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Predicting locally advanced rectal cancer response to neoadjuvant 

therapy with 18F-FDG PET and MRI radiomicradiomics features 

 

Abstract 

Purpose: Pathological complete response (pCR) following neoadjuvant chemoradiotherapy or radiotherapy in 

locally advanced rectal cancer (LARC) is reached in approximately 15-30% of cases, therefore it would be 

useful to assess if pretreatment 18F-FDG PET/CT and/or MRI texture features can reliably predict response to 

neoadjuvant therapy in LARC. 

Methods: 52 patients were dichotomized as responder (pR+) or non-responder (pR-) according to their 

pathological tumourtumor regression grade (TRG) as follows: 22 as pR+ (9 with TRG=1, 13 with TRG=2) 

and 30 as pR- (16 with TRG=3, 13 with TRG=4 and 1 with TRG=5). First order parameters and 21 second 

order texture parameters derived from the Gray-Level Co-Occurrence matrix were extracted from semi-

automatically segmented tumourtumors on T2-w MRI, ADC maps and PET/CT acquisitions. The role of each 

texture feature in predicting pR+ was assessed with monoparametric and multiparametric models. 

Results: In the mono-parametric approach PET homogeneity reached the maximum AUC (0.77; 

sensitivity=72.7% and specificity=76.7%), while PET glycolytic volume and ADC dissimilarity reached the 

highest sensitivity (both 90.9%). In the multiparametric analysis, a logistic regression model containing 6 

second-order texture features (five from PET and one from T2-w MRI) yields the highest predictivity in 

distinguish between pR+ and pR- patients (AUC=0.86; sensitivity=86% and specificity=83% at the Youden 

index). 

Conclusions: If preliminary results of this study arewill be confirmed, pretreatment PET and MRI images 

could be useful to personalize patient treatment, e.g., avoiding toxicity of neoadjuvant therapy in patients 

predicted pR-. 

 

 

Keywords (4 to 6): locally advanced rectal cancer,  18F-FDG PET/CT imaging, Magnetic Resonance Imaging, 

texture features, prediction of treatment response, radiomics . 
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 3 

Introduction 

Colorectal cancer is the third leading cause of cancer-related mortality in Western countries and in 

approximately 1/3rdone third of cases tumor is localized in the rectum  rectum [1]. The standard therapeutic 

scheme for locally advanced rectal cancer (LARC) involves surgical resection, preceded by neoadjuvant 

chemoradiotherapy (CRT) or radiotherapy only (RT) [2,3]. Neoadjuvant treatment can reduce the risk of local 

recurrence, downsize the tumor and facilitate subsequent successful R0 resection and sphincter-preserving 

surgery [4]. Pathological complete response (pCR) is reached in approximately 15-30% of cases subjects and 

in these cases a wait-and-see strategy is becoming a viable therapeutic option [5]. To improve patient’s 

management, it could be advantageous to determine the likelihood of pCR or near pCR before treatment to 

allow clinicians to tailor therapy. Importantly, patients predicted non-responders could benefit from alternative 

treatments, or up-front surgery, avoiding toxicity and side effects of CRT/RT.  

Recently, the idea has emerged that medical images are like the “dark matter in space”, since only a small 

percentage of image “data” is actually used by the radiologist for interpretation whilst the vast majority is 

locked up within the images themselves. Radiomics analysis can extract hidden data and process large amounts 

of information from routinely acquired medical images with the scope of providing a comprehensive 

quantification of tumor phenotype. Radiomics uses advanced quantitative feature analysis, including analysis 

of the spatial layout of images and of their geometric shape [6]. Improvement in image analysis through the 

understanding of its texture proprieties has revealed important prognostic information on disease course [7,8] 

and on the understanding of underlying genomic patterns [9].  

Texture analysis has been applied to MRI to predict long term survival of patients with locally advanced rectal 

cancerLARC [10], to discriminate different stages of rectal cancer [11] and also to predict response to CRT 

[12,13]. The role of texture analysis in predicting response to CRT has also been investigated with 18F-FDG 

PET/CT [14,15]. To our knowledge, combining 18F-FDG-PET and MRI texture features with the aim of 

predicting which patients with LARC will respond to neoadjuvant therapy has never been attempted before. 

However, this approach has shown promising results in other tumor models. For example, Vallières et al. [16] 

have shown that the predictive value of baseline 18F-FDG-PET texture features in the risk evaluation of lung 

metastasis at the time of diagnosis of primary soft-tissue sarcomas was significantly enhanced by the addition 

of MRI parameters. 

The aim of this study is to assess if a combination of MRI and 18F-FDG PET/CT texture features can reliably 

predict response to neoadjuvant therapy (CRT/RT) in LARC and provide clues that could ultimately improve 

patient management.  

