnaghan's, third-order isothermal Birch-Murnaghan's, "universal" logarithmic Poirier-Tarantola's and exponential Vinet's, in order to compute equilibrium properties such as bulk modulus \(B_{0}\) and its first derivative with respect to the pressure \(B_{0}^{\prime}\) and volume/pressure dependence of the energy, enthalpy and bulk modulus. For each volume, a full \(V\)-constrained geometry optimization is performed. This option is activated by inserting the keyword EOS at the end of the Geometry input block, which opens a sub-block that must be closed with a keyword END:
```

. . . geometry input . . . .
EOS
[Optional keywords]
END close EOS input block
END close Geometry input block

```

\section*{Users of this module are kindly asked to cite the following reference:}
A. Erba, A. Mahmoud, D. Belmonte and R. Dovesi, J. Chem. Phys., 140, 124703 (2014)

A volume range and a number of volumes \(N_{V}\) can be defined in input (default values are used otherwise) with the RANGE sub-keyword. The initial geometry is assumed to be fully optimized; if not, the PREOPTGEOM sub-keyword must be used to perform a preliminary optimization of both lattice parameters and atomic positions. For each considered volume \(V_{i}\), a \(V_{i}\)-constrained optimization is performed (in fractional coordinates only) and the corresponding minimum energy \(E_{i}\) determined. The set of \(N_{V}\) data points \(\left\{V_{i}, E_{i}\right\}\) is fitted to the various EOSs implemented. The fitted energy, enthalpy and bulk modulus are printed at the end of the calculation, for each EOS, as a function of volume and pressure at various points. These volume/pressure ranges can be defined with sub-keywords VRANGE and PRANGE, respectively. Typically, this kind of final information analysis can be performed with a complete restart of the calculation, using the RESTART2 sub-keyword. A partial restart from a previous incomplete run can be activated with the sub-keyword RESTART. These two restart options require the external restart file EOSINFO.DAT.

\subsection*{11.1 A few theoretical remarks}

The equilibrium bulk modulus \(B_{0}\) of a crystal can be defined as follows:
\[
\begin{equation*}
B_{0}=-V\left(\frac{\partial P}{\partial V}\right)_{T} \tag{11.1}
\end{equation*}
\]

A dimensionless parameter \(B_{0}^{\prime}\) can then be defined as its first derivative with respect to the pressure, at constant temperature \(T\) :
\[
\begin{equation*}
B_{0}^{\prime}=\left(\frac{\partial B_{0}}{\partial P}\right)_{T} \tag{11.2}
\end{equation*}
\]

Let us recall that the pressure \(P\) may be written as a function of the volume \(V\) as:
\[
\begin{equation*}
P(V)=-\left(\frac{\partial E}{\partial V}\right)_{S} \tag{11.3}
\end{equation*}
\]

According to equation 11.3 we can redefine the bulk modulus in equation 11.1 as the second energy derivative with respect to the volume:
\[
\begin{equation*}
B(V)=V\left(\frac{\partial^{2} E}{\partial V^{2}}\right)_{T, S} \tag{11.4}
\end{equation*}
\]

We can now define the enthalpy \(H\) (coinciding with Gibbs' free energy \(G\) at \(T=0 \mathrm{~K}\)) as a function of the volume \(V\) simply as:
\[
\begin{equation*}
H(V)=E(V)+P(V) \times V \tag{11.5}
\end{equation*}
\]

Several \(E(V)\) equations of state have been proposed. We have implemented four among them.
1. In 1944, Murnaghan proposed his famous equation of state:
\[
\begin{equation*}
E(V)=E_{0}+\frac{B_{0} V}{B_{0}^{\prime}}\left[\left(\frac{V_{0}}{V}\right)^{B_{0}^{\prime}} \frac{1}{B_{0}^{\prime}-1}+1\right]-\frac{B_{0} V_{0}}{B_{0}^{\prime}-1} \tag{11.6}
\end{equation*}
\]
where \(V_{0}\) and \(E_{0}\) are the equilibrium volume and energy, at zero pressure. Application of equation 11.3 to equation (11.6), gives \(P(V)\) Murnaghan's EOS:
\[
\begin{equation*}
P(V)=\frac{B_{0}}{B_{0}^{\prime}}\left[\left(\frac{V_{0}}{V}\right)^{B_{0}^{\prime}}-1\right] \tag{11.7}
\end{equation*}
\]
2. The third-order Birch-Murnaghan isothermal equation of state, published in 1947, reads like:
\[
\begin{equation*}
E(V)=E_{0}+\frac{9 V_{0} B_{0}}{16}\left\{\left[\left(\frac{V_{0}}{V}\right)^{\frac{2}{3}}-1\right]^{3} B_{0}^{\prime}+\left[\left(\frac{V_{0}}{V}\right)^{\frac{2}{3}}-1\right]^{2}\left[6-4\left(\frac{V_{0}}{V}\right)^{\frac{2}{3}}\right]\right\} \tag{11.8}
\end{equation*}
\]

Again, according to equation 11.3, we can get \(P(V)\) third-order Birch-Murnaghan's EOS:
\[
\begin{equation*}
P(V)=\frac{3 B_{0}}{2}\left[\left(\frac{V_{0}}{V}\right)^{\frac{7}{3}}-\left(\frac{V_{0}}{V}\right)^{\frac{5}{3}}\right]\left\{1+\frac{3}{4}\left(B_{0}^{\prime}-4\right)\left[\left(\frac{V_{0}}{V}\right)^{\frac{2}{3}}-1\right]\right\} \tag{11.9}
\end{equation*}
\]
3. The third-order "universal" Poirier-Tarantola logarithmic equation of state, proposed in 1998, is:
\[
\begin{equation*}
E(V)=E_{0}+\frac{B_{0} V_{0}}{2}\left[\ln \left(\frac{V_{0}}{V}\right)\right]^{2}+\frac{B_{0} V_{0}}{6}\left[\ln \left(\frac{V_{0}}{V}\right)\right]^{3}\left(B_{0}^{\prime}-2\right) \tag{11.10}
\end{equation*}
\]
while \(P(V)\) Poirier-Tarantola's EOS is:
\[
\begin{equation*}
P(V)=B_{0} \frac{V_{0}}{V}\left[\ln \left(\frac{V_{0}}{V}\right)+\frac{\left(B_{0}^{\prime}-2\right)}{2}\left[\ln \left(\frac{V_{0}}{V}\right)\right]^{2}\right] \tag{11.11}
\end{equation*}
\]
4. The exponential Vinet's equation of state, published in 1987, reads:
\[
\begin{align*}
E(V) & =E_{0}+\frac{2 B_{0} V_{0}}{\left(B_{0}^{\prime}-1\right)^{2}}\left\{2-\left[5+3\left(\frac{V}{V_{0}}\right)^{\frac{1}{3}}\left(B_{0}^{\prime}-1\right)-3 B_{0}^{\prime}\right] \times\right. \\
& \left.\times \exp \left[-\frac{3}{2}\left(B_{0}^{\prime}-1\right)\left[\left(\frac{V}{V_{0}}\right)^{\frac{1}{3}}-1\right]\right]\right\} \tag{11.12}
\end{align*}
\]

According to equation 11.3), we get \(P(V)\) Vinet's EOS:
\[
\begin{equation*}
P(V)=3 B_{0}\left(\frac{V}{V_{0}}\right)^{-\frac{2}{3}}\left[1-\left(\frac{V}{V_{0}}\right)^{\frac{1}{3}}\right] \exp \left[-\frac{3}{2}\left(B_{0}^{\prime}-1\right)\left[\left(\frac{V}{V_{0}}\right)^{\frac{1}{3}}-1\right]\right] \tag{11.13}
\end{equation*}
\]

\subsection*{11.2 Keywords, options and defaults}

Users of this module are kindly asked to cite the following reference:
A. Erba, A. Mahmoud, D. Belmonte and R. Dovesi, J. Chem. Phys., 140, 124703 (2014)

A default value is chosen for all computational parameters. The SCF energy convergence threshold is set to \(10^{-8}\). Optional keywords are (in any order):

The interval is specified as the minimum (compression) and maximum (expansion) variation of the volume of the initial geometry. The set of volumes is then defined according to the number of points in the selected range. For instance, to set the default values:

\section*{EOS}

RANGE
0.921 .0810

END
that corresponds to 10 points between \(0.92 \times V_{e q}\) and \(1.08 \times V_{e q}\), where \(V_{e q}\) is the volume of the equilibrium geometry given as input (assumed to be the fully optimized structure) or as obtained after a preliminary geometry optimization. Note that the equilibrium values \(V_{0}\) and \(E_{0}\) are always included in the final data for fitting (i.e. 11 points are used for fitting in the example above).
\begin{tabular}{|c|c|}
\hline rec variable & meaning \\
\hline \begin{tabular}{l}
- \(A\) VRANGE \\
* VMIN \\
* VMAX \\
* NVOL
\end{tabular} & \begin{tabular}{l}
Defines the volume range and the number of points where fitted values of pressure, energy, enthalpy and bulk modulus are printed at the end of the calculation. This keyword is for output purposes only. \\
minimum volume \\
maximum volume \\
number of points in the selected range
\end{tabular} \\
\hline - \(A\) PRANGE
\[
\begin{aligned}
& \text { * PMIN } \\
& \text { * PMAX } \\
& \text { * NPRE }
\end{aligned}
\] & \begin{tabular}{l}
Defines the pressure range and the number of points where fitted values of volume, energy, enthalpy and bulk modulus are printed at the end of the calculation. This keyword is for output purposes only. \\
minimum pressure \\
maximum pressure \\
number of points in the selected range
\end{tabular} \\
\hline - \(A\) PRINT & This option turns on a higher level of diagnostic printing and will generally not be necessary for the typical user. Fitting of the \(\mathrm{E}(\mathrm{V})\) points is also performed for increasing set of points from 4 to the maximum number of points. (default is minimal printing) \\
\hline rec variable & meaning \\
\hline
\end{tabular} EOSINFO.DAT.
- A RESTART2 Allows for complete restart from a previous complete run, using file EOSINFO.DAT. This option can be used when one wants to explore different ranges of volume/pressure at the end of the calculation, using keywords VRANGE and PRANGE (see example below).
- A PREOPTGEOM A preliminary geometry optimization of cell and atomic positions is performed before starting the \(E(V)\) curve calculation.

Geometry optimization is performed at convergence criteria tighter than the ones given in OPTGEOM. Some values can be modified by inserting the following keywords:
- \(A\) TOLDEG
- \(A\) TOLDEX
- \(A\) TOLDEE
- \(A\) MAXCYCLE
- \(A\) NOTRUSTR
- \(A\) TRUSTRADIUS
- A MAXTRADIUS

EOS default [0.0003] - see OPTGEOM, page 162
EOS default [0.00062] - see OPTGEOM, page 162
EOS default [8] - see OPTGEOM, page 162
see OPTGEOM, page 164
see OPTGEOM, page 162
see OPTGEOM, page 162
see OPTGEOM, page 162

\subsection*{11.3 Output Information}

Let us consider the case of \(\alpha\)-quartz, with the following input:

At the end of the calculation, the 11 volume/energy data points obtained after the geometry optimizations are sorted and printed as follows:

SORTING VOLUMES/ENERGIES
```

VOLUME (A^3) ENERGY (a.u.)
105.093052 -1.319745599801E+03
106.955671 -1.319747774744E+03
108.858269 -1.319749524843E+03
110.762118 -1.319750838191E+03
112.687177 -1.319751759039E+03
114.634069 -1.319752307968E+03
116.602831 -1.319752502563E+03
116.803375 -1.319752503067E+03
118.593687-1.319752358314E+03
120.606573 -1.319751889709E+03
122.641225 -1.319751107890E+03

```

The following table is then reported with the fitted values of the minimum volume, energy, bulk modulus \(B_{0}\) and its first derivative \(B_{0}^{\prime}\) :
\begin{tabular}{|c|c|c|c|c|}
\hline EQUATION OF STATE & VOL (\(\mathrm{A}^{\wedge} 3\)) & E(AU) & BM (GPA) & BM PRIME \\
\hline MURNAGHAN 1944 & 116.7247 & -1319.75250331 & 43.81 & 3.78 \\
\hline BIRCH-MURNAGHAN 1947 & 116.7202 & -1319.75250331 & 43.83 & 3.88 \\
\hline POIRIER-TARANTOLA 1998 & 116.7172 & -1319.75250341 & 43.85 & 3.95 \\
\hline VINET 1987 & 116.7186 & -1319.75250334 & 43.84 & 3.92 \\
\hline
\end{tabular}

Additionally, for each EOS, the following fitted data are reported (for instance Vinet's ones) in the pressure range (from -5 GPa to 10 GPa in this case) defined by input with the PRANGE sub-keyword (the VRANGE sub-keyword could be used instead for defining an explored volume range):
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{THERMODYNAMIC FUNCTIONS OBTAINED WITH EOS: VINET 1987}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\(\mathrm{V}=\mathrm{VOLUME}, \mathrm{P}=\) PRESSURE, E = ENERGY, \(\mathrm{G}=\mathrm{GIBBS}\) FREE ENERGY, B = BULK MODULUS} \\
\hline \(V\left(A^{\wedge} 3\right)\) & P (GPa) & E (a.u.) & G (a.u.) & B (GPa) \\
\hline 136.37 & -5.00 & -1319.73967343 & -1319.89603452 & 21.96 \\
\hline 131.93 & -4.21 & -1319.74437012 & -1319.87175596 & 25.86 \\
\hline 128.22 & -3.42 & -1319.74762603 & -1319.84821045 & 29.53 \\
\hline 125.02 & -2.63 & -1319.74985141 & -1319.82528837 & 33.03 \\
\hline 122.21 & -1.84 & -1319.75129893 & -1319.80290843 & 36.40 \\
\hline 119.70 & -1.05 & -1319.75213646 & -1319.78100994 & 39.65 \\
\hline 117.43 & -0.26 & -1319.75248193 & -1319.75954364 & 42.81 \\
\hline 115.35 & 0.53 & -1319.75242166 & -1319.73847018 & 45.89 \\
\hline 113.45 & 1.32 & -1319.75202088 & -1319.71775646 & 48.90 \\
\hline 111.68 & 2.11 & -1319.75133026 & -1319.69737458 & 51.86 \\
\hline 110.04 & 2.90 & -1319.75038992 & -1319.67730070 & 54.75 \\
\hline 108.51 & 3.69 & -1319.74923235 & -1319.65751494 & 57.61 \\
\hline 107.06 & 4.47 & -1319.74788404 & -1319.63799827 & 60.41 \\
\hline 105.71 & 5.26 & -1319.74636708 & -1319.61873479 & 63.18 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr}
104.42 & 6.05 & -1319.74470011 & -1319.59971153 & 65.91 \\
103.20 & 6.84 & -1319.74289869 & -1319.58091375 & 68.61 \\
102.04 & 7.63 & -1319.74097644 & -1319.56233179 & 71.28 \\
100.94 & 8.42 & -1319.73894489 & -1319.54395405 & 73.91 \\
99.89 & 9.21 & -1319.73681430 & -1319.52577266 & 76.53 \\
98.88 & 10.00 & -1319.73459329 & -1319.50777698 & 79.11
\end{tabular}

\section*{Chapter 12}

\section*{Calculation of Elastic, Piezoelectric and Photoelastic Tensors}

The program can compute elastic, piezoelectric and photoelastic (elasto-optic) tensors with a fully-automated procedure by means of keywords ELASTCON, PIEZOCON (or PIEZOCP) and PHOTOELA, to be inserted at the end of the Geometry input block. Elastic and piezoelectric constants can be computed at once with the ELAPIEZO keyword. Each of these keywords opens a block which must be terminated with an END keyword.

\subsection*{12.1 A few theoretical remarks}

The elements of the elastic tensor, for 3D systems, are usually defined as:
\[
\begin{equation*}
C_{v u}=\left.\frac{1}{V} \frac{\partial^{2} E}{\partial \eta_{v} \partial \eta_{u}}\right|_{0} \tag{12.1}
\end{equation*}
\]
where \(\eta\) is the rank- 2 symmetric tensor of pure strain and Voigt's notation is used according to which \(v, u=1, \ldots, 6(1=x x, 2=y y, 3=z z, 4=y z, 5=x z, 6=x y)\). Since volume \(V\) is not uniquely defined for 1 D and 2 D systems, it is here omitted (length or surface could be used instead) and all the elements involving non-periodic directions (\(y, z\) for 1 D and \(z\) for 2D systems) are null by definition. As a consequence, for 1D and 2D systems, elastic constants are expressed in energy units (hartree). Second derivatives in equation 12.1) are computed as first numerical derivatives of analytical energy gradients in the present implementation.
In the linear regime, direct \(\mathbf{e}\) and converse \(\mathbf{d}\) piezoelectric tensors describe the polarization \(\mathbf{P}\) induced by strain \(\eta\) and the strain induced by an external electric field \(\mathbf{E}\) at constant electric field and stress, respectively:
\[
\begin{array}{rlll}
\text { direct } & \text { effect } & \mathbf{P}=\mathbf{e} \eta & \text { at constant field } \\
\text { converse } & \text { effect } & \eta=\mathbf{d}^{T} \mathbf{E} & \text { at constant stress } \tag{12.3}
\end{array}
\]

Our approach consists in directly computing the intensity of polarization induced by strain (again, since the volume is not defined for 1D and 2D systems, in those cases the polarization reduces to a dipole moment). The Cartesian components of the polarization can then be expressed as follows in terms of the strain tensor components:
\[
\begin{equation*}
P_{i}=\sum_{v} e_{i v} \eta_{v} \quad \text { so that } \quad e_{i v}=\left(\frac{\partial P_{i}}{\partial \eta_{v}}\right)_{E} \tag{12.4}
\end{equation*}
\]

In the above expression, \(i=1, \ldots, 3 ; \eta\) is the pure strain tensor, the derivative is taken at constant electric field and Voigt's notation is used. In Crystal the polarization can be
computed either via localized Wannier functions or via the Berry phase (BP) approach. The latter scheme is used in the present automated implementation according to which direct piezoelectric constants can be written as follows in terms of numerical first derivatives of the BP \(\varphi_{l}\) with respect to the strain:
\[
\begin{equation*}
e_{i v}=\frac{|e|}{2 \pi V} \sum_{l} a_{l i} \frac{\partial \varphi_{l}}{\partial \eta_{v}} \tag{12.5}
\end{equation*}
\]
where \(a_{l i}\) is the \(i\)-th Cartesian component of the \(l\)-th direct lattice basis vector \(\mathbf{a}_{l}\). Again, for 1 D and 2D systems, the volume is omitted, the polarization reduces to a dipole moment and the piezoelectric constants are reported in units of \(|e| \times b o h r\).
An alternative approach has recently been implemented for the analytical evaluation of the direct piezoelectric tensor of 3D crystals, based on the CPHF/KS scheme. This strategy is adopted when use of the keyword PIEZOCP is made.
A simple direct connection exists between direct \(\mathbf{e}\) and converse \(\mathbf{d}\) piezoelectric tensors:
\[
\begin{equation*}
\mathbf{e}=\mathbf{d} \mathbb{C} \quad \text { and } \quad \mathbf{d}=\mathbf{e} \mathbb{S}, \tag{12.6}
\end{equation*}
\]
where \(\mathbb{C}\) is the fourth rank elastic tensor of energy second derivatives with respect to pairs of deformations and \(\mathbb{S}=\mathbb{C}^{-1}\) is the fourth rank compliance tensor.
Photoelastic constants are the elements of the fourth rank photoelastic (Pockels) tensor and are defined as:
\[
\begin{equation*}
p_{i j k l}=\frac{\partial \Delta \epsilon_{i j}^{-1}}{\partial \eta_{k l}}, \tag{12.7}
\end{equation*}
\]
where \(\Delta \epsilon^{-1}\) is the difference of the inverse dielectric tensor between strained and unstrained configurations. Given the stress-strain relation, the fourth-rank piezo-optic tensor \(\boldsymbol{\pi}\) (whose elements are the stress-optical coefficients \(\pi_{v u}\)) can be obtained from the photo-elastic \(\mathbf{p}\) and elastic \(\mathbb{C}\) ones as:
\[
\begin{equation*}
\boldsymbol{\pi}=\mathbf{p} \mathbb{S} \quad \text { and } \quad \mathbf{p}=\boldsymbol{\pi} \mathbb{C} \tag{12.8}
\end{equation*}
\]

At variance with the elastic \(\mathbb{C}\) and compliance \(\mathbb{S}\) tensors, \(\mathbf{p}\) and \(\boldsymbol{\pi}\) are not symmetric (i.e. in general \(p_{v u} \neq p_{u v}\) and \(\pi_{v u} \neq \pi_{u v}\)). It follows that the number of symmetry-independent components to be determined for the stress-optical and strain-optical tensors is generally larger than for the elastic tensors.
The derivatives in the right-hand-sides of equations 12.1 , 12.5 and 12.7 are computed numerically by applying finite strains to the crystal lattice. For each strain, \(N_{s}\) configurations are defined according to a strain step \(\delta\). By default, \(N_{s}=3\), corresponding to one "expanded", one unstrained and one "contracted" configuration, and \(\delta=0.01\) for elastic and \(\delta=0.015\) for piezoelectric and photoelastic constants. Parameter \(N_{s}\) can be modified with the sub-keyword NUMDERIV while \(\delta\) can be modified with sub-keyword STEPSIZE.
We recall that elastic, piezoelectric and photoelastic constants can be decomposed into purely electronic "clamped-ion" and nuclear "internal-strain" contributions; the latter, computed by default, measures the effect of relaxation of the relative positions of atoms induced by the strain and can be computed by optimizing the atomic positions within the crystal cell. If one wants to compute "clamped-ion" constants can use the sub-keyword CLAMPION.
The input geometry is assumed to be optimized; nevertheless, the user can ask this module to perform a pre-optimization of the structure by means of the PREOPTGEOM subkeyword; convergence tolerances on gradient and displacement can be modified by means of the TOLDEG and TOLDEX sub-keywords.
For elastic, piezoelectric and photoelastic constants a flexible restart option has been prepared which can be activated with the RESTART sub-keyword and which uses an external formatted file called ELASINFO.DAT. Detailed printings (recommended) can be activated with the PRINT sub-keyword.

\subsection*{12.2 The algorithm}

We present here the fully automated procedure for the calculation of the elastic, piezoelectric and photoelastic constants as implemented in Crystal:
1. The starting geometrical structure of the crystal is accurately optimized as concerns both lattice parameters and atomic positions;
2. A single-point self-consistent-field (SCF) calculation is performed on the optimized reference structure. Energy gradients, Berry phase or dielectric tensor (via a CPHF/KS scheme) are also computed;
3. A symmetry analysis is performed in order to find the minimal set of strains, out of a maximum of six, which have to be explicitly applied in order to get all the independent constants. The symmetry features of third and fourth rank tensors is printed in the following way:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{1 A} & 1 & F & & C & . & 1 B & . \\
\hline & 1 & A & & C & & -1 B & \\
\hline & & & & E & . & . & . \\
\hline & & & & & 1 D & . & -1 B \\
\hline \multirow[t]{2}{*}{} & & & & & & 1 D & . \\
\hline & & & & & & & \& \\
\hline
\end{tabular}
4. For each irreducible strain, the deformation is applied to the structure and the residual symmetry determined. \(N_{s}\) strained configurations are defined according to a strain step \(\delta\);
5. For each strained configuration, the atomic positions are relaxed with an optimization (default option) or not depending on whether one wants to go beyond the "clamped-ion" approximation or not. An SCF calculation is then performed with gradient, Berry phase or dielectric tensor calculation;
6. After the loop over the \(N_{s}\) strained configurations, the energy gradients, Berry phases or dielectric tensors are fitted with singular-value-decomposition routines and their first derivatives determined numerically; Elastic, piezoelectric or photoelastic constants are finally computed and printed.

\subsection*{12.3 Second-order Elastic Constants}

A fully-automated procedure for calculating the second-order elastic constants for an arbitrary crystal is activated by specifying the keyword ELASTCON in input block 1 (geometry).
ELASTCON must be the last keyword in geometry input:
```

. . . geometry input . . . .
ELASTCON
END close ELASTCON input block
END close geometry input block

```

Note that the user must be confident that the input structure is already well optimized. At the beginning of the run, the forces at the central point are calculated and if they exceed \(10^{-4}\), then a warning is printed suggesting re-optimization.
Users of this option are kindly requested to cite the following papers[167, [75]:
W.F. Perger, J. Criswell, B. Civalleri and R. Dovesi, Comp. Phys. Comm., 180, 1753-1759 (2009). Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code
A. Erba, A. Mahmoud, R. Orlando and R. Dovesi, Phys. Chem. Minerals, 41, 151-160 (2014). Elastic properties of six silicate garnet end-members from accurate ab initio simulations.

Users of this option for 1 D and 2 D systems are kindly requested to cite the following paper [72]:
A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat and R. Dovesi, J. Chem. Phys., 138, 054906 (2013). The vibration properties of the (n,0) Boron Nitride nanotubes from ab initio quantum chemical simulations.

\section*{Keywords, options, and defaults}

A default value is chosen for all computational parameters. SCF energy convergence threshold is set to \(10^{-8}\). To modify it, see keyword TOLDEE in input block 3, page 114 .

Default choices can be modified by optional keywords (in any order):
\begin{tabular}{|c|c|}
\hline rec variable & meaning \\
\hline \begin{tabular}{l}
- \(A\) NUMDERIV \\
* INUM
\end{tabular} & This sets the number of points for the numerical second derivative number of points including the central (zero displacement) one [default = 3] \\
\hline - \(A\) STEPSIZE & This gives the size of the displacement to be used for the calculation of the numerical second derivative. \\
\hline * STEP & size of the strain step along a given deformation [default \(=0.01\)] \\
\hline - \(A\) DEFORM & Specific deformations are asked for \\
\hline * \(\mathrm{DEF}(\mathrm{I}), \mathrm{I}=1,6\) & Six integers have to be provided, each one associated to a given deformation \((x x, y y, z z, y z, x z, x y)\) that tell the program which deformations have to be considered as active. Put 1 for active and 0 for inactive. By default, the program performs a symmetry analysis and finds which deformations are necessary. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - A CLAMPION & \begin{tabular}{l}
This option activates the computation of "clamped-ion" con- \\
stants.
\end{tabular} \\
\hline - A PRINT & \begin{tabular}{l}
This option turns on a higher level of diagnostic printing [default \\
minimal printing].
\end{tabular} \\
\hline - A RESTART & \begin{tabular}{l}
Allows restart using file ELASINFO.DAT from a previous in- \\
complete run.
\end{tabular} \\
\hline - A RESTART2 & \begin{tabular}{l}
Allows a full restart using file ELASINFO.DAT from a previous \\
complete run.
\end{tabular} \\
\hline - A PREOPTGEOM & \begin{tabular}{l}
A preliminary geometry optimization of cell and atomic positions \\
is performed before starting elastic constant calculation.
\end{tabular} \\
\hline - A SEISMDIR & \begin{tabular}{l}
Defines additional directions along which seismic wave velocities \\
are computed. \\
* Number of additional directions
\end{tabular} \\
\hline
\end{tabular}
* DX,DY,DZ Cartesian components of each additional direction

Geometry optimization is performed at convergence criteria tighter than the ones given in OPTGEOM. Some values can be modified by inserting the following keywords:
- \(A\) TOLDEG
- \(A\) TOLDEX
- \(A\) TOLDEE
- \(A\) MAXCYCLE
- \(A\) NOTRUSTR
- \(A\) TRUSTRADIUS
- A MAXTRADIUS

ELASTCON default [0.0003] - see OPTGEOM, page 162
ELASTCON default [0.00062] - see OPTGEOM, page 162
ELASTCON default [8] - see OPTGEOM, page 162
see OPTGEOM, page 164
see OPTGEOM, page 162
see OPTGEOM, page 162
see OPTGEOM, page 162

Input Example:
```

. . . geometry input . . . .
ELASTCON
NUMDERIV modify default choice of n. points [3]
5
STEPSIZE modify step size for numerical gradient [0.01]
0.02
PRINT extended printing
END end of ELASTCON input
END geometry input

```

The information on the computed elastic constants is printed at the end of the output with the following format:

SYMMETRIZED ELASTIC CONSTANTS FOR HEXAGONAL CASE, IN GPa
\begin{tabular}{lrrrrrrl}
| & 89.130 & 13.792 & 20.473 & 0.000 & 12.584 & 0.000 & | \\
| & & 89.130 & 20.473 & 0.000 & -12.584 & 0.000 & | \\
| & & & 113.498 & 0.000 & 0.000 & 0.000 & a \\
| & & & & 58.682 & 0.000 & -12.584 & | \\
| & & & & & 58.682 & 0.000 & |
\end{tabular}

Compliance tensor is also printed as:

> ELASTIC MODULI (COMPLIANCE TENSOR), IN TPa^-1

According to the elastic continuum theory, the three acoustic wave velocities of a crystal, along any general direction represented by unit wave-vector \(\hat{\mathbf{q}}\), are related to the elastic constants by Christoffel's equation which can be given an eigenvalues/eigenvectors form, as follows:
\[
\begin{equation*}
\mathbf{A}^{\hat{\mathrm{q}}} \mathbf{U}=\mathbf{V}^{2} \mathbf{U} \quad \text { with } \quad A_{k l}^{\hat{\mathrm{q}}}=\frac{1}{\rho} \hat{q}_{i} C_{i k l j} \hat{q}_{j} \tag{12.9}
\end{equation*}
\]
where \(\rho\) is the crystal density, \(i, j, k, l=x, y, z\) represent Cartesian directions, \(\hat{q}_{i}\) is the \(i\)-th element of the unit vector \(\hat{\mathbf{q}}, \mathbf{V}\) is a \(3 \times 3\) diagonal matrix whose three elements give the acoustic velocities and \(\mathbf{U}=\left(\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{2}, \hat{\mathbf{u}}_{3}\right)\) is the eigenvectors \(3 \times 3\) matrix where each column represents the polarization \(\hat{\mathbf{u}}\) of the corresponding eigenvalue. The three acoustic wave velocities, also referred to as seismic velocities, can be labeled as longitudinal \(v_{p}\), slow transverse \(v_{s 1}\) and fast transverse \(v_{s 2}\), depending on the polarization direction \(\hat{\mathbf{u}}\) with respect to wave-vector \(\hat{\mathbf{q}}\). The seismic wave velocities are computed by default along some Cartesian directions and printed as follows (note that slow and fast transverse wave velocities are sorted according to their values; crossing are possible which should be carefully checked):
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{WAVE VECTOR} & Vp & Vs1 & Vs2 \\
\hline [0.000 & 0.000 & 1.000] & 9.237 & 5.068 & 5.068 \\
\hline [0.000 & 1.000 & 0.000] & 9.237 & 5.068 & 5.068 \\
\hline [1.000 & 0.000 & 0.000] & 9.237 & 5.068 & 5.068 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline [1.000 & 1.000 & 0.000] & 9.166 & 5.195 & 5.068 \\
\hline [1.000 & 0.000 & 1.000] & 9.166 & 5.195 & 5.068 \\
\hline [0.000 & 1.000 & 1.000] & 9.166 & 5.195 & 5.068 \\
\hline [1.000 & 1.000 & 1.000] & 9.142 & 5.153 & 5.153 \\
\hline
\end{tabular}

User-defined Cartesian directions can be added by means of the SEISMDIR sub-keyword, along which the seismic wave velocities are computed and printed (typically, this can be done a posteriori with a complete restart using the RESTART2 sub-keyword).

A more complete analysis of directional elastic wave velocities can be performed via the AWESoMe program (by D. Munoz-Santiburcio, A. Hernandez-Laguna and J.I. Soto, Comp. Phys. Commun., 192, 272-277 (2015)), which has been merged with CRYSTAL17. By inserting the AWESOME keyword, the full analysis of phase and group velocities is enabled, which generates a series of output files specifically designed to be read by Gnuplot scripts to get 2D and 3D representations of directional seismic wave velocities and related quantities (Gnuplot scripts are available on our on-line tutorial):
```

. . . geometry input . . . .
ELASTCON
AWESOME
END end of ELASTCON input
END geometry input

```

\subsection*{12.3.1 Elastic Tensor under Pressure}

Reference to be cited when using this module:
A. Erba, A. Mahmoud, D. Belmonte and R. Dovesi, J. Chem. Phys., 140, 124703 (2014).

The calculation of elastic constants under pressure is a task of great geophysical interest. In the absence of any finite pre-stress, elastic constants can be defined as second energy density derivatives with respect to pairs of infinitesimal Eulerian strains:
\[
\begin{equation*}
C_{i j k l}=\frac{1}{V_{0}}\left(\frac{\partial^{2} E}{\partial \epsilon_{i j} \partial \epsilon_{k l}}\right)_{\epsilon=0} . \tag{12.10}
\end{equation*}
\]

The constants above do represent the link between stress and strain via the Hooke's law. In the limit of zero temperature, typical of ab initio simulations, they are also referred to as athermal elastic constants.
If a finite pre-stress \(\boldsymbol{\sigma}^{p r e}\) is applied in the form of a hydrostatic pressure \(P\left(\sigma_{i j}^{p r e}=P \delta_{i j}\right)\), within the frame of finite Eulerian strain, the relevant elastic stiffness constants are transformed as:
\[
\begin{equation*}
B_{i j k l}=C_{i j k l}+\frac{P}{2}\left(2 \delta_{i j} \delta_{k l}-\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right) \tag{12.11}
\end{equation*}
\]
provided that \(V_{0}\) in equation 12.10 becomes the equilibrium volume \(V(P)\) at pressure \(P\). In the present fully automated implementation of the calculation of the stiffness tensor \(\mathbf{B}\) (and of \(\mathbf{S}=\mathbf{B}^{-1}\), the compliance tensor) under pressure, \(V(P)\) is obtained from the analytical stress tensor. An option also exists for using the \(V(P)\) relation obtained from a previous EOS calculation.
Since both \(\boldsymbol{\epsilon}\) and \(\boldsymbol{\delta}\) are symmetric tensors, we can rewrite the previous equality as:
\[
B_{v u}=C_{v u}+\left(\begin{array}{cccccc}
0 & P & P & 0 & 0 & 0 \tag{12.12}\\
P & 0 & P & 0 & 0 & 0 \\
P & P & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{-P}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{-P}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{-P}{2}
\end{array}\right)
\]
where Voigt's notation has been used.

So, in order to obtain the elastic constants at a given pressure, one basically needs to perform an elastic calculation at the volume corresponding to the desired pressure, \(V(P)\), and then correct the computed constants according to equation 12.12 . This is automatically done by the program if the following keywords are used:
```

. . . geometry input . . . .
ELASTCON
PREOPTGEOM A constant-pressure pre-optimization is performed
PRESSURE Activates the calculation under pressure
5 Set the value (in GPa) of the pressure
END end of ELASTCON input
END geometry input

```

In this way, a pressure-constrained pre-geometry optimization is performed. The elastic constants are evaluated starting from the optimized structure.

If one already knows which is the equilibrium structure corresponding to a given pressure (from a previous EOS run, for instance), there is no need to perform a geometry optimization before the elastic constants evaluation. In this case, one should give the optimized structure in input, which refers to a given pressure, and then use the following keywords:
```

. . . geometry input . . . .
ELASTCON
PRESSEOS Activates the calculation under pressure
5 Set the value (in GPa) of the pressure corresponding to the given structure
END end of ELASTCON input
END geometry input

```

\subsection*{12.3.2 Nuclear-relaxation Term from Internal-strain Tensor}

References to be cited for this option:
A. Erba, Phys. Chem. Chem. Phys., 18, 13984-13992 (2016)
A. Erba, D. Caglioti, C. M. Zicovich-Wilson and R. Dovesi, J. Comput. Chem., 38, 257-264 (2017)

Strain-induced response properties of solids can be formally decomposed into a purely electronic "clamped-nuclei" term and a nuclear-relaxation term due to the rearrangement of atomic positions upon strain. The evaluation of the latter is generally much more computationally expensive than that of the former. In principle, two alternative approaches can be used to account for nuclear-relaxation effects: i) performing numerical geometry optimizations to relax atomic positions at actual strained lattice configurations, or ii) evaluating in a more analytical fashion the "internal-strain" tensor of energy second-derivatives with respect to atomic displacements and lattice deformations, as combined with the interatomic force constant Hessian matrix. Given that geometry optimizations at strained configurations are rather slowly-converging numerical procedures requiring particularly tight convergence criteria, the second approach is to be preferred as it ensures higher accuracy and requires less severe computational parameters to be used.
As a matter of fact, in previous versions of the CRYSTAL program, only the first numerical strategy was available. In Crystal17, the second approach has been implemented for the elastic and piezoelectric tensors, which relies on the calculation of the "internal-strain" tensor by fully-exploiting its point-symmetry features. Beside being more robust, the new strategy has also been documented to be more computationally efficient for most crystalline systems. The elements of the force-response internal-strain tensor are second-energy derivatives with respect to an atomic displacement and to a lattice distortion:
\[
\begin{equation*}
\Lambda_{a i, v}=\left.\frac{\partial^{2} E}{\partial u_{a i} \partial \eta_{v}}\right|_{\mathcal{E}} \tag{12.13}
\end{equation*}
\]
where \(u_{a i}\) are Cartesian components of the displacement vector \(\mathbf{u}_{a}\) of atom \(a(i=x, y, z)\). A displacement-response internal-strain tensor \(\boldsymbol{\Gamma}\), which describes first-order atomic displacements as induced by a first-order strain, can be defined as:
\[
\begin{equation*}
\Gamma_{a i, v}=-\left.\frac{\partial u_{a i}}{\partial \eta_{v}}\right|_{\mathcal{E}}=\sum_{b j}\left(H^{-1}\right)_{a i, b j} \Lambda_{b j, v} \tag{12.14}
\end{equation*}
\]
where \(\mathbf{H}\) is the interatomic force-constant Hessian matrix of energy second derivatives with respect to pairs of periodicity-preserving atomic displacements:
\[
\begin{equation*}
H_{a i, b j}=\left.\frac{\partial^{2} E}{\partial u_{a i} \partial u_{b j}}\right|_{\mathcal{E}, \eta} \tag{12.15}
\end{equation*}
\]

When mass-weighted and diagonalized, the force-constant matrix of Eq. 12.15 provides vibration frequencies of Brillouin zone-center phonon modes. The \(\mathbf{H}^{-1}\) matrix in Eq. (12.14) has to be considered a pseudoinverse of \(\mathbf{H}\) where translational degrees of freedom are projected out, as discussed in detail elsewhere.
The nuclear-relaxation contribution to elastic constants can be expressed in terms of the internal-strain tensor \(\boldsymbol{\Lambda}\) (or \(\boldsymbol{\Gamma}\)):
\[
\begin{equation*}
C_{v w}^{\mathrm{nuc}}=-\frac{1}{V_{0}} \sum_{a i} \Lambda_{a i, v} \Gamma_{a i, w} \tag{12.16}
\end{equation*}
\]

In the current fully-automated implementation into the CRYSTAL program, the elements \(\Lambda_{a i, v}\) of the force-response internal-strain tensor are here computed as finite differences of analytical lattice gradients with respect to atomic Cartesian displacements, by means of a generalized "Pulay's force method" originally proposed for interatomic force constants.

To activate this option (recommended) use the following keywords:
```

. . . geometry input . . . .
ELASTCON
NUCHESS Activates use of Hessian matrices for nuclear term
HESSNUM2 Use of a 2-points formula in the evaluation of the Hessian matrices
END end of ELASTCON input
END geometry input

```

The keyword MODEPART activates the partition of the nuclear-relaxation term into normal modes. The keyword HESSSTEP allows to redefine the step (in \(\AA\)) for the numerical evaluation of the Hessian matrices:
```

. . . geometry input . . . .
ELASTCON
NUCHESS Activates use of Hessian matrices for nuclear term
HESSNUM2 Use of a 2-points formula in the evaluation of the Hessian matrices
MODEPART
HESSSTEP
0.005
END end of ELASTCON input
END geometry input

```

\section*{Internal Diagnostics}

In order to monitor the quality of the calculation as it proceeds, the total energy after optimization is stored. The recommended use of the ELASTCON option assumes that the user supplies an input file from a previously optimized geometry (and not experimental lattice constants and atomic positions, for example). Therefore, in principle, as the various deformations are made, the optimized total energy for each of the deformed geometries should be higher than the energy at the undeformed, equilibrium, geometry. The code monitors each optimized total energy for each deformed geometry and if any deformation lowers the total energy from the equilibrium value, a warning is printed for the user to verify that the input file was really from a previously optimized geometry.

\subsection*{12.4 First-order Piezoelectric Constants}

A fully-automated procedure for calculating the first-order piezoelectric constants for an arbitrary crystal is activated by specifying the keyword PIEZOCON in input block 1 (geometry). PIEZOCON must be the last keyword in geometry input:
```

. . . geometry input . . . .
PIEZOCON
END close PIEZOCON input block
END close geometry input block

```

Note that the user must be confident that the input structure is already well optimized. At the beginning of the run, the forces at the central point are calculated and if they exceed \(10^{-4}\), then a warning is printed suggesting re-optimization.

Users of this option are kindly requested to cite the following papers [152, 71]:
Y. Noel and C. M. Zicovich-Wilson and B. Civalleri and Ph. D'Arco and R. Dovesi, Phys. Rev. \(B, \mathbf{6 5}, 014111\) (2001). Polarization properties of ZnO and BeO : An ab initio study through the Berry phase and Wannier functions approaches.
A. Erba, Kh. E. El-Kelany, M. Ferrero, I. Baraille and M. Rérat, Phys. Rev. B, 88, 035102 (2013). Piezoelectricity of \(\mathrm{SrTiO}_{3}\) : An ab initio description.

Users of this option for 1 D and 2D systems are kindly requested to cite the following paper 72]:
A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat and R. Dovesi, J. Chem. Phys., 138, 054906 (2013). The vibration properties of the (\(n, 0\)) Boron Nitride nanotubes from ab initio quantum chemical simulations.

\section*{Keywords, options, and defaults}

A default value is chosen for all computational parameters. SCF energy convergence threshold is set to \(10^{-8}\). To modify it, see keyword TOLDEE in input block 3, page 114

Default choices can be modified by optional keywords (in any order):
rec variable meaning
- \(A\) NUMDERIV
* INUM
- \(A\) STEPSIZE
* STEP
- \(A\) DEFORM
* \(\operatorname{DEF}(\mathrm{I}), \mathrm{I}=1,6\)

This sets the number of points for the numerical second derivative number of points including the central (zero displacement) one [default = 3]
This gives the size of the displacement to be used for the calculation of the numerical second derivative.
size of the strain step along a given deformation \([\) default \(=0.015\)] Specific deformations are asked for
Six integers have to be provided, each one associated to a given deformation \((x x, y y, z z, y z, x z, x y)\) that tell the program which deformations have to be considered as active. Put 1 for active and 0 for inactive. By default, the program performs a symmetry analysis and finds which deformations are necessary.
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline\(-A\) CLAMPION & \begin{tabular}{l}
This option activates the computation of "clamped-ion" con- \\
stants.
\end{tabular} \\
\hline - A PRINT & \begin{tabular}{l}
This option turns on a higher level of diagnostic printing [de fault \\
minimal printing]
\end{tabular} \\
\hline - A RESTART & \begin{tabular}{l}
Allows restart using file ELASINFO.DAT from a previous in- \\
complete run.
\end{tabular} \\
\hline - A RESTART2 & \begin{tabular}{l}
Allows a full restart using file ELASINFO.DAT from a previous \\
complete run.
\end{tabular} \\
\hline - A PREOPTGEOM & \begin{tabular}{l}
A preliminary geometry optimization of cell and atomic positions \\
is performed before starting elastic constant calculation.
\end{tabular} \\
\hline
\end{tabular}

Geometry optimization is performed at convergence criteria tighter than the ones given in OPTGEOM. Some values can be modified by inserting the following keywords:
- \(A\) TOLDEG
- \(A\) TOLDEX
- \(A\) TOLDEE
- \(A\) MAXCYCLE
- \(A\) NOTRUSTR
- \(A\) TRUSTRADIUS
- \(A\) MAXTRADIUS

PIEZOCON default [0.0003] - see OPTGEOM, page 162
PIEZOCON default [0.00062] - see OPTGEOM, page 162
PIEZOCON default [8] - see OPTGEOM, page 162
see OPTGEOM, page 164
see OPTGEOM, page 162
see OPTGEOM, page \(\overline{162}\)
see OPTGEOM, page 162

Input Example:
```

. . . geometry input . . . .
PIEZOCON
NUMDERIV modify default choice of n. points [3]
5
STEPSIZE modify step size for numerical gradient [0.015]
0.02
CLAMPION activates "clamped-ion" approximation
PRINT extended printing
END end of PIEZOCON input
END geometry input

```

The computed piezoelectric tensor is printed as follows at the end of the output:
PIEZOELECTRIC CONSTANTS FOR HEXAGONAL CASE, IN C/m^2
\begin{tabular}{lrrrrrrl|}
| & 0.000 & 0.000 & 0.000 & 0.000 & -0.090 & 0.000 & | \\
| & 0.000 & 0.000 & 0.000 & -0.090 & 0.000 & 0.000 & | \\
| & -0.187 & -0.187 & 0.282 & 0.000 & 0.000 & 0.000 & |
\end{tabular}

\subsection*{12.5 Piezoelectricity through CPHF/KS Approach}

References to be cited when using this module:
J. Baima, A. Erba, L. Maschio, C.M. Zicovich-Wilson, R. Dovesi and B. Kirtman, Z. Phys. Chem., 230, 719-736 (2016)
A. Erba, Phys. Chem. Chem. Phys., 18, 13984-13992 (2016)

While the PIEZOCON keyword allows to compute the direct piezoelectric tensor through the numerical Berry phase approach, the PIEZOCP keyword allows to compute it via an analytical approach based on the CPHF/KS scheme. In this way, not just the electronic term is computed analytically, but also the nuclear-relaxation contribution is evaluated from the internal-strain tensor rather than from numerical geometry optimizations of atomic coordinates
at strained configurations:
\[
\begin{equation*}
e_{k v}^{\mathrm{nuc}}=-\frac{1}{V_{0}} \sum_{a i} Z_{k, a i}^{*} \Gamma_{a i, v} \tag{12.17}
\end{equation*}
\]
where the \(\mathbf{Z}^{*}\) tensor in Eq. 12.17) contains the Born dynamical effective charges:
\[
\begin{equation*}
Z_{k, a i}^{*}=\left.\frac{\partial^{2} E}{\partial \mathcal{E}_{k} \partial u_{a i}}\right|_{\eta} \tag{12.18}
\end{equation*}
\]
```

. . . geometry input . . . .
PIEZOCP Activates the analytical calculation of the piezoelectric tensor
HESSNUM2 Use of a 2-point formula for the evaluation of the Hessian matrices
TOLALPHA Set the tolerance on the convergence of the CPHF process
2
END end of PIEZOCP input
END geometry input

```

\subsection*{12.6 Elastic and Piezoelectric Constants}

A fully-automated procedure for calculating the second-order elastic constants and the firstorder piezoelectric (direct and converse) constants for an arbitrary crystal is activated by specifying the keyword ELAPIEZO in input block 1 (geometry).
ELAPIEZO must be the last keyword in geometry input:
. . . geometry input
ELAPIEZO
\begin{tabular}{ll}
END & close ELAPIEZO input block \\
END & close geometry input block
\end{tabular}

Note that the user must be confident that the input structure is already well optimized. At the beginning of the run, the forces at the central point are calculated and if they exceed \(10^{-4}\), then a warning is printed suggesting re-optimization.
Users of this option are kindly requested to cite the following papers [152, 71]:
Y. Noel and C. M. Zicovich-Wilson and B. Civalleri and Ph. D'Arco and R. Dovesi, Phys. Rev. \(B, \mathbf{6 5}, 014111\) (2001). Polarization properties of \(Z n O\) and \(B e O\) : An ab initio study through the Berry phase and Wannier functions approaches.
A. Erba, Kh. E. El-Kelany, M. Ferrero, I. Baraille and M. Rérat, Phys. Rev. B, 88, 035102 (2013). Piezoelectricity of \(\mathrm{SrTiO}_{3}\) : An ab initio description.

Users of this option for 1 D and 2 D systems are kindly requested to cite the following paper 72]:
A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat and R. Dovesi, J. Chem. Phys., 138, 054906 (2013). The vibration properties of the (\(n, 0\)) Boron Nitride nanotubes from ab initio quantum chemical simulations.

\section*{Keywords, options, and defaults}

A default value is chosen for all computational parameters. SCF energy convergence threshold is set to \(10^{-8}\). To modify it, see keyword TOLDEE in input block 3, page 114 .
Default choices can be modified by optional keywords (in any order):
rec variable meaning
- \(A\) NUMDERIV
* INUM
- \(A\) STEPSIZE
* STEP
- \(A\) DEFORM
* \(\operatorname{DEF}(\mathrm{I}), \mathrm{I}=1,6\)

This sets the number of points for the numerical second derivative number of points including the central (zero displacement) one [default = 3]
This gives the size of the displacement to be used for the calculation of the numerical second derivative.
size of the strain step along a given deformation \([\) default \(=0.015\)] Specific deformations are asked for
Six integers have to be provided, each one associated to a given deformation \((x x, y y, z z, y z, x z, x y)\) that tell the program which deformations have to be considered as active. Put 1 for active and 0 for inactive. By default, the program performs a symmetry analysis and finds which deformations are necessary.
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - A CLAMPION & \begin{tabular}{l}
This option activates the computation of "clamped-ion" con- \\
stants.
\end{tabular} \\
\hline - A PRINT & \begin{tabular}{l}
This option turns on a higher level of diagnostic printing [default \\
minimal printing]
\end{tabular} \\
\hline - A RESTART & \begin{tabular}{l}
Allows restart using file ELASINFO.DAT from a previous in- \\
complete run.
\end{tabular} \\
\hline - A RESTART2 & \begin{tabular}{l}
Allows a full restart using file ELASINFO.DAT from a previous \\
complete run.
\end{tabular} \\
\hline
\end{tabular}
- A PREOPTGEOM A preliminary geometry optimization of cell and atomic positions is performed before starting elastic constant calculation.

Geometry optimization is performed at convergence criteria tighter than the ones given in OPTGEOM. Some values can be modified by inserting the following keywords:
- \(A\) TOLDEG
- \(A\) TOLDEX
- \(A\) TOLDEE
- \(A\) MAXCYCLE
- \(A\) NOTRUSTR
- \(A\) TRUSTRADIUS
- A MAXTRADIUS

ELAPIEZO default [0.0003] - see OPTGEOM, page 162
ELAPIEZO default [0.00062] - see OPTGEOM, page 162
ELAPIEZO default [8] - see OPTGEOM, page 162
see OPTGEOM, page 164
see OPTGEOM, page 162
see OPTGEOM, page 162
see OPTGEOM, page 162

Input Example:
```

. . . geometry input . . . .
ELAPIEZO
NUMDERIV modify default choice of n. points [3]
5
STEPSIZE modify step size for numerical gradient [0.015]
0.02
CLAMPION activates "clamped-ion" approximation
PRINT extended printing
END end of ELAPIEZO input
END geometry input

```

Elastic and piezoelectric tensors are printed at the end of the output (see keywords ELASTCON and PIEZOCON above). Moreover, piezoelectric strain tensor (converse piezoelectric tensor) is printed:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{PIEZOELECTRIC STRAIN (CONVERSE) CONSTANTS (\(\mathrm{pC} / \mathrm{N}=\mathrm{pm} / \mathrm{V}\))} \\
\hline & 0.000 & 0.000 & 0.000 & 0.000 & -14.351 & 0.000 \\
\hline & 0.000 & 0.000 & 0.000 & -14.351 & 0.000 & 0.000 \\
\hline & -0.256 & -0.256 & 2.859 & 0.000 & 0.000 & 0.000 \\
\hline
\end{tabular}

\subsection*{12.7 Photoelastic Constants}

A fully-automated procedure for calculating the photoelastic and piezo-optic constants for an arbitrary crystal is activated by specifying the keyword PHOTOELA in input block 1 (geometry). Dielectric tensor is computed via a CPHF/KS procedure. The electronic contribution is evaluated in the limit of infinite frequency \(\omega \rightarrow \infty\). Dielectric tensor at finite frequency can be computed with sub-keyword DYNAMIC.
PHOTOELA must be the last keyword in geometry input:
```

. . . geometry input . . . .
PHOTOELA
END close PHOTOELA input block
END close geometry input block

```

Note that the user must be confident that the input structure is already well optimized. At the beginning of the run, the forces at the central point are calculated and if they exceed \(10^{-4}\), then a warning is printed suggesting re-optimization.
Users of this option are kindly requested to cite the following papers [70:
A. Erba and R. Dovesi, Phys. Rev. B, 88, 045121 (2013). Photoelasticity of crystals from theoretical simulations.
A. Erba, M.T. Ruggiero, T. M. Korter and R. Dovesi, J. Chem. Phys., 143, 144504 (2015). Piezo-Optic Tensor of Crystals from Quantum-Mechanical Calculations

\section*{Keywords, options, and defaults}

A default value is chosen for all computational parameters. SCF energy convergence threshold is set to \(10^{-8}\). To modify it, see keyword TOLDEE in input block 3, page 114

Default choices can be modified by optional keywords (in any order). There are some specific sub-keywords controlling CPHF/KS parameters:
\begin{tabular}{|c|c|}
\hline rec variable & meaning \\
\hline - \(A\) TOLALPHA & threshold on energy first derivative change between CPHF/KS cycles \\
\hline ITOL & \(|\Delta E|<10^{-I T O L}\) [default: 4] \\
\hline - \(A\) FMIXING
* IPMIX & permits to mix the Fock/KS matrix derivatives between CPHF/KS cycles \(n\) and \(n-1\) percentage of cycle \(n-1\) [IPMIX \(=0\), no mixing; default IPMIX \(=60\)] \\
\hline - \(A\) DYNAMIC & Activates the computation of frequency-dependent polarizabilities and dielectric constants. \\
\hline ILAMBD & wave-length of radiation (expressed in nm). \\
\hline - A ANDERSO & Convergence accelerator. Mixing of Fock/KS matrix derivatives (page 83) \\
\hline - \(A\) BROYDEN & Convergence accelerator. Mixing of Fock/KS matrix derivatives (page 85) \\
\hline * W0 & W0 parameter in Anderson's paper [125] \\
\hline * IMIX & Percentage of Fock/KS derivative matrices mixing \\
\hline ISTART & Iteration after which Broyden method is activated (minimum 2) \\
\hline \begin{tabular}{l}
- \(A\) NUMDERIV \\
* INUM
\end{tabular} & This sets the number of points for the numerical second derivative number of points including the central (zero displacement) one [default = 3] \\
\hline - \(A\) STEPSIZE & This gives the size of the displacement to be used for the calculation of the numerical second derivative. \\
\hline \begin{tabular}{l}
* STEP \\
- \(A\) DEFORM
\end{tabular} & size of the strain step along a given deformation \([\) default \(=0.015\)] Specific deformations are asked for \\
\hline \(\operatorname{DEF}(\mathrm{I}), \mathrm{I}=1,6\) & Six integers have to be provided, each one associated to a given deformation \((x x, y y, z z, y z, x z, x y)\) that tell the program which deformations have to be considered as active. Put 1 for active and 0 for inactive. By default, the program performs a symmetry analysis and finds which deformations are necessary. \\
\hline rec variable & meaning \\
\hline - \(A\) CLAMPION & This option activates the computation of "clamped-ion" constants. \\
\hline - \(A\) PRINT & This option turns on a higher level of diagnostic printing [default minimal printing] \\
\hline - \(A\) PREOPTGEOM & A preliminary geometry optimization of cell and atomic positions is performed before starting elastic constant calculation. \\
\hline - A RESTART & Allows restart using file ELASINFO.DAT from a previous incomplete run. \\
\hline - \(A\) RESTART2 & Allows a full restart using file ELASINFO.DAT from a previous complete run. \\
\hline
\end{tabular}

Geometry optimization is performed at convergence criteria tighter than the ones given in OPTGEOM. Some values can be modified by inserting the following keywords:
- \(A\) TOLDEG
- \(A\) TOLDEX
- \(A\) TOLDEE
- \(A\) MAXCYCLE
- \(A\) NOTRUSTR
- \(A\) TRUSTRADIUS
- A MAXTRADIUS

PHOTOELA default [0.0003] - see OPTGEOM, page 162
PHOTOELA default [0.00062] - see OPTGEOM, page 162
PHOTOELA default [8] - see OPTGEOM, page 162
see OPTGEOM, page 164
see OPTGEOM, page 162
see OPTGEOM, page 162
see OPTGEOM, page 162

Input Example:
```

. . . geometry input . . . .
PHOTOELA
NUMDERIV modify default choice of n. points [3]
5
STEPSIZE modify step size for numerical gradient [0.015]
0.02
CLAMPION activates "clamped-ion" approximation
PRINT extended printing
END end of PHOTOELA input
END geometry input

```

The elasto-optic (Pockels) tensor is printed at the end of the output:

The piezo-optic tensor is then printed (in units of Brewsters):
```

PIEZO-OPTIC TENSOR (IN BREWSTERS; 1B = 10^-12 Pa^-1 = 1 TPa^-1)

-0.958	0.204	0.204	0.000	0.000	0.000
0.204	-0.958	0.204	0.000	0.000	0.000
0.204	0.204	-0.958	0.000	0.000	0.000
0.000	0.000	0.000	-0.160	0.000	0.000
0.000	0.000	0.000	0.000	-0.160	0.000
0.000	0.000	0.000	0.000	0.000	-0.160

```

\section*{Chapter 13}

\section*{One-electron Properties and Wave-function Analysis}

One-electron properties and wave function analysis can be computed from the SCF wave function by running properties. At the end of the SCF process, data on the crystalline system and its wave function are stored as unformatted sequential data in file fort.9, and as formatted data in file fort. 98 . The wave function data can be transferred formatted from one platform to another (see keyword RDFMWF, page 282.
The data in file fort. 9 (or fort.98) are read when running properties, and cannot be modified. The data include:
1. Crystal structure, geometry and symmetry operators.
2. Basis set.
3. Reciprocal lattice k-points sampling information.
4. Irreducible Fock/KS matrix in direct space (Unrestricted: \(\mathrm{F}_{\alpha}, \mathrm{F}_{\beta}\)).
5. Irreducible density matrix in direct space (Unrestricted: \(\mathrm{P}_{\alpha+\beta} \mathrm{P}_{\alpha-\beta}\)).

The properties input deck is terminated by the keyword END. See Appendix C page 391, for information on printing.

\subsection*{13.1 Preliminary calculations}

In order to compute the one-electron properties it is necessary to access wave function data as binary data set: if binary data are not available in file fort.9, the keyword RDFMWF, entered as 1st record, will read formatted data from file fort. 98 and write them unformatted in file fort.9.
Full information on the system is generated: :
a. symmetry analysis information stored in COMMON areas and modules
b. reducible Fock/KS matrix stored on Fortran unit 11
c. reducible density matrix
c. 1 all electron stored on Fortran unit 13 (1st record)
c. 2 core electron stored on Fortran unit 13 (2nd record)
c. 3 valence electron stored on Fortran unit 13 (3rd record)
d. reducible overlap matrix stored on Fortran unit 3
e. Fock/KS eigenvectors stored on Fortran unit 10
1. a, b, c1, d, are automatically computed and stored any time you run the properties program.
2. in unrestricted calculations, the total electron density matrix \((\alpha+\beta)\) and the spin density matrix \((\alpha-\beta)\) are written as a unique record in fortran unit 13 .
3. The core and valence electron density matrices (c.2, c.3) are computed only by the NEWK option when \(\mathrm{IFE}=1\). They are stored as sequential data set on Fortran unit 13, after the all electron density matrix. Calculation of Compton profiles and related quantities requires such information.
4. Properties can be calculated using a new density matrix, projected into a selected range of bands (keyword PBAN, PGEOMW), range of energy (keyword PDIDE), or constructed as a superposition of the atomic density matrices relative to the atoms (or ions) of the lattice (keyword PATO). In the latter case a new basis set can be used.
When a specific density matrix is calculated [band projected (PBAN), energy projected (PDIDE), atomic superposition (PATO)], all subsequent properties are calculated using that matrix.

The option PSCF restores the SCF density matrix.
The keyword PMP2 (see page 302) reads the MP2 correction to the valence density matrix. Properties can then be computed from a MP2 corrected density matrix.

\subsection*{13.2 Properties keywords}

RDFMWF wave function data conversion formatted-binary (fort.98 \(\rightarrow\) fort.9)
\begin{tabular}{ll|r|r|}
\hline Preliminary calculations & \\
\hline NEWK & Eigenvectors calculation & 299 & I \\
COMMENS & Density Matrix commensurate to the Monchorst net & 270 & I \\
NOSYMADA & No symmetry Adapted Bloch Functions & 106 & - \\
PATO & Density matrix as superposition of atomic (ionic) densities & 301 & I \\
PBAN & Band(s) projected density matrix (preliminary NEWK) & 301 & I \\
PGEOMW & Density matrix from geometrical weights (preliminary NEWK) & 302 & I \\
PDIDE & Energy range projected density matrix (preliminary NEWK) & 302 & I \\
PSCF & Restore SCF density matrix & 308 & - \\
\hline
\end{tabular}

Properties computed from the density matrix
\begin{tabular}{ll|l|l|}
\hline ADFT & Atomic density functional correlation energy & 261 & I \\
BAND & Band structure & 263 & I \\
\hline BIDIERD & Reciprocal form factors & 264 & I \\
\hline CLAS & Electrostatic potential maps (point multipoles approximation) & 270 & I \\
ECHG & Charge density and charge density gradient - 2D grid & 277 & I \\
ECH3 & Charge density - 3D grid & 276 & I \\
EDFT & Density functional correlation energy (HF wave function only) & 278 & I \\
EMDLDM & Electron momentum distribution (along a line) & 279 & I \\
EMDPDM & Electron momentum distribution (in a plane) & 280 & I \\
HIRSHCHG & Hirshfeld population analysis & 100 & I \\
KINETEMD & Kinetic tensor from electron momentum density & 284 & I \\
PMP2 & MP2 correction to the Valence Density Matrix & 302 & \\
POLI & Atom and shell multipoles evaluation & 303 & I \\
POTM & Electrostatic potential - 2D grid & 306 & I \\
POT3 & Electrostatic potential - 3D grid & 304 & I \\
POTC & Electrostatic properties & 305 & I \\
PPAN & Mulliken population analysis & 106 & \\
XFAC & X-ray structure factors & 309 & I
\end{tabular}

\footnotetext{
Properties computed from the density matrix (spin-polarized systems)
}
\begin{tabular}{|c|c|c|c|}
\hline ANISOTRO & Hyperfine electron-nuclear spin tensor & 262 & I \\
\hline HIRSHCHG & Hirshfeld spin population analysis & 100 & I \\
\hline ISOTROPIC & Hyperfine electron-nuclear spin interaction - Fermi contact & 283 & I \\
\hline POLSPIN & Atomic spin density multipoles & 304 & I \\
\hline \multicolumn{4}{|l|}{Properties computed from eigenvectors (after keyword NEWK)} \\
\hline ANBD & Printing of principal AO component of selected CO & 261 & I \\
\hline BWIDTH & Printing of bandwidth & 270 & I \\
\hline DOSS & Density of states & 274 & I \\
\hline EMDL & Electron momentum distribution - line & 279 & I \\
\hline EMDP & Electron momentum distribution - plane maps & 282 & I \\
\hline PROF & Compton profiles and related quantities & 307 & I \\
\hline BOLTZTRA & Transport Properties (electron conductivity, Seebeck) within the semiclassical Boltzmann theory & 268 & I \\
\hline \multicolumn{4}{|l|}{New properties} \\
\hline SPOLBP & Spontaneous polarization (Berry phase approach) & 314 & \\
\hline SPOLWF & Spontaneous polarization (localized CO approach) & 315 & \\
\hline LOCALWF & Localization of Wannier functions & 285 & I \\
\hline DIEL & Optical dielectric constant & 272 & \\
\hline ISO+POTC & Mössbauer isomer shift and quadrupolar effects & 315 & \\
\hline TOPO & Topological analysis of the electron density & 318 & I \\
\hline \multicolumn{4}{|l|}{Auxiliary and control keywords} \\
\hline ANGSTROM & Set input unit of measure to Ångstrom & 37 & - \\
\hline BASISSET & Printing of basis set, Fock/KS, overlap and density matrices & 264 & - \\
\hline BOHR & Set input unit of measure to bohr & 40 & - \\
\hline CHARGED & Non-neutral cell allowed (PATO) & 72 & - \\
\hline END & Terminate processing of properties input keywords & & - \\
\hline FRACTION & Set input unit of measure to fractional & 49 & - \\
\hline MAPNET & Generation of coordinates of grid points on a plane & 297 & I \\
\hline MAXNEIGHB & maximum number of equidistant neighbours from an atom & 51 & I \\
\hline NEIGHBOR & Number of neighbours to analyse in PPAN & 59 & I \\
\hline PRINTOUT & Setting of printing options & 62 & I \\
\hline RAYCOV & Modification of atomic covalent radii & 62 & I \\
\hline SETINF & Setting of inf array options & 64 & I \\
\hline SETPRINT & Setting of printing options & 64 & I \\
\hline STOP & Execution stops immediately & 65 & - \\
\hline SYMMOPS & Printing of point symmetry operators & 70 & - \\
\hline \multicolumn{4}{|l|}{Info - Output of data on external units} \\
\hline ATOMIRR & Coordinates of the irreducible atoms in the cell & 262 & - \\
\hline ATOMSYMM & Printing of point symmetry at the atomic positions & 40 & - \\
\hline COORPRT & Coordinates of all the atoms in the cell & 44 & - \\
\hline CRYAPI_OUT & geometry, BS, direct lattice information & 271 & - \\
\hline CRYAPI_OUT & Reciprocal lattice information + eigenvalues & 271 & - \\
\hline EXTPRT & Explicit structural/symmetry information & 46 & - \\
\hline FMWF & Wave function formatted outputi in file fort.98. Section 13.10 & 282 & - \\
\hline INFOGUI & Generation of file with wf information for visualization & 283 & - \\
\hline XML & generation of XML file for electron transport with WanT & ?? & - \\
\hline
\end{tabular}

The largest components of the selected eigenvectors are printed, along with the corresponding AO type and centre.

\section*{ADFT/ACOR - A posteriori Density Functional atomic correlation energy}

The correlation energy of all the atoms not related by symmetry is computed. The charge density is always computed using an Hartree-Fock Hamiltonian (even when the wave function is obtained with a Kohn-Shamm Hamiltonian).
The input block ends with the keyword END. Default values are supplied for all the computational parameters.
A new atomic basis set can be entered. It must be defined for all the atoms labelled with a different conventional atomic number (not the ones with modified basis set only).

\section*{ANGSTROM - unit of measure}

Unit of measure of coordinates (ECHG, POTM, CLAS) See input block 1, page 37 ,

\section*{ANISOTRO - anisotropic tensor}
\begin{tabular}{cll}
\hline rec & variable & meaning \\
\hline - A & keyword & enter one of the following keywords:
\end{tabular}
- A3 ALL

The anisotropic tensor is evaluated for all the atoms in the cell or \(\qquad\)
- A6 UNIQUE (alias NOTEQUIV) The anisotropic tensor is evaluated for all the nonequivalent atoms in the cell
- A6 SELECT The anisotropic tensor is evaluated for selected atoms
- * number of atoms where to evaluate the tensor
- * \(\mathrm{IA}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N} \quad\) label of the atoms
- A PRINT
extended printing

The anisotropic hyperfine interaction tensor is evaluated. This quantity is given in bohr \({ }^{-3}\) and is transformed into the hyperfine coupling tensor through the relationship [225]
\[
\mathbf{T}[\mathrm{mT}]=\frac{1000}{\left(0.529177 \cdot 10^{-10}\right)^{3}} \frac{1}{4 \pi} \mu_{0} \beta_{\mathrm{N}} \mathrm{~g}_{\mathrm{N}} \mathbf{T}=3.4066697 \mathrm{~g}_{\mathrm{N}} \mathbf{T}
\]
(see ISOTROPIC for the units and conversion factors). The elements of the \(\mathbf{T}\) tensor at nucleus A are defined as follows:
\[
\mathrm{T}_{i j}^{\mathrm{A}}=\sum_{\mu \nu} \sum_{\mathrm{g}} \mathrm{P}_{\mu \nu \mathrm{g}}^{\mathrm{spin}} \int \varphi_{\mu}(\boldsymbol{r})\left(\frac{r_{\mathrm{A}}^{2} \delta_{i j}-3 r_{\mathrm{A} i} r_{\mathrm{A} j}}{r_{\mathrm{A}}^{5}}\right) \varphi_{\nu}^{\mathrm{g}}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r}
\]
where \(\boldsymbol{r}_{\mathrm{A}}=|\boldsymbol{r}-\mathrm{A}|\) and \(r_{\mathrm{A} i}=(\boldsymbol{r}-\mathrm{A})_{i}\left(\mathrm{i}^{\text {th }}\right.\) component of the vector).
For extended printing (tensor in original cartesian axes and in principal axis system) insert, before the keyword ANISOTRO:

SETPRINT
1
181
See tests 29, 31, 32, 33.

\section*{ATOMIRR - coordinates of irreducible atoms}

Cartesian and fractional coordinates of the irreducible atoms are printed. No input data required.

\section*{ATOMSYMM}

See input block 1, page 40

\subsection*{13.3 Electronic Band Structure}

BAND - Band structure

The band structure along a given path n the Brillouin zone is computed. The data are printed in standard output and (if IPLO \(=1\)) written in file fort. 25 (formatted data processed by Crgra2006) and in file BAND.DAT (processed by DLV; see http://www.cse.clrc.ac.uk/cmg/DLV). See Appendix D, page 396.
When all the starting and terminal points are chosen to coincide with special (high symmetry) ones, it is possible to write the conventional label of each point instead of its coordinates (this option is activated by putting ISS \(=0\)). These labels have to be expressed as letters in the latin alphabet: the \(\Gamma\) point is identified by letter \(G\). Apart from \(\Gamma\), the labels of the special points are different for each Bravais lattice: the convention adopted for the special points and their position in the Brillouin zone can be found in tables 13.1 and 13.2 below. For instance, in the MgO case (fcc lattice), two equivalent inputs would read:
```

BAND
MGO
2 0 30111810
G X
X W
and:
BAND
MGO
2 12 3011 1810
000 606
606 6 3 9

```
1. Warning : does not run for molecules!! (0D)
2. For a correct interpretation of HF band-structure and DOS's, it must be stressed that the HF eigenvalues are not a good approximation to the optical excitation spectrum of
the crystal. However, as discussed in section III. 2 of reference [175] and in Chapter 2 of reference [171], the band structures, in conjunction with total and projected DOS's, can be extremely useful in characterizing the system from a chemical point of view.
3. Note on band extremes coordinates: in two-(one-) dimensional cases I3, J3 (I2,I3,J2,J3) are formally input as zero (0). See test 3 and 6 .
4. The only purpose of ISS is to express the extremes of the segments in integer units (see tests 8-9). It does not determine the density of k points along the lines, which depends only on NSUB. The number of k points for each line is computed by the program. The step is constant along each line. The step is taken as close as possible to a constant along different lines.
5. If symmetry adapted Bloch functions are used (default option), BAND generates symmetry information in k points different from the ones defined by the Monkhorst net. Eigenvectors computed by NEWK in k points corresponding to the Monkhorst net are not readable any more. To compute density of states and bands, the sequence must be: BAND - NEWK - DOSS.
6. The ISS \(=0\) option does not recognize the labels of every special points; the ones recognized are only those reported in tables 13.1 and 13.2 .

See tests \(3,4,6,7,8,9,11,12\) and 30 .

\section*{BASISSET - Printing of basis set and data from SCF}
\begin{tabular}{|c|c|c|}
\hline rec variable value & meaning & \\
\hline - * NPR & number of printing options.
\(\qquad\) if \(N P R \neq 0\) insert prtrec (see page 64) & II \\
\hline
\end{tabular}

This option allows printing of the basis set and the computational parameters, and, on request (keyword PRINTOUT before BASISSET), of the Fock/KS matrix (FGRED), the overlap matrix (OVERLAP), and the reducible density matrix (PGRED), in direct lattice representation.
Warning: the contraction coefficients of the primitive gaussians are different from the ones given in input. See "Normalization coefficients", Appendix E.
Printing options:
59 (Density matrix); 60 (Overlap matrix); 64 (Fock/KS matrix).

\subsection*{13.4 Compton Profiles - from \(B(r)\) Function}

\section*{BIDIERD - Reciprocal form factors}

This option evaluates the reciprocal form factors (RFF) (also called auto-correlation function) for any direction directly from the direct space density matrix. Compton Profiles (CPs) can be computed by Fourier transforming the RFF with the PROF sub-keyword below. The starting auto-correlation function must be of good quality in order to get good CPs. Both RFFs and CPs can be convoluted (see CONV sub-keyword) in order to be compared with the experiments (affected by the finite resolution of the spectrometer); this procedure is performed by multiplying the RFF by the gaussian function \(g(r)_{\sigma_{r}}\) :
\[
g(r)_{\sigma_{r}}=e^{-\frac{r^{2}}{2 \sigma_{r}^{2}}} \quad \text { where } \quad \sigma_{r}=\frac{1}{\sigma_{p}}=\frac{2 \sqrt{2 \log 2}}{F W H M_{p}}
\]
where \(F W H M_{p}\), the convolution parameter, has to be defined in input by the user (in atomic units); the \(r\) and \(p\) subscripts identify quantities in coordinates and momentum space, respectively. The anisotropies of the RFFs and the CPs can be evaluated via the DIFF sub-keyword. This block must be ended by ENDB. It works also for open-shell systems.

Table 13.1: Labels and fractional coordinates (referred to reciprocal space lattice parameters of the primitive cell) of the special points recognized in input for each Bravais lattice. \(\mathrm{FC}=\) face centered, \(\mathrm{BC}=\) body centered, \(\mathrm{AC}=\) base centered.
\begin{tabular}{|c|c|c|}
\hline Lattice & \multicolumn{2}{|l|}{Point Coordinates} \\
\hline \multirow{3}{*}{P Cubic} & M & \(\frac{1}{2} \frac{1}{2} 0\) \\
\hline & \(R\) & \(\frac{1}{2} \frac{1}{2} \frac{1}{2}\) \\
\hline & \(X\) & \(0 \frac{1}{2} 0\) \\
\hline \multirow{3}{*}{FC Cubic} & \(X\) & \(\frac{1}{2} 0 \frac{1}{2}\) \\
\hline & L & \(\frac{1}{2} \frac{1}{2} \frac{1}{2}\) \\
\hline & W & \\
\hline \multirow{3}{*}{BC Cubic} & H & \(\frac{1}{2} \frac{-1}{2} \frac{1}{2}\) \\
\hline & P & \(\frac{1}{4} \frac{1}{4} \frac{1}{4}\) \\
\hline & \(N\) & \({ }_{0} 0 \frac{1}{2}\) \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Hexagonal \\
or \\
P Trigonal
\end{tabular}} & M & \(\frac{1}{2} 00\) \\
\hline & K & \(\frac{1}{3} \frac{1}{3} 0\) \\
\hline & A & \(00 \frac{1}{2}\) \\
\hline & L & \(\frac{1}{2} 0 \frac{1}{2}\) \\
\hline & H & \\
\hline \multirow[b]{3}{*}{Rhombohedral (R Trigonal)} & \(T\) & \(\frac{1}{2} \frac{1}{2} \frac{-1}{2}\) \\
\hline & F & \(\begin{array}{ll}5 \\ 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \\ 0\end{array}\) \\
\hline & \(L\) & \(00 \frac{1}{2}\) \\
\hline \multirow{7}{*}{P Monoclinic} & A & \(\frac{1}{2} \frac{-1}{2} 0\) \\
\hline & B & \({ }^{\frac{1}{2}} 00\) \\
\hline & C & \(0 \frac{1}{2} \frac{1}{2}\) \\
\hline & D & \(\frac{1}{2} 0 \frac{1}{2}\) \\
\hline & E & \(\frac{1}{2}-\frac{1}{2} \frac{1}{2}\) \\
\hline & Y & \(0 \frac{1}{2} 0\) \\
\hline & \(Z\) & \(00 \frac{1}{2}\) \\
\hline \multirow{3}{*}{AC Monoclinic} & A & \(\frac{1}{2} 00\) \\
\hline & Y & \(0 \frac{1}{2} \frac{1}{2}\) \\
\hline & M & \(\frac{1}{2} \frac{1}{2} \frac{1}{2}\) \\
\hline
\end{tabular}

Table 13.2: Labels and fractional coordinates (referred to reciprocal space lattice parameters of the primitive cell) of the special points recognized in input for each Bravais lattice. \(\mathrm{FC}=\) face centered, \(\mathrm{BC}=\) body centered, \(\mathrm{AC}=\) base centered.
\begin{tabular}{|c|c|c|}
\hline Lattice & \multicolumn{2}{|l|}{Point Coordinates} \\
\hline \multirow{7}{*}{P Orthorombic} & \(S\) & \(\frac{1}{2} \frac{1}{2} 0\) \\
\hline & \(T\) & \(0 \frac{1}{2} \frac{1}{2}\) \\
\hline & U & \(\frac{1}{2} 0 \frac{1}{2}\) \\
\hline & \(R\) & \(\frac{1}{2} \frac{1}{2}\) \\
\hline & \(X\) & \(\frac{1}{2} 00\) \\
\hline & \(Y\) & \(0 \frac{1}{2} 0\) \\
\hline & \(Z\) & \(00 \frac{1}{2}\) \\
\hline \multirow{3}{*}{FC Orthorombic} & Z & \(\frac{1}{2} \frac{1}{2} 0\) \\
\hline & \(Y\) & \(\frac{1}{2} 0 \frac{1}{2}\) \\
\hline & \(T\) & \(1 \frac{1}{2} \frac{1}{2}\) \\
\hline \multirow{5}{*}{AC Orthorombic} & \(S\) & \(0 \frac{1}{2} 0\) \\
\hline & \(T\) & \(\frac{1}{2} \frac{1}{2} \frac{1}{2}\) \\
\hline & \(R\) & \(0 \frac{1}{2} \frac{1}{2}\) \\
\hline & \(Y\) & \(\frac{1}{2} \frac{1}{2} 0\) \\
\hline & Z & \(00 \frac{1}{2}\) \\
\hline \multirow{5}{*}{BC Orthorombic} & \(S\) & \(\frac{1}{2} 00\) \\
\hline & \(T\) & \(00 \frac{1}{2}\) \\
\hline & \(R\) & 0 \({ }^{2} \frac{1}{2} 0\) \\
\hline & X & \(\frac{1}{2} \frac{-1}{2} \frac{1}{2}\) \\
\hline & W & \begin{tabular}{lllll}
\(\frac{1}{4}\) & \(\frac{1}{4}\) & \(\frac{1}{4}\) \\
\hline 1
\end{tabular} \\
\hline \multirow{5}{*}{P Tetragonal} & M & \(\frac{1}{2} \frac{1}{2} 0\) \\
\hline & \(R\) & \\
\hline & A & \(\frac{1}{2} \frac{1}{2} \frac{1}{2}\) \\
\hline & \(X\) & \(\begin{array}{ll}0 & \frac{1}{2} \\ 0\end{array}\) \\
\hline & Z & \(00 \frac{1}{2}\) \\
\hline \multirow{3}{*}{BC Tetragonal} & M & \(\frac{1}{2} \frac{1}{2} \frac{-1}{2}\) \\
\hline & \(P\) & \(\frac{1}{2} \frac{1}{2} \frac{1}{2}\) \\
\hline & \(X\) & \(00 \frac{1}{2}\) \\
\hline
\end{tabular}

By using the alternative PROF keyword (see page 307), followed by the BR sub-keyword, it is possible to obtain the RFF by Fourier transforming the Compton profiles. As the latter implies numerical integration, the BIDIERD keyword is expected to provide more accurate results.
Both auto-correlation functions and Compton profiles are saved in two-column format in the external unit CP.DAT
Users of this option for the calculation of CPs are kindly requested to cite the following paper [78]:
A. Erba, C. Pisani, S. Casassa, L. Maschio, M. Schütz and D. Usvyat, Phys. Rev. B., 81,165108 (2010). A MP2 versus DFT theoretical investigation of the Compton profiles of crystalline urea.

\section*{Notes:}

The explored interval is (NPU-1)×STEP long; X,Y,Z or I,XG,YG,ZG data are just used for defining the direction, NOT the length of the explored interval.

\subsection*{13.5 Transport Properties}

\section*{BOLTZTRA - Boltzmann Transport Properties}
\begin{tabular}{|c|c|c|}
\hline & & - mandatory keywords \(\qquad\) \\
\hline rec & variable & meaning \\
\hline - \(A\) & TRANGE & Temperature range for transport properties calculation \\
\hline * & T1,T2,TS & 3 reals, temperature range (K) from T 1 to T 2 , TS is the temperature step \\
\hline - \(A\) & MURANGE & Chemical potential range for transport properties calculation \\
\hline * & E1,E2,ES & 3 reals, chemical potential range (eV) from E1 to E2, ES is the chemical potential step \\
\hline - \(A\) & TDFRANGE & Energy range of distribution function for transport properties calculation \\
\hline * & EDF1,EDF2,EDFS & 3 reals, energy range of distribution function (eV) from EDF1 to EDF2, EDFS is the energy step \\
\hline & & _ optional keywords _ II \\
\hline rec & variable value & meaning \\
\hline - \(A\) & RELAXTIM & \(\tau\) constant within the relation time approximation for transport properties calculation \\
\hline * & T & 1 real, T is the electron lifetime (fs), \(\tau\) (default 10.fs) \\
\hline - \(A\) & SMEAR & smearing of distribution function for transport properties calculation \\
\hline * & S & 1 real, smearing coefficient (default 0.) \\
\hline - \(A\) & SMEARTYP & smearing type for transport properties calculation \\
\hline * & ST \(\quad-2\) & cold smearing (Marzari-Vanderbilt) \\
\hline & -1 & Fermi-Dirac \\
\hline & \(0 \leq \mathrm{ST} \geq 10\) & Methfessel-Paxton (default 0) \\
\hline
\end{tabular}

The electrical conductivity, the Seebeck coefficient and the thermal conductivity can be estimated by calculating the three so-called transport coefficients. Their expression can be obtained solving, in the relaxation time approximation, the Boltzmann's transport equation. A detailed description of the semiclassical Boltzmann transport theory is beyond our scope. For a thorough explanation see Refs. 9, 244, 108.
Here, we limit to the main results of this theory i.e. operative equations: \(\sigma, \sigma \mathbf{S}\) and \(\kappa_{\mathrm{el}}\),
\[
\begin{gather*}
{[\sigma]_{q r}(\mu, T)=e^{2} \int \mathrm{~d} E\left(-\frac{\partial f_{0}}{\partial E}\right) \Xi_{q r}(E)} \tag{13.1}\\
{[\sigma \mathbf{S}]_{q r}(\mu, T)=\frac{e}{T} \int \mathrm{~d} E\left(-\frac{\partial f_{0}}{\partial E}\right)(E-\mu) \Xi_{q r}(E)} \tag{13.2}\\
{\left[\kappa_{e}\right]_{q r}(\mu, T)=\frac{1}{T} \int \mathrm{~d} E\left(-\frac{\partial f_{0}}{\partial E}\right)(E-\mu)^{2} \Xi_{q r}(E)} \tag{13.3}
\end{gather*}
\]
where \(\mu\) is the chemical potential or the Fermi level, \(E\) is the energy, \(f_{0}\) is the Fermi-Dirac distribution and \(\Xi\) is the transport distribution function (TDF). In the Equations above, for the sake of simplicity we define core of the transport coefficients, \(\Xi\), as
\[
\begin{equation*}
\Xi_{q r}(E)=\tau \sum_{\mathbf{k}} \frac{1}{N_{\mathbf{k}}} \frac{1}{V} \sum_{i, j} v_{i, q}(\mathbf{k}) v_{j, r}(\mathbf{k}) \delta\left(E-E_{i}(\mathbf{k})\right) \tag{13.4}
\end{equation*}
\]
where \(v_{i, q}(\mathbf{k})\) is the velocity of the \(i^{\text {th }}\) band calculated along the cartesian direction \(q, \tau\) is the lifetime which is assumed to be constant according to the relax time approximation. The \(\delta\) function is approximated by a suitable smearing function, that can be set using the SMEARTYP keyword.
From the theoretical point of view, the band velocity is the critical quantity that has to be
calculated. In atomic unit (a.u.) its expression is the derivative of the band energies \(E(i, \mathbf{k})\), with respect to a reciprocal space vector \(k_{q}\)
\[
\begin{equation*}
v_{i, q}(\mathbf{k})=\frac{\partial E_{i}(\mathbf{k})}{\partial k_{q}} \tag{13.5}
\end{equation*}
\]

At the end of the calculation, the code saves five formatted DAT files: SIGMA.DAT which contains Eq. 13.1 SEEBECK.DAT where the Seebeck coefficient is stored, SIGMAS.DAT for Eq. 13.2 KAPPA.DAT for Eq. 13.3 and TDF.DAT for Eq. 13.4
The structure of the files for a closed shell calculation (CS) is common for all the different kinds and it is as follow:
```

1 \# 0 [Electrical conductivity in SI units, i.e. in 1/0hm/m]
2 \# Mu(eV) T(K) N(\#carriers) sigma_xx sigma_xy sigma_yy
3\#T(K) = 300.000 Npoints = 1001 V (cm^3) = 7.676E-23
1005 \#T(K)= 500.000 Npoints =

```

The first line of the header specifies the kind of calculation, 0 or 1 for CS and OS respectively, and the transport phenomenon. In line 2 we explain the meaning of the numbers of each column, from left they stand for chemical potential,temperature, number of carriers and tensor components. In line 3, further information are provided for plotting with the CRYSPLOT package (see boh). The structure for an open shell calculation (OS) is:
```

1 \# 1 [Alpha Electrical conductivity in SI units, i.e. in 1/Ohm/m]
2 \# Mu(eV) T(K) N(\#carriers) sigma_xx sigma_xy sigma_yy
3\#T(K) = 300.000 Npoints = 1001 V (cm^3) = 7.676E-23
F(K)}=500.000 Npoints ... = 1001 V(cm^3) = 7.676E-23

# 1 [Beta Electrical conductivity in SI units, i.e. in 1/Ohm/m]

# Mu(eV) T(K) N(\#carriers) sigma_xx sigma_xy sigma_yy

3\#T(K) = 300.000 Npoints = 1001 V (cm^3) = 7.676E-23
3\#T(K) = 500.000 Npoints = 1001 V(cm^3) = 7.676E-23

```

For these calculations, in the first line of the header wil appear 1, see above, and the electron spin specification, alpha or beta.
Notes:
- the Seebeck coefficient, SEEBECK.DAT file, is not spin dependent;
- the SIGMAS.DAT, in OS calculations, will have an alpha and beta headers;
- the numbers of carriers (N) has been computed by means of:
\[
\begin{equation*}
N_{\mu, T}(E)=\frac{n}{N_{\mathbf{k}}} \sum_{\mathbf{k}} \sum_{i} f_{0}(E, \mu, T) \Theta\left(E-E_{i}(\mathbf{k})\right)=\frac{n}{N_{\mathbf{k}}} \sum_{\mathbf{k}} \sum_{i} \frac{1}{\exp \left(\frac{E-\mu}{k_{B} T}\right)+1} \Theta\left(E-E_{i}(\mathbf{k})\right) \tag{13.6}
\end{equation*}
\]
where \(f_{0}\) is the Fermi-Dirac distribution, \(\Theta\left(E-E_{i}(\mathbf{k})\right)\) is the theta function, \(n\) is the number of electron per state and \(N_{\mathbf{k}}\) is the number of k-points in the IBZ.

\section*{BOHR - unit of measure}

Unit of measure of coordinates (ECHG, POTM, CLAS) See input block 1, page 40 .

\section*{BWIDTH - Printing of band width}
\begin{tabular}{lll}
\hline rec & variable & meaning \\
\hline\(\bullet *\) & INZB & first band considered \\
& 0 & analysis from first valence band \\
& IFNB & last band considered \\
& 0 & analysis up to first 4 virtual bands \\
\hline
\end{tabular}

The Fock/KS eigenvalues are ordered in bands following their values. Band crossing is not recognized.

\section*{CHARGED - charged reference cell}

See input block 2, page 72 .
To be used before PATO, when new basis set and/or electron configuration of the atoms result in a charged cell.

\section*{CLAS - Point charge electrostatic potential maps}
\begin{tabular}{clll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & IDER & 0 & potential evaluation \\
& 1 & calculation of potential and its first derivatives \\
& IFOR & 0 & point multipoles have to be evaluated by POLI option \\
& 1 & point formal charges given as input \\
& & \\
\hline
\end{tabular}
- \(* ~ Q(I), I=1, N A F\) formal net charge for all the NAF atoms in the unit cell (equivalent and non equivalent, following the sequence printed at the top of the properties printout) insert MAPNET input records (page 297)
1. When \(\operatorname{IDER}=0\), the electrostatic potential is calculated at the nodes of a 2-dimensional net in a parallelogram-shaped domain defined by the segments AB and BC (see keyword MAPNET, page 297). The potential values are written formatted in file fort.25. (see Appendix D page 395 .
2. When IDER \(\neq 0\), the electrostatic potential gradient is computed at the nodes of the same grid. The \(x, y\) and \(z\) components are printed on the standard output.
3. The potential is generated by an array of point multipoles up to a maximum order IDIPO defined in the POLI option input, or by atomic point charges given in input (IFOR=1; IDIPO \(=0\) is set in that case).
4. The multipoles must be previously computed by running the option POLI when IFOR is equal to zero.

\section*{COORPRT}

See input block 1, page 44

\section*{COMMENS - Density Matrix commensurate to Monkhorst grid}
\begin{tabular}{rlll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & ICASO & 0 & total density matrix \\
& & 1 & core density matrix \\
& & 2 & valence density matrix \\
\hline
\end{tabular}

The COMMENS keyword has to be inserted as first record in the Properties input before the NEWK keyword. It activates the construction of the Density Matrix (DM) \(\mathbf{P} \equiv P_{\mu \nu}^{\mathbf{g}}\) (where \(\mu\) and \(\nu\) label two atomic orbitals \(\chi_{\mu}(\mathbf{r})\) and \(\chi_{\nu}(\mathbf{r})\) and \(\mathbf{g}\) represents a lattice vector) with the index \(\mathbf{g}\) running over a number of cells \(L\) commensurate to the number \(L\) of \(\mathbf{k}\) points of the Monkhorst-Pack grid where the one-electron Hamiltonian is diagonalized and the crystalline orbitals computed.
If this option is not activated, the truncation over \(\mathbf{g}\) in the definition of the DM is imposed by the first tolerance TOL1 of the integrals: those elements \(P_{\mu \nu}^{\mathrm{g}}\) are disregarded that correspond to product distributions \(\Pi(\mathbf{r})=\chi_{\mu \mathbf{0}}(\mathbf{r}) \chi_{\nu \mathbf{g}}(\mathbf{r})\) for which the pseudo-overlap between the two AOs is less than \(10^{-T O L 1}\).
The DM obtained in this way can be used for computing electron momentum densities, autocorrelation functions and Compton profiles (see keywords BIDIERD, EMDLDM, EMDPDM). See the discussion in section 17.8 (page 355) for further details.

\section*{DENSMAT - First order density matrix \(\rho\left(r, r^{\prime}\right)\) - developers only}

First order density matrix \(\rho\left(r, r^{\prime}\right)\) along a given path is computed.
The variable \(r^{\prime}\) explores the same interval as \(r\).
For UHF cases two matrices are generated, one corresponding to the total and the other to the spin density matrix.
\begin{tabular}{|c|c|c|}
\hline rec & variable value & meaning \\
\hline \multirow[t]{7}{*}{- *} & NKN & number of knots in the path (=number of segments+1) \\
\hline & NPU & number of sampling points along the full path \\
\hline & IPLOT 0: & data are not saved for plot \\
\hline & \(=1\) : & data are saved in file fort. 25 \\
\hline & IMODO 0: & knot coordinates (\(x, y, z\)) in a. u. \\
\hline & \(\neq 0\) : & knots are defined through atom labels \\
\hline & LPR \(\neq 0\) : & print the \(\rho\left(r, r^{\prime}\right)\) matrix in integer form (values are multiplied by 10000)
\(\qquad\) if \(I M O D O=0\), insert \(N K N\) records \(\qquad\) \\
\hline & X Y Z & Cartesian coordinates (bohr) of the i-th knot
\(\qquad\) if IMODO \(\neq 0\), insert: \(\qquad\) \\
\hline \multirow[t]{2}{*}{- *} & \[
\begin{array}{ll}
\mathrm{DX} & \mathrm{DY} \\
\mathrm{DZ} &
\end{array}
\] & displacement (bohr) applied to all atoms defining the path \\
\hline & & insert NKN records \\
\hline & \[
\begin{aligned}
& \text { I XG YG } \\
& \text { ZG }
\end{aligned}
\] & label of the atom and indices of the cell where the atom is located \\
\hline
\end{tabular}
- A \(N P U \times N P U\) square matrix is generated.
- The step between contiguous sampling points belonging to different segments is the same.
- Meaning of the displacement: suppose you want the density matrix corresponding to the \(\pi\) structure of benzene. Define, for example, the path \(\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{H}\) through the atom labels and then displace it along \(z\) (if the molecule is in the \(x-y\) plane) by an appropriate amount.

\section*{CRYAPI_OUT - Geometry, BS, and full wave function information}

Geometry, local function Basis Set, overlap, hamiltonian, density matrices \(n\) direct lattice are written formatted in file GRED.DAT
Wannier functions (if file fort. 80 is present; see keyword LOCALWF, page 285) are appended to file GRED.DAT
k points coordinates (Monkhorst sampling net) and eigenvectors (if computed by NEWK page 299) in the full Brillouin zone are written formatted in file KRED.DAT.

The scripts runcry06/runprop06 save files GRED.DAT and KRED.DAT (if present) as inpfilename.GRED and inpfilename.KRED
The utility program cryapi_inp reads and prints the data. The organization of data can be understood from the output of cryapi_inp and from its source.
See Appendix D, page 404 .

\section*{DIEL/DIELECT - Optical dielectric constant}

Computes the dielectric constant of the system along the periodic direction where an external electric field has been applied during the SCF calculation (using keyword FIELD, page 46). The dielectric constant is calculated by using the concept of macroscopic average of the total charge density (see for example Fu et al. 91]) and Poisson's equation. The charge density is first averaged with respect to the (infinite) plane orthogonal to the field
\[
\begin{equation*}
\bar{\rho}(z)=\frac{1}{A} \int_{A} \rho(z) d A \tag{13.7}
\end{equation*}
\]
where \(A=|\vec{a} \times \vec{b}|\), and \(\vec{a}\) and \(\vec{b}\) are the lattice parameters of the supercell orthogonal to the field direction. When a Fourier representation of the charge density is used, the previous equation becomes:
\[
\begin{equation*}
\bar{\rho}(z)=\frac{1}{V} \sum_{\ell=-\infty}^{+\infty} F_{00 \ell} e^{-\imath \frac{2 \pi \ell z}{C}} \tag{13.8}
\end{equation*}
\]
\(F_{00 \ell}\) are structure factors (note that the two first indices are always zero) calculated analytically from the SCF crystalline orbitals depending now on the applied field. The quantity \(\bar{\rho}\) is then averaged with respect to the \(z\) coordinate
\[
\begin{equation*}
\overline{\bar{\rho}}(z)=\frac{1}{\Delta z} \int_{z-\Delta z / 2}^{z+\Delta z / 2} \bar{\rho}\left(z^{\prime}\right) d z^{\prime} \tag{13.9}
\end{equation*}
\]
that is
\[
\begin{equation*}
\overline{\bar{\rho}}(z)=\frac{1}{V} \sum_{\ell=-\infty}^{+\infty} F_{00 \ell} \operatorname{sinc}\left(\ell \pi \frac{\Delta z}{C}\right) e^{-\imath \frac{2 \pi \ell z}{C}} \tag{13.10}
\end{equation*}
\]
where the sinc function is the cardinal sinus \(\left(\operatorname{sinc}(u)=\frac{\sin (u)}{u}\right)\) and \(\Delta z\) has been chosen equal to \(c\); we can now apply Poisson's equation to \(\overline{\bar{\rho}}(z)\) :
\[
\begin{equation*}
\frac{\partial^{2} \overline{\bar{V}}(z)}{\partial z^{2}}=-4 \pi \overline{\bar{\rho}}(z) \tag{13.11}
\end{equation*}
\]
or
\[
\begin{equation*}
\frac{\partial \overline{\bar{E}}(z)}{\partial z}=4 \pi \overline{\bar{\rho}}(z) \tag{13.12}
\end{equation*}
\]
because
\[
\begin{equation*}
\frac{\partial \overline{\bar{V}}(z)}{\partial z}=-\overline{\bar{E}}(z) \tag{13.13}
\end{equation*}
\]
\(\overline{\bar{V}}(z), \overline{\bar{F}}(z)\) and \(\overline{\bar{\rho}}(z)\) are the mean values of the macroscopic electric potential, electric field and electron density at \(z\) position along the electric field direction.
Structure factors can be separated in a real and an imaginary part:
\[
\begin{equation*}
F_{00 \ell}=F_{00 \ell}^{\Re}+\imath F_{00 \ell}^{\Im} \tag{13.14}
\end{equation*}
\]

Exploiting the following properties of the structure factors:
\[
\begin{align*}
F_{000} & =N_{e} \quad(\text { number of electrons in the supercell }) \tag{13.15}\\
F_{00 \ell}^{\Re} & =F_{00-\ell}^{\Re} \\
F_{00 \ell}^{\Im} & =-F_{00-\ell}^{\Im}
\end{align*}
\]
the real and imaginary parts of \(\overline{\bar{\rho}}\) take the following form:
\[
\begin{gather*}
\Re[\overline{\bar{\rho}}(z)]=\frac{N_{e}}{V}+\frac{2}{V} \sum_{\ell=1}^{+\infty}\left[F_{00 \ell}^{\Re} \cos \left(\frac{2 \pi \ell z}{C}\right)+F_{00 \ell}^{\Im} \sin \left(\frac{2 \pi \ell z}{C}\right)\right] \operatorname{sinc}\left(\ell \pi \frac{\Delta z}{C}\right) \tag{13.16}\\
\Im[\overline{\bar{\rho}}(z)]=0 \tag{13.17}
\end{gather*}
\]

As expected, the imaginary part is null. The \(N_{e} / V\) term can be disregarded, as it is exactly canceled by the nuclear charges in the supercell.
According to equation 13.13 , the local macroscopic field corresponds to minus the slope of \(\overline{\bar{V}}(z)\), it has opposite sign with respect to the imposed outer field, according to the Lenz law, and is obtained from \(\overline{\bar{\rho}}(z)\) (eq. 13.12 :
\[
\begin{equation*}
\overline{\bar{E}}(z)=\frac{8 \pi}{V} \sum_{\ell=1}^{+\infty}\left[F_{00 \ell}^{\Re} \frac{\sin \left(\frac{2 \pi \ell z}{C}\right)}{\left(\frac{2 \pi \ell}{C}\right)}-F_{00 \ell}^{\Im} \frac{\cos \left(\frac{2 \pi \ell z}{C}\right)}{\left(\frac{2 \pi \ell}{C}\right)}\right] \operatorname{sinc}\left(\ell \pi \frac{\Delta z}{C}\right) \tag{13.18}
\end{equation*}
\]

The corresponding macroscopic electric potential can be written as follows:
\[
\begin{equation*}
\overline{\bar{V}}(z)=\frac{-8 \pi}{V} \sum_{\ell=1}^{+\infty}\left[F_{00 \ell}^{\Re} \frac{\cos \left(\frac{2 \pi \ell z}{C}\right)}{\left(\frac{2 \pi \ell}{C}\right)^{2}}+F_{00 \ell}^{\Im} \frac{\sin \left(\frac{2 \pi \ell z}{C}\right)}{\left(\frac{2 \pi \ell}{C}\right)^{2}}\right] \operatorname{sinc}\left(\ell \pi \frac{\Delta z}{C}\right) \tag{13.19}
\end{equation*}
\]

Since \(-\overline{\bar{E}}\) and \(E_{0}\) have opposite sign, the ratio \(E_{0} /\left(E_{0}+\overline{\bar{E}}\right)\) is larger than one, and characterizes the relative dielectric constant of the material along the direction of the applied field:
\[
\begin{equation*}
\epsilon=\frac{E_{0}}{E_{0}+\overline{\bar{E}}} \tag{13.20}
\end{equation*}
\]

The number of structure factors computed for a Fourier representation of the perturbed charge density by default is equal to 300 , the structure factors from \(F_{001}\) to \(F_{00} 300\).

The data computed are written in file DIEL.DAT in append mode. See Appendix D, page 396 . Available keywords are:
\begin{tabular}{ll}
\hline rec variable & meaning \\
\hline - \(A\) END & end of DIEL input block \\
optional keywords \\
\hline - \(A\) PRINT & extended output
\end{tabular}

\subsection*{13.6 Electronic Density-of-State}

\section*{DOSS - Density of states}

Following a Mulliken analysis, the orbital \(\left(\rho_{\mu}\right)\), atom \(\left(\rho_{A}\right)\) and total \(\left(\rho_{t o t}\right)\) density of states can be defined for a closed shell system as follows:
\[
\begin{gather*}
\rho_{\mu}(\epsilon)=2 / V_{B} \sum_{j} \sum_{\nu} \int_{B Z} d \underline{k} S_{\mu \nu}(\underline{k}) a_{\mu j}(\underline{k}) a_{\nu j}^{*}(\underline{k}) \quad \delta\left[\epsilon-\epsilon_{j}(\underline{k})\right] \tag{13.21}\\
\rho_{A}(\epsilon)=\sum_{\mu \in A} \rho_{\mu}(\epsilon) \tag{13.22}\\
\rho_{t o t}(\epsilon)=\sum_{A} \rho_{A}(\epsilon) \tag{13.23}
\end{gather*}
\]
where the last sum extends to all the atoms in the unit cell.
Bond population density of states are not computed.
1. Warning: do not run for molecules!
2. The NEWK option must be executed (to compute Hartree-Fock/KS eigenvectors and eigenvalues) before running DOSS. The values of the input parameters IS and ISP of NEWK have a consequent effect on the accuracy of the DOSS calculation. Suggested values for IS: from 4 to 12 for 3-D systems, from 6 to 18 for 2-D and 1-D systems (Section 17.7. page 355. ISP must be equal or greater than \(2 *\) IS; low values of the ratio ISP/IS can lead to numerical instabilities when high values of NPOL are used.
If BAND is called between NEWK and DOSS, and symmetry adapted Bloch functions are used (default option), the information generated by NEWK is destroyed. To compute density of states and bands, the sequence must be: BAND - NEWK - DOSS.
3. DOSS are calculated according to the Fourier-Legendre technique described in Chapter II. 6 of reference 1, and in C. Pisani et al, (172,173). Three computational parameters must be defined: NPOL, IS, ISP. IS and ISP are entered in the NEWK option input.
4. NPOL is the number of Legendre polynomials used for the expansion of the DOS. The value of NPOL is related to the values of IS and ISP, first and second input data of NEWK option.
Suggested values for NPOL: 10 to 18.
5. Warning NEWK with IFE=1 must be run when spin-polarized solutions (SPINLOCK, page 113) or level shifter (LEVSHIFT, page 102 were requested in SCF, to obtain the correct Fermi energy and eigenvalues spectra.
6. Unit of measure: energy: hartree; DOSS: state/hartree/cell.

Computed data are written in file fort. 25 (in Crgra2006 format), and in file DOSS.DAT Printing options: 105 (density of states and integrated density of states); 107 (symmetrized plane waves).
See tests \(3,4,5,6,7,8,9,11\) and 30 .

\subsection*{13.7 Crystal Orbital Overlap/Hamiltonian Populations}

Similar to the density of states calculation, a crystal orbital overlap/Hamiltonian population (COOP/COHP) analysis allows for the investigation of electronic states within a material. But in contrast to the DOS, a COOP/COHP calculation is specifically aimed at the interaction between two selected groups of orbitals/atoms. Thus, information regarding bonding and antibonding states, bond orders, and interaction strengths can be obtained in a straightforward fashion.
The difference between the COOP and COHP analyses lie in the usage of either the overlap matrix (S) or the Hamiltonian matrix \((\mathbf{H})\) elements for COOP and COHP, respectively. The former provides a measure of the bond order, while the latter a measure of bond strength. The mathematical form is very similar to that of a projected DOS equation:
\[
\begin{aligned}
& \operatorname{COOP}_{A-B}(\epsilon)=\frac{2}{V_{B}} \sum_{j} \sum_{\mu \in A} \sum_{\nu \in B} \int_{B Z} S_{\mu \nu}(\mathbf{k}) a_{\mu j}^{*}(\mathbf{k}) a_{\nu j}(\mathbf{k}) \delta\left(\epsilon-\epsilon_{j}(\mathbf{k})\right) \mathrm{d} \mathbf{k} \\
& \operatorname{COH}_{A-B}(\epsilon)=\frac{2}{V_{B}} \sum_{j} \sum_{\mu \in A} \sum_{\nu \in B} \int_{B Z} H_{\mu \nu}(\mathbf{k}) a_{\mu j}^{*}(\mathbf{k}) a_{\nu j}(\mathbf{k}) \delta\left(\epsilon-\epsilon_{j}(\mathbf{k})\right) \mathrm{d} \mathbf{k}
\end{aligned}
\]

Two keywords are available to compute these quantities: COOP and COHP.
As with the calculation of the density of states, the COOP/COHP calculations require the Fock/KS eigenvectors at each \(\mathbf{k}\) point defined by Pack-Monkhorst net, which need to be recalculated using the keyword NEWK.
The INPUT format for the crystal orbital overlap population (COOP) and the crystal orbital Hamiltonian population (COHP) calculations are essentially identical, and both can be run simultaneously.

Users of this module are kindly asked to cite the following reference:
M.T. Ruggiero, A. Erba, R. Orlando and T. M. Korter, Phys. Chem. Chem. Phys., 17, 31023-31029 (2015)

For the calculation of COOP/COHP the following information must be specified:
The number of interactions to explore
The number of points along the energy range at which the COOP/COHP is calculated
The range of energy to explore. It can be defined by two bands (the range is from the bottom of the first band to the top of the second band), or by two energies.
The way in which the COOP/COHP data is written
The degree of the polynomials to be used in the COOP/COHP expansion
Any printing options (see the manual)
Followed by the selection of the orbitals or atoms that are to be included in the two groups Selection of either orbital (positive) or atomic (negative) indices and the number of orbitals/atoms to include in the group
The label of the orbital(s) or atom(s)

\subsection*{13.8 3D Electron Charge Density}

ECH3 - Electronic charge (spin) density on a 3D grid
\begin{tabular}{cll}
rec & variable & meaning \\
\hline\(\bullet *\) & NP & Number of points along the first direction \\
\hline
\end{tabular}
if non-3D system
keyword to choose the type of grid on the non-periodic direction(s):
\begin{tabular}{|c|c|}
\hline SCALE & RANGE \\
\hline length scales for non-periodic dimensions & boundary for non-periodic dimensions (au) \\
\hline & system \\
\hline \multirow[t]{2}{*}{- * ZSCALE} & - * ZMIN \\
\hline & - * ZMAX \\
\hline & ystem \\
\hline \multirow[t]{2}{*}{- * YSCALE,ZSCALE} & - * YMIN,ZMIN \\
\hline & - * YMAX,ZMAX \\
\hline & system \\
\hline \multirow[t]{2}{*}{- * XSCALE,YSCALE,ZSCALE} & - * XMIN,YMIN,ZMIN \\
\hline & - * XMAX,YMAX,ZMAX \\
\hline
\end{tabular}

The electronic charge [and spin density] (electron/bohr \({ }^{3}\)) is computed at a regular 3-dimensional grid of points. The grid is defined by the lattice vectors of the primitive unit cell and user defined extents in non-periodic directions. NP is the number of points along the first lattice vector (or XMAX-XMIN for a molecule). Equally spacing is used along the other vectors. Non-periodic extents may be specified as an explicit range (RANGE) or by scaling the extent defined by the atomic coordinates (SCALE).
Formatted data are written to file fort. 31 (function value at the grid points) in the format required by the visualization program DLV.
See Appendix D, page 401, for description of the format.
Function data computed at 3D grid points are written according to GAUSSIAN CUBE format in files:
```

DENS_CUBE.DAT charge density

```
SPIN_CUBE.DAT spin density

PS. The sum of the density values divided by the number of points and multiplied by the cell volume (in bohr, as printed in the output) gives a very rough estimate of the number of electrons in the cell.

\subsection*{13.9 2D Electron Charge Density}

ECHG - Electronic charge density maps and charge density gradient
\begin{tabular}{llll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & IDER & n & \begin{tabular}{c}
order of the derivative \(-<2\) \\
\end{tabular} \\
\hline
\end{tabular}

\section*{1. \(\mathrm{IDER}=0\)}

The electron charge density (and in sequence the spin density, for unrestricted wave functions) is calculated at the nodes of a 2-dimensional net in a parallelogram-shaped domain defined by the segments AB and BC (see keyword MAPNET, page 297). The electron density values (electron bohr \(^{-3}\)) are written formatted in file fort. 25 (see Appendix D , page 395.
2. \(\mathrm{IDER}=1\)
electron charge density, \(x, y, z\) component of first derivative, and modulus of the derivative, are written. The string in the header is always "MAPN".
3. When the three points define a segment \((A \equiv B\) or \(B \equiv C)\), function data are written in file RHOLINE.DAT. (see Appendix \(\square\) page 395)
4. When IDER \(\neq 0\), the charge density gradient is computed at the nodes of the same grid. The \(\mathrm{x}, \mathrm{y}\) and z components are printed on the standard output and written formatted in file fort. 25 (see Appendix D page 395 .
5. The electron charge density is computed from the density matrix stored in file fort. 31 . The density matrix computed at the last cycle of SCF is the default.
6. Band projected (keyword PBAN), energy projected (keyword PDIDE) or atomic superposition (keyword PATO) density matrices can be used to compute the charge density. The sequence of keywords must be: (NEWK-PBAN-ECHG), (NEWK-PDIDEECHG) or (PATO-ECHG).

\section*{EDFT/ENECOR - A posteriori Density Functional correlation energy}

Estimates a posteriori the correlation energy via a HF density. It is controlled by keywords. The input block ends with the keyword END. All the keywords are optional, as default values for all the integration parameters are supplied by the program, to obtain reasonably accurate integration of the charge density. Please check the integration error printed on the output.
\begin{tabular}{|c|c|}
\hline BECKE & Becke weights [default] 17] \\
\hline SAVIN & Savin weights 198 \\
\hline RADIAL & Radial integration information \\
\hline rec variable & meaning \\
\hline \[
\begin{array}{lll}
\bullet \bullet & * & \mathrm{NR} \\
\bullet & * & \mathrm{RL}(\mathrm{I}), \mathrm{I}=1, \mathrm{NR} \\
\bullet & * & \mathrm{IL}(\mathrm{I}), \mathrm{I}=1, \mathrm{NR} \\
\hline
\end{array}
\] & number of intervals in the radial integration [1] radial integration intervals limits in increasing sequence [4.] number of points in the radial quadrature in the I-th interval [55]. \\
\hline ANGULAR & Angular integration information \\
\hline rec variable & meaning \\
\hline \[
\begin{aligned}
& \hline \text { - } * \text { NI } \\
& \text { - }
\end{aligned} \text { (} \mathrm{AL}(\mathrm{I}), \mathrm{I}=1, \mathrm{NI}
\] & \begin{tabular}{l}
number of intervals in the angular integration [default 10] angular intervals limits in increasing sequence. Last limit is set to 9999. \\
 accuracy level in the angular Lebedev integration over the I-th interval [default values 1234676431].
\end{tabular} \\
\hline PRINT & printing of intermediate information - no input \\
\hline PRINTOUT & printing environment (see page 62) \\
\hline TOLLDENS & T density tolerance [default 9] \\
\hline \[
\begin{array}{ll}
\hline \text { TOLLGRID } \\
\bullet * \text { IG }
\end{array}
\] & T grid weight tolerance [default 18] \\
\hline
\end{tabular}

\subsection*{13.10 Electron Momentum Density}

EMDL - Electron Momentum Density - line maps

Warning The calculation of the Fermi energy is necessary for metallic systems (NEWK keyword with IFE \(=1\)). The Electron Momentum Density is calculated along given directions (equation 17.22 , page 356). It can be computed also for open-shell systems. The electron momentum distribution, EMD, is a non-periodic function; it falls rapidly to zero outside the first Brillouin zone. \(\rho(\underline{0})\) gives the number of electrons at rest. The oblique coordinates directions given in input refer to the conventional cell, not to the primitive cell, for 3D systems. Example: in a FCC system the input directions refer to the orthogonal unit cell frame (sides of the cube) not to the primitive non-orthogonal unit cell frame.

\section*{EMDLDM - Electron Momentum Density from Density Matrix - line path}

Users of this option are kindly requested to cite the following papers [77, 176]:
A. Erba and C. Pisani, J. Comput. Chem., 33, 822 (2012). Evaluation of the electron momentum density of crystalline systems from ab initio linear combination of atomic orbitals calculations.
C. Pisani, A. Erba, S. Casassa, M. Itou and Y. Sakurai, Phys. Rev. B, 84, 245102 (2011). The anisotropy of the electron momentum distribution in \(\alpha\)-quartz investigated by Compton scattering and ab initio simulations.
\begin{tabular}{|c|c|c|}
\hline rec variable & value & meaning \\
\hline \multirow[t]{7}{*}{\begin{tabular}{rrr}
\hline\(* *\) & N \\
& PMAX \\
& STEP \\
& IPLO
\end{tabular}} & & number of directions (\(\leq 10\)) \\
\hline & & maximum momentum value (a.u.) for which the EMD is computed \\
\hline & & discretization step for the EMD \\
\hline & 0 & no data stored on disk \\
\hline & 1 & formatted output to file fort. 25 for plotting (Appendix D, page 397). \\
\hline & 2 & formatted output to file EMDLDM.DAT for plotting (Appendix D. page 397. \\
\hline & & insert \(N\) records \\
\hline \multirow[t]{2}{*}{- * H K L} & & three integers defining the direction with respect to the conventional cell \\
\hline & & end \\
\hline \multirow[t]{3}{*}{- * ICASO} & 1 & the total density matrix is used \\
\hline & 2 & the core density matrix is used \\
\hline & 3 & the valence density matrix is used \\
\hline - * NSA1 & 0 & no spherically averaged EMD \\
\hline & 1 & the spherically averaged EMD is computed \\
\hline NSA2 & 0 & no EMD-anisotropy \\
\hline & 1 & EMD-anisotropies are computed \\
\hline
\end{tabular}

The Electron Momentum Density (EMD) is calculated along given crystallographic directions (defined in oblique coordinates with respect to the conventional cell) directly from the Density Matrix. The EMD is a non-periodic function; it falls rapidly to zero outside the first Brillouin zone. \(\pi(\mathbf{0})\) gives the number of electrons at rest. For Open-Shell systems the \(\alpha+\beta\) and the \(\alpha-\beta\) EMD are computed.
The NEWK keyword must be called with the option activating the Fermi level calculation before EMDLDM if the core or valence Density Matrix is desired (ICASO=2,3).
The spherically averaged EMD \(\pi_{S A}(|\mathbf{p}|)\) is computed according to the procedure described in section 17.8 (page 355). The EMD-anisotropy is \(\Delta \pi(\mathbf{p})=\pi(\mathbf{p})-\pi_{S A}(|\mathbf{p}|)\).

\section*{EMDPDM- Electron Momentum Density from Density Matrix - maps}

Users of this option are kindly requested to cite the following papers[77, 176]:
A. Erba and C. Pisani, J. Comput. Chem., 33, 822 (2012). Evaluation of the electron momentum density of crystalline systems from ab initio linear combination of atomic orbitals calculations.
C. Pisani, A. Erba, S. Casassa, M. Itou and Y. Sakurai, Phys. Rev. B, 84, 245102 (2011). The anisotropy of the electron momentum distribution in \(\alpha\)-quartz investigated by Compton scattering and \(a b\) initio simulations.
\begin{tabular}{|c|c|c|c|}
\hline rec & variable & value & meaning \\
\hline \multirow[t]{9}{*}{- *} & N & & number of planes (\(\leq 10\)) \\
\hline & \multicolumn{2}{|l|}{PMAX} & maximum momentum value (a.u.) for which the EMD is computed in the two main directions defining the plane \\
\hline & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { STEP } \\
& \text { IPLO }
\end{aligned}
\]} & & discretization step for the EMD \\
\hline & & 0 & no data stored on disk (data only in output) \\
\hline & & 1 & formatted output to file fort. 25 for plotting (Appendix D, page 395) \\
\hline & & 2 & formatted output to files 3DEMDTOTAL.DAT and 3DEM- \\
\hline & & & DANISO.DAT for 3D plotting of total EMD and EMD-anisotropy (for squared map-windows only); see below \\
\hline & \multirow[t]{2}{*}{IDIR} & 0 & planes defined via the MAPNET dummy keyword \\
\hline & & 1 & planes defined via two crystallographic directions \\
\hline \multirow[t]{3}{*}{- *} & \multirow[t]{3}{*}{ICASO} & 1 & the total density matrix is used \\
\hline & & 2 & the core density matrix is used \\
\hline & & 3 & the valence density matrix is used \\
\hline \multirow[t]{6}{*}{- *} & \multirow[t]{2}{*}{NSA1} & 0 & no spherically averaged EMD \\
\hline & & 1 & the spherically averaged EMD is computed \\
\hline & \multirow[t]{2}{*}{NSA2} & 0 & no EMD-anisotropy \\
\hline & & 1 & EMD-anisotropies are computed \\
\hline & \multirow[t]{2}{*}{NSA3} & 0 & no restart of spherically averaged EMD \\
\hline & & \(\neq 0\) & a previously computed spherically averaged EMD is read from input
\(\qquad\) if NSA3 \(\neq 0\) insert NSA3 records \(\qquad\) \\
\hline \multirow[t]{5}{*}{- *} & & & value of \(|\mathbf{p}|\) \\
\hline & SAEMD & & value of the spherically averaged EMD \(\pi(|\mathbf{p}|)\)
\(\qquad\) end \(\qquad\) \\
\hline & & & - insert \(N\) records \\
\hline & & & - if IDIR = 0 \\
\hline & & _ ins & MAPNET input records (Section 13.11 page 297) else if \(I D I R=1\) \\
\hline \multirow[t]{3}{*}{\[
\bullet *
\]} & H K L & & three integers defining the first direction with respect to the conventional cell \\
\hline & \[
H^{\prime} K^{\prime} L^{\prime}
\] & & three integers defining the second direction with respect to the conventional cell \\
\hline & & & \begin{tabular}{l}
- end if \\
end
\end{tabular} \\
\hline
\end{tabular}

The Electron Momentum Density (EMD) is calculated in given crystallographic planes (defined in oblique coordinates with respect to the conventional cell) directly from the Density Matrix. The EMD is a non-periodic function; it falls rapidly to zero outside the first Brillouin zone. \(\pi(\mathbf{0})\) gives the number of electrons at rest. EMD-maps can be computed for closed-shell systems only.
The NEWK keyword must be called with the option activating the Fermi level calculation before EMDPDM if the core or valence Density Matrix is desired (ICASO \(=2,3\)).
The spherically averaged EMD \(\pi_{S A}(|\mathbf{p}|)\) is computed according to the procedure described in section 17.8 (page 355 . The EMD-anisotropy is \(\Delta \pi(\mathbf{p})=\pi(\mathbf{p})-\pi_{S A}(|\mathbf{p}|)\). If one activates the computation of the spherically averaged EMD (NSA1=1), the STEP should be small in order to reduce the numeric noise in its fitting procedure.
Formatted external units 25 (fort.25) are generated that can be read by the Crgra2006 graphics software for creating 2D maps. See Appendix D at page 395. The formatted external files 3DEMDTOTAL.DAT and 3DEMDANISO.DAT consist of a series of records PX, PY, EMD (PX,PY) and can easily be used for representing 3D surfaces of the EMD on a plane.

\section*{EMDP - Electron Momentum Density - plane maps}
\begin{tabular}{|c|c|}
\hline rec variable value & meaning \\
\hline - * NP & number of planes (\(<5\)) \\
\hline IS & shrinking factor. \\
\hline IPLO 0 & no data stored on disk. \\
\hline 1 & formatted output on Fortran unit 25 for plotting \\
\hline LPR115 & printing of the EMD function in output insert NP set of records \\
\hline \[
\begin{aligned}
* & (\mathrm{~L} 1(\mathrm{~J}), \mathrm{J}=1,3), \\
& (\mathrm{L} 2(\mathrm{~J}), \mathrm{J}=1,3)
\end{aligned}
\] & fractional coordinates of the reciprocal lattice vectors that identify the plane \\
\hline * PMX1 & maximum p value along the first direction \\
\hline PMX2 & maximum p value along the second direction \\
\hline * NPO & number of orbital projections \((\leq 10)\) \\
\hline NPB & \begin{tabular}{l}
number of band projections \((\leq 10)\) \\
if \(N P O \neq 0\) insert NPO set of records \(\qquad\)
\end{tabular} \\
\hline * NO & number of A.O.'s in the I-th projection \\
\hline - * \(\mathrm{IQ}(\mathrm{I}), \mathrm{I}=1, \mathrm{NO}\) & sequence number of the A.O.'s in the I-th projection - basis set order if \(N P B \neq 0\) insert \(N P B\) set of records \(\qquad\) \\
\hline - * NB & number of bands in the I-th projection \\
\hline - * \(\mathrm{IB}(\mathrm{I}), \mathrm{I}=1, \mathrm{NB}\) & sequence number of the bands in the I-th projection \\
\hline
\end{tabular}

Warning The Fermi energy must be computed for metallic systems (NEWK keyword with \(\operatorname{IFE}=1\)). Calculation of electron momentum density on definite planes (equation 17.22 , page 356. It works also for open-shell systems. If LPR115 \(\neq 0\) the EMD function is printed in output (recommended). The fractional coordinates of the reciprocal lattice vectors given in input refer to the conventional cell, not to the primitive cell, for 3D systems. Example: in a FCC system the input directions refer to the orthogonal unit cell frame (sides of the cube) not to the primitive non-orthogonal unit cell frame.

\section*{END}

Terminate processing of properties input. Normal end of the program properties. Subsequent input records are not processed.

\section*{EXTPRT}

See input block 1, page 46

\section*{FMWF - Wave function formatted output}

The keyword FMWF, entered in properties input, writes formatted wave function data (same data are written in file fort.9, unformatted, at the end of SCF) in file fort. 98 (LRECL=80). The formatted data can then be transferred to another platform. No input data required.
The resources requested to compute the wave function for a large system (CPU time, disk storage) may require a mainframe or a powerful workstation, while running properties is not so demanding, at least in terms of disk space. It may be convenient computing the wave function on a given platform, and the properties on a different one.
The keyword RDFMWF, entered in the first record of the properties input deck reads formatted data from file fort.98, and writes unformatted data in file fort.9. The key dimensions of the program computing the wave function and the one computing the properties are checked. If the dimensions of the arrays are not compatible, the program stops, after printing the PARAMETER statement used to define the dimension of the arrays in the program which
computed the wave function. The sequence of the operations, when transferring data from one platform to another is the following:
\begin{tabular}{clll}
\hline platform & program & input & action \\
\hline 1 & properties & FMWF & wave function formatted to file fort.98 \\
& & ftp file fort.98 from platform 1 to platform 2 \\
2 & properties & RDFMWF & \begin{tabular}{l}
wf read from file fort. 98 (formatted) and written in \\
file fort. 9 (unformatted)
\end{tabular} \\
\hline
\end{tabular}

\section*{FRACTION - unit of measure}

Unit of measure of coordinates in the periodic direction (ECHG, POTM, CLAS) See input block 1, page 49

\section*{GRID3D - Selected property computed on a 3D grid}
\begin{tabular}{cll}
\hline rec & variable & meaning \\
\hline\(\bullet *\) & NP & Number of points along the first direction \\
\(\bullet\) A & CHARGE & \begin{tabular}{l}
electronic charge selected - see ECH3 input
\end{tabular} \\
& or
\end{tabular}

The propertty to be computed at the grid points is chosen by a keyword. Input as required by the selected property follows.
Computed data are written, formatted, to file fort.31. See Appendix D page 401, for description of the format.

\section*{HIRSHCHG/HIRSHBLK - Iterative Hirshfeld Population Analysis}

See input block 3, page 100

\section*{INFOGUI/INFO - output for visualization}

No input data required.
Information on the system and the computational parameters are written formatted in fortran unit 32 , in a format suitable for visualization programs.
See Appendix D, page 401, for description of the format.

\section*{ISOTROPIC - Fermi contact - Hyperfine electron-nuclear spin interaction isotropic component}
\begin{tabular}{lll}
\hline rec & variable & meaning \\
\hline \multirow{3}{l}{ A keyword } & enter one of the following keywords: \\
\hline & ALL & Fermi contact is evaluated for all the atoms in the cell \\
\hline
\end{tabular}

As an additional information, the total electron density at the nuclei is computed for all systems.
In the case of open shell systems, the spin density at the nuclei \(\left(\left\langle\rho^{\mathrm{spin}}\left(\boldsymbol{r}_{\mathrm{N}}\right)\right\rangle\right)\) is evaluated. This
quantity is given in bohr \({ }^{-3}\) and is transformed into the hyperfine coupling constant \(a_{N}[\mathrm{mT}]\) through the relationship 225]
\[
\mathrm{a}_{\mathrm{N}}[\mathrm{mT}]=\frac{1000}{\left(0.529177 \cdot 10^{-10}\right)^{3}} \frac{2}{3} \mu_{0} \beta_{\mathrm{N}} \mathrm{~g}_{\mathrm{N}}\left\langle\rho^{\mathrm{spin}}\left(\boldsymbol{r}_{\mathrm{N}}\right)\right\rangle=28.539649 \mathrm{~g}_{\mathrm{N}}\left\langle\rho^{\mathrm{spin}}\left(\boldsymbol{r}_{\mathrm{N}}\right)\right\rangle
\]
where
\[
\begin{aligned}
\mu_{0}=4 \pi \cdot 10^{-7} & =12.566370614 \cdot 10^{-7}\left[\mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}\right] \quad \text { (permeability of vacuum) } \\
\beta_{\mathrm{N}} & =5.0507866 \cdot 10^{-17}\left[\mathrm{JT}^{-1}\right] \quad \text { (nuclear magneton) }
\end{aligned}
\]
the nuclear \(g_{N}\) factors for most of the nuclei of interest are available in the code and are taken from [225]. Conversion factors:
\[
\begin{gathered}
\mathrm{a}_{\mathrm{N}}[\mathrm{MHz}]=\frac{\mathrm{a}_{\mathrm{N}}[\mathrm{mT}] \mathrm{g}_{\mathrm{e}} \beta_{\mathrm{e}}}{10^{9} \mathrm{~h}[\mathrm{Js}]}=28.02 .6 \cdot \mathrm{a}_{\mathrm{N}}[\mathrm{mT}] \\
\mathrm{a}_{\mathrm{N}}\left[\mathrm{~cm}^{-1}\right]=\frac{\mathrm{a}_{\mathrm{N}}[\mathrm{MHz}] 10^{8}}{\mathrm{c}\left[\mathrm{~ms}^{-1}\right]}=0.33356410 \cdot 10^{-4} \cdot \mathrm{a}_{\mathrm{N}}[\mathrm{MHz}] \\
\mathrm{a}_{\mathrm{N}}[\mathrm{~J}]=\mathrm{g}_{\mathrm{e}} \beta_{\mathrm{e}} 10^{-3} \mathrm{a}_{\mathrm{N}}[\mathrm{mT}]=1.856954 \cdot 10^{-26} \mathrm{a}_{\mathrm{N}}[\mathrm{mT}]
\end{gathered}
\]
where:
\[
\begin{gathered}
\beta_{\mathrm{e}}=9.2740154 \cdot 10^{-24}\left[\mathrm{JT}^{-1}\right] \quad \text { (bohr magneton) } \\
\mathrm{g}_{\mathrm{e}}=2.002319304386 \quad \text { (free-electron } \mathrm{g} \text { factor) } \\
\mathrm{c}=2.99792458 \cdot 10^{8}\left[\mathrm{~ms}^{-1}\right] \quad \text { (speed of light in vacuum) } \\
\mathrm{h}=6.6260755 \cdot 10^{-34}[\mathrm{Js}] \quad \text { (Planck constant) }
\end{gathered}
\]

For extended printing (tensor in original cartesian axes and in principal axis system) insert, before the keyword ISOTROPIC:
```

SETPRINT

```

1
181
See tests 29, 31, 32, 33.

\section*{KINETEMD - Kinetic Tensor computed from the Electron Momentum Distribution}

The KINETEMD keyword activates the computation of the kinetic tensor \(\mathbf{T}\), whose trace is the total kinetic energy of the system, as the set of second moments of the electron momentum distribution. See the discussion in section 17.8 (page 355).

\section*{KNETOUT - Reciprocal lattice information - Fock/KS eigenvalues}

Obsolete. See CRYAPI_OUT, page 271.

\subsection*{13.11 Localized Crystalline Orbitals - Wannier Functions}

\section*{LOCALWF - Localization of Wannier Functions (WnF)}

Wannier functions are computed fromBloch functions, and then localized, following the method described in 242] and 241] The method applies to non-conductor systems only.
The localization of Wannier Functions (WnF) is controlled by parameters. Default values are supplied for all parameters.
Optional keywords allow modification of the default choices, recommended to developers only. The LOCALWF block is closed by the END keyword.
For UHF calculations two set of blocks must be inserted for the \(\alpha\) and \(\beta\) electrons, each one ending with the keyword END.
1. The NEWK option must be executed before running LOCALWF, to compute theBloch functions.
2. The number of \(\mathbf{k}\) points required for a good localization depends on the characteristics of the bands chosen. For core electrons or valence bands in non-conducting materials, an IS slightly larger than that used in the SCF part is enough to provide well localized WnFs. For valence bands in semiconductors or conduction bands the \(\mathbf{k}\)-point net is required to be denser, but there are no recipes to determine a priori the optimum IS value. The IS value chosen determines a Born-von Karman supercell (or cyclic cluster) from which the program a priori estimates the memory space that should be enough to contain all WnF coefficients lower than the threshold \(10^{-I T D P}\) (see the meaning of ITDP in what follows) in real space. The size of this crystal domain in terms of unit cells is provided in output before the localization procedure. If the crystal domain is too small usually the localization fails and IS must be increased. On the other hand, if it is too large (very large IS) the memory space reserved for the WnF coefficients becomes overestimated and the calculation may stop because of a lack of memory for array allocation.
3. The efficiency of the localization can be controlled using the CYCTOL parameters. In most cases, increasing ITDP and/or ICONV leads to larger and more accurate localization of the WnFs.
4. The RESTART option admits MAXCYCLE \(=0\), then the program just reconstructs all the information about the WnFs given in file fort. 81 but does not continue the localization. This two options together with a \(\mathrm{IS}=1\) in NEWK is useful to perform the analysis of the WnFs after localization by means of the PRINTPLO option.

Definition of the set of bands considered in the localization process
VALENCE

Valence bands are chosen for localization.

\section*{OCCUPIED}

All the occupied bands are chosen for localization [default].

\section*{INIFIBND}
\begin{tabular}{llll}
\hline rec & variable & value & meaning \\
\hline\(*\) & IBAN & & initial band considered for localization \\
& LBAN & & last band considered for localization \\
\hline
\end{tabular}

\section*{BANDLIST}
\begin{tabular}{lll}
\hline rec & variable & meaning \\
\hline\(\bullet *\) & NB & number of bands considered \\
\(\bullet *\) & \(\mathrm{LB}(\mathrm{I}), \mathrm{I}=1, \mathrm{NB}\) & labels of the bands. \\
\hline
\end{tabular}

\section*{Tolerances for short and large cycles}

A short cycle is a sequence of wannierization and Boys localization steps. The accuracies in both, the calculation of the Dipole Moments (DM) and the definition of the phases assigned to each periodically irreducible atom, are controlled so that they increase as the localization process evolves. This results in a significant saving of computational cost. Therefore, each time a given criterion is fulfilled, the accuracy in the DM evaluation increases and a new large cycle starts.

\section*{CYCTOL}
\(\left.\begin{array}{llll}\hline \text { rec } & \text { variable } & \text { value } & \text { meaning } \\
\hline \bullet * & \text { ITDP0 } & >0 & \text { Initial tolerance used to calculate the DM matrix elements: } \\
& & 10^{- \text {ITDP0 }} 2\end{array}\right]\)\begin{tabular}{l}
Final tolerance used to calculate the DM matrix elements: \\
ITDP \\
ICONV
\end{tabular}

\section*{PHASETOL}
\begin{tabular}{llll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & ITPH0 & \(>0\) & \(10^{- \text {ITPH0 }}\) is the initial tolerance on the atomic charge popula- \\
& & \begin{tabular}{ll}
tion to attribute the phase to atoms in the wannierization step
\end{tabular} \\
& & 2 \\
ITPH & \(>0\) & \(10^{- \text {ITPH }}\) is the final tolerance used to attribute this phase 3 \\
ICHTOL & \(>0\) & DM tolerance of the cycle where ITPH0 changes to ITPH. \\
& & ITDP0+1
\end{tabular}

\section*{Restart Keywords}

With this option the WnFs of a previous run are read from file fort. 81 (copy of file fort.80, written by the previous run) and projected onto the current occupied subspace. Along with the projection the WnFs are re-orthonormalized within the Born-von Karman cyclic cluster. Tolerances and active bands must be the same as in the previous run.
Three variants are possible, corresponding to three different keywords.

RESTART: can be used to start a new localization or to improve a previous one. After the projection, cycles of wannierization and localization are performed until convergence is attained.

RESTORTH: similar to the RESTART keyword but here the WnF are orthonormalized in direct space (where the tails feature different topological properties than in the Born-von Karman cyclic cluster) immediately after their reading. Next the localization properties in direct space of the resulting WnFs may optionally be improved using the appropriate keywords (WANDM and FULLBOYS).

FIXWF: this keyword can be used only if file fort. 80 of the previous run has been generated with the keyword SYMMWF. After projection, no further Boys localization step is performed. Both the original symmetry and the WnF labeling are kept with a negligible loss in the localization indices.

The last option is recommended when a sequence of CRYSCOR calculations are to be performed corresponding each time to small geometrical changes. Accordingly, to ensure a smooth evolution of the energy and wave function, all indices concerning the symmetry and the labeling of the WnFs are kept to be the same along the sequence. This is required in particular in geometry optimizations and scanning along geometrical parameters (for instance: in the calculation of molecular physisorption energy curves - see the CRYSCOR Users's Manual and the \(C R Y S C O R\) Tutorials for a detailed description of the procedure). As for the FIXINDEX option (page 93), the reference calculation should be the one with the most compact structure.

\section*{General Keywords}

MAXCYCLE
\begin{tabular}{llll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & NCYC & \(>0\) & maximal number of short cycles for the iterative process \\
\hline & 30 \\
\hline
\end{tabular}

\section*{BOYSCTRL}

Parameters that control the Boys localization step. Convergence of the process is achieved when the orbital-stability conditions: \(B_{s t}=0 ; A_{s t}>0\), (see Pipek and Mezey 1989 [170]) are fulfilled for all pairs st of WnFs. Additionally, in order to avoid nearly free rotations (for instance in core or lone-pair WnFs) those pairs st with \(A_{s t}\) close to 0 are not mixed (frozen).
\begin{tabular}{|c|c|c|c|}
\hline rec & variable & value & meaning \\
\hline \multirow[t]{3}{*}{- *} & IBTOL & & \(10^{- \text {IBTOL }}\) is the threshold used for the stability condition on \(B_{s t} .4\) \\
\hline & IBFRZ & & If for a pair of WnFs \(s t,\left|A_{s t}\right| \leq 10^{-\mathrm{IBFRZ}}\), then the corresponding WnFs are not mixed. 4 \\
\hline & MXBCYC & & Maximum number of cycles allowed in the Boys localization process 500 \\
\hline
\end{tabular}

\section*{EMDWF}

The EMDWF keyword activates the computation of the contribution to the total Electron Momentum Density (EMD) \(\pi(\mathbf{p})\) of a selected Wannier Function, according to the partitioning scheme illustrated in section 17.8 (page 355 . Partitioning the EMD in terms of contributions coming from chemically meaningful objects like WFs (that can easily be assigned to bonds, lone pairs, etc.) is an appealing way of extracting information from a function which is still far from being completely understood.
The contribution to the EMD is computed on a given plane. The user can provide, via input, a previously computed spherically averaged EMD (see keywords EMDLDM and EMDPDM) in order to compute the contribution of a selected WF to the global anisotropy of the EMD. See the discussion of section 17.8 (page 355).
The formatted external file WFEMD.DAT consists of a series of records PX, PY, \(\operatorname{EMD}(\mathrm{PX}, \mathrm{PY}),[\operatorname{SAEMD}(\mathrm{PX}, \mathrm{PY})]\) and can easily be used for representing 3D surfaces or 2D maps of the EMD on the plane.

Users of this option are kindly requested to cite the following papers [77, 176]:
A. Erba and C. Pisani, J. Comput. Chem., 33, 822 (2012). Evaluation of the electron momentum density of crystalline systems from ab initio linear combination of atomic orbitals calculations.
C. Pisani, A. Erba, S. Casassa, M. Itou and Y. Sakurai, Phys. Rev. B, 84, 245102 (2011). The anisotropy of the electron momentum distribution in \(\alpha\)-quartz investigated by Compton scattering and ab initio simulations.
 end if

\section*{EMDWFKIN}

The EMDWFKIN keyword activates the computation of the kinetic tensor \(\mathbf{T}^{i}\) related to a selected Wannier function \(W_{i}\). The contribution of \(W_{i}\) to the electron momentum density \(\pi_{i}(\mathbf{p})\) is computed and then its second moment is obtained via numerical integration (see the discussion in section 17.8 at page 355 .
\begin{tabular}{|c|c|c|}
\hline rec & variable value & meaning \\
\hline \multirow[t]{2}{*}{- *} & WF & label of the selected WF \\
\hline & NTOL1 [1] & initial tolerance used to calculate the Dipole Moment matrix elements: \(10^{-\mathrm{NTOL} 1}\) \\
\hline \multirow[t]{4}{*}{- *} & PMAX & maximum momentum value (a.u.) for which the EMD is computed \\
\hline & PINT & Maximum momentum value (a.u.) defining an inner sphere where the EMD is computed exactly (PINT < PMAX) \\
\hline & STEP & discretization step for the computation of the EMD in the inner region of \(\mathbf{p}\)-space (\(p<\mathrm{PINT}\)) \\
\hline & STEPDIST & discretization step for the computation of the EMD in the outer region of \(\mathbf{p}\)-space (PINT \(<p<\) PMAX) \\
\hline
\end{tabular}

\section*{Initial guess options}

The iterative localization process of the WnFs needs to start from a reasonable initial guess. By default the starting functions are obtained automatically from the Hamiltonian eigenvectors at the \(\Gamma\) point. When required (pure covalent bonds that link atoms in different unit cells), a
pre-localization is performed using a scheme similar to that suggested by Magnasco and Perico (1967) 139.

\section*{IGSSCTRL}

Parameters used to control the pre-localization of the \(\Gamma\) point eigenvectors.
\begin{tabular}{|c|c|}
\hline rec variable & value meaning \\
\hline -* CAPTURE & The capture distance between atoms I and J is given by CAPTURE * (RAYCOV (I) + RAYCOV (J)) (RAYCOV, covalent radius (default value table page 63). An inter-atomic distance lower than the capture indicates that I and J can be covalently bonded. Default value 2.0\(]\). \\
\hline MPMAXIT & Maximum number of iterations in the pre-localization process 200 \\
\hline ICNVMP & \(10^{-\mathrm{ICNVMP}}\) is the convergence threshold for the MagnascoPerico pre-localization 8 \\
\hline IOVPOP & Just those pairs of atoms whose overlap population are greater than \(10^{- \text {IOVPOP }}\) are considered covalently bonded 4 \\
\hline
\end{tabular}

The initial guess can be given as input in two mutually exclusive ways, controlled by the keywords IGSSVCTS and IGSSBNDS:

\section*{IGSSVCTS}

The eigenvectors and the phases are given explicitly after the LOCALWF block (and before the plot parameters if required), in the following format.
\begin{tabular}{lll}
\hline rec & variable & value \\
\hline\(\bullet\) meaning & NGUES & \begin{tabular}{l}
Number of bands whose phase is pre-assigned such that the \\
involved atoms are to be located in a given cell. \\
insert 2 \(\times\) NGUES records
\end{tabular} \\
\hline - * IB & IGAT(I,IB),I=1,NAF & \begin{tabular}{l}
Index of the direct lattice vector corresponding to the cell \\
where atom I is expected to have the largest charge population \\
in Wannier IB (NAF is the number of atoms per cell)
\end{tabular} \\
\hline insert:
\end{tabular}

\section*{IGSSBNDS}

Use this option to explicitly indicate the WnFs that are to be assigned to covalent bonds.
\begin{tabular}{lll}
\hline rec & variable & value \\
\hline\(\bullet *\) & NBOND & Number of covalent bonds given as input. \\
\hline - \begin{tabular}{ll}
NAT1 & insert NBOND records \\
& \\
& NAT2
\end{tabular} \begin{tabular}{l}
Label of the first atom of the bond, it is assumed to be located \\
IC1,IC2,IC3 the reference cell.
\end{tabular} \\
NBNDORD & \begin{tabular}{l}
Label of the second atom of the covalent bond \\
NBdices of the cell where atom NAT2 is located
\end{tabular} \\
\hline
\end{tabular}

\section*{CAPTURE}

The value of the CAPTURE parameter (see IGSSCTRL can be redefined.
\begin{tabular}{|c|c|}
\hline rec variable & value meaning \\
\hline - * CAPTURE & The capture distance between atoms I and J is given by CAPTURE * (RAYCOV (I) + RAYCOV (J)) (RAYCOV, covalent radius (default value table page 63). An inter-atomic distance lower than the capture indicates that I and J can be covalently bonded. Default value \([2.0]\). \\
\hline
\end{tabular}

\section*{Symmetry adaptation of Wannier Functions}

\section*{SYMMWF}

The WnFs a-posteriori symmetrization procedure [39], activated by the SYMMWF keyword, is mandatory in the case of a subsequent CRYSCOR calculations. A brief outline of the procedure can help to orient in the particular nomenclature adopted to define the symmetrized WnFs and their symmetry relations.
1. after the localization step, the WnFs are centered at different Wickoff sites of the reference cell which are invariant with respect to point-symmetry subgroup \(H\) of the space group \(G\) of the crystal;
2. for each site, a coset decomposition of \(G\) by \(H\) is performed, thus leading to the definition of \(N_{F}=\frac{|G|}{|H|}\) symmetry operators (coset representatives) which rotate the reference site into equivalent ones;
3. among each set of equivalent sites, a reference site is chosen;
4. the WnFs of the reference site are symmetrized according to the corresponding subgroup \(H\) : each of these symmetrized WnFs is basis of an irreducible representations (IRREP) of the subgroup \(H\) and hereafter each component of the irreducible basis set will be referred to as petal;
5. the collection of petals belonging to the same IRREP of \(H\), the whole irreducible basis set, constitutes a so-called flower. It is worth noting that bi/three-dimensional IRREPs gives rise to flower made up of two/three petals, respectively;
6. the rotation of the reference flower performed by means of the corresponding \(N_{F}-1\) coset representatives (identity excluded) yields the creation of others \(N_{F}\)-1 symmetry related flowers; the set of such equivalent flowers constitutes a bunch;
7. in general, more than one bunch could be associated to the same reference site;
8. as a result of this procedure, each WnF is fully classified by four indices \(|\mathrm{b}, \mathrm{f}, \mathrm{p}, \mathrm{g}\rangle\) (b \(=\) bunch, \(\mathrm{f}=\) flower, \(\mathrm{p}=\) petal, \(\mathrm{g}=\) crystal cell) such that a general symmetry operator of the system \(\widehat{R} \in \mathrm{G}\), applied to a WnF gives: \(\widehat{R}|\mathrm{~b}, \mathrm{f}, \mathrm{p}, \mathrm{g}\rangle=\sum_{p^{\prime}}[A(R)]_{p p^{\prime}}\left|\mathrm{b}, \mathrm{f}^{R}, \mathrm{p}^{\prime}, \mathrm{g}^{R}\right\rangle\).

In addition to the general keywords of the localization step, a set of optional keywords, recommended to developers only, can be used to modify some default settings.
The SYMMWF input block must be closed by the keyword END.
\begin{tabular}{|c|c|c|c|}
\hline rec & variable & value & meaning \\
\hline - A & TOLBOND & & redefinition of the tolerance to classify WFs as bond or atomic - default value 0.2 \\
\hline - F & TOLB & & if \(\left|\left[p_{1}^{i}-p_{2}^{i}\right]\right|<\) tolb then the \(\mathrm{WnF} \omega_{i}\) is a bond one \(\left(p_{x}^{i}\right.\) is the atomic population of the two atoms which most contribute to the \(\mathrm{WnF} i\)) \\
\hline - F & TOLSYM & & a WnF \(\omega_{i}\) is classified as already symmetric if \(\left\langle\omega_{j}\right| R\left|\omega_{i}\right\rangle>T O L S Y M\) - default value 0.99] \\
\hline - A & NOSYMAP & & an alternative algorithm for the unpacking of WnFs (from the reciprocal to the direct lattice) is followed \\
\hline - A & PRINT & & default value [0] \\
\hline
\end{tabular}

WnFs's Quality. Get WnFs of good quality, in terms of norm and symmetry, is a necessary prerequisites for obtaining reliable energy at the MP2 level. The output file contains some useful information that can be used to check the quality of the solution: as a general and safety rule, the final value for "ERR PER WF" should be less than \(1 * 10^{-5}\) and the precision on the scalar products between WnFs (printed by setting the PRINT option equals 2) should not be less than \(1 * 10^{-5}\).
The solution can be eventually improved by tuning some computational parameters; in particular the user can:
- set tighter tolerances for the evaluation of two-electron integrals in the HF reference solution (TOLINTEG): despite the increase of computational time, it turns out that the localization procedure is particularly sensitive to the the first threshold;
- increase the number of \(\mathbf{k}\) points (NEWK) according to the suggestions reported in the LOCALWF introduction paragraph;
- use more severe values for the short and large cycles tolerances (CYCTOL).

Finally, in some case, the activation of the FULLBOYS option can be decisive.

\section*{Printing Options and Plot of the WnFs}

WnFs can be printed in terms of their coefficients or can be plotted as 2 D or 3 D maps.

\section*{PRINTPLO}
\begin{tabular}{llll}
\hline rec & variable & value & meaning \\
\hline * & IPRT & 0 & \begin{tabular}{l}
Does not print Wannier coefficients [default] \\
Prints Wannier coefficients at each cycle up to the IPRT-th \\
star of direct lattice vectors 0
\end{tabular} \\
IPRP & 0 & \begin{tabular}{l}
Prints population analysis only at the end of the localization. \\
ITPOP \\
IPLOT
\end{tabular} & 00
\end{tabular} \begin{tabular}{l}
Prints analysis at each W-B cycle 0 \\
\\
\end{tabular}

If IPLOT \(\neq 0\) insert after the LOCALWF keyword block (defining the localization procedure computational parameters, and terminated by END) the following data:
\begin{tabular}{|c|c|}
\hline rec \(\quad\) variable & value meaning \\
\hline - * NWF & number of WnF to plot \\
\hline & insert NWF blocks of data \\
\hline \multirow[t]{2}{*}{- * NUMBWF} & sequence number (output order) of the WnF to plot \\
\hline & MAPNET input data (Section 13.11, page 297) \\
\hline
\end{tabular}

Each block defines the index number of WnF to be computed in a grid of points, followed by data defining the frame inside which the value of localized WnF has to be computed in a grid of points (see MAPNET, 297 . The package Crgra2006 (http://www.crystal.unito.it/Crgra2006.html) allows plotting the function as contour lines. The WnFs and the WnFs densities (in this order) within the selected regions are given in file fort. 25 .

If IPLO \(<0\) the WnFs are computed in a 3D grid, which is generated considering the coordinates of WnFs centroids. Insert the following data:
\begin{tabular}{|c|c|c|c|}
\hline rec & variable & value & meaning \\
\hline \multirow[t]{7}{*}{- *} & \multirow[t]{2}{*}{ICUBE} & 0 & data are saved in fort. 31 \\
\hline & & > 0 & data are saved in fort. 31 and in the CUBE format in the external units inputfilename_WAN_CUBE.DAT \\
\hline & \multirow[t]{2}{*}{RADIUS} & R & defines the spatial region of the 3D grid. The value is in \\
\hline & & & Angstrom \\
\hline & \multirow[t]{3}{*}{NPOINTS NWFS} & NP & number of points along the x direction \\
\hline & & 0 & all the WnFs are plotted \\
\hline & & \(>0\) & \begin{tabular}{l}
number of WnFs to plot \\
if NWFS \(>0\) insert
\end{tabular} \\
\hline & WnFs=1,N & & sequence number (output order) of the WnFs to be plotted \\
\hline
\end{tabular}

Let us consider the following input for generating the values of WnFs on a 3D grid of points:
```

NEWK
4
0
LOCALWF
VALENCE
SYMMWF
END
PRINTPLO
0 0 0-8
12602
12
END
END
END

```

The previous input allows for the computation of all the valence (see keyword VALENCE) WnFs of the system and for the 3D plotting of the first and second valence WnFs. The data are saved in CUBE format in external units inputfilename_WAN_CUBE.DAT. It is possible to visualize the structure of the considered system and the WnFs contained in the CUBE files by using the Jmol program, for instance. In that case, it would be necessary to insert these commands in the Jmol console:
load "file: path-to-the-cube-file"
isosurface sign red blue cutoff 0.7 "file: path-to-the-cube-file"
The default cutoff value is 0.2 but it is possible to modify it as shown above, in order to get a better graphical representation. Some examples of graphical representations are given in Figures 13.1 and 13.2 .

Jmol
Figure 13.1: First valence WnF of MgO ; two different views.

Figure 13.2: Second valence WnF of MgO ; two different views.

\section*{New keywords - developers only}

\section*{CLUSPLUS}

Upon transformation from Bloch Functions to Wannier Function, the latter are defined within a region with cyclic boundary condition imposed. We call it the "cyclic cluster". The volume of this region depends on the shrinking factor used in the previous NEWK. For instance, if \(\mathrm{IS}=4\), then the cyclic cluster in a 3 D system will be \(4^{* *} 3\) times larger than the primitive cell. For the localization part to work the WnFs are required to be described in the real space, hence the cyclic conditions and the WnFs are mapped onto a cluster in direct space. The size of this cluster where the localization is performed is defined as follows:
1. We define a small cluster, as a spherical region that contains the minimum number of G-vectors that fully map the cyclic cluster. Let's call RO its radius.
2. As the centroid of some WnFs may be at the border of the reference cell we should consider some additional space in the direct cluster so as to allow the tails to be fully included in the region. This additional distance R1 is calculated as the maximum Gvector modulus of the set of cells at the neighbours of the reference one.
3. The radius of the resulting direct cluster will read: \(\mathrm{R}=\mathrm{R} 0+\) IPLUSCLUS*R1, where IPLUSCLUS is given in input. By default IPLUSCLUS is 5 .
\begin{tabular}{llll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & iplusclus & factor to define the radius of direct cluster \\
\hline
\end{tabular}

After the WANNIER-BOYS localization the WnFs are not fully orthonormal in direct space (they are just orthonormal within the cyclic cluster). To perform a true localization in direct space (see FULLBOYS) a previous re-orthonormalization in direct space is required. This is carried out by constructing the first order approximation of the Lowdin transformation and applying it to the WnFs. This process is performed iteratively up to fulfill a given criterion. ORTHNDIR sets the parameters that control this process.
\(\left.\begin{array}{lll}\hline \text { rec variable } & \text { value } & \text { meaning } \\
\hline * \text { ISTORTH } & >0 & \begin{array}{l}\text { number of stars of G-vectors that contains the transformation } \\
\text { matrix. }\end{array} \\
& =0 & \begin{array}{l}\text { the number of stars is computed so as to contain the reference } \\
\text { cell and all its neighbors [default]. }\end{array} \\
\text { ITOLORTH } & >0 & \begin{array}{l}\text { the overlap matrix elements are computed just between WnF } \\
\text { components gt 10**-ITOLORTH in absolute value [default 5]. } \\
\text { maximum number of iterations [default 10 in properties, } 0 \text { in }\end{array} \\
\text { crystal. }\end{array}\right]\)\begin{tabular}{l}
the iterative procedure is performed up to the mean normal- \\
ization error of the WnFs is \(<10^{* *}\) NREORTHN in absolute \\
value (Default -7\()\)
\end{tabular}

\section*{WANDM}

WANDM controls the computation of the DM matrix elements between WnFs assigned to the reference and the neighboring cells (translational images of the former).