 

Materials and Methods 

Patients 

Subjects with LARC that underwent neoadjuvant CRT or only RT and only followed only by surgical resection 

at our Institution were retrospectively enrolled in a single institution study between July 2010 and October 

2016. Inclusion criteria were the following: a) biopsy-confirmed stage II/III LARC (any T, positive N); b) 
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absence of distant metastasis (M0); c) axial MRI examination, including T2-weighted (T2w) and diffusion 

weighted imaging (DWI), and fluoro-D-glucose (FDG) PET performed at our Institute prior to neoadjuvant 

treatment. Exclusion criteria were: a) significant image artifacts at MR and/or FDG-PET examinations, b) 

absence of tumor regression grading (TRG) evaluation [17], c) age < to 18 years, d) pregnancy, e) mentally 

incompetent subjects. The study design was approved by the local Ethics Committee, in accordance with the 

Helsinki Declaration; signed informed consent to use and analyze imaging data was obtained from all 

participants before entering the study. All accrued patients were evaluated by our internal tumourtumor board 

before and after the completion of the neoadjuvant treatment.  

 

Treatment 

Thirty-two of the 57 patients enrolled in this study were part of a protocol (RectumSIB: ClinicalTrials.gov 

identifier: NCT01224392) comparing the standard neoadjuvant radiation treatment (CRT arm; 17 patients) to 

an exclusive radiotherapy treatment protocol with a simultaneous integrated boost (RT arm; 15 patients), as 

previously reported [18].The remaining 25 patients performed standard CRT treatment with the same technical 

specification of the RectumSIB protocol. Six to eight weeks after the end of radiotherapyradiotherapy, all 

patients repeated the MRI examination of the rectum and FDG-PET and subsequently underwent total 

mesorectal excision (TME).  

 

Reference standard 

Resected tumourtumors were evaluated by an experienced pathologist. All surgical specimens were received 

under vacuum sealing and, stored at 4 °C, within 2 hours from the resection. The specimens were then opened, 

and the tumor bed was macroscopically identified and extensively sampled at 5 mm intervals. Tissue slices 

were then fixed in 10% buffered formalin at room temperature for 24 h and subsequently then paraffin 

embedded. Semiserial sectioning at 0.5 mm intervals from each tissue slice from the tumor bed was performed 

and the sections stained with hematoxylin and eosin for microscopic examination. Semi-quantitative 

pathological evaluation of primary tumor regression was performed, determining the namount/nnumber of 

residual tumor cells compared with the desmoplastic response, using the Mandard’s five-point assessment 

scheme [19]. 

In this system TRG 1 represents a complete regression (=fibrosis without detectable tissue of tumor); TRG 2 

represents a partial response (rare residual tumor cells); TRG 3 is defined as fibrosis outgrowing residual 

tumor; TRG 4 is defined as residual tumor outgrowing fibrosis; TRG 5 represents a complete non response 

(absence of regressive changes). 

 
Imaging  

MRI was performed with a 1.5T scanner using an 8-channel phased-array surface coil (HDx Signa Excite, GE 

HealthCare Milwaukee, WI, USA). Patients were positioned in the supine position and, unless contraindicated, 

a 20 mg intramuscular injection of butyl-scopolamine was administered intravenously 10 minutes before the 

beginning of the examination, to minimize motion artefact induced by bowel peristalsis. The acquisition 
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protocol included a fast spin echo T2w sequence acquired on the axial plane perpendicular to the longest 

tumourtumor diameter having the following scanning parameters: repetition/echo time (TR/TE) = 7660/110 

ms, acquisition matrix=416x224, slice thickness=4 mm, pixel size=0.4297x0.4297 mm2, field of view=22 cm, 

and flip angle=90°, and as well as an axial EPI-SE Diffusion Weighted (DW) sequence with the following 

scanning characteristics: TR/TE = 2000/87 ms, acquisition matrix= 96x128, slice thickness= 4 mm, pixel 

size=0.8594x0.8594 mm2, field of view= 22 cm, flip angle=90°, and b-value= 800 s/mm2. Total examination 

time including a sagittal and a coronal T2w sequence and a dynamic contrast enhanced T1w sequence was 31 

minutes.  

FDG-PET was performed using a PET-CT Gemini TF scanner (Philips Medical System, Cleveland, OH) with 

Time-of-Flight (TOF) technology. All studies were carried out following according to the European 

Association of Nuclear Medicine (EANM) guidelines [19]. Before the examinationexamination, patients fasted 

for a minimum of 6 hours and were required to have a serum glucose concentration lower thanbelow 200 ng/dl. 