\section*{FULLBOYS}
\begin{tabular}{llll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & ITOLWPG & \(>0\) & \begin{tabular}{l}
TOLWPG \(10^{* *}(-I T O L W P G)\) tolerance on the DM matrix el- \\
ements
\end{tabular} \\
\hline
\end{tabular}

Request of Foster-Boys localization in direct space. The set of WnFs considered in the calculation of the DM matrix (see WANDM) are orthogonally transformed so as to obtain maximally localized WnFs under the Boys criterion. The resulting functions keep both, orthonormality and translational equivalence.
TOLWPG \(10^{* *}(-\) TOLWPG \()\) tolerance on the DM matrix elements to keep and use it in compact form. A small TOLWPG means that only a few DM matrix elements are considered in the localization process, then the calculation is quite fast and not very demanding in memory. A very large value would bring about very accurate LWFs with high computational cost. Recommended values: 4-6.

\section*{Bibliography}
N. Ashcroft, D. Mermin "Solid State Physics", Holt Rinehart and Winston: New York, 1976. P.-O. Löwdin (Editor) "Quantum Theory of Atoms, Molecules and the Solid State", Academic: New York, 1966.
S. F. Boys Rev. Mod. Phys 32 (1960) 296.
J. M. Foster and S. F. Boys Rev. Mod. Phys 32 (1960) 300.
J. Pipek and P. G. Mezey J. Chem. Phys 90 (1989) 4916.
V. Magnasco and A. Perico, J. Chem. Phys. 47 (1967) 971.

\section*{MAPNET - coordinates of grid points on a plane}

This is a dummy keyword, to explain the way is generated the grid of points in which is evaluated a given function F: charge density and spin density (ECHG), electrostatic potential (CLAS, POTM). The graphic representation of the resulting 2D function is made by external software.
\begin{tabular}{|c|c|}
\hline rec variable & meaning \\
\hline - * NPY & number of points on the B-A segment. \\
\hline - \(A\) keyword & enter a keyword to choose the type of coordinate: \\
\hline \multicolumn{2}{|l|}{- COORDINA} \\
\hline - * XA,YA,ZA & cartesian coordinates of point A \\
\hline - * XB,YB,ZB & cartesian coordinates of point B \\
\hline - * XC,YC,ZC & cartesian coordinates of point C \\
\hline & [or \\
\hline \multicolumn{2}{|l|}{- ATOMS} \\
\hline - * IA & label of the atom at point A \\
\hline AL,AM,AN & indices (direct lattice, input as reals) of the cell where the atom is located \\
\hline - * IB & label of the atom at point B \\
\hline BL,BM,BN & indices (direct lattice, input as reals) of the cell where the atom is located label of the atom at point C \\
\hline CL,CM, CN & indices (direct lattice, input as reals) of the cell where the atom is located
\(\qquad\) optional keyword \(\qquad\) \\
\hline - RECTANGU & definition of a new \(\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}\) rectangular window, with \(\mathrm{B}^{\prime} \mathrm{C}^{\prime}\) on \(\mathrm{BC}, \mathrm{A}^{\prime} \mathrm{D}^{\prime}\) on AD and diagonals \(\mathrm{A}^{\prime} \mathrm{C}^{\prime}=\mathrm{B}^{\prime} \mathrm{D}^{\prime}=\max (\mathrm{AC}, \mathrm{BD})(\) see Fig 13.3)
\(\qquad\) optional keyword \(\qquad\) II \\
\hline - MARGINS & definition of a new \(A ", B ", C\) ", \(D\) " window including \(A B C D\) (or \(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\)) (see Fig 13.4) \\
\hline - * ABM & margins along AB \\
\hline CDM & margins along CD \\
\hline ADM & margins along AD \\
\hline BCM & margins along BC \\
\hline & _optional keyword _ II \\
\hline - PRINT & printing of the values of the function in the net \\
\hline - ANGSTROM & cartesian coordinates in Angstrom (default) \\
\hline - BOHR & cartesian coordinates in bohr \\
\hline - FRACTION & cartesian coordinates in fractional units \\
\hline - END & end of MAPNET input block \\
\hline
\end{tabular}
1. Function \(F\) is mapped in a \(A B C D\) parallelogram-shaped domain defined by the sides \(A B\) and BC of any \(\widehat{A B C}\) angle. F is calculated at the \(\mathrm{n}_{A B} * \mathrm{n}_{B C}\) nodes of a commensurate net (\(\mathrm{n}_{A B}\) and \(\mathrm{n}_{B C}\) integers).
2. If \(\mathrm{C} \equiv \mathrm{B}, \mathrm{F}\) is calculated along the line AB . Data are written in file RHOLINE.DAT D,
3. \(\mathrm{n}_{B C}\) is set by the program such that all points in the net are as equally spaced as possible \(\left(\delta_{A B} \approx \delta_{B C}\right)\).
4. formatted output is written in file fort. 25 (processed by Crgra2006; see Appendix D page 395.
5. The position of the three points \(\mathrm{A}, \mathrm{B}\) and C can be specified in two alternative ways:

Figure 13.3: Definition of the window where the function F is mapped Effect of optional keyword RECTANGU.

Figure 13.4: Definition of frame around the original window where the function F is mapped. Effect of optional keyword MARGINS.

COORDINA the cartesian coordinates of the three points are given in bohr / Ångstrom / fractional units (default Ångstrom; see Section 3.1, page 37
ATOMS
\(\mathrm{A}, \mathrm{B}, \mathrm{C}\) correspond to the position of 3 nuclei, identified by their sequence number in the reference cell, and the crystallographic indices of the cell in which they are located (input as real numbers).
6. The symmetry is used to restrict the calculation of the function to the irreducible part of the parallelogram chosen. To maximize the use of symmetry, the points of the net should include the low multiplicity positions in the selected plane. For example, \(\mathrm{B}=(0,0,0)\), \(A=(a, 0,0), C=(0, b, 0)\) (a,b lattice vectors). Choose NPY \(=4 n+1\) for (100) faces of cubic crystals, or NPY \(=6 \mathrm{n}+1\) for (0001) faces of hexagonal crystals.

\section*{NEIGHBOR/NEIGHPRT}

See input block 1, page 59

\section*{NEWK - Hamiltonian eigenvectors}

The Fock/KS eigenvectors are computed at a number of \(\mathbf{k}\) points in reciprocal space, defined by the shrinking factor IS, and written unformatted in file fort. 10 (in the basis of symmetry adapted Bloch functions) and in file fort. 8 (in the basis of AO). Eigenvalues and related information (coordinates of k points in reciprocal lattice, weights etc) are written in file KIBZ.DAT by inserting the keyword CRYAPI_OUT (page 271).
1. The Fock/KS matrix in direct space is always the SCF step final one. If the SCF convergence was poor, and convergence tools were used, eigenvalues and eigenvectors may be different from the ones that could be obtained after one more cycle without any convergence trick.
2. The shrinking factors IS and ISP (Section 17.7, page 355) can be redefined with respect to the ones used in the SCF process. If this value is smaller than the one used in the scf step, numerical inaccuracy may occur in the Fourier transform of the Fock/KS matrix, \(F_{g} \rightarrow F_{k}\) (Chapter 17 , equation 17.5 .
3. A Fermi energy calculation must be performed (IFE=1) to run the Compton profiles option PROF, the electron momentum density options EMDL and EMDP, PBAN and PDIDE in order to compute the weight associated to each eigenvalue.
4. Warning NEWK with IFE=1 must be run to obtain the correct Fermi energy and eigenvalues spectra when a shift of eigenvalues was requested in SCF (LEVSHIFT, page 102 , SPINLOCK, page 113, BETALOCK, 84
A new density matrix is computed. If the convergence of scf was poor, and convergence tools were used (FMIXING, LEVSHIFT, ..), the density matrix obtained from the eigenvectors computed by NEWK may be different from the matrix that could be calculated with one more scf cycle. Properties depending on the density matrix may be different if computed before or after NEWK.
5. if BAND is called after NEWK, and symmetry adapted Bloch functions are used (default option), the information generated by NEWK is destroyed. For instance, to
compute density of states and bands, the sequence must be: BAND - NEWK - DOSS. The sequence NEWK BAND DOSS will give the error message:

Printing options: 59 (Density matrix - direct lattice); 66 (Hamiltonian eigenvalues); 67 (Hamiltonian eigenvectors).

\section*{NOSYMADA}

See input block 3, page 106

\subsection*{13.12 3D plotting of crystalline (molecular) orbitals}

\section*{ORBITALS - Crystalline (Molecular) orbitals 3D plot}
\begin{tabular}{clll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & & VAR & filename \\
\(\bullet\) & ICAR & 0 & Cartesian coordinates (default for molecules) \\
& & 1 & Fractionary coordinates (default for periodic systems) \\
& ILOC & 0 & crystalline orbitals as Bloch functions \\
& 1 & crystalline orbitals as Wannier functions \\
\hline
\end{tabular}

The crystalline (or molecular) orbitals are computed and written in a Molden format to be
visualized with graphical tools. Molecular orbitals can be visualized with multiple programs, e.g. Gabedit, Molden and many others supporting the Molden format. Crystalline orbitals are written in a modified Molden format which is currently only supported by a recent version of Jmol.
1. The NEWK option must be executed (to compute Hartree-Fock/KS eigenvectors and eigenvalues) before running ORBITALS.
2. The filename corresponds to the row name of the files that contain the information for plotting the orbitals. For periodic systems a file is generated for each real k point while two files are created for complex k points.
3. When ICAR \(=0\), the 3 D plot of the orbitals is referred to Cartesian coordinates. This is the default when plotting molecular orbitals.
4. When \(\operatorname{ICAR}=1\), orbitals are plotted in fractionary coordinates. This is the default for periodic systems.
5. When \(\mathrm{ILOC}=0\), canonical molecular orbitals (or crystalline orbitals - Bloch functions) are calculated
6. When \(\mathrm{ILOC}=1\), localized molecular orbitals (or crystalline orbitals - Wannier functions) are computed. Note that the localized orbitals must be previously computed by running the option LOCALI.

\section*{Examples}
```

COs - Bloch functions

```

NEWK
33

Localized-COs - Wannier functions
NEWK
33
\begin{tabular}{ll}
10 & 10 \\
END & LOCALI \\
ORBITALS & END \\
Corundum-COs & ORBITALS \\
1 & Corundum-LCOs \\
0 & 1 \\
END & 1 \\
END & END \\
& END
\end{tabular}

\subsection*{13.13 Density Matrix of Non-interacting Atoms}

\section*{PATO - Density matrix as superposition of atomic densities}

1. The PATO option is used for calculating crystal properties, such as charge density (ECHG), structure factors (XFAC) with a periodic density matrix obtained as a superposition of atomic solutions (periodic array of non interacting atoms). The reducible density matrix is written to file fort.13.
2. The atomic wave function is computed by the atomic program [188], using HF hamiltonian, \(s, p\), \(d\) orbitals basis set, properly handling the open shell electronic configuration.
3. If the basis set used for the crystalline calculation (given as input of the integral part) is not suitable for describing a free- atom or free-ion situation, a new basis set can be supplied (see Section 2.2). When this option is used (IBN.NE.0) the basis set of all the atoms with different conventional atomic number has to be provided.
4. The electronic configuration of selected atoms may be modified (CHEMOD in basis set input). This allows calculation of the density matrix as superposition of atomic densities or ionic densities, for the same crystal structure.
5. The wave function data stored in file fort. 9 at the end of the SCF cycles are not modified. Only the data stored on the temporary data set (reducible density matrix in fortran unit 13 and overlap matrix in fortran unit 3) are modified. The keyword PSCF restores the scf density matrix and all the original information (including geometry and basis set).
6. See also ATOMHF, input block 3, page 83 and CHARGED, input block 2, page 72 .

\section*{PBAN/PDIBAN - Band(s) projected density matrix}
\begin{tabular}{lll}
\hline rec & variable & meaning \\
\hline\(\bullet\) & \(*\) & NB
\end{tabular}\(\quad\) number of bands to consider. \(\quad\)\begin{tabular}{ll}
\(\bullet\) & \(\mathrm{N}(\mathrm{I}), \mathrm{I}=1, \mathrm{NB}\) \\
\begin{tabular}{l}
sequence number of the bands summed up for the projected density ma- \\
trix.
\end{tabular} \\
\hline
\end{tabular}

A density matrix projected onto a given range of bands is computed and stored in fortran unit 13. The properties will subsequently be computed using such a matrix.

The PBAN keyword must be preceeded by the NOSYMADA and NEWK (with IFE set to 1) ones (in this order).
To be combined only with ECHG and PPAN.
For spin polarized systems, two records are written:
first record, total density matrix (\(\mathrm{N}=\mathrm{n}_{\alpha}+\mathrm{n}_{\beta}\) electrons);
second record, spin density matrix (\(\mathrm{Ns}=\mathrm{n}_{\alpha}-\mathrm{n}_{\beta}\) electrons).

\section*{PGEOMW - Density matrix from geometrical weights}

A density matrix projected onto the range of bands defined in input (see PBAN input instructions) is computed, using the geometrical weights of the \(\mathbf{k}\) points in the reciprocal lattice. The properties will subsequently be computed using such a matrix. All the bands are attributed an occupation number 1., independently of the position of the Fermi energy. The density matrix does not have any physical meaning, but the trick allows analysis of the virtual eigenvectors. For spin polarized systems, two records are written:
first record, total density matrix (\(\mathrm{N}=\mathrm{n}_{\alpha}+\mathrm{n}_{\beta}\) electrons);
second record, spin density matrix (\(\mathrm{Ns}=\mathrm{n}_{\alpha}-\mathrm{n}_{\beta}\) electrons).
To be combined only with ECHG and PPAN.
Fock/Kohn-Sham eigenvectors and band weights must be computed by running NEWK and setting IFE=1. Symmetry adaptation of Bloch functions is not allowed, the keyword NOSYMADA must be inserted before NEWK.

\section*{PDIDE - Density matrix energy projected}
\begin{tabular}{cll}
\hline rec & variable & meaning \\
\hline\(\bullet \quad\) & EMI,EMAX & lower and upper energy bound (hartree)
\end{tabular}

A density matrix projected onto a given energy range is computed and stored in file fort. 13 . The properties will subsequently be computed using such a matrix. To be combined only with DOSS, ECHG and PPAN. Fock/Kohn-Sham eigenvectors and band weights must be computed by running NEWK and setting IFE=1.
The charge density maps obtained from the density matrix projected onto a given energy range give the STM topography [134] within the Tersoff-Haman approximation [215].

\section*{PMP2 - Reads the MP2 correction to the Valence Density Matrix}
1. The MP2 correction to the Valence Density Matrix, as computed by the Cryscor program, is read from the external unformatted file fort. 63 , which has to be provided by the user.
2. The PMP2 keyword must be preceded by NEWK (with IFE=1) since the Fermi energy has to be computed in order to split the total SCF DM into core and valence density matrices. The MP2 correction to the DM is summed to the valence SCF DM.
3. By default the Properties program adopts the SCF density matrix (DM) but if one adds the PMP2 keyword in the input file then any property whose corresponding keyword is inserted after PMP2 is computed using the HF+MP2 density matrix.
4. For instance, in order to evaluate the MP2 correction to the X-rays Structure Factors \(F_{h k l}\), the following sequence of keywords has to be used: NEWK-XFAC-PMP2-XFACEND; in the output file will be printed the HF \(F_{h k l}\) followed by the HF+MP2 \(F_{h k l}\).

We report in the following the list of the properties for which the MP2 correction can be evaluated, along with some advices one has to take in mind:
- Directional Compton Profiles (PROF) The ICORE variable must be 1 or 3 and the IVIA variable must be 1
- Auto-correlation Function and Compton Profiles (BIDIERD) The ICASO variable must be 1 or 3
- Electron Momentum Density (EMDLDM and EMDPDM) The ICASO variable must be 1 or 3
- Electron Charge Density (ECHG)
- Mulliken's Populations (PPAN)
- Structure Factors (XFAC)

\section*{POLI - Spherical harmonics multipole moments}
\begin{tabular}{rlll}
\hline rec & variable & value & meaning \\
\hline\(\bullet\) * IDIPO & & multipole order (maximum order \(\ell=6)\) \\
\(*\) & ITENS & 1 & the quadrupole cartesian tensor is diagonalized \\
& & 0 & no action \\
& LPR68 & & maximum pole order for printing: \\
& & \(<0\) & atom multipoles up to pole IDIPO \\
& & \(\geq 0\) & atom and shell multipoles up to pole IDIPO \\
\hline
\end{tabular}

The multipoles of the shells and atoms in the primitive cell are computed according to a Mulliken partition of the charge density, up to quantum number IDIPO \((0 \leq \operatorname{IDIPO} \leq 6)\). The first nine terms, corresponding to \(\ell=0,1,2\) (for the definition of higher terms, see Appendix A1, page 170 in reference [175]) are defined as follow:
```

lm
0 0 s
1 0 z
1 1 x
1 -1 y
2 0 z z}-\mp@subsup{x}{}{2}/2-\mp@subsup{y}{}{2}/
2 1 3xz
2 -1 3yz
2 2 3( x
2 -2 6xy
3 0 (2z
3 1 (4z'2}-\mp@subsup{x}{}{2}-\mp@subsup{y}{}{2})
3 -1 (4z 2}-\mp@subsup{x}{}{2}-\mp@subsup{y}{}{2})
3 2 (x }\mp@subsup{\mp@code{2}}{}{-}\mp@subsup{y}{}{2})
3 -2 xyz
3 3 ( x

```

If \(\operatorname{ITENS}=1\), the cartesian quadrupole tensor is computed, and its eigenvalues and eigenvectors are printed after diagonalization. The components of the cartesian tensor are: \(x^{2}, y^{2}, z^{2}, x y, x z, y z\)
Warning: the shell multipoles are not printed by default. On request (keyword POLIPRT), they are printed in atomic units (electron charge \(=+1\)).

\section*{POLSPIN - Spin multipole moments}
\begin{tabular}{rlll}
\hline rec & variable & value & meaning \\
\hline - & IDIPO & & multipole order (maximum order \(\ell=6\)) \\
* ITENS & 1 & the quadrupole cartesian tensor is diagonalized \\
& & 0 & no action
\end{tabular}

The electron spin density is partitioned in atomic contributions according to the Mulliken scheme, and the spherical harmonic atomic multipoles up to the IDIPO angular quantum number are evaluated (see the POLI keyword for definition of the multipoles and references). The Cartesian tensor \(\mathrm{T}_{i j}=\int x_{i} x_{j} \rho^{s p i n}(\mathbf{r}) d \mathbf{r}\) is computed and diagonalized, and its eigenvalues and eigenvectors are printed. This option may be useful in the analysis of the size, shape and orientation of localized electron holes.

\subsection*{13.14 3D Electrostatic Potential}

\section*{POT3 - Electrostatic potential on a 3D grid}
\begin{tabular}{cll}
\hline rec & variable & meaning \\
\hline\(\bullet *\) & NP & Number of points along the first direction \\
\(\bullet *\) & ITOL & penetration tolerance (suggested value: 5) (see POTM, page 306) \\
\hline
\end{tabular}
if non-3D system
keyword to choose the type of grid on the non-periodic direction(s):
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
SCALE \\
length scales for non-periodic dimensions
\end{tabular}} & RANGE \\
\hline & boundary for non-periodic dimensions (au) \\
\hline \multicolumn{2}{|r|}{if 2D system} \\
\hline \multirow[t]{2}{*}{- * ZSCALE} & - * ZMIN \\
\hline & - * ZMAX \\
\hline _if & system \\
\hline \multirow[t]{2}{*}{- * YSCALE,ZSCALE} & - * YMIN,ZMIN \\
\hline & - * YMAX,ZMAX \\
\hline \multicolumn{2}{|r|}{if \(0 D\) system} \\
\hline - * XSCALE,YSCALE,ZSCALE & - * XMIN,YMIN,ZMIN \\
\hline & - * XMAX,YMAX,ZMAX \\
\hline
\end{tabular}

The electrostatic potential is computed at a regular 3-dimensional grid of points. The grid is defined by the lattice vectors of the primitive unit cell and user defined extents in nonperiodic directions. NP is the number of points along the first lattice vector (or XMAX-XMIN for a molecule). Equally spacing is used along the other vectors. Non-periodic extents may
be specified as an explicit range (RANGE) or by scaling the extent defined by the atomic coordinates (SCALE).

Formatted data are written in fortran unit 31 (function value at the grid points), in the format required by the visualization program DLV.
See Appendix D, page 401, for description of the format.
Function data computed at 3D grid points are written according to GAUSSIAN CUBE format in file POT_CUBE.DAT

\subsection*{13.15 2D Electrostatic Potential}

\section*{POTC - Electrostatic potential and its derivatives}

The exact electrostatic potential \(V\), its derivatives \(E\) (electric field) and \(E^{\prime}\) (electric field gradient) are evaluated for molecules (0D), slabs (2D) and crystals (3D). Plane and volume averaged properties can be computed for slabs (2D) only. The plane is orthogonal to the \(z\) axis.
For \(\mathrm{ICA}=3\), the volume average is performed around a middle plane at z position, from \(\mathrm{z}-\mathrm{ZD}\) to \(z+Z D\), giving a thickness of \(2 * Z D\).
According to Poisson's law, the charge density \(\rho(z)\) is defined as
\[
\rho(z)=-\frac{1}{4 \pi} \frac{d^{2} V(z)}{d z^{2}}=\frac{-E^{\prime}(z)}{4 \pi}
\]

If an electric field of intensity \(E_{0}\) is present (keyword FIELD, see page 3.1. only for slabs), the total potential \(V_{\text {field }}(z)\) is calculated:
\[
V_{\text {field }}(z)=V(z)-E_{0} z
\]
where \(V(z)\) is the potential of the slab itself and \(-E_{0} z\) is the perturbation applied.
- \(\mathrm{ICA}=0 ; \mathrm{NPU}>0 ; 2 \mathrm{D}\) or 3 D system

It is possible to enter the cartesian coordinates (bohr) of the points where the exact value of the properties must be computed. It is useful when applying fitting procedure to obtain formal point charges.
- \(\mathrm{ICA}=0 ; \mathrm{NPU}<0 ; 2 \mathrm{D}\) or 3 D system coordinates in bohr are read (free format) from file POTC.INP
\begin{tabular}{clll}
record & type of data & \multicolumn{3}{c}{ content } \\
1 & 1 & integer & \(N\)
\end{tabular}\()\) number of points
- \(\mathrm{ICA} \neq 0 ; \mathrm{NPU} \neq 0 ; 2 \mathrm{D}\) or 3 D system

The data computed are written in file POTC.DAT. See Appendix D, page 398 .

\section*{POTM - Electrostatic potential maps and electric field}
\begin{tabular}{llll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & IDER & 0 & the electrostatic potential is evaluated \\
& 1 & \begin{tabular}{l}
the potential and its first derivatives are evaluated \\
penetration tolerance (suggested value: 5) \\
\\
\\
ITOL
\end{tabular} & \\
& & insert MAPNET input records (page 297) \\
\hline
\end{tabular}
1. When IDER \(=0\), the electrostatic potential is calculated at the nodes of a 2 -dimensional net in a parallelogram-shaped domain defined by the segments AB and BC (see keyword MAPNET, page 297). The electrostatic potential values are written formatted in file fort. 25 (see Appendix D, page 395 .
2. When IDER \(\neq 0\), the electrostatic potential gradient is computed at the nodes of the same grid. The \(\mathrm{x}, \mathrm{y}\) and z components are printed in the standard output, and written formatted in file fort. 25 (see Appendix D page 395).
3. The electrostatic potential at \(\mathbf{r}\) is evaluated 197 by partitioning the periodic charge density \(\rho(r)\) in shell contributions \(\rho_{\lambda}^{h}\) :
\[
\rho(\underline{r})=\sum_{h} \sum_{\lambda} \rho_{\lambda}(\underline{r}-\underline{h})
\]
(h translation vector).
4. The long range contributions are evaluated through a multipolar expansion of \(\rho_{\lambda}(\underline{r}-\underline{h})\) [196]. The short range contributions are calculated exactly.
5. The separation between long and short range is controlled by ITOL: \(\rho_{\lambda}(\mathbf{r}-\mathbf{h})\) is attributed to the short range (exact) region if
\[
e^{-\alpha_{\lambda}\left(\mathbf{r}-\mathbf{s}_{\lambda}-\mathbf{h}\right)^{2}}>10^{-I T O L}
\]
where: \(\alpha_{\lambda}=\) exponent of the adjoined gaussian of shell \(\lambda ; \mathbf{s}_{\lambda}=\) internal coordinates of shell \(\lambda\) in cell at \(\mathbf{h}\).

The difference between the exact and the approximated potential is smaller than \(1 \%\) when ITOL \(=5\) (input datum to \(\mathbf{P O T M}\)), and \(\operatorname{IDIPO}=4\) (input datum to \(\mathbf{P O L I}\)), and smaller than \(0.01 \%\) when \(\mathrm{ITOL}=15\) and \(\mathrm{IDIPO}=6\) [197, 196].
6. The multipoles of shell charges are computed if POLI option was not run before POTM.

\section*{PPAN/MULPOPAN - Mulliken Population Analysis}

\subsection*{13.16 Mulliken Population Analysis}

See input block 3, page 106

\section*{PRINTOUT - Setting of printing environment}

See input block 1, page 62 .

\section*{PROF - Compton Profiles}

The keyword PROF starts the calculation of Compton profiles \((\mathrm{J}(\mathrm{q})\)) along selected directions (eq. 17.26). The specific keywords DIFF BR CONV allow the calculation of the related quantities. The card with the keyword ENDP ends the Compton profiles input section.
1. The input of the options must be given in the order in which they appear in the above description. To enter this property, the \(\mathbf{C P}\) option must always be selected after \(\mathbf{P R O F}\), while the others are optional.
2. Core and valence contributions are computed by using different algorithms. Core contribution to CP's is always computed analytically via the Pg matrix (direct lattice summation); the valence contribution is computed numerically (IVIA=0) by integrating the EMD. Valence contribution can be evaluated analytically, setting IVIA=1.
3. The numerical integration is extended to a sphere (radius RINT) where EMD is sampled at the points of a commensurate net characterized by a shrinking factor IS (in the IBZ) and at all the points (with modulus less then RINT) obtained from these by applying reciprocal lattice translations.

It is possible to define a second sphere (with radius REST); in the volume between the two spheres a second net is employed with shrinking factor IS1 greater then IS. \(\operatorname{IRAP}=\mathrm{IS} 1 / \mathrm{IS}\) is given in INPUT card 2 ; a reasonable value is IRAP \(=2\). The outer contribution is supposed to be the same for different CP's, and is obtained by integrating the average EMD.
4. If ICORE \(\neq 2\) (valence electron CP's are required) the NEWK option, with IFE=1, must be run before the PROF option, in order to generate the eigenvectors required for the EMD calculation, as well as the weights associated with each k point.
5. If ICORE \(\neq 2\) and IVIA \(=0\) the CPs are evaluated at points resulting from the IS partition of the reciprocal lattice translators. The interpolation is performed at STPJ intervals (STPJ is given in input).

If ICORE \(=2\) or IVIA \(=1\) the CPs are, in any case, evaluated at points resulting from STPJ intervals.

IVIA \(=0\) (numerical integration) produces much more accurate results;
IVIA \(=1\) (analytical integration) is to be used only for molecular calculations or for non conducting polymers.
6. Total CP's are always obtained by summing core and valence contributions.
7. Reasonable values of the integration parameters depend on the system under investigation. The normalization integral of the CP's is a good check of the accuracy of the calculation. For instance, in the case of the valence electron of beryllium (test 9), good values of RINT and IS are 10. a.u. and 4 respectively. In the case of silicon (test 10), good values of the same variables are 8. a.u. and 8 respectively. Much greater RINT values are required in order to include all the core electrons (70. a.u. in the case of silicon, and 25. a.u. in the case of beryllium).
8. BR (auto-correlation function or reciprocal space form factor) should be calculated only for valence electrons. All electron BR are reliable when the normalization integral, after the analytical integration for core electrons contribution, is equal to the number of core electrons.
9. The oblique coordinates directions given in input refer to the conventional cell, not to the primitive cell for 3D systems.
Example: in a FCC system the input directions refer to the orthogonal unit cell frame (sides of the cube) not to the primitive non-orthogonal unit cell frame.

Printing options: 116 (Compton profiles before interpolation); 117 (average EMD before interpolation); 118 (printing of core, valence etc. contribution). The LPRINT(118) option should be used only if ICORE \(=1\), that is, if core plus valence calculation are chosen.

\section*{PSCF - Restore SCF density matrix}

The wave function data computed at the last SCF cycle are restored in common areas and fortran units 3 (overlap matrix), 11 (Fock/KS matrix), 13 (density matrix). The basis set
defined in input block 2 is restored. Any modification in the default settings introduced in properties is overwritten. No input data required.

\section*{RAYCOV - covalent radii modification}

See input block 1, page 62

\section*{ROTREF - Rotation of eigenvectors and density matrix}

This option permits the rotation of the cartesian reference frame before the calculation of the properties.
It is useful, for example, in the population analysis or in the AO projected density of states of systems containing transition metal atoms with partial \(d\) occupation.
Consider for example a \(d^{7}\) occupation as in \(\mathrm{CoF}_{2}\), where the main axis of the (slightly distorted) \(\mathrm{CoF}_{6}\) octahedron in the rutile structure makes a \(45^{\circ}\) angle with the \(x\) axis, and lies in the \(x y\) plane, so that the three empty \(\beta\) states are a combination of the \(5 d\) orbitals. Re-orienting the octahedron permits to assign integer \(\beta\) occupations to \(\mathrm{d}_{x z}\) and \(\mathrm{d}_{y z}\).
Input for the rotation as for EIGSHROT (page 89)

\section*{SETINF - Setting of INF values}

See input block 1, page 64

\section*{SETPRINT - Setting of printing options}

See input block 1, page 64

\section*{STOP}

Execution stops immediately. Subsequent input records are not processed.

\section*{SYMADAPT}

See input block 3, page 113

\subsection*{13.17 X-ray Structure Factors and XRD Spectra \\ XFAC - X-ray structure factors}

The Fourier transform of the static ground state charge density \(\rho(\mathbf{r})\) of a crystalline system provides the set of static structure factors \(\left\{F_{h k l}\right\}\) of the crystal, which can be determined experimentally, after taking into account a number of corrective terms, in particular those related to thermal and zero point motion of nuclei (vide infra):
\[
F_{h k l}=\int d \mathbf{r} \rho(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}} \quad \text { with } \quad \mathbf{k}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}
\]
where \(\mathbf{b}_{1}, \mathbf{b}_{2}\) and \(\mathbf{b}_{3}\) are the fundamental reciprocal lattice vectors and \(h, k, l\) are Miller's indices. The electron charge density is a function that exhibits translational invariance so that we can consider its expression just in the reference cell \(\rho_{\text {cell }}(\mathbf{r})\). Let us introduce an, to some extent
arbitrary, approximation: the partition of \(\rho_{\text {cell }}(\mathbf{r})\) into atomic contributions, based on some criteria:
\[
\rho_{\text {cell }}(\mathbf{r})=\sum_{A \in \text { cell }} \rho_{A}\left(\mathbf{r}-\mathbf{r}_{A}\right)
\]
where \(\mathbf{r}_{A}\) is the equilibrium position of atom \(A\) in the cell. Within such an approximation the expression of the static structure factors simply becomes:
\[
F_{h k l}=\sum_{A \in \text { cell }} f_{A}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}_{A}} \quad \text { with } \quad f_{A}(\mathbf{k})=\int d \mathbf{r} \rho_{A}(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}}
\]

A simple way for introducing the effect of thermal nuclear motion in the above expression is represented by the so-called atomic Debye-Waller factors \(\mathrm{DW}_{A}(\mathbf{k})\) :
\[
\tilde{F}_{h k l}=\sum_{A \in \text { cell }} f_{A}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}_{A}} \times e^{-\mathrm{DW}_{A}(\mathbf{k})}
\]
where the symbol \(\tilde{F}_{h k l}\) represents dynamic structure factors and where, if one assumes a harmonic anisotropic potential acting over the atoms and a Gaussian probability of finding an atom displaced by its equilibrium position, the Debye-Waller factors can be expressed as
\[
\mathrm{DW}_{A}(\mathbf{k})=\frac{1}{2}\langle\mathbf{k}| \mathbf{U}_{A}|\mathbf{k}\rangle
\]
where \(\mathbf{U}_{A}\) is the mean square displacement tensor (that depends upon temperature):
\[
\mathbf{U}_{A}=\left[\begin{array}{ccc}
\left\langle x_{1}^{2}\right\rangle & \left\langle x_{1} x_{2}\right\rangle & \left\langle x_{1} x_{3}\right\rangle \\
\left\langle x_{2} x_{1}\right\rangle & \left\langle x_{2}^{2}\right\rangle & \left\langle x_{2} x_{3}\right\rangle \\
\left\langle x_{3} x_{1}\right\rangle & \left\langle x_{3} x_{2}\right\rangle & \left\langle x_{3}^{2}\right\rangle
\end{array}\right]
\]
with \(x_{i}\) components of the displacement of atom \(A\) with respect to its equilibrium position. The above tensor and its eigenvalues are sometimes referred to as anisotropic displacement parameters (ADP).

Users of this option for the calculation of dynamical structure factors are kindly requested to cite the following paper [73]:
A. Erba, M. Ferrabone, R. Orlando and R. Dovesi, J. Comput. Chem., 34, 346 (2013). Accurate dynamical structure factors from ab initio lattice dynamics: The case of crystalline silicon.
\begin{tabular}{|c|c|c|}
\hline rec variable & value & meaning \\
\hline - * ISS & \[
\begin{aligned}
& >0 \\
& <0
\end{aligned}
\] & number of reflections whose theoretical structure factors are calculated. a set of non-equivalent reflections with indices \(h, k, l<|I S S|\) is generated \\
\hline \multirow[t]{2}{*}{PC} & 0 & Miller's indices \(h, k, l\) refer to the primitive cell \\
\hline & 1 & Miller's indices \(h, k, l\) refer to the conventional cell (if any)
\(\qquad\) if ISS \(>0\) insert ISS records \(\qquad\) \\
\hline \multicolumn{2}{|l|}{- * H,K,L} & Miller's indices \(h, k, l\) of the reflections \\
\hline - A2DW & & Debye-Waller atomic factors \(\mathrm{DW}_{A}(\mathbf{k})\) are computed to obtain dynamic structure factors. Anisotropic displacement parameters (ADP) for a given temperature are read from the external unit ADP.DAT where they are inserted as tensors \\
\hline \multirow[t]{3}{*}{- * UNITS} & 0 & The ADP in the unit are given in atomic units (\(\mathrm{bohr}^{2}\)) \\
\hline & 1 & The ADP in the unit are given in \(10^{-4} \AA^{2}\) \\
\hline & 2 & The ADP in the unit are given in \(\AA^{2}\) \\
\hline \multirow[t]{2}{*}{DWPRT} & 0 & Debye-Waller atomic factors are not printed \\
\hline & 1 & Debye-Waller atomic factors are printed \\
\hline - A2END & & End of the block of instructions of XFAC \\
\hline
\end{tabular}

Note: if dynamic structure factors are computed for a given temperature \(T\), the corresponding ADPs have to be provided via the external formatted unit ADP.DAT. Such unit has to be put in the scratch directory where the Properties program is executed. If the standard script runprop09 is used, then such unit can be renamed inputfilename.adp and put in the same directory where the input file inputfilename.d3 is.
The structure of the ADP.DAT unit is as follows (this example refers to the crystal of silicon):
\begin{tabular}{lll}
298.1500 & & \\
1 & & \\
0.017717 & 0.000000 & 0.000000 \\
0.000000 & 0.017717 & 0.000000 \\
0.000000 & 0.000000 & 0.017717 \\
2 & & \\
0.017717 & 0.000000 & 0.000000 \\
0.000000 & 0.017717 & 0.000000 \\
0.000000 & 0.000000 & 0.017717
\end{tabular}
where the first entry is the temperature (in Kelvin) at which the ADPs have been measured/computed. After that, a list of the ADP tensors is given for all the atoms in the cell. In the example above there are just two atoms per cell and their ADP tensors are equal and diagonal.

\section*{XRDSPEC - X-ray diffraction Spectra}

X-ray static structure factors \(F_{h k l}\) can be computed as discussed above, and correspond to a discrete Fourier transform of the electron charge density of the crystal:
\[
\begin{equation*}
F_{h k l}=\int_{\text {cell }} \rho(\mathbf{r}) e^{i 2 \pi \mathbf{k} \cdot \mathbf{r}} \mathrm{~d} \mathbf{r}, \tag{13.24}
\end{equation*}
\]
where \(\mathbf{k}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}\) is a reciprocal lattice vector (being \(\mathbf{b}_{1}, \mathbf{b}_{2}\) and \(\mathbf{b}_{3}\) the fundamental reciprocal lattice vectors) and \(h, k, l\) Miller's indices. From the Crystal09 version of the program, Debye-Waller thermal factors can be computed to transform static into dynamical structure factors, starting from harmonic atomic anisotropic displacement parameters (ADPs). The intensity of the diffraction peaks is affected by many factors and is typically proportional to:
\[
\begin{equation*}
I_{h k l} \propto\left|F_{h k l}\right|^{2} \times M_{h k l} \times L P(\theta) \times e^{-B}, \tag{13.25}
\end{equation*}
\]
where \(M_{h k l}\) is the symmetry multiplicity of the structure factor and \(L P(\theta)\) is a correction for Lorentz and Polarization effects, with a functional form depending on Bragg's angle \(\theta\) (linked to Miller's indices through the spacing of the corresponding crystallographic planes and the wavelength of the experiment). In Crystal17, an option has been implemented, which computes the structure factor multiplicities \(M_{h k l}\), converts \(h, k, l\) Miller's indices into Bragg's angle \(\theta\), and corrects the intensities for the Lorentz and Polarization (LP) effects.
\begin{tabular}{llll}
\hline rec & variable & value & meaning \\
\hline\(\bullet *\) & NRIF & \(>0\) & \begin{tabular}{l}
a set of non-equivalent reflections with indices \\
erated
\end{tabular} \\
& \(h, k, l<|N R I F|\) is gen-
\end{tabular}

\subsection*{13.18 Spontaneous polarization}

The ferroelectric phases of a ferroelectric material exhibit two possible enantiomorphic non centrosymmetric structures, which can be labelled by the geometric parameters \(\lambda=+1\) and \(\lambda=-1\). An external electric field can force the system to change from one structure to the other, passing through a small energy maximum. The centrosymmetric unstable structure which sits in the middle of the \(\lambda=+1\) and \(\lambda=-1\) structures can be labelled by the geometric parameters \(\lambda=0\).
The spontaneous polarization in ferroelectric materials is then evaluated through either a Berry phase approach [187, 48] or a localized Wannier functions approach, as the polarization difference between one of the two enantiomorphic structures \((\lambda=+1\) or \(\lambda=-1)\) and the intermediate geometric structure \((\lambda=0)\).
Three subsequent runs are required.
1. First run: preliminary calculation related to \(\lambda=0\) structure
2. Second run: preliminary calculation related to \(\lambda=+1\) (or \(\lambda=-1\)) structure
3. Third run: merging of previous data

Some comments:
1. The unit-cell has to contain an even number of electrons.
2. Cell parameters have to be the same for whatever value of the geometric parameter \(\lambda\). The difference between the \(\lambda=+1, \lambda=0\), and \(\lambda=-1\) structures is only in the atomic positions.
3. Numerical accuracy and computational parameters in input block 3 (such as TOLINTEG, POLEORDR, etc.) should be the same for the first and the second run.
4. See page 299 for the NEWK input, which has to be the same for the first and the second run. The shrinking factor IS should be at least equal to 4 . Fermi energy calculation is not necessary, then set IFE \(=0\).
5. Data evaluated with the keywords POLARI or LOCALI in the first two runs do not have any physical meaning if considered independently. Only the output produced choosing the keywords SPOLBP or SPOLWF in the third run is significant.

6 . When the \(\lambda=-1\) geometric structure is chosen in the second run, the spontaneous polarization vector obtained at the end will have the same modulus and direction but opposite versus with respect to the vector obtained by choosing the \(\lambda=+1\) structure.
7. The spontaneous polarization is obtained through either the Berry phase approach or the localized Wannier functions approach. Since a phase is defined only in the interval \(-\pi\) to \(+\pi\), each component of the spontaneous polarization vector is defined to within an integer number (positive or negative) of the correspondent component of the "quantum of polarization" vector, which is automatically shown in the output of the third run. Usually there is not need to take into account the quantum of polarization vector, unless the ferroelectric material shows a large value of the spontaneous polarization.
In case of doubt whether the quantum of polarization vector has to be considered or not, it is possible to evaluate the spontaneous polarization by setting in the second run a geometric structure corresponding to an intermediate geometric parameter, e.g. \(\lambda=0.25\), and then to extrapolate linearly the result to the \(\lambda=1\) structure.
\begin{tabular}{|c|c|}
\hline Deck 1 & \\
\hline \multicolumn{2}{|l|}{Potassium niobate - \(\mathrm{KNbO}_{3}\)} \\
\hline CRYSTAL & 3D system \\
\hline 000 & IFLAG IFHR IFSO \\
\hline 123 & space group, \(\mathrm{P}_{4} / \mathrm{mmm}\) \\
\hline 3.9974 .063 & lattice parameters \\
\hline 4 & 4 non equivalent atoms (5 atoms in the primitive cell) \\
\hline 190.50 .50 .5 & \(\mathrm{Z}=19\), Potassium; \(x, y, z\) (multiplicity 1) \\
\hline 80.00 .00 .5 & \(\mathrm{Z}=8\), Oxygen I; \(x, y, z\) (multiplicity 1) \\
\hline 80.50 .00 .0 & \(\mathrm{Z}=8\), Oxygen II; \(x, y, z\) (multiplicity 2) \\
\hline 410.00 .00 .0 & \(\mathrm{Z}=41\), Niobium; \(x, y, z\) (multiplicity 1) \\
\hline END & end of geometry input records \\
\hline
\end{tabular}

\section*{Deck 2}

Potassium niobate - \(\mathrm{KNbO}_{3}\)
\begin{tabular}{|c|c|}
\hline CRYSTAL & 3D system \\
\hline 000 & IFLAG IFHR IFSO \\
\hline 123 & space group, \(P 4 / \mathrm{mmm}\) \\
\hline 3.9974 .063 & lattice parameters \\
\hline 4 & 4 non equivalent atoms (5 atoms in the p \\
\hline 190.50 .50 .5 & \(\mathrm{Z}=19\), Potassium; \(x, y, z\) (multiplicity 1) \\
\hline \(8 \quad 0.00 .00 .5\) & \(\mathrm{Z}=8\), Oxygen I; \(x, y, z\) (multiplicity 1) \\
\hline 80.50 .00 .0 & \(\mathrm{Z}=8\), Oxygen II; \(x, y, z\) (multiplicity 2) \\
\hline 410.00 .00 .0 & \(\mathrm{Z}=41\), Niobium; \(x, y, z\) (multiplicity 1) \\
\hline FRACTION & fractional coordinates \\
\hline ATOMDISP & displacement of atoms \\
\hline 4 & four atoms to be displaced \\
\hline \(10.00 .0-0.023\) & displacement of atom no. 1 (Potassium) \\
\hline \(20.00 .0-0.042\) & displacement of atom no. 2 (Oxygen II) \\
\hline \(30.00 .0-0.042\) & displacement of atom no. 3 (Oxygen II) \\
\hline \(40.00 .0-0.040\) & displacement of atom no. 4 (Oxygen I) \\
\hline END & end of geometry input records \\
\hline
\end{tabular}

\section*{SPOLBP - Spontaneous polarization (Berry phase approach)}

To calculate the spontaneous polarization, a preliminary with the keyword POLARI run is needed for each of the two systems \(\lambda=1\) and \(\lambda=0\). Then a third run with the keyword SPOLBP gives the difference of polarization between both systems.
1. First run: preliminary calculation related to system \(\lambda=0\)
\begin{tabular}{l|l|l}
\hline Program & Keyword & comments \\
\hline crystal & & see deck 1 for input blocks 1 and 1b \\
\hline properties & NEWK & \begin{tabular}{l}
additional keywords allowed \\
POLARI \\
see above
\end{tabular} \\
\hline \multicolumn{3}{l}{ save Fortran unit 27 as sys0.f27 } \\
\hline
\end{tabular}
2. Second run: preliminary calculation related to system \(\lambda=1\)
\begin{tabular}{l|l|l}
\hline Program & Keyword & comments \\
\hline crystal & & see deck 2 for input blocks 1 and 1b \\
\hline properties & NEWK & same input as in first run \\
& POLARI & \\
\hline
\end{tabular}
3. Third run: merging of previous data.
copy sys0.f27 to Fortran unit 28
copy sys1.f27 to Fortran unit 29
\begin{tabular}{l|l|l}
\hline Program & Keyword & comments \\
\hline
\end{tabular}
properties SPOLBP

\section*{SPOLWF - The spontaneous polarization (localized CO approach)}

To calculate the spontaneous polarization, two preliminary runs with the keyword LOCALI is needed for each of the two systems \(\lambda=1\) and \(\lambda=0\). Then a third run with the keyword SPOLWF computes the difference of polarization between both systems.
1. First run: preliminary calculation related to system \(\lambda=0\)
\begin{tabular}{l|l|l}
\hline Program & Keyword & comments \\
\hline crystal & & see deck 1 for input blocks 1 and 1b \\
\hline properties & NEWK & additional keywords allowed \\
& LOCALI & \begin{tabular}{l}
see above
\end{tabular} \\
\hline save Fortran unit 37 as sys0.f37 \\
\hline
\end{tabular}
2. Second run: preliminary calculation related to system \(\lambda=1\)
\begin{tabular}{l|l|l}
\hline Program & Keyword & comments \\
\hline crystal & & see deck 2 for input blocks 1 and 1b \\
\hline properties & NEWK & same input as in first run \\
& LOCALI & \\
\hline \multicolumn{4}{l}{ save Fortran unit 37 as sys1.f37 } \\
\hline
\end{tabular}
3. Third run: merging of previous data.
copy sys0.f37 to Fortran unit 38
copy sys1.f37 to Fortran unit 39
\begin{tabular}{l|l|l}
\hline Program & Keyword & comments \\
\hline
\end{tabular}
properties SPOLWF

\subsection*{13.19 Mössbauer Spectroscopy}

A nuclear spin transition can be promoted when a \(\gamma\) photon, originated from a nuclear spin relaxation, interacts with a chemical equivalent nucleus. The resonant condition are satisfied if the crystal lattice can conveniently absorb the recoil energy. This transition, that in the case of \({ }^{57} \mathrm{Fe}\) occurs between \(I_{1 / 2} \rightarrow I_{3 / 2}\) and involves an energy of 14.4 keV , can be accompanied by at least two effects resulting in a sensitive shift of the energy levels:
- the isotropic effect and
- the anisotropic or quadrupolar interaction.

The code is capable of calculating the electron density and the eigenvalues of the \(3 x 3\) matrix of the electric field gradient, at the nuclei. These particular quantities can be related to experimental observable, as shown in the following subsections, and can provide a deeper insight into the chemical-physical environment surrounding the resonant nucleus. For a better
comprehension of the Mossbauer effect and its exploitation in the characterization of solid state materials, please refer to literature (149, 205, 79, 86 .

\section*{Isotropic effect (IS)}

The energy associated to a nuclear spin transition, \(\Delta E_{\gamma}\), is directly proportional to the total electron density \(\rho(\boldsymbol{r})\) and this means than nuclei subjected to a different field due to their chemical surrounding, absorb at a slightly different frequency. Experimentally what is observed is the shift \(\delta\), expressed in terms of the Doppler velocity (\(\mathrm{mm} / \mathrm{s}\)) needed to achieve the resonance absorption between the source \(S\) (i.e. the nucleus which emits the \(\gamma\)-ray) and the absorber \(A\) (i.e. the nucleus which undergoes the spin transition):
\[
\begin{equation*}
\delta=\frac{c}{E_{\gamma}}\left(\Delta E_{\gamma}^{A}-\Delta E_{\gamma}^{S}\right) \tag{13.26}
\end{equation*}
\]
where \(c\) is the light velocity and \(E_{\gamma}\) the energy of the \(\gamma\) ray. Exploiting the proportionality between \(\Delta E_{\gamma}\) and \(\rho(\boldsymbol{r})\), it is possible to state that:
\[
\begin{equation*}
\delta=A\left[\rho_{e}^{A}(0)-\rho_{e}^{S}(0)\right] \tag{13.27}
\end{equation*}
\]
where the constant \(A\) groups a certain number of terms (relativist effects among the others) for a given isotope. Since all components in equation 13.27 are constant for a given isotope but the electron density of the absorber, it is sufficient to consider the simplified equation:
\[
\begin{equation*}
\delta=a\left[\rho_{e}^{A}(0)-b\right] \tag{13.28}
\end{equation*}
\]
with \(a\) and \(b\) to be determined in a calibration procedure in which the calculated electron density at a given nucleus is plotted versus the experimentally determined isotopic shift (IS) \(\delta\), for a series of compounds containing that nucleus. Once the \(a\) and \(b\) parameters, for a series of omogeneus compounds (i.e. organic, organo-metallic, inorganic,..) of a given nucleus, have been calculated can be used to infer the chemical shift of such nucleus in systems for which the experimental data are unknown or ambiguous [232, 223].

\section*{Anisotropic effect}

If the nucleus possess a quadrupolar tensor, \(Q\), the first excited nuclear spin state splits into two double degenerated and equally probable spin states, characterized by the energies \(E_{3 / 2} \pm E_{\mathrm{QI}}\), where the quadrupolar interaction (QI) is of the form:
\[
\begin{equation*}
E_{\mathrm{QI}}=-e^{2} \frac{1}{6} \sum_{i, j=1,3} V_{i j} Q_{i j}=V \cdot Q \tag{13.29}
\end{equation*}
\]
the \(Q\) tensor, representing the deviation of the nuclear charge from the ideal spherical shape, is almost a constant for a given nucleus and can be obtained experimentally. The 3 x 3 V matrix contains the electric field gradients at the nucleus and can be diagonalize to obtain the eigenvalues \(V_{\mathrm{AA}}, V_{\mathrm{BB}}\) and \(V_{\mathrm{CC}}\) and the asymmetric parameter:
\[
\begin{equation*}
\eta=\frac{V_{\mathrm{BB}}-V_{\mathrm{AA}}}{V_{\mathrm{CC}}} \tag{13.30}
\end{equation*}
\]
being always \(\left|V_{\mathrm{CC}}\right| \geq\left|V_{\mathrm{BB}}\right| \geq\left|V_{\mathrm{AA}}\right|\). Experimentally a doublet is observed, corresponding to the transitions from the ground state \((I=1 / 2)\) towards the two excited states and the difference between the two peaks can be directly related to \(\eta\) and \(V_{\mathrm{CC}}\) :
\[
\begin{align*}
\Delta E_{\mathrm{QI}} & =E_{[3 / 2, \mathrm{QI}]}-E_{[3 / 2,-\mathrm{QI}]}=E_{3 / 2}+E_{\mathrm{QI}}-E_{3 / 2}+E_{\mathrm{QI}}= \\
& =2 E_{\mathrm{QI}}=\frac{1}{2} e Q V_{\mathrm{CC}}\left(1+\frac{\eta^{2}}{3}\right)^{1 / 2} \tag{13.31}
\end{align*}
\]
where \(Q\) is generally expressed in barn \(\left(1\right.\) barn \(=110^{-28} m\). Equation 13.31 can be used in two ways: (i) if the quadrupolar moment, \(Q\), is known the value of \(\Delta E_{Q I}\) can be estimated; (ii) if \(\Delta E_{Q I}\) is given then \(Q\) can be derived.

\section*{Input and Output}

By mean of the following input (see page 283 for the ISOTROPIC keyword and page 305 for the POTC one):

ISOTROPIC
UNIQUE
POTC
000
END
the following information for metal Iron, at the B3LYP level, can be obtained:
```

..
************************************************************************************
TOTAL DENSITY AT THE NUCLEAR POSITIONS

POINT	ATOM	$\mathrm{X}(\mathrm{AU})$	Y (AU)	Z (AU)	BOHR** (-3)
1	1 FE	0.0000	0.0000	0.0000	11613.823418809

...
..
TOTAL ELECTROSTATIC POTENTIAL
********************************************************************************
.....
TRACELESS ELECTRIC FIELD GRADIENT TENSOR
POINT 1 POSITION 2.7483 -4.7602 0.5717
TENSOR IN PRINCIPAL AXIS SYSTEM
AA -1.316699E-14 BB -3.355213E-12 CC 3.368380E-12
CONVERSION FACTORS (CODATA RECOMMENDED VALUES 1998)
THE PRODUCT OF THE EFG COMPONENT [AU] AND THE NUCLEAR
QUADRUPOLE MOMENT COMPONENT [BARN] MUST BE MULTIPLIED BY 6.073349
TO OBTAIN THE QUADRUPOLAR COUPLING CONSTANT [mm/s]
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT POTC TELAPSE 95.57 TCPU 95.37

```

The tensor "in principal axis system" represent the electric field gradients (EFG). To get the multiplicative factor, let's rewrite equation 13.31 in terms of units (written in bold for sake of clarity):
\[
\begin{aligned}
\Delta E_{\mathrm{QI}}[\boldsymbol{m} \boldsymbol{m} / \boldsymbol{s}]= & \frac{1}{2} e Q V_{\mathrm{CC}}\left(1+\frac{\eta^{2}}{3}\right)^{1 / 2} \\
= & \frac{1}{2} 1.6021761 \cdot 10^{-19}\left[\boldsymbol{J} \boldsymbol{V}^{-\mathbf{1}}\right] Q \cdot 10^{-28}\left[\boldsymbol{m}^{\mathbf{2}}\right] \\
& \cdot 9.71736153 \cdot 10^{21} V_{\mathrm{CC}}\left(1+\frac{\eta^{2}}{3}\right)^{1 / 2}\left[\boldsymbol{V} \boldsymbol{m}^{-\mathbf{2}}\right] \\
= & \frac{1}{2} 15.5689 \cdot 10^{-26} Q V_{\mathrm{CC}}\left(1+\frac{\eta^{2}}{3}\right)^{1 / 2} \boldsymbol{J}
\end{aligned}
\]
using the following conversion factors:
\[
\begin{aligned}
1 \boldsymbol{J} & =6.2415097510^{18} \mathrm{eV} \\
1 \boldsymbol{e V} & =0.12510^{8} \mathrm{~mm} / \mathrm{s}
\end{aligned}
\]
we end with:
\[
\begin{equation*}
\Delta E_{Q I}=6.073349 Q V_{\mathrm{CC}}\left(1+\frac{\eta^{2}}{3}\right)^{1 / 2}[\boldsymbol{m m} / \boldsymbol{s}] \tag{13.32}
\end{equation*}
\]
where \(Q\) has to be expressed in barn and \(V_{\mathrm{CC}}\) and \(\eta\) in atomic unit.

\subsection*{13.20 Topological analysis}

The TOPOND 92 public code, written by C. Gatti and interfaced to previous public versions of CRYSTAL [37], has presently been embedded in the code itself. By mean of the keyword \(T O P O\), after the evaluation of the wave function, it is now possible to perform a topological analysis of the electron density, according to the Quantum Theory of Atoms in Molecules (QTAIM) developed by Bader and coworkers[11]. QTAIM allows to perform a detailed study of the electron density through different steps, ruled by various keywords the use of which is fully explained and documented in the TOPOND Reference Manual [95]. A brief summary is here presented.
The first step in the study of the electron density is the search of its critical points (CP) i.e. the points where its gradient, \(\nabla \rho(r)\), vanishes. CPs can be classified in terms of their type and a two-way correspondence with chemically recognizable structures, namely atoms, bonds, ring and cages, can be performed providing lighting information on the bond nature 93 . A second step concerns the topological analysis of the Laplacian of the electron density, \(\nabla^{2} \rho(r)\). This analysis can reveal the atomic shell structure and the degree of sharing of paired electrons among neighboring atoms. A comparison with the corresponding properties in the case of isolated molecules, or atoms, enable to evaluate the effects of the crystal packing on the bonding structure. A third step deals with the determination of the atomic basins and their local and integrated properties. Electronic population, Lagrangian and Hamiltonian kinetic energy, virial density, Becke electron localization function 21] can be defined and calculated in terms of atomic contributions 94 . Finally, for sake of completeness, a certain number of quantities can be plotted and visualize in 2 and 3 dimensions: in figure 13.5 the electron density, its Laplacian and the gradient trajectories of the Urea crystal are reported.

Figure 13.5: From left to right: electron density, \(\rho\), its Laplacian, \(\nabla^{2} \rho\) and the \(\nabla \rho\) trajectories for Urea bulk. Bond paths are indicated in heavy black lines and the bond critical points are denoted by filled circles. Dotted blue lines indicate negative contour levels.

\section*{Chapter 14}

\section*{Running CRYSTAL in parallel}

The CRYSTAL package contains the following parallel binaries:
- Pcrystal
- Pproperties
- MPPcrystal

Pcrystal (parallel crystal) and Pproperties (parallel properties) are replicated-data versions of crystal and properties, whereas MPPcrystal (massively parallel crystal) distributes data and tasks to cores more efficiently than Pcrystal and is particularly suitable to large unit cell cases with large memory requirements. Pcrystal and MPPcrystal differ essentially for the way they handle data in reciprocal space and for the algorithms used to diagonalize the Fock matrix and process the eigenvectors. On the other hand, data in real space, such as the calculation of one and two-electron integrals are processed by Pcrystal and MPPcrystal through the same algorithms and parallelization strategy.
Parallelism in CRYSTAL is based on the MPI libraries. Pcrystal and Pproperties link no other libraries. MPPcrystal relies on the use of Massive Parallel Libraries (Scalapack).

\subsection*{14.1 Running Pcrystal and Pproperties}

Pcrystal is fairly efficient for small up to medium sized systems, particularly with high symmetry. Matrices in reciprocal space are distributed to cores over the irreducible representations of the group of the system. In fact, if represented in the basis of the symmetry adapted atomic orbitals (SYMADAPT, default; see page 113), such matrices are decomposed into a block-diagonal form, each block (or sub-matrix) corresponding to a row of an irreducible representation. In the case of no symmetry adaptation (NOSYMADA, page 106) or P1 symmetry, matrices are distributed over the k points of the Pack-Mokhorst net (or the k points along a selected path in Pproperties, for example, to plot energy bands). Thus, the number of cores to be employed to run Pcrystal efficiently should not exceed the total number of the irreducible representations for all k points in the Pack-Mokhorst net (or the number of k points when P1 or NOSYMADA), unless the diagonalization step is negligible in terms of computational time with respect to the other steps of a calculation. Double-counting must be considered for open-shell systems.
Both Pcrystal and Pproperties expect to read input data from a file called INPUT in a directory of those discs where the programs store temporary data (fortran units). Output data are addressed to the standard error.
Use of option CHUNKS (page 130) is recommended to improve load balancing in DFT calculations. Option LOWMEM can be used to reduce memory requirements.
Parallelism in Pcrystal and Pproperties is enabled by calls to routines of the MPI library. Communication speed is generally not an issue in this case as inter-process communication is limited to a relatively small amount of data at few steps throughout a calculation.

\subsection*{14.2 Running MPPcrystal}

MPPcrystal is designed to compute the total energy and wavefunction of large unit cell systems with large memory requirements, as matrices in the reciprocal space are fully distributed over the processors. [154] In particular, MPP running is recommended when \(n_{\text {irr }} / n_{\text {procs }}\) (or \(n_{k} / n_{\text {procs }}\)), i.e. the ratio of the number of irreducible representations at all k points (or the number of k points sampled in the reciprocal space) to the number of processors used is small.

Advantages of MPPcrystal:
- Matrix diagonalization is well balanced because many processors are involved in the diagonalization of one matrix;
- Memory requirement per processor decreases with \(n_{\text {procs }}\) because data are distributed to processors
- I/O is limited to reading the user's input deck and writing the output files with the results of a job.

Such features make it particularly suitable to run on High Performance computers, but it can also run on smaller clusters. Since communications are more intensive than with Pcrystal, performance is improved by fast connections.

In choosing \(n_{\text {procs }}\), the user should consider that MPPcrystal is efficient when \(n_{A O} / n_{\text {procs }} \geq 50\) (\(n_{A O}\) is the number of Atomic Orbitals per cell, or basis functions). If \(\mathrm{n}_{\text {procs }}\) is too large compared to the size of the system, some parts of the calculation (matrix diagonalization) become inefficient because of increasing communications among processors.
In evaluating the best choice for \(n_{\text {procs }}\) a user must take into account that MPPcrystal uses a double-level parallelization in order to reduce communications and improve performance:
1. over the k points in the Pack-Monkhorst net
2. over blocks of a matrix for a k point

Level 1 of parallelization is enabled when \(n_{\text {procs }} \geq n_{\text {tasks }}\), with \(n_{\text {tasks }}=n_{r}+n_{c} *\) WEIGHT. \(n_{r}\) and \(n_{c}\) denote the number of k points in the Pack-Monkhorst net where the Fock matrix elements are real or complex numbers, respectively, and WEIGHT (see CMPLXFAC on page 86) accounts for the overloading due to the diagonalization of a complex matrix relative to a real matrix (\(n_{\text {tasks }}\) is doubled in open-shell cases). If \(n_{\text {procs }}<n_{\text {tasks }}\), every matrix for each k point is diagonalized by all processors. If otherwise, the \(n_{\text {procs }}\) cores are subdivided into \(n_{r}+n_{c}\) subsets of cores. Each subset is assigned the the task of diagonalizing a matrix for one of the k points. The composition of each subset depends on the value of WEIGHT and is such as to achieve the best load-balancing.

MPPcrystal sets the following standards and defaults:
- "Divide and Conquer" method for matrix diagonalization (disabled by STDIAG);
- Reduced memory storage is enabled as with LOWMEM (page 103); disabled by NOLOWMEM
- two- and one-electron integrals are computed in real time within a SCF cycle as enabled by SCFDIR (page 107);
- multipole moments for the evaluation of those two-electron integrals which are approximated through bipolar expansions and exceed the storage memory limit set by BIPOSIZE and EXCHSIZE are computed in real time (they are stored to disc by Pcrystal);
- Data relative to the grid of points used to integrate the exchange-correlation functionals are distributed over \(n_{\text {procs }}\) cores as enabled by DISTGRID (page 131); disabled by REPLGRID;
- Symmetry adaptation of the crystalline orbitals is inhibited as with NOSYMADA (page 106);
- Eigenvectors are stored to memory and distributed over all cores; thus, they cannot be printed nor stored to disc at the end of a calculation.

The following options are not available:
\begin{tabular}{llr}
& keyword & block \\
\hline & & \\
CPHF & CPHF & 1 \\
Infrared intensities in phonon spectra & FREQCALC/INTENS & 1 \\
Raman intensities in phonon spectra & FREQCALC/INTRAMAN & 1 \\
Piezoelectric constants & PIEZOCON and ELAPIEZO & 1 \\
Photoelastic constants & PHOTOELA & 1 \\
Bloch Functions Symmetry Adapted & SYMADAPT & 3 \\
Printing of eigenvalues of overlap matrix in k space & EIGS & 3
\end{tabular}

SCF convergence may proceed along slightly different paths with Pcrystal and MPPcrystal, particularly in those cases where convergence is difficult to be achieved, so that SCF convergence acceleration methods may exhibit different behaviours. A particular setting of convergence tool parameters, for example a given mixing rate of matrices along several SCF steps, may result to be effective with Pcrystal and ineffective with MPPcrystal. However, a proper choice of the parameters will always result into achievement of the SCF cycle convergence in both cases.

Like Pcrystal, MPPcrystal expects to read input data from a file called INPUT in a directory of those discs where the programs store temporary data (fortran units). Output data are addressed to the standard error.
MPPcrystal runs as Pcrystal if keyword REPLDATA (page 107) is added to the input deck.

\section*{Chapter 15}

\section*{Input examples}

\subsection*{15.1 Standard geometry input}

3D - Crystalline compounds - 1st input record keyword: CRYSTAL
Atom coordinates: fractional units of the crystallographic lattice vectors.
Sodium Chloride - NaCl (Rock Salt Structure)
CRYSTAL
\begin{tabular}{l|l}
00 & \\
225 & IFLAG IFHR IFSO \\
5.64 & space group, Fm3m, cubic \\
2 & \(a(\AA)\) \\
11.5 .5 .5 & 2 non equivalent atoms \\
17.0 .0 & \(\mathrm{Z}=11\), Sodium, \(1 / 2,1 / 2,1 / 2\) \\
\(\mathrm{Z}=17\), Chlorine
\end{tabular}
Diamond - C (2 \({ }^{n d}\) Setting - \(\mathbf{4 8}\) symmops - \(\mathbf{3 6}\) with translational component)
CRYSTAL
000
227
3.57
1
6.125 .125 .125 \(\quad\)\begin{tabular}{l}
IFLAG IFHR IFSO \\
space group, Fd3m, cubic \\
\(a(\AA)\) \\
\end{tabular}

\begin{tabular}{l|l}
Zinc Blend - ZnS & \\
CRYSTAL & \\
000 & IFLAG IFHR IFSO \\
216 & space group \(216, F \overline{4} 3 m\), cubic \\
5.42 & \(a(\AA)\) \\
2 & 2 non equivalent atoms \\
30.25 .25 .25 & \(\mathrm{Z}=30\), Zinc, \((1 / 4,1 / 4,1 / 4)\) \\
16.0 .0 .0 & \(\mathrm{Z}=16\), Sulphur
\end{tabular}
\begin{tabular}{l|l}
Wurtzite - ZnS \\
CRYSTAL \\
000 & \\
186 & IFLAG IFHR IFSO \\
3.816 .23 & space group \(186, P 6_{3} m c\), hexagonal \\
2 & \(a, c(\AA)\) \\
30.6666666667 .3333333333 .0 & 2 non equivalent atoms \\
16.6666666667 .3333333333 .375 & Zinc, \((2 / 3,1 / 3,0)\). \\
& Sulphur, \((2 / 3,1 / 3,3 / 8)\)
\end{tabular}
Cuprite - \(\mathrm{Cu}_{2} \mathrm{O}\)
CRYSTAL
000
208
4.27
2
8.0 .0 .0
29.25 .25 .25

IFLAG IFHR IFSO
space group 208, \(P 4232\), cubic
\(a(\AA)\)
2 non equivalent atoms
\(\mathrm{Z}=8\), Oxygen
\(\mathrm{Z}=29\), Copper (\(1 / 4,1 / 4,1 / 4\))
Aragonite - \(\mathrm{CaCO}_{3}\)
\begin{tabular}{l|l}
CRYSTAL & \\
100 & IFLAG (1, SPGR symbol) IFHR IFSO \\
P M C N & space group Pmcn, orthorhombic \\
4.96167 .97055 .7394 & \(a, b, c(\AA)\) \\
4 & 4 non equivalent atoms \\
20.25 .4151 .2103 & \(\mathrm{Z}=20\), Calcium \\
6.25 .7627 .085 & \(\mathrm{Z}=6\), Carbon \\
8.25 .9231 .0952 & \(\mathrm{Z}=8\), Oxygen \\
8.4729 .6801 .087 & \(\mathrm{Z}=8\), Oxygen
\end{tabular}
\begin{tabular}{l|l}
\begin{tabular}{l}
Fluorite - \(\mathbf{C a F}_{2}\) \\
CRYSTAL \\
000
\end{tabular} & \\
225 & IFLAG IFHR IFSO \\
5.46 & space group 225, Fm3m, cubic \\
2 & \(a(\AA)\) \\
9.25 .25 .25 & 2 non equivalent atoms \\
20.0 .0 & Fluorine \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\begin{tabular}{l}
Cesium chloride - CsCl \\
CRYSTAL \\
000
\end{tabular} & \\
221 & IFLAG IFHR IFSO \\
4.12 & space group 221, Pm3m, cubic \\
2 & \begin{tabular}{l}
\(a(\AA)\) \\
55.5 .5 \\
17.0 .0 .0
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
Rutile - \(\mathbf{T i O}_{2}\) \\
CRYSTAL \\
000 & \\
136 & IFLAG IFHR IFSO \\
4.592 .96 & space group \(136, P 42 / \mathrm{mnm}\), tetragonal \\
2 & \(a, c(\AA)\) \\
22.0 .0 .0 & non equivalent atoms \\
8.305 .305 .0 & Titanium \\
Oxygen
\end{tabular}
Graphite - C (Hexagonal)
\begin{tabular}{l|l}
CRYSTAL \\
000 & \\
194 & IFLAG IFHR IFSO \\
2.466 .70 & space group 194, \(P 6_{3} / \mathrm{mmc}\), hexagonal \\
2 & \(a, c(\AA)\) \\
2.0 .0 .25 & \begin{tabular}{l}
non equivalent atoms \\
6.33333333333 .66666666667 .25
\end{tabular} \\
Carbon, \(0,0,1 / 4\) \\
Carbon, \(1 / 3,2 / 3,1 / 4\)
\end{tabular}
\(\left.\)\begin{tabular}{l|l}
\begin{tabular}{l}
Pyrite - FeS \\
2
\end{tabular} \\
CRYSTAL \\
000
\end{tabular}\(\quad \right\rvert\,\)\begin{tabular}{l}
IFLAG IFHR IFSO \\
205
\end{tabular}\(\quad\) space group 205, Pa3, cubic
\begin{tabular}{l|l}
\begin{tabular}{l}
Calcite \(-\mathrm{CaCO}_{3}\) \\
CRYSTAL
\end{tabular} & \\
010 & IFLAG IFHR \((=1\), rhombohedral representation \()\) IFSO \\
167 & space group \(167, R \overline{3} c\), hexagonal \\
6.3646 .833 & \(a(\AA), \alpha^{\circ}\) \\
3 & 3 non equivalent atoms \\
20.0 .0 .0 & Calcium \\
6.25 .25 .25 & Carbon \\
8.007 .493 .25 & Oxygen
\end{tabular}

Corundum - \(\mathrm{Al}_{2} \mathrm{O}_{3}\) (hexagonal representation)

CRYSTAL
000
167
4.760212 .9933

2
13 0. 0. 0.35216
80.306210 .0 .25

IFLAG IFHR IFSO
space group \(167, R \overline{3} c\), hexagonal
\(a, c(\AA)\)
2 non equivalent atoms
Aluminium
Oxygen

Corundum - \(\mathrm{Al}_{2} \mathrm{O}_{3}\) (rhombohedral representation)
\begin{tabular}{|c|c|}
\hline CRYSTAL & \\
\hline 010 & IFLAG IFHR (\(=1\), rhombohedral cell) IFSO \\
\hline 167 & space group \(167, R \overline{3} c\), hexagonal \\
\hline 5.1294855 .29155 & \(a(\AA), \alpha^{\circ}\) \\
\hline 2 & 2 non equivalent atoms \\
\hline 130.352160 .352160 .35216 & Aluminium \\
\hline 80.943760 .250 .55621 & Oxygen \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline onia & ic s \\
\hline 001 & IFLAG I \\
\hline 14 & space group 14, \(P 2_{1} / c\), monoclinic \\
\hline 5.031775 .031775 .25890 .0 & \(a, b, c(\AA), \beta^{\circ}\) \\
\hline 3 & 3 non equivalent atoms \\
\hline 2400.25000 .00000 .25000 & Zirconium, Pseudopotential (Z'>200) \\
\hline 2080.00000 .25000 .07600 & Oxygen, Pseudopotential \\
\hline \(208-0.500-0.2500 .07600\) & Oxygen, Pseudopotential \\
\hline
\end{tabular}

Zirconia - \(\mathrm{ZrO}_{2}\) - tetragonal structure
CRYSTAL
\begin{tabular}{l|l}
1001 & IFLAG IFHR IFSO \((=1\), standard shift of origin) \\
137 & space group 137, P42/nmc, tetragonal \\
3.5585 .258 & \(a, c(\AA)\) \\
3 & 3 non equivalent atoms \\
2400.00 .00 .0 & Zirconium, Pseudopotential \(\left(Z^{\prime}>200\right)\) \\
\(2080.0-0.50 .174\) & Oxygen, Pseudopotential \\
2080.50 .00 .326 & Oxygen, Pseudopotential
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Zirconia - \(\mathrm{ZrO}_{2}\) - cubic structure} \\
\hline CRYSTAL & \\
\hline 001 & IFLAG IFHR IFSO (\(=1\), standard shift of origin) \\
\hline 225 & space group 225, Fm3m, cubic \\
\hline 5.10 & \(a(\AA)\) \\
\hline 3 & 3 non equivalent atoms \\
\hline 2400.000 .000 .00 & Z=40 Zirconium, Pseudopotential (\(\mathrm{Z}^{\prime} \gg 200\)) \\
\hline 2080.250 .250 .25 & Oxygen, Pseudopotential \\
\hline 208-0.25-0.25-0.25 & Oxygen, Pseudopotential \\
\hline
\end{tabular}
\(\mathrm{SiO}_{2}\), Chabazite
CRYSTAL
\begin{tabular}{l|l}
010 & IFLAG IFHR (=1, rhombohedral representation) IFSO \\
166 & space group \(166 R \overline{3} m\), hexagonal \\
9.4294 .47 & \(a(\AA), \beta^{\circ}\) \\
5 & 5 non equivalent atoms (36 atoms in the primitive cell) \\
14.1045 .334 .8755 & Silicon (multiplicity 12) \\
\(8.262-.262 .0\) & Oxygen (multiplicity 6) \\
\(8.1580-.1580 .5000\) & Oxygen (multiplicity 6) \\
8.2520 .2520 .8970 & Oxygen (multiplicity 6) \\
8.0250 .0250 .3210 & Oxygen (multiplicity 6)
\end{tabular}
\(\mathrm{SiO}_{2}\), Siliceous Faujasite
CRYSTAL
\begin{tabular}{l|l}
000 & IFLAG IFHR IFSO \\
227 & space group 227,Fd3m, cubic \\
21.53 & \(a(\AA)\) \\
5 & \begin{tabular}{l}
A
\end{tabular} \\
\(14.1265-.0536 .0370\) & Silicon equivalent atoms (multiplicity 48) \\
\(8.1059-.1059 .0\) & Oxygen (multiplicity 24) \\
\(8-.0023-.0023 .1410\) & Oxygen (multiplicity 24) \\
\(8.1746 .1746-.0378\) & Oxygen (multiplicity 24) \\
8.1785 .1785 .3222 & Oxygen (multiplicity 24)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\mathrm{SiO}_{2}\), Siliceous Edingtonite} \\
\hline CRYSTAL & \\
\hline 000 & IFLAG IFHR IFSO \\
\hline 115 & space group 115, \(P \overline{4} m 2\), tetragonal \\
\hline 6.9556 .474 & \(a, c(\AA)\) \\
\hline 5 & 5 non equivalent atoms (15 atoms in the primitive cell) \\
\hline 14.0 . 0.5000 & Silicon (multiplicity 1) \\
\hline 14.0.2697. 1200 & Silicon (multiplicity 4) \\
\hline 8.0.189.3543 & Oxygen (multiplicity 4) \\
\hline 8.50000 .0 .8779 & Oxygen (multiplicity 2) \\
\hline 8.189.189.0 & Oxygen (multiplicity 4) \\
\hline
\end{tabular}
\(\mathrm{SiO}_{2}\), Siliceous Sodalite
CRYSTAL
000
218
IFLAG IFHR IFSO
8.950675

3
14.25000 .50000 .0
14.25000 . 0.50000
space group \(218, P \overline{4} 3 n\), cubic
\(a\) (\(\AA\))
3 non equivalent atoms (36 atoms in the primitive cell)
Silicon (multiplicity 6)
Silicon (multiplicity 6)
8 . 14687.14687 .50000

\section*{2D - Slabs (surfaces) - 1st input record keyword: SLAB}

A 2D structure can either be created by entering directly the 2D cell parameters and irreducible atoms coordinates to obtain a slab of given thickness (keyword SLAB in the first record of the geometry input), or it can be derived from the 3D structure through the keyword SLABCUT (page 64), entered in the geometry editing section of 3D structure input. In that case the layer group is automatically identified by the program. The input tests \(4-24,5-25\), \(6-26\) and \(7-27\) show the two different ways to obtain the same 2 D structure.

Atom coordinates: \(z\) in Angstrom, \(x, y\) in fractional units of the crystallographic cell translation vectors.
\begin{tabular}{l|l}
Test05-graphite 2D (see test 25) & \\
SLAB & \\
77 & \\
2.47 & layer group (hexagonal) \\
1 & lattice vector length \((\AA)\) \\
\(6-0.33333333333\) & 0.333333333330.
\end{tabular}\(|\)\begin{tabular}{l}
non equivalent atom \\
\(\mathrm{Z}=6 ;\) Carbon; \(x, y, z\)
\end{tabular}
\begin{tabular}{l|l}
\begin{tabular}{l}
Beryllium - 3 layers slab \\
SLAB
\end{tabular} & \\
78 & layer group (hexagonal) \\
2.29 & lattice vector length \((\AA)\) \\
2 & 2 non equivalent atoms \\
40.3333333333330 .6666666666670. & \(\mathrm{Z}=4\), Beryllium; \(1 / 3,2 / 3, z\) \\
40.6666666666670 .3333333333331 .795 & \(\mathrm{Z}=4\), Beryllium; 2/3,1/3,z
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Test06 - beryllium - 4 layers slab (see test 26)} \\
\hline SLAB & \\
\hline 72 & layer group (hexagonal) \\
\hline 2.29 & lattice vector length (A) \\
\hline 2 & 2 non equivalent atoms \\
\hline 40.3333333333330 .6666666666670 .897499 & \(\mathrm{Z}=4\), Beryllium; \(x, y, z\) \\
\hline 40.6666666666670 .3333333333332 .692499 & \(\mathrm{Z}=4\), Beryllium; \(x, y, z\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Test04-Corundum 001 (0001) 2 layers slab (see test 24)} \\
\hline SLAB & \\
\hline 66 & layer group (hexagonal) \\
\hline 4.7602 & lattice vector length (\(\AA\)) \\
\hline 3 & 3 non equivalent atoms \\
\hline 13 0. 0. 1.9209 & \(\mathrm{Z}=13\), Aluminum; \(x, y, z\) \\
\hline \(80.333333333-0.0270931 .0828\) & \(\mathrm{Z}=8\), Oxygen; \(x, y, z\) \\
\hline \(13-0.3333333330 .3333333330 .2446\) & \(\mathrm{Z}=13\), Aluminum; \(x, y, z\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Test07-Corundum 110 (1010) slab (see test 27)} \\
\hline SLAB & \\
\hline 7 & layer group (Oblique) \\
\hline 5.1294826 .99793395 .8395 & \(a, b\) (A) \(\alpha\) (degrees) \\
\hline 6 & 6 non equivalent atoms \\
\hline \(8-0.250 .52 .1124\) & \(\mathrm{Z}=8\), Oxygen; \(x, y, z\) \\
\hline 80.4031200 .1531201 .9189 & \(\mathrm{Z}=8\), Oxygen; \(x, y, z\) \\
\hline 80.0968800 .3468800 .4612 & \(\mathrm{Z}=8\), Oxygen; \(x, y, z\) \\
\hline \(8-0.250 .000 .2677\) & \(\mathrm{Z}=8\), Oxygen; \(x, y, z\) \\
\hline 130.4543200 .3978401 .19 & \(\mathrm{Z}=13\), Aluminum; \(x, y, z\) \\
\hline 130.0456800 .1021601 .19 & \(\mathrm{Z}=13\), Aluminum; \(x, y, z\) \\
\hline
\end{tabular}

MgO (110) 2 layers slab
layer group
lattice vectors length (\(\AA\))
2 non equivalent atoms
\(\mathrm{Z}=12\), Magnesium; \(x, y, z\)
\(\mathrm{Z}=8\), Oxygen; \(x, y, z\)

MgO (110) 3 layers slab
4.212 .97692

4
12 0. 0. 1.48846
80.50 .1 .48846
120.50 .50 .
80.0 .50 .
lattice vectors length \((\AA)\)
4 non equivalent atoms
\(\mathrm{Z}=12\), Magnesium; \(x, y, z\)
\(\mathrm{Z}=8\), Oxygen; \(x, y, z\)
\(\mathrm{Z}=12\), Magnesium; \(x, y, z\)
\(\mathrm{Z}=8\), Oxygen; \(x, y, z\)

CO on MgO (001) two layers slab - one-side adsorption SLAB
55
2.97692

6
108 0. 0. 4.5625
60. 0. 3.4125
120.0. 1.0525
80.50 .51 .0525

12 0. 0. -1.0525
\(80.50 .5-1.0525\)
lattice vector length \([4.21 / \sqrt{2}](\AA)\)
6 non equivalent atoms
\(\mathrm{Z}=8\), Oxygen; \(x, y, z\)
\(\mathrm{Z}=6\), Carbon; \(x, y, z\)
\(\mathrm{Z}=12\), Magnesium; \(x, y, z\)
\(\mathrm{Z}=8\), Oxygen; \(x, y, z\)
\(\mathrm{Z}=12\), Magnesium; \(x, y, z\)
\(\mathrm{Z}=8\), Oxygen; \(x, y, z\)
Two different conventional atomic numbers (8 and 108) are attributed to the Oxygen in CO and to the Oxygen in MgO . Two different basis sets will be associated to the two type of atoms (see Basis Set input, page 23 and test 36).
\begin{tabular}{l}
CO on MgO (001) two layers slab - two-side adsorption \\
SLAB \\
64 \\
2.97692
\end{tabular} \left\lvert\, \begin{tabular}{l}
lattice vector length \((\AA)\) \\
4 \\
1080.250 .254 .5625 \\
60.250 .253 .4125 \\
120.250 .251 .0525 \\
80.750 .751 .0525
\end{tabular}\(\quad\)\begin{tabular}{l}
4 non equivalent atoms \\
\(\mathrm{Z}=8\), Oxygen; \(x, y, z\) \\
\end{tabular}\right.

Two different conventional atomic numbers (8 and 108) are attributed to the Oxygen in CO and to the Oxygen in MgO .
Diamond slab parallel to (100) face - nine layers slab
SLAB
\begin{tabular}{l|l}
59 & \\
2.52437 & lattice vector length \((\AA)\) \\
5 & 5 non equivalent atoms \\
6 & 0.0 .0. \\
6 & 0.50 .0 .8925 \\
6 & 0.50 .51 .785 \\
6 & 0.0 .52 .6775 \\
6 & 0.0 .3 .57
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Diamond slab parallel to (100) face - ten layers slab} \\
\hline SLAB & \\
\hline 39 & layer group \\
\hline 2.524372 .52437 & lattice vectors length (\(\AA\)) \\
\hline 5 & 5 non equivalent atoms \\
\hline 60.250 .0 .44625 & \(\mathrm{Z}=6\), Carbon; \(x, y, z\) \\
\hline 60.250 .51 .33875 & \(\mathrm{Z}=6\), Carbon; \(x, y, z\) \\
\hline 60.750 .52 .23125 & \(\mathrm{Z}=6\), Carbon; \(x, y, z\) \\
\hline 60.7503 .12375 & \(\mathrm{Z}=6\), Carbon; \(x, y, z\) \\
\hline 60.250 .4 .01625 & \(\mathrm{Z}=6\), Carbon; \(x, y, z\) \\
\hline
\end{tabular}

\section*{1D - Polymers - 1st input record keyword: POLYMER}

Atom coordinates: \(y, z\) in Ångstrom, \(x\) in fractional units of the crystallographic cell translation vector.
\begin{tabular}{l|l}
Test03-(SN) \(x\) polymer & \\
\begin{tabular}{l}
POLYMER
\end{tabular} & \\
4 & rod group \\
4.431 & lattice vector length \((\AA)\) \\
2 & 2 non equivalent atoms \\
\(160.0-0.8449690 .0\) & \(\mathrm{Z}=16\), Sulphur; \(x, y, z\) \\
70.141600540 & \(0.667077-0.00093\) \\
& \(\mathrm{Z}=7\), Nitrogen; \(x, y, z\)
\end{tabular}

\section*{Water polymer}

POLYMER
1
\(4.965635 \quad\) lattice vector length \((\AA)\)
6
8 0. 0. 0.
\(10.0325580 .836088-0.400375\)
\(10.168195-0.4610510\).
\(80.5-1.3705890\).
\(10.532558-2.2066770 .400375\)
\(10.668195-0.9095370\).

6 non equivalent atoms
\(\mathrm{Z}=8\), Oxygen; \(x, y, z\)
\(\mathrm{Z}=1\), Hydrogen; \(x, y, z\)
\(\mathrm{Z}=1\), Hydrogen; \(x, y, z\)
\(\mathrm{Z}=8\), Oxygen; \(x, y, z\)
\(\mathrm{Z}=1\), Hydrogen; \(x, y, z\)
\(\mathrm{Z}=1\), Hydrogen; \(x, y, z\)
\begin{tabular}{l|l}
\multicolumn{2}{l}{ Formamide chain - test40 DFT } \\
POLYMER & \\
4 & rod group \\
8.774 & lattice vector length \((\AA)\) \\
6 & 6 non equivalent atoms \\
\(8-7.548 \mathrm{E}-25.302 \mathrm{E}-30.7665\) & \(\mathrm{Z}=8\), Oxygen; \(x, y, z\) \\
\(70.1590-0.88380 .3073\) & \(\mathrm{Z}=7\), Nitrogen; \(x, y, z\) \\
\(65.627 \mathrm{E}-27.051 \mathrm{E}-20.2558\) & \(\mathrm{Z}=6\), Oxygen; \(x, y, z\) \\
\(10.2677-0.6952-9.1548 \mathrm{E}-2\) & \(\mathrm{Z}=1\), Hydrogen; \(x, y, z\) \\
\(10.1310-1.80190 .7544\) & \(\mathrm{Z}=1\), Hydrogen; \(x, y, z\) \\
\(19.244 \mathrm{E}-20.9973-0.2795\) & \(\mathrm{Z}=1\), Hydrogen; \(x, y, z\)
\end{tabular}

\section*{0D - Molecules - 1st input record keyword: MOLECULE}

Atom coordinates: \(x, y, z\) in Ångstrom.
Test00-CO molecule
\begin{tabular}{l|l}
MOLECULE & \\
1 & point group \\
2 & 2 non equivalent atoms \\
60.0 .0. & \(Z=6\), Carbon; \(x, y, z\) \\
80.80 .50 .4 & \(Z=8\), Oxygen; \(x, y, z\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Test01- \(\mathrm{CH}_{4}\) Methane molecule} \\
\hline MOLECULE & \\
\hline 44 & point group \\
\hline 2 & 2 non equivalent atoms \\
\hline 6 0. 0. 0. & \(\mathrm{Z}=6\), Carbon; \(x, y, z\) \\
\hline 10.6290 .6290 .629 & \(\mathrm{Z}=1\), Hydrogen; \(x, y, z\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Test02-CO(\(\left.\mathrm{NH}_{2}\right)_{2}\) Urea molecule} \\
\hline MOLECULE & \\
\hline & point group \\
\hline 5 & 5 non equivalent atoms \\
\hline 6 0. 0. 0. & \(\mathrm{Z}=6\), Carbon; \(x, y, z\) \\
\hline 80.0 .1 .261401 & \(\mathrm{Z}=8\), Oxygen; \(x, y, z\) \\
\hline \(70.1 .14824666034-0.69979\) & \(\mathrm{Z}=7\), Nitrogen; \(x, y, z\) \\
\hline 1 0. \(2.0265496501-0.202817\) & \(\mathrm{Z}=1\), Hydrogen; \(x, y, z\) \\
\hline 1 0. 1.13408048308-1.704975 & \(\mathrm{Z}=1\), Hydrogen; \(x, y, z\) \\
\hline
\end{tabular}

\subsection*{15.2 Basis set input}

Optimized basis sets for periodic systems used in published papers are available on WWW:
http://www.crystal.unito.it

\section*{All electron Basis sets for Silicon atom}

STO-3G

\section*{143}

103 2. 0.
1138.0.

Pople BS; s shell; 3G; \(\mathrm{CHE}=2\); standard scale factor
Pople BS; sp shell; 3 G ; \(\mathrm{CHE}=8\); standard scale factor
1134.0.

Pople BS; sp shell; 3G; \(\mathrm{CHE}=4\); standard scale factor
```

6-21G
144
2 6 2. 1.
2 16 8. 1.
2124.1.
2110.1.

```

\section*{\(\mathrm{Z}=14\), Silicon; 4 shells}

Pople 6-21 BS; s shell; 6G; CHE=2; scale factor 1 (core AO).
Pople 6-21 BS; sp shell; 6G; CHE=8; scale factor 1 (core AOs).
Pople 6-21 BS; sp shell; 2G; \(\mathrm{CHE}=4\); scale factor 1 (inner valence).
Pople 6-21 BS; sp shell; 1G; CHE=0; scale factor 1 (outer valence).

NB. The 4th shell has electron charge 0 . The basis functions of that shell are included in the basis set to compute the atomic wave functions, as they correspond to symmetries (angular quantum numbers) occupied in the ground state of the atom. The atomic basis set is: \(4 \mathrm{~s}, 3 \mathrm{p}\).
```

6-21G modified
144 Z=14, Silicon; 4 shells
2 0 6 2. 1. Pople 6-21 BS; s shell; 6G; CHE=2; scale factor 1.
2 16 8. 1. Pople 6-21 BS; sp shell; 6G; CHE=8; scale factor 1.
2 12 4. 1. Pople 6-21 BS; sp shell; 2G; CHE=4; scale factor 1.
0 1 0.1. free BS; sp shell; 1G; CHE=0; scale factor 1.
0.16 1. 1. gaussian exponent; s coefficient; p coefficient

```
\begin{tabular}{|c|c|}
\hline 3-21G & \\
\hline 144 & \(\mathrm{Z}=14\), Silicon; 4 shells \\
\hline 2032.1. & Pople 3-21 BS; s shell; 3G; \(\mathrm{CHE}=2\); scale factor 1. \\
\hline 2138.1. & Pople 3-21 BS; sp shell; 3G; CHE=8; scale factor 1. \\
\hline 2124.1 & Pople 3-21 BS; sp shell; 2G; \(\mathrm{CHE}=4\); scale factor 1. \\
\hline 2110.1 & Pople 3-21 BS; sp shell; 1G; \(\mathrm{CHE}=0\); scale factor 1 . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 3-21G* & \\
\hline 145 & \(\mathrm{Z}=14\), Silicon; 5 shells \\
\hline 2032.1. & Pople 3-21 BS; s shell; 3G; \(\mathrm{CHE}=2\); scale factor 1 . \\
\hline 2138.1. & Pople 3-21 BS; sp shell; 3G; \(\mathrm{CHE}=8\); scale factor 1 . \\
\hline 2124.1. & Pople 3-21 BS; sp shell; 2G; \(\mathrm{CHE}=4\); scale factor 1 . \\
\hline 2110.1. & Pople 3-21 BS; sp shell; 1G; CHE=0; scale factor 1 . \\
\hline 2310.1. & Pople 3-21 BS; d shell; 1G; CHE=0; scale factor \\
\hline
\end{tabular}

NB. The basis functions of the 5th shell, d symmetry, unoccupied in the ground state of Silicon atom, is not included in the atomic wave function calculation.
```

3-21G modified+polarization
145 Z=14, Silicon; 5 shells
2 3 2. 1. Pople 3-21 BS; s shell; 3G; CHE=2; scale factor 1.
2 1 3 8. 1. Pople 3-21 BS; sp shell; 3G; CHE=8; scale factor 1.
2 124.1. Pople 3-21 BS; sp shell; 2G; CHE=4; scale factor 1.
0 11 0. 1. free BS; sp shell; 1G; CHE=0; scale factor 1.
0.16 1. 1. gaussian exponent; s contraction coefficient; p contr. coeff.
0310.1. free BS; d shell; 1G; CHE=0; scale factor 1.
0.5 1. gaussian exponent; d contraction coefficient.

```
free basis set
144
006 2. 1.
\(16115.9 \quad 0.00195948\)
\(2425.58 \quad 0.0149288\)
\(553.867 \quad 0.0728478\)
\(156.340 \quad 0.24613\)
\(50.0683 \quad 0.485914\)
\(17.0178 \quad 0.325002\)
0168.1.
\(292.718 \quad-0.00278094 \quad 0.00443826\)
\(\begin{array}{lll}69.8731 & -0.0357146 & 0.0326679\end{array}\)
\(22.3363-0.114985 \quad 0.134721\)
\(8.15039 \quad 0.0935634 \quad 0.328678\)
\(\begin{array}{lll}3.13458 & 0.603017 & 0.449640 \\ 1.22543 & 0.418959 & 0.261372\end{array}\)
\(\begin{array}{lll}1.22543 & 0.418959 & 0.261372\end{array}\)
0124 . 1.
\(1.07913-0.376108\)
0.0671030
\(0.302422 \quad 1.25165 \quad 0.956883\)
0110 . 1.
0.123
1.
1.
\(\mathrm{Z}=14\), Silicon; 4 shells
free BS; s shell; 6 GTF; \(\mathrm{CHE}=2\); scale factor 1 . 1st gaussian exponent; s contraction coefficient 2nd gaussian exponent; s contraction coefficient 3rd gaussian exponent; s contraction coefficient 4th gaussian exponent; s contraction coefficient 5 th gaussian exponent; s contraction coefficient 6th gaussian exponent; s contraction coefficient free BS; sp shell; 6 GTF; CHE=8; scale factor 1 . 1st gaussian exp.; s contr. coeff.; p contr. coeff. 2nd gaussian exp.; s contr. coeff.; p contr. coeff. 3rd gaussian exp.; s contr. coeff.; p contr. coeff. 4th gaussian exp.; s contr. coeff.; p contr. coeff. 5th gaussian exp.; s contr. coeff.; p contr. coeff. 6th gaussian exp.; s contr. coeff.; p contr. coeff. free BS; sp shell; 2 GTF; CHE=4; scale factor 1 1st gaussian exp.; s contr. coeff.; p contr. coeff. 2nd gaussian exp.; s contr. coeff.; p contr. coeff. free BS; sp shell; 1 GTF; CHE=0; scale factor 1 . gaussian exp.; s contr. coeff.; p contr. coeff.

\section*{Examples of ECP and valence only basis set input}

\section*{Nickel atom. Electronic configuration: [Ar] 4s(2) 3d(8)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Durand \& Barthelat large core} \\
\hline 2284 & & & \(\mathrm{Z}=28\), Nickel; 4 shells valence basis set \\
\hline BARTHE & & & keyword; Durand-Barthelat ECP \\
\hline 0122. & & & free BS;sp shell;2 GTF; \(\mathrm{CHE}=2\);scale factor 1 \\
\hline 1.55 & . 24985 & 1. & 1st GTF exponent;s coefficient;p coefficient \\
\hline 1.24 & -. 41636 & 1. & 2nd GTF exponent; s coefficient;p coefficient \\
\hline 0110.1. & & & free BS; sp shell; 1 GTF; CHE=0; scale factor 1 \\
\hline 0.0818 & 1.0 & 1. & GTF exponent;s coefficient;p coefficient \\
\hline 0348.1. & & & free BS; d shell; 4 GTF; CHE=8; scale factor 1 \\
\hline \(4.3842 \mathrm{E}+01\) & . 03337 & & 1st GTF exponent; d coefficient \\
\hline \(1.2069 \mathrm{E}+01\) & . 17443 & & 2nd GTF exponent; d coefficient \\
\hline \(3.9173 \mathrm{E}+00\) & . 42273 & & 3rd GTF exponent; d coefficient \\
\hline \(1.1997 \mathrm{E}+00\) & . 48809 & & 4th GTF exponent; d coefficient \\
\hline 0310.1. & & & free BS; d shell; 1 GTF; \(\mathrm{CHE}=0\); scale factor 1 \\
\hline 0.333 & 1. & & GTF exponent; d coefficient \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Hay \& Wadt Large Core - [Ar] 4s(2) 3d(8)} \\
\hline 2284 & & & \(\mathrm{Z}=28\),Nickel; 4 shells valence basis set \\
\hline HAYWLC & & & keyword; Hay-Wadt large core ECP \\
\hline 0122. & & & free BS; sp shell; 2 GTF ; \(\mathrm{CHE}=2\); scale factor 1 \\
\hline 1.257 & \(1.1300 \mathrm{E}-01\) & \(2.6760 \mathrm{E}-02\) & exponent,s coefficient,p coefficient \\
\hline 1.052 & -1.7420E-01 & -1.9610E-02 & \\
\hline 0110.1. & & & second shell,sp type,1 GTF \\
\hline 0.0790 & 1.0 & 1. & \\
\hline 0348.1. & & & third shell, d type, 4 primitive GTF \\
\hline \(4.3580 \mathrm{E}+01\) & . 03204 & & \\
\hline \(1.1997 \mathrm{E}+01\) & . 17577 & & \\
\hline \(3.8938 \mathrm{E}+00\) & . 41461 & & \\
\hline 1.271 & . 46122 & & \\
\hline 0310.1. & & & fourth shell, d type,1 GTF \\
\hline 0.385 & 1. & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Hay \& Wa & Small Cor & - [Ne\(] 3 \mathrm{~s}(2)\) & 3p(6) 4s(2) 3d(8) \\
\hline 2286 & & & nickel basis set - 6 shells \\
\hline HAYWSC & & & keyword; Hay-Wadt small core ECP \\
\hline 0138.1. & & & first shell,sp type, 3 primitive GTF - \\
\hline \(2.5240 \mathrm{E}+01\) & -3.7000E-03 & -4.0440E-02 & exponent,s coefficient, p coefficient \\
\hline \(7.2019 \mathrm{E}+00\) & -5.3681E-01 & -7.6560E-02 & \\
\hline \(3.7803 \mathrm{E}+00\) & \(4.2965 \mathrm{E}-01\) & \(4.8348 \mathrm{E}-01\) & \\
\hline 0122. & & & second shell,sp type, 2 primitive GTF \\
\hline 1.40 & . 84111 & . 55922 & \\
\hline 0.504 & . 13936 & . 12528 & \\
\hline 0110. & & & third shell,sp type, 1 GTF \\
\hline 0.0803 & 1.0 & 1. & \\
\hline 0338.1. & & & fourth shell, d type, 4 primitive GTF \\
\hline \(4.1703 \mathrm{E}+01\) & \(3.5300 \mathrm{E}-02\) & & \\
\hline \(1.1481 \mathrm{E}+01\) & \(1.8419 \mathrm{E}-01\) & & \\
\hline \(3.7262 \mathrm{E}+00\) & \(4.1696 \mathrm{E}-01\) & & \\
\hline 0310.1. & & & fifth shell,d type,1 GTF \\
\hline 1.212 & 1. & & \\
\hline 0310.1. & & & sixth shell, d type,1 GTF \\
\hline 0.365 & 1.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Free input} \\
\hline 2285 & & & \(\mathrm{Z}=28\), nickel basis set - 5 shells (valence only) \\
\hline INPUT & & & keyword: free ECP (Large Core)- input follows \\
\hline 10. & 545200 & & nuclear charge; number of terms in eq. 3.17 and 3.18 \\
\hline 344.84100 & -18.00000 & -1 & eq. 3.175 records: \\
\hline 64.82281 & -117.95937 & 0 & \(\alpha\), C, n \\
\hline 14.28477 & -29.43970 & 0 & \\
\hline 3.82101 & -10.38626 & 0 & \\
\hline 1.16976 & -0.89249 & 0 & \\
\hline 18.64238 & 3.00000 & -2 & eq. 3.18 4 records \(\ell=0\) \\
\hline 4.89161 & 19.24490 & -1 & \\
\hline 1.16606 & 23.93060 & 0 & \\
\hline 0.95239 & -9.35414 & 0 & \\
\hline 30.60070 & 5.00000 & -2 & eq. 3.185 records \(\ell=1\) \\
\hline 14.30081 & 19.81155 & -1 & \\
\hline 15.03304 & 54.33856 & 0 & \\
\hline 4.64601 & 54.08782 & 0 & \\
\hline 0.98106 & 7.31027 & 0 & \\
\hline 4.56008 & 0.26292 & 0 & eq. 3.182 records \(\ell=2\) \\
\hline 0.67647 & -0.43862 & 0 & _basis set input follows - valence only \\
\hline \[
\begin{aligned}
& 0112.1 . \\
& 1.257
\end{aligned}
\] & 1. & 1. & 1st shell: sp type; \(1 \mathrm{GTF} ; \mathrm{CHE}=2\); scale fact. \(=1\) exponent, s coefficient, p coefficient \\
\hline 0110.1. & & & 2nd shell: sp type; 1 GTF; CHE=0; scale fact. \(=1\) \\
\hline 1.052 & 1. & 1. & \\
\hline 0110.1. & & & 3rd shell: sp type; 1 GTF; CHE=0; scale fact. \(=1\) \\
\hline 0.0790 & 1.0 & 1. & \\
\hline \[
\begin{aligned}
& 0348.1 . \\
& 4.3580 \mathrm{E}+01
\end{aligned}
\] & . 03204 & & 4th shell; d type; 4 GTF; CHE=8; scale fact.=1 \\
\hline \(1.1997 \mathrm{E}+01\) & . 17577 & & \\
\hline \(3.8938 \mathrm{E}+00\) & . 41461 & & \\
\hline 1.271 & . 46122 & & \\
\hline 0310.1. & & & 5th shell; d type; 1 GTF; CHE=0; scale fact.=1 \\
\hline & 1. & & \\
\hline
\end{tabular}

\subsection*{15.3 SCF options}

Example of how to edit the density matrix obtained for a given magnetic solution to define a scf guess with a different magnetic solution.

\section*{Deck 1 - ferromagnetic solution}

\section*{Spinel MnCr2O4}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{CRYSTAL} \\
\hline \multicolumn{2}{|l|}{000} \\
\hline 227 & space group number \\
\hline 8.5985 & lattice parameter \\
\hline 3 & 3 non equivalent atoms (14 atoms in the primitive cell) \\
\hline 240.5000 .5000 .500 & Chromium - \(x, y, z\) - multiplicity 4 \\
\hline 250.1250 .1250 .125 & Manganese - \(x, y, z\) - multiplicity 2 \\
\hline 80.26560 .26560 .2656 & Oxygen - \(x, y, z\) - multiplicity 8 \\
\hline END & end of geometry input records - block 1 \\
\hline \multicolumn{2}{|l|}{basis set input terminated by END} \\
\hline UHF & Unrestricted Hartree Fock \\
\hline TOLINTEG & the default value of the truncation tolerances is modified \\
\hline 777714 & new values for ITOL1-ITOl2-ITOL3-ITOL4-ITOL5 \\
\hline END & end of input block 3 \\
\hline 404 & reciprocal lattice sampling (page 29 \\
\hline SPINLOCK & \(\mathrm{n}_{\alpha}-\mathrm{n}_{\beta}\) is locked to be 22 for 50 cycles. \\
\hline 2250 & All the d electrons are forced to be parallel \\
\hline LEVSHIFT & a level shifter of 0.3 hartree, maintained after diagonalization, \\
\hline 31 & causes a lock in a non-conducting solution \\
\hline MAXCYCLE & the maximum number of SCF cycles is set to 50 \\
\hline \multicolumn{2}{|l|}{50} \\
\hline PPAN & Mulliken population analysis at the end of SCF cycles \\
\hline END & \\
\hline
\end{tabular}
```

404
GUESSP initial guess: density matrix from a previous run
SPINEDIT
2
56
LEVSHIFT
31
PPAN Mulliken population analysis at the end of SCF cycles
END
elements of the density matrix are modified
the diagonal elements corresponding to 2 atoms
label of the 2 atoms (6 is equivalent to 5)
a level shifter of 0.3 hartree, maintained after diagonalization,
causes a lock in a non-conducting solution

```

```

First run - geometry output
*
COORDINATES OF THE EQUIVALENT ATOMS (FRACTIONAL UNITS)

N. ATOM	EQUIVALENT	AT. NUMBER	X	Y	Z		
1	1	1	24 CR	$-5.000 \mathrm{E}-01$	$-5.000 \mathrm{E}-01$	$-5.000 \mathrm{E}-01$	
2	1	2	24 CR	$-5.000 \mathrm{E}-01$	$-5.000 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	
3	1	3	24 CR	$0.000 \mathrm{E}+00$	$-5.000 \mathrm{E}-01$	$-5.000 \mathrm{E}-01$	
4	1	4	24 CR	$-5.000 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	$-5.000 \mathrm{E}-01$	
5	2	1	25 MN	$1.250 \mathrm{E}-01$	$1.250 \mathrm{E}-01$	$1.250 \mathrm{E}-01$	
6	2	2	25 MN	$-1.250 \mathrm{E}-01$	$-1.250 \mathrm{E}-01$	$-1.250 \mathrm{E}-01$	
7	3	1	8	0	$2.656 \mathrm{E}-01$	$2.656 \mathrm{E}-01$	$2.656 \mathrm{E}-01$
8	3	2	8	0	$2.656 \mathrm{E}-01$	$2.656 \mathrm{E}-01$	$-2.968 \mathrm{E}-01$
9	3	3	8	0	$-2.968 \mathrm{E}-01$	$2.656 \mathrm{E}-01$	$2.656 \mathrm{E}-01$
10	3	4	8	0	$2.656 \mathrm{E}-01$	$-2.968 \mathrm{E}-01$	$2.656 \mathrm{E}-01$
11	3	5	8	0	$-2.656 \mathrm{E}-01$	$-2.656 \mathrm{E}-01$	$-2.656 \mathrm{E}-01$
12	3	6	8	0	$-2.656 \mathrm{E}-01$	$-2.656 \mathrm{E}-01$	$2.968 \mathrm{E}-01$
13	3	7	8	0	$-2.656 \mathrm{E}-01$	$2.968 \mathrm{E}-01$	$-2.656 \mathrm{E}-01$
14	3	8	8	0	$2.968 \mathrm{E}-01$	$-2.656 \mathrm{E}-01$	$-2.656 \mathrm{E}-01$

Ferromagnetic solution: all unpaired electrons with the same spin

```

```

SPIN POLARIZATION - ALPHA-BETA = 22 FOR 50 CYCLES
==========================================================================
Convergence on total energy reached in 33 cycles (level shifter active)
===========================================================================
CYCLE 33 ETOT(AU) -7.072805900367E+03 DETOT -8.168E-07 DE(K) 9.487E+00

Population analysis - ferromagnetic solution									
ALPHA+BETA ELECTRONS - NO. OF ELECTRON						210.000000			
ATOM	Z	Charge	SHELL	POPULAT	- sp	sp		d	d
1 CR	24	21.884	2.000	8.047	2.251	4.487	1.331	3.078	. 690
5 MN	25	23.147	2.000	8.081	2.170	4.299	1.489	4.478	. 629
70	8	9.521	1.996	2.644	2.467	2.414			
MULLIKEN POPULATION ANALYSIS									
ALPHA-BETA ELECTRONS - NO. OF ELECTRONS						22.000000			
ATOM	Z CHARGE		SHELL	POPULAT					
			s	sp	sp	sp	sp	d	d
1 CR	24	3.057	. 000	-. 002	. 011	. 027	-. 011	2.790	. 242
5 MN	25	4.925	. 000	-. 003	. 019	. 055	-. 052	4.408	. 498
70	8	-. 010	. 000	. 003	-. 014	. 002			

========================================================================================
Second run - Anti ferromagnetic solution:
Integrals calculation not affected by the spin state
Cr (atoms 1-2-3-4) unpaired electrons spin alpha;
Mn (atoms 5 and 6) unpaired electrons spin beta
======================================================================================
RESTART FROM A PREVIOUS RUN DENSITY MATRIX
SPIN INVERSION IN SPIN DENSITY MATRIX FOR ATOMS: 5 6
Convergence on total energy reached in 15 cycles

```


\subsection*{15.4 Geometry optimization}

Crystal geometry input section (block1) for the geometry optimization of the urea molecule:
\(\triangleright\) Example
\begin{tabular}{|c|c|}
\hline Urea Molecule & Title \\
\hline MOLECULE & Dimension of the system \\
\hline 15 & Point group (\(\mathrm{C}_{2 \mathrm{v}}\)) \\
\hline 5 & Number of non equivalent atoms \\
\hline 60.0 .0. & Atomic number and cartesian coordinates \\
\hline 8 0. 0. 1.261401 & \\
\hline 7 0. 1.148247-0.699790 & \\
\hline 1 0. 2.026550-0.202817 & \\
\hline 1 0. 1.134080-1.704975 & \\
\hline OPTGEOM & Keyword to perform a geometry optimization \\
\hline ENDOPT & End of geometry optimization input block \\
\hline END & end og geometry input \\
\hline Basis set input & As in test 12 \\
\hline END & End of basis set input section \\
\hline END & block3 input - Molecule - no information on sampling in \(\mathbf{K}\) space \\
\hline
\end{tabular}

Crystal output contains additional information on the optimization run after the initial part of the geometry output:

BERNY OPTIMIZATION CONTROL
\begin{tabular}{llll}
MAXIMUM GRADIENT COMPONENT & 0.00045 & MAXIMUM DISPLACEMENT COMPONENT & 0.00030 \\
R.M.S. OF GRADIENT COMPONENT & 0.00180 & R.M.S. OF DISPLACEMENT COMPONENTS & 0.00120 \\
THRESHOLD ON ENERGY CHANGE 0.100E-06 & EXTRAPOLATING POLYNOMIAL ORDER & 2 \\
MAXIMUM ALLOWED NUMBER OF STEPS & 100 & SORTING OF ENERGY POINTS: & NO \\
ANALYTICAL GRADIENTS
\end{tabular}

SYMMETRY ALLOWED INTERNAL DEGREE(S) OF FREEDOM: 7

At the first step of the optimization, the Crystal standard output contains both energy (complete SCF cycle) and gradient parts. At the end of the first step, a convergence check is performed on the initial forces and the optimization stops if the criteria are already satisfied. For the subsequent steps, only few lines on the optimization process are reported in standard output, namely: current geometry, total energy and gradients, and convergence tests (SCF output is routed to file SCFOUT.LOG).
At each optimization step, \(x x x\), the geometry is written in file optcxxx (in a format suitable to be read with EXTERNAL keyword). Optimization step can be restarted from any step geometry, by renaming optcxxx as fort. 34 .
The standard output for the urea molecule geometry optimization looks as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
OPT \\

\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{GEOMETRY OPTIMIZATION - POINT 2}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{ATOMS IN THE ASYMMETRIC UNIT 5 - ATOMS IN THE UNIT CELL: 8} \\
\hline & & X (ANGSTROM) & Y (ANGSTROM) & & Z (ANGSTROM) \\
\hline \multicolumn{6}{|l|}{} \\
\hline 1 T & 6 C & \(0.000000000000 \mathrm{E}+00\) & \(0.000000000000 \mathrm{E}+00\) & & .645266012706E-02 \\
\hline 2 & 80 & \(0.000000000000 \mathrm{E}+00\) & \(0.000000000000 \mathrm{E}+00\) & & .241474126876E+00 \\
\hline 3 T & 7 N & \(0.000000000000 \mathrm{E}+00\) & \(1.150483100972 \mathrm{E}+00\) & -7.0 & . \(044307566681 \mathrm{E}-01\) \\
\hline 4 & 7 N & \(0.000000000000 \mathrm{E}+00\) & -1.150483100972E+00 & -7.0 & . \(044307566681 \mathrm{E}-01\) \\
\hline 5 T & 1 H & \(0.000000000000 \mathrm{E}+00\) & \(2.022583078191 \mathrm{E}+00\) & -2.0 & .043778206895E-01 \\
\hline 6 & 1 H & \(0.000000000000 \mathrm{E}+00\) & -2.022583078191E+00 & & .043778206895E-01 \\
\hline 7 T & 1 H & \(0.000000000000 \mathrm{E}+00\) & \(1.135517317174 \mathrm{E}+00\) & -1.7 & .702036316144E+00 \\
\hline 8 & 1 H & \(0.000000000000 \mathrm{E}+00\) & -1.135517317174E+00 & & .702036316144E+00 \\
\hline
\end{tabular}

\section*{T = ATOM BELONGING TO THE ASYMMETRIC UNIT}
```

INTRACELL NUCLEAR REPULSION (A.U.) 1.2463005288098E+02

```
TOTAL ENERGY(HF) (AU) (11) \(-2.2379435865343 \mathrm{E}+02 \mathrm{DE}-4.8 \mathrm{E}-08 \mathrm{DP} 7.2 \mathrm{E}-06\)

SYMMETRY ALLOWED FORCES (ANALYTICAL) (DIRECTION, FORCE)
\begin{tabular}{rrrrrrr}
1 & \(4.0854048 \mathrm{E}-02\) & \(2-2.8460660 \mathrm{E}-02\) & 3 & \(1.4184257 \mathrm{E}-03\) & 4 & \(-3.0361419 \mathrm{E}-03\) \\
5 & \(-1.7599295 \mathrm{E}-02\) & 6 & \(-1.3809310 \mathrm{E}-02\) & 7 & \(6.7962224 \mathrm{E}-03\) &
\end{tabular}
\begin{tabular}{llll}
GRADIENT NORM & 0.055108 & GRADIENT THRESHOLD & 0.500000 \\
MAX GRADIENT & 0.040854 & THRESHOLD & 0.000450 CONVERGED NO \\
RMS GRADIENT & 0.020829 & THRESHOLD & 0.000300 CONVERGED NO \\
MAX DISPLAC. & 0.024990 & THRESHOLD & 0.001800 CONVERGED NO \\
RMS DISPLAC. & 0.015649 & THRESHOLD & 0.001200 CONVERGED NO
\end{tabular}

When all four convergence tests are satisfied, optimization is completed. The final energy and the optimized structure are printed after the final convergence tests.
```

********************************************************************

* OPT END - CONVERGED * E(AU): -2.237958289701E+02 POINTS 14 *
********************************************************************
FINAL OPTIMIZED GEOMETRY - DIMENSIONALITY OF THE SYSTEM 0
(NON PERIODIC DIRECTION: LATTICE PARAMETER FORMALLY SET TO 500)
************************************************************************************
ATOMS IN THE ASYMMETRIC UNIT 5 - ATOMS IN THE UNIT CELL: }
ATOM X(ANGSTROM) Y(ANGSTROM) Z(ANGSTROM)
*******************************************************************************
clu
2 T 8 0 0.000000000000E+00 0.000000000000E+00 1.230143233209E+00
3 T 7 N 0.000000000000E +00 1.143750090534E+00 -7.056136525307E-01
4 F 7 N 0.000000000000E+00 -1.143750090534E+00 -7.056136525307E-01
5 T 1 H 0.000000000000E+00 2.001317638364E+00 -2.076003454226E-01
6 F 1 H 0.000000000000E +00 -2.001317638364E+00 -2.076003454226E-01
7 T 1 H 0.000000000000E+00 1.157946292824E+00 -1.696084062406E+00

```
```

    8 F 1 H 0.000000000000E+00 -1.157946292824E+00 -1.696084062406E+00
    ```
\(\mathrm{T}=\mathrm{ATOM}\) BELONGING TO THE ASYMMETRIC UNIT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{****} & \multicolumn{2}{|l|}{4 SYMMOPS -} & \multicolumn{2}{|l|}{TRANSLATORS} & IN F & \multicolumn{3}{|l|}{FRACTIONA LUNITS} & & \multicolumn{3}{|l|}{TRANSLATOR} \\
\hline V & & NV & & & & ROTAT & TION M & TRICES & & & & TRA & SLATO & \\
\hline 1 & & 1 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 \\
\hline 2 & & 2 & -1.00 & 0.00 & 0.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 \\
\hline 3 & & 3 & -1.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 \\
\hline 4 & & 4 & 1.00 & 0.00 & 0.00 & 0.00 & -1.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

The final geometry is both printed in the Crystal output and written in file fort.34. The following input defines the geometry, reading data from file fort. 34 (keyword EXTERNAL, input block1, page 19).
\(\triangleright\) Example
\begin{tabular}{ll}
Urea Molecule & Title \\
EXTERNAL & Geometry read from file fort. 34 \\
\begin{tabular}{ll}
optional keywords \\
END & End of the geometry input section
\end{tabular}
\end{tabular}

Optimization can restart, by adding the keyword RESTART in the same input deck used for the first optimization run. Information to restart are read from file OPTINFO.DAT, updated after each optimization cycle.
\(\triangleright\) Example
\begin{tabular}{|c|c|}
\hline Initial input & Restart input \\
\hline Urea Molecule & Urea Molecule \\
\hline MOLECULE & MOLECULE \\
\hline 15 & 15 \\
\hline 5 & 5 \\
\hline 60.0 .0. & 60.00. \\
\hline 8 0. 0. 1.261401 & 8 0. 0. 1.261401 \\
\hline 7 0. 1.148247-0.699790 & 7 0. 1.148247-0.699790 \\
\hline 1 0. 2.026550-0.202817 & 1 0. 2.026550-0.202817 \\
\hline 1 0. 1.134080-1.704975 & 1 0. 1.134080-1.704975 \\
\hline OPTGEOM & OPTGEOM \\
\hline ENDOPT & RESTART \\
\hline END & ENDOPT \\
\hline & END \\
\hline
\end{tabular}

\section*{Partial optimization}

In order to optimize the coordinates of the hydrogens in urea molecule, the following input must be entered:
\(\triangleright\) Example
\begin{tabular}{|c|c|}
\hline Urea Molecule & Title \\
\hline MOLECULE & Dimension of the system \\
\hline 15 & Point group (\(\mathrm{C}_{2 \mathrm{v}}\)) \\
\hline 5 & Number of non equivalent atoms \\
\hline 60.0 .0. & Atomic number and cartesian coordinates \\
\hline 8 0. 0. 1.261401 & \\
\hline 7 0. 1.148247-0.699790 & \\
\hline 1 0. \(2.026550-0.202817\) & \\
\hline 1 0. 1.134080-1.704975 & \\
\hline KEEPSYMM & maintain symmetry in subsequent operations \\
\hline OPTGEOM & Keyword to perform a geometry optimization \\
\hline FRAGMENT & Keyword for a partial optimization \\
\hline 2 & Number of atoms to be optimized \\
\hline 57 & Label of the atoms to be optimized \\
\hline ENDOPT & End of the geometry optimization input block \\
\hline END & End of the geometry input section \\
\hline
\end{tabular}

The atoms allowed to move are the two hydrogens irreducible, 5 and 7. The symmetry is maintained, atoms 6 and 7 are allowed to move.
```

************************************************************************************

* PARTIAL OPTIMIZATION - ATOMS FREE TO MOVE 2 INPUT LIST :
5(1) 7( 1)
SYMMETRY IS KEPT

```
```

ATOM 5 AND 6 ARE LINKED BY SYMMOP 2

```
ATOM 5 AND 6 ARE LINKED BY SYMMOP 2
ATOM 7 AND 8 ARE LINKED BY SYMMOP 2
```

If the symmetry is not maintained (default, no KEEPSYMM before OPTGEOM) the symmetry operators linking atoms 5 and 6 , and atoms 7 and 8, are removed.

```
**
* PARTIAL OPTIMIZATION - ATOMS FREE TO MOVE 2 INPUT LIST :
 5(1) 7(1)
SYMMETRY MAY BE BROKEN
THE NUMBER OF SYMMETRY OPERATORS HAS BEEN REDUCED FROM 4 TO 2

```



```
SYMMETRY ALLOWED INTERNAL DEGREE(S) OF FREEDOM: 4
```


## Final run

During optimization process, the classification of the integrals is done with reference to the input geometry, and used for all subsequent wave function calculations.
In some cases, when the optimized geometry is far from the original one, the series truncation defined with reference to the starting geometry may be inhomogeneous if applied to the final geometry (see keyword FIXINDEX for explanation). In those cases, the total energy computed for one geometry, with integrals selected according to a different geometry, may be not correct.
A single point calculation, with the final optimized geometry, allows to check if that is the case.

A safe procedure to check if that geometry corresponds to a real energy minimum, is to perform a second optimization process, with same truncation criteria, starting from the geometry obtained in the first optimization (read from file fort.34, keyword EXTERNAL, page 19 ).
The keyword FINALRUN starts the process automatically. (it does not work with Pcrystal)
A typical example is the geometry optimization of a surface, described with a slab model. The optimization process may lead to a structure significantly different from the one cut from the bulk, when there is surface relaxation. As an example, the geometry optimization of the surface (001) of the $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ is reported.
$\triangleright$ Example - Optimization of surface

```
\(\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}\) - (001) surface
 title
 CRYSTAL dimension of the system
 000
 167
 \(4.760212 .9933 \quad\) lattice parameters
 2
 130. 0. 0.35216
 80.306240 .0 .25
 SLABCUT
 001
 16
 OPTGEOM
 FINALRUN
 3
ENDOPT
END
 space group
 number of irreducible atoms
 fractional coordinates of first atom
 fractional coordinates of second atom
 \(3 \mathrm{D} \rightarrow 2 \mathrm{D}\)
 (\(h, k, l\)) Miller indices of the surface
 number of layers, starting from the first classified
 Keyword to perform a geometry optimization
 keyword to check gradients vs true series truncation
 new optimization if convergence criteria are not satisfied
 end of the geometry optimization input block
 end of the geometry input section
```

Neighbors analysis on the initial geometry obtained with SLABCUT


Series truncation is defined with reference to that geometry. Optimization begins. After 11 cycles convergence on gradients and displacements is satisfied.
Neighbors analysis on the optimized geometry:


```
 1 AL 3 3.0430 5.7504 6 AL 0 0 0 6 6 AL -1 0 0 6 6 AL 0
 1 AL 3 3.1214 5. 5.8987 2 0 -1 0 0 0
Total energy E = -1400.1148194 hartree
```

A large geometrical relaxation occurred during the optimization: the aluminium atoms move toward the core of the slab. In this case both the total energy and gradients should be recalculate using truncation series which refer to the final relaxed geometry.
This crucial step is automatically performed if the keyword FINALRUN is present in the input file. If this is the case, CRYSTAL03 checks for the numerical consistency and it will find that the gradients do not match the requested convergence criteria. At the end of the new optimization the total energy is:

```
Total energy E = -1400.1193593 hartree
```

In this case, FINALRUN was followed by the keyword $\mathrm{ICODE}=3$. This means that the geometry optimization restarts from the very last step of the previous geometry optimization with truncation series criteria defined relative to that geometry. After 6 new optimization cycles, convergence criteria are satisfied.
Neighbors analysis on the final run optimized geometry


The final geometry is printed, and written in file fort. 34 .
A final check on total energy can be done with the following input:

```
alpha-Al203 (corundum) 001 2 LAYERS (3D-->2D)
EXTERNAL
OPTGEOM
ENDOPT
END
```

The keyword EXTERNAL routes the basic geometry input stream to file fort.34, written at the end of the optimization run.
No optimization starts, convergence criteria are already satisfied.

```
Total energy E = -1400.1194544 hartree
```

/sectionScanning of vibrational modes - SCANMODE

## Methane molecule

```
MOLECULE
44
2
6 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
1 6.252140000000E-01 6.252140000000E-01 6.252140000000E-01
FREQCALC
SCANMODE
-1 -1 0 0.1
1 2
ENDfreq
END
6
0 0 3 2. 1.
172.256000 0.617669000E-01
25.9109000 0.358794000
5.53335000 0.700713000
0 1 2 4. 1.
3.66498000 -0.395897000 0.236460000
0.770545000 1.21584000 0.860619000
0 1 1 0. 1.
0.195857000 1.00000000 1.00000000
12
0 0 2 1. 1.
5.44717800 0.156285000
0.824547000 0.904691000
0 0 1 0. 1.
0.183192000 1.00000000
99 0
END
TOLINTEG
20202020 20
END
TOLDEE
1 1
END
```


## $\mathrm{PbCO}_{3}$

```
PBCO3 - frequency calculation
CRYSTAL
10}
P m c n
5.20471446 8.45344758 6.16074145
4
282 2.500000000000E-01 4.175726169487E-01 -2.463557995068E-01
6 2.500000000000E-01 -2.363341497085E-01 -8.558132726424E-02
8 2.500000000000E-01 -8.360585350428E-02 -9.431628799197E-02
8 4.648370653436E-01 -3.129222129903E-01 -8.842925698155E-02
FREQCALC
RESTART
SCANMODE
1 -40 40 0.1
1
END
```


## END

## 2824

## HAYWLC

0124.1.
$1.335104-0.1448789-0.1070612$
$0.75160861 .0 \quad 1.0$
0110.1.
$0.55366861 .0 \quad 1.0$
0110.1. $0.1420315 \quad 1.0 \quad 1.0$
0310.1. 0.19338871 .0

64
0062.01 .0
$3048.0 \quad 0.001826$
456.40 .01406
103.70 .06876
$29.23 \quad 0.2304$
9.3490 .4685
$3.189 \quad 0.3628$
0124.01 .0 $3.665-0.39590 .2365$ 0.77051 .2160 .8606
0110.01 .0
$0.26 \quad 1.0 \quad 1.0$
0310.01 .0
0.81 .0

84
0062.01 .0

| $.5484671660 \mathrm{D}+04$ | $.1831074430 \mathrm{D}-02$ |
| :--- | :--- |
| $.8252349460 \mathrm{D}+03$ | $.1395017220 \mathrm{D}-01$ |
| $.1880469580 \mathrm{D}+03$ | $.6844507810 \mathrm{D}-01$ |
| $.5296450000 \mathrm{D}+02$ | $.2327143360 \mathrm{D}+00$ |
| $.1689757040 \mathrm{D}+02$ | $.4701928980 \mathrm{D}+00$ |
| $.5799635340 \mathrm{D}+01$ | $.3585208530 \mathrm{D}+00$ |

0136.01 .0

$$
\begin{array}{rr}
.1553961625 \mathrm{D}+02 & -.1107775490 \mathrm{D}+00 \\
.3599933586 \mathrm{D}+01 & -.1480262620 \mathrm{D}+00 \\
.1013761750 \mathrm{D}+01 & .1130767010 \mathrm{D}+01
\end{array}
$$

.7087426820D-01 . 3397528390D+00 .7271585770D+00
0110.01 .0 $.2700058226 \mathrm{D}+00.1000000000 \mathrm{D}+01 \mathrm{I} 1000000000 \mathrm{D}+01$
0310.01 .0 $.8000000000 \mathrm{D}+00.1000000000 \mathrm{D}+01$
990
ENDBS
SCFDIR
DFT
B3LYP
RADIAL
1
4.0

99
ANGULAR
5
0.16670 .50 .93 .59999 .0

610141814
END

SHRINK
66
LEVSHIFT
50
TOLDEE
10
MAXCYCLE
200
ENDSCF

## Chapter 16

## Basis set

The most common source of problems with CRYSTAL is probably connected with the basis set. It should never be forgotten that ultimately the basis functions are Bloch functions, modulated over the infinite lattice: any attempt to use large uncontracted molecular or atomic basis sets, with very diffuse functions can result in the wasting of computational resources. The densely packed nature of many crystalline structures gives rise to a large overlap between the basis functions, and a quasi-linear dependence can occur, due to numerical limitations.
The choice of the basis set (BS) is one of the critical points, due to the large variety of chemical bonding that can be found in a periodic system. For example, carbon can be involved in covalent bonds (polyacetylene, diamond) as well as in strongly ionic situations ( $B e_{2} C$, where the Mulliken charge of carbon is close to -4).
Many basis sets for lighter elements and the first row transition metal ions have been developed for use in periodic systems. A selection of these which have been used in published work are available on WWW:

## http://www.crystal.unito.it

We summarize here some general considerations which can be useful in the construction of a BS for periodic systems.
It is always useful to refer to some standard basis set; Pople's STO-nG, 3-21G and 6-21G have proved to be good starting points. A molecular minimal basis set can in some cases be used as it is; larger basis sets must be re-optimized specifically for the chemical periodic structure under study.
Let us explore the adequacy of the molecular BS for crystalline compounds and add some considerations which can be useful when a molecular BS must be modified or when an ex novo crystalline BS is defined.

### 16.1 Molecular BSs performance in periodic systems

Two sets of all electron basis sets are included in CRYSTAL (see Chapter 2.2):

1. Minimal STO-nG basis set of Pople and co-workers
obtained by fitting Slater type orbitals with n contracted GTFs (n from 2 to 6 , atomic number from 1 to 54) [120, 119, 169, 168.
The above BSs are still widely used in spite of the poor quality of the resulting wave function, because they are well documented and as a rule provide quite reasonable optimized geometries (due to fortuitous cancellation of errors) at low cost.
2. "Split valence" 3-21 and 6-21 BSs.

The core shells are described as a linear combination of 3 (up to atomic number 54) or 6 (up to atomic number 18) gaussians; the two valence shells contain two and one gaussians, respectively [23, 101]. Exponents (s and p functions of the same shell share the same exponent) and contraction coefficients have been optimized variationally for the isolated atoms.

A single set of polarization functions ( $\mathrm{p}, \mathrm{d}$ ) can be added without causing numerical problems. Standard molecular polarization functions are usually also adequate for periodic compounds.

When free basis sets are chosen, two points should be taken into account:

1. From the point of view of CPU time, basis sets with $s p$ shells ( $s$ and $p$ functions sharing the same set of exponents) can give a saving factor as large as 4 , in comparison with basis sets where $s$ and $p$ have different exponents.
2. As a rule, extended atomic BSs, or 'triple zeta' type BSs should be avoided. Many of the high quality molecular BSs (Roos, Dunning, Huzinaga) cannot be used in CRYSTAL without modification, because the outer functions are too diffuse. One should not forget that the real basis functions are Bloch functions.

Let us consider in more detail the possibility of using molecular BS for periodic systems. We can refer to five different situations:

Core functions
Valence functions: molecular crystals
covalent crystals
ionic crystals
metals.

### 16.2 Core functions

In this case standard (contracted) molecular BSs can be adopted without modification, because even when very strong crystal field effects are present, the deformation of inner states is small, and can be correctly described through the linear variational parameters in SCF calculation. An adequate description of the core states is important in order to avoid large basis set superposition errors.

### 16.3 Valence functions

## Molecular crystals

Molecular BSs, minimal and split-valence, are perfectly adequate. Tests have been performed on bulk urea [55] and oxalic acid, where the molecules are at relatively small distances, with STO-3G, 6-21, 6-21* and 6-21** BSs presenting no problem.

## Covalent crystals.

Standard minimal and split valence BSs are usually adequate. In the split valence case the best exponent of the most diffuse shell is always slightly higher than the one proposed for molecules; in general it is advisable to re-optimize the exponent of this shell. This produces a slightly improved basis, while reducing the cost of the calculation. Let us consider for example the 6-21 basis set for carbon (in diamond) and silicon (bulk).
At an atomic level, the best exponent of the outer shell is 0.196 and 0.093 for C and Si , respectively. Optimization of the valence shell has been repeated in the two crystalline compounds. The innermost valence shell is essentially unaltered with respect to the atomic solution; for the outer single-gaussian shell the best exponent is around 0.22 and $0.11 \mathrm{bohr}^{-2}$ for carbon and silicon, as shown in Table 16.1. The last entry of Table 16.1 refers to "catastrophic" behaviour: the low value of the exponent generates unphysical states.
A set of 5 polarization single-gaussian d functions can be added to the $6-21 \mathrm{G}$ basis $\left(6-21 \mathrm{G}^{*}\right.$ $\mathrm{BS})$; the best exponents for the solid are very close to those resulting from the optimization in molecular contexts: 0.8 for diamond [113] and 0.45 for silicon.

Basis sets for III-V and IV-IV semiconductors (all electron and valence electron (to be associated with effective core pseudopotentials) are given in references [153, 43].

Table 16.1: Total energy per cell and number of computed bielectronic integrals in $10^{6}$ units $(\mathrm{N})$, as a function of the exponent $\alpha\left(\mathrm{bohr}^{-2}\right)$ of the most diffuse shell for carbon and silicon.

| Diamond |  |  | Silicon |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | N | Et | a | N | Et |
| 0.296 | 58 | -75.6633 | 0.168 | 46 | -577.8099 |
| 0.276 | 74 | -75.6728 | 0.153 | 53 | -577.8181 |
| 0.256 | 83 | -75.6779 | 0.138 | 72 | -577.8231 |
| 0.236 | 109 | -75.6800 | 0.123 | 104 | -577.8268 |
| 0.216 | 148 | -75.6802 | 0.108 | 151 | -577.8276 |
| 0.196 | 241 | -75.6783 | 0.093 | 250 | -577.8266 |
| 0.176 | 349 | catastrophe | 0.078 | 462 | catastrophe |

## Ionic crystals.

## Cations

The classification of covalent or ionic crystals is highly conventional, many systems being midway. Let us first consider totally ionic compounds, such as $\mathrm{LiH}, \mathrm{MgO}$, or similar. For these systems the cation valence shell is completely empty. Therefore, for cations it is convenient to use a basis set containing the core functions plus an additional sp shell with a relatively high exponent. For example, we used for Mg in MgO and for Li in $\mathrm{LiH}\left(\mathrm{Li}_{2} \mathrm{O}\right.$ and $\left.\mathrm{Li}_{3} \mathrm{~N}\right)$ a 'valence' sp shell with exponent $0.4-0.3$ and $0.5-0.6$, respectively [62, 42].
The crystalline total energies obtained by using only core functions for Li or Mg and by adding a valence shell to the cation differ by $0.1 \mathrm{eV} /$ atom, or less. This figure is essentially the same for a relatively large range of exponents of the valence shell (say $0.5-0.2$ for Mg ) 42 .
It can be difficult (or impossible) to optimize the exponents of nearly empty shells: the energy decreases almost linearly with the exponent. Very low exponent values can give rise to numerical instabilities, or require the calculation of an enormous number of integrals (selected on the basis of overlap criteria). In the latter cases, when the energy gain is small ( $\Delta E \leq 1 \mathrm{~m}$ hartree for $\Delta \alpha=0.2 \mathrm{bohr}^{-2}$ ), it is convenient to use a relatively large exponent.

## Anions

Reference to isolated ion solutions is only possible for halides, because in such cases the ions are stable even at the HF level. For other anions, which are stabilized by the crystalline field ( $H^{-}, O^{2-}, N^{3-}$ and also $C^{4-}$ ), the basis set must be re-designed with reference to the crystalline environment. For example, let us consider the optimization of the $O^{2-} \mathrm{BS}$ in ${L i_{2} O}$ [62]. Preliminary tests indicated the fully ionic nature of the compound; the point was then to allow the valence distribution to relax in the presence of the two extra electrons. We started from a standard STO-6G BS. Two more gaussians were introduced in the 1 s contraction, in order to improve the virial coefficient and total energy, as a check of wave function quality. The 6 valence gaussians were contracted according to a 411 scheme; the exponents of the two outer independent gaussians and the coefficients of the four contracted ones were optimized. Whereas the two most diffuse gaussians are more diffuse than in the neutral isolated atom ( $\alpha=0.45$ and 0.15 to be compared with $\alpha=0.54$ and 0.24 respectively), the rest of the $\mathrm{O}^{2-}$ valence shell is unchanged with respect to the atomic situation. The introduction of $d$ functions in the oxygen basis-set causes only a minor improvement in energy ( $110^{-4}$ hartree/cell, with a population of 0.02 electrons/atom in the cell). Ionic BSs for H and N can be found in reference 1.
For anions, re-optimization of the most diffuse valence shell is mandatory; when starting from a standard basis set, the most diffuse (or the two most diffuse) gaussians must be allowed to relax.

## From covalent to ionics

Intermediate situations must be considered individually, and a certain number of tests must be performed in order to verify the adequacy of the selected BSs.
Let us consider for example $\alpha$-quartz $\left(\mathrm{SiO}_{2}\right)$ and corundum $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$. The exponent of the outer shell for the 2 cations in the $6-21 \mathrm{G} \mathrm{BS}$ is $0.093(\mathrm{Si})$ and $0.064(\mathrm{Al})$, respectively; in both cases this function is too diffuse (in particular in the Al case it causes numerical catastrophes). For quartz, re-optimization in the bulk gives $\alpha=0.15$ bohr $^{-2}$ for Si (the dependence of total energy per Si atom on $\alpha$ is much smaller than the one resulting from Table 16.1 note too that the cost at $\alpha=0.15$ is only $50 \%$ of the one at $\alpha=0.09$ ). On the contrary, the best molecular and crystalline exponent $(\alpha=0.37)$ for oxygen coincide. Corundum is more ionic than quartz, and about 2 valence electrons are transferred to oxygen. In this case it is better to eliminate the most diffuse valence shell of Al , and to use as independent functions the two gaussians of the inner valence shells ( $\alpha=0.94$ and 0.20 bohr $^{-2}$, respectively [191).

## Metals

Very diffuse gaussians are required to reproduce the nearly uniform density characterizing simple metallic systems, such as lithium and beryllium. This is the worse situation, where a full optimization of the atomic basis set is probably impossible. Functions which are too diffuse can create numerical problems, as will be discussed below.
The optimization procedure can start from 6-21 BS; the most diffuse valence shell (exponent 0.028 for Li and 0.077 for Be ) can be dropped and the innermost valence shell (exponents 0.54 and 0.10 for Li , and 1.29 and 0.268 for Be ) can be split.

Table 16.2: Example of BS for metallic lithium and beryllium derived from the standard 6-21G BS

| shell | Lithium |  | Beryllium |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Exp. | Coeff. | shell | Exp. | Coeff. |
| S | 642.418 | 0.00215096 | S | 1264.50 | 0.00194336 |
|  | 96.5164 | 0.0162677 |  | 189.930 | 0.0148251 |
|  | 22.0174 | 0.0776383 |  | 43.1275 | 0.0720662 |
|  | 6.1764 | 0.246495 |  | 12.0889 | 0.237022 |
|  | 1.93511 | 0.467506 |  | 3.80790 | 0.468789 |
| sp | 0.640 | 1.1. |  | 1.282 | 1. 1. |
| sp | 0.10 | 1.1. |  | 0.27 | 1. 1. |

At this point the outer gaussian of the 6 G core contraction, with very similar exponents ( 0.64 and 1.28) to those of the innermost valence shell ( 0.54 and 1.29), can be used as an independent (sp) function, and the innermost valence shell can be eliminated.
The resulting (reasonable) BS, derived from the split valence standard one, is reported in Table 16.2. Finally, the most diffuse gaussian can be optimized; in the two cases the minimum has not been found owing to numerical instabilities.
See [56] for a more extensive discussion of the metallic lithium case.

### 16.4 Hints on crystalline basis set optimization

In the definition of a valence shell BS, each exponent can be varied in a relatively narrow range: in the direction of higher exponents, large overlaps with the innermost functions may occur (the rule of thumb is: exponents must be in a ratio not too far from 3; ratios smaller than

2 can give linear dependence problems); proceeding towards lower exponents, one must avoid large overlaps with a high number of neighbours (remember: the basis functions are Bloch functions).
Diffuse gaussian orbitals play a critical role in HF-LCAO calculations of crystals, especially the three-dimensional ones; they are expensive, not always useful, in some cases dangerous.

- Cost.

The number of integrals to be calculated increases dramatically with decreasing exponents; this effect is almost absent in molecular calculations. Table 16.1 shows that the cost of the calculation (number of bielectronic integrals) for silicon (diamond) can increase by a factor 10 (6) simply by changing the exponent of the most diffuse single-gaussian from 0.168 to 0.078 ( 0.296 to 0.176 ). The cost is largely dominated by this shell, despite the fact that large contractions are used for the $1 \mathrm{~s}, 2 \mathrm{sp}$ and the innermost valence shell.
A high number of contracted primitives tremendously increases the integrals computation time.

- Usefulness.

In atoms and molecules a large part of the additional variational freedom provided by diffuse functions is used to describe the tails of the wave function, which are poorly represented by the $e^{-\alpha r^{2}}$ decay of the gaussian function. On the contrary, in crystalline compounds (in particular 3D non-metallic systems), low exponent functions do not contribute appreciably to the wave function, due to the large overlap between neighbours in all directions. A small split valence BS such as the 6-21G one, is nearer to the variational limit in crystals than in molecules.

- Numerical accuracy and catastrophic behaviour.

In some conditions, during the SCF (periodic) calculation, the system 'falls' into non-physical states, characterized by very low single particle and total energies (see for example the last entry in Table 16.1 and the above discussion on metals).
This behaviour, generically interpreted in our early papers as due to 'linear dependence', is actually due to poor accuracy in the treatment of the Coulomb and exchange series. The exchange series is much more delicate, for two reasons: first, long range contributions are not taken into account (whereas the long range Coulomb contributions are included, although in an approximate way); second, the "pseudoverlap" criteria associated with the two computational parameters ITOL4 and ITOL5 mimic only in an approximate way the real behaviour of the density matrix.
The risks of "numerical catastrophes" increase rapidly with a decreasing exponent; higher precision is required in order to obtain physical solutions.
For non-metallic systems, and split-valence type BSs, the default computational conditions given in section 2.3 are adequate for the optimization of the exponents of the valence shell and for systematic studies of the energy versus volume curves.
For metallic systems, the optimization of the energy versus exponent curve could require extremely severe conditions for the exchange series and, as a consequence, for the reciprocal space net. Reasonable values of the valence shell exponent (say 0.23 for beryllium and 0.10 for lithium, see Table 16.2 , though not corresponding to a variational minimum, are reasonably adequate for the study of the structural and electronic properties of metallic systems (see reference 1).

### 16.5 Check on basis-set quasi-linear-dependence

In order to check the risk of linear dependence of Bloch functions, it is possible to calculate the eigenvalues of the overlap matrix in reciprocal space by running integrals and entering the keyword EIGS (input block 3, page 88). Full input (general information, geometry, basis set, SCF ) is to be entered.

The overlap matrix in direct space is Fourier transformed at all the k points generated in the irreducible part of the Brillouin zone, and diagonalized. The eigenvalues are printed.
The higher the numerical accuracy obtained by severe computational conditions, the closer to 0 can be the eigenvalues without risk of numerical instabilities. Negative values indicate numerical linear dependence. The program stops after the check (even if negative eigenvalues are not detected).
The Cholesky reduction scheme [130] requires basis functions linearly independent. A symptom of numerical dependence may produce an error message in RHOLSK or CHOLSK while running scf.

## Chapter 17

## Theoretical framework

### 17.1 Basic equations

CRYSTAL is an $a b$ initio Hartree-Fock LCAO program for the treatment of periodic systems. $L C A O$, in the present case, means that each Crystalline Orbital , $\psi_{i}(\mathbf{r} ; \mathbf{k})$, is a linear combination of Bloch functions $(\mathrm{BF}), \phi_{\mu}(\mathbf{r} ; \mathbf{k})$, defined in terms of local functions, $\varphi_{\mu}(\mathbf{r})$ (here referred to as Atomic Orbitals, AOs).

$$
\begin{gather*}
\psi_{i}(\mathbf{r} ; \mathbf{k})=\sum_{\mu} a_{\mu, i}(\mathbf{k}) \phi_{\mu}(\mathbf{r} ; \mathbf{k})  \tag{17.1}\\
\phi_{\mu}(\mathbf{r} ; \mathbf{k})=\sum_{\mathbf{g}} \varphi_{\mu}\left(\mathbf{r}-\mathbf{A}_{\mu}-\mathbf{g}\right) e^{i \mathbf{k} \cdot \mathbf{g}} \tag{17.2}
\end{gather*}
$$

$\mathbf{A}_{\mu}$ denotes the coordinate of the nucleus in the zero reference cell on which $\varphi_{\mu}$ is centred, and the $\sum_{\mathbf{g}}$ is extended to the set of all lattice vectors $\mathbf{g}$.
The local functions are expressed as linear combinations of a certain number, $n_{G}$, of individually normalized (basis set) Gaussian type functions (GTF) characterized by the same centre, with fixed coefficients, $d_{j}$ and exponents, $\alpha_{j}$, defined in the input:

$$
\begin{equation*}
\varphi_{\mu}\left(\mathbf{r}-\mathbf{A}_{\mu}-\mathbf{g}\right)=\sum_{j}^{n_{G}} d_{j} G\left(\alpha_{j} ; \mathbf{r}-\mathbf{A}_{\mu}-\mathbf{g}\right) \tag{17.3}
\end{equation*}
$$

The AOs belonging to a given atom are grouped into shells, $\lambda$. The shell can contain all AOs with the same quantum numbers, $n$ and $\ell$, (for instance $3 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~d}$ shells), or all the AOs with the same principal quantum number, $n$, if the number of GTFs and the corresponding exponents are the same for all of them (mainly sp shells; this is known as the sp shells constraint). These groupings permit a reduction in the number of auxiliary functions that need to be calculated in the evaluation of electron integrals and therefore increase the speed of calculation.
A single, normalized, s-type GTF, $G_{\lambda}$, is associated with each shell (the adjoined Gaussian of shell $\lambda$ ). The $\alpha$ exponent is the smallest of the $\alpha_{j}$ exponents of the Gaussians in the contraction. The adjoined Gaussian is used to estimate the AO overlap and select the level of approximation to be adopted for the evaluation of the integrals.
The expansion coefficients of the Bloch functions, $a_{\mu, i}(\mathbf{k})$, are calculated by solving the matrix equation for each reciprocal lattice vector, $\mathbf{k}$ :

$$
\begin{equation*}
\mathbf{F}(\mathbf{k}) \mathbf{A}(\mathbf{k})=\mathbf{S}(\mathbf{k}) \mathbf{A}(\mathbf{k}) \mathbf{E}(\mathbf{k}) \tag{17.4}
\end{equation*}
$$

in which $\mathbf{S}(\mathbf{k})$ is the overlap matrix over the Bloch functions, $\mathbf{E}(\mathbf{k})$ is the diagonal energy matrix and $\mathbf{F}(\mathbf{k})$ is the Fock matrix in reciprocal space:

$$
\begin{equation*}
\mathbf{F}(\mathbf{k})=\sum_{\mathbf{g}} \mathbf{F}^{\mathbf{g}} e^{i \mathbf{k} \cdot \mathbf{g}} \tag{17.5}
\end{equation*}
$$

The matrix elements of $\mathbf{F}^{\mathbf{g}}$, the Fock matrix in direct space, can be written as a sum of one-electron and two-electron contributions in the basis set of the AO:

$$
\begin{equation*}
F_{12}^{\mathbf{g}}=H_{12}^{\mathbf{g}}+B_{12}^{\mathbf{g}} \tag{17.6}
\end{equation*}
$$

The one electron contribution is the sum of the kinetic and nuclear attraction terms:

$$
\begin{equation*}
H_{12}^{\mathbf{g}}=T_{12}^{\mathbf{g}}+Z_{12}^{\mathbf{g}}=\left\langle\varphi_{1}^{\mathbf{0}}\right| \widehat{T}\left|\varphi_{2}^{\mathbf{g}}\right\rangle+\left\langle\varphi_{1}^{\mathbf{0}}\right| \widehat{Z}\left|\varphi_{2}^{\mathbf{g}}\right\rangle \tag{17.7}
\end{equation*}
$$

In core pseudopotential calculations, $\hat{Z}$ includes the sum of the atomic pseudopotentials. The two electron term is the sum of the Coulomb and exchange contributions:

$$
\begin{gather*}
B_{12}^{\mathbf{g}}=C_{12}^{\mathbf{g}}+X_{12}^{\mathbf{g}}= \\
\sum_{3,4} \sum_{\mathbf{n}} P_{3,4}^{\mathbf{n}} \sum_{\mathbf{h}}\left[\left(\varphi_{1}^{\mathbf{0}} \varphi_{2}^{\mathbf{g}} \mid \varphi_{3}^{\mathbf{h}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}\right)-\frac{1}{2}\left(\varphi_{1}^{\mathbf{0}} \varphi_{3}^{\mathbf{h}} \mid \varphi_{2}^{\mathbf{g}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}\right)\right] \tag{17.8}
\end{gather*}
$$

The Coulomb interactions, that is, those of electron-nucleus, electron-electron and nucleusnucleus, are individually divergent, due to the infinite size of the system. The grouping of corresponding terms is necessary in order to eliminate this divergence.
The $\mathrm{P}^{\mathrm{n}}$ density matrix elements in the AOs basis set are computed by integration over the volume of the Brillouin zone (BZ),

$$
\begin{equation*}
P_{3,4}^{\mathbf{n}}=2 \int_{B Z} d \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{n}} \sum_{j} a_{3 j}^{*}(\mathbf{k}) a_{4 j}(\mathbf{k}) \theta\left(\epsilon_{F}-\epsilon_{j}(\mathbf{k})\right) \tag{17.9}
\end{equation*}
$$

where $a_{i n}$ denotes the i-th component of the n-th eigenvector, $\theta$ is the step function, $\epsilon_{F}$, the Fermi energy and $\epsilon_{n}$, the n-th eigenvalue. The total electronic energy per unit cell is given by:

$$
\begin{equation*}
E^{e l e c}=\frac{1}{2} \sum_{1,2} \sum_{\mathbf{g}} P_{12}^{\mathbf{g}}\left(H_{12}^{\mathbf{g}}+F_{12}^{\mathbf{g}}\right) \tag{17.10}
\end{equation*}
$$

A discussion of the different contributions to the total energy is presented in [193, 197] and in Chapter 11 of reference [171].

$$
\begin{align*}
E^{c o u l} & =\frac{1}{2} \sum_{1,2} \sum_{\mathbf{g}} P_{12}^{\mathbf{g}} \sum_{3,4} \sum_{\mathbf{n}} P_{3,4}^{\mathbf{n}} \sum_{\mathbf{h}}\left[\left(\varphi_{1}^{\mathbf{0}} \varphi_{2}^{\mathbf{g}} \mid \varphi_{3}^{\mathbf{h}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}\right)\right]  \tag{17.11}\\
E^{e x c h} & =-\frac{1}{4} \sum_{1,2} \sum_{\mathbf{g}} P_{12}^{\mathbf{g}} \sum_{34} \sum_{\mathbf{n}} P_{34}^{\mathbf{n}} \sum_{\mathbf{h}}\left[\left(\varphi_{1}^{\mathbf{0}} \varphi_{3}^{\mathbf{h}} \mid \varphi_{2}^{\mathbf{g}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}\right)\right] \tag{17.12}
\end{align*}
$$

### 17.2 Remarks on the evaluation of the integrals

The approach adopted for the treatment of the Coulomb and exchange series is based on a few simple ideas and on a few general tools, which can be summarized as follows:

1. Where possible, terms of the Coulomb series are aggregated so as to reduce the number of integrals to be evaluated;
2. Exchange integrals which will combine with small density matrix elements are disregarded;
3. Integrals between non-overlapping distributions are approximated;
4. Approximations for large integrals must be very accurate; for small integrals large percentage errors can be accepted;
5. Selection must be very efficient, because a large number of possible terms must be checked (adjoined Gaussians are very useful from this point of view).

### 17.3 Treatment of the Coulomb series

For the evaluation of the Coulomb contributions to the total energy and Fock matrix, correct coupling of electron-nucleus and electron-electron interactions is essential. The computational technique for doing so was presented by Dovesi et al [61] and by Saunders et al. 197. It may be summarized as follows.
Consider the Coulomb bielectronic contribution to the Fock matrix $\left(C_{12}^{\mathbf{g}}\right)$ and to the total energy :

$$
\begin{equation*}
E_{e e}^{c o u l}=\frac{1}{2} \sum_{1,2} \sum_{\mathbf{g}} P_{12}^{\mathbf{g}} \sum_{3,4} \sum_{\mathbf{n}} P_{3,4}^{\mathbf{n}} \sum_{\mathbf{h}}\left[\left(\varphi_{1}^{\mathbf{0}} \varphi_{2}^{\mathbf{g}} \mid \varphi_{3}^{\mathbf{h}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}\right)\right. \tag{17.13}
\end{equation*}
$$

Seven indices are involved in equation 17.13 , four of them $(1,2,3$ and 4$)$ refer to the AOs of the unit cell; in principle, the other three ( $\mathbf{g}, \mathbf{n}$ and $\mathbf{h}$ ) span the infinite set of translation vectors: for example, $\varphi_{2}^{\mathbf{g}}(\mathbf{r})$ is AO number 2 in cell $\mathbf{g}$. P is the density matrix; the usual notation is used for the bielectronic integrals. Due to the localized nature of the basis set, the total charges, $q_{1}$ and $q_{2}$, associated with the two pseudo-overlap distributions: $\left\{G_{10} G_{2 \mathrm{~g}}\right\}$ and $\left\{G_{3 \mathbf{h}} G_{4 \mathbf{h}+\mathbf{n}}\right\}$, decay exponentially to zero with increasing $|\mathbf{g}|$ and $|\mathbf{n}|$ (for example, $G_{1}$ is the adjoined gaussian of the shell to which $\varphi_{1}$ belongs).
A Coulomb overlap parameter, $S_{c}$, can be defined in such a way that when either $q_{1}$ or $q_{2}$ are smaller than $S_{c}$, the bielectronic integral is disregarded, and the sum over $\mathbf{g}$ or $\mathbf{n}$ truncated. The ITOL1 input parameter is defined as $\mathbf{I T O L} 1=-l o g_{10} S_{c}$. The same parameter value is used for selecting overlap, kinetic, and multipole integrals.
The problem of the $\mathbf{h}$ summation in equation 17.13 is more delicate, $\mathbf{h}$ being related to the distance between the two interacting distributions. The multipolar expansion scheme illustrated below is particularly effective when large unit cell or low dimensionality systems are considered. The electron-electron and electron-nuclei series $\left(C_{12}^{\mathrm{g}}\right.$ and $\left.Z_{12}^{\mathrm{g}}\right)$ can be rearranged as follows:

1. Mulliken shell net charge distributions are defined as:

$$
\begin{equation*}
\rho_{\lambda}(\mathbf{r}-\mathbf{h}) \equiv\{\lambda\}^{\prime} \equiv\{\lambda\}-Z_{\lambda}=\sum_{3 \in \lambda} \sum_{4 \mathbf{n}} P_{34}^{\mathbf{n}} \varphi_{3}(\mathbf{r}-\mathbf{h}) \varphi_{4}(\mathbf{r}-\mathbf{h}-\mathbf{n})-Z_{\lambda} \tag{17.14}
\end{equation*}
$$

where $Z_{\lambda}$ is the fraction of nuclear charge formally attributed to shell $\lambda$, and $\{\lambda\}$ is the electron charge distribution of shell $\lambda$.
2. Z and C contributions are reordered:

$$
\begin{equation*}
C_{12}^{\mathbf{g}}+Z_{12}^{\mathbf{g}}=\sum_{\lambda} \sum_{\mathbf{h}} \int d \mathbf{r} d \mathbf{r}^{\prime} \varphi_{1}^{\mathbf{0}}(\mathbf{r}) \varphi_{2}^{\mathbf{g}}(\mathbf{r})\left|\mathbf{r}-\mathbf{r}^{\prime}-\mathbf{h}\right|^{-1} \rho_{\lambda}\left(\mathbf{r}^{\prime}-\mathbf{h}\right) \tag{17.15}
\end{equation*}
$$

3. For a given shell $\lambda$, there is a finite set $B_{\lambda}$ of $\mathbf{h}$ vectors for which the two interacting distributions overlap; in this $B_{\lambda}$ zone (bielectronic zone), all the bielectronic integrals are evaluated explicitly. In the outer, infinite region which we define as $M_{\lambda}$, complementary to $B_{\lambda}$ (the mono-electronic zone), $\rho_{\lambda}$ can be expanded in multipoles and the series can be evaluated to infinity analytically, using Ewald's method combined with recursion formulae [197].