Intravenous administration of aA weight-based amount of [18F]FDG, with standard dose of 2.5 MBq/kg was 

injected. After 60 minutes of rest, patients were asked to void bladder and were placed in supine position with 

arms raised. Image acquisition time was 15-20 minutes.  

 

Image segmentation 

We developed an algorithm using C++ and the ITK libraries to segment tumors on MR imagess [20]. The 

semi-automatic segmentation method was applied on both the T2w and the DW images. First, a bounding box 

enclosing the rectal region (Figure 1a) was drawn manually on the T2w images. Second, the bounding box 

was automatically applied to both T2w and DW images to crop the two datasets along the same physical 

coordinates (Figure 1b-c). Subsequently, a k-means algorithm was applied on both datasets. The k-means 

method is an unsupervised learning algorithm that classifies a given dataset through a k number of clusters, in 

which each observation is associated with the cluster having the closest mean. In our algorithm, we defined 

k=3 for the T2w sequence and k=5 for the DW image. On the T2w images, the cluster having the lowestr mean 

intensity value is more likely to contain voxels belonging to the tumor, while on the DW images the 2 clusters 

with the highest intensity values more likely belong more likely to non-necrotic areas of the tumor  (Figure 

1d-e). Therefore, the final segmentation was composed ofby voxels belonging to the tumoral region in both 

T2w/DW datasets (Figure 1f-g), i.e., the intersection between the two segmentations (figure 1h). Finally, the 

2D biggest connected region is kept as the final region of interest, while other non-connected regions (i.e., 

noise, vessels, regionsand regions outside the tumor) are discarded. Once the automatic segmentation was 

completed, an experienced radiologist (more than 10 years of experience in interpreting abdominal MRI) 

manually reviewed the results of segmentation on both T2w and ADC maps to include missing voxels and/or 

to exclude voxels that were erroneously included by the algorithm (Figure 1i).  

Segmentation of tumors on PET images was obtained using the previously described automatic Adaptive 

Threshold Algorithm [21]. First, a background area close to the lesion was drawn by a nuclear medicine 

physician, then the algorithm iteratively determined a threshold value based on the percentage of the maximum 
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intensity in the cross-section area of a sphere containing the tumor. The threshold values were entirely based 

on the apparent activity concentration in the images and not on known activities. On our dataset the threshold 

values ranged from 0.737 to 16.848. Finally, all masks were reviewed by an expert nuclear medicine physician.  

 

Features extraction 

The following radiomicradiomics features were extracted from voxels belonging to the segmented 2D mask in 

the T2w, ADC and PET images: a) 5 first order parameters, i.e. mean intensity, median intensity, 10th, 25th and 

75th percentile; b) 21 second order texture parameters derived from the Gray-Level Co-Occurrence matrix 

(GLCM); c) the mean standard uptake volume (SUVmean ), the metabolic volume, defined as the area of the 

segmented PET mask, and the glycolytic volume, which is the product between metabolic volume and 

SUVmean. 

The GLCM is a tabulation of how often different combinations of pixel brightness values (i.e. grey levels) 

occur between neighbouringneighboring voxels in an image. Therefore, the GLCM allows the calculation of 

second order texture features, i.e., describing the relationship between groups of contiguous pixels in the 

image. To extract the texture parameters, we first equalized the histogram by rescaling the intensities within 

each ROI between the 1st and the 99th percentile of the ROI over 64 bins. Using 64 equally divided bins has 

been a common approach for image quantification in radiomics analysis, and at the same timetime, it  

allowsmakes it possible to explore the whole range of tumourtumor signal intensities [22]y 

[10.1016/j.ijrobp.2017.12.268]. Then, GLCMs were generated for each of the four directions of a 2D image, 

considering the distance between two neighbouringneighboring voxels equal to one. Finally, the 4 matrices 

were averaged to enable the method to be rotationally invariant/ to make the method rotationally invariant to 

the distribution of texture. y. Texture features were computed using the MATLAB and Statistics Toolbox 

Release 2016b (The MathWorks, Inc., Natick, Massachusetts, United States). 

 

Statistical analysis 

Patients were dichotomized as responders (pR+), having TRG=1 or 2, vs non-responders (pR-) having TRG≥3. 