The resulting expression for the Coulomb contribution to the Fock matrix is:

$$
\begin{align*}
C_{12}^{\mathbf{g}}+Z_{12}^{\mathbf{g}} & = \\
& \sum_{\lambda}\left\{\sum _ { \mathbf { h } } ^ { B _ { \lambda } } \left[\sum_{3 \in \lambda} \sum_{4} \sum_{\mathbf{n}} P_{34}^{\mathbf{n}}\left(\varphi_{1}^{\mathbf{0}} \varphi_{2}^{\mathbf{g}} \mid \varphi_{3}^{\mathbf{h}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}\right)+\right.\right.  \tag{17.16}\\
& \left.+\quad \sum_{\ell, m} \gamma_{\ell}^{m}\left(\mathbf{A}_{\lambda} ;\{\lambda\}\right) \Phi_{\ell}^{m}\left(12 \mathbf{g} ; A_{\lambda}+\mathbf{h}\right)\right]+ \\
& \left.\sum_{\mathbf{h}} \sum_{\ell, m} \gamma_{\ell}^{m}\left(A_{\lambda} ;\{\lambda\}^{\prime}\right) \Phi_{\ell}^{m}\left(12 \mathbf{g} ; \mathbf{A}_{\lambda}+\mathbf{h}\right)\right\}
\end{align*}
$$

where:

$$
\begin{gather*}
\gamma_{\ell}^{m}\left(\mathbf{A}_{\lambda} ;\{\lambda\}\right)=\int d \mathbf{r} \rho_{\lambda}\left(\mathbf{r}-\mathbf{A}_{\lambda}\right) N_{\ell}^{m} X_{\ell}^{m}\left(\mathbf{r}-\mathbf{A}_{\lambda}\right)  \tag{17.17}\\
\Phi_{\ell}^{m}\left(12 \mathbf{g} ; \mathbf{A}_{\lambda}+\mathbf{h}\right)=\int d \mathbf{r} \varphi_{1}^{\mathbf{0}}(\mathbf{r}) \varphi_{2}^{\mathbf{g}}(\mathbf{r}) X_{\ell}^{m}\left(\mathbf{r}-\mathbf{A}_{\lambda}-\mathbf{h}\right)\left|\mathbf{r}-\mathbf{A}_{\lambda}-\mathbf{h}\right|^{-2 \ell-1} \tag{17.18}
\end{gather*}
$$

The Ewald term in eq. 17.16 includes zones $B_{\lambda}+M_{\lambda}$. The contribution from $B_{\lambda}$ is subtracted. The $X_{\ell}^{m}$ functions entering in the definition of the multipoles and field terms are real, solid harmonics, and $N_{\ell}^{m}$, the corresponding normalization coefficients.
The advantage of using equation 17.16 is that many four-centre (long-range) integrals can be replaced by fewer three-centre integrals.
The attribution of the interaction between $\rho_{1}=\{1 \mathbf{0}, 2 \mathbf{g}\}$ and $\rho_{\lambda}$ to the exact, short-range or to the approximate, long-range zone is performed by comparing the penetration between $\rho_{1}$ and $\rho_{\lambda}$ with the ITOL2 input parameter (if ITOL2 $>-\log S_{1 \lambda}$, then $\rho_{\lambda}$ is attributed to the exact $\mathrm{B}_{\lambda}$ zone).
The multipolar expansion in the approximate zone is truncated at $L=\ell^{\max }$. The default value of $L$ is 4 ; the maximum possible value is 6 , the minimum suggested value, 2 (defined via the input keyword POLEORDR, input block 3, page 106 .

### 17.4 The exchange series

The exchange series does not require particular manipulations of the kind discussed in the previous section for the Coulomb series, but needs a careful selection of the terms contributing appreciably to the Fock operator and to the total energy 41]. The exchange contribution to the total energy can be written as follows:

$$
\begin{equation*}
E^{e x}=\frac{1}{2} \sum_{12} \sum_{\mathbf{g}} P_{12}^{\mathbf{g}}\left[-\frac{1}{2} \sum_{34} \sum_{\mathbf{n}} P_{34}^{\mathbf{n}} \sum_{\mathbf{h}}\left(\varphi_{1}^{\mathbf{0}} \varphi_{3}^{\mathbf{h}} \mid \varphi_{2}^{\mathbf{g}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}\right)\right] \tag{17.19}
\end{equation*}
$$

where the term in square brackets is the exchange contribution to the 12 g element of the direct space Fock matrix. $E^{e x}$ has no counterpart of opposite sign as the Coulomb term has; hence, it must converge by itself.
The $\mathbf{h}$ summation can be truncated after a few terms, since the $\left\{\varphi_{1}^{\mathbf{0}} \varphi_{3}^{\mathbf{h}}\right\}$ overlap distribution decays exponentially as $\mathbf{h}$ increases. Similar considerations apply to the second charge distribution. In CRYSTAL, the $\mathbf{h}$ summation is, therefore, truncated when the charge associated with either $\left\{G_{1} \mathbf{0} G_{3} \mathbf{h}\right\}$ or $\left\{G_{2} \mathbf{g} G_{4} \mathbf{h}+\mathbf{n}\right\}$ is smaller than $10^{-\mathbf{I T O L} 3}$.
The situation is more complicated when $\mathbf{g}$ and $\mathbf{n}$ summations are analysed. Let us consider the leading terms at large distance, corresponding to $\varphi_{1}=\varphi_{3}, \varphi_{2}=\varphi_{4}, \mathbf{h}=\mathbf{0}$ and $\mathbf{n}=\mathbf{g}$ :

$$
\begin{equation*}
e_{12}^{\mathbf{g}}=-1 / 4\left(P_{12}^{\mathbf{g}}\right)^{2}(1010 \mid 2 \mathbf{g} 2 \mathbf{g})=-\left(p^{\mathbf{g}}\right)^{2} /(4|\mathbf{g}|) \tag{17.20}
\end{equation*}
$$

(Here $p^{\mathbf{g}}$ indicates the dominant P matrix element at long range). Since the number of terms per unit distance of this kind increases as $|\mathbf{g}|^{d-1}$, where $d$ is the dimensionality of the system, it is clear that the convergence of the series depends critically on the long range behaviour of the bond order matrix.
Cancellation effects, associated in particular with the oscillatory behaviour of the density matrix in metallic systems, are not predominant at long range. Even if the actual behaviour of the P matrix elements cannot be predicted because it depends in a complicated way on the physical nature of the compound [173], on orthogonality constraints and on basis set quality, the different range of valence and core elements can be exploited by adopting a pseudoverlap criterion. This consists in truncating $\mathbf{g}$ summations when the $\int d \mathbf{r} \varphi_{1}^{\mathbf{0}} \varphi_{2}^{\mathbf{g}}$ overlap is smaller than a given threshold, defined as $P_{e x}^{\mathbf{g}} \quad\left(\right.$ where ITOL4 $\left.=-\log _{10}\left(P_{e x}^{\mathbf{g}}\right)\right)$ and also truncating the $\mathbf{n}$ summation when $\int d \mathbf{r} \varphi_{3}^{\mathbf{0}} \varphi_{4}^{\mathbf{n}}$ overlap is smaller than the threshold, $P_{e x}^{\mathbf{n}} \quad\left(\right.$ ITOL5 $=-\log g_{10}$ $\left.\left(P_{e x}^{\mathbf{n}}\right)\right)$.
Despite its partially arbitrary nature, this criterion presents some advantages with respect to other more elaborate schemes: it is similar to the other truncation schemes (ITOL1, ITOL2, ITOL3), and so the same classification tables can be used; it is, in addition, reasonably efficient in terms of space occupation and computer time.
This truncation scheme is symmetric with respect to the $\mathbf{g}$ and $\mathbf{n}$ summations. However, if account is not taken of the different role of the two summations in the SC (Self Consistent) stage, distortions may be generated in the exchange field as felt by charge distributions $\varphi_{1} \varphi_{2}^{T}$, where $T$ labels the largest (in modulus) $\mathbf{g}$ vector taken into account according to ITOL4. This distortion may be variationally exploited, and unphysically large density matrix elements build
up progressively along the SC stage, eventually leading to catastrophic behaviour (see Chapter II. 5 of reference 175 for a discussion of this point). In order to overcome this problem, the threshold, $P_{e x}^{\mathbf{n}}$ (ITOL5) for $\mathbf{n}$ summation must be more severe than that for $\mathbf{g}$ summation (ITOL4). In this way, all the integrals whose second pseudo charge $\int d \mathbf{r} \varphi_{3}^{\mathbf{0}} \varphi_{4}^{\mathbf{n}}$ is larger than $P_{e x}^{\mathbf{n}}$ are taken into account. A difference in the two thresholds ranging from three to eight orders of magnitude is sufficient to stabilize the SC behaviour in most cases.

### 17.5 Bipolar expansion approximation of Coulomb and exchange integrals

We may now return to the partition of the $\mathbf{h}$ summation in the Coulomb series shown in equation 17.13 . Consider one contribution to the charge distribution of electron 1 , centred in the reference cell: $\rho^{\mathbf{0}}=\varphi_{1}^{\mathbf{0}} \varphi_{2}^{\mathbf{g}}$; now consider the charge distribution $\rho_{\lambda}(\mathbf{h})$ of shell $\lambda$ centred in cell $\mathbf{h}$ (equation 17.14 ). For small $|\mathbf{h}|$ values, $\rho_{\lambda}$ and $\rho^{0}$ overlap, so that all the related bielectronic integrals must be evaluated exactly, one by one; for larger values of $|\mathbf{h}|, \rho_{\lambda}$ is external to $\rho^{0}$, so that all the related bielectronic integrals are grouped and evaluated in an approximate way through the multipolar expansion of $\rho_{\lambda}$.
However, in many instances, although $\rho_{\lambda}$ is not external to $\rho^{0}$, the two-centre $\varphi_{3}^{\mathbf{h}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}$ contributions to $\rho_{\lambda}$ are external to $\rho^{0}=\varphi_{1}^{\mathbf{0}} \varphi_{2}^{\mathbf{g}}$; in this case, instead of exactly evaluating the bielectronic integral, a two-centre truncated bipolar expansion can be used (see Chapter II.4.c in reference [175] and references therein).
In order to decide to which zone a shell may be ascribed, we proceed as follows: when, for a given pair of shells $\lambda_{1}^{\mathbf{0}} \lambda_{2}^{\mathrm{g}}$, shell $\lambda_{3}^{\mathrm{h}}$ is attributed to the B (bielectronic) zone, the penetration between the products of adjoined Gaussians $G_{1}^{\mathbf{0}} G_{2}^{\mathbf{g}}$ and $G_{3}^{\mathbf{h}} G_{4}^{\mathbf{h}+\mathbf{n}}$ is estimated: the default value of the penetration parameter is 14 , and the block of bielectronic integrals is attributed accordingly to the $b_{e}$ (exact) or to the $b_{b}$ (bipolar) zone. The set of $\mathbf{h}$ vectors defining the B zone of $\rho^{0}=\{12 \mathbf{g}\}$ and $\rho_{\lambda} \equiv\left\{\lambda_{3}\right\}$ is then split into two subsets, which are specific for each partner $\lambda_{4}^{l}$ of $\lambda_{3}$.
A similar scheme is adopted for the selected exchange integrals (see previous section) whose pseudo charges do not overlap appreciably. The default value of the penetration parameter is 10.

The total energy change due to the bipolar expansion approximation should not be greater than $10^{-4}$ hartree/atom; exact evaluation of all the bielectronic integrals (obtained by setting the penetration parameter value $>20000$ ) increases the computational cost by a factor of between 1.3 and 3. Multipolar expansion is very efficient, because the following two conditions are fulfilled:

1. A general algorithm is available for reaching high $\ell$ values easily and economically 61, 197. The maximum allowed value is $\ell=6$.
2. The multipolar series converges rapidly, either because the interacting distributions are nearly spherical (shell expansion), or because their functional expression is such that their multipoles are zero above a certain (low) $\ell$ value.

### 17.6 Exploitation of symmetry

Translational symmetry allows the factorization of the eigenvalue problem in periodic calculations, because the Bloch functions are a basis for irreducible representations of the translational group.
In periodic calculations, point symmetry is exploited to reduce the number of points for which the matrix equations are to be solved. Point symmetry is also explicitly used in the reconstruction of the Hamiltonian, which is totally symmetric with respect to the point group operators of the system.
In the HF-CO-LCAO scheme, the very extensive use of point symmetry allows us to evaluate bielectronic and mono-electronic integrals with saving factors as large as $h$ in the number of bielectronic integrals to be computed or $h^{2}$ in the number of those to be stored for the SCF part
of the calculation, where $h$ is the order of the point group. The main steps of the procedure [54] can be summarized as follows:

- The set of Coulomb and exchange integrals whose 3,4 indices identify translationally equivalent pairs of AOs , so that the associated element of the density matrix $P_{34}$ is the same, are summed together to give $D_{1234}$ elements:

$$
\begin{equation*}
D_{1,2 T ; 3,4 Q}=\sum_{\mathbf{n}}\left[\left(\varphi_{1}^{\mathbf{0}} \varphi_{2}^{\mathbf{g}} \mid \varphi_{3}^{\mathbf{h}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}\right)-1 / 2\left(\varphi_{1}^{\mathbf{0}} \varphi_{3}^{\mathbf{h}} \mid \varphi_{2}^{\mathbf{g}} \varphi_{4}^{\mathbf{h}+\mathbf{n}}\right)\right] \tag{17.21}
\end{equation*}
$$

- The products of AOs $\varphi_{1} \varphi_{2}$ ( and $\varphi_{3} \varphi_{4}$ ) are classified in symmetry-related sets; using the fact that the Fock matrix is totally symmetric, only those quantities are evaluated whose indices 1,2 refer to the first member of a symmetry set. The corresponding saving factor is as large as $h$.
- Using the symmetry properties of the density matrix, D quantities referring to 3 , 4 , couples belonging to the same symmetry set (and with the same $1,2 \mathrm{~g}$ index) can be combined after multiplication by appropriate symmetry matrices, so that a single quantity for each 3,4 symmetry set is to be stored, with a saving factor in storage of the order of $h$.
- The symmetry $\mathrm{P}_{34}^{\mathrm{n}}=\mathrm{P}_{43}^{-\mathbf{n}}$ is exploited.
- The symmetry $\mathrm{F}_{12}^{\mathbf{g}}=\mathrm{F}_{21}^{-\mathbf{g}}$ is exploited.


## Symmetry-adapted Crystalline Orbitals

A computational procedure for generating space-symmetry-adapted Bloch functions, when BF are built from a basis of local functions (AO), is implemented in the CRYSTAL98 code. The method, that applies to any space group and AOs of any quantum number, is based on the diagonalization of Dirac characters. For its implementation, it does not require character tables or related data as an input, since the information is automatically generated starting from the space group symbol and the AO basis set. Formal aspects of the method, not available in textbooks, are discussed in:
C. M. Zicovich-Wilson and R. Dovesi

On the use of Symmetry Adapted Crystalline Orbitals in SCF-LCAO periodic calculations. I. The construction of the Symmetrized Orbitals
Int. J. Quantum Chem. 67, 299-310 (1998)
C. M. Zicovich-Wilson and R. Dovesi

On the use of Symmetry Adapted Crystalline Orbitals in SCF-LCAO periodic calculations. II. Implementation of the Self-Consistent-Field scheme and examples
Int. J. Quantum Chem. 67, 311-320 (1998).
The following table presents the performance obtained with the new method. In all cases convergence is reached in ten cycles.

| System | Chabazite | Pyrope | Faujasite |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |
| Space Group |  | $R \overline{3} m$ |  | $I a 3 d$ | $F d 3 m$ |
| N. of atoms |  | 36 |  | 80 | 144 |
| N. of AOs |  | 432 |  | 1200 | 1728 |
| N. symmetry operators | 6 | 3 | 48 | 48 |  |
| CPU time (sec) on IBM RISC-6000/365 |  |  |  |  |  |
| integrals | 447 | 900 | 1945 | 4286 | 815 |
| Atomic BF(ABF) scf (total) | 1380 | 2162 | 4613 | 24143 | 50975 |
| Atomic BF scf (diagonalization) | 898 | 898 | 898 | 19833 | 44970 |
| Symmetry Adapted BF (SABF) scf (total) | 526 | 1391 | 4335 | 3394 | 2729 |
| Symmetry Adapted BF scf (diagonalization) | 42 | 97 | 570 | 312 | 523 |
| ABF/SABF scf time | 2.62 | 1.55 | 1.06 | 7.11 | 18.7 |

### 17.7 Reciprocal space integration

The integration in reciprocal space is an important aspect of ab initio calculations for periodic structures. The problem arises at each stage of the self-consistent procedure, when determining the Fermi energy, $\epsilon_{F}$, when reconstructing the one-electron density matrix, and, after selfconsistency is reached, when calculating the density of states (DOS) and a number of observable quantities. The P matrix in direct space is computed following equation 17.9 . The technique adopted to compute $\epsilon_{F}$ and the P matrix in the SCF step is described in reference 80 . The Fourier-Legendre technique presented in Chapter II. 6 of reference [175] is adopted in the calculation of total and projected DOS. The Fermi energy and the integral in equation 17.9 are evaluated starting from the knowledge of the eigenvalues, $\epsilon_{n}(\mathrm{k})$ and the eigenvectors, $a_{\mu n}(\mathbf{k})$, at a certain set of sampling points, $\{\kappa\}$. In 3 D crystals, the sampling points belong to a lattice (called the Monkhorst net, [148] ) with basis vectors $\mathbf{b}_{1} / s_{1}, \mathbf{b}_{2} / s_{2}, \mathbf{b}_{3} / s_{3}$, where $\mathbf{b}_{1}, \mathbf{b}_{2}$ and $\mathbf{b}_{3}$ are the ordinary reciprocal lattice vectors; $s_{1}, s_{2}$ and $s_{3}$ (input as IS1, IS2 and IS3) are integer shrinking factors. Unless otherwise specified, IS1 $=\mathrm{IS} 2=\mathrm{IS} 3=\mathrm{IS}$. In 2D crystals, IS3 is set equal to 1 ; in 1D crystals both IS2 and IS3 are set equal to 1 . Only points of the Monkhorst net belonging to the irreducible part of the Brillouin Zone (BZ) are considered, with associated geometrical weights, $w_{i}$.
In the selection of the $\kappa$ points for non-centrosymmetric crystal, time-reversal symmetry is exploited $\left(\epsilon_{n}(\kappa)=\epsilon_{n}(-\kappa)\right)$.
The number of inequivalent sampling points, $\kappa_{i}$, is asymptotically given by the product of the shrinking factors divided by the order of the point group. In high symmetry systems and with small $s_{i}$ values, it may be considerably larger because many points lie on symmetry planes or axes.
Two completely different situations (which are automatically identified by the code) must now be considered, depending on whether the system is an insulator (or zero gap semiconductor), or a conductor. In the former case, all bands are either fully occupied or vacant. The identification of $\epsilon_{F}$ is elementary, and the Fourier transform expressed by equation 17.9 is reduced to a weighted sum of the integrand function over the set $\left\{\kappa_{\mathbf{i}}\right\}$ with weights $w_{i}$, the sum over n being limited to occupied bands.
The case of conductors is more complicated; an additional parameter, ISP, enter into play. ISP (or ISP1, ISP2, ISP3) are Gilat shrinking factors which define a net Gilat net 98, 97, completely analogous to the Monkhorst net. The value of ISP is larger than IS (by up to a factor of 2 ), giving a denser net.
In high symmetry systems, it is convenient to assign IS magic values such that all low multiplicity (high symmetry) points belong to the Monkhorst lattice. Although this choice does not correspond to maximum efficiency, it gives a safer estimate of the integral.
The value assigned to ISP is irrelevant for non-conductors. However, a non-conductor may give rise to a conducting structure at the initial stages of the SCF cycle, owing, for instance, to a very unbalanced initial guess of the density matrix. The ISP parameter must therefore be defined in all cases.

### 17.8 Electron momentum density and related quantities

Three functions may be computed which have the same information content but different use in the discussion of theoretical and experimental results; the momentum density itself, $\pi(\mathbf{p})$ or EMD; the Compton profile function, $J(\mathbf{p})$ or CP; the autocorrelation function, or reciprocal space form factor, or internally-folded density, $B(\mathbf{r})$ or BR .
With reference to a Crystalline-Orbital (CO)-LCAO wave function, the EMD can be expressed as the sum of the squared moduli of the occupied COs in a momentum representation, or equivalently, as the diagonal element of the six-dimensional Fourier transform of the oneelectron density matrix from configuration to momentum space:

$$
\begin{align*}
& \pi(\mathbf{p})=\sum_{n}^{o c c} \sum_{\mu \nu} e^{i \mathbf{p} \cdot\left(\mathbf{s}_{\mu}-\mathbf{s}_{\nu}\right)} C_{\mu n}\left(\mathbf{p}_{0}\right) C_{\nu n}^{*}\left(\mathbf{p}_{0}\right) \chi_{\mu}(\mathbf{p}) \chi_{\nu}^{*}(\mathbf{p}) \theta\left(\epsilon_{F}-\epsilon_{n}\left(\mathbf{p}_{0}\right)\right)  \tag{17.22}\\
& \pi(\mathbf{p})=\sum_{\mu \nu} \sum_{\mathbf{g}} P_{\mu \nu}^{\mathbf{g}} e^{i \mathbf{p}\left(\mathbf{S}_{\mu}-\mathbf{g}-\mathbf{s}_{\nu}\right)} \chi_{\mu}(\mathbf{p}) \chi_{\nu}^{*}(\mathbf{p}) \tag{17.23}
\end{align*}
$$

In the above equations $\mathbf{p}_{0}$ is the value of momentum in the Brillouin zone (BZ), which is related to $\mathbf{p}$ by a reciprocal lattice vector $\mathbf{K}, \mathbf{s}_{\mu}$ is the fractional coordinate of the $\chi_{\mu}$ centre, and $\chi_{\mu}(\mathbf{p})$ is the Fourier transform of $\chi_{\mu}(\mathbf{r})$, calculated analytically:

$$
\begin{equation*}
\chi_{\mu}(\mathbf{p})=\int d \mathbf{r} \chi_{\mu}(\mathbf{r}) e^{-\imath \mathbf{p} \cdot \mathbf{r}} \tag{17.24}
\end{equation*}
$$

The two expressions 17.22 and 17.23 are implemented in CRystal and can be used via the EMDL (EMDP) and EMDLDM (EMDPDM) keywords, respectively for EMD along a line (in a plane). Let us note, however, that the default choice for keywords EMDL and EMDP is that of computing the core band contribution via equation 17.23 and the valence band contribution via equation 17.22 .
At variance with the electron charge density $\rho(\mathbf{r})$, it is generally difficult to fully exploit the information content of the EMD $\pi(\mathbf{p})$ due to its "collapsed" character about the origin $\mathbf{p}=\mathbf{0}$ in momentum space. A relatively simple way of extracting information from the total EMD of a system, is analyzing its anisotropy $\Delta \pi(\mathbf{p})$ with respect to its Spherical Average (SA) function $\pi_{S A}(p)$ which is, of course, a "radial" function of a single variable:

$$
\begin{equation*}
\Delta \pi(\mathbf{p})=\pi(\mathbf{p})-\pi_{S A}(p) \quad \text { where } \quad p=|\mathbf{p}| \tag{17.25}
\end{equation*}
$$

The average value $\pi_{S A}(p)$ of the function $\pi(\mathbf{p})$ over the surface of a sphere with radius $p$, can be computed as the average of the function values at the 60 points $\mathbf{p}_{n}$ (with $n=1, \ldots, 60$ ) lying on that surface which form an orbit under the icosahedral group. It is possible to exploit the smoothed character of the spherically averaged EMD $\pi_{S A}(p)$ by explicitly evaluating it on a coarse set of values of $p$ and then by interpolating them (we use a cubic spline). Spherically averaged EMD and EMD-anisotropies can be evaluated via the EMDLDM and EMDPDM keywords.
A directional Compton profile $J_{h k l}(p)$ is related to a particular crystallographic directions $[h k l]$, identified by the unit vector $\mathbf{e}_{h k l}$ where $h k l$ are the Miller indices. The directional CP $J_{h k l}(p)$ contains information about the distribution of the electron's momenta along the [ $h k l]$ direction of the crystal and can be defined as the 2D integration of $\pi(\mathbf{p})$ over a plane perpendicular to $\mathbf{e}_{h k l}$ through $p \mathbf{e}_{h k l}$ :

$$
\begin{equation*}
J_{h k l}(p)=\int \pi(\mathbf{p}) \delta\left(\mathbf{p} \cdot \mathbf{e}_{h k l}-p\right) d \mathbf{p} \tag{17.26}
\end{equation*}
$$

The weighted average of the directional CPs over all directions is the average CP. Both directional and average CPs can be computed following the expression 17.26) via the PROF keyword.
The one-dimensional Fourier transform of a directional CP, gives the so-called directional autocorrelation function $B_{h k l}(r)$ :

$$
\begin{align*}
B_{h k l}(r) & =\int J_{h k l}(p) e^{-\imath p r} d p  \tag{17.27}\\
J_{h k l}(p) & =\frac{1}{2 \pi} \int B_{h k l}(r) e^{\imath p r} d r \tag{17.28}
\end{align*}
$$

Directional CPs can be computed from the corresponding directional auto-correlation function via the keyword BIDIERD.
Within the sudden-impulse approximation, $J_{h k l}(p)$ is directly comparable to the outcome of Compton scattering experiments, after correcting the latter for limited resolution and multiple scattering effects. In particular, the effect of limited resolution can be expressed as a convolution of the "infinite resolution" data with a normalized Gaussian function $g\left(p ; \sigma_{c p}\right)$
characterized by a given standard deviation $\sigma_{c p}$ (or, equivalently, by the fwhm parameter $w_{c p}=\sigma_{c p} \cdot 2 \sqrt{2 \log 2}$ ) which quantifies the experimental resolution:

$$
\begin{align*}
J_{h k l}^{\sigma}(p) & =\int_{-\infty}^{+\infty} J_{h k l}\left(p^{\prime}\right) g\left(p-p^{\prime} ; \sigma_{c p}\right) d p^{\prime}= \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} B_{h k l}^{\sigma}(r) e^{-\imath p r} d r \tag{17.29}
\end{align*}
$$

In the last integrand a "finite resolution AF" appears, which is simply the product of the AF from equation (17.27) by a Gaussian function $g\left(r, \sigma_{b r}\right)$, with $\sigma_{b r}=1 / \sigma_{c p}$, and can be extracted from the experimental CP simply by Fourier back-transformation.
The expectation value of the kinetic energy operator $\hat{T}$ (i.e the kinetic energy of the system $E_{k i n}$ ) can be expressed in terms of the second moment of the electron momentum distribution $\pi(\mathbf{p})$ as follows:

$$
\begin{equation*}
E_{k i n}=\langle\hat{T}\rangle=\frac{1}{2} \int \pi(\mathbf{p}) \mathbf{p}^{2} d \mathbf{p} \stackrel{\text { virial }}{=}-E_{0} \tag{17.30}
\end{equation*}
$$

where the last passage recalls that, if the virial theorem is satisfied, the kinetic energy equals (apart from the sign that is opposite) the total energy of the system. Let us introduce the kinetic tensor $\mathbf{T}$ whose elements $T_{u v}$ can be defined as:

$$
\begin{equation*}
T_{u v}=\frac{1}{2} \int \pi(\mathbf{p}) p_{u} p_{v} d \mathbf{p} \quad \text { with } \quad u, v=x, y, z \tag{17.31}
\end{equation*}
$$

The kinetic energy of the system is then the trace of the kinetic tensor:

$$
\begin{equation*}
E_{k i n}=\langle\hat{T}\rangle=\operatorname{Tr}(\mathbf{T}) \tag{17.32}
\end{equation*}
$$

The kinetic tensor can be computed via the KINETEMD keyword of Properties.
A possible strategy for partitioning the electron momentum density (EMD) of a periodic system into chemically meaningful contributions is that of exploiting the spatially localized character of Wannier functions (WF).
Let us introduce the so-called Wannier functions that are real-valued, well localized functions of $\mathbf{r}$, which span altogether the same space as the occupied COs and are translationally equivalent and mutually orthonormal:

$$
\begin{gather*}
W_{i, \mathbf{0}}(\mathbf{r})=W_{i, \mathbf{g}}(\mathbf{r}+\mathbf{g})  \tag{17.33}\\
\int W_{i, \mathbf{g}}(\mathbf{r}) W_{i^{\prime}, \mathbf{g}^{\prime}}(\mathbf{r}) d \mathbf{r}=\delta_{i i^{\prime}} \delta_{\mathbf{g g}^{\prime}} \tag{17.34}
\end{gather*}
$$

Such functions are in turn expressed as LCAO:

$$
\begin{equation*}
W_{i, \mathbf{g}}(\mathbf{r})=\sum_{\mu} \sum_{\mathbf{g}^{\prime}} w_{i, \mathbf{g} ; \mu \mathbf{g}^{\prime}} \chi_{\mu}\left(\mathbf{r}-\mathbf{s}_{\mu}-\mathbf{g}^{\prime}\right) \tag{17.35}
\end{equation*}
$$

The WFs can be obtained from the set of occupied COs via a unitary transformation that imposes spatial localization. Let us express the EMD in terms of WFs:

$$
\begin{align*}
\pi(\mathbf{p}) & =\frac{2}{L} \sum_{i=1}^{N_{0} / 2} \sum_{\mathbf{g}}^{L} W_{i, \mathbf{g}}(\mathbf{p}) W_{i, \mathbf{g}}(\mathbf{p})^{*}  \tag{17.36}\\
& =2 \sum_{i=1}^{N_{0} / 2} W_{i, \mathbf{0}}(\mathbf{p}) W_{i, \mathbf{0}}(\mathbf{p})^{*}  \tag{17.37}\\
& =\sum_{i=1}^{N_{0} / 2} \pi_{i}(\mathbf{p}) \quad \text { with } \quad \pi_{i}(\mathbf{p})=2 W_{i, \mathbf{0}}(\mathbf{p}) W_{i, \mathbf{0}}(\mathbf{p})^{*} \tag{17.38}
\end{align*}
$$

where $N_{0}$ is the number of electrons per cell, $L$ the number of cells in the cyclic cluster; in the second passage we have exploited the translational equivalence of the WFs and in the last
passage we make explicit the partition of the total EMD in contributions $\pi_{i}(\mathbf{p})$ coming from the different WFs.
Let us define a momentum WF $W_{i, \mathbf{g}}(\mathbf{p})$ as:

$$
\begin{align*}
W_{i, \mathbf{g}}(\mathbf{p}) & =\int d \mathbf{r} W_{i, \mathbf{0}}(\mathbf{r}-\mathbf{g}) e^{-\imath \mathbf{p} \cdot \mathbf{r}}  \tag{17.39}\\
& =e^{-\imath \mathbf{p} \cdot \mathbf{g}} \int d \mathbf{r} W_{i, \mathbf{0}}(\mathbf{r}) e^{-\imath \mathbf{p} \cdot \mathbf{r}}  \tag{17.40}\\
& =e^{-\imath \mathbf{p} \cdot \mathbf{g}} \sum_{\mu} \sum_{\mathbf{g}^{\prime}} w_{i, \mathbf{0} ; \mu \mathbf{g}^{\prime}} e^{-\imath \mathbf{p} \cdot\left(\mathbf{s}_{\mu}+\mathbf{g}^{\prime}\right)} \chi_{\mu}(\mathbf{p}) \tag{17.41}
\end{align*}
$$

Substitution of equation 17.41 into equation 17.37 gives, for the total EMD:

$$
\begin{equation*}
\pi(\mathbf{p})=2 \sum_{i=1}^{N_{0} / 2} \sum_{\mu} \sum_{\nu} \sum_{\mathbf{g}} \sum_{\mathbf{g}^{\prime}} w_{i, \mathbf{0} ; \mu \mathbf{g}} w_{i, \mathbf{0} ; \nu \mathbf{g}^{\prime}} e^{-\imath \mathbf{p} \cdot\left(\mathbf{s}_{\mu}-\mathbf{s}_{\nu}+\mathbf{g}-\mathbf{g}^{\prime}\right)} \chi_{\mu}(\mathbf{p}) \chi_{\nu}^{*}(\mathbf{p}) \tag{17.42}
\end{equation*}
$$

Also the total anisotropy $\Delta \pi(\mathbf{p})$ can be partitioned into contributions coming from the different WFs:

$$
\begin{equation*}
\Delta \pi(\mathbf{p})=\sum_{i}^{N_{0} / 2} \Delta \pi_{i}(\mathbf{p}) \quad \text { with } \quad \Delta \pi_{i}(\mathbf{p})=\pi_{i}(\mathbf{p})-\frac{\pi_{S A}(p)}{N_{0} / 2} \tag{17.43}
\end{equation*}
$$

If one considers as negligible the contribution of core electrons to the total anisotropy of the EMD, can rewrite the previous partitioning as follows:

$$
\begin{equation*}
\Delta \pi(\mathbf{p})=\sum_{i}^{N_{v} / 2} \Delta \pi_{i}(\mathbf{p}) \quad \text { with } \quad \Delta \pi_{i}(\mathbf{p})=\pi_{i}(\mathbf{p})-\frac{\pi_{S A}(p)}{N_{v} / 2} \tag{17.44}
\end{equation*}
$$

where $N_{v}$ is the number of valence electrons. Both EMD and EMD-anisotropies from selected WFs can be computed via the EMDWF sub-keyword of LOCALWF that activates the localization of crystalline orbitals into WFs.
Given the contribution $\pi_{i}(\mathbf{p})$ of WF $i$ to the EMD of the system, a kinetic tensor $\mathbf{T}^{i}$ can be introduced whose elements $T_{u v}^{i}$ can be defined as:

$$
\begin{equation*}
T_{u v}^{i}=\frac{1}{2} \int \pi_{i}(\mathbf{p}) p_{u} p_{v} d \mathbf{p} \quad \text { with } \quad u, v=x, y, z \tag{17.45}
\end{equation*}
$$

The computation of such a tensor can be activated via the EMDWFKIN sub-keyword of LOCALWF.

### 17.9 Elastic Moduli of Periodic Systems

The elastic constants are second derivatives of the energy density with respect to strain components:

$$
\begin{equation*}
C_{i j}=1 / V \cdot \frac{\partial^{2} E}{\partial \epsilon_{i} \partial \epsilon_{j}} \tag{17.46}
\end{equation*}
$$

where $V$ is the volume of the cell. The energy derivatives must be evaluated numerically. Particular care is required in the selection of the computational parameters and of the points where the energy is evaluated, in order to avoid large numerical errors in the fitting procedure (FIXINDEX, page 93 OPTGEOM, page 156).

See http://www.crystal.unito.it $\Rightarrow$ tutorials $\Rightarrow$ Elastic and piezoelectric tensors
When the unit cell is deformed, the point group is reduced to a subgroup of the original point group (see examples below). The new point group is automatically selected by the code. Off-diagonal (partial derivatives) elastic constants can be computed as linear combinations of single-variable energy curves. For example, for a cubic system, $C_{12}$ can be obtained from $\mathrm{B}=\left(C_{11}+2 C_{12}\right) / 3$ and $\left(C_{11}-C_{12}\right)$ (see examples below). Following the deformation of the
unit cell, internal relaxation of the atoms may be necessary (depending on the space group symmetry) See test 20, referring to $\mathrm{Li}_{2} \mathrm{O}$.
The analysis of the point group at the atomic positions (printed by the ATOMSYMM option, page 40) is useful in finding the atomic coordinates to be relaxed. Examples of deformation strategies are discussed in references [62, 40].
In a crystalline system a point $\mathbf{r}$ is usually defined in terms of its fractional components:

$$
\mathbf{r}=\mathbf{h} \mathbf{L}_{p}
$$

where :

$$
\begin{align*}
\mathbf{L}_{p}=\left[\begin{array}{l}
\mathbf{l}_{1} \\
\mathbf{l}_{2} \\
\mathbf{l}_{3}
\end{array}\right] & =\left[\begin{array}{lll}
l_{1 x} & l_{1 y} & l_{1 z} \\
l_{2 x} & l_{2 y} & l_{2 z} \\
l_{3 x} & l_{3 y} & l_{3 z}
\end{array}\right]  \tag{17.47}\\
V & =\operatorname{det}\left(\mathbf{L}_{p}\right)
\end{align*}
$$

$\mathbf{l}_{1}, \mathbf{l}_{2}, \mathbf{l}_{3}$ are the fundamental vectors of the primitive cell, $\mathbf{h}$ is the fractional vector and $V$ the cell volume.
$\mathbf{L}_{p}$ can be computed from the six cell parameters $a, b, c, \alpha, \beta, \gamma$. For instance, the matrix $\mathbf{L}_{p}$ for a face centred cubic lattice with lattice parameter $a$ has the form:

$$
\mathbf{L}_{p}=\left[\begin{array}{ccc}
0 & a / 2 & a / 2 \\
a / 2 & 0 & a / 2 \\
a / 2 & a / 2 & 0
\end{array}\right]
$$

Under an elastic strain, any particle at $\mathbf{r}$ migrates microscopically to $\mathbf{r}^{\prime}$ according to the relation:

$$
\mathbf{r}^{\prime}=\mathbf{r}(\mathbf{I}+\epsilon)
$$

where $\epsilon$ is the symmetric Lagrangian elastic tensor. In the deformed crystalline system:

$$
\begin{gather*}
\mathbf{r}^{\prime}=\mathbf{h} \mathbf{L}_{p}^{\prime} \\
\mathbf{L}_{p}^{\prime}=(\mathbf{I}+\epsilon) \mathbf{L}_{p} \tag{17.48}
\end{gather*}
$$

or:

$$
\begin{equation*}
\mathbf{L}_{p}^{\prime}=\mathbf{L}_{p}+\mathbf{Z} \tag{17.49}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathbf{Z}=\epsilon \mathbf{L}_{p} \\
V^{\prime}=\operatorname{det}\left(\mathbf{L}_{p}^{\prime}\right)
\end{gathered}
$$

The deformation may be constrained to be volume-conserving, in which case the lattice vectors of the distorted cell must be scaled as follows:

$$
\begin{equation*}
\mathbf{L}_{p} "=\mathbf{L}_{p}^{\prime} \dot{( }\left(V / V^{\prime}\right)^{1 / 3} \tag{17.50}
\end{equation*}
$$

If a non-symmetric Lagrangian elastic tensor, $\eta$, is used, instead of $\epsilon$, the deformation is the sum of a strain $(\epsilon)$ and a rotation $(\omega)$ of the crystal:

$$
\begin{aligned}
& \epsilon=\left(\eta+\eta^{+}\right) / 2 \\
& \omega=\left(\eta-\eta^{+}\right) / 2
\end{aligned}
$$

The total energy of the crystal is invariant to a pure rotation, which allows non-symmetric $\eta$ matrices to be employed. However, a non-symmetric deformation will lower the symmetry of the system, and therefore increase the complexity of the calculation, since the cost required is roughly inversely proportional to the order of the point group.
The elastic constants of a crystal are defined as the second derivatives of the energy with respect to the elements of the infinitesimal Lagrangian strain tensor $\epsilon$.

Let us define, according to the Voigt convention:

$$
\begin{array}{ll}
\epsilon_{1}=\epsilon_{11} & \epsilon_{4}=\epsilon_{32}+\epsilon_{23} \\
\epsilon_{2}=\epsilon_{22} & \epsilon_{5}=\epsilon_{13}+\epsilon_{31} \\
\epsilon_{3}=\epsilon_{33} & \epsilon_{6}=\epsilon_{12}+\epsilon_{21}
\end{array}
$$

A Taylor expansion of the energy of the unit cell to second order in the strain components yields:

$$
\begin{equation*}
E(\epsilon)=E(\mathbf{0})+\sum_{i}^{6} \frac{\partial E}{\partial \epsilon_{i}} \epsilon_{i}+1 / 2 \sum_{i, j}^{6} \frac{\partial^{2} E}{\partial \epsilon_{i} \partial \epsilon_{j}} \epsilon_{i} \epsilon_{j} \tag{17.51}
\end{equation*}
$$

If $E(\mathbf{0})$ refers to the equilibrium configuration the first derivative is zero, since there is no force on any atom in equilibrium. The elastic constants of the system can be obtained by evaluating the energy as a function of deformations of the unit cell parameters. The indices of the non-zero element(s) (in the Voigt convention) of the $\epsilon$ matrix give the corresponding elastic constants.

## Examples of $\epsilon$ matrices for cubic systems

Consider a face-centred cubic system, for example $\mathrm{Li}_{2} \mathrm{O}$, with the Fm 3 m space group.
For cubic systems there are only three independent elastic constants $\left(C_{11}, C_{12}\right.$ and $\left.C_{44}\right)$, as the symmetry analysis shows that:

$$
\begin{aligned}
& C_{11}=C_{22}=C_{33} \\
& C_{44}=C_{55}=C_{66} \\
& C_{12}=C_{13}=C_{23} ; \\
& C_{i j}=0 \quad \text { for } i=1,6, \quad j=4,6 \quad \text { and } i \neq j .
\end{aligned}
$$

## Calculation of $C_{11}$

The $\epsilon$ matrix for the calculation of $C_{11}$ is

$$
\epsilon=\left[\begin{array}{lll}
\delta & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The energy expression is:

$$
E(\delta)=E(0)+1 / 2 \frac{\partial^{2} E}{\partial \epsilon_{1}^{2}} \delta^{2}+\cdots=a+b \delta^{2}+c \delta^{3} \cdots
$$

where $a, b, c$ are the coefficients of a polynomial fit of $E$ versus $\delta$, usually truncated to fourth order (see examples below). Then

$$
C_{11}=1 / V \frac{\partial^{2} E}{\partial \epsilon_{1}^{2}}=\frac{2 b}{V}
$$

The above distortion reduces the number of point symmetry operators to 12 (tetragonal distortion).

## Calculation of $C_{11}-C_{12}$

The $\epsilon$ matrix for the calculation of the $C_{11}-C_{12}$ combination has the form:

$$
\epsilon=\left[\begin{array}{ccc}
\delta & 0 & 0 \\
0 & -\delta & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The energy expression is:

$$
\begin{aligned}
E\left(\epsilon_{1}, \epsilon_{2}\right)= & E(0,0)+1 / 2 \frac{\partial^{2} E}{\partial \epsilon_{1}^{2}} \delta^{2}+1 / 2 \frac{\partial^{2} E}{\partial \epsilon_{2}^{2}} \delta^{2}-\frac{\partial^{2} E}{\partial \epsilon_{1} \partial \epsilon_{2}} \delta^{2}+\cdots= \\
& =E(0,0)+V\left(C_{11}-C_{12}\right) \delta^{2}+\cdots=a+b \delta^{2}+\cdots
\end{aligned}
$$

Then $C_{11}-C_{12}=b / V$
With the previous form of the $\epsilon$ matrix the number of point symmetry operators is reduced to 8 , whereas the following $\epsilon$ matrix reduces the number of point symmetry operators to 16 :

$$
\begin{gathered}
\epsilon=\left[\begin{array}{ccc}
\delta & 0 & 0 \\
0 & \delta & 0 \\
0 & 0 & -2 \delta
\end{array}\right] \\
E\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=E(0,0,0)+3 V\left(C_{11}-C_{12}\right) \delta^{2}+\cdots=a+b \delta^{2}+\cdots
\end{gathered}
$$

and $\left(C_{11}-C_{12}\right)=b / 3 V$

## Calculation of $C_{44}$

Monoclinic deformation, 4 point symmetry operators.
The $\epsilon$ matrix has the form:

$$
\epsilon=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & x \\
0 & x & 0
\end{array}\right]
$$

The energy expression is $(\delta=2 x)$ (see Voigt convention and equation 17.51)

$$
E\left(\epsilon_{4}\right)=E(0)+1 / 2 \frac{\partial^{2} E}{\partial \epsilon_{4}^{2}} \delta^{2}+\cdots=E(0)+2 \frac{\partial^{2} E}{\partial \epsilon_{4}^{2}} x^{2}+\cdots=a+b x^{2}+\cdots
$$

so that $C_{44}=b / 2 V$.

## Calculation of $C_{44}$

Rhombohedral deformation, 12 point symmetry operators.
The $\epsilon$ matrix has the form:

$$
\epsilon=\left[\begin{array}{lll}
0 & x & x \\
x & 0 & x \\
x & x & 0
\end{array}\right]
$$

The energy expression is $\left(\delta=2 x, C_{45}=C_{46}=C_{56}=0\right)$

$$
E\left(\epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right)=E(0)+3 / 2 \frac{\partial^{2} E}{\partial \epsilon_{4}^{2}} \delta^{2}+\cdots=E(0)+6 \frac{\partial^{2} E}{\partial \epsilon_{4}^{2}} x^{2}+\cdots=a+b x^{2}+\cdots
$$

so that $C_{44}=b / 6 \mathrm{~V}$.

## Bulk modulus

The bulk modulus can be evaluated simply by varying the lattice constant, ( 1 in cubic systems) without the use of the $\epsilon$ matrix, and fitting the curve $E(V)$.
If the $\epsilon$ matrix is used, the relation between B and $C_{i j}$ (cubic systems) must be taken into account:

$$
B=\left(C_{11}+2 C_{12}\right) / 3
$$

The $\epsilon$ matrix has the form:

$$
\epsilon=\left[\begin{array}{lll}
\delta & 0 & 0 \\
0 & \delta & 0 \\
0 & 0 & \delta
\end{array}\right]
$$

and the energy:

$$
\begin{align*}
E(\epsilon) & =E(\mathbf{0})+3 / 2 \frac{\partial^{2} E}{\partial \epsilon_{1}^{2}} \delta^{2}+3 \frac{\partial^{2} E}{\partial \epsilon_{1} \partial \epsilon_{2}} \delta^{2}=  \tag{17.52}\\
& =E(\mathbf{0})+\frac{3 V}{2}\left[C_{11}+2 C_{12}\right] \delta^{2} \tag{17.53}
\end{align*}
$$

so that $B=\frac{2}{9 V} b$
N.B. Conversion factors:

1 hartree $\AA^{-3}=4359.74812 \mathrm{GPa}$
$1 \mathrm{GPa}=1 \mathrm{GN} \mathrm{m}^{-2}=1 \mathrm{GJ} \mathrm{m}^{-3}=10^{10}$ dyne $\mathrm{cm}^{-2}=10^{-2} \mathrm{Mbar}$.

### 17.10 Spontaneous polarization through the Berry phase approach

The electronic phase of a system $\lambda$ in the direction $1, \varphi_{e l}^{(\lambda, 1)}$, can be written as:

$$
\begin{equation*}
\varphi_{e l}^{(\lambda, 1)}=\frac{1}{s 2 s 3} \sum_{j 2, j 3} \sum_{j_{1}} \Delta \varphi_{j_{1}, j_{2}, j_{3}}^{(\lambda, 1)}(\mathbf{k}) \tag{17.54}
\end{equation*}
$$

The electronic contribution to the polarization of a system $\lambda$ can be written as :

$$
\begin{equation*}
\mathbf{P}_{e l}^{(\lambda)}=\frac{1}{\Omega^{(\lambda)}}\left(B^{(\lambda)}\right)^{-1} \varphi_{e l}^{(\lambda)} \tag{17.55}
\end{equation*}
$$

Where $\left(B^{(\lambda)}\right)^{-1}$ is the reciprocal lattice vectors components inverse matrix and $\varphi_{e l}^{(\lambda)}$ the electronic phase difference vector of a system $\lambda$ (which components are $\varphi_{e l}^{(\lambda, i)}$ ). The nuclear contribution to the polarization of a system $\lambda, \mathrm{P}_{n u c}^{(\lambda)}$ can also be written as:

$$
\begin{equation*}
\mathbf{P}_{n u c}^{(\lambda)}=\frac{1}{\Omega^{(\lambda)}} \sum_{A} \mathbf{R}_{A}^{(\lambda)} \cdot Z_{A} \tag{17.56}
\end{equation*}
$$

where $\mathbf{R}_{A}^{(\lambda)}$ and $Z_{A}$ are the position vector and the nuclear charge of the atom A respectively of the system $\lambda$. The total polarization is the sum of these two contributions and can be written as

$$
\begin{equation*}
\mathbf{P}_{t o t}^{(\lambda)}=\mathbf{P}_{n u c}^{(\lambda)}+\mathbf{P}_{e l}^{(\lambda)} \tag{17.57}
\end{equation*}
$$

The spontaneous polarization is the difference between the systems $\lambda=1$ and $\lambda=0$

$$
\begin{equation*}
\mathbf{P}=\mathbf{P}_{t o t}^{(\lambda)}-\mathbf{P}_{t o t}^{(\lambda)} \tag{17.58}
\end{equation*}
$$

## Spontaneous polarization through the localized crystalline orbitals approach

The electronic contribution to the polarization of a system $\lambda, \mathrm{P}_{e l}^{(\lambda)}$, can be written as

$$
\begin{equation*}
\mathbf{P}_{e l}^{(\lambda)}=\frac{e}{\Omega^{(\lambda)}} \sum_{\mu}\left\langle\mathbf{r}_{\mu}\right\rangle \tag{17.59}
\end{equation*}
$$

Where $\left\langle\mathbf{r}_{\mu}\right\rangle$ is the centroid of the Wannier function $\mu$.
The nuclear contribution to the polarization of a system $\lambda, \mathrm{P}_{n u c}^{(\lambda)}$ can also be written as

$$
\begin{equation*}
\mathbf{P}_{n u c}^{(\lambda)}=\frac{1}{\Omega^{(\lambda)}} \sum_{A} \mathbf{R}_{A} \cdot Z_{A} \tag{17.60}
\end{equation*}
$$

where $\mathbf{R}_{A}$ and $Z_{A}$ are the position vector and the nuclear charge of the atom A respectively. The total polarization is the sum of these two contributions and can be written as

$$
\begin{equation*}
\mathbf{P}_{t o t}^{(\lambda)}=\mathbf{P}_{n u c}^{(\lambda)}+\mathbf{P}_{e l}^{(\lambda)} \tag{17.61}
\end{equation*}
$$

The spontaneous polarization is the difference between the both systems $\lambda=1$ and $\lambda=0$ :

$$
\begin{equation*}
\mathbf{P}=\mathbf{P}_{t o t}^{(1)}-\mathbf{P}_{t o t}^{(2)} \tag{17.62}
\end{equation*}
$$

To calculate the spontaneous polarization, a preliminary run is needed for each of the two systems $\lambda=1$ and $\lambda=0$. Then a third run with the keyword SPOLWF gives the difference of polarization between systems $\lambda=1$ and $\lambda=0$.

### 17.11 Piezoelectricity through the Berry phase approach

The electronic phase vector of a system $\lambda$, is given by 3.1). The nuclear phase vector of a system $\lambda, \varphi_{\text {nuc }}^{(\lambda)}$, can be written as

$$
\begin{equation*}
\varphi_{n u c}^{(\lambda)}=\Omega^{(\lambda)} B^{(\lambda)} \mathbf{P}_{n u c}^{(\lambda)} \tag{17.63}
\end{equation*}
$$

Where $B^{(\lambda)}$ reciprocal lattice vectors components matrix. The last equation can be simplified thanks to 17.56:

$$
\begin{equation*}
\varphi_{n u c}^{(\lambda)}=B^{(\lambda)} \sum_{A} \mathbf{R}_{A}^{(\lambda)} \cdot Z_{A} \tag{17.64}
\end{equation*}
$$

So the phase vector of a system $\lambda, \varphi^{(\lambda)}$ is:

$$
\begin{equation*}
\varphi^{(\lambda)}=\varphi_{n u c}^{(\lambda)}+\varphi_{e l}^{(\lambda)} \tag{17.65}
\end{equation*}
$$

The proper piezoelectric constants can be obtained by:

$$
\begin{equation*}
\tilde{e}_{i j k}=-\frac{1}{2 \pi} \frac{1}{\Omega} \sum_{\alpha} \frac{d \varphi_{\alpha}}{d \epsilon_{j k}} a_{\alpha, i} \tag{17.66}
\end{equation*}
$$

Where $\varphi_{\alpha}$ is projection of the phase $\varphi$ along the $\alpha$ direction and $a_{\alpha, i}$ is the component of a lattice vector $a_{\alpha}$ along the cartesian axis $i$. To obtain the improper piezoelectric constants, the following correction must done:

$$
\begin{equation*}
e_{i j k}=\tilde{e}_{i j k}+\delta_{i j} P_{k}-\delta_{j k} P_{i} \tag{17.67}
\end{equation*}
$$

In the piezoelectric constants calculations the $\frac{d \varphi_{\alpha}}{d \epsilon_{j k}}$ term is evaluated numerically. The calculated term is:

$$
\begin{equation*}
\frac{d \varphi_{\alpha}}{d \epsilon_{j k}} \simeq \frac{\Delta \varphi_{\alpha}}{\Delta \epsilon_{j k}}=\frac{\varphi_{\alpha}^{(1)}-\varphi_{\alpha}^{(0)}}{\epsilon_{j k}^{(1)}-\epsilon_{j k}^{(0)}} \tag{17.68}
\end{equation*}
$$

## Piezoelectricity through the localized crystalline orbitals approach

The electronic phase vector of a system $\lambda$, is given by:

$$
\begin{equation*}
\varphi_{e l}^{(\lambda)}=\Omega^{(\lambda)} B^{(\lambda)} \mathbf{P}_{e l}^{(\lambda)} \tag{17.69}
\end{equation*}
$$

Where $B^{(\lambda)}$ reciprocal lattice vectors components matrix. The nuclear phase vector of a system $\lambda, \varphi_{n u c}^{(\lambda)}$, can be written as

$$
\begin{equation*}
\varphi_{n u c}^{(\lambda)}=\Omega^{(\lambda)} B^{(\lambda)} \mathbf{P}_{n u c}^{(\lambda)} \tag{17.70}
\end{equation*}
$$

The last equation can be simplified thanks to 17.56

$$
\begin{equation*}
\varphi_{n u c}^{(\lambda)}=B^{(\lambda)} \sum_{A} \mathbf{R}_{A}^{(\lambda)} \cdot Z_{A} \tag{17.71}
\end{equation*}
$$

So the phase vector of a system $\lambda, \varphi^{(\lambda)}$ is:

$$
\begin{equation*}
\varphi^{(\lambda)}=\varphi_{n u c}^{(\lambda)}+\varphi_{e l}^{(\lambda)} \tag{17.72}
\end{equation*}
$$

The proper piezoelectric constants can be obtained by:

$$
\begin{equation*}
\tilde{e}_{i j k}=-\frac{1}{2 \pi} \frac{1}{\Omega} \sum_{\alpha} \frac{d \varphi_{\alpha}}{d \epsilon_{j k}} a_{\alpha, i} \tag{17.73}
\end{equation*}
$$

Where $\varphi_{\alpha}$ is projection of the phase $\varphi$ along the $\alpha$ direction and $a_{\alpha, i}$ is the component of a lattice vector $a_{\alpha}$ along the cartesian axis $i$. To obtain the improper piezoelectric constants, the following correction must done:

$$
\begin{equation*}
e_{i j k}=\tilde{e}_{i j k}+\delta_{i j} P_{k}-\delta_{j k} P_{i} \tag{17.74}
\end{equation*}
$$

In the piezoelectric constants calculations the $\frac{d \varphi_{\alpha}}{d \epsilon_{j k}}$ term is evaluated numerically. The calculated term is:

$$
\begin{equation*}
\frac{d \varphi_{\alpha}}{d \epsilon_{j k}} \simeq \frac{\Delta \varphi_{\alpha}}{\Delta \epsilon_{j k}}=\frac{\varphi_{\alpha}^{(1)}-\varphi_{\alpha}^{(0)}}{\epsilon_{j k}^{(1)}-\epsilon_{j k}^{(0)}} \tag{17.75}
\end{equation*}
$$

### 17.12 Eckart Conditions to the Hessian (Purifying Rotational and Translational Degrees of Freedom)

As the calculation of the Hessian matrix is a numerical procedure, eigenvalues and eigenvectors might be affected by a certain degree of numerical noise, which should be reduced as much as possible, especially if anharmonic calculations are going to be performed on top of the harmonic solution. From an operational point of view, it is important to carefully optimize the structure and to use accurate computational parameters. Some tools are also available to enhance the numerical quality of the Hessian matrix. Sometimes translational and rotational eigensolutions can mix with low frequency modes. In such cases, it is important to project translations and rotations out of the Hessian. This is equivalent to imposing Eckart's conditions to the nuclear motion problem (applied by default; the NOECKART option of the FREQCALC block switches this option off). We have to generate a projection matrix $\mathbf{P}$ so that translations and rotations (for molecules and polymers) are separated out. Being $N_{a}$ the number of atoms of the system (in the unit cell for periodic systems), there are $3 N_{a}-N_{e}$ internal degrees of freedom, where $N_{c}$ is the number of conditions we have to impose, which is 3 for 3 D systems, 6 for non-linear molecules, 5 for linear molecules and 1 for polymers. We define a $\mathbf{D}$ matrix of dimensions $N_{c} \times 3 N_{a}$, which is the row representation of translations and rotations in the Cartesian frame. The first three vectors (rows) of $\mathbf{D}$ correspond to the three Cartesian translations along $\mathbf{x}, \mathbf{y}$ and $\mathbf{z}$ and are just the list of the square root of the isotopic mass of the atoms times the corresponding Cartesian unit vector $(\hat{x}, \hat{y}$ and $\hat{z}$, for the first, second and third rows, respectively). For example, in the case of water, assuming $m_{H}=1$ and $m_{O}=16$, we would have

$$
\begin{align*}
& \mathbf{D}_{1}=(1,0,0,4,0,0,1,0,0) \\
& \mathbf{D}_{2}=(0,1,0,0,4,0,0,1,0)  \tag{17.76}\\
& \mathbf{D}_{3}=(0,0,1,0,0,4,0,0,1)
\end{align*}
$$

In order to build a representation for the rotational degrees of freedom, we have first to translate the system so that the origin corresponds to the center of mass (CoM), whose position is given by:

$$
\begin{equation*}
\mathbf{r}_{C o M}=\frac{\sum_{\alpha=1}^{N_{a}} m_{\alpha} \mathbf{r}_{\alpha}}{\sum_{\alpha=1}^{N_{a}} m_{\alpha}} \tag{17.77}
\end{equation*}
$$

Then, we build the inertia axes tensor:

$$
\mathbf{I}=\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z}  \tag{17.78}\\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)=\left(\begin{array}{ccc}
\sum_{\alpha} m_{\alpha}\left(y_{\alpha}^{2}+z_{\alpha}^{2}\right) & -\sum_{\alpha} m_{\alpha} x_{\alpha} y_{\alpha} & -\sum_{\alpha} m_{\alpha} x_{\alpha} z_{\alpha} \\
-\sum_{\alpha} m_{\alpha} y_{\alpha} x_{\alpha} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha}^{2}+z_{\alpha}^{2}\right) & -\sum_{\alpha} m_{\alpha} y_{\alpha} z_{\alpha} \\
-\sum_{\alpha} m_{\alpha} z_{\alpha} x_{\alpha} & -\sum_{\alpha} m_{\alpha} z_{\alpha} y_{\alpha} & \sum_{\alpha} m_{\alpha}\left(x_{\alpha}^{2}+y_{\alpha}^{2}\right)
\end{array}\right)
$$

Matrix I is diagonalized to obtain the eigenvector matrix X (eigenvectors are organized in columns). For non-linear molecules, the elements of the three additional rotational constraints, $\mathbf{D}_{4}, \mathbf{D}_{5}$ and $\mathbf{D}_{6}$, are obtained as:

$$
\begin{align*}
D_{4, \alpha i} & =\frac{1}{\sqrt{m_{\alpha}}}\left(\left(\mathbf{S}_{\alpha}\right)_{2} X_{i, 3}-\left(\mathbf{S}_{\alpha}\right)_{3} X_{i, 2}\right) \\
D_{5, \alpha i} & =\frac{1}{\sqrt{m_{\alpha}}}\left(\left(\mathbf{S}_{\alpha}\right)_{3} X_{i, 1}-\left(\mathbf{S}_{\alpha}\right)_{1} X_{i, 3}\right)  \tag{17.79}\\
D_{6, \alpha i} & =\frac{1}{\sqrt{m_{\alpha}}}\left(\left(\mathbf{S}_{\alpha}\right)_{1} X_{i, 2}-\left(\mathbf{S}_{\alpha}\right)_{2} X_{i, 1}\right)
\end{align*}
$$

where $\mathbf{S}_{\alpha}$ is an atomic vector obtained as the scalar product of the transpose of $\mathbf{X}$ with the vector of the Cartesian coordinates of atom $\alpha$ :

$$
\begin{equation*}
\mathbf{S}_{\alpha}=\mathbf{X}^{T} \mathbf{r}_{\alpha} \tag{17.80}
\end{equation*}
$$

For linear molecules, one of the above conditions is skipped (the one related to the null eigenvalue). Once all the rows of $\mathbf{D}$ are computed, they are ortho-normalized via a Gram-Schmidt procedure. We then build the projector matrix $\mathbf{P}$ (whose dimensions are $3 N_{a} \times 3 N_{a}$ ) as

$$
\begin{equation*}
\mathbf{P}=\mathbf{D}^{T} \mathbf{D} \tag{17.81}
\end{equation*}
$$

and we define the complementary projector matrix, $\mathbf{P}^{\prime}=\mathbf{1}-\mathbf{P}$, so that we project out the $N_{c}$ degrees of freedom from the Hessian matrix $\mathbf{H}$ :

$$
\begin{equation*}
\mathbf{H}^{\prime}=\mathbf{P}^{\prime T} \mathbf{H} \mathbf{P}^{\prime} \tag{17.82}
\end{equation*}
$$

By diagonalizing the $\mathbf{H}^{\prime}$ matrix, the translational and rotational eigenvalues are exactly zero.

## Appendix A

## Symmetry groups

## A. 1 Labels and symbols of the space groups

The labels are according to the International Tables for Crystallography [111. The symbols are derived by the standard SHORT symbols, as shown in the following examples:

| Symbol |  | Input to CRYSTAL |
| :--- | :--- | :--- |
| $\mathrm{P} \overline{6} 2 \mathrm{~m}$ | $\rightarrow$ | $\mathrm{P}_{\sqcup}-6_{\sqcup} 2 \sqcup \mathrm{M} ;$ |
| P 63 m | $\rightarrow$ | $\mathrm{P}_{\sqcup} 63_{\sqcup} \mathrm{M}$. |

For the groups 221-230 the symbols are according to the 1952 edition of the International Tables, not to the 1982 edition. The difference involves the 3 axis: 3 (1952 edition); $\overline{3}$ (1982 edition) (Example group 221: 1952 ed. $\rightarrow \mathrm{P} \mathrm{m} 3 \mathrm{~m} ; 1982 \mathrm{ed} . \rightarrow \mathrm{Pm} \overline{3} \mathrm{~m}$ )

| IGR | symbol | IGR | symbol | IGR | symbol |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | inic lattices | 37 | Ccc2 | Tetragonal lattices |  |
| 1 | P1 | 38 | Amm2 | 75 | P4 |
| 2 | $P \overline{1}$ | 39 | Abm2 | 76 | $P 4_{1}$ |
|  | clinic lattices | 40 | Ama 2 | 77 | $P 4_{2}$ |
| 3 | P2 | 41 | Aba 2 | 78 | $P 4_{3}$ |
| 4 | $P 2_{1}$ | 42 | Fmm2 | 79 | I4 |
| 5 | C2 | 43 | $F d d 2$ | 80 | $I 4_{1}$ |
| 6 | Pm | 44 | Imm2 | 81 | $P \overline{4}$ |
| 7 | Pc | 45 | Iba 2 | 82 | $I \overline{4}$ |
| 8 | Cm | 46 | Ima 2 | 83 | P4/m |
| 9 | Cc | 47 | Pmmm | 84 | $P 4_{2} / \mathrm{m}$ |
| 10 | P2/m | 48 | Pnnn | 85 | $P 4 / n$ |
| 11 | $P 21 / m$ | 49 | Pccm | 86 | $P 4_{2} / n$ |
| 12 | $C 2 / m$ | 50 | Pban | 87 | I4/m |
| 13 | P2/c | 51 | Pmma | 88 | $I 4_{1} / a$ |
| 14 | $P 2_{1} / \mathrm{c}$ | 52 | Pnna | 89 | P422 |
| 15 | C2/c | 53 | Pmna | 90 | $P 42_{1} 2$ |
|  | hombic lattices | 54 | Pcca | 91 | $P 4_{1} 22$ |
| 16 | P222 | 55 | Pbam | 92 | $P 4_{1} 2_{1} 2$ |
| 17 | $P 222_{1}$ | 56 | Pccn | 93 | P4222 |
| 18 | $P 2_{1} 2_{1} 2$ | 57 | Pbcm | 94 | $P 4_{2} 2_{1} 2$ |
| 19 | $P 2_{1} 2_{1} 2_{1}$ | 58 | Pnnm | 95 | $P 4_{3} 22$ |
| 20 | $C 222_{1}$ | 59 | Pmmn | 96 | $P 4_{3} 2_{1} 2$ |
| 21 | C222 | 60 | Pbon | 97 | I422 |
| 22 | F222 | 61 | Pbca | 98 | $I 4_{1} 22$ |
| 23 | I222 | 62 | Pnma | 99 | P4mm |
| 24 | $I 2_{1} 2_{1} 2_{1}$ | 63 | Cmcm | 100 | P4bm |
| 25 | Pmm2 | 64 | Cmca | 101 | $\mathrm{P}_{2} \mathrm{~cm}$ |
| 26 | $\mathrm{Pmc} 2_{1}$ | 65 | Cmmm | 102 | $P 4{ }_{2} \mathrm{~nm}$ |
| 27 | Pcc2 | 66 | Cccm | 103 | $P 4 c c$ |
| 28 | Pma2 | 67 | Cmma | 104 | P4nc |
| 29 | Pca $2_{1}$ | 68 | Ccca | 105 | $P 4_{2} m \mathrm{c}$ |
| 30 | Pnc2 | 69 | Fmmm | 106 | $P 42 b c$ |
| 31 | Pmn21 | 70 | Fddd | 107 | I4mm |
| 32 | Pba2 | 71 | Immm | 108 | 14 cm |
| 33 | $\mathrm{Pna2}_{1}$ | 72 | Ibam | 109 | I4 ${ }_{1} \mathrm{md}$ |
| 34 | Pnn2 | 73 | Ibca | 110 | $I 4_{1} \mathrm{~cd}$ |
| 35 | Cmm2 | 74 | Imma | 111 | $P \overline{4} 2 m$ |
| 36 | $C m c 2_{1}$ |  |  | 112 | $P \overline{4} 2 c$ |


| IGR | symbol | IGR | symbol | IGR | symbol |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Cubic lattices |
| 114 | P42 ${ }^{\text {m }}$ m | 155 | R32 | 195 | P23 |
| 115 | $P \overline{4} m 2$ | 156 | P3m1 | 196 | F23 |
| 116 | $P \overline{4} c 2$ | 157 | P31m | 197 | I23 |
| 117 | $P \overline{4} b 2$ | 158 | P3c1 | 198 | $P 2{ }_{1} 3$ |
| 118 | $P \overline{4} n 2$ | 159 | P31c | 199 | $\mathrm{I}_{1} 3$ |
| 119 | I $\overline{4} m 2$ | 160 | R3m | 200 | $P m \overline{3}$ |
| 120 | I $\overline{4} c 2$ | 161 | R3c | 201 | $P n \overline{3}$ |
| 121 | I $\overline{4} 2 \mathrm{~m}$ | 162 | P31m | 202 | $F m \overline{3}$ |
| 122 | I $\overline{4} 2 \mathrm{~d}$ | 163 | $P \overline{3} 1 c$ | 203 | $F d \overline{3}$ |
| 123 | $P 4 / \mathrm{mmm}$ | 164 | $P \overline{3} m 1$ | 204 | $\underline{I m} \overline{3}$ |
| 124 | $P 4 / m c c$ | 165 | $P 3{ }^{2} c 1$ | 205 | Pa $\overline{3}$ |
| 125 | P4/nbm | 166 | R3m | 206 | Ia3 |
| 126 | $P 4 / n n c$ | 167 | $R 3 \mathrm{c}$ | 207 | P432 |
| 127 | $P 4 / \mathrm{mbm}$ | Hexagonal lattices |  | 208 | P4232 |
| 128 | $P 4 / m n c$ | 168 | P6 | 209 | F432 |
| 129 | P4/nmm | 169 | $P 6_{1}$ | 210 | $F 4_{1} 32$ |
| 130 | $P 4 / n c c$ | 170 | $P 6_{5}$ | 211 | I432 |
| 131 | $P 4_{2} / \mathrm{mmc}$ | 171 | $P 6_{2}$ | 212 | $P 4_{3} 32$ |
| 132 | $\mathrm{P}_{4} / \mathrm{mcm}$ | 172 | $P 64$ | 213 | $P 4_{1} 32$ |
| 133 | $P 4_{2} / n b c$ | 173 | $P 6_{3}$ | 214 | I4, 32 |
| 134 | $P 4_{2} / \mathrm{nnm}$ | 174 | $P \overline{6}$ | 215 | $P 43 m$ |
| 135 | $P 4_{2} / m b c$ | 175 | $P 6 / m$ | 216 | $F 43 m$ |
| 136 | $\mathrm{P}_{4} / \mathrm{mnm}$ | 176 | $P 6{ }_{3} / \mathrm{m}$ | 217 | İ̄3m |
| 137 | $P 4_{2} / n m c$ | 177 | P622 | 218 | $P \overline{4} 3 n$ |
| 138 | $\mathrm{P}_{4} / \mathrm{ncm}$ | 178 | P6122 | 219 | $F \overline{4} 3 c$ |
| 139 | I4/mmm | 179 | P6522 | 220 | I 43 d |
| 140 | $14 / \mathrm{mcm}$ | 180 | ${ }_{P 6} 6_{2} 22$ | 221 | Pm3m |
| 141 | I4 $1_{1}$ /amd | 181 | P6422 | 222 | $P n \overline{3} n$ |
| 142 | $I 4_{1} / \mathrm{acd}$ | 182 | $P 6322$ | 223 | $P m \overline{3} n$ |
| Trigonal lattices |  | 183 | P6mm | 224 | $P n \overline{3} m$ |
| 143 | P3 | 184 | P6cc | 225 | Fm3] |
| 144 | $P 3_{1}$ | 185 | $P 6{ }_{3} \mathrm{~cm}$ | 226 | $F m \overline{3} c$ |
| 145 | $P 3_{2}$ | 186 | $P 6{ }_{3} m c$ | 227 | $F d \overline{3} m$ |
| 146 | R3 | 187 | $P \overline{6} m 2$ | 228 | $F d \overline{3} c$ |
| 147 | $P \overline{3}$ | 188 | $P \overline{6} c 2$ | 229 | Im $\overline{3} m$ |
| 148 | $R \overline{3}$ | 189 | $P 62 m$ | 230 | $I a \overline{3} d$ |
| 149 | P312 | 190 | $P \overline{6} 2 c$ |  |  |
| 150 | P321 | 191 | $P 6 / \mathrm{mmm}$ |  |  |
| 151 | $P 3{ }_{1} 12$ | 192 | P6/mcc |  |  |
| 152 | $P 3_{1} 21$ | 193 | $\mathrm{Pb}_{3} / \mathrm{mcm}$ |  |  |
| 153 | $P 3_{2} 12$ | 194 | $P 6_{3} / \mathrm{mmc}$ |  |  |
| 154 | $P 3221$ |  |  |  |  |

## A. 2 Labels of the layer groups (slabs)

The available layer groups belong to a subset of the 230 space groups. Therefore they can be identified by the corresponding space group.
The first column gives the label to be used in the input card (IGR variable).
The second column gives the Hermann-Mauguin symbol of the corresponding space group (generally the short one; the full symbol is adopted when the same short symbol could refer to different settings). The third column gives the Schoenflies symbol. The fourth column the number of the corresponding space group, according to the International Tables for Crystallography. The number of the space group is written in parentheses when the orientation of the symmetry operators does not correspond to the first setting in the I. T.

| $\overline{\text { IGR Hermann }}$ Mauguin | Schoenflies | N | $\overline{\text { IGR Hermann }}$ Mauguin | Schoenflies | N |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Oblique lattices (P) |  |  | 41 Pbam | $D_{2 h}^{9}$ | 55 |
| $1 \quad P 1$ | $C_{1}^{1}$ | 1 | 42 Praa | $D_{2 h}^{3}$ | (49) |
| $2 P \overline{1}$ | $C_{i}^{1}$ | 2 | 43 Pman | $D_{2 h}^{7}$ | (53) |
| $3 P 112$ | $C_{2}^{1}$ | (3) | 44 Pbma | $D_{2 h}^{1}$ | (57) |
| $4 P 11 m$ | $C_{s}^{1}$ | (6) | 45 Pbaa | $D_{2 h}^{8}$ | (54) |
| $5 P 11 a$ | $C_{s}^{2}$ | (7) | 46 Pban | $D_{2 h}^{4}$ | 50 |
| 6 P112/m | $C_{2 h}^{1}$ | (10) | 47 Cmmm | $D_{2 h}^{9}$ | 65 |
| $7 \quad P 112 / a$ | $C_{2 h}^{4}$ | (13) | 48 Cmma | $D_{2 h}^{2}$ | 67 |
| Rectangular lattices (P or C) |  |  | Square lattices (P) |  |  |
| 8 P211 | $C_{2}^{1}$ | (3) | 49 P4 | $C_{4}^{1}$ | 75 |
| $9 \quad P 2_{1} 11$ | $C_{2}^{2}$ | (4) | $50 P \overline{4}$ | $S_{4}^{1}$ | 81 |
| 10 C211 | $C_{2}^{3}$ | (5) | $51 \mathrm{P} 4 / \mathrm{m}$ | $C_{4 h}^{1}$ | 83 |
| 11 Pm 11 | $C_{s}^{1}$ | (6) | $52 P 4 / n$ | $C_{4 h}^{3}$ | 85 |
| 12 Pb 11 | $C_{s}^{2}$ | (7) | 53 P422 | $D_{4}^{1}$ | 89 |
| 13 Cm 11 | $C_{s}^{3}$ | (8) | $54 P 42_{1} 2$ | $D_{4}^{2}$ | 90 |
| $14 \mathrm{P} 2 / \mathrm{m} 11$ | $C_{2 h}^{1}$ | (10) | 55 P 4 mm | $C_{4 v}^{1}$ | 99 |
| $15 \quad P 2_{1} / m 11$ | $C_{2 h}^{2}$ | (11) | 56 P4bm | $C_{4 v}^{2}$ | 100 |
| $16 \mathrm{C} 2 / \mathrm{m} 11$ | $C_{2 h}^{3}$ | (12) | $57 \mathrm{P} \overline{4} 2 m$ | $D_{2 d}^{1}$ | 111 |
| 17 P2/b11 | $C_{2 h}^{4}$ | (13) | $58 \quad P \overline{4} 2{ }_{1} m$ | $D_{2 d}^{3}$ | 113 |
| $18 \quad P 2 / b 11$ | $C_{2 h}^{5}$ | (14) | $59 P \overline{4} m 2$ | $D_{2 d}^{5}$ | 115 |
| 19 P222 | $D_{2}^{1}$ | 16 | $60 \quad P \overline{4} b 2$ | $D_{2 d}^{7}$ | 117 |
| $20 \quad P 22_{1} 2$ | $D_{2}^{2}$ | (17) | $61 \mathrm{P} / \mathrm{mmm}$ | $D_{4 h}^{1}$ | 123 |
| $21 P 2_{1} 2_{1} 2$ | $D_{2}^{3}$ | 18 | $62 \mathrm{P} 4 / \mathrm{nbm}$ | $D_{4 h}^{3}$ | 125 |
| 22 C222 | $D_{2}^{6}$ | 21 | $63 \mathrm{P} 4 / \mathrm{mbm}$ | $D_{4 h}^{5}$ | 127 |
| 23 Pmm 2 | $C_{2 v}^{1}$ | 25 | $64 \mathrm{P} 4 / \mathrm{nmm}$ | $D_{4 h}^{7}$ | 129 |
| 24 Pma2 | $C_{2 v}^{4}$ | 28 | Hexagonal | lattices (P) |  |
| 25 Pba 2 | $C_{2 v}^{8}$ | 32 | 65 P3 | $C_{3}^{1}$ | 143 |
| 26 Cmm 2 | $C_{2 v}^{1}$ | 35 | $66 P \overline{3}$ | $C_{3 i}^{1}$ | 147 |
| 27 P 2 mm | $C_{2 v}^{1}$ | (25) | 67 P312 | $D_{3}^{1}$ | 149 |
| $28 P 2_{1} a m$ | $C_{2 v}^{2}$ | (26) | 68 P321 | $D_{3}^{2}$ | 150 |
| $29 P 2{ }_{1} m a$ | $C_{2 v}^{2}$ | (26) | 69 P3m1 | $C_{3 v}^{1}$ | 156 |
| 30 P 2 mb | $C_{2 v}^{4}$ | (28) | 70 P31m | $C_{3 v}^{2}$ | 157 |
| $31 P 2{ }_{1} m n$ | $C_{2 v}^{7}$ | (31) | $71 P \overline{3} 1 m$ | $D_{3 d}^{1}$ | 162 |
| $32 \mathrm{P} 2 a \mathrm{a}$ | $C_{2 v}^{3}$ | (27) | $72 P \overline{3} m 1$ | $D_{3 d}^{3}$ | 164 |
| $33 P 2{ }_{1} a b$ | $C_{2 v}^{5}$ | (29) | 73 P6 | $C_{6}^{1}$ | 168 |
| 34 P2an | $C_{2 v}^{6}$ | (30) | $74 \quad P \overline{6}$ | $C_{3 h}^{1}$ | 174 |
| 35 C 2 mm | $C_{2 v}^{1}$ | (38) | $75 \mathrm{P6} / \mathrm{m}$ | $C_{6 h}^{1}$ | 175 |
| 36 C 2 mb | $C_{2 v}^{5}$ | (39) | 76 P622 | $D_{6}^{1}$ | 177 |
| 37 Pmmm | $D_{2 h}^{1}$ | 47 | 77 P6mm | $C_{6 v}^{1}$ | 183 |
| 38 Pmam | $D_{2 h}^{5}$ | (51) | $78 \quad P \overline{6} m 2$ | $D_{3 h}^{1}$ | 187 |
| 39 Pmma | $D_{2 h}^{5}$ | 51 | $79 P \overline{6} 2 m$ | $D_{3 h}^{3}$ | 189 |
| 40 Pmmn | $D_{2 h}^{3}$ | 59 | $80 \mathrm{P6} / \mathrm{mmm}$ | $D_{6 h}^{1}$ | 191 |

## A. 3 Labels of the rod groups (polymers)

The available rod groups belong to a subset of the 230 space groups; the symmetry operators are generated for the space groups (principal axis z) and then rotated by $90^{\circ}$ through y , to have the polymer axis along x (CRYSTAL convention).
In the table, the first column gives the label to be used in the input card for identifying the rod group (IGR variable).
The second column gives the "polymer" symbol, according to the the following convention: x is the first symmetry direction, y the second.
The third column gives the Schoenflies symbol.
The fourth column gives the Hermann-Mauguin symbol (generally the short one; the full symbol is adopted when the same short symbol could refer to different settings) of the corresponding space group (principal axis z).
The fifth column gives the number of the corresponding space group, according to the International Tables for Crystallography; this number is written in parentheses when the orientation of the symmetry operators does not correspond to the first setting in the I. T.

| IGR | "Polymer" <br> symbol <br> (x direction) | Schoenflies Mauguin <br> (z direction) |  |  |
| :--- | :--- | :--- | :--- | :---: |
| 1 | $P 1$ | Number of <br> space group |  |  |
| 2 | $P \overline{1}$ | $C_{1}^{1}$ | $P 1$ | 1 |
| 3 | $P 211$ | $C_{i}^{1}$ | $P \overline{1}$ | 2 |
| 4 | $P 2_{1} 11$ | $C_{2}^{1}$ | $P 112$ | $(3)$ |
| 5 | $P 121$ | $C_{2}^{2}$ | $P 112_{1}$ | $(4)$ |
| 6 | $P 112$ | $C_{2}^{1}$ | $P 121$ | $(3)$ |
| 7 | $P m 11$ | $C_{2}^{1}$ | $P 211$ | $(3)$ |
| 8 | $P 1 m 1$ | $C_{s}^{1}$ | $P 11 m$ | $(6)$ |
| 9 | $P 1 a 1$ | $C_{s}^{1}$ | $P 1 m 1$ | $(6)$ |
| 10 | $P 11 m$ | $C_{s}^{2}$ | $P 1 c 1$ | $(7)$ |
| 11 | $P 11 a$ | $C_{s}^{1}$ | $P m 11$ | $(6)$ |
| 12 | $P 2 / m 11$ | $C_{s}^{2}$ | $P c 11$ | $(7)$ |
| 13 | $P 2_{1} / m 11$ | $C_{2 h}^{1}$ | $P 112 / m$ | $(10)$ |
| 14 | $P 12 / m 1$ | $C_{2 h}^{2}$ | $P 112_{1} / m$ | $(11)$ |
| 15 | $P 12 / a 1$ | $C_{2 h}^{1}$ | $P 12 / m 1$ | $(10)$ |
| 16 | $P 112 / m$ | $C_{2 h}^{1}$ | $P 12 / c 1$ | $(13)$ |
| 17 | $P 112 / a$ | $C_{2 h}^{4}$ | $P 2 / m 11$ | $(10)$ |
| 18 | $P 222$ | $D_{2}^{1}$ | $P 222$ | $(13)$ |
| 19 | $P 2_{1} 22$ | $D_{2}^{2}$ | $P 222_{1}$ | 16 |
| 20 | $P 2 m m$ | $C_{2 v}^{1}$ | $P m m 2$ | 17 |
| 21 | $P 2_{1} a m$ | $C_{2 v}^{2}$ | $P m c 2_{1}$ | 25 |
| 22 | $P 2_{1} m a$ | $C_{2 v}^{2}$ | $P c m 2_{1}$ | 26 |
| 23 | $P 2 a a$ | $C_{2 v}^{3}$ | $P c c 2$ | $(26)$ |
| 24 | $P m 2 m$ | $C_{2 v}^{1}$ | $P m 2 m$ | 27 |
| 25 | $P m 2 a$ | $C_{2 v}^{4}$ | $P c 2 m$ | $(25)$ |
| 26 | $P m m 2$ | $C_{2 v}^{1}$ | $P 2 m m$ | $(28)$ |
| 27 | $P m a 2$ | $C_{2 v}^{4}$ | $P 2 c m$ | $(25)$ |
| 28 | $P m m m$ | $D_{2 h}^{1}$ | $P m m m$ | $(28)$ |
| 29 | $P 2 / m 2 / a 2 / a$ | $D_{2 h}^{3}$ | $P c c m$ | 47 |
| 30 | $P 2_{1} / m 2 / m 2 / a$ | $D_{2 h}^{5}$ | $P c m m$ | 49 |
| 31 | $P 2_{1} / m 2 / a 2 / m$ | $D_{2 h}^{5}$ | $P m c m$ | $(51)$ |


| IGR | $\begin{aligned} & \text { "Polymer" } \\ & \text { symbol } \\ & \text { (x direction) } \end{aligned}$ | Schoenflies | Hermann Mauguin <br> (z direction) | Number of space group |
| :---: | :---: | :---: | :---: | :---: |
| 32 | $P 4$ | $C_{4}^{1}$ | $P 4$ | 75 |
| 33 | $P 4_{1}$ | $C_{4}^{2}$ | $P 4_{1}$ | 76 |
| 34 | $P 4_{2}$ | $C_{4}^{3}$ | $P 4_{2}$ | 77 |
| 35 | $P 4_{3}$ | $C_{4}^{4}$ | $P 4_{3}$ | 78 |
| 36 | $P \overline{4}$ | $S_{4}^{1}$ | $P \overline{4}$ | 81 |
| 37 | P4/m | $C_{4 h}^{1}$ | P4/m | 83 |
| 38 | $P 4_{2} / m$ | $C_{4 h}^{2}$ | $P 4_{2} / m$ | 84 |
| 39 | P422 | $D_{4}^{1}$ | P422 | 89 |
| 40 | $P 4_{1} 22$ | $D_{4}^{3}$ | $P 4_{1} 22$ | 91 |
| 41 | $\mathrm{P}_{4} 22$ | $D_{4}^{5}$ | $\mathrm{P4}_{2} 22$ | 93 |
| 42 | $P 4322$ | $D_{4}^{7}$ | $P 4{ }_{3} 22$ | 95 |
| 43 | P4mm | $C_{4 v}^{1}$ | P4mm | 99 |
| 44 | $P 4_{2}$ am | $C_{4 v}^{3}$ | $\mathrm{P} 4_{2} \mathrm{~cm}$ | 101 |
| 45 | P4aa | $C_{4 v}^{5}$ | $P 4 c c$ | 103 |
| 46 | $P 4_{2} m a$ | $C_{4 v}^{7}$ | P4 ${ }_{2} \mathrm{mc}$ | 105 |
| 47 | $P \overline{4} 2 m$ | $D_{2 d}^{1}$ | $P \overline{4} 2 m$ | 111 |
| 48 | $P \overline{4} 2 a$ | $D_{2 d}^{2}$ | $P \overline{4} 2 c$ | 112 |
| 49 | $P \overline{4} m 2$ | $D_{2 d}^{5}$ | $P \overline{4} m 2$ | 115 |
| 50 | $P \overline{4} a 2$ | $D_{2 d}^{6}$ | $P \overline{4} c 2$ | 116 |
| 51 | $P 4 / \mathrm{mmm}$ | $D_{4 h}^{1}$ | P4/mmm | 123 |
| 52 | $P 4 / m 2 / a 2 / a$ | $D_{4 h}^{2}$ | $P 4 / m c c$ | 124 |
| 53 | $P 4_{2} / m 2 / m 2 / a$ | $D_{4 h}^{9}$ | $P 4_{2} / m m c$ | 131 |
| 54 | $P 4_{2} / \mathrm{m} 2 / \mathrm{a} 2 / \mathrm{m}$ | $D_{4 h}^{10}$ | $\mathrm{P}_{2} / \mathrm{mcm}$ | 132 |
| 55 | P3 | $C_{3}^{11}$ | P3 | 143 |
| 56 | $P 3_{1}$ | $C_{3}^{2}$ | $P 3_{1}$ | 144 |
| 57 | $P 3_{2}$ | $C_{3}^{3}$ | $P 3_{2}$ | 145 |
| 58 | $P \overline{3}$ | $C_{3 i}^{1}$ | $P \overline{3}$ | 147 |
| 59 | P312 | $D_{3}^{1}$ | P312 | 149 |
| 60 | $P 3_{1} 12$ | $D_{3}^{3}$ | $P 3_{1} 12$ | 151 |
| 61 | $P 3_{2} 12$ | $D_{3}^{5}$ | $P 3_{2} 12$ | 153 |
| 62 | P321 | $D_{3}^{2}$ | P321 | 150 |
| 63 | $P 3_{1} 21$ | $D_{3}^{4}$ | $P 3_{1} 21$ | 152 |
| 64 | $P 3_{2} 21$ | $D_{3}^{6}$ | $P 3_{2} 21$ | 154 |
| 65 | P3m1 | $C_{3 v}^{1}$ | P3m1 | 156 |
| 66 | P3a1 | $C_{3 v}^{3}$ | P3c1 | 158 |
| 67 | P31m | $C_{3 v}^{2}$ | P31m | 157 |
| 68 | P31a | $C_{3 v}^{4}$ | P31c | 159 |
| 69 | $P \overline{3} 1 m$ | $D_{3 d}^{1}$ | $P \overline{3} 1 m$ | 162 |
| 70 | $P \overline{3} 1 a$ | $D_{3 d}^{2}$ | $P \overline{3} 1 c$ | 163 |
| 71 | $P \overline{3} m 1$ | $D_{3 d}^{3}$ | $P \overline{3} m 1$ | 164 |
| 72 | $P \overline{3} a 1$ | $D_{3 d}^{4}$ | $P \overline{3} c 1$ | 165 |


| IGR | "Polymer" <br> symbol <br> (x direction) | Schoenflies Mauguin <br> (z direction) |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 73 | $P 6$ | $C_{6}^{1}$ | $P 6$ | Number of <br> space group |
| 74 | $P 6_{1}$ | $C_{6}^{2}$ | $P 6_{1}$ | 168 |
| 75 | $P 6_{5}$ | $C_{6}^{3}$ | $P 6_{5}$ | 169 |
| 76 | $P 6_{2}$ | $C_{6}^{4}$ | $P 6_{2}$ | 170 |
| 77 | $P 6_{4}$ | $C_{6}^{5}$ | $P 6_{4}$ | 171 |
| 78 | $P 6_{3}$ | $C_{6}^{6}$ | $P 66$ | 172 |
| 79 | $P \overline{6}$ | $C_{3 h}^{1}$ | $P \overline{6}$ | 173 |
| 80 | $P 6 / m$ | $C_{6 h}^{1}$ | $P 6 / m$ | 174 |
| 81 | $P 6_{3} / m$ | $C_{6 h}^{2}$ | $P 6_{3} / m$ | 175 |
| 82 | $P 622$ | $D_{6}^{1}$ | $P 622$ | 176 |
| 83 | $P 6_{1} 22$ | $D_{6}^{2}$ | $P 6_{1} 22$ | 177 |
| 84 | $P 6_{5} 22$ | $D_{6}^{3}$ | $P 6_{5} 22$ | 178 |
| 85 | $P 6_{2} 22$ | $D_{6}^{4}$ | $P 6_{2} 22$ | 179 |
| 86 | $P 6_{4} 22$ | $D_{6}^{5}$ | $P 6_{4} 22$ | 180 |
| 87 | $P 6_{3} 22$ | $D_{6}^{6}$ | $P 6_{3} 22$ | 181 |
| 88 | $P 6 m m$ | $C_{6 v}^{1}$ | $P 6 m m$ | 182 |
| 89 | $P 6 a a$ | $C_{6 v}^{2}$ | $P 6 c c$ | 183 |
| 90 | $P 6_{3} a m$ | $C_{6 v}^{3}$ | $P 6_{3} c m$ | 184 |
| 91 | $P 6_{3} m a$ | $C_{6 v}^{4}$ | $P 6_{3} m c$ | 185 |
| 92 | $P \overline{6} m 2$ | $D_{3 h}^{1}$ | $P \overline{6} m 2$ | 186 |
| 93 | $P \overline{6} a 2$ | $D_{3 h}^{2}$ | $P \overline{6} c 2$ | 187 |
| 94 | $P \overline{6} 2 m$ | $D_{3 h}^{3}$ | $P \overline{6} 2 m$ | 188 |
| 95 | $P \overline{6} 2 a$ | $D_{3 h}^{4}$ | $P \overline{6} 2 c$ | 189 |
| 96 | $P 6 / m m m$ | $D_{6 h}^{1}$ | $P 6 / m m m$ | 190 |
| 97 | $P 6 / m 2 / a 2 / a$ | $D_{6 h}^{2}$ | $P 6 / m c c$ | 191 |
| 98 | $P 6_{3} / m 2 / a 2 / m$ | $D_{6 h}^{3}$ | $P 6_{3} / m c m$ | 192 |
| 99 | $P 6_{3} / m 2 / m 2 / a$ | $D_{6 h}^{4}$ | $P 6_{3} / m m c$ | 193 |

## A. 4 Labels of the point groups (molecules)

The centre of symmetry is supposed to be at the origin; for the rotation groups the principal axis is z .
The first column gives the label to be used in the input card for identifying the point group (IGR variable). The second column gives the short Hermann-Mauguin symbol. The third column gives the Schoenflies symbol; for the $C_{2}, C_{2 h}$ and $C_{s}$ groups the $C_{2}$ direction or the direction orthogonal to the plane is indicated. The fourth column gives the number of pure rotations for molecules $(\sigma)$.

| IGR | Hermann Mauguin | Schoenflies |  | $\sigma$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $C_{1}$ |  | 1 |
| 2 | $\overline{1}$ | $C_{i}$ |  | 1 |
| 3 | 2 (x) | $C_{2}(\mathrm{x})$ |  | 2 |
| 4 | 2 (y) | $C_{2}$ (y) |  | 2 |
| 5 | 2 (z) | $C_{2}(\mathrm{z})$ |  | 2 |
| 6 | m (x) | $C_{s}(\mathrm{x})$ |  | 1 |
| 7 | m (y) | $C_{s}$ (y) |  | 1 |
| 8 | m (z) | $C_{s}(\mathrm{z})$ |  | 1 |
| 9 | 2/m (x) | $C_{2 h}(\mathrm{x})$ |  | 2 |
| 10 | 2/m (y) | $C_{2 h}$ (y) |  | 2 |
| 11 | 2/m (z) | $C_{2 h}$ (z) |  | 2 |
| 12 | 222 | $D_{2}$ |  | 4 |
| 13 | 2 mm | $C_{2 v}$ (x) |  | 2 |
| 14 | m2m | $C_{2 v}$ (y) |  | 2 |
| 15 | mm2 | $C_{2 v}$ (z) |  | 2 |
| 16 | mmm | $D_{2 h}$ |  | 4 |
| 17 | 4 | $C_{4}$ |  | 4 |
| 18 | $\overline{4}$ | $S_{4}$ |  | 2 |
| 19 | 4/m | $C_{4 h}$ |  | 4 |
| 20 | 422 | $D_{4}$ |  | 8 |
| 21 | 4 mm | $C_{4 v}$ |  | 4 |
| 22 | $\overline{4} 2 \mathrm{~m}$ | $D_{2 d}$ | ( $\sigma_{v}$ planes along $\mathrm{x}+\mathrm{y}$ and $\mathrm{x}-\mathrm{y}$ ) | 4 |
| 23 | $\overline{4} \mathrm{~m} 2$ | $D_{2 d}$ | ( $\sigma_{v}$ planes along x and y ) | 4 |
| 24 | $4 / \mathrm{mmm}$ | $D_{4 h}$ |  | 8 |
| 25 | 3 | $C_{3}$ |  | 3 |
| 26 | $\overline{3}$ | $C_{3 i}$ |  | 3 |
| 27 | 321 | $D_{3}$ | (one $C_{2}$ axis along y) | 6 |
| 28 | 312 | $D_{3}$ | (one $C_{2}$ axis along x) | 6 |
| 29 | 3 m 1 | $C_{3 v}$ | (one $\sigma_{v}$ plane along x ) | 3 |
| 30 | 31 m | $C_{3 v}$ | (one $\sigma_{v}$ plane along y) | 3 |
| 31 | $\overline{3} \mathrm{~m} 1$ | $D_{3 d}$ | (one $\sigma_{d}$ plane along x) | 6 |
| 32 | $\overline{3} 1 \mathrm{~m}$ | $D_{3 d}$ | (one $\sigma_{d}$ plane along y) | 6 |
| 33 | 6 | $C_{6}$ |  | 6 |
| 34 | $\overline{6}$ | $C_{3 h}$ |  | 3 |
| 35 | 6/m | $C_{6 h}$ |  | 6 |
| 36 | 622 | $D_{6}$ |  | 12 |
| 37 | 6 mm | $C_{6 v}$ |  | 6 |
| 38 | $\overline{6} \mathrm{~m} 2$ | $D_{3 h}$ | (one $C_{2}$ axis along x) | 6 |
| 39 | $\overline{6} 2 \mathrm{~m}$ | $D_{3 h}$ | (one $C_{2}$ axis along y) | 6 |
| 40 | $6 / \mathrm{mmm}$ | $D_{6}{ }^{\prime}$ |  | 12 |
| 41 | 23 | $T$ |  | 12 |
| 42 | $\mathrm{m} \overline{3}$ | $T_{h}$ |  | 12 |
| 43 | 432 | O |  | 24 |
| 44 | $\overline{4} 3 \mathrm{~m}$ | $T_{d}$ |  | 12 |
| 45 | $\mathrm{m} \overline{3} \mathrm{~m}$ | $O_{h}$ |  | 24 |
| 46 | 235 | $I$ |  | 60 |
| 47 | $\mathrm{m} \overline{3} \overline{5}$ | $I_{h}$ |  | 60 |

## A. 5 From conventional to primitive cells: transforming matrices

The matrices describing the transformations from conventional (given as input) to primitive (internally used by CRYSTAL) cells of Bravais lattices are coded in CRYSTAL. A point called $\mathbf{x}$ in the direct lattice has $\mathbf{x}_{P}$ coordinates in a primitive cell and $\mathbf{x}_{C}$ coordinates in a conventional cell. The relation between $\mathbf{x}_{P}$ and $\mathbf{x}_{C}$ is the following:

$$
\begin{equation*}
W \mathbf{x}_{P}=\mathbf{x}_{C} \tag{A.1}
\end{equation*}
$$

Likewise, for a point in the reciprocal space the following equation holds:

$$
\begin{equation*}
\tilde{W}^{-1} \mathbf{x}_{P}^{*}=\mathbf{x}_{C}^{*} \tag{A.2}
\end{equation*}
$$

The $W$ transforming matrices adopted in CRYSTAL, and reported below, satisfy the following relation between the two metric tensors $\mathbf{G}_{P}$ and $\mathbf{G}_{C}$ :

$$
\begin{equation*}
\mathbf{G}_{P}=W \mathbf{G}_{C} \tilde{W} \tag{A.3}
\end{equation*}
$$

The values of the elements of the metric tensors $\mathbf{G}_{P}$ and $\mathbf{G}_{C}$ agree with those displayed in Table 5.1 of the International Tables of Crystallography (1992 edition).

$$
\begin{aligned}
& \begin{array}{c}
P \rightarrow C \\
\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right)
\end{array} \\
& \begin{array}{c}
P \rightarrow I \\
\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{\overline{1}}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right) \quad\left(\begin{array}{ccc}
\frac{2}{3} & \frac{1}{3} & \frac{\overline{1}}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{\overline{2}}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{ccc} 
\\
1 & 0 & 1 \\
-1 & 1 & 1 \\
0 & -1 & 1
\end{array}\right)
\end{array}
\end{aligned}
$$

Table A.1: $W$ matrices for the transformation from conventional to primitive and from primitive to conventional cells. P stands for primitive, A, B and C for A-, B- and C-face centred, I for body centred, F for all-face centred, R for primitive rhombohedral ('rhombohedral axes') and H for rhombohedrally centred ('hexagonal axes') cell (Table 5.1, ref. [111]).

## Appendix B

## Summary of input keywords

All the keywords are entered with an A format; the keywords must be typed left-justified, with no leading blanks. The input is not case sensitive.

## Geometry (Input block 1)

| Symmetry information |  |  |
| :---: | :---: | :---: |
| ATOMSYMM | printing of point symmetry at the atomic positions 40 |  |
| MAKESAED | printing of symmetry allowed elastic distortions (SAED) 51 |  |
| PRSYMDIR | printing of displacement directions allowed by symmetry. 6 |  |
| SYMMDIR | printing of symmetry allowed geom opt directions 70 |  |
| SYMMOPS | printing of point symmetry operators 70 |  |
| TENSOR | print tensor of physical properties up to order 4 | I |
| Symmetry information and control |  |  |
| BREAKELAS | symmetry breaking according to a general distortion 41 | I |
| BREAKSYM | allow symmetry reduction following geometry modifications 41 |  |
| KEEPSYMM | maintain symmetry following geometry modifications 51 |  |
| MODISYMM | removal of selected symmetry operators 5 | I |
| PURIFY | cleans atomic positions so that they are fully consistent with the 62 group |  |
| SYMMREMO | removal of all symmetry operators 70 |  |
| TRASREMO | removal of symmetry operators with translational components 71 | - |
| Modifications without reduction of symmetry |  |  |
| ATOMORDE | reordering of atoms in molecular crystals 38 | - |
| NOSHIFT | no shift of the origin to minimize the number of symmops with 59 translational components before generating supercell | - |
| ORIGIN | shift of the origin to minimize the number of symmetry operators 59 with translational components | - |
| PRIMITIV | crystallographic cell forced to be the primitive cell 61 | - |
| ROTCRY | rotation of the crystal with respect to the reference system cell 63 | I |

Atoms and cell manipulation - possible symmetry reduction (BREAKSYMM)

| ATOMDISP | displacement of atoms | 38 | |
|---|---|---|---|
| ATOMINSE | addition of atoms | 38 |
| ATOMREMO | removal of atoms | 39 |
| ATOMROT | rotation of groups of atoms | 39 |
| ATOMSUBS | substitution of atoms | 40 |
| ELASTIC | distortion of the lattice | 44 |
| POINTCHG | point charges input | 61 |
| SCELCONF | generation of supercell for configuration counting | 66 |
| SCELPHONO | generation of supercell for phonon dispersion | 66 |
| SUPERCEL | generation of supercell - input refers to primitive cell | 67 |
| SUPERCON | generation of supercell - input refers to conventional cell | 67 |
| USESAED | given symmetry allowed elastic distortions, reads $\delta$ | 71 |
| From crystals to slabs ( $3 \mathrm{D} \rightarrow 2 \mathrm{D}$ ) |  |  |
| SLABINFO | definition of a new cell, with $x y \\|$ to a given plane | 65 |
| SLABCUT | generation of a slab parallel to a given plane ( $3 \mathrm{D} \rightarrow 2 \mathrm{D}$ ) | 64 |
| From slabs to nanotubes (2D $\rightarrow 1 \mathrm{D}$ ) |  |  |
| NANOTUBE | building a nanotube from a slab | 56 |
| SWCNT | building a nanotube from an hexagonal slab | 69 |
| From periodic structures to clusters |  |  |
| CLUSTER | cutting of a cluster from a periodic structure ( $3 \mathrm{D} \rightarrow 0 \mathrm{D}$ ) | 42 |
| CLUSTSIZE | maximum number of atoms in a cluster | 43 |
| FULLE | building a fullerene from an hexagonal slab ( $2 \mathrm{D} \rightarrow 0 \mathrm{D}$ ) | 49 |
| HYDROSUB | border atoms substituted with hydrogens (0D $\rightarrow 0 \mathrm{D}$ ) | 51 |
| Molecular crystals |  |  |
| MOLECULE | extraction of a set of molecules from a molecular crystal 53 $(3 \mathrm{D} \rightarrow 0 \mathrm{D})$ |  |
| MOLEXP | variation of lattice parameters at constant symmetry and ular geometry ( $3 \mathrm{D} \rightarrow 3 \mathrm{D}$ ) |  |
| MOLSPLIT | periodic structure of non interacting molecules (3D $\rightarrow 3 \mathrm{D}$ ) | 54 |
| RAYCOV | modification of atomic covalent radii | 62 |
| BSSE correction |  |  |
| MOLEBSSE | counterpoise method for molecules (molecular crystals only) 52 (3D $\rightarrow 0 \mathrm{D}$ ) |  |
| ATOMBSSE | counterpoise method for atoms $(3 \mathrm{D} \rightarrow 0 \mathrm{D})$ | 38 |
| Systematic analysis of crystal planes |  |  |
| PLANES | Prints the possible crystal planes | 61 |
| Gibbs-Wulff construction |  |  |
| WULFF | Building the Gibbs-Wulff polihedron | 71 |
| From crystals to nanorods (3D $\rightarrow 1 \mathrm{D}$ ) |  |  |
| NANORODS | Building a nanorod from a crystal | 55 |
| From crystals to nanocrystals (3D $\rightarrow 0 \mathrm{D}$ ) |  |  |
| NANOCRYSTAL building a nanocrystal from a crystal |  | 54 |
| Auxiliary and control keywords |  |  |


| ANGSTROM | sets input units to Ångstrom | 37 |
| :---: | :---: | :---: |
| BOHR | sets input units to bohr | 40 |
| BOHRANGS | input bohr to $\AA$ conversion factor ( 0.5291772083 default value) | 40 |
| BOHRCR98 | bohr to $\AA$ conversion factor is set to 0.529177 (CRY98 value) |  |
| END/ENDG | terminate processing of geometry input |  |
| FRACTION | sets input units to fractional | 49 |
| LATVEC | maximum number of classified lattice vectors | 51 |
| MAXNEIGHB | maximum number of equidistant neighbours from an atom | 51 |
| NEIGHBOR | number of neighbours in geometry analysis | 59 |
| PRINTCHG | printing of point charges coordinates in geometry output | 61 |
| PRINTOUT | setting of printing options by keywords | 62 |
| SETINF | setting of inf array options | 64 |
| SETPRINT | setting of printing options | 64 |
| STOP | execution stops immediately | 65 |
| TESTGEOM | stop after checking the geometry input | 71 |

Output of data on external units

| COORPRT | coordinates of all the atoms in the cell | 44 |
| :--- | :--- | :--- |
| EXTPRT | write file in CRYSTAL geometry input format | 46 |
| FINDSYM | write file in FINDSYM input format |  |
| STRUCPRT | cell parameters and coordinates of all the atoms in the cell | 49 |


| External electric field - modified Hamiltonian |  |  |
| :--- | :--- | :--- |
| FIELD | electric field applied along a periodic direction | 46 |
| FIELDCON | Iectric field applied along a non periodic direction | 48 |

Geometry optimization - see index for keywords full list

OPTGEOM Geometry optimization input block - closed by END
I
Type of optimization (default: atom coordinates)
FULLOPTG full geometry optimization
CELLONLY cell parameters optimization
INTREDUN optimization in redundant internal coordinates
ITATOCEL iterative optimization (atom/cell)
CVOLOPT full geometry optimization at constant volume
initial guess for the Hessian - identity matrix
initial guess for the Hessian - model 1 (default)
initial guess for the Hessian - model 2
initial guess for the Hessian - numerical estimate
Convergence criteria modification
TOLDEG $\quad$ RMS of the gradient [0.0003] I
TOLDEX RMS of the displacement [0.0012] I
TOLDEE energy difference between two steps $\left[10^{-7}\right]$ I
MAXCYCLE max number of optimization steps I

| Optimization control |  |
| :---: | :---: |
| FRAGMENT partial geometry optimization | 174 |
| RESTART data from previous run |  |
| FINALRUN Wf single point with optimized geometry |  |
| Gradient calculation control |  |
| NUMGRATO numerical atoms first derivatives | 165 |
| NUMGRCEL numerical cell first derivatives | 165 |
| NUMGRALL numerical atoms and cell first derivatives | 165 |
| External stress |  |
| EXTPRESS apply external hydrostatic pressure | 176 |
| Printing options |  |
| PRINTFORCES atomic gradients |  |
| PRINTHESS Hessian |  |
| PRINTOPT optimization procedure |  |
| PRINT verbose printing |  |

Vibrational Frequencies - see index for keywords full list

FREQCALC Harmonic $\Gamma$-frequencies calculation input - closed by END
Normal modes analysis

| ANALYSIS |
| :--- |
| COMBMODE |
| MODES |
| SCANMODE |
| LO/TO splitting |
| DIELISO |


| DIELISO | isotropic dielectric tensor |
| :--- | :--- |
| DIELTENS | anisotropic dielectric tensor |

Vibrational spectrum simulation

| INTENS | intensities calculation active | 189 |
| :---: | :---: | :---: |
| INTCPHF | IR (and Raman) intensities via CPHF | 191 |
| INTLOC | IR intensities through Wannier functions | 190 |
| INTPOL | IR intensities through Berry phase [default] | 189 |
| INTRAMAN | Raman intensities calculation | 191 |
| IRSPEC | IR spectrum production | 197 |
| RAMSPEC | Raman spectrum production | 199 |
| Calculation control |  |  |
| ECKART | Hessian freed by translations and rotations [default] | 184 |
| FRAGMENT | partial frequency calculation | 185 |
| ISOTOPES | isotopic substitution | 185 |
| NORMBORN | normalized Born tensor | 186 |
| NUMDERIV | technique to compute numerical 2 nd derivatives | 187 |
| PRINT | verbose printing |  |
| RESTART | data from previous run |  |
| STEPSIZE | set size of cartesian displacements [0.003 $\AA$ ] | 187 |
| TEST[FREQ] | frequency test run |  |



## Basis set input (Input block 2)

## Symmetry control

ATOMSYMM printing of point symmetry at the atomic positions

## Basis set modification

| CHEMOD | modification of the electronic configuration <br> eliminates nuclei and electrons, leaving BS | 72 I <br> GHOSTS 74 | I |
| :--- | :--- | ---: | :--- |

Auxiliary and control keywords

| CHARGED | allows non-neutral cell | -72 |  |
| :--- | :--- | :--- | :--- |
| NOPRINT | printing of basis set removed | - |  |
| PRINTOUT | setting of printing options | - |  |
| SETINF | setting of inf array options | 62 | I |
| SETPRINT | setting of printing options | 64 | I |
| STOP | execution stops immediately | 64 | I |
| SYMMOPS | printing of point symmetry operators | 65 | - |
| END/ENDB | terminate processing of basis set definition keywords | 70 |  |

[^0]
## General information, hamiltonian, SCF (Input block 3)

All DFT related keyword are collected under the heading "DFT", closed b END[DFT]

Single particle Hamiltonian

| RHF | Restricted Closed Shell | 107 |
| :--- | :--- | :--- |
| UHF | Unrestricted Open Shell | 115 |
| MP2 | Electron correlation energy | 104 |

DFT DFT Hamiltonian ..... 115
SPIN spin-polarized solution ..... 124
Choice of the exchange-correlation functionals
EXCHANGE exchange functional ..... 118LDA functionals
LDA Dirac-Slater 53] (LDA)
VBH von Barth-Hedin 220 (LDA)
GGA functionals
BECKE Becke 1988 18 (GGA)
PBE Perdew-Becke-Ernzerhof 1996 [160] (GGA)
PBESOL GGA. PBE functional revised for solids 162
mPW91 modified Perdew-Wang 91 (GGA)
PWGGA Perdew-Wang 91 (GGA)
SOGGA second order GGA. 238
WCGGA GGA - Wu-Cohen [229]
CORRELAT correlation functional 118 I
LDA functionals
PZ Perdew-Zunger [166 (LDA)
VBH von Barth-Hedin [220] (LDA)
VWN Vosko,-Wilk-Nusair 221 (LDA)
GGA functionals
LYP Lee-Yang-Parr [133] (GGA)
P86 Perdew 86 [158] (GGA)
PBE Perdew-Becke-Ernzerhof [160] (GGA)
PBESOL GGA. PBE functional revised for solids 162
PWGGA Perdew-Wang 91 (GGA)
PWLSD Perdew-Wang 92 [164, 165, 163] (GGA)
WL GGA - Wilson-Levy [227]
Standalone keywords: exchange+correlation
SVWN see [53, 221] 118
BLYP see [18, 133] 118
PBEXC see 160 118
PBESOLXC see [162 118
SOGGAXC see [238]
118
Global Hybrid functionals
Standalone keywords

| B3PW | B3PW parameterization | 119 |
| :---: | :---: | :---: |
| B3LYP | B3LYP parameterization | 119 |
| PBE0 | Adamo and Barone [6] | 119 |
| PBESOL0 | Derived from PBE0 | 119 |
| B1WC | see 22 | 119 |
| WC1LYP | see [51] | 119 |
| B97H | see [5, 81] | 119 |
| PBE0-13 | see 36] | 119 |
| User defined global hybrids |  |  |
| HYBRID | hybrid mixing | 119 |
| NONLOCAL | local term parameterization | 119 |


| Range-Separated Hybrid functionals |  |  |
| :---: | :---: | :---: |
| Short-range Corrected RSH functionals |  |  |
| HSE06 | Screened-Coulonb PBE XC functional 3, 160 | 121 |
| HSESOL | Screened-Coulomb PBESOL XC functional [132, 162 | 121 |
| SC-BLYP | SC-RSH BLYP functional based on ITYH scheme 110, | 121 |
| 231 |  |  |
| Middle-range Corrected RSH functionals |  |  |
| HISS | MC based on PBE XC functional [210, 211] | 121 |
| Long-range Corrected RSH functionals |  |  |
| RSHXLDA | LC LDA XC functional [2, 123] | 121 |
| wB97 | Chai/Head-Gordon LC functional [124, 5] | 121 |
| wB97X | Chai/Head-Gordon SC/LC functional [124, [5] | 121 |
| LC-wPBE | LC hybrid based on PBE XC functional 67 | 121 |
| LC-wPBESOL | LC hybrid based on PBESOL XC functional 67] | 121 |
| LC-wBLYP | LC hybrid based on BLYP XC functional 67] | 121 |
| LC-BLYP | LC-RSH BLYP functional based on ITYH scheme 110 , | 121 |
| 231 |  |  |
| CAM-B3LYP Coulomb-Attenuating method) 214 based on the BLYP 121 |  |  |
| XC functional |  |  |
| User defined range separated hybrids |  |  |
| SR-OMEGA | setting of $\omega_{S R}$ for SC hybrids | 122 |
| MR-OMEGA | setting of $\omega_{S R}$ and $\omega_{L R}$ for MC hybrids | 122 |
| LR-OMEGA | setting of $\omega_{L R}$ for LC hybrids | 122 |
| SR-HYB_WB90xtion to change the amount of SR-HF exchange in the 122 $\omega$ B97-X functional |  |  |
|  |  |  |
| LSRSH-PBE | User-controllable RSH x-functional based on the PBE | 122 |
| meta-GGA functionals |  |  |
| Pure mGGA functionals |  |  |
| M06L | pure mGGA M06-type functional [233] | 122 |
| Global hybrid mGGA functionals |  |  |
| M05 | Minnesota 2005 functional [237] | 122 |
| M052x | M05-2X functional [236] | 122 |
| M06 | Minnesota 2006 functional [235] | 122 |
| M062X | M06-2X functional [235] | 122 |
| M06HF | M06-type functional with $100 \%$ HF [233] | 122 |
| Double Hybrid functionals |  |  |
| B2PLYP | DH method based on BLYP functional 190 | 123 |
| B2GPPLYP | General purpose variant of B2PLYP [1] | 123 |
| mPW2PLYP | DH method based on mPW91-LYP functional [213] | 123 |
| DHYBRID | HF exchange and MP2-like mixing for double hybrids | 123 |



| Numerical accuracy control and convergence tools |  |  |
| :---: | :---: | :---: |
| ANDERSON | Fock matrix mixing | 83 |
| BROYDEN | Fock matrix mixing | 85 |
| DIIS | Fock matrix mixing/convergence accelerator | 86 |
| FMIXING | Fock/KS matrix (cycle $i$ and $i-1$ ) mixing 0 | 95 |
| LEVSHIFT | level shifter no | 102 |
| MAXCYCLE | maximum number of cycles 50 | 103 |
| SMEAR | Finite temperature smearing of the Fermi surface no | 110 |
| TOLDEE | convergence on total energy 6 | 114 |
| Initial guess |  |  |
| EIGSHIFT | alteration of orbital occupation before SCF no | 88 |
| EIGSHROT | rotation of the reference frame no | 89 |
| GUESSP | density matrix from a previous run | 99 |
| GUESSPAT | superposition of atomic densities | 100 |
| Spin-polarized system |  |  |
| ATOMSPIN | setting of atomic spin to compute atomic densities | 83 |
| BETALOCK | beta electrons locking | 84 |
| SPINLOCK | spin difference locking | 113 |
| SPINEDIT | editing of the spin density matrix used as SCF guess | 112 |


| Auxiliary and control keywords |  |  |
| :---: | :---: | :---: |
| END | terminate processing of block3 input |  |
| FULLTIME | detailed report on running time | 95 |
| KSYMMPRT | printing of Bloch functions symmetry analysis | 102 |
| LOWMEM | inhibits allocation of large arrays | 103 |
| NOLOWMEM | allows allocation of large arrays | 103 |
| MAXNEIGHB | maximum number of equidistant neighbours from an atom | 51 |
| NEIGHBOR | number of neighbours to analyse in PPAN | 59 |
| MEMOPRT | Synthetic report about dynamic memory usage | 103 |
| MEMOPRT2 | Detailed report about dynamic memory usage | 104 |
| PRINTOUT | setting of printing options | 62 |
| QVRSGDIM | maximum size of mutipole moment gradient array 90000000 | 107 |
| NOSYMADA | No Symmetry Adapted Bloch Functions | 106 |
| SYMADAPT | Symmetry Adapted Bloch Functions (default) | 113 |
| SETINF | setting of inf array options | 64 |
| SETPRINT | setting of printing options | 64 |
| STOP | execution stops immediately | 65 |
| TESTPDIM | stop after symmetry analysis | 113 |
| TEST[RUN] | stop after integrals classification and disk storage estimate | 113 |
| Restricted to MPPcrystal |  |  |
| CMPLXFAC | Overloading in handling matrices at "complex" k points with 86 respect to "real" k points $2 . \overline{3}$ to run MPPcrystal as Pcrystal <br> Enable standard diagonalization method (D\&C method dis-113 abled) |  |
| REPLDATA |  |  |
| STDIAG |  |  |
| Output of data on external units |  |  |
| NOFMWF | wave function formatted output not written in file fort.98. | 105 |
| SAVEWF | wave function data written every two SCF cycles | 107 |


| Post SCF calculations |  |  |
| :--- | :--- | :--- |
| POSTSCF | post-scf calculations when convergence criteria not satisfied | 106 |
| EXCHGENE | exchange energy evaluation (spin polarized only) | - |
| ERADCAL | analytical gradient of the energy  <br> population analysis at the end of the SCF no | - |
| PRAN |  | -95 |

## Properties

RDFMWF wave function data conversion formatted-binary (fort. $98 \rightarrow$ fort.9)

| Preliminary calculations |  |  |
| :--- | :--- | ---: |
| NEWK | Eigenvectors calculation | 299 |
| COMMENS | Density Matrix commensurate to the Monchorst net | 270 |
| NOSYMADA | I |  |
| Po symmetry Adapted Bloch Functions | 106 | - |
| PATO | Density matrix as superposition of atomic (ionic) densities | 301 |
| PBAN | Band(s) projected density matrix (preliminary NEWK) | 301 |
| PGEOMW | Density matrix from geometrical weights (preliminary NEWK) | I |
| PG2 | I |  |
| PDIDE | Energy range projected density matrix (preliminary NEWK) | 302 |
| PSCF | Restore SCF density matrix | 308 |


| Properties computed from the density matrix |  |  |
| :---: | :---: | :---: |
| ADFT | Atomic density functional correlation energy | 261 |
| BAND | Band structure | 263 |
| BIDIERD | Reciprocal form factors | 264 |
| CLAS | Electrostatic potential maps (point multipoles approximation) | 270 |
| ECHG | Charge density and charge density gradient - 2D grid | 277 |
| ECH3 | Charge density - 3D grid | 276 |
| EDFT | Density functional correlation energy (HF wave function only) | 278 |
| EMDLDM | Electron momentum distribution (along a line) | 279 |
| EMDPDM | Electron momentum distribution (in a plane) | 280 |
| HIRSHCHG | Hirshfeld population analysis | 100 |
| KINETEMD | Kinetic tensor from electron momentum density | 284 |
| PMP2 | MP2 correction to the Valence Density Matrix | 302 |
| POLI | Atom and shell multipoles evaluation | 303 |
| POTM | Electrostatic potential - 2D grid | 306 |
| POT3 | Electrostatic potential - 3D grid | 304 |
| POTC | Electrostatic properties | 305 |
| PPAN | Mulliken population analysis | 106 |
| XFAC | X-ray structure factors | 309 |

Properties computed from the density matrix (spin-polarized systems)

| ANISOTRO | Hyperfine electron-nuclear spin tensor | 262 | I |
| :--- | :--- | :--- | :--- |
| HIRSHCHG | Hirshfeld spin population analysis | 100 | I |
| ISOTROPIC | Hyperfine electron-nuclear spin interaction - Fermi contact | 283 | I |
| POLSPIN | Atomic spin density multipoles | 304 | I |

[^1]| ANBD | Printing of principal AO component of selected CO | 261 |
| :---: | :---: | :---: |
| BWIDTH | Printing of bandwidth | 270 |
| DOSS | Density of states | 274 |
| EMDL | Electron momentum distribution - line | 279 |
| EMDP | Electron momentum distribution - plane maps | 282 |
| PROF | Compton profiles and related quantities | 307 |
| BOLTZTRA | Transport Properties (electron conductivity, Seebeck) within the semiclassical Boltzmann theory | 268 |
| New properties |  |  |
| SPOLBP | Spontaneous polarization (Berry phase approach) 3 | 314 |
| SPOLWF | Spontaneous polarization (localized CO approach) 31 | 315 |
| LOCALWF | Localization of Wannier functions | 285 |
| DIEL | Optical dielectric constant 27 | 272 |
| ISO+POTC | Mössbauer isomer shift and quadrupolar effects | 315 |
| TOPO | Topological analysis of the electron density | 318 |

Auxiliary and control keywords

| ANGSTROM | Set input unit of measure to Ångstrom | 37 | - |
| :--- | :--- | :--- | :--- |
| BASISSET | Printing of basis set, Fock/KS, overlap and density matrices | 264 | - |
| BOHR | Set input unit of measure to bohr | 40 | - |
| CHARGED | Non-neutral cell allowed (PATO) | 72 | - |
| END | Terminate processing of properties input keywords | - |  |
| FRACTION | Set input unit of measure to fractional | 49 | - |
| MAPNET | Generation of coordinates of grid points on a plane | 297 | I |
| MAXNEIGHB | maximum number of equidistant neighbours from an atom | 51 | I |
| NEIGHBOR | Number of neighbours to analyse in PPAN | 59 | I |
| PRINTOUT | Setting of printing options | 62 | I |
| RAYCOV | Modification of atomic covalent radii | 62 | I |
| SETINF | Setting of inf array options | 64 | I |
| SETPRINT | Setting of printing options | 64 | I |
| STOP | Execution stops immediately | 65 | - |
| SYMMOPS | Printing of point symmetry operators | 70 | - |

Info - Output of data on external units

| ATOMIRR | Coordinates of the irreducible atoms in the cell | 262 |  |
| :--- | :--- | :--- | :--- |
| ATOMSYMM | Printing of point symmetry at the atomic positions | - |  |
| COORPRT | Coordinates of all the atoms in the cell | - |  |
| CRYAPI_OUT | geometry, BS, direct lattice information | 44 | - |
| CRYAPI_OUT | Reciprocal lattice information + eigenvalues | 271 | - |
| EXTPRT | Explicit structural/symmetry information | 271 | - |
| FMWF | Wave function formatted outputi in file fort.98. Section 13.10 | 46 | - |
| INFOGUI | Generation of file with wf information for visualization | - |  |
| XML | generation of XML file for electron transport with WanT | 283 | - |

## Appendix C

## Printing options

Extended printing can be obtained by entering the keywords PRINTOUT (page62) or SETPRINT (page 64).
In the scf (or scfdir) program the printing of quantities computed is done at each cycle if the corresponding LPRINT value is positive, only at the last cycle if the LPRINT value is negative. The LPRINT options to obtain intermediate information can be grouped as follows. The following table gives the correspondence between position number, quantity printed, and keyword.
crystal Keyword inp

- direct lattice - geometry information: 1

GLATTICE -

- symmetry operators : 4,2

SYMMOPS -

- atomic functions basis set : 72

BASISSET -

- DF auxiliary basis set for the fitting: 79

DFTBASIS

- scale factors and atomic configuration: 75

SCALEFAC -

- k-points geometrical wheight: 53

KWEIGHTS

- shell symmetry analysis : 5, 6, 7, 8, 9
- Madelung parameters: 28
- multipole integrals: 20
- Fock/KS matrix building - direct lattice: $63,64,74$

FGRED FGIRR N

- Total energy contributions: 69

ENECYCLE -

## crystal - properties

- shell and atom multipoles: 68

MULTIPOLE N

- reciprocal space integration to compute Fermi energy: 51, 52, 53, 54, 55, 78
- density matrix - direct lattice: irreducible (58); reducible (59) PGRED PGIRR N (reducible P matrix in crystal if PPAN requested only)
- Fock/KS eigenvalues : 66

EIGENVAL N EIGENALL -

- Fock/KS eigenvectors : 67
- symmetry adapted functions : 47
- Population analysis: 70, 73, 77
- Atomic wave-function: 71


## properties

- overlap matrix $\mathrm{S}(\mathrm{g})$ - direct lattice: 60 (keyword PSIINF)
- Densities of states: 105, 107

OVERLAP N
DOSS -

- Projected DOSS for embedding: 36, 37, 38
- DF correlation correction to total energy: 106
- Compton profile and related quantities: 116, 117, 118
- Fermi contact tensor : 18 FTENSOR -
- rotated eigenvectors (keyword ROTREF): 67

EIGENVEC

- Charge density and electrostatic potential maps: 119

Example
To print the eigenvalues at each scf cycle enter:
PRINTOUT
EIGENALL
END
To print the eigenvalues at the first $5 k$ points at the end of scf only, enter in any input block:
SETPRINT
1
66-5
Eigenvectors printed by default are from the first valence eigenvector up to the first 6 virtual ones. Core and virtual eigenvectors are printed by "adding" 500 to the selected value of LPRINT(67). To obtain print all the eigenvectors at the end of scf insert in any input block:

SETPRINT
1
$66-505$

## Printing options LPRINT array values

|  | subroutine | value | printed information | keyword | input |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | GCALCO | N | up $\mathrm{N}=6$ stars of direct lattice vectors | GLATTICE |  |
| 2 | CRYSTA | $\neq 0$ | crystal symmetry operators | SYMMOPS |  |
| 3 | EQUPOS | $\neq 0$ | equivalent positions in the reference cell | EQUIVAT |  |
| 4 | CRYSTA | $\neq 0$ | crystal symmops after geometry editing |  |  |
| 5 | GILDA1 | $\mathrm{N}>0$ | g vector irr- first n set type of couples |  |  |
|  |  | $\mathrm{N}<0$ | g vector irr- n -th set type of couples |  |  |
| 6 | GROTA1 | $\neq 0$ | information on shells symmetry related stars of g associated to the first n couples stars of g associated to the n -th couple |  |  |
| 7 | GV | N>0 |  |  |  |
| 7 |  | N<0 |  |  |  |
| 8 | GORDSH | $\neq 0$ | information on couples of shells symmetry related intermediates for symmetrized quantities |  |  |
| 9 | GSYM11 | $\neq 0$ |  |  |  |
| 10 | GMFCAL | $\neq 0$ | nstatg, idime, idimf, idimcou |  |  |
| 11 | MAIN2U | $\neq 0$ | exchange energy | EXCHGENE |  |
|  | MAIND |  |  | EXCHGENE |  |
| 12 | IRRPR | $\neq 0$ | symmops (reciprocal lattice) | SYMMOPSR |  |
| 13 | MATVIC | N | n stars of neighbours in cluster definition |  |  |
| 14 | GSLAB | $\neq 0$ | coordinates of the atoms in the slab |  |  |
| 15 | symdir | $\neq 0$ | print symmetry allowed directions <br> extended printing for hyperfine coupling cost | PRSYMDIR |  |
| 18 | TENSOR | $\neq 0$ |  | FTENSOR |  |
| 19 |  |  |  |  |  |
| 20 | MONIRR | N | multipole integrals up to pole $\mathrm{l}=\mathrm{n}$ |  |  |
| 21 |  |  |  |  |  |
| 24 | POINTCH |  | printing of point charges coordinates |  |  |
| 28 | MADEL2 | $\neq 0$ | Madelung parameters |  |  |
| 29 |  |  |  |  |  |
| 30 | CRYSTA | $\neq 0$ | write file FINDSYM.DAT <br> values of the dimension parameters |  |  |
| 31 |  | $\neq 0$ |  | PARAMETERS |  |
| 32 |  | $\mathrm{N}>0$ | printing of ccartesian coordinates of the atoms |  |  |
| 33 | COOPRT | $\mathrm{N}>0$ | cartesian coordinates of atoms in file fort. 33 | ATCOORDS |  |
| 34 | FINE2 | $\mathrm{N}>0$ |  | KNETOUT |  |
|  | READ2 |  | output of reciprocal space information | KNETOUT |  |
| 35 | XCBD | $\mathrm{N}>0$ | printing of symmops in short fomr properties - exchange correlation printing |  |  |
| 36 |  | $\neq$ |  |  |  |
| 37 |  |  |  |  |  |
| 38 |  |  |  |  |  |
| 39 |  |  |  |  |  |
| 40 |  |  |  |  |  |
| 41 | SHELL* | $\neq 0$ | printing of bipolar expansion parameters |  |  |
| 47 | KSYMBA | n | Symmetry Adapted Bloch Functions printing level |  |  |
| 48 | KSYMBA | $\neq 0$ | Symmetry Adapted Bloch Functions printing active | KSYMMPRT |  |
| 51 | AB | $\neq 0$ | B functions orthonormality check Fermi energy - Warning !!!! Huge printout !!! |  |  |
| 52 | DIF | $>0$ |  |  |  |
| 53 | SCFPRT | $\neq 0$ | k points geometrical weights | KWEIGHTS |  |
| 54 | CALPES | $>0$ | k points weights- Fermi energy |  |  |
| 55 | OMEGA | $>0$ | f0 coefficients for each band |  |  |
| 56 |  |  |  |  |  |
| 57 | PDIG | N | $\mathrm{p}(\mathrm{g})$ matrices-first n g vectors | PGIRR | N |
| 58 | PROT1 | $\neq 0$ | mvlu, ksh, idp4 |  |  |
| 59 | RROTA | $\mathrm{N}>0$ | $\mathrm{P}(\mathrm{g})$ matrices - first N vectors at the end of SCF | PGRED | N |
|  | NEWK | N | $\mathrm{P}(\mathrm{g})$ matrices - first N vectors | PGRED | N |
|  | PSIINF | $>0$ | $\mathrm{P}(\mathrm{g})$ matrices - first N vectors | PGRED | N |
|  | PSIINF | $\mathrm{N}<0$ | $\mathrm{P}(\mathrm{g})$ matrix for $\mathrm{g}=\mathrm{N}$ | PGRED | N |
| 60 |  | $>0$ | overlap matrix $\mathrm{S}(\mathrm{g})$ - first N vectors overlap matrix $\mathrm{S}(\mathrm{g})$ for $\mathrm{g}=\mathrm{N}$ | OVERLAP | N |
|  |  | $\mathrm{N}<0$ |  |  | N |
| 61 |  |  | bielectronic contribution to irred. $\mathrm{F}(\mathrm{g})$ matrix |  |  |
| 63 |  |  | bielectronic contribution to irred. $\mathrm{F}(\mathrm{g})$ matrix |  |  |
| 64 | FROTA | N | $\mathrm{F}(\mathrm{g})$ matrix - first N g vectors | FGRED | N |
|  | PSIINF | $\mathrm{N}>0$ $\mathrm{~N}<0$ | $\mathrm{f}(\mathrm{g})$ matrix - for $\mathrm{g}=\mathrm{N}$ ( $\mathrm{N}-\mathrm{th} \mathrm{g}$ vector only) | FGRED | N |



## Appendix D

## External format

Formatted data are written in files according to the following table:

| program | keyword | ftn | filename | pg |
| :---: | :---: | :---: | :---: | :---: |
| crystal | OPTGEOM | 34 | optaxxx | Geometry input - opt atoms coord. only - 46 See EXTPRT |
|  | OPTGEOM | 34 | optcxxx | Geometry input - opt cell [atoms] - See 46 EXTPRT |
|  |  | 66 | HESSOPT.DAT | Hessian matrix |
|  |  | 68 | OPTINFO.DAT | Information to restart optimization |
|  | GAUSS98 | 92 | GAUSSIAN.DAT | Input for GAUSS98 74 |
|  | FINDSYM | 26 | FINDSYM.DAT | data in crystallographic format - read by 44 program findsym(IUCR) |
|  | STRUCPRT | 33 | STRUC.INCOOR | Cell parameters, coordinates of atoms 65 |
| crystal properties | COORPRT | 33 | fort. 33 | Coordinates of the atoms in the cell $\quad 44$ |
|  | EXTPRT | 34 | fort. 34 | Geometry input 46 |
|  | PPAN | 24 | PPAN.DAT | Mulliken population analysis $\quad 106$ |
| properties | BAND | 25 | fort. 25 | Bands (Crgra2006) ${ }^{263}$ |
|  |  | 24 | BAND.DAT | Bands data 263 |
|  | CLAS | 25 | fort. 25 | Classical potential 270 |
|  | DIEL | 24 | DIEL.DAT | Dielectric constant 272 |
|  | DOSS | 25 | fort. 25 | Density of states (IPLOT=1) 274 |
|  |  | 24 | DOSS.DAT | Density of states (IPLOT=2) 274 |
|  | ECHG | 25 | fort. 25 | Electronic charge density - 2D grid 277 |
|  |  | 25 | RHOLINE.DAT | Electronic charge density - 1 grid 277 |
|  | ECH3 | 31 | - | Electronic charge density - 3D grid 276 |
|  |  |  | DENS_CUBE.DAT | Electronic charge density - 3D grid CUBE 276 format |
|  |  |  | SPIN_CUBE.DAT | Spin density - 3D grid CUBE format 276 |
|  | POT3 |  | POT_CUBE.DAT | Electostatic potential - 3D grid CUBE for- 304 mat |
|  | EMDLDM | 25 | fort. 25 | EMD along a line 279 |
|  |  | 24 | EMDLDM.DAT | EMD along a line 279 |
|  | EMDPDM | 25 | fort. 25 | EMD map on a plane 280 |
|  |  | 94 | 3DEMDTOTAL.DA | IEMD map on a plane (3D format) 280 |
|  |  | 65 | 3DEMDANISO.DA | EMD-anisotropy map on a plane (3D for- 280 mat) |
|  | EMDL | 25 | fort. 25 | EMD line (IPLOT=1) 279 |
|  |  | 24 | EMDL.DAT | EMD line(IPLOT=2) 279 |
|  | EMDP | 25 |  | EMD - 2D grid 397 |
|  | INFOGUI <br> IRSPEC | 32 |  | Data for the graphical user interface 283 |
|  |  |  | - | Infrared spectra 197 |
|  |  |  | IRSPEC.DAT | IR Absorbance and Reflectance 197 |
|  |  |  | IRREFR.DAT | IR Refractive index 197 |
|  |  |  | IRDIEL.DAT | IR Dielectric function 197 |
|  | RAMSPEC |  | - | Raman spectra 199 |
|  |  |  | RAMSPEC.DAT | Raman spectra for polycrystalline powder 199 and single crystal |
|  | POTC | 24 | POTC.DAT | Electrostatic potential V, Electric field, 305 Electric field gradient |
|  | POTM | 25 | fort. 25 | Electrostatic potential-2D grid 306 |
|  | PROF | 25 | fort. 25 | Compton profile and related quantities 307 (IPLOT=1) |
|  |  | 24 | PROF.DAT | Compton profile and related quantities 307 (IPLOT=2) |

Please refer to the standard script for running CRYSTAL09 as to handle input/output file names. See:
http://www.crystal.unito.it/tutorials $=¿$ How to run
Data in file fort. 25 are read by the programs maps06, doss06, band06 of the package Crgra2006. In the same run bands, density of states, value of a function in a 2D grid of points can be computed. The appropriate command (maps06, doss06, band06) selects and plots
the selected data .
The package can be downloaded from:
http://www.crystal.unito.it/Crgra2006/Crgra2006.html

## CLAS - ECHG - POTM - EMDPDM - Isovalue maps

The value of the function chosen (classic electrostatic potential (CLAS), charge (+spin) density (ECHG), electrostatic potential (POTM), electron momentum density (EMDPDM)) is computed in a given net of points. The data are written in file fort. 25 .
If the system is spin polarized, total density data are followed by spin density data.

## Structure of the file fort. 25

```
1ST RECORD : -%-, IHFERM,TYPE,NROW,NCOL,DX,DY, COSXY format: A3,I1,A4,2I5, 3E12.5
2ND RECORD : XA,YA,ZA,XB,YB,ZB format: 1P,6E12.5
3RD RECORD : XC,YC,ZC,NAF,LDIM format: 1P,3E12.5,4X,2I4
4TH RECORD
AND FOLLOWING : ((RDAT (I , J), I=1,NROW), J=1 ,NCOL)
 format: 1P,6E12.5
```

Meaning of the variables:

| $\begin{aligned} & 1 \text { '-\%-' } \\ & 1 \text { IHFERM: } \end{aligned}$ | 3 character string marks the beginning of a block of data; <br> 0 : closed shell, insulating system <br> 1 : open shell, insulating system <br> 2 : closed shell, conducting system - Fermi level can be drawn <br> 3 : open shell, conducting system - Fermi level can be drawn |
| :---: | :---: |
| 1 TYPE | 4 characters string corresponding to the type of data "MAPN" |
| 1 NROW | number of rows of the data matrix RDAT |
| 1 NCOL | number of columns of the data matrix RDAT |
| 1 DX | increment of $x$ ( $\backslash$ AA ngstrom) in the plane of the window |
| 1 DY | increment of $y$ ( $\backslash$ AA ngstrom) in the plane of the window |
| 1 COSXY | cosine of the angle between $x$ and $y$ axis; |
| $2 \mathrm{XA}, \mathrm{YA}, \mathrm{ZA}$ | coordinates of the points A,B (see keyword MAPNET) (\AA ngstrom) |
| $2 \mathrm{XB}, \mathrm{YB}, \mathrm{ZB}$ | defining the window where the functions is computed ( $\backslash$ AA ngstrom) |
| $3 \mathrm{XC,YC,ZC}$ | coordinates of point C ( $\backslash$ AA ngstrom) |
| 3 NAF | number of atoms in the cell |
| 3 LDIM | dimensionality ( 0 molecule; 1 polymer, 2 slab, 3 bulk) |
| 4-> | ncol*nrow values of the function (a.u.) at the nodes of the grid |

naf records follow, with atomic number, symbol, coordinates (Ångstrom) of the atoms in the cell:

```
NAT , SYMBAT , XA, YA, ZA
format: I4,1X,A,1P, 3E20.12
```

NAT atomic number
SYMBAT Mendeleev symbol
XA, YA, ZA cartesian coordinates of the atoms in the cell ( $\backslash \mathrm{AA}$ ngstrom)
Cartesian components of cell parameters follow (Ångstrom)

```
AX, AY, AZ cartesian component of vector a format: 3E20.12
BX, BY, BZ cartesian component of vector b format: 3E20.12
CX, CY, CZ cartesian component of vector c format: 3E20.12
```

The program maps06 looks for the atoms lying in the windows used to compute the function, and it can draw the symbol of the atoms, the van der Waals sphere, or the bonds between atoms closer than the sum of their vdW radii.

## ECHG Charge (spin) density - 1D profile

When points B and C coincides in ECHG 13.9 input, coordinates relative to the origin of the segment and charge density value [coordinate along the line, charge density: charge density derivative $x, y, z$ components] are written with format (2E20.12:3E20.12) in file RHOLINE.DAT. A second set of data, spin density, is written for spin polarized systems, after a blank line.

## BAND - Band structure

Hamiltonian eigenvalues are computed at k points corresponding to a given path in the Brillouin zone. Data are written in file BAND.DAT and processed by DLV; see http://www.cse.clrc.ac.uk/cmg/DLV) and in file fort. 25 (processed by Crgra2006/band06)

## Structure of the file fort. 25

One block is written for each segment of the path in k reciprocal space: the segment is defined by two k points, whose crystallographic coordinates (I1,I2,I3) and (J1,J2,J3) are given as integers in ISS units (see keyword BAND).
If the system is spin polarized, $\alpha$ electrons bands are followed by $\beta$ electrons bands.
For each segment:

```
1ST RECORD : -%-,IHFERM,TYPE,NBAND,NKP,DUM,,DK,EF format: A3,I1,A4,2I5,3E12.5
2ND RECORD : EMIN,EMAX format: 1P,6E12.5
3RD RECORD : I1,I2,I3,J1,J2,J3 format: 6I3
4TH RECORD
AND FOLLOWING : ((RDAT(I,J),I=1,NROW),J=1,NCOL) format: 1P,6E12.5
```

Meaning of the variables:

```
1 '-%-', 3 character string marks the beginning of a block of data;
1 IHFERM: 0 : closed shell, insulating system
 1 : open shell, insulating system
 2 : closed shell, conducting system
 3 : open shell, conducting system
1 TYPE 4 characters string corresponding to the type of data "BAND"
1 NBAND number of bands
 NKP number of }k\mathrm{ points along the segment
 DUM not used
 DK distance in k space between two adjacent sampling points
 along the segment
 EF Fermi energy (hartree)
2 EMIN minimum energy of the bands in the explored path (hartree)
 EMAX maximum energy (hartree)
3 I1,I2,I3,J1,J2,J3 : coordinates of the segment extremes in iunit of ISS
4 EPS(I,J) eigenvalues (hartree): eps(i,j) corresponds to the i-th
.. band, and the j-th k point of the segment.
```


## DIEL

The data computed are written in file DIEL.DAT according to the following format:

```
#
@ XAXIS LABEL "DISTANCE(BOHR)"
@ YAXIS LABEL "MACRORHO MACROE MACROV RHOPLANE"
5 columns - format(08E15.7)
last record is blank
```


## DOSS Density of states

Total and projected density of states are written in file DOSS.DAT (processed by DLV; see http://www.cse.clrc.ac.uk/cmg/DLV) and in file fort. 25 (processed by Crgra2006).
One block is written for each projected density of states, including the total one: so NPRO (number pf projections) +1 blocks are written per each run.
If the system is spin polarized, $\alpha$ electrons bands are followed by $\beta$ electrons bands.

Structure of the file written in file fort. 25

```
1ST RECORD : -%-,IHFERM,TYPE,NROW,NCOL,DX,DY,COSXY
 format : A3,I1,A4,2I5,1P,(3E12.5)
2ND RECORD : X0,Y0 format : 1P,6E12.5
3RD RECORD : I1,I2,I3,I4,I5,I6 format : 6I3
4TH RECORD
AND FOLLOWING : ((RDAT (I, J), I=1,NROW), J=1,NCOL) format : 1P,6E12.5
Meaning of the variables:
\begin{tabular}{ll}
1 NROW & 1 (DOSS are written one projection at a time) \\
NCOL & number of energy points in which the DOS is calculated \\
DX & energy increment (hartree) \\
DY & not used \\
COSXY & Fermi energy (hartree) \\
2 XO & energy corresponding to the first point \\
YO & not used \\
3 I1 & number of the projection; \\
I2 & number of atomic orbitals of the projection; \\
I3,I4,I5,I6 & not used \\
4 RO(J), J=1,NCOL & DOS: density of states ro(eps \((j))\) (atomic units).
\end{tabular}
1 \text { NROW 1 (DOSS are written one projection at a time)}
 DX energy increment (hartree)
 DY not used
 COSXY Fermi energy (hartree)
XO energy corresponding to the first point
I1 number of the projection;
 number of atomic orbitals of the projection;
```


## Structure of the file written in file DOSS.DAT

Data written in file DOSS.DAT:

```
1ST RECORD : NPUNTI, NPRO1, IUHF
 format : '# NEPTS',1X,I5,1X,'NPROJ',1X,I5,1X,'NSPIN',1X,I5
2ND RECORD : '#'
3RD RECORD : '@ YAXIS LABEL "DENSITY OF STATES (STATES/HARTREE/CELL)",
4TH RECORD : (ENE(I),DOSS(IPR,I),IPR=1,NPRO1)
AND FOLLOWING :
 format : 1P,15E12.4
```

PROF

The computed quantities are written following the same sequence of the printout. Each record contains:

```
4F coordinate, all electron, core, valence contribution
```


## EMDL

The computed quantities are written following the same sequence of the printout. NPUNTI records are written. Each records contains (FORMAT: 10E12.4)

```
p (emdl(p,ipro), ipro=1,nprojections))
```


## EMDP

```
1ST RECORD : -%-,IHFERM,TYPE,NMAX1,NMAX2,PMAX1,PMAX2,COS12
 format : A3,I1,A4,2I5,1P,(3E12.5)
2ND RECORD : XDUM,YDUM format : 1P,6E12.5
3RD RECORD : I11,I12,I13,I21,I22,I23 format : 6I3
4TH RECORD
AND FOLLOWING : ((RDAT (I, J), I=1,NMAX1),J=1,NMAX2) format : 1P,6E12.5
Meaning of the variables:
1 '-%-' 3 character string marks the beginning of a block of data;
1 IHFERM: 0 : closed shell, insulating system
 1 : open shell, insulating system
 2 : closed shell, conducting system
 3 : open shell, conducting system
```

```
1 TYPE 4 characters string corresponding to the type of data "EMDP"
1 NMAX1 number of points in the first direction
 NMAX2 number of points in the second direction
 PMAX1 maximum p value along the first direction
 PMAX2 maximum p value along the first direction
 COSXY angle between the two vectors defining the plane
2 XO not used
Yo not used
3 I11,I12,I13 fractional coordinates of the first reciprocal lattice
 vector defining the plane
I21,I22,I23 fractional coordinates of the second reciprocal lattice
vector defining the plane
4 RO(J),J=1,NMAX1*NMAX2 electron momentum density at the grid points
 (atomic units).
```


## POTC

When ICA $\neq 0 ;$ NPU $\neq 0$ ( 2 D or 3 D systems) the data computed are written in file POTC.DAT according to the following format:

```
#
@ XAXIS LABEL "Z (AU)"
@ YAXIS LABEL "ELECTROSTATIC PROPERTIES (AU)"
@ TITLE "String in the first record in crystal input "
@ SUBTITLE "ELECTRIC FIELD INTENSITY: 0.100 AU" ! if external field applied
@ LEGEND ON
@ LEGEND LENGTH 3
@ LEGEND X1 0.87
@ LEGEND Y1 0.8
@ LEGEND STRING 0 "V"
@ LEGEND STRING 1 "E"
@ LEGEND STRING 2 "DE/DZ"
@ LEGEND STRING 3 "RHO"
@ LEGEND STRING 4 "V+VEXT" ! if external field applied
@ LEGEND STRING 5 "VEXT" ! if external field applied
NPU records of 5 (7 when external field applied) columns - format 08E15.7
```


## COORPRT

The keyword COORPRT, entered in geometry input or in properties writes in file fort. 33 (append mode) the following data:

| record | data | content |
| :---: | :---: | :---: |
| \# | type |  |
| 1 | I | number of atoms (NAF) |
| 2 | A | Title - If written after an SCF calculation, on the same line; totalenergy, convergence on energy, number of cycles |
| 3 | A, 3F | Mendeleev symbol of the atom; $x, y, z$ cartesian coordinates $(\AA)$ |
| $\mathrm{NAF}+2$ | A, 3F | Mendeleev symbol of the atom; $x, y, z$ cartesian coordinates $(\AA)$ |

The coordinates of the atoms are written at each geometry optimization cycle (keyword OPTGEOM
The file "fort. 33 " is read by the program MOLDEN [199] which can be downloaded from: www.cmbi.kun.nl/ schaft/molden/molden.html

## STRUCPRT

The file STRUC.INCOOR is written according to the format given in the example (output for bulk $\mathrm{MgO}, 2$ atoms per cell).

| \$cell vectors | cartesian components of cell parameters (bohr) |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 0.00000000000000 | 3.97787351190423 | 3.97787351190423 |  |
| 3.97787351190423 | 0.00000000000000 | 3.97787351190423 |  |
| 3.97787351190423 | 3.97787351190423 | 0.00000000000000 |  |
| \$coordinates | cartesian coordinates of atoms (bohr) |  |  |
| MG 0.00000000000000 | 0.00000000000000 | 0.00000000000000 | 12 |
| O 0.00000000000000 | 0.00000000000000 | -3.97787351190423 | 8 |

## PPAN



## EXTPRT / EXTERNAL - file fort. 34

Geometry information can be read from an external file, fort.34, by entering the keyword EXTERNAL. The system can be a molecule, a polymer, a slab or a crystal. The file is written by entering the keyword EXTPRT in the input block 1 . The file is written at the end of successful geometry optimization. The "history" of the optimization process is written in files optaxxx (xxx number of optimization cycle) or optcxxx. $/ /[0.2 \mathrm{~cm}]$ The structure of the file is as follow:

| rec \# | data type | contents <br> dimensionality, centring and crystal type |
| :---: | :---: | :---: |
| 2 | 3I |  |
| 3 | 3F | \} cartesian components of the direct lattice vectors |
| 4 | 3F |  |
| 5 | 3 F | \} cartesian components of the direct lattice vectors |
| 6 | 1I | \} number of symmetry operators |
|  |  | For each symmetry operator 4 records: |
| 7 | 3 F |  |
| 8 | 3 F | $\text { \} symmetry operators matrices in cartesian coordinates }$ |
| 9 | 3 F |  |
| 10 | 3 F | \} cartesian components of the translation |
| $\begin{aligned} & \mathrm{n} \\ & \text { only) } \end{aligned}$ | 1 I | \} number of atoms in the primitive cell (up to CRYSTAL14, irreducible atoms |
|  |  | For each atom, 1 record: |
| $\mathrm{n}+1$ | I, 3F | \} conventional atomic number, cartesian coordinates of the atoms |
| $2$ | $3 \mathrm{I}$ | \} space group number and initial number of symmetry operators if symmetry was not |

The keyword EXTERNAL and END must be inserted at the top and bottom of the deck to use it as CRYSTAL geometry input.

Example - Test05 - Graphite 2D - standard geometry input

| SLAB | dimensionality |
| :--- | :--- |
| 77 | layer group number |
| 2.42 | lattice parameter |
| 1 | number of irreducible atoms in the cell |
| $6 \quad-0.33333333333$ | $0.33333333333 \quad 0 . \quad$ coordinates of the atoms |
| EXTPRT |  |
| TESTGEOM |  |
| END |  |

Data written in file fort. 34 (Ångstrom):

| 215 |  |  | ! dimensionality, centring and crystal type |
| :---: | :---: | :---: | :---: |
| $0.2095781 \mathrm{E}+01$ | $-0.1210000 \mathrm{E}+01$ | $0.0000000 \mathrm{E}+00$ | ! cartesian components of direct lattice vectors |
| $0.0000000 \mathrm{E}+00$ | $0.2420000 \mathrm{E}+01$ | $0.0000000 \mathrm{E}+00$ | $!$ 起 |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.5000000 \mathrm{E}+03$ | ! 2D system - formal value 500. \AA |
| 12 |  |  | ! number of symmetry operators |
| $0.1000000 \mathrm{E}+01$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! 1st symmetry operator - 3x3 transformation matrix |
| $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | $0.0000000 \mathrm{E}+00$ |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! 1st symmetry operator - 3x1 translation component |
| -0.1000000E+01 | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | 2nd symmetry operator |
| $0.0000000 \mathrm{E}+00$ | $-0.1000000 \mathrm{E}+01$ | $0.0000000 \mathrm{E}+00$ |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |
| -0.5000000E+00 | $-0.8660254 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! 3rd symmetry operator |
| $0.8660254 \mathrm{E}+00$ | $-0.5000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |
| -0.5000000E+00 | $0.8660254 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! 4th symmetry operator |
| -0.8660254E+00 | $-0.5000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |
| $0.5000000 \mathrm{E}+00$ | $-0.8660254 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! 5th symmetry operator |
| $0.8660254 \mathrm{E}+00$ | $0.5000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |
| $0.5000000 \mathrm{E}+00$ | $0.8660254 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! 5th symmetry operator |
| -0.8660254E+00 | $0.5000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $!$ ! |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ |  |


| -0.5000000E+00 | $0.8660254 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! | 7 th symmetry operator |
| :---: | :---: | :---: | :---: | :---: |
| $0.8660254 \mathrm{E}+00$ | $0.5000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |  |
| $0.1000000 \mathrm{E}+01$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! | 8th symmetry operator |
| $0.0000000 \mathrm{E}+00$ | -0.1000000E+01 | $0.0000000 \mathrm{E}+00$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |  |
| -0.5000000E+00 | -0.8660254E+00 | $0.0000000 \mathrm{E}+00$ | ! | 9th symmetry operator |
| -0.8660254E+00 | $0.5000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |  |
| $0.5000000 \mathrm{E}+00$ | $0.8660254 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! | 10th symmetry operator |
| $0.8660254 \mathrm{E}+00$ | $-0.5000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | 0.0000000E+00 | ! |  |
| -0.1000000E+01 | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! | 11th symmetry operator |
| $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | $0.0000000 \mathrm{E}+00$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | 0.0000000E+00 | ! |  |
| $0.5000000 \mathrm{E}+00$ | $-0.8660254 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ |  | 12th symmetry operator |
| -0.8660254E+00 | $-0.5000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.1000000 \mathrm{E}+01$ | ! |  |
| $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | $0.0000000 \mathrm{E}+00$ | ! |  |
| 1 |  |  | ! | number of irreducible |
| $6 \quad-0.698$ | $5938-1.210000$ | 0.0000000 |  | conventional atomic nu |

## ECH3/POT3/GRID3D

Functions values computed at 3D grid of points by the keywords ECH3 (page 276), POT3 (pag\&304), GRID3D (pag\&283) are written according to two formats: . All data in atomic units.

1. Fortran unit 31 is written According to the following format. All data in atomic units.

| rec \# | data type $\}$ contents |  |
| :--- | :--- | :--- |
| 1 | A | $\}$ title: charge density /spin density |
| 2 | $3 I$ | $\}$ npa, npb, npc, number of points along the 3 directions |
| 3 | $3 E$ | $\} x, y, z$ cartesian coordinates of the point $(1,1,1)$ |
| 4 | $3 E$ | $\}$ dxa, dya, dza cartesian components of the step along a |
| 5 | $3 E$ | $\}$ dxb, dyb, dzb cartesian components of the step along b |
| 6 | $3 E$ | $\}$ dxc, dyc, dzc cartesian components of the step along c |
| $7 \ldots$ | $5 E$ | $\}$ npa*npb*npc floating point data, 5/record |

2. Function data computed at 3D grid points are written according to GAUSSIAN CUBE format in files:

| DENS_CUBEDंAT | charge density |
| :--- | :--- |
| SPIN_CUBEDंAT | spin density |
| POT_CUBEDंAT | electrostatic potential |

## INFOGUI

Fortran unit 32 is written through the keyword INFOGUI (page 283). The format is almost self-explaining. The following data are written for MgO bulk (test11).

```
2 atom(s) per cell
 shells
18 atomic orbitals
20 electrons per cell
12 core electrons per cell
No eigenvalue level shifting
No Alpha-Beta Spin locking
```

```
No N. Beta Spin locking
Type of Calculation: RESTRICTED CLOSED SHELL
Total Energy = -0.27466415E+03H
Fermi Energy = -0.31018989E+00H
1-0.31018989E+00
18 20 12 | # shells, # AO, # electrons, # core electrons
 | # atoms
1210.000000 0.000000 0.000000 | sequence number, atomic number,?,cartesian coor(bohr)
shells attributed to the first atom
shell type (s) of the 1st shell
shell type (sp) of the 2nd shell
shell type (sp) of the 3rd shell
 8 2 3.977874 3.977874 3.977874 | sequence number, atomic number,?,cartesian coor(bohr)
shells attributed to the second atom
shell type (s) of the 1st shell
shell type (sp) of the 2nd shell
shell type (sp) of the 3rd shell
```


## IRSPEC

IRSPEC in FREQCALC input block writes the files IRSPEC.DAT, IRREFR.DAT and IRDIEL.DAT.

IRSPEC.DAT contains: 1 column with frequency $\nu$ in $\mathrm{cm}^{-1}, 1$ column with wavelength $\lambda$ in nm, 4 columns for the 4 different models of absorbance $A, 1$ column for reflectance $R$ along each inequivalent polarization direction.

IRREFR.DAT contains: 1 column with frequency $\nu$ in $\mathrm{cm}^{-1}, 1$ column with wavelength $\lambda$ in $\mathrm{nm}, 2$ columns for $\operatorname{Re}(n)$ and $\operatorname{Im}(n)$ along each direction ( $n$ being the refractive index).

IRDIEL.DAT contains: 1 column with frequency $\nu$ in $\mathrm{cm}^{-1}, 1$ column with wavelength $\lambda$ in nm , 3 columns for $\operatorname{Re}(\epsilon), \operatorname{Im}(\epsilon)$ and $\operatorname{Im}(1 / \epsilon)$ along each direction ( $\epsilon$ being the dielectric function).

Suppose we have the following input block, for a compound with three inequivalent polarization directions:

```
FREQCALC
INTENS
[options for INTENS]
DIELTENS or DIELISO
[optional FREQCALC keywords]
. . . .
IRSPEC
```

END
ENDFREQ

The first two columns in the generated IRSPEC.DAT contain frequencies and wavelengths, columns from 3 to 6 the raw absorbance, the classical absorbance, the two Rayleigh scattering absorbances, and column 7-9 the reflectance curves for the three directions.

Suppose we want to plot the raw absorbance with respect to frequency. Once gnuplot is opened on the terminal (type gnuplot), it is sufficient to type
plot 'IRSPEC.DAT' using 1:3
where $1: 3$ stands for "first column assigned to $x$ axis and third column to $y$ axis". The plot of the raw absorbance appears on the screen and can be saved with the command

```
save 'name_plot'
```

If we want to save the plot as a Post-Script

```
set size 1.0, 0.6
set terminal postscript portrait enhanced mono dashed lw 1 "Helvetica" 14
set output "my-plot.ps"
replot
```

In a similar way, we can type

```
plot 'IRSPEC.DAT' using 1:7
```

in order to obtain the reflectance along the first polarization direction, and
plot 'IRSPEC.DAT' using 1:8
for the reflectance along the second direction.
Further details about these commands and manipulation of files at http://www.duke.edu/hpgavin/gnuplot.html and http://www.gnuplot.info/documentation.html.

## RAMSPEC

RAMSPEC in FREQCALC input block writes the file RAMSPEC.DAT.
RAMSPEC.DAT contains: 1 column with frequency $\nu$ in $\mathrm{cm}^{-1}, 3$ columns for intensities of polycrystalline powders (total intensity, parallel polarization, perpendicular polarization), 6 columns for spectra of single crystals ( 1 for each inequivalent polarization direction: $x x, x y$, $x z, y y, y z, z z)$.

Suppose we want to plot the total Raman intensity of a polycrystalline powder with respect to frequency. Once gnuplot is opened on the terminal (type gnuplot), it is sufficient to type

```
plot 'RAMSPEC.DAT' using 1:2
```

where 1:2 stands for "first column assigned to $x$ axis and second column to $y$ axis". The plot of the total polycrystalline Raman intensity appears on the screen and can be saved with the command

```
save 'name_plot'
```

If we want to save the plot as a Post-Script

```
set size 1.0, 0.6
set terminal postscript portrait enhanced mono dashed lw 1 "Helvetica" 14
set output "my-plot.ps"
replot
```

In a similar way, we can type

```
plot 'RAMSPEC.DAT' using 1:5
```

in order to obtain the Raman spectrum of a single crystal along the first polarization direction, i.e. $x x$.

Further details about these commands and manipulation of files at http://www.duke.edu/ hpgavin/gnuplot.html and http://www.gnuplot.info/documentation.html.

## Interface to external programs

The keyword CRYAPI_OUT, present into properties input stream writes formatted wave function information, both in direct and reciprocal space, in file GRED.DAT and KRED.DAT The scripts runcry06 and runprop06 save them in the current directory as inpfilename.GRED and inpfilename.KRED.
The program cryapi_inp, written in fortran 90, is distributed as source code (http://www.crystal.unito.it $=>$ documentation $=>$ utilities). It reads and prints the data, showing the meaning of the variables and the organization of data
cryapi_inp should be compiled by any fortran 90 compiler: comments and request for more information are welcome (mail to crystal@unito.it).

## GRED.DAT

The file GRED.DAT contains:

- Geometry, symmetry operators;
- Local functions basis set (including ECP)
- Overlap matrix in direct lattice
- Hamiltonian matrix in direct lattice
- Density matrix in direct lattice
- Wannier functions (if file fort.80, written by LOCALWF when localization is successful, is present)

Overlap, hamiltonian, density matrices are written as arrays of non-zero elements. GRED.DAT contains the information to build full matrices.
All data are printed executing cryapi_inp

## KRED.DAT

The file KRED.DAT is written if eigenvectors have been computed (keyword NEWK 13.11) by properties.
CRYSTAL works in the irreducible Brillouin (IBZ) zone only: eigenvectors in the full Brillouin zone (BZ) are computed by rotation, and by time reversal symmetry, when necessary. The file KRED.DAT contains:

- Coordinates of k points in irreducible Brillouin zone, according to Pack-Monkhorst net
- Symmetry operators in reciprocal lattice
- Geometrical weight of k points
- Hamiltonian eigenvalues
- Weight of k points for each band (computed by Fermi energy calculation)
- Eigenvectors in full Brillouin zone


## Structure of matrices in direct lattice

Overlap, hamiltonian, and density matrices in direct lattice are arrays of non-zero elements: cryapi_inp prints the matrices as triangular (hamiltonian) or square matrices of size (local BS x local BS ), for a limited number of direct lattice vectors, to show the structure of the arrays.

## From IBZ to BZ

CRYSTAL works on irreducible Brillouin zone (IBZ), full information is generated by applying rotation operators.
Time reversal symmetry is exploited in reciprocal lattice: the inversion symmetry is always present, even if the inversion operator is not present in direct lattice.
Given a shrinking factor according to Pack-Monkhorst sampling, to total number of k points is for instance:

| System | n. symmops | shrink factors | IBZ | NOSYMM | BZ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| graphite (2D) | 12 | 3 | 3 | 5 | 9 |
| SiC (3D) | 24 | 4 | 8 | 36 | 64 |
| MgO (3D) | 48 | 4 | 8 | 36 | 64 |
| IBZ | number of points in IBZ |  |  |  |  |
| NOSYMM | number of points removing direct lattice symmetry |  |  |  |  |
| BZ | number of points in Brillouin zone |  |  |  |  |

## Appendix E

## Normalization coefficients

A. Bert - Thesis 2002

The aim of this appendix is to show how normalization coefficients of the basis functions are defined in CRYSTAL and to describe how they are stored in the program.

## Basic Definitions

Let us consider a function, $f(\mathbf{r})$; we have in general:

$$
\begin{equation*}
\int d \mathbf{r}|f(\mathbf{r})|^{2} \neq 1 \tag{E.1}
\end{equation*}
$$

however, we can always define a related $f^{\prime}(\mathbf{r})$, multiplying $f(\mathbf{r})$ by a constant $N$ :

$$
\begin{equation*}
f^{\prime}(\mathbf{r})=N f(\mathbf{r}), \tag{E.2}
\end{equation*}
$$

such that:

$$
\begin{equation*}
\int d \mathbf{r}\left|f^{\prime}(\mathbf{r})\right|^{2}=1 \tag{E.3}
\end{equation*}
$$

$f^{\prime}(\mathbf{r})$ is said to be a normalized function and $N$ is its Normalization Coefficient (NC). Substituting eq. E. 2 in E. 3 , we have:

$$
\begin{equation*}
N=\left(\int d \mathbf{r}|f(\mathbf{r})|^{2}\right)^{-1 / 2} \tag{E.4}
\end{equation*}
$$

## Gaussians: Product Theorem and Normalization

Let us define Gaussian functions as:

$$
\begin{equation*}
G\left(\alpha_{i} ; \mathbf{r}-\mathbf{A}\right)=\exp \left(-\alpha_{i}(\mathbf{r}-\mathbf{A})^{2}\right) \tag{E.5}
\end{equation*}
$$

where $\mathbf{A}$ is the centroid of the function.
The Gaussian product theorem states that the product of two Gaussians, is still a Gaussian function 1

$$
\begin{equation*}
G(\alpha ; \mathbf{r}-\mathbf{A}) G(\beta ; \mathbf{r}-\mathbf{B})=\exp \left(-\frac{\alpha \beta}{\xi}|\mathbf{R}|^{2}\right) G(\xi ; \mathbf{r}-\mathbf{P}) \tag{E.8}
\end{equation*}
$$

[^2]with:
\[

$$
\begin{align*}
\xi & =\alpha+\beta  \tag{E.9}\\
\mathbf{P} & =\frac{\alpha \mathbf{A}+\beta \mathbf{B}}{\xi}  \tag{E.10}\\
\mathbf{R} & =\mathbf{A}-\mathbf{B} \tag{E.11}
\end{align*}
$$
\]

From eq. E.4, the NC of Gaussian functions, $g_{i}$, can be written as:

$$
\begin{align*}
g_{i} & =\left(\int d \mathbf{r}\left(G\left(\alpha_{i} ; \mathbf{r}\right)\right)^{2}\right)^{-1 / 2} \\
& =\left(\int d \mathbf{r} G\left(2 \alpha_{i} ; \mathbf{r}\right)\right)^{-1 / 2} \\
& =\left(\frac{\pi}{2 \alpha_{i}}\right)^{-3 / 4} \tag{E.12}
\end{align*}
$$

where the Gaussian product theorem and the Gaussian integral [224] have been used. $G^{\prime}\left(\alpha_{i} ; \mathbf{r}\right)$, defined as:

$$
\begin{equation*}
G^{\prime}\left(\alpha_{i} ; \mathbf{r}\right)=g_{i} G\left(\alpha_{i} ; \mathbf{r}\right) \tag{E.13}
\end{equation*}
$$

is a normalized function.

## Harmonic Gaussians

## The Definition

The Solid Harmonic Functions, $Y_{\ell}^{m}$, 192] are defined as:

$$
\begin{equation*}
Y_{\ell}^{m}(\mathbf{r})=r^{\ell} P_{\ell}^{|m|}(\cos \vartheta) e^{\mathrm{i} m \phi} \tag{E.14}
\end{equation*}
$$

where $P_{\ell}^{m}$ is the Legendre Polynomial Function characterized by the integers $\ell$ and $m$, such that: $\ell \geq 0$ and $-\ell \leq m \leq \ell$. 4]
Starting from $Y_{\ell}^{m}$, the Real Solid Harmonic, $X_{\ell}^{m}$, can be defined:

$$
\begin{align*}
X_{\ell}^{|m|}(\mathbf{r}) & =\Re\left(Y_{\ell}^{|m|}\right)=\frac{Y_{\ell}^{|m|}(\mathbf{r})+Y_{\ell}^{-|m|}(\mathbf{r})}{2}  \tag{E.15}\\
X_{\ell}^{-|m|}(\mathbf{r}) & =\Im\left(Y_{\ell}^{|m|}\right)=\frac{Y_{\ell}^{|m|}(\mathbf{r})-Y_{\ell}^{-|m|}(\mathbf{r})}{2 i} \tag{E.16}
\end{align*}
$$

We report some examples of $X$ functions.
$\ell=0$ :

$$
\begin{equation*}
X_{0}^{0}(\mathbf{r})=1 \tag{E.17}
\end{equation*}
$$

$\ell=1:$

$$
\begin{equation*}
X_{1}^{0}(\mathbf{r})=z, \quad X_{1}^{1}(\mathbf{r})=x, \quad X_{1}^{-1}(\mathbf{r})=y \tag{E.18}
\end{equation*}
$$

$\ell=2:$

$$
\begin{gather*}
X_{2}^{0}(\mathbf{r})=z^{2}-0.5\left(x^{2}-y^{2}\right), \quad X_{2}^{1}(\mathbf{r})=3 z x, \quad X_{2}^{-1}(\mathbf{r})=3 z y  \tag{E.19}\\
X_{2}^{2}(\mathbf{r})=3\left(x^{2}+y^{2}\right), \quad X_{2}^{-2}(\mathbf{r})=3 x y \tag{E.20}
\end{gather*}
$$

Using eqs. E.9 E.10 and E.11, eq. E.6 can be rewritten as:

$$
\begin{equation*}
G(\alpha ; \mathbf{r}-\mathbf{A}) G(\beta ; \mathbf{r}-\mathbf{B})=\exp \left(-\frac{\alpha \beta}{\xi}|\mathbf{R}|^{2}\right) G(\xi ; \mathbf{r}-\mathbf{P}) \tag{E.7}
\end{equation*}
$$

We have now the tools required to define the Solid Harmonic Gaussian, $192 \xi$ :

$$
\begin{equation*}
\xi^{n \ell m}\left(\alpha_{i} ; \mathbf{r}\right)=|\mathbf{r}|^{2 n} Y_{\ell}^{m}(\mathbf{r}) G_{i}\left(\alpha_{i} ; \mathbf{r}\right) \tag{E.21}
\end{equation*}
$$

where $n$ is a non-negative integer number ( $n \geq 0$ ). We are interested here only in $n=0$ harmonic Gaussians (that is, $\xi^{0 \ell m}$ ), so we shall simply write (omitting the $n=0$ index):

$$
\begin{equation*}
\xi^{\ell m}\left(\alpha_{i} ; \mathbf{r}\right)=Y_{\ell}^{m}(\mathbf{r}) G\left(\alpha_{i} ; \mathbf{r}\right) \tag{E.22}
\end{equation*}
$$

Substituting $Y$ with $X$ (eqs. E. 15 and E.16) in eq. E. 22 Real Harmonic Gaussians, $\gamma$, can be defined:

$$
\begin{equation*}
\gamma^{\ell m}\left(\alpha_{i} ; \mathbf{r}\right)=X_{\ell}^{m}(\mathbf{r}) G\left(\alpha_{i} ; \mathbf{r}\right) \tag{E.23}
\end{equation*}
$$

$\gamma$ are used as basis functions in the CRYSTAL program and are related to the $\xi$ ones by followings relations:

$$
\begin{align*}
\gamma^{\ell|m|} & =\frac{\xi^{\ell|m|}+\xi^{\ell-|m|}}{2}  \tag{E.24}\\
\gamma^{\ell-|m|} & =\frac{\xi^{\ell|m|}-\xi^{\ell-|m|}}{2 i} \tag{E.25}
\end{align*}
$$

where eqs. E. 15 and E. 16 have been used.
Note that, when $\ell$ is equal to $0, \xi$ and $\gamma$ functions degenerate to simple Gaussians:

$$
\begin{equation*}
\xi^{00}=\gamma^{00}=G \tag{E.26}
\end{equation*}
$$

where eq. E. 17 has been used and $\xi$ degenerates to $\gamma$ when $m=0$ :

$$
\begin{equation*}
\xi^{\ell 0}=\gamma^{\ell 0} \tag{E.27}
\end{equation*}
$$

where eqs. E. 24 and E. 25 have been used.

## The Normalization Coefficient

Let us consider now $\xi$ and $\gamma$ 's normalization coefficients ( $b$ and $c$, respectively), from eq. E.4, follows:

$$
\begin{align*}
b_{i}^{\ell m} & =(\Xi)^{-1 / 2}  \tag{E.28}\\
c_{i}^{\ell m} & =(\Upsilon)^{-1 / 2} \tag{E.29}
\end{align*}
$$

where

$$
\begin{align*}
& \Xi=\int d \mathbf{r}\left|\xi^{\ell m}\left(\alpha_{i} ; \mathbf{r}\right)\right|^{2}  \tag{E.30}\\
& \Upsilon=\int d \mathbf{r}\left(\gamma^{\ell m}\left(\alpha_{i} ; \mathbf{r}\right)\right)^{2} \tag{E.31}
\end{align*}
$$

Using eqs. E.5 E.8 E. 14 E. 22 and a spherical polar coordinate system ${ }^{2}$ the $\Xi$ integral can be factorized as:

$$
\begin{align*}
\Xi & =\int d \mathbf{r}\left[Y_{\ell}^{m}(\mathbf{r}) G\left(\alpha_{i} ; \mathbf{r}\right)\right]^{*} Y_{\ell}^{m}(\mathbf{r}) G\left(\alpha_{i} ; \mathbf{r}\right) \\
& =\int d \mathbf{r} Y_{\ell}^{-m}(\mathbf{r}) Y_{\ell}^{m}(\mathbf{r}) G\left(2 \alpha_{i} ; \mathbf{r}\right) \\
& =\Xi_{r} \Xi_{\vartheta} \Xi_{\phi} \tag{E.32}
\end{align*}
$$

[^3]with:
\[

$$
\begin{align*}
\Xi_{r} & =\int_{0}^{\infty} d r \exp \left(-2 \alpha_{i} r^{2}\right) r^{2 \ell+2} \\
& =\frac{\Gamma(\ell+3 / 2)}{2\left(2 \alpha_{i}\right)^{\ell+3 / 2}} \\
& =\frac{\pi^{1 / 2}(2 \ell+1)!!}{2^{\ell+2}\left(2 \alpha_{i}\right)^{\ell+3 / 2}} \tag{E.33}
\end{align*}
$$
\]

where we have used the $\Gamma$ function's properties; 4]

$$
\begin{align*}
\Xi_{\vartheta} & =\int_{0}^{\pi} d \vartheta\left(P_{\ell}^{|m|}(\cos \vartheta)\right)^{2} \sin \vartheta \\
& =\frac{2(\ell+|m|)!}{(2 \ell+1)(\ell-|m|)!} \tag{E.34}
\end{align*}
$$

where the Legendre polynomials' properties have been used, [4] and

$$
\begin{equation*}
\Xi_{\phi}=\int_{0}^{2 \pi} d \phi=2 \pi \tag{E.35}
\end{equation*}
$$

Substituting eqs. E.32, E.33, E.34 and E.35 in the $b$ definition (eq. E. 28 we obtain:

$$
\begin{align*}
b_{i}^{\ell m} & =\frac{\pi^{1 / 2}(2 \ell+1)!!}{2^{\ell+2}\left(2 \alpha_{i}\right)^{\ell+3 / 2}} \frac{2(\ell+|m|)!}{(2 \ell+1)(\ell-|m|)!} 2 \pi \\
& =\left(\frac{\pi^{3 / 2}(2 \ell-1)!!(\ell+|m|)!}{2^{2 \ell+3 / 2} \alpha_{i}^{\ell+3 / 2}(\ell-|m|)!}\right)^{-1 / 2} \tag{E.36}
\end{align*}
$$

Note that $b$ is independent from the sign of $m$ (as $\Xi$ is), that is:

$$
\begin{equation*}
b_{i}^{\ell|m|}=b_{i}^{\ell-|m|} \tag{E.37}
\end{equation*}
$$

In order to deduce the explicit expression for $c$, we are interested now in solving the integral of eq. E. 31

$$
\begin{equation*}
\Upsilon=\int d \mathbf{r}\left(X_{\ell}^{m}(\mathbf{r})\right)^{2} G\left(2 \alpha_{i} ; \mathbf{r}\right) \tag{E.38}
\end{equation*}
$$

where eqs. E. 8 and E. 23 have been used. Substituting eq. E. 24 ( $\gamma$ functions with $m \geq 0$ ) in previous equation, we have:

$$
\begin{align*}
\Upsilon^{m \geq 0}= & \frac{1}{4}\left(\int d \mathbf{r}\left|\xi^{\ell|m|}\left(\alpha_{i} ; \mathbf{r}\right)\right|^{2}+\int d \mathbf{r}\left|\xi^{\ell-|m|}\left(\alpha_{i} ; \mathbf{r}\right)\right|^{2}+\right. \\
& \left.+2 \int d \mathbf{r} \xi^{\ell|m|}\left(\alpha_{i} ; \mathbf{r}\right) \xi^{\ell-|m|}\left(\alpha_{i} ; \mathbf{r}\right)\right) \tag{E.39}
\end{align*}
$$

The first two integrals in eq. E. 39 can be recognized as $\Xi$ (eq. E.32 reminding that $\Xi$ is independent from the $m$ sign); the last one, if $m \neq 0$, is null for the orthogonality properties of the Harmonic functions, [4] therefore:

$$
\begin{equation*}
\Upsilon^{m>0}=\frac{\Xi}{2} \tag{E.40}
\end{equation*}
$$

The same result is found for negative $m$, substituting eq. E.25 (instead of eq. E.24 as done) in eq. E.31.

$$
\begin{equation*}
\Upsilon^{m<0}=\frac{\Xi}{2} \tag{E.41}
\end{equation*}
$$

so $\Upsilon$ (as $\Xi$ is) is independent from the $m$ sign. If $m=0$, the last integral in eq. E. 39 is equal to $\Xi$, as the first two ones:

$$
\begin{equation*}
\Upsilon^{m=0}=\Xi \tag{E.42}
\end{equation*}
$$

the previous equation can be deduced also from eq. E.27.
Summarizing, from eqs. E.40, E. 41 and E.42, we get:

$$
\begin{equation*}
\Upsilon=\frac{\Xi}{2-\delta_{m 0}} \tag{E.43}
\end{equation*}
$$

and, finally, substituting eqs. E. 32 and E.43 in eq. E.29 we obtain:

$$
\begin{equation*}
c_{i}^{\ell m}=\left(\frac{\pi^{3 / 2}(2 \ell-1)!!(\ell+|m|)!}{2^{2 \ell+3 / 2}\left(2-\delta_{m 0}\right) \alpha_{i}^{\ell+3 / 2}(\ell-|m|)!}\right)^{-1 / 2} \tag{E.44}
\end{equation*}
$$

The $c$ expression (eq. E.44) can be reorganized in a two factors formula:

$$
\begin{equation*}
c_{i}^{\ell m}=a_{i}^{\ell} f^{\ell m} \tag{E.45}
\end{equation*}
$$

with:

$$
\begin{equation*}
a_{i}^{\ell}=\left(\frac{\pi^{3 / 2}}{\left(2 \alpha_{i}\right)^{\ell+3 / 2}}\right)^{-1 / 2} \tag{E.46}
\end{equation*}
$$

the $\alpha$-dependent term, and

$$
\begin{equation*}
f^{\ell m}=\left(\frac{(2 \ell-1)!!(\ell+|m|)!}{2^{\ell}\left(2-\delta_{m, 0}\right)(\ell-|m|)!}\right)^{-1 / 2} \tag{E.47}
\end{equation*}
$$

the $m$ dependent term.
Note that,

- If $\ell=0, \gamma$ degenerates in a simple Gaussian (eq. E.26),

$$
\begin{equation*}
f^{00}=1 \quad \text { and } \quad c_{i}^{00}=a_{i}^{0}=g_{i} \tag{E.48}
\end{equation*}
$$

where $g_{i}$ is the $G$ 's NC (eq. E.12).

- If $\ell=1, f^{1 m}=1 / 2$ for the three $m$-values:

$$
\begin{equation*}
f^{1 m}=1 / 2 \quad \text { and } \quad c_{i}^{1 m}=\frac{a_{i}^{1}}{2}=\frac{\alpha_{i}^{5 / 4} 2^{7 / 4}}{\pi^{3 / 4}}, \forall m=-1,0,1 \tag{E.49}
\end{equation*}
$$

- If $\ell=2$, we have:

$$
\begin{equation*}
c_{i}^{20}=\frac{\alpha_{i}^{7 / 4} 2^{11 / 4}}{\pi^{3 / 4} \sqrt{3}} ; \quad c_{i}^{21}=c_{i}^{2-1}=\frac{\alpha_{i}^{7 / 4} 2^{11 / 4}}{\pi^{3 / 4} 3} ; \quad c_{i}^{22}=c_{i}^{2-2}=\frac{\alpha_{i}^{7 / 4} 2^{7 / 4}}{\pi^{3 / 4} 3} \tag{E.50}
\end{equation*}
$$

Let us verify, for two examples, that

$$
\begin{equation*}
\gamma^{\prime}=c \gamma \tag{E.51}
\end{equation*}
$$

is a normalized function, proving that the following integral, $I$, is equal to 1 ,

$$
\begin{equation*}
I_{i}^{\ell m}=\int d \mathbf{r}\left(c_{i}^{\ell m} \gamma^{\ell m}\left(\alpha_{i} ; \mathbf{r}\right)\right)^{2} \tag{E.52}
\end{equation*}
$$

The $s$ Case ( $\ell=0, m=0$ )

$$
\begin{align*}
I_{i}^{00} & =\left(c_{i}^{00}\right)^{2} \int d \mathbf{r}\left(\gamma^{00}\left(\alpha_{i} ; \mathbf{r}\right)\right)^{2} \\
& =\left(g_{i}\right)^{2} \int d \mathbf{r}\left(G\left(\alpha_{i} ; \mathbf{r}\right)\right)^{2} \\
& =\left(\int\left(G\left(\alpha_{i} ; \mathbf{r}\right)\right)^{2} d \mathbf{r}\right)^{-1} \int\left(G\left(\alpha_{i} ; \mathbf{r}\right)\right)^{2} d \mathbf{r}=1 \tag{E.53}
\end{align*}
$$

where eqs. E. 48 E. 27 and E. 12 have been used.
Ad Case $(\ell=2, m=1)$

$$
\begin{equation*}
I_{i}^{21}=\int d \mathbf{r}\left(c_{i}^{21} \gamma^{21}\left(\alpha_{i} ; \mathbf{r}\right)\right)^{2}=\left(c_{i}^{21}\right)^{2} J \tag{E.54}
\end{equation*}
$$

with:

$$
\begin{equation*}
J=\int d \mathbf{r}\left(3 z x G\left(2 \alpha_{i} ; \mathbf{r}\right)\right)^{2} \tag{E.55}
\end{equation*}
$$

where eqs. E. 23 and E. 19 have been used.
Gaussians are separable functions, that is:

$$
\begin{equation*}
G\left(\alpha_{i} ; \mathbf{r}\right)=G_{x}\left(\alpha_{i} ; x\right) G_{y}\left(\alpha_{i} ; y\right) G_{z}\left(\alpha_{i} ; z\right) \tag{E.56}
\end{equation*}
$$

with:

$$
\begin{equation*}
G_{x}\left(\alpha_{i} ; x\right)=\exp \left(-\alpha_{i} x^{2}\right) \tag{E.57}
\end{equation*}
$$

and similarly for $y$ and $z$. Substituting eq. E.56 in eq. E.55, we have:

$$
\begin{equation*}
J=9 J_{x} J_{y} J_{z} \tag{E.58}
\end{equation*}
$$

with:

$$
\begin{align*}
J_{x} & =\int x^{2} G_{x}\left(2 \alpha_{i} ; x\right) d x=\frac{\sqrt{\pi}}{2}\left(2 \alpha_{i}\right)^{-3 / 2},  \tag{E.59}\\
J_{y} & =\int G_{y}\left(2 \alpha_{i} ; y\right) d y=\left(\frac{\pi}{2 \alpha_{i}}\right)^{1 / 2}  \tag{E.60}\\
J_{z} & =\int z^{2} G_{z}\left(2 \alpha_{i} ; z\right) d z=\frac{\sqrt{\pi}}{2}\left(2 \alpha_{i}\right)^{-3 / 2} \tag{E.61}
\end{align*}
$$

where ref. 224 has been used in solving the integrals. Substituting now eqs. E. 49 and E.58 in eq. E.54, we obtain:

$$
\begin{equation*}
I_{i}^{21}=\frac{\alpha_{i}^{7 / 2} 2^{11 / 2}}{\pi^{3 / 2} 9} 9\left(\frac{\sqrt{\pi}}{2}\left(2 \alpha_{i}\right)^{-3 / 2}\right)^{2}\left(\frac{\pi}{2 \alpha_{i}}\right)^{1 / 2}=1 \tag{E.62}
\end{equation*}
$$

## Atomic Orbitals Normalization

The variational basis functions of the CRYSTAL program (AOs), $\varphi_{\mu}$, are normalized contractions (fixed linear combinations) of normalized real solid harmonic Gaussian type functions (primitive functions), $\gamma^{\prime}$ (eq. E.51). The AOs are organized in shells, $\varphi_{\mu}$ belonging to the same shell, $\lambda$, have same radial part, that is, same contraction coefficients, $d_{i}^{\lambda}$, same Gaussian exponents, $\alpha_{i}^{\lambda}$ and different angular part, $X_{\ell}^{m}$ :

$$
\begin{equation*}
\varphi_{\lambda}^{\ell m}=N_{\lambda} \sum_{i} d_{i}^{\lambda} c_{i}^{\ell m} \gamma^{\ell m}\left(\alpha_{i}^{\lambda} ; \mathbf{r}\right)=N_{\lambda} \sum_{i} d_{i}^{\lambda} c_{i}^{\ell m} X_{\ell}^{m}(\mathbf{r}) G\left(\alpha_{i}^{\lambda} ; \mathbf{r}\right) \tag{E.63}
\end{equation*}
$$

The index $i$ runs over the primitive functions of the contraction, $d_{i}^{\lambda}$ is the contraction coefficient of the $i$-th primitive in shell $\lambda$ and, as we have seen, it is the same for all the AOs of $\lambda$, that is, it does not depend on $\ell$ or $m . \gamma$ and $c$ are the primitive function and its NC (eq. E.29), respectively. $N_{\lambda}$ is the NC of AOs belonging to $\lambda$ and is defined as:

$$
\begin{equation*}
N_{\lambda}=\left(\int d \mathbf{r}\left(\sum_{i} d_{i}^{\lambda} c_{i}^{\ell m} \gamma^{\ell m}\left(\alpha_{i}^{\lambda} ; \mathbf{r}\right)\right)^{2}\right)^{-1 / 2} \tag{E.64}
\end{equation*}
$$

in the following will be shown that $N$ depends only on the shell, $\lambda$.
We report, as an example, the three AOs of a $p$-type shell $(\ell=1)$, supposing that $\lambda$ is classified as the fourth shell of the unitary cell and each AO is a contraction of two primitives.

$$
\begin{align*}
p_{z}=\varphi_{4}^{10} & =N^{4}\left(d_{1}^{4} c_{1}^{10} \gamma^{10}\left(\alpha_{1}^{4} ; \mathbf{r}\right)+d_{2}^{4} c_{2}^{10} \gamma^{10}\left(\alpha_{2}^{4} ; \mathbf{r}\right)\right)  \tag{E.65}\\
p_{x}=\varphi_{4}^{11} & =N^{4}\left(d_{1}^{4} c_{1}^{11} \gamma^{11}\left(\alpha_{1}^{4} ; \mathbf{r}\right)+d_{2}^{4} c_{2}^{11} \gamma^{11}\left(\alpha_{2}^{4} ; \mathbf{r}\right)\right)  \tag{E.66}\\
p_{y}=\varphi_{4}^{1-1} & =N^{4}\left(d_{1}^{4} c_{1}^{1-1} \gamma^{1-1}\left(\alpha_{1}^{4} ; \mathbf{r}\right)+d_{2}^{4} c_{2}^{1-1} \gamma^{1-1}\left(\alpha_{2}^{4} ; \mathbf{r}\right)\right) \tag{E.67}
\end{align*}
$$

Let us put our attention on $N_{\lambda}$. Eq. E. 64 can be rewritten as:

$$
\begin{equation*}
N^{\lambda}=\left(\sum_{i, j} d_{i}^{\lambda} d_{j}^{\lambda} c_{i}^{\ell m} c_{j}^{\ell m} \Upsilon^{\prime}\right)^{-1 / 2} \tag{E.68}
\end{equation*}
$$

with:

$$
\begin{equation*}
\Upsilon^{\prime}=\int d \mathbf{r} \gamma^{\ell m}\left(\alpha_{i} ; \mathbf{r}\right) \gamma^{\ell m}\left(\alpha_{j} ; \mathbf{r}\right) \tag{E.69}
\end{equation*}
$$

where the shell index on $\alpha$ has been omitted for simplicity. Substituting eq. E.23 in eq. E.69, we have:

$$
\begin{equation*}
\Upsilon^{\prime}=\int X_{\ell}^{m}(\mathbf{r}) G\left(\alpha_{i} ; \mathbf{r}\right) X_{\ell}^{m}(\mathbf{r}) G\left(\alpha_{j} ; \mathbf{r}\right) d \mathbf{r}=\int\left(X_{\ell}^{m}(\mathbf{r})\right)^{2} G\left[\left(\alpha_{i}+\alpha_{j}\right) ; \mathbf{r}\right] d \mathbf{r} \tag{E.70}
\end{equation*}
$$

where the Gaussian product theorem (eq. E.8) has been used.
From eq. E.31, it can be seen that $\Upsilon^{\prime}$ differs from $\Upsilon$ only in the Gaussian exponent $\left(\alpha_{i}+\alpha_{j}\right.$ instead of $2 \alpha_{i}$ ), using then eqs. E.43, E.32, E.34 and E.35, $\Upsilon^{\prime}$ is rewritten as:

$$
\begin{equation*}
\Upsilon^{\prime}=\frac{\Upsilon_{r}^{\prime} \Xi_{\vartheta} \Xi_{\varphi}}{2-\delta_{m 0}} \tag{E.71}
\end{equation*}
$$

with:

$$
\begin{align*}
\Upsilon_{r}^{\prime}= & \int_{0}^{\infty} d r \exp \left[-\left(\alpha_{i}+\alpha_{j}\right) r^{2}\right] r^{2 \ell+2} \\
& =\frac{\Gamma(\ell+3 / 2)}{2\left(\alpha_{i}+\alpha_{j}\right)^{\ell+3 / 2}} \\
& =\frac{\pi^{1 / 2}(2 \ell+1)!!}{2^{\ell+2}\left(\alpha_{i}+\alpha_{j}\right)^{\ell+3 / 2}} \tag{E.72}
\end{align*}
$$

Substituting eqs. E. 44 E. 71 and E. 72 in eq. E. 68 we obtain:

$$
\begin{equation*}
N_{\lambda}=\left(\sum_{i, j} d_{i}^{\lambda} d_{j}^{\lambda}\left(\frac{2 \sqrt{\alpha_{i}^{\lambda} \alpha_{j}^{\lambda}}}{\alpha_{i}^{\lambda}+\alpha_{j}^{\lambda}}\right)^{\ell+3 / 2}\right)^{-1 / 2} \tag{E.73}
\end{equation*}
$$

where it is clear that $N$ depends only on $\lambda$.

## The Code

In order to explain easily the organization of NCs in CRYSTAL, eq. E.63 is reorganized as follows:

$$
\begin{equation*}
\varphi_{\lambda}^{\ell m}=\sum_{i} n_{\lambda, i}^{\ell m} \gamma^{\ell m}\left(\alpha_{i}^{\lambda} ; \mathbf{r}\right), \tag{E.74}
\end{equation*}
$$

with:

$$
\begin{equation*}
n_{\lambda, i}^{\ell m}=N_{\lambda} d_{i}^{\lambda} c_{i}^{\ell m} . \tag{E.75}
\end{equation*}
$$

Note that, while the AO is normalized, the function $\gamma^{\prime \prime}=n \gamma$ is not; in fact $n$ is not a normalization factor, and it will be referred as the pre-Gaussian factor.
At the moment the CRYSTAL code is able to treat four type of shells: $s, s p, p$ and $d$ An $s$ shell has only an AO, that is a contraction of simple Gaussians $(\ell=0)$; in a $p$ one there are three AOs (different for the $m$ value, $p_{x}, p_{y}$ and $p_{z}$ ) with $\ell=1$ primitives; $d$ shells are obviously formed by five $\ell=2$ AOs. The three basis functions of a $s p$ shell are contractions of one $s$ primitive function and several $p \mathrm{~s}$ '.
In the calculation of the integrals required in the SCF process, $n$ must be very often multiplied by the constant factor $\pi^{5 / 8} 2^{1 / 4}$; 175] therefore, in the code, pre-Gaussian factors are not stored, but the following quantities, that we shall call code pre-Gaussian constants:

$$
\begin{align*}
& \mathrm{S}_{i}^{\lambda}=\pi^{5 / 8} 2^{1 / 4} n_{\lambda, i}^{00}  \tag{E.76}\\
& \mathrm{P}_{i}^{\lambda}=\pi^{5 / 8} 2^{1 / 4} n_{\lambda, i}^{1 m} \forall m=0,1,-1  \tag{E.77}\\
& \mathrm{D}_{i}^{\lambda}=\pi^{5 / 8} 2^{1 / 4} \sqrt{\frac{(2+|m|)!}{\left(2-\delta_{m 0}\right)(2-|m|)!}} n_{\lambda, i}^{2 m} \forall m=0,1,-1,2,-2 . \tag{E.78}
\end{align*}
$$

Note that the square root in eq. E.78 (the inverse of the $m$-dependent part of $c$, eq. E.44) makes $\mathbf{D}$ independent from the $m$ value, whereas $n_{\lambda, i}^{2 m}$ depends from it. In such a way, S, P and D are $m$-independent
In the inpbas routine, contraction coefficients (as defined in input), $d_{i}^{\lambda}$, related to $s, p$ and $d$ AOs, are loaded in the two dimension packed arrays c1, c2 and c3, respectively (they are stored in the module basato module). Their length corresponds to the total number of primitives in the unit cell and is the same for the three arrays. The first elements are the contraction coefficients for the first shell $\left(d_{i}^{1}\right)$, then the $d_{i}^{2} \mathrm{~s}$ (second shell) follows, and so on; the contraction index, $i$, is the internal one. For an $s$ shell, for example, the elements of c 2 and c 3 are null, of course.
In the gaunov routine, c1, c2 and c3 are redefined and loaded with the code pre-Gaussian constants S, P and D, respectively; naturally they maintain the described organization and module basato_module is overwritten.
In gaunov two further arrays, c2w and c3w (that follow the convention used in the ATMOL program) are also defined and loaded in basato module. They have the same organization as $c 1, \mathrm{c} 2$ and c 3 and contain $\mathrm{P}_{i}^{\prime \lambda}$ and $\mathrm{D}_{i}^{\prime \lambda}$ coefficients, respectively:

$$
\begin{align*}
\mathrm{P}_{i}^{\prime \lambda} & =\frac{\pi^{5 / 8} 2^{1 / 4}}{2 \alpha_{i}} n_{\lambda, i}^{1 m} \forall m=0,1,-1  \tag{E.79}\\
\mathrm{D}_{i}^{\prime \lambda} & =\frac{\pi^{5 / 8} 2^{1 / 4}}{\left(2 \alpha_{i}\right)^{2}} \sqrt{\frac{(2+|m|)!}{\left(2-\delta_{m 0}\right)(2-|m|)!}} n_{\lambda, i}^{2 m} \forall m=0,1,-1,2,-2 . \tag{E.80}
\end{align*}
$$

[^4]We give an example of evaluation of an overlap integral $S_{\mu \nu}$ over an $s$ and a $m=0 d \mathrm{AO}$ $\left(\varphi_{\mu} \equiv \varphi_{00}^{\lambda}, \varphi_{\nu} \equiv \varphi_{20}^{\sigma}\right)$ sitting in the reference cell:

$$
\begin{equation*}
S_{\mu \nu}=\int d \mathbf{r} \varphi_{00}^{\lambda}(\mathbf{r}) \varphi_{20}^{\sigma}(\mathbf{r}) \tag{E.81}
\end{equation*}
$$

Substituting eq. E. 74 in the previous equation, we have:

$$
\begin{equation*}
S_{\mu \nu}=\sum_{i j} n_{\lambda, i}^{00} n_{\sigma, j}^{20} \int d \mathbf{r} \gamma^{00}\left(\alpha_{i}^{\lambda} ; \mathbf{r}\right) \gamma^{20}\left(\alpha_{j}^{\sigma} ; \mathbf{r}\right) \tag{E.82}
\end{equation*}
$$

Since in the code, S and D are available (but not the $n$ coefficients), we express $n$ as a function of code pre-Gaussian constants, using eqs. E.76 and E.78, and we rewrite the overlap integral as:

$$
\begin{equation*}
S_{\mu \nu}=\left(\pi^{5 / 8} 2^{1 / 4}\right)^{-2} \sqrt{\frac{\left(2-\delta_{m 0}\right)(2-|m|)!}{(2+|m|)!}} \sum_{i j} \mathrm{~S}_{i}^{\lambda} \mathrm{D}_{i}^{\sigma} \int d \mathbf{r} \gamma^{00}\left(\alpha_{i}^{\lambda} ; \mathbf{r}\right) \gamma^{20}\left(\alpha_{j}^{\sigma} ; \mathbf{r}\right) \tag{E.83}
\end{equation*}
$$

Note that the $m$-dependent term contained in $n$, for $d$ shells, must be multiplied a posteriori, because is not included in D. This operation is performed in the dfac3 routine, that provides McMurchie-Davidson coefficients multiplied by code pre-Gaussian constants and, when $\lambda$ is a $d$ shell, by the $m$-dependent part of $n_{\lambda, i}^{2 m}$.

## Appendix F

## CRYSTAL09 versus CRYSTAL06

## Geometry

- Roto-translational symmetry

In the case of polymers it can treat helical structures (translation followed by a rotation around the periodic axis). See keyword HELIX (page 19) and examples therein. CRYSTAL06 allowed commensurate rotations only, by adopting a suitably large unit cell.

- Nanotubes

A special input option allows generation of 1D structures (nanotubes) from 2D one. See keyword NANOTUBE (page 56).

## Geometry optimization

- Default choice modified: TRUSTRADIUS scheme active.

Use keyword NOTRUSTR in OPTGEOM input block (page 162) to run geometry optimization with CRYSTAL06 default.

## Frequencies calculation

- default value for SCF convergence on total energy is $10^{-9}$
- default choice for numerical integration grid (DFT Hamiltonian): XLGRID. To run DFT Hamiltonian cases with CRYSTAL06 numerical integration accuracy insert LGRID in DFT input block (page 129 )
- default choice to compute IR intensities: Berry phase approach. To compute IR intensities with CRYSTAL09 as with CRYSTAL06 insert keyword INTLOC in FREQCALC input block.


## Basis set

- $f$ orbitals
- $f$ orbitals (local functions basis set) with non-zero occupancy allowed. This new feature allows study of systems with Lanthanides.
$d$ and $f$ orbitals occupation guess
- FDOCCUP (input block3, page 92 ) defines the occupation of specific $f$ or $d$ orbitals
in a given shell in the SCF initial guess, according to the local atomic symmetry in the crystal lattice.
- Effective core pseudo potentials Projector operators up to angular quantum number $\ell=4$ are allowed. Input deck has been changed


## Test cases

## crystal09 versus crystal06 total energies (hartree)

|  | CRYSTAL06 | CRYSTAL09 | diff |
| :--- | ---: | ---: | ---: |
| TEST 0 | -110.7649354541 | -110.7649354541 | $0.00 \mathrm{E}+00$ |
| TEST 1 | -39.7267242374 | -39.7267242374 | $0.00 \mathrm{E}+00$ |
| TEST 2 | -223.7874756819 | -223.7874756819 | $0.00 \mathrm{E}+00$ |
| TEST 3 | -893.8746580004 | -893.8746580004 | $0.00 \mathrm{E}+00$ |
| TEST 4 | -1400.1776585535 | -1400.1776585535 | $0.00 \mathrm{E}+00$ |
| TEST 5 | -74.8333583570 | -74.8333583570 | $1.01 \mathrm{E}-12$ |
| TEST 6 | -58.4208255980 | -58.4208255980 | $1.00 \mathrm{E}-12$ |
| TEST 7 | -2800.7355953744 | -2800.7355953744 | $0.00 \mathrm{E}+00$ |
| TEST 8 | -571.3207540595 | -571.3207540595 | $3.00 \mathrm{E}-11$ |
| TEST 9 | -29.2566111179 | -29.2566111179 | $0.00 \mathrm{E}+00$ |
| TEST10 | -577.8265583253 | -577.8265583271 | $-1.86 \mathrm{E}-09$ |
| TEST11 | -274.6641530559 | -274.6641530559 | $-3.00 \mathrm{E}-11$ |
| TEST12 | -447.6810664796 | -447.6810664796 | $-6.00 \mathrm{E}-11$ |
| TEST13 | -23.9856901143 | -23.9856901143 | $0.00 \mathrm{E}+00$ |
| TEST14 | -159.6970601598 | -159.6970601598 | $0.00 \mathrm{E}+00$ |
| TEST15 | -5229.8366027793 | -5229.8366027783 | $1.00 \mathrm{E}-09$ |
| TEST16 | -2995.2869386583 | -2995.2869386582 | $1.00 \mathrm{E}-10$ |
| TEST17 | -2674.3752958019 | -2674.3752958111 | $-9.20 \mathrm{E}-09$ |
| TEST18 | -679.2766564082 | -679.2766564082 | $0.00 \mathrm{E}+00$ |
| TEST19 | -223.8070777853 | -223.8070777853 | $0.00 \mathrm{E}+00$ |
| TEST20 | -89.9552981103 | -89.9552981101 | $1.79 \mathrm{E}-10$ |
| TEST21 | -447.5749511978 | -447.5749511978 | $0.00 \mathrm{E}+00$ |
| TEST22 | -460.7186326563 | -460.7186326563 | $-3.00 \mathrm{E}-11$ |
| TEST23 | -8.0613160317 | -8.0613160317 | $0.00 \mathrm{E}+00$ |
| TEST24 | -1400.1776188146 | -1400.1776188146 | $0.00 \mathrm{E}+00$ |
| TEST25 | -74.8442039913 | -74.8442039913 | $-9.95 \mathrm{E}-13$ |
| TEST26 | -58.4208255860 | -58.4208255860 | $0.00 \mathrm{E}+00$ |
| TEST27 | -2800.7355409839 | -2800.7355409839 | $0.00 \mathrm{E}+00$ |
| TEST28 | -8.0115274157 | -8.0115274157 | $-9.95 \mathrm{E}-14$ |
| TEST29 | -2047.6430862971 | -2047.6430862970 | $9.98 \mathrm{E}-11$ |
| TEST30 | -109.0441458665 | -109.0441458665 | $0.00 \mathrm{E}+00$ |
| TEST31 | -4095.2867581787 | -4095.2867581681 | $1.06 \mathrm{E}-08$ |
| TEST32 | -92.1408103960 | -92.1408103960 | $0.00 \mathrm{E}+00$ |
| TEST33 | -92.1416129818 | -92.1416129818 | $0.00 \mathrm{E}+00$ |
| TEST34 | -1117.5230436113 | -1117.5230436113 | $0.00 \mathrm{E}+00$ |
| TEST35 | -936.5017511475 | -936.5017511475 | $3.00 \mathrm{E}-11$ |
| TEST36 | -112.5648952230 | -112.5648952230 | $1.00 \mathrm{E}-11$ |
| TEST37 | -3028.3682392877 | -3028.3682392877 | $0.00 \mathrm{E}+00$ |
| TEST38 | -2279.1395902376 | -2279.1395902366 | $1.00 \mathrm{E}-09$ |
|  |  |  |  |

## Appendix G

## CRYSTAL14 versus CRYSTAL09

## Old Settings

- Some default computational parameters have changed with respect to the Crystal09 version of the program (see below). The keyword OLDREF09, to be inserted in the geometry input block, switches back them all;


## Geometry optimization

- Full geometry optimizations (atomic coordinates and lattice parameters) are now performed as a default option when the OPTGEOM keyword is used. The sub-keyword ATOMONLY switches back to an atomic positions only optimization;
- The FINALRUN $=4$ option is now set by default (before it was 0 ). See page 163 for details;


## Density Functional Theory

- The size of the default numerical integration grid has changed. Now it corresponds to the XLGRID option. The option OLDGRID has been added to set back the old grid size;
- By default, an unlocked energy shifting of 0.6 hartree is applied to separate apart occupied from virtual orbitals, which corresponds to option LEVSHIFT with parameters 60 .


## Frequencies calculation

- Eckart conditions for cleaning the Hessian matrix as regards translational and rotational vibration modes are now activated by default. See page 184 for details;


## SCF Parameters

- A Fock (Kohn-Sham) matrix mixing of $30 \%$ between subsequent SCF cycles is now active by default (see keyword FMIXING);
- A full direct approach for the computation of the integrals (keyword SCFDIR) is now used as a default. Use keyword NODIRECT for switching this option off;
- The tresholds governing the bipolar approximation have changed from 14 10 to 18 14. See keyword BIPOLA for details;


## Test cases <br> CRYSTAL14 versus CRYSTAL09 total energies (hartree)

|  | $\begin{aligned} & \text { CRYSTAL09 } \\ & \text { v.2.0.1 } \\ & \text { Etot } \end{aligned}$ | CRYSTAL14 <br> Old settings Etot | CRYSTAL14 <br> New defaults Etot | CRY14-CRY09 Old settings DEtot |
| :---: | :---: | :---: | :---: | :---: |
| st00 | -110.76493545 | -110.76493545 | -110.76493545 | 0.00000000 |
| test01 | -39.72672424 | -39.72672424 | -39.72672424 | 0.00000000 |
| test02 | -223.78747568 | -223.78747568 | -223.78754817 | 0.00000000 |
| test03 | -893.87465800 | -893.87465800 | -893.87461008 | 0.00000000 |
| test04 | -1400.17765855 | -1400.17765855 | -1400.17840956 | 0.00000000 |
| test05 | -74.83335836 | -74.83335836 | -74.83336244 | 0.00000000 |
| test06 | -58.42082558 | -58.42082558 | -58.42098571 | 0.00000000 |
| test07 | -2800.73559537 | -2800.73559537 | -2800.73725678 | 0.00000000 |
| test08 | -571.32075406 | -571.32075406 | -571.32081226 | 0.00000000 |
| test09 | -29.25661159 | -29.25661159 | -29.25662600 | 0.00000000 |
| test10 | -577.82655833 | -577.82655832 | -577.82670817 | 0.00000000 |
| test11 | -274.66415306 | -274.66415306 | -274.66419189 | 0.00000000 |
| test12 | -447.68106648 | -447.68106648 | -447.68124595 | 0.00000000 |
| test13 | -23.98569011 | -23.98569011 | -23.98569013 | 0.00000000 |
| test14 | -159.69706016 | -159.69706016 | -159.69729413 | 0.00000000 |
| test15 | -5229.83660278 | -5229.83660278 | -5229.83555014 | 0.00000000 |
| test16 | -2995. 28693866 | -2995. 28693866 | -2995. 28683802 | 0.00000000 |
| test17 | -2674.37529581 | -2674.37529581 | -2674.37559033 | 0.00000000 |
| test18 | -679.27665641 | -679.27665641 | -679.27667659 | 0.00000000 |
| test19 | -223.80707779 | -223.80707779 | -223.80715189 | 0.00000000 |
| test20 | -89.95529811 | -89.95529811 | -89.95529811 | 0.00000000 |
| test21 | -447.57495120 | -447.57495120 | -447.57509617 | 0.00000000 |
| test22 | -460.71863266 | -460.71863266 | -460.71872430 | 0.00000000 |
| test23 | -8.06131603 | -8.06131603 | -8.06132051 | 0.00000000 |
| test24 | -1400.17761881 | -1400.17761881 | -1400.17836984 | 0.00000000 |
| test25 | -74.84420399 | -74.84420399 | -74.84419555 | 0.00000000 |
| test26 | -58.42082557 | -58.42082557 | -58.42098569 | 0.00000000 |
| test27 | -2800.73554098 | -2800.73554098 | -2800.73720223 | 0.00000000 |
| test28 | -8.01152742 | -8.01152742 | -8.01152780 | 0.00000000 |
| test29 | -2047.64308630 | -2047.64308630 | -2047.64342093 | 0.0000000 |
| test30 | -109.04414587 | -109.04414587 | -109.04434229 | 0.00000000 |
| test31 | -4095.28675817 | -4095.28675818 | -4095. 28742264 | -0.00000001 |
| test32 | -92.14081040 | -92.14081040 | -92.14081024 | 0.00000000 |
| test33 | -92.14161298 | -92.14161298 | -92.14161286 | 0.00000000 |
| test34 | -1117.52304361 | -1117.52304361 | -1117.52300498 | 0.00000000 |
| test35 | -936.50175115 | -936.50175115 | -936.50185912 | 0.00000000 |
| test36 | -112.56489522 | -112.56489522 | -112.56490316 | 0.00000000 |
| test37 | -3028.36823929 | -3028.36823929 | -3028.36857687 | 0.00000000 |
| test38 | -2279.13959024 | -2279.13959024 | -2279.14018803 | 0.00000000 |
| est43 | -1613.25523877 | -1613.25523877 | -1613.25545994 | 0.00000000 |
| test47 | -4394.62644451 | -4394.62644451 | -4394.62706583 | 0.00000000 |
| test01_dft | -40.32096680 | -40.32096680 | -40.32090900 | 0.00000000 |

```
\begin{tabular}{lrrrr}
test02_dft & -224.92502981 & -224.92502981 & -224.92495090 & 0.00000000 \\
test03_dft & -895.51814784 & -895.51814784 & -895.51821309 & 0.00000000 \\
test04_dft & -1403.86073017 & -1403.86073017 & -1403.86074899 & 0.00000000 \\
test05_dft & -75.25763976 & -75.25763976 & -75.25766593 & 0.00000000 \\
test08_dft & -573.30069771 & -573.30069771 & -573.30058383 & 0.00000000 \\
test11_dft & -275.43123078 & -275.43123078 & -275.43126854 & 0.00000000 \\
test39_dft & -485.38270022 & -485.38270022 & -485.38264752 & 0.00000000 \\
test40_dft & -337.10879536 & -337.10879536 & -337.10946296 & 0.00000000 \\
test41_dft & -1313.33749919 & -1313.33749919 & -1313.33738975 & 0.00000000 \\
test42_dft & -7.53085315 & -7.53085315 & -7.53085381 & 0.00000000 \\
test44_dft & -1421.65733745 & -1421.65733745 & -1421.65785507 & 0.00000000 \\
test45_dft & -5280.86118400 & -5280.86118400 & -5280.86080258 & 0.00000000 \\
test46_dft & -5280.43937642 & -5280.43937642 & -5280.43953416 & 0.00000000 \\
test47_dft & -4406.89968860 & -4406.89968860 & -4406.90099322 & 0.00000000 \\
test48_dft & -37.61966054 & -37.61966054 & -37.61967775 & 0.00000000 \\
test49_dft & -37.61966059 & -37.61966059 & -37.61967828 & 0.00000000 \\
test50_dft & -37.61966059 & -37.61966059 & -37.61967828 & 0.00000000 \\
test51_dft & -1020.29088144 & -1020.29088144 & -1020.29350751 & 0.00000000
\end{tabular}
```


## Appendix H

## CRYSTAL17 versus CRYSTAL14

## Old Settings

- Some default computational parameters have changed with respect to the Crystal14 version of the program (see below). The keyword OLDREF14, to be inserted in the geometry input block, switches back them all;


## SCF Parameters

- The DIIS scheme for convergence acceleration is now active by default for all SCF and CPHF calculations. The keyword NODIIS, to be inserted in the third input block for SCF and within the CPHF input block for CPHF, switches it off.


## Density Functional Theory

- A new default value of 200 is set for the CHUNKS option, which enables a better load balance for DFT numerical integration in replicated-data parallel calculations (PCRYstal);


## Geometry Optimization

- New system-dependent default values for the FIXDELTE, FIXDELTX and FIXDELTN options are set, which control the updating of the indexes for integral evaluation during the optimization process;


## Equation-of-State

- The "Trust-radius" strategy for step control during the constant-volume optimizations has been turned off by default;
- The pre-screening for the integrals to be computed is now performed on the most compressed rather than on the equilibrium configuration;


## Strain-related Properties

- The "Trust-radius" strategy for step control during the geometry optimizations for the calculation of the nuclear-relaxed term of the elastic, piezoelectric and photo-elastic tensors has been turned off by default;


## Test cases <br> CRYSTAL17 versus CRYSTAL14 total energies (hartree)

|  | CRYSTAL14 <br> [default] <br> Etot | CRYSTAL17 <br> [Old settings] Etot | CRY17-CRY14 [Old settings] DEtot | $\begin{aligned} & \text { CRYSTAL17 } \\ & \text { [New defaults] } \\ & \text { Etot } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| test00 | -110.76493545 | -110.76493545 | 0.00000000 | -110.76493545 |
| test01 | -39.72672424 | -39.72672424 | 0.00000000 | -39.72672424 |
| test02 | -223.78754817 | -223.78754817 | 0.00000000 | -223.78754821 |
| test03 | -893.87461008 | -893.87461008 | 0.00000000 | -893.87461011 |
| test04 | -1400.17840956 | -1400.17840956 | 0.00000000 | -1400.17840968 |
| test05 | -74.83336244 | -74.83336244 | 0.00000000 | -74.83336244 |
| test06 | -58.42098571 | -58.42098571 | 0.00000000 | -58.42082558 |
| test07 | -2800.73725678 | -2800.73725678 | 0.00000000 | -2800.73725684 |
| test08 | -571.32081226 | -571.32081226 | 0.00000000 | -571.32081224 |
| test09 | -29.25662600 | -29.25662580 | 0.00000020 | -29.25662575 |
| test10 | -577.82670817 | -577.82670817 | 0.00000000 | -577.82670839 |
| test11 | -274.66419189 | -274.66419189 | 0.00000000 | -274.66419186 |
| test12 | -447.68124595 | -447.68124595 | 0.00000000 | -447.68124599 |
| test13 | -23.98569013 | -23.98569013 | 0.00000000 | -23.98569013 |
| test14 | -159.69729413 | -159.69729413 | 0.00000000 | -159.69729410 |
| test15 | -5229.83555014 | -5229.83555014 | 0.00000000 | -5229.83555019 |
| test16 | -2995. 28683802 | -2995. 28683802 | 0.00000000 | -2995.28683806 |
| test17 | -2674.37559033 | -2674.37559033 | 0.00000000 | -2674.37559036 |
| test18 | -679.27667659 | -679.27667659 | 0.00000000 | -679.27667667 |
| test19 | -223.80715189 | -223.80715189 | 0.00000000 | -223.80715191 |
| test20 | -89.95529811 | -89.95529811 | 0.00000000 | -89.95529813 |
| test21 | -447.57509617 | -447.57509617 | 0.00000000 | -447.57509621 |
| test22 | -460.71872430 | -460.71872430 | 0.00000000 | -460.71872433 |
| test23 | -8.06132051 | -8.06132051 | 0.00000000 | -8.06132047 |
| test24 | -1400.17836984 | -1400.17836984 | 0.00000000 | -1400.17836996 |
| test25 | -74.84419555 | -74.84419555 | 0.00000000 | -74.84420399 |
| test26 | -58.42098569 | -58.42098569 | 0.00000000 | -58.42098616 |
| test27 | -2800.73720223 | -2800.73720223 | 0.00000000 | -2800.73720229 |
| test28 | -8.01152780 | -8.01152780 | 0.00000000 | -8.01152475 |
| test29 | -2047.64342093 | -2047.64342093 | 0.00000000 | -2047.64342095 |
| test30 | -109.04434229 | -109.04434229 | 0.00000000 | -109.04434299 |
| test31 | -4095.28742264 | -4095.28742263 | 0.00000001 | -4095.28742264 |
| test32 | -92.14081024 | -92.14081024 | 0.00000000 | -92.14081075 |
| test33 | -92.14161286 | -92.14161286 | 0.00000000 | -92.14161323 |
| test34 | -1117.52300498 | -1117.52300498 | 0.00000000 | -1117.52300500 |
| test35 | -936.50185912 | -936.50185912 | 0.00000000 | -936.50185910 |
| test36 | -112.56490316 | -112.56490316 | 0.00000000 | -112.56490317 |
| test37 | -3028.36857687 | -3028. 36857687 | 0.00000000 | -3028. 36857693 |
| test38 | -2279.14018803 | -2279.14018803 | 0.00000000 | -2279.14018803 |
| test43 | -1613. 25545994 | -1613.25545994 | 0.00000000 | -1613.25546005 |
| est47 | -4394.62706583 | -4394.62706583 | 0.00000000 | -4394.62706582 |


| test01_dft | -40.32090900 | -40.32090900 | 0.00000000 | -40.32090900 |
| :--- | ---: | ---: | ---: | ---: |
| test02_dft | -224.92495090 | -224.92495090 | 0.00000000 | -224.92495093 |
| test03_dft | -895.51821309 | -895.51821309 | 0.0000000 | -895.51821314 |
| test04_dft | -1403.86074899 | -1403.86074899 | 0.00000000 | -1403.86074926 |
| test05_dft | -75.25766593 | -75.25766593 | 0.00000000 | -75.25766595 |
| test08_dft | -573.30058383 | -573.30058383 | 0.00000000 | -573.30058387 |
| test11_dft | -275.43131232 | -275.43131232 | 0.00000000 | -275.43131232 |
| test39_dft | -485.38264752 | -485.38264752 | 0.0000000 | -485.38264774 |
| test40_dft | -337.10946296 | -337.10946296 | 0.00000000 | -337.10946311 |
| test41_dft | -1313.33738975 | -1313.33738975 | 0.00000000 | -1313.33738951 |
| test42_dft | -7.52368726 | -7.52368726 | 0.00000000 | -7.52368748 |
| test44_dft | -1421.65785507 | -1421.65785507 | 0.00000000 | -1421.65785497 |
| test45_dft | -5280.86080258 | -5280.86080258 | 0.0000000 | -5280.86080182 |
| test46_dft | -5280.43953416 | -5280.43953416 | 0.00000000 | -5280.43953374 |
| test47_dft | -4406.90099322 | -4406.90099322 | 0.00000000 | -4406.90099348 |
| test48_dft | -37.61967832 | -37.61967832 | 0.00000000 | -37.61967832 |
| test49_dft | -37.61967828 | -37.61967828 | 0.0000000 | -37.61967832 |
| test50_dft | -37.61967828 | -37.61967828 | 0.00000000 | -37.61967832 |
| test51_dft | -1020.28687445 | -1020.28687453 | -0.00000008 | -1020.28687390 |

## Appendix I

## Acronyms

AFM - Anti ferromagnetic<br>AO - Atomic Orbital<br>APW - Augmented Plane Wave<br>a.u. - atomic units<br>BF - Bloch Function<br>BS - Basis set<br>BSSE - Basis Set Superposition Error<br>BZ - Brillouin Zone (first)<br>B3PW - Becke Perdew Wang<br>B3LYP - Becke - Lee - Yang - Parr<br>CO - Crystalline Orbital<br>CPU - Central Processing Unit<br>DF (T) - Density Functional (Theory)<br>DM - Dipole Moment (see Wannier Functions)<br>DOS - Density of States<br>ECP - Effective Core Potentials<br>EFG - Electric Field Gradient<br>EMD - Electron Momentum Density<br>FM - Ferromagnetic<br>GC - Gradient-Corrected<br>GGA - Generalised Gradient Approximation<br>GS(ES) - Ground State (Electronic Structure)<br>GT(O) - Gaussian Type (Orbital)<br>GT(F) - Gaussian Type (Function)<br>GUI - Graphical User Interface<br>KS - Kohn and Sham<br>HF - Hartree-Fock<br>IBZ - Irreducible Brillouin zone<br>IR - Irreducible Representation<br>LAPW - Linearized Augmented Plane Wave<br>LCAO - Linear Combination of Atomic Orbitals<br>LDA - Local Density Approximation<br>LP - Local Potential<br>LSDA - Local Spin Density Approximation<br>LYP - GGA Lee-Yang-Parr<br>MO - Molecular Orbital

MPP - Massive Parallel Processor
MSI - Molecular Simulation Inc.
NLP - Non-local potential (correlation)
PBE - GGA Perdew-Burke-Ernzerhof
PDOS - Projected Density of States
PP - Pseudopotential
PVM - Parallel Virtual Machine
PW - Plane Wave
PWGGA - GGA. Perdew-Wang
PWLSD - LSD Perdew-Wang
PZ - Perdew-Zunger
P86 - GGA Perdew 86
P91 - Perdew 91
QM - Quantum Mechanics
RCEP - Relativistic Compact Effective Potential
RHF - Restricted Hartree-Fock
ROHF - Restricted Open-shell Hartree-Fock
SAED - Symmetry Allowed Elastic Distortions
SABF - Symmetry Adapted Bloch Functions SC - Supercell
SCF - Self-Consistent-Field
STO - Slater Type Orbital
UHF - Unrestricted Hartree-Fock
VBH - von Barth-Hedin
VWN - Vosko-Wilk-Nusair
WnF - Wannier Functions 0D - no translational symmetry
1 D - translational symmetry in 1 direction ( $x$, CRYSTAL convention)
2 D - translational symmetry in 2 directions ( $x, y$, CRYSTAL convention)
3 D - translational symmetry in 3 directions ( $x, y, z$ CRYSTAL convention)

## Bibliography

[1] A. Karton, A. Tarnopolsky, J.-F. Lamere, G. C. Schatz and J. M. L. Martin. Semiempirical hybrid density functional with perturbative second- order correlation. J. Phys. Chem. A, 112:12868-12886, 2007.
[2] A. Savin, J. Toulouse and H. J. Flad. Short-range exchange-correlation energy of a uniform electron gas with modified electron-electron interaction. Int. J. Quantum Chem., 100(6):1047, 2004.
[3] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria. . J. Chem. Phys., 125(22):224106, 2006.
[4] M. Abramovitz and I. Segun, editors. Handbook of Mathematical Functions. Dover, New York, 1965.
[5] A.D. Becke. J. Chem. Phys., 107:8544, 1997.
[6] C. Adamo and V. Barone. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys., 110:61586170, 1999.
[7] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Mach., 12:547, 1965.
[8] E. Aprà. Metodi quanto-meccanici per lo studio di solidi cristallini. PhD thesis, University of Torino, Torino, 1993.
[9] N.W. Ashcroft and N.D. Mermin. Solid state physics. Saunders College, Philadelphia, 1976.
[10] T. Asthalter, W. Weyrich, A. H. Harker, A. B. Kunz, R. Orlando, and C. Pisani. Comparison of quasi-Hartree-Fock wave-functions for lithium hydride. Solid State Comm., 83:725, 1992.
[11] R. R. W. Bader. Atoms in Molecules. Clarendon Press, Oxford, 1990.
[12] E. B. Barrosa, A. Joriob, G. G. Samsonidzef, R. B. Capazc, A. G. Souza Filhoa, J. Mendes Filhoa, G. Dresselhause, and M. S. Dresselhaus. Review on the symmetry-related properties of carbon nanotubes. Phys. Rep., 431:261-302 (and references therein), 2006.
[13] J. C. Barthelat. Private communication.
[14] J. C. Barthelat and P. Durand. Recent progress of pseudopotentials in quantum chemistry. Gazz. Chim. Ital., 108:225, 1978.
[15] J. C. Barthelat, P. Durand, and A. Serafini. Non-empirical pseusopotentials for molecular calculations. Molec. Phys., 33:159, 1977.
[16] A. D. Becke. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys., 88:2547, 1988.
[17] A. D. Becke. Correlation energy of an inhomogeneous electron gas: A coordinate-space model. J. Chem. Phys., 88:1053, 1988.
[18] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098-3100, 1988.
[19] A. D. Becke. Density-functional thermochemistry. III The role of exact exchange. J. Chem. Phys., 98:5648, 1993.
[20] A. D. Becke and E. R. Johnson. J. Chem. Phys., 122:154101, 2005.
[21] A.D. Becke and K.E. Edgecombe. A simple measure of the electron localization in atomic and molecular systems. J. Chem. Phys., 92:5397, 1990.
[22] D. I. Bilc, R. Orlando, R. Shaltaf, G. M. Rignanese, J. Iniguez, and Ph. Ghosez. Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys. Rev. B, 77:165107, 2008.
[23] J. S. Binkley, J. A. Pople, and W. J. Hehre. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc., 102:939, 1980.
[24] D. M. Bishop. Explicit nondivergent formulas for atomic and molecular dynamic hyperpolarizabilities. 100:6535, 1994.
[25] D. M. Bishop and B. Kirtman. A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities. 95:2646, 1991.
[26] C. F. Bohren and D. Huffman. Absorption and scattering of light by small particles, page 356. Wiley-Intersience Publication, New York, 1983.
[27] Y. Bouteiller, C. Mijoule, M. Nizam, J. C. Barthelat, J.P. Daudey, M. Pellissier, and B. Silvi. Extended gaussian-type valence basis sets for calculations involving non-empirical core pseudopotentials I. PS-31 G basis for Li to Ca and Ga to Kr atoms. Mol. Phys., 65:295, 1988.
[28] S. F. Boys and F. Bernardi. Mol. Phys., 19:553-566, 1970.
[29] S. F. Boys and F. Bernardi. The calculation of small molecular interaction by the difference of separate total energies. Some procedures with reduced errors. Mol. Phys., 19:553, 1970.
[30] J. G. Brandenburg, M. Alessio, B. Civalleri, M. F. Peintinger, T. Bredow, and S. Grimme. J. Phys. Chem. A, 117:9282-9292, 2013.
[31] J. G. Brandenburg and S. Grimme. Dispersion Corrected Hartree-Fock and Density Functional Theory for Organic Crystal Structure Prediction. Top Curr Chem, 345:1-23, 2014.
[32] C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Math. Comput., 19:577, 1965.
[33] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations. IMA J. Appl. Math., 6:76-90, 1970.
[34] C.G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. The New Algorithm. IMA J. Appl. Math., 6:222-231, 1970.
[35] H. Burzlaff and A. Hountas. Computer program for the derivation of symmetry operations from the space-group symbols. J. Appl. Cryst., 15:464, 1982.
[36] C. A. Guido, E. Bremond, C. Adamo and P. Cortona. One third: A new recipe for the PBE0 paradigm. J. Chem. Phys., 138:021104, 2013.
[37] V. R. Saunders C. Gatti and C. Roetti. Crystal field effects on the topological properties of the electron density in molecular crystals. The case of urea. J. Chem. Phys., 101:10686, 1994.
[38] S. Casassa and R. Demichelis. Relative energy of aluminium hydroxides: the role of electron correlation. J. Phys. Chem. C, 116:13313, 2012.
[39] S. Casassa, C. M. Zicovich-Wilson, and C. Pisani. Symmetryadapted localized Wannier functions suitable for periodic calculations. Theor. Chem. Acc., 116:726-733, 2006.
[40] M. Catti, R. Dovesi, A. Pavese, and V. R. Saunders. Elastic constants and electronic structure of fluorite $\left(\mathrm{CaF}_{2}\right)$ : an ab initio Hartree-Fock study. J. Phys.: Condens. Matter, 3:4151, 1991.
[41] M. Causà, R. Dovesi, R. Orlando, C. Pisani, and V. R. Saunders. Treatment of the exchange interactions in Hartree-Fock LCAO calculations of periodic systems. J. Phys. Chem., 92:909, 1988.
[42] M. Causà, R. Dovesi, C. Pisani, and C. Roetti. Electronic structure and stability of different crystal phases of magnesium oxide. Phys. Rev. B, 33:1308, 1986.
[43] M. Causà, R. Dovesi, and C. Roetti. Pseudopotential Hartree-Fock study of seventeen III-V and IV-IV semiconductors. Phys. Rev. B, 43:11937, 1991.
[44] B. Civalleri, C. M. Zicovich-Wilson, L. Valenzano, and P. Ugliengo. B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystal. Crys. Eng. Comm., 10:405-410, 2008.
[45] B. Civalleri, C. M. Zicovich-Wilson, L. Valenzano, and P. Ugliengo. ERRATA CORRIGE TO: "B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. Cryst. Eng. Comm., 10, 405-410 (2008)". Cryst. Eng. Comm., 10:1693-1694, 2008.
[46] E. Clementi. MOTECC 91. ESCON, Leiden, 1991.
[47] M. Cutini, B. Civalleri, M. Corno, R. Orlando, J. G. Brandenburg, L. Maschio, and P. Ugliengoa. Assessment of different quantum mechanical methods for the prediction of structure and cohesive energy of molecular crystals. J. Chem. Theory Comput., 12:3340-3352, 2016.
[48] S. Dall'Olio, R. Dovesi, and R. Resta. Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: the case of $\mathrm{KNbO}_{3}$. Phys. Rev., B56:10105-10114, 1997.
[49] Ph. D'Arco, Y. Noel, R. Demichelis, and R. Dovesi. Single-layered chrysotile nanotubes: A quantum mechanical ab initio simulation. J. Chem. Phys., 131:204701, 2009.
[50] C. Darrigan, M. Rerat, G. Mallia, and R. Dovesi. Implementation of the finite field perturbation method in the crystal program for calculating the dielectric constant of periodic systems. J. Comp. Chem., 24:1305-1312, 2003.
[51] R. Demichelis, B. Civalleri, M. Ferrabone, and R. Dovesi. On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates. Int. J. Quantum Chem., 110:406-415, 2010.
[52] R. Demichelis, Y. Noel, Ph. D'Arco, L. Maschio, and R. Orlando. Structure and energetics of imogolite: a quantum mechanical ab initio study with B3LYP hybrid functional. J. Mater. Chem., 20:10417-10425, 2010.
[53] P. A. M. Dirac. Note on exchange phenomena in the Thomas-Fermi atom. Proc. Cambridge Phil. Soc., 26:376, 1930.
[54] R. Dovesi. On the role of symmetry in the ab initio Hartree-Fock linear combination of atomic orbitals treatment of periodic systems. Int. J. Quantum Chem., 29:1755, 1986.
[55] R. Dovesi, M. Causà, R. Orlando, C. Roetti, and V. R. Saunders. Ab initio approach to molecular crystals: a periodic Hartree-Fock study of crystalline urea. J. Chem. Phys., 92:7402, 1990.
[56] R. Dovesi, E. Ferrero, C. Pisani, and C. Roetti. Ab initio study of the electron momentum distribution of metallic lithium. Z. Phys. B, 51:195, 1983.
[57] R. Dovesi and R. Orlando. Convergence properties of the supercell approach in the study of local defects in solids. Phase Trans., 52:151, 1994.
[58] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, and C. M. Zicovich-Wilson. Crystal: a computational tool for the ab initio study of the electronic properties of crystals. Z. Kristallogr., 220:571-573, 2005.
[59] R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, Ph. D'Arco, Y. Noël, M. Causá, M. Rérat, and B. Kirtman. CRYSTAL14: A program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem., 114:1287-1317, 2014.
[60] R. Dovesi, C. Pisani, C. Roetti, M. Causà, and V. R. Saunders. CRYSTAL88, An ab initio all-electron LCAO-Hartree-Fock program for periodic systems. QCPE Pgm N.577. Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, 1989.
[61] R. Dovesi, C. Pisani, C. Roetti, and V. R. Saunders. Treatment of Coulomb interactions in Hartree-Fock calculations of periodic systems. Phys. Rev. B, 28:5781, 1983.
[62] R. Dovesi, C. Roetti, C. Freyria Fava, M. Prencipe, and V. R. Saunders. On the elastic properties of lithium, sodium an potassium oxide. An ab initio study. Chem. Phys., 156:11, 1991.
[63] R. Dovesi, C. Roetti, and V. R. Saunders. CRYSTAL92 User's Manual. Università di Torino and SERC Daresbury Laboratory, 1992.
[64] R. Dovesi, V. R. Saunders, C. Roetti, M. Causà, N. M. Harrison, R. Orlando, and E. Aprà. CRYSTAL95 User's Manual. Università di Torino, 1996.
[65] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. DArco, and M. Llunell. CRYSTAL06 User's Manual. Università di Torino, Torino,2006.
[66] P. Durand and J. C. Barthelat. A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theor. Chim. Acta, 38:283-302, 1975.
[67] E. Weintraub, T. M. Henderson, Scuseria G. E. Long-Range-Corrected Hybrids Based on a New Model Exchange Hole. J. Chem. Theory Comput., 5:754-762, 2009.
[68] U. Ekström, L. Visscher, R. Bast, A. J. Thorvaldsen, and K. Ruud. Arbitrary-order density functional response theory from automatic differentiation. J. Chem. Theory Comput., 6:1971, 2010.
[69] A. Erba, S. Casassa, R. Dovesi, L. Maschio, and C. Pisani. Periodic density functional theory and local-mp2 study of the librational modes of ice xi. J. Chem. Phys., 130:074505, 2009.
[70] A. Erba and R. Dovesi. Photoelasticity of crystals from theoretical simulations. Phys. Rev. B, 88:045121, 2013.
[71] A. Erba, Kh. E. El-Kelany, M. Ferrero, I. Baraille, and M. Rérat. Piezoelectricity of $\mathrm{srtio}_{3}$ : An ab initio description. Phys. Rev. B, 88:035102, 2013.
[72] A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat, and R. Dovesi. The vibration properties of the $(n, 0)$ boron nitride nanotubes from ab initio quantum chemical simulations. J. Chem. Phys., 138:054906, 2013.
[73] A. Erba, M. Ferrabone, R. Orlando, and R. Dovesi. Accurate dynamical structure factors from ab initio lattice dynamics: The case of crystalline silicon. J. Comput. Chem., 34:346, 2013.
[74] A. Erba and M. Halo. CRYSCORO9 User's Manual. Università di Torino, Torino, 2009. http://www.cryscor.unito.it.
[75] A. Erba, A. Mahmoud, R. Orlando, and R. Dovesi. Elastic properties of six silicate garnet end-members from accurate ab initio simulations. Phys. Chem. Miner., 41:151-160, 2014.
[76] A. Erba, L. Maschio, S. Salustro, and S. Casassa. A post-hartree-fock study of pressure-induced phase transitions in solid nitrogen: the case of the $\alpha$, $\gamma$ and $\epsilon$ low-pressure phases. J. Chem. Phys., 134:074502, 2011.
[77] A. Erba and C. Pisani. Evaluation of the electron momentum density of crystalline systems from ab initio linear combination of atomic orbitals calculations. J. Comput. Chem., 33:822, 2012.
[78] A. Erba, C. Pisani, S. Casassa, L. Maschio, M. Schütz, and D. Usvyat. A mp2 versus dft theoretical investigation of the compton profiles of crystalline urea. Phys.Rev. B, 81:165108, 2010.
[79] O. Eriksson and A. Svane. Isomer shifts and hyperfine fields in iron compounds. J. Phys.: Condens. Matter, 1:1589, 1989.
[80] V. R. Saunders et al. Electronic structure theory: from molecules to crystals. private communication, 1999.
[81] F. A. Hamprecht, A. J. Cohen, D. J. Tozer and N. C. Handy. J. Chem. Phys., 109(15):6264, 1998.
[82] M. Ferrero, M. Rérat, B. Kirtman, and R. Dovesi. Calculationoffirst and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. implementationin the crystal code. J. Chem. Phys., 129:244110, 2008.
[83] M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi. Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects. J. Chem. Phys., 128:014100, 2008.
[84] M. Ferrero, M. Rérat, R. Orlando, and R. Dovesi. The calculation of static polarizabilities in 1-3D periodic compounds. The implementation in the CRYSTAL code. J. Comput. Chem., 29:1450-1459, 2008.
[85] M. Ferrero, M. Rérat, R. Orlando, R. Dovesi, and I. J. Bush. Coupled Perturbed Kohn-Sham calculation of static polarizabilities of periodic compounds. J. Phys.: Conf. Ser., 117:012016, 2008.
[86] M. Filatov. On the calculation of mössbauer isomer shift. J. Chem. Phys., 127:084101, 2007.
[87] R. Fletcher. A new approach to variable metric algorithms. Comput. J., 13:317, 1970.
[88] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. and T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, , and J. A. Pople. Gaussian 03, Revision 02. Gaussian, Inc., Wallingford CT, 2004, 2004.
[89] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr. and R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople. Gaussian 98, Revision A.3. Pittsburgh PA, 1998.
[90] M. J. Frisch, G. W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T.A. Keith, G.A. Pettersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.J.P. Stewart, M. Head-Gordon, C. Gonzalez, , and J.A. Pople. Gaussian 94 (Revision A.I). Gaussian Inc., Pittsburgh PA, 1995.
[91] L. Fu, E. Yaschenko, L. Resca, and R. Resta. Hartree-Fock approach to macroscopic polarisation: Dielectric constant and dynamical charge of $\mathrm{KNbO}_{3}$. Phys. Rev. B, 57:6967-6971, 1988.
[92] C. Gatti. TOPOND-96 : an electron density topological program for systems periodic in $N(N=0-3)$ dimensions, User's manual. CNR-CSRSRC, Milano, 1996.
[93] C. Gatti. Chemical bonding in crystals: new direction. Zeitschrift für Kristallographie, 220:399, 2005.
[94] C. Gatti. Challenging chemical concepts through charge density of molecules and crystals. Phys. Scr., 87:048102, 2013.
[95] C. Gatti and S. Casassa. TOPOND14 User's Manual. CNR-ISTM Milano, Milano, 2014.
[96] C. Giacovazzo. Fundamentals of Crystallography. IUCr texts on crystallography. IUC - Oxford University Press, Oxford, 1992.
[97] G. Gilat. Analysis of methods for calculating spectral properties in solids. J. Comp. Phys., 10:432, 1972.
[98] G. Gilat and L. J. Raubenheimer. Accurate numerical method for calculating frequency-distribution in solids. Phys. Rev., 144:390, 1966.
[99] P. M. W. Gill, B. G. Johnson, and J. A. Pople. A standard grid for density function calculations. Chem. Phys. Lett., 209:506-512, 1993.
[100] D. Goldfarb. A family of variable-metric methods derived by variational means. Math. Comput., 24:23, 1970.
[101] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc., 104:2797, 1982.
[102] S. Grimme. J. Comp. Chem., 27:1787, 2006.
[103] S. Grimme. Semiempirical gga-type density functional constructed with a long range dispersion correction. J. Comput. Chem., 27:1787-, 2006.
[104] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. J. Chem. Phys., 132:154104, 2010.
[105] S. Grimme, S. Ehrlich, and L. Goerigk. J. Comp. Chem., 32:1456, 2011.
[106] S. Grimme, A. Hansen, J. G. Brandenburg, and C. Bannwarth. Dispersioncorrected mean-field electronic structure methods. Chem. Rev., 116:51055154, 2016.
[107] Stefan Grimme, Jan Gerit Brandenburg, Christoph Bannwarth, and Andreas Hansen. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys., 143:054107, 2015.
[108] Giuseppe Grosso and Giuseppe Pastori Parravicini. Solid State Physics. Academic Press, 2000.
[109] M. F. Guest and V. R. Saunders. On methods for converging open-shell Hartree-Fock wave-functions. Mol. Phys., 28:819-828, 1974.
[110] T. Yanai K. Hirao H. Iikura, T. Tsuneda. A long-range correction scheme for generalized-gradient approximation exchange functionals. J. Chem. Phys., 115:3540-3544, 2001.
[111] T. Hahn. Space Group Symmetry. In International Tables for Crystallography, volume A. Reidel Publishing Company, 1987.
[112] D. R. Hamann. Semiconductor Charge Densities with Hard-Core and SoftCore Pseudopotentials. Phys. Rev. Lett., 42:662-665, 1979.
[113] P. C. Hariharan and J. A. Pople. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta, 28:213, 1973.
[114] P. J. Hay and W. R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost orbitals. J. Chem. Phys., 82:299, 1985.
[115] P. J. Hay and W. R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys., 82:284, 1985.
[116] P. J. Hay and W. R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for transition metal atoms Sc to Hg . J. Chem. Phys., 82:270, 1985.
[117] D. J. Hehre, W. A. Lathan, M. D. Newton, R. Ditchfield, and J. A. Pople. GAUSSIAN70 Program number 236, QCPE. Indiana University,Bloomington, Indiana, 1972.
[118] D. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople. Ab initio molecular orbital theory. Wiley, New York, 1986.
[119] W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople. SelfConsistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of SlaterType Orbitals. Extension to SecondRow Molecules. J. Chem. Phys., 52:2769, 1970.
[120] W. J. Hehre, R. F. Stewart, and J. A. Pople. SelfConsistent MolecularOrbital Methods. I. Use of Gaussian Expansions of SlaterType Atomic Orbitals. J. Chem. Phys., 51:2657, 1969.
[121] P Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864, 1964.
[122] Bruce S. Hudson. Inelastic neutron scattering: A tool in molecular vibrational spectroscopy and a test of ab initio methods. J. Phys. Chem. A, 105(16):3949-3960, 2001.
[123] I. C. Gerber and J. G. Angyan. London dispersion forces by range-separated hybrid density functional with second order perturbational corrections: The case of rare gas complexes. J. Chem. Phys., 126(4), 2007.
[124] Jeng-Da Chai and M. Head-Gordon. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys., 128(8):084106, 2008.
[125] D. D. Johnson. Modified Broyden's method for accelerating convergence in self-consistent calculations. Phys. Rev B, 38:12807-12813, 1988.
[126] E. R. Johnson and A. D. Becke. J. Chem. Phys., 123:024101, 2005.
[127] E. R. Johnson and A. D. Becke. J. Chem. Phys., 124:174104, 2006.
[128] W. D. Johnston. Nonlinear optical coefficients and the raman scattering efficiency of lo and to phonons in acentric insulating cryst als. Phys. Rev. B, 1:3494, 1970.
[129] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133, 1965.
[130] L. Kronsjo. Algorithms, their complexity and efficiency, volume 2nd ed. Wiley, New York, 1986.
[131] H. Kruse and S. Grimme. A geometrical correction for the inter- and intramolecular basis set superposition error in hartree-fock and density functional theory calculations for large systems. J. Chem. Phys., 136:154101, 2012.
[132] L. Schimka, J. Harl and G. Kresse. Improved hybrid functional for solids: The hsesol functional. J. Chem. Phys., 134(2):024116, 2011.
[133] C. Lee, W. Yang, , and R. G. Parr. Development of the ColleSalvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785-789, 1988.
[134] K. H. Lee, M. Causà, and S. S. Park. Ab initio periodic Hartree-Fock calculations for interpretation of the scanning tunneling microscope (STM) images of graphite. J. Phys. Chem. B, 102:6020, 1998.
[135] B. Lindberg. A new efficient method for calculation of energy eigenvalues and eigenstates of the onedimensional Schrödinger equation. J. Chem. Phys., 88:3805, 1988.
[136] R. Lindh, A. Bernhardsson, G. Katlström, and P.A. Malmqvist. On the use of a hessian model function in molecular geometry optimizations. Chem. Phys. Lett., 241:423-428, 1995.
[137] Matthew S. Lucas, M. Kresch, R. Stevens, and B. Fultz. Phonon partial densities of states and entropies of fe and cr in bcc fe-cr from inelastic neutron scattering. Phys. Rev. B, 77:184303, 2008.
[138] T. Bredow M. F. Peintinger, D. V. Oliveira. Consistent gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem., 34:451-459, 2013.
[139] V. Magnasco and A. Perico. Uniform Localization of Atomic and Molecular Orbitals. I. J. Chem. Phys., 47:971, 1967.
[140] R. Martinez-Casado, G. Mallia, D. Usvyat, L. Maschio, S. Casassa, M. Schütz, and N. Harrison. Periodic quantum mechanical simulation of the he-mgo(100) interaction potential. J. Chem. Phys., 134:014706, 2011.
[141] L. Maschio, B. Kirtman, R. Orlando, and M. Rérat. Ab Initio analytical infrared intensities for periodic systems through a coupled perturbed hartree-fock/kohn-sham method. 137:204113, 2012.
[142] L. Maschio, B. Kirtman, M. Rérat, R. Orlando, and R. Dovesi. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. J. Chem. Phys., 139:164101, 2013.
[143] L. Maschio, B. Kirtman, M. Rérat, R. Orlando, and R. Dovesi. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J. Chem. Phys., 139:164102, 2013.
[144] L. Maschio, B. Kirtman, M. Rérat, R. Orlando, and R. Dovesi. Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. 139:164101, 2013.
[145] L. Maschio, D. Usvyat, and B. Civalleri. Ab initio study of van der waals and hydrogen-bonded molecular crystals with a periodic local-mp2 method. Crys. Eng. Comm., 12:2429, 2010.
[146] N. D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev. A, 137:1441, 1965.
[147] D. Moncrieff and V. R. Saunders. ATMOL manual. Manchester, 1986.
[148] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 13:5188, 1976.
[149] R.L. Mössbauer. Kernresonanzfluoreszenz von gammastrahlung in ir ${ }^{191}$. $Z$. Physik, 151:124, 1958.
[150] Y. Noel, Ph. D'Arco, R. Demichelis, C. M. Zicovich-Wilson, and R. Dovesi. On the use of symmetry in the ab initio quantum mechanical simulation of nanotubes and related materials. J. Comput. Chem., 31:855-862, 2010.
[151] Y. Noël, M. De La Pierre, C.M. Zicovich-Wilson, R. Orlando, and R. Dovesi. Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: insights from an ab initio hybrid DFT study. Phys. Chem. Chem. Phys., 16:13390-13401, 2014.
[152] Y. Noel, C. M. Zicovich-Wilson, B. Civalleri, Ph. D'Arco, and R. Dovesi. Polarization properties of zno and beo: An ab initio study through the berry phase and wannier functions approaches. Phys. Rev. B, 65:014111, 2001.
[153] R. Orlando, R. Dovesi, C. Roetti, and V. R. Saunders. Ab initio HartreeFock calculations of periodic compounds: application to semiconductors. J. Phys. Condens. Matter, 2:7769, 1990.
[154] R. Orlando, I. J. Bush M. Delle Piane, P. Ugliengo, M. Ferrabone, and R. Dovesi. A new massively parallel version of crystal for large systems on high performance computing architectures. J. Comput. Chem., 33:22762284, 2012.
[155] B. J. Orr and J. F. Ward. Perturbation theory of the non-linear optical polarization of an isolated system. 20:513, 1971.
[156] R. Osborn, E. A. Goremychkin, A. I. Kolesnikov, and D. G. Hinks. Phonon density of states in $\mathrm{mgb}_{2}$. Phys. Rev. Lett., 87:017005, 2001.
[157] D. Viterbo P. Ugliengo and G. Chiari. MOLDRAW: Molecular Graphics on a Personal Computer. Zeitschrift fur Kristallographie, 207:9, 1993.
[158] J. P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 33:8822, 1986.
[159] J. P. Perdew. Unified Theory of Exchange and Correlation Beyond the Local Density Approximation. In P. Ziesche and H. Eschrig, editors, Electronic Structure of Solids 1991, volume 11, pages 11-20, Berlin, 1991. Akademie Verlag.
[160] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77:3865-3868, 1996.
[161] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais. Atoms, molecules, solids and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 46:6671, 1992.
[162] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke. Restoring the DensityGradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett., 100:136406, 2008.
[163] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron gas correlation energy. Phys. Rev. B, 45:13244, 1992.
[164] J. P. Perdew and Wang Yue. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B, 33:8800-8802, 1986.
[165] J. P. Perdew and Wang Yue. Erratum: Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B, 40:3399, 1989.
[166] J. P. Perdew and A. Zunger. Self-interaction correction to densityfunctional approximations for many-electron systems. Phys. Rev. B, 23:5048-5079, 1981.
[167] W. F. Perger, J. Criswell, B. Civalleri, and R. Dovesi. Ab-initio calculation of elastic constants of crystalline systems with the crystal code. Comput. Phys. Commun., 180:1753-1759, 2009.
[168] W. J. Pietro, E. S. Blurock, R. F. Hout, W. J. Hehre, W. J. DeFrees, and R. F. Stewart. Molecular orbital theory of the properties of inorganic and organometallic compounds. 2. STO-NG basis sets for fourth-row maingroup elements. Inorg. Chem., 20:3650, 1981.
[169] W. J. Pietro, B. A. Levi, W. J. Hehre, and R. F. Stewart. Molecular orbital theory of the properties of inorganic and organometallic compounds. 1. STO-NG basis sets for third-row main-group elements. Inorg. Chem., 19:2225, 1980.
[170] J. Pipek and P. G. Mezey. A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys., 90:4916, 1989.
[171] C. Pisani. Quantum-Mechanical Ab-Initio Calculation of the Properties of Crystalline Materials, volume 67 of Lecture Notes in Chemistry. Springer Verlag, Berlin, 1996.
[172] C. Pisani, E. Aprà, , and M. Causà. Density matrix of crystalline systems. I. Long range behavior and related computational problems. Int. J. Quantum Chem., 38:395, 1990.
[173] C. Pisani, E. Aprà, M. Causà, and R. Orlando. Density matrix of crystalline systems. II. The influence of structural and computational parameters. Int. J. Quantum Chem., 38:419, 1990.
[174] C. Pisani, M. Busso, G. Capecchi, S. Casassa, R. Dovesi, L. Maschio, C. Zicovich-Wilson, and M. Schütz. Local-mp2 electron correlation method for non conducting crystals. J. Chem. Phys., 122:094133, 2005.
[175] C. Pisani, R. Dovesi, and C. Roetti. Hartree-Fock ab initio Treatment of Crystalline Systems, volume 48 of Lecture Notes in Chemistry. Springer Verlag, Heidelberg, 1988.
[176] C. Pisani, A. Erba, S. Casassa, M. Itou, and Y. Sakurai. The anisotropy of the electron momentum distribution in $\alpha$-quartz investigated by compton scattering and ab initio simulations. Phys. Rev. B, 84:245102, 2011.
[177] C. Pisani, M. Schütz, S. Casassa, D. Usvyat, L. Maschio, M. Lorenz, and A. Erba. Cryscor: a program for the post-hartree-fock treatment of periodic systems. Phys. Chem. Chem. Phys., 14:7615, 2012.
[178] J. A Pople and R. K. Nesbet. Self-consistent orbitals for radicals. J. Chem. Phys., 22:571, 1954.
[179] M. J. D. Powell. Nonlinear optimization. NATO conference series: Systems science. Academic Press, New York, 1982.
[180] H. Preuss, editor. Arbeitsbericht, volume 27. Instituts für Theoretische Chemie, Universität Stuttgart, Stuttgart, 1990.
[181] S.A. Prosandeev, U. Waghmare, I. Levin, and J. Maslar. First-order Raman spectra of $\mathrm{AB}^{\prime}{ }_{1 / 2} \mathrm{~B}^{\prime \prime}{ }_{1 / 2} \mathrm{O}_{3}$ double perovskites. Phys. Rev. B, 71:214307, 2005.
[182] P. Pulay. Improved scf convergence acceleration. Journal of Computational Chemistry, 3(4):556-560, 1982.
[183] P. Pulay and S. Saebø. Orbital-invariant formulation and second-order gradient evaluation in møller-plesset perturbation theory. Theor. Chim. Acta, 69:357, 1986.
[184] Pter Pulay. Convergence acceleration of iterative sequences. the case of scf iteration. Chemical Physics Letters, 73(2):393-398, 1980.
[185] M. Rérat, M. Ferrero, E. Amzallag, I. Baraille, and R. Dovesi. Comparison of the polarizability of periodic systems computed by using the length and velocity operators. J. Phys.: Conf. Ser., 117:012023, 2008.
[186] Michel Rérat, Lorenzo Maschio, Bernard Kirtman, Bartolomeo Civalleri, and Roberto Dovesi. Computation of second harmonic generation for crystalline urea and kdp. an ab initio approach through the coupled perturbed hartreefock/kohnsham scheme. Journal of Chemical Theory and Computation, 12(1):107-113, 2016.
[187] R. Resta. The geometric phase approach to macroscopic polarization in crystalline dielectrics. Rev. Mod. Phys., 66:809, 1994.
[188] B. Roos, C. Salez, A. Veillard, and E. Clementi. A general program for calculation of atomic SCF orbitals by the expansion method. Tech. Rep. RJ518 IBM Res., 1968.
[189] C. C. J. Roothaan. Self-Consistent Field Theory for Open Shells of Electronic Systems. Rev. Mod. Phys., 32:179-185, 1960.
[190] S. Grimme. Semiempirical hybrid density functional with perturbative second- order correlation. J. Chem. Phys., 124:034108, 2006.
[191] L. Salasco, R. Dovesi, R. Orlando, C. Pisani, M. Causà, and V. R. Saunders. A Periodic ab initio extended basis set study of $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$. Mol. Phys., 72:267, 1992.
[192] V. R. Saunders. From molecules to solids. Book in preparation.
[193] V. R. Saunders. Ab initio hartree-fock calculations for periodic systems. Faraday Symp. Chem. Soc., 19:79-84, 1984.
[194] V. R. Saunders, R. Dovesi, C. Roetti, M. Causà, N. M. Harrison, R. Orlando, and C. M. Zicovich-Wilson. CRYSTAL98 User's Manual. Università di Torino, Torino,1998.
[195] V. R. Saunders, R. Dovesi, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, N. M. Harrison, K. Doll, B. Civalleri, I. Bush, Ph. D'Arco, and M. Llunell. CRYSTAL03 User's Manual. Università di Torino, Torino,2003.
[196] V. R. Saunders, C. Freyria-Fava, R. Dovesi, and C. Roetti. On the electrostatic potential in linear periodic polymers. Comp. Phys. Commun., 84:156, 1993.
[197] V. R. Saunders, C. Freyria-Fava, R. Dovesi, L. Salasco, and C. Roetti. On the electrostatic potential in crystalline systems where the charge density is expanded in Gaussian functions. Mol. Phys., 77:629, 1992.
[198] A. Savin. A combined density functional and configuration interaction method. Int. J. Quantum Chem., S22:59-69, 1988.
[199] G. Schaftenaar. MOLDEN a pre- and post processing program of molecular and electronic structure. CMBI, the Netherlands.
[200] H. B. Schlegel. Optimization of equilibrium and transition structures. J. Comp. Chem., 3:214-218, 1982.
[201] H. B. Schlegel. Estimating the hessian for gradient-type geometry optimizations. Theor. Chim. Acta, 66:333-340, 1984.
[202] B. G. Searle. Dl visualize. Comp. Phys. Commun., 137:25-32, 2001.
[203] V.F. Sears. Neutron scattering lengths and cross sections. Neutron News, 3(3):29-37, 1992.
[204] D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Math. Comput., 24:647, 1970.
[205] D.A. Shirley. Isomer shift and quadrupolar splitting. Rev. Mod. Phys., 36:339, 1964.
[206] W. J. Stevens, H. Bash, and M. Krauss. Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J. Chem. Phys., 81:6026-6033, 1984.
[207] W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can. J. Chem., 70:612-630, 1992.
[208] R. Sure, J. G. Brandenburg, and S. Grimme. Small atomic orbital basis set first-principles quantum chemical methods for large molecular and periodic systems. ChemistryOpen, 5:94-109, 2016.
[209] R. Sure and S. Grimme. Corrected small basis set hartree-fock method for large systems. J. Comput. Chem., 34:1672-1685, 2013.
[210] T. M. Henderson, A. F. Izmaylov, G. E. Scuseria and A. Savin. The importance of middle-range hartree-fock-type exchange for hybrid density functionals. J. Chem. Phys., 127(22):221103, 2007.
[211] T. M. Henderson, A. F. Izmaylov, G. E. Scuseria and A. Savin. Assessment of a middle-range hybrid functional. J. Chem. Theory Comput., 4(8):1254, 2008.
[212] T. M. Henderson, B. G. Janesko and Scuseria G. E. Generalized gradient approximation model exchange holes for range-separated hybrids. J. Chem. Phys., 128:194105, 2008.
[213] T. Schwabe and S. Grimme. Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including nonlocal correlation effects. Phys. Chem. Chem. Phys., 8:4398, 2006.
[214] N. Handy T. Yanai, D. Tew. A new hybrid exchangerrelation functional using the coulomb-attenuating method (cam-b3lyp). Chem. Phys. Lett., 393:51-57, 2004.
[215] J. Tersoff and D. R. Hamann. Theory of scanning tunneling microscope. Phys. Rev. B, 31:805, 1985.
[216] M. D. Towler, A. Zupan, and M. Causà. Density Functional theory in periodic systems using Local Gaussian basis sets. Comp. Phys. Commun., 98:181-205, 1996.
[217] O. Treutler and R. Ahlrichs. Efficient molecular numerical integration schemes. J. Chem. Phys., 102:346-354, 1995.
[218] P. Ugliengo, C. M. Zicovich-Wilson, S. Tosoni, and B. Civalleri. Role of dispersive interactions in layered materials: a periodic B3LYP and B3LYP$\mathrm{D}^{*}$ study of $\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Ca}(\mathrm{OH})_{2}$ and kaolinite. J. Mater. Chem., 19:25642572, 2009.
[219] M. Veithen, X. Gonze, and Ph. Ghosez. Nonlinear optical susceptibilities, raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys. Rev. B, 71:125107, 2005.
[220] U. von Barth and L. Hedin. A local exchange-correlation potential for the spin polarized case. J. Phys. C: Solid State Phys., 5:1629, 1972.
[221] S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58:1200, 1980.
[222] Y. Wang, J. J. Wang, W. Y. Wang, Z. G. Mei, S. L. Shang, L. Q. Chen, and Z. K. Liu. A mixed-space approach to rst-principles calculations of phonon frequencies for polar materials. J. Phys.: Condens. Matter, 22:202201, 2010.
[223] U. D. Wdowik and K. Ruebenbauer. Calibration of the isomer shift for the 14.4 -kev transition in ${ }^{57}$ fe using the full-potential linearized augmented plane-wave method. Phys. Rev. B, 76:155118, 2007.
[224] R. C. Weast, M. J. Astle, and W. H. Beyer, editors. CRC Handbook of Chemistry and Physics, pages A-61 and A-62. CRC Press, Inc., Boca Raton, Florida, 1986-87.
[225] J. A. Weil, J. R. Bolton, and E. Wertz. Electron ParamagneticResonance - Elementary Theory and Practical Applications. John Wiley, New York, 1994.
[226] C. T. White, D. H. Robertson, and J. W. Mintmire. Helical and rotational symmetries of nanoscale graphitic tubules. Phys. Rev. B, 47:5485-5488, 1993.
[227] L. C. Wilson and M. Levy. Nonlocal Wigner-like correlation-energy density functional through coordinate scaling. Phys. Rev. B, 41:12930-12932, 1990.
[228] J. M. Wittbrodt and H. B. Schlegel. Estimating stretching force constants for geometry optimization. J. Mol. Struct. - Theochem, 398-399:55-61, 1997.
[229] Z. Wu and R. E. Cohen. More accurate generalized gradient approximation for solids. Phys. Rev. B, 73:235116, 2006.
[230] G. Wulff. Zur Frage der Geschwindigkeit des Wachstums und der Auflösung von Krystallflächen. Z. Kristallogr., 34:499, 1901.
[231] S. Yanagisawa T. Yanai K. Hirao Y. Tawada, T. Tsuneda. A long-range-corrected time-dependent density functional theory. J. Chem. Phys., 120:8425-8433, 2004.
[232] E. Oldfield Y. Zhang, J. Mao. Nuclear magnetic resonance shifts in paramagnetic metalloporphyrins and metalloproteins. J. Am. Chem. Soc., 124:7829, 2002.
[233] Y. Zhao and D. G. Truhlar. A New Local Density Functional for MainGroup Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Phys., 125:194101, 2006.
[234] Y. Zhao and D. G. Truhlar. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. J. Phys. Chem. A, 110:13126, 2006.
[235] Y. Zhao and D. G. Truhlar. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06- Class Functionals and 12 Other Functionals. Theor. Chem. Acc., 120:215, 2008.
[236] Y. Zhao, N. E. Schultz and D. G. Truhlar. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput., 2:364-382, 2005.
[237] Y. Zhao, N. E. Schultz and D. G. Truhlar. Exchange-Correlation Functional with Broad Accuracy for Metallic and Nonmetallic Compounds, Kinetics, and Noncovalent Interactions. J. Chem. Phys., 123:161103, 2005.
[238] Y. Zhao and D. G. Truhlar. Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight LiebOxford bound . J. Chem. Phys., 128:184109, 2008.
[239] C. M. Zicovich-Wilson and R. Dovesi. On the use of Symmetry Adapted Crystalline Orbitals in SCF-LCAO periodic calculations. I. The construction of the Symmetrized Orbitals. Int. J. Quantum Chem., 67:299-310, 1998.
[240] C. M. Zicovich-Wilson and R. Dovesi. On the use of Symmetry Adapted Crystalline Orbitals in SCF-LCAO periodic calculations. II. Implementation of the Self-Consistent-Field scheme and examples. Int. J. Quantum Chem., 67:311-320, 1998.
[241] C. M. Zicovich-Wilson and R. Dovesi. Localized functions in crystalline systems and their variational manifolds. In R. Hernández-Lamoneda, editor, Beyond standard quantum chemistry: applications from gas to condensed phases 2007, pages 140-169, Kerala, India, 2007. Transworld Research Network.
[242] C. M. Zicovich-Wilson, R. Dovesi, and V. R. Saunders. A general method to obtain well localized Wannier functions for composite energy bands in LCAO periodic calculations. J. Chem. Phys., 115:9708-9718, 2001.
[243] C. M. Zicovich-Wilson, R. Dovesi, and V. R. Saunders. A general method to obtain well localized wannier functions for composite energy bands in linear combination of atomic orbital periodic calculation. J. Chem. Phys., 115:9708, 2001.
[244] J.M. Ziman. Principles of the Theory of Solids. Cambridge University Press, London, England, 1964.

## Index

CONFRAND, 197
basisset, 26
ADFT see EDFT
NEWBASIS, 224
ADP(FREQCALC), 166
ALLOWTRUSTR(OPTGEOM), 124
ALL(ANISOTRO), 225
ANALYSIS(FREQCALC), 147
ANBD, 224
ANDERSON, 83
ANDERSON(PHOTOELA), 206
ANGLES, 37
ANGLE(IRSPEC), 162
ANGROT(ROTCRY), 63
ANGSFROZEN(OPTGEOM), 137
ANGSTROM, 37, 225
ANGTODOUBLE(OPTGEOM), 129
ANGULAR(EDFT), 224, 241
ANHARM, 169
END, 169
ISOTOPES, 170
KEEPSYMM, 170
NOGUESS, 170
POINTS26, 170
PRINTALL, 170
PRINT, 170
TEST[ANHA], 170
ANISOTRO
ALL, 225
PRINT, 225
SELECT, 225
UNIQUE, 225
ATOMBSSE, 38
ATOMDISP, 38
ATOMHF, 83
ATOMINSE, 38
ATOMIRR, 225
ATOMONLY(OPTGEOM), 121
ATOMORDE, 38
ATOMREMO, 39
ATOMROT, 39

ATOMSPIN, 83
ATOMSUBS, 40
ATOMSYMM, 40, 72, 225
ATOMS(EIGSHROT), 89
ATOMS(MAPNET), 260
AUTO(ROTCRY), 63
B1WC(DFT), 189
$B 3 L Y P(D F T), 189$
B3PW(DFT), 189
B97H(DFT), 189
BANDLIST(LOCALWF), 249
BANDS
BANDS, 166
BAND, 226
BARTHE, 75
BASE(FIXINDEX), 93
BASISSET, 227
CUSTOM, 27
POB-DZVPP, 27
POB-DZVP, 27
POB-TZVP, 27
STO-3G, 27
STO-6G, 27
BECKE(DFT), 188
BECKE (EDFT), 224, 241
BERNY(OPTGEOM), 123
BETALOCK, 84
BETAVIB(FREQCALC), 156
BFGS(OPTGEOM), 123
BIDIERD, 227
CONV, 230
DIFF, 230
DIR, 230
END, 230
PROF, 230
BIESPLIT, 84
BIPOLAR, 85
BIPOSIZE, 85
BKTRNSF2(OPTGEOM), 130
BOHRANGS, 40
BOHRCR98, 41

BOHR, 40, 232
BOLTZTRA, 231
BOYSCTRL(LOCALWF), 251
BREAKELAS, 41
BREAKSYM, 32, 41
BROYDEN, 85
BROYDEN(PHOTOELA), 206
BR(PROF), 270
BUNITSDECO(FREQCALC), 151
BWIDTH, 233
CAM-B3LYP(DFT), 189
CAPTURE(LOCALWF), 254
CELLONLY(OPTGEOM), 121
CHARGED, 72, 233
CHARGE (GRID3D), 246
CHEMOD, 72
CHI2TENS(FREQCALC), 147
CHNGTSFOL(OPTGEOM), 141
CIFPRTSYM, 44
CIFPRT, 44
CLAMPION(ELAPIEZO), 206
CLAMPION(ELASTCON), 206
CLAMPION(PHOTOELA), 206
CLAMPION(PIEZOCON), 206
CLAS, 233
CLUSPLUS(LOCALWF), 257
CLUSTER,42
CLUSTSIZE, 43
CMPLXFAC, 86
COMBMODE(FREQCALC), 147
COMMENS, 233
CONFCNT, 195
CONFNEIG, 199
CONV (BIDIERD), 230
CONV (PROF), 270
COORDINA(MAPNET), 260
COORPRT, 44, 233
CORRELAT(DFT), 188
COVRAD (OPTGEOM), 122
CPHF, 188
DYNAMIC, 189
END, 189
FMIXING2, 189
FMIXING, 189
FOURTH, 189
MAXCYCLE2, 189
MAXCYCLE, 189
RESTART, 189
THIRD, 189

TOLALPHA, 189
TOLGAMMA, 189
TOLUDIK, 189
CP (PROF) , 270
CRYAPI_OUT, 234
CRYDEF(OPTGEOM), 125
CRYSTAL, 17
CUSTOM(BASISSET), 27
CVOLOPT(OPTGEOM), 133
CYCTOL(LOCALWF), 249
Coupled-Perturbed Hartree-Fock, 188
DAMPFAC(IRSPEC), 162
DAMPFAC(RAMSPEC), 164
DBANGLIST(OPTGEOM), 130
DEFANGLS(OPTGEOM), 130
DEFLNGS(OPTGEOM), 130
DEFORM(ELAPIEZO), 206
DEFORM(ELASTCON), 206
DEFORM(PHOTOELA), 206
DEFORM(PIEZOCON), 206
DENSMAT, 234
DFT
B1WC, 189
B3LYP, 189
B3PW, 189
B97H, 189
BECKE, 188
CAM-B3LYP, 189
CORRELAT, 188
END[DFT], 87
EXCHANGE, 188
HYBRID, 189
LC-BLYP, 189
LDA, 188
LYP, 188
PBE0, 189
PBESOL0, 189
PBESOL, 188
PBE, 188
PWGGA, 188
PWLSD, 188
RSHXLDA, 189
SC-BLYP, 189
SOGGA, 188
VWN, 188
WC1LYP, 189
WCGGA, 188
wB97X, 189
wB97, 189

DIELFUN(IRSPEC), 162
DIELISO(FREQCALC), 148
DIELTENS(FREQCALC), 148
DIEL/DIELECT, 235
DIFF (BIDIERD), 230
DIFF (PROF) , 270
DIIS, 86
DIPOMOME(FREQCALC), 154
DIR(BIDIERD), 230
DISPERSION(FREQCALC), 164
DLVINPUT, 19
DOPING, 87
DOSS, 237
DURAND, 75
DYNAMIC(CPHF), 189
DYNAMIC(PHOTOELA), 206
ECH3, 239
RANGE, 239
SCALE, 239
ECHG, 240
ECKART(FREQCALC), 148
EDFT, 241
ANGULAR, 224, 241
BECKE, 224, 241
PRINTOUT, 224, 241
PRINT, 224, 241
RADIAL, 224, 241
SAVIN, 224, 241
EIGSHIFT, 88
EIGSHROT, 89
ATOMS, 89
MATRIX, 89
EIGS, 88
ELAPIEZO, 206
CLAMPION, 206
DEFORM, 206
END, 206
NUMDERIV, 206
PREOPTGEOM, 206
PRINT, 206
RESTART, 206
STEPSIZE, 206
TOLDEG, 206
TOLDEX, 206
ELASTCON, 206
CLAMPION, 206
DEFORM, 206
END, 206
NUMDERIV, 206

PREOPTGEOM, 206
PRINT, 206
RESTART, 206
SEISMDIR, 206
STEPSIZE, 206
TOLDEG, 206
TOLDEX, 206
ELASTIC, 44
EMDLDM, 242
EMDL, 242
EMDPDM, 243
EMDP, 245
EMDWFKIN(LOCALWF), 252
EMDWF(LOCALWF), 251
END
DFT, 87
ENDB basis set input, 73
ENDG geometry input, 45
general information input, 90
properties input, 245
END(ANHARM), 169
END(BIDIERD), 230
END(CPHF), 189
END (ELAPIEZO), 206
END (ELASTCON), 206
END (EOS), 200
END(FREQCALC), 146
END(OPTGEOM), 118
END (PHOTOELA), 206
END(PIEZOCON), 206
$\operatorname{END}(\mathrm{PROF}), 270$
END(SYMMWF), 254
EOS, 200
END, 200
PRANGE, 200
PREOPTGEOM, 200
PRINT, 200
RANGE, 200
RESTART2,200
RESTART, 200
VRANGE, 200
EXCHANGE(DFT), 188
EXCHGENE, 90
EXCHPERM, 90
EXCHSIZE, 90
EXPDE(OPTGEOM), 125
EXTERNAL, 19, 363
EXTPRESS(OPTGEOM), 139
EXTPRT, 46, 245

EXTSTRESS(OPTGEOM), 139
FDAOSYM, 91
FDOCCUP, 92
FIELDCON, 48
FIELD, 46
FINALRUN (OPTGEOM), 125, 301
FINDSYM, 49
FITDEGR(OPTGEOM), 126
FITTOPATH(OPTGEOM), 141
FIXCELL(OPTGEOM), 132
FIXCOOR(OPTGEOM), 135
FIXDEF(OPTGEOM), 134
FIXDEIND (OPTGEOM), 125
FIXDELTE(OPTGEOM), 125
FIXDELTX(OPTGEOM), 125
FIXINDEX, 93
BASE, 93
GEBA, 94
GEOM, 93
FMIXING2(CPHF), 189
FMIXING, 95
FMIXING(CPHF), 189
FMIXING(PHOTOELA), 206
FMWF, 245
FOURTH(CPHF), 189
FRACTCOOR(OPTGEOM), 125
FRACTION, 246
geometry input, 49
FRACTION(OPTGEOM), 125
FRACTIOO(OPTGEOM), 125
FRAGMENT(FREQCALC), 148
FRAGMENT(OPTGEOM), 136, 300
FREEZDIH(OPTGEOM), 138
FREEZINT(OPTGEOM), 137
FREQCALC, 144
ADP, 166
ANALYSIS, 147
BETAVIB, 156
BUNITSDECO, 151
CHI2TENS, 147
COMBMODE, 147
DIELISO, 148
DIELTENS, 148
DIPOMOME, 154
DISPERSION, 164
ECKART, 148
END, 146
FRAGMENT, 148
INS, 168

INTCPHF, 154
INTENS, 152
INTLOC, 153
INTPOL, 153
INTRAMAN, 155
IRSPEC, 160
ISOTOPES, 148
MODES, 149
NOANALYSIS, 149
NOECKART, 149,328
NOINTENS, 149
NOKSYMDISP, 165
NOMODES, 149
NOOPTGEOM, 145
NORMBORN, 150
NOUSESYMM, 150
NUMDERIV, 150
PDOS, 168
PREOPTGEOM, 145
PRESSURE, 150
PRINT, 150
RAMANEXP, 150
RAMSPEC, 162
RESTART, 150
SCANMODE, 157
STEPSIZE, 150
TEMPERAT, 150
TEST[FREQ], 150
USESYMM, 150
FULLBOYS(LOCALWF), 258
FULLEJMOL, 50
FULLESPHE, 50
FULLE, 49
FULLOPTG(OPTGEOM), 121
FULLTIME, 95
GAUSS98, 73
GAUSS(IRSPEC), 162
GEBA(FIXINDEX), 94
GEOM(FIXINDEX), 93
GHOSTS, 74
GRADCAL, 95
GRID3D, 246
CHARGE, 246
POTENTIAL, 246
GRIMME, 95
GUESDUAL, 97
GUESSPAT, 100
GUESSP, GUESSP0, 99
GUESSYMP, 100

HAYWLC, 75
HAYWSC, 75
HELIX, 17
HESEVLIM(OPTGEOM), 126
HESSFREQ(OPTGEOM), 121
HESSIDEN(OPTGEOM), 122
HESSMOD1(OPTGEOM), 122
HESSMOD2(OPTGEOM), 122
HESSNUM(OPTGEOM), 122
HESSOPT(OPTGEOM), 122
HIRSHBLK, 100, 246
HIRSHCHG, 100,246
HYBRID (DFT), 189
HYDROSUB, 51
IGSSBNDS(LOCALWF), 253
IGSSCTRL(LOCALWF), 253
IGSSVCTS(LOCALWF), 253
ILASIZE, 101
INFOGUI, 246
INFO see INFOGUI, 246
INIFIBND (LOCALWF), 249
INPUT(ECP input), 75
INS
INS, 169
INS(FREQCALC), 168
INTCPHF(FREQCALC), 154
INTENS(FREQCALC), 152
INTERPHESS
INTERPHESS, 166
INTGPACK, 102
INTLMIXED(OPTGEOM), 129
INTLOC(FREQCALC), 153
INTPOL(FREQCALC), 153
INTRAMAN(FREQCALC), 155
INTREDUN(OPTGEOM), 128
IONRAD (OPTGEOM), 122
IRSPEC
ANGLE, 162
DAMPFAC, 162
DIELFUN, 162
GAUSS, 162
LENSTEP, 162
NUMSTEP, 162
RANGE, 162
REFRIND, 162
IRSPEC(FREQCALC), 160
ISOTOPES(ANHARM), 170
ISOTOPES(FREQCALC), 148
ISOTROPIC, 246

ITACCONV(OPTGEOM), 126
ITATOCEL(OPTGEOM), 121
KEEPSYMM, 32, 51
KEEPSYMM(ANHARM), 170
KINETEMD, 247
KNETOUT (obsolete), 248
KSYMMPRT, 102
LATVEC, 51
LC-BLYP (DFT), 189
LDA (DFT), 188
LENSTEP(IRSPEC), 162
LENSTEP (RAMSPEC), 164
LEVSHIFT, 102
LNGSFROZEN(OPTGEOM), 137
LOCALWF, 248
BANDLIST, 249
BOYSCTRL, 251
CAPTURE, 254
CLUSPLUS, 257
CYCTOL, 249
EMDWFKIN, 252
EMDWF, 251
FULLBOYS, 258
IGSSBNDS, 253
IGSSCTRL, 253
IGSSVCTS, 253
INIFIBND, 249
MAXCYCLE, 251
OCCUPIED, 248
ORTHNDIR, 258
PHASETOL, 249
PRINTPLO, 255
RESTART, 249
SYMMWF, 254
VALENCE, 248
WANDM, 258
LOWMEM, 103
LYP (DFT), 188
MADELIND, 103
MAKESAED, 51
MAPNET, 260
ATOMS, 260
COORDINA, 260
MARGINS, 260
PRINT, 260
RECTANGU, 260
MARGINS(MAPNET), 260
MATRIX(EIGSHROT), 89
MATROT(ROTCRY), 63

MAXCYCLE2(CPHF), 189
MAXCYCLE
scf, 103
MAXCYCLE(CPHF), 189
MAXCYCLE(LOCALWF), 251
MAXCYCLE(OPTGEOM), 126
MAXCYCLE(scf), 103
MAXITACE(OPTGEOM), 126
MAXNEIGHB, 51
MAXTRADIUS(OPTGEOM), 124
MEMOPRT2, 104
MEMOPRT, 103
MODEFOLLOW(OPTGEOM), 141
MODES(FREQCALC), 149
MODINTCOOR(OPTGEOM), 132
MODISYMM, 52
MOLDRAW, 52
MOLEBSSE, 52
MOLECULE, 17
from 3D structure, 53
MOLEXP, 53
MOLSPLIT, 54
MONSPLIT, 104
MOSSBAUER, 278
MP2, 104
MULPOPAN, 106, 246, 270
MULTITASK
MULTITASK, 149
MYBIPOLA, 105
NANOCRYSTAL, 54
NANOJMOL, 55
NANORE, 55
NANOROD, 55
NANOTUBE, 56
NEGLEFRE
NEGLEFRE, 149
NEIGHBOR, 59, 105,261
NEIGHPRT see NEIGHBOR, 59
NEWBASIS(ADFT), 224
NEWK, 262
NOANALYSIS(FREQCALC), 149
NOBICOU, 105
NOBIPEXC, 105
NOBIPOLA, 105
NODIRECT, 107
NOECKART(FREQCALC), 149
NOFMWF, 105
NOGUESS(ANHARM), 170
NOGUESS(OPTGEOM), 126

NOINTENS(FREQCALC), 149
NOLOWMEM, 106
NOMODES(FREQCALC), 149
NOMONDIR, 106
NOOPTGEOM(FREQCALC), 145
NOPRINT, 74
NORENORM(RAMSPEC), 163
NORMBORN(FREQCALC), 150
NOSHIFT, 59
NOSYMADA, 106, 263
NOSYMAP(SYMMWF), 254
NOSYMMOPS(OPTGEOM), 127
NOTRUSTR(OPTGEOM), 124
NOUSESYMM(FREQCALC), 150
NOXYZ(OPTGEOM), 127
NRSTEPS(OPTGEOM), 126
NUMDERIV(ELAPIEZO), 206
NUMDERIV(ELASTCON), 206
NUMDERIV(FREQCALC), 150
NUMDERIV(PHOTOELA), 206
NUMDERIV(PIEZOCON), 206
NUMGRALL(OPTGEOM), 127
NUMGRATO(OPTGEOM), 127
NUMGRCEL(OPTGEOM), 127
NUMSTEP(IRSPEC), 162
NUMSTEP(RAMSPEC), 164
Nanotube rebuild, 59, 70
OCCUPIED (LOCALWF), 248
OLDCG(OPTGEOM), 123
ONELOG(OPTGEOM), 127
OPTGEOM, 117
ALLOWTRUSTR, 124
ANGSFROZEN, 137
ANGTODOUBLE,129
ATOMONLY, 121
BERNY, 123
BFGS, 123
BKTRNSF2, 130
CELLONLY, 121
CHNGTSFOL, 141
COVRAD, 122
CRYDEF, 125
CVOLOPT, 133
DBANGLIST, 130
DEFANGLS, 130
DEFLNGS, 130
END, 118
EXPDE, 125
EXTPRESS, 139

EXTSTRESS, 139
FINALRUN, 125,301
FITDEGR, 126
FITTOPATH, 141
FIXCELL, 132
FIXCOOR, 135
FIXDEF, 134
FIXDEIND, 125
FIXDELTE, 125
FIXDELTX, 125
FRACTCOOR, 125
FRACTION, 125
FRACTIOO, 125
FRAGMENT, 136, 300
FREEZDIH, 138
FREEZINT, 137
FULLOPTG, 121
HESEVLIM, 126
HESSFREQ, 121
HESSIDEN, 122
HESSMOD1, 122
HESSMOD2, 122
HESSNUM, 122
HESSOPT, 122
INTLMIXED, 129
INTREDUN, 128
IONRAD, 122
ITACCONV, 126
ITATOCEL, 121
LNGSFROZEN, 137
MAXCYCLE, 126
MAXITACE, 126
MAXTRADIUS, 124
MODEFOLLOW, 141
MODINTCOOR, 132
NOGUESS, 126
NOSYMMOPS, 127
NOTRUSTR, 124
NOXYZ, 127
NRSTEPS, 126
NUMGRALL, 127
NUMGRATO, 127
NUMGRCEL, 127
OLDCG, 123
ONELOG, 127
PATHFOLLOW, 141
POWELL, 123
PRINTFORCES, 127
PRINTHESS, 127

PRINTOPT, 127
PRINT, 127
RENOSAED, 125
RESTART, 126
SORT, 126
STEPBMAT, 132
STEPSIZE, 127
TESTREDU, 132
TOLDEE, 123
TOLDEG, 123
TOLDEX, 123
TOLREDU, 132
TRUSTRADIUS, 124
TSOPT, 140
WGHTDREDU, 131
ORBITALS, 263
ORIGIN, 59
ORTHNDIR (LOCALWF), 258
PATHFOLLOW(OPTGEOM), 141
PATO, 264
PBAND, 60
PBAN, 264
PBE0(DFT), 189
PBESOLO(DFT), 189
PBESOL (DFT), 188
PBE(DFT), 188
PDIBAN see PBAN, 264
PDIDE, 265
PDOS
PDOS, 168
PDOS(FREQCALC), 168
PGEOMW, 265
PHASETOL(LOCALWF), 249
PHOTOELA, 206
ANDERSON, 206
BROYDEN, 206
CLAMPION, 206
DEFORM, 206
DYNAMIC, 206
END, 206
FMIXING, 206
NUMDERIV, 206
PREOPTGEOM, 206
PRINT, 206
RESTART, 206
STEPSIZE, 206
TOLALPHA, 206
TOLDEG, 206
TOLDEX, 206

PIEZOCON, 206
CLAMPION, 206
DEFORM, 206
END, 206
NUMDERIV, 206
PREOPTGEOM, 206
PRINT, 206
RESTART, 206
STEPSIZE, 206
TOLDEG, 206
TOLDEX, 206
PLANES, 61
PMP2, 265
POB-DZVPP(BASISSET), 27
POB-DZVP(BASISSET), 27
POB-TZVP(BASISSET), 27
POINTCHG, 61
POINTS26(ANHARM), 170
POLEORDR, 106
POLI, 266
POLSPIN, 267
POLYMER, 17
POSTSCF, 106
POT3, 267
RANGE, 267
SCALE, 267
POTC, 268
POTENTIAL (GRID3D), 246
POTM, 269
POWELL(OPTGEOM), 123
PPAN, 106, 246, 270
PRANGE(EOS), 200
PREOPTGEOM(ELAPIEZO), 206
PREOPTGEOM(ELASTCON), 206
PREOPTGEOM(EOS), 200
PREOPTGEOM(FREQCALC), 145
PREOPTGEOM(PHOTOELA), 206
PREOPTGEOM(PIEZOCON), 206
PRESSURE(FREQCALC), 150
PRIMITIV, 61
PRINTALL(ANHARM), 170
PRINTCHG, 62
PRINTFORCES(OPTGEOM), 127
PRINTHESS(OPTGEOM), 127
PRINTOPT(OPTGEOM), 127
PRINTOUT, 62, 74, 107, 270
ATCOORDS, 354
ATOMICWF, 355
BASISSET, 355

CONFIGAT, 355
DFTBASIS, 355
DOSS, 355
EIGENALL, 355
EIGENVAL, 355
EIGENVEC, 355
ENECYCLE, 355
EQUIVAT, 354
EXCHGENE, 354
FGIRR, 355
FGRED, 354
GAUSS94, 355
GLATTICE, 354
KNETOUT, 354
KSYMMPRT, 354
KWEIGHTS, 354
MAPVALUES, 355
MULLIKEN, 355
MULTIPOL, 355
OVERLAP, 354
PARAMETERS, 354
PGIRR, 354
PGRED, 354
ROTREF, 355
SCALEFAC, 355
SYMMOPSR, 354
SYMMOPS, 354
PRINTOUT(EDFT), 224,241
PRINTPLO(LOCALWF), 255
PRINT (DIEL), 236
PRINT(ANHARM), 170
PRINT(ANISOTRO), 225
PRINT(EDFT), 224, 241
PRINT(ELAPIEZO), 206
PRINT(ELASTCON), 206
PRINT(EOS), 200
PRINT(FREQCALC), 150
PRINT(MAPNET), 260
PRINT(OPTGEOM), 127
PRINT(PHOTOELA), 206
PRINT(PIEZOCON), 206
PRINT(SYMMWF), 254
PROF, 270
BR, 270
CONV, 270
CP, 270
DIFF, 270
END, 270
PROF(BIDIERD), 230

PRSYMDIR, 62
PSCF, 271
PURIFY, 62
PWGGA (DFT), 188
PWLSD(DFT), 188
QHA, 172
QVRSGDIM, 107
RADFULLE, 62
RADIAL (EDFT), 224, 241
RADNANO, 62
RAMANEXP(FREQCALC), 150
RAMSPEC
DAMPFAC, 164
LENSTEP, 164
NORENORM, 163
NUMSTEP, 164
RANGE, 164
VOIGT, 164
RAMSPEC(FREQCALC), 162
RANGE (ECH3), 239
RANGE (POT3), 267
RANGE(EOS), 200
RANGE(IRSPEC), 162
RANGE(RAMSPEC), 164
RAYCOV/RAYC/RCOVFACT, 272
RDFMWF, 245
RECTANGU(MAPNET), 260
REDEFINE see SLABINFO, 65
REFRIND(IRSPEC), 162
RENOSAED(OPTGEOM), 125
REPLDATA, 107
RESTART2(EOS), 200
RESTART(CPHF), 189
RESTART(ELAPIEZO), 206
RESTART(ELASTCON), 206
RESTART(EOS), 200
RESTART(FREQCALC), 150
RESTART(LOCALWF), 249
RESTART(OPTGEOM), 126
RESTART(PHOTOELA), 206
RESTART(PIEZOCON), 206
RHF, 107
ROHF, 107
ROTATE see SLABINFO, 65
ROTCRY, 63
ANGROT, 63
AUTO, 63
MATROT, 63

ROTREF, 272
RSHXLDA(DFT), 189
RUNCONFS, 198
SAVEPRED, 108
SAVEWF, 107
SAVIN(EDFT), 224, 241
SC-BLYP(DFT), 189
SCALE (ECH3), 239
SCALE (POT3), 267
SCANMODE(FREQCALC), 157
SCELCONF, 66
SCELPHONO, 66
SCFDIR, 107
SEISMDIR(ELASTCON), 206
SELECT(ANISOTRO), 225
SETINF, 64, 74, 108, 272
SETPRINT, 64, 74, 108, 272
SHRINK, 108
SLABCUT/SLAB, 64
SLABINFO, 65
SLAB, 17
SMEAR, 110
SOGGA(DFT), 188
SORT(OPTGEOM), 126
62. SPINEDIT, 112

SPINLOC2, 113
SPINLOCK, 112
SPOLBP, 277
SPOLWF, 278
STDIAG, 113
STEPBMAT(OPTGEOM), 132
STEPSIZE(ELAPIEZO), 206
STEPSIZE(ELASTCON), 206
STEPSIZE(FREQCALC), 150
STEPSIZE(OPTGEOM), 127
STEPSIZE(PHOTOELA), 206
STEPSIZE(PIEZOCON), 206
STO-3G(BASISSET), 27
STO-6G(BASISSET), 27
STOP, 65, 74, 113, 272
STRUCPRT, 65
SUPERCEL, 67
SUPERCON, 69
SWCNTRE, 70
SWCNT, 69
SYMADAPT, 113, 272
SYMMDIR, 70
SYMMOPS, 70, 75
SYMMREMO, 70

SYMMWF
END, 254
NOSYMAP, 254
PRINT, 254
TOLBOND, 254
TOLSYM, 254
SYMMWF(LOCALWF), 254
TEMPERAT(FREQCALC), 150
TENSOR, 70
TESTGEOM, 71
TESTPDIM, 113
TESTREDU(OPTGEOM), 132
TESTRUN, 113
TEST[ANHA](ANHARM), 170
TEST[FREQ](FREQCALC), 150
TEST, 75
THIRD(CPHF), 189
TOLALPHA(CPHF), 189
TOLALPHA(PHOTOELA), 206
TOLBOND (SYMMWF), 254
TOLDEE, 114
TOLDEE(OPTGEOM), 123
TOLDEG(ELAPIEZO), 206
TOLDEG(ELASTCON), 206
TOLDEG(OPTGEOM), 123
TOLDEG(PHOTOELA), 206
TOLDEG(PIEZOCON), 206
TOLDEX(ELAPIEZO), 206
TOLDEX(ELASTCON), 206
TOLDEX(OPTGEOM), 123
TOLDEX(PHOTOELA), 206
TOLDEX(PIEZOCON), 206
TOLGAMMA(CPHF), 189
TOLINTEG, 114
TOLPSEUD, 114
TOLREDU(OPTGEOM), 132
TOLSYM(SYMMWF), 254
TOLUDIK(CPHF), 189
TOPO, 281
TRASREMO, 71
TRUSTRADIUS(OPTGEOM), 124
TSOPT(OPTGEOM), 140
UHF, 115
UNIQUE(ANISOTRO), 225
USESAED, 71
USESYMM(FREQCALC), 150
VALENCE(LOCALWF), 248
$\operatorname{VOIGT}($ RAMSPEC ), 164
VRANGE(EOS), 200

VWN(DFT), 188
WANDM(LOCALWF), 258
WANG
WANG, 166
$W C 1 L Y P(D F T), 189$
WCGGA(DFT), 188
WGHTDREDU(OPTGEOM), 131
WULFF, 71
XFAC, 272
XRDSPEC, 275
ZCOR see EDFT, 241
wB97X (DFT), 189
wB97(DFT), 189
0D FROM 3D, 54
0D systems input, 18
$1 D$ systems input, 18
1d FROM 3D, 55
2D from 3D, 64
2D systems input, 18
$3 D$ systems input, 18
adjoined gaussian, 312
adp
anisotropic displacement parameters, 166
adsorbed molecule rotation, 39
adsorption of molecules, 38
alternative spin configuration
locking $\alpha-\beta$ electrons, 113
Anderson method for accelerating convergence, 83
angles printing, 37
angular integration (DFT), 224, 241
anharmonic calculation, 169
anisotropic tensor, 225
anisotropy shrinking factor, 30, 110
anti ferromagnetic systems, 115
Aragonite, 286
asymmetric unit, 20
ATMOL integral package, 102
atomic
density matrix, 83, 264
wave function, 83
atomic energy
(correlation) a posteriori, 224
atomic number conventional, 22
Atomic Orbital
definition, 312
order, 25
atomic units
bohr, 40
charge, 267
conversion factor, 40, 41
atoms
(group of) rotation, 39
addition, 38
displacement, 38
removal, 39
reordering, 38
substitution, 40
autocorrelation function theory, 318
Average properties, 198, 199
average properties, 197
band structure calculation, 226
band width, 233
BAND.DAT, 359
basis set, 306, 312
$f$ and d AO occupation, 92
all electron, 23. 24
AO symmetry analysis, 91
criteria for selection, 306
crystal, 24
Effective Core Pseudopotential, 77
input, 23
input examples, 292
libraries, 306
linear dependence check, 88
metals, 309
orbital ordering, 25
Pople, 23
printing, 355
printing removed, 74
type, 23
valence only, 23, 24
basis set superposition error
molecular, 52
atomic, 38
periodic, 74
Beryllium slab, 289
BF - Bloch Functions, 312
bi-electronic integrals
indexing, 93
bielectronic integrals
file split, 84
package, 102
bipolar expansion
bielectronic integrals, 85, 105, 316

Coulomb buffer, 85
coulomb integrals, 105
elimination, 105,316
exchange buffer, 90
exchange integrals, 105
Bloch Functions
definition, 312
Symmetry Adapted, 317
Symmetry Adapted - printing, 102
Boys
localization, 248
Bravais lattice, 21, 65, 338
Brillouin zone, 313
sampling, 29, 108, 318
Broyden method for accelerating convergence, 85
buffer
Coulomb bipolar expansion, 85
exchange bipolar expansion, 90
bulk modulus, 325
BZ - Brillouin Zone, 313
Calcite, 287
Calculation of SICs, 198, 199
cell
centred, 22
charged, 26
conventional, 21
conventional/primitive transformation, 338
crystallographic, 21
minimum set parameters, 20
neutrality, 72
non neutral, 72
primitive, 21, 61
redefinition, 65
Cesium Chloride, 286
Chabazite, 288
check
basis set input, 113
complete input deck, 113
disk storage to allocate, 113
geometry input, 71
chemisorption, 38
Cholesky reduction, 88, 311
CIF file, 44
cluster expansion, 195, 196
cluster from 3D, 42
cluster size, 43

CO - Carbon Monoxide
molecule, 292
on MgO (001), 290
CO - Crystalline Orbital, 312
Compton profile
input, 270
theory, 318
configuration counting, 195
Monte Carlo, 197
random sampling, 197
constraint sp, 312
contour maps, 260
contraction
coefficients, 23
of gaussians, 23, 312
conventional atomic number, 22,24
conventional cell, 21
convergence
acceleration techniques, 30, 110
tools
Anderson method, 83
Broyden method, 85
DIIS method, 86
dual basis, 97
Fock/KS matrix mixing, 95
level shifter, 102
convergence criteria
cycles overflow, 103
conversion factors, 40
length, 40
conversion factors (CR98), 41
conversion wave function data, 245
coordinates
of equivalent atoms, 22
output, 44, 233
units, 37
angstrom, 225
bohr, 40, 232
fraction, 246
fractional, 49
units of measure, 18
Corundum
(0001) surface, 289
(1010) surface, 289
bulk, 287
Coulomb energy, 313
Coulomb series, 314
bielectronic contribution, 314
Coulomb series threshold, 114

Coupled Perturbed HF/KS
in a crystal, 188
through a slab, 188
covalent radii
customised, 62, 272
default value, 63
Crystalline Orbital (CO)
3D plots, 263
definition, 312
crystallographic cell, 21
Crystallographyc planes index, 61
crystals
(3D) input, 18
Cuprite, 286
defects
displacement, 38
in supercell, 67
interstitial, 38
substitutional, 40
vacancies, 39
density matrix, 233
atomic, 264
band projected, 264
behaviour, 315
core electrons, 222
direct space, 313
editing, 112
energy projected , 265
from geometrical weights, 265
initial guess, 100
output, 234
restore, 271
rotation, 272
valence electrons, 222
density of states
calculation, 237
Fourier-Legendre expansion, 237, 318
integrated, 238
Diamond, 285
(100) Surface, 290

DIEL.DAT, 236, 359
dielectric constant (optical), 235
dielectric tensor, 188
Direct Inversion of the Iterative Subspace (DIIS) convergence accelerator, 86
disordered systems, 194
dual basis, 97
Eckart
conditions, 328
eckart
frequency calculation, 148
ECP - see Effective Core Pseudopotential, 75
ECP input examples, 293
Edingtonite, 288
Effective Core Pseudopotential
input, 75
BARTHE, 75
DURAND, 75
HAYWLC, 75
HAYWSC, 75
input examples, 293
truncation criteria, 114
eigenvalues (Hamiltonian), 312
eigenvalues (Hamiltonian) printing, 352
eigenvectors
calculation, 262, 312
output, 234
principal components printout, 224
printing, 352
printing (core), 353
rotation, 272
elastic constant, 44, 321
elastic constants, 206
elastic distortion, 44
elastic moduli theory, 321
elastic strain, 322
elastic tensor, 322
electric field, 269
along non-periodic direction, 48
in a crystal, 46
through a slab, 46
electric susceptibility, 188
electron charge density
3D maps, 239
calculation, 240
gradient, 240
electron momentum density
line, 242
maps, 243
plane, 245
theory, 318
electron spin density, 240
electronic configuration
ions, 26
open shell atoms, 25
electronic properties, 221
electrostatic potential
2D maps, 269
3D maps, 267
first derivative, 268
maps, 233
second derivative, 268
with an electric field, 268
EMD theory, 318
energy
(correlation) a posteriori, 241
atomic, 26
Coulomb, 313
exchange (definition), 315
exchange contribution, 90
Fermi, 313
energy derivatives (elastic constants), 321
EOS, 200
Equation of state, 200
equivalent atoms coordinates, 22
exchange energy
calculation, 90
theory, 313
exchange series threshold, 114,315
Faujasite, 288
Fermi contact, 246
Fermi energy, 313, 318
smear, 110
findsym, 32
FINDSYM.DAT, 32
Fluorite, 286
Fock matrix
definition in direct space, 313
Formamide polymer, 291
formatted data
3D for visualization, 364
for visualization, 363
general info, 364
formatted files
POINTCHG.INP, 61
formatted wave function, 105, 245
fort. 33,120
fort.34, 120
fractional charge doping, 87
fragment
frequency calculation, 148
geometry optimization, 136
frequencies, 66
frequency calculation, 144
Fullerenes, 49, 50, 62
GAUSS70 integral package, 102
Gaussian 98 input deck, 73
gaussian primitives contraction, 312
gaussian type functions definition, 312
geometry
exported, 65
space group identification, 49
visualization, 46, 52, 245, 363
geometry optimization
cartesian coordinates, 118
geometry optimization, 117
convergence criteria, 119
example, 297
Hessian update, 119
Initial hessian, 121
partial, 136, 299
trust radius, 124
ghost atoms
atoms converted to, 74
input deck, 24
Gilat net, 108, 262
Graphite, 286, 289
Grimme dispersion correction, 95
ground state electronic properties, 221
groups - see symmetry groups, 330
GTF
definition, 312
primitives, 312
primitives-input, 23
Hamiltonian
closed shell, 107
open shell, 115
Hamiltonian matrix
elements selective shift, 88
Hay and Wadt pseudo-potentials, 76 hessian
default, 122
from external file, 122
identity, 122
model Lindh 1996, 122
HESSOPT.DAT, 120
hydrogen
(border atoms substitution with), 51
anharmonic vibrations, 169
hyperfine electron nucleus interaction anisotropic, 225
isotropic, 246
hyperpolarizability tensors, 188
INF
setting values, 64, 74, 108, 272
initial guess
atomic densities, 100
input density matrix, 99
initial guess density matrix with a different symmetry, 100
input examples
0D geometry, 292
1D geometry, 291
2D geometry, 290
3D geometry, 288
basis set, 292
Effective Core Pseudopotential, 293
integral evaluation criteria, 313
integration in reciprocal space, 318
IRSPEC.DAT, 365
IS, 29, 108, 318
ISP, 30, 109, 318
ITOL1, 114,314
ITOL2, 114,315
ITOL3, 114,315
ITOL4, 114,315
ITOL5, 114,315
keywords list, 339
kinetic tensor, 247
lattice
centred, 22
definition, 20
vectors, 22
layer groups, 333
LCAO, 312
level shifter, 102
linear dependence catastrophe, 88, 310
localization
Boys, 248
Wannier, 248
LPRINT, 352
Mössbauer effect, 278
madelind see mql, 103
maps (contour), 260
metals basis set, 309
Methane molecule, 292
MgO
(001) surface, 290
(110) surface, 289
molecular crystals
non interacting units, 54
lattice parameters modification, 53
molecules
from 3D, 53
input, 18
non interacting, 54
Monkhorst net, 262, 318
shrinking factor, 29, 108
monoelectronic integral file split, 104
MP2 correlation energy, 104
MP2 Density Matrix, 265
Mulliken population analysis, 106, 270
multipolar expansion
definition, 314
maximum order, 106
multipole moments
printing, 267
spin, 267
calculation, 266
ordering, 267
spherical harmonics, 266
multitask, 198
nanocrystal from $3 D$ structure, 54
nanorod from 3D structure, 55
Nanotubes, 55, 56, 59, 62, 69, 70
Neighbors of a SIC, 199
neighbour printing, 59, 105, 261
NiO anti ferromagnetic - input, 112
NOSYMAP, 254
one electron integrals
kinetic, 313
nuclear, 313
OPTINFO.DAT, 120
orientation convention
polymer, 22
slab, 22
origin
moving, 59
setting, 22
output files
fort. 33, 120
fort.34, 120
HESSOPT.DAT, 120
optaxxx, 120
OPTINFO.DAT, 120
SCFOUT.LOG, 146
overlap matrix
definition, 312
printing, 353
permutation of centers in exchange integrals, 90
phonon
density-of-state, 168
dispersion, 164
bands, 60
phonons, 66
photoelastic constants, 206
physisorption, 38
piezoelectric constants, 206
Pockels Tensor, 191
point charges
input, 61
printing, 62
point groups, 337
polarizability tensor, 188
polarization functions, 24
polymer
input, 18, 19
orientation, 22
population analysis (Mulliken), 106, 270
POTC.DAT, 269, 361
primitive cell, 21
PRINT, 254
printing
keywords, 354
multipole moments, 267
neighbour list, 59, 105, 261
setting environment, 62, 74, 107. 270
setting options, 64, 74, 108, 272
properties
ground state electronic, 221
pseudopotential
Durand-Barthelat, 76
Hay and Wadt, 76
Stevens et al., 78

Stuttgart-Dresden, 78
Pyrite, 286
Quasi-harmonic approximation, 172
radial integration (DFT), 224, 241
RAMSPEC.DAT, 366
RCEP, 78
reciprocal form factor, 227,318
reciprocal space integration, 318
reference frame rotation, 89
refractive index, 188
Restricted HF, 107
Rock Salt structure, 285
rod groups, 334
rotation
of the crystal, 63
density matrix, 272
eigenvectors, 272
of adsorbed molecules, 39
reference frame, 89
Rutile, 286
SAED - Symmetry Allowed Elastic spin Distortions, 51
scale factor, 23, 24
SCF
acceleration techniques, 30, 110
convergence
total energy, 114
cycles control, 103
direct bielectronic integrals, 107
dual basis, 97
input, 29
level shifter, 102
mixing Fock/KS matrices, 95
no direct bielectronic integrals, 107
SCF convergence acceleration
Anderson, 83
Broyden, 85
DIIS, 86
dual basis, 97
level shifter, 102
SCFOUT.LOG, 146
geometry optimization, 120
Second Harmonic Generation, 191 shell
definition, 312
formal charge, 23, 25
type, 23, 25
shift of Hamiltonian matrix elements, 88
shrinking factor, 29, 30, 108, 109, 318
Gilat, 108
Pack Monkhorst, 108
slab
information, 65
input, 18
orientation, 22
SN polymer, 291
Sodalite, 288
Sodium Chloride, 285
solid solutions, 194
sp constraint, 312
space group
monoclinic input, 22
orthorhombic input, 22
setting, 22
symbol, 21
space groups tables, 330
spherical harmonic multipole moments, 266
multipole moments, 267
spin configuration
locking $\alpha-\beta$ electrons, 112
locking $\beta$ electrons, 84
setting, 83
spin density matrix editing, 112
spin polarized systems, 31
Spinel, 295
spontaneous polarization
Berry phase, 277
localized orbitals approach, 278
Stevens et al. pseudopotential, 78
STM topography, 265
STRUC.INCOOR, 362
structure factors, 272
Stuttgart-Dresden pseudopotential, 78
supercell
creation, 66, 67
input examples, 68
surfaces
2D slab model, 18
slab from 3D structure, 64
Wulff construction, 71
symmetry
allowed directions, 70
analysis in $K$ space, 102
breaking, 32, 41
electric field, 47
maintaining, 32,51
modification, 52
point operators printing, 70
point symmetry, 316
related atoms printing, 40
removal, 70
translational, 316
translational components removal, 71
Symmetry Adapted Bloch Functions, 317
symmetry groups
layer, 333
point groups, 337
rod groups, 334
space, 330
symmetry-independent class, SIC, 194
SYMMFLAG, 254
tensor of physical properties, 70
Thermodynamics of solids, 172
threshold
Coulomb series, 314
exchange series, 315
TOLBOND, 254
tolerances
bipolar expansion, 85, 105
Coulomb series, 314
Effective Core Pseudopotential, 114
exchange series, 315
integrals, 114
ITOL1, 114, 314
ITOL2, 114,315
ITOL3, 114,315
ITOL4, 114,315
ITOL5, 114,315
TOLSYM, 254
Topological analysis, 281
total energy, 313
transformation matrices in crystallography, 338
transport properties
calculation, 231
two electron
Coulomb contribution, 313
exchange contribution, 313
two-body interactions, 196
units
Ångstrom, 37
bohr, 40
fractional, 49
Unrestricted HF, 115
Urea molecule, 292
vibrationa modes
scanning example, 302
vibrational modes, 144
visualization
geometry, 46, 245
MOLDRAW, 52
Voigt convention, 323
Wadt (see Hay), 76
Wannier functions, 248
Wannier functions - 3D plot -, 255
Water chain, 291
Wulff polyhedron, 71
Wurtzite, 285
X-ray diffraction spectra, 275
X-ray structure factors, 272
XRD spectrum, 275
Zeolites
Chabazite, 288
Edingtonite, 288
Faujasite, 288
Sodalite, 288
Zinc Blend, 285
Zirconia
cubic, 287
monoclinic, 287
tetragonal, 287


[^0]:    Output of data on external units

[^1]:    Properties computed from eigenvectors (after keyword NEWK)

[^2]:    ${ }^{1}$ Let us prove the Gaussian product theorem:

    $$
    \begin{align*}
    G(\alpha ; \mathbf{r}-\mathbf{A}) G(\beta ; \mathbf{r}-\mathbf{B}) & =\exp \left(-\alpha_{i}(\mathbf{r}-\mathbf{A})^{2}\right) \exp \left(-\alpha_{j}(\mathbf{r}-\mathbf{B})^{2}\right. \\
    & =\exp \left(-\alpha\left(\mathbf{r}^{2}+\mathbf{A}^{2}+2 \mathbf{r} \mathbf{A}\right)-\beta\left(\mathbf{r}^{2}+\mathbf{B}^{2}+2 \mathbf{r B}\right)\right) \\
    & =\exp \left[-\xi\left((\mathbf{r}-\mathbf{P})^{2}+\mathbf{P}^{2}-\frac{\alpha \mathbf{A}^{2}+\beta \mathbf{B}^{2}}{\xi}\right)\right] \tag{E.6}
    \end{align*}
    $$

[^3]:    ${ }^{2} d \mathbf{r}=r^{2} \sin \vartheta d r d \vartheta d \phi$

[^4]:    ${ }^{3}$ The implementation of higher polynomial functions is now in progress.