The relationship between pR+/pR- and texture features was explored both by both the mono-parametric and 

multi-parametric approach. When using the first approach, we evaluated the predictive value of each feature 

individually, using the Mann-Whitney test. For those variables that were statistically different between pR+ 

and pR- patients, we evaluated thee AUC, area under the receiver operating characteristic (ROC) curve (AUC), 

(AUC), sensitivity, and specificity at the best cut-off. Sensitivity was defined as the number of correctly 

classified pR+ patients over the total number of pR+ patients, while specificity was defined as the number of 

correctly classified pR- patients over the total number of pR- patients. The best cut-off is the one that 

maximizes the Youden index, which is the cut-point of the ROC curve that optimizes the biomarker’s 

differentiating ability when equal weight is given to sensitivity and specificity [23]. A p-value < 0.05 was 

considered as indicating a significant AUC greater than 0.5. Analyses were performed with a statistical 

software (MedCalc Statistical Software version 17.4, Ostend, Belgium). 
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Conversely, in the multiparametric approach, the accuracy in predicting pR+ of different feature subsets was 

assessed using a logistic classifier. Three feature subsets were created composed of: a) features from MRI 

images (T2w and ADC maps), b) features from PET images, and c) features from both MRI and PET images. 

However, since the dimensionality of features was high for all the three subsets, a feature selection step was 

necessary to exclude irrelevant or redundant attributes that might cause overfitting and that might be a source 

of noise for the classifier [24]. To this scope, features were first ranked according to their AUC in 

discriminating between pR+ and pR-;, subsequentlythen, the correlation matrix between features was 

computed, to detect which pairs were highly correlated. When a couple of features showed a Pearson’s linear 

correlation ≥ 0.8, we discarded the feature with the lower AUC. To improve stability and avoid bias, this 

selection was repeated 100 times using random training sets composed of 80% of the whole patients’ dataset. 

Only features that were chosenchosen more than 60 times were included in the subsequent analysis. Once the 

three subsets of features were created, they were fed into a logistic classifier, applying the stepwise regression 

method, to further exclude irrelevant variables. Within this procedure, the method searches for terms to add to 

or remove based on the p-value of the F-statistics and iteratively add or remove terms that have p-value ≤ 0.05 

and/or p-value>0.20, respectively. Sensitivity, and specificity, as previously defined, were then estimated. 

 

Results 

Patients 

From the initial cohort of 57 patients, 3 were excluded due to MRI artifacts and 2 because the TRG score was 

not evaluated. The final dataset included 52 patients, of whom 35 men (68%). Twenty-two patients were 

classified pR+ (9 with TRG=1, 13 with TRG=2), the remaining 30 were classified as pR- (16 with TRG=3, 13 

with TRG=4 and 1 with TRG=5). Patient and lesion characteristics are reported in Table 2. Of note, age was 

statistically lower in the pR+ group, grade 0 and 1 tumourtumors were more represented in the pR+ group, 

grade 3 and 4 were more represented in the pR- group, pT0 tumourtumors were significantly more represented 

in the pR+ group while pT3 were significantly more represented in pR- group.  

 

Mono-parametric approach  

In total 12 features derived from PET images and 5 features computed on the ADC maps accurately 

response to neoadjuvant therapy (table 3). The maximum AUC (0.77) was obtained by PET homogeneity, 

which, that also showed a good balance between sensitivity (72.7%, 16/22) and specificity (76.7%, 23/30). 

Lower values of the PET homogeneity feature were measured in responders (<0.18). The highest sensitivity 

in the prediction of response was obtained by PET glycolytic volume and ADC dissimilarity (both 90.9%; 

20/22) at the cost of a low specificity (56.8% [17/30] and 43.3% [13/30], respectively). Conversely, the 

specificity in response prediction was obtained by metabolic volume (83.3% [25/30]) to the detriment of 

sensitivity (63.6% [14/22]). Figure 2A shows ROC curves of PET and ADC features having the highest 

values and reaching the highest sensitivities. T2w features did not differ between responders and non-

responders with the mono-parametric approach ( 
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Fig. 2).  

 

Fig. 3 shows the mean AUC reached by each radiomics features computed on PET, T2w and ADC images 

during the 100 repetitions. Features from PET images obtained higher AUCs compared to features from MRI 

images. The median AUC obtained by texture features from PET was 0.65 (IQR= 0.61-0.73);, from T2w 

image. was 0.57 (IQR= 0.56-0.58);, and from ADC maps, was 0.59 (IQR=0.57 - 0.63).  

 

Multi-parametric approach 

The feature selection step returned 3 features subsets composed of: a) features from PET images, b) features 

from MRI images, c) features from both PET and MRI images. Features included in each subset are listed in 

Table 1 (column 2-4).  

The logistic classifier obtained using only PET features included homogeneity, contrast, metabolic volume, 

glycolytic volume, and 10th percentile, and reached an AUC of 0.84, a sensitivity and a specificity at the 

Youden index (0.5) of 77% (17/22) and 83% (25/30), respectively. In order to obtain the highest sensitivity in 

predicting pR+, i.e., ensuring treatment to the large majority of responder patients, we could lower the cut-off 

value. With a cut-off value of 0.28 we obtained a sensitivity of 91% (20/22) and a specificity of 57% (17/30) 

in recognizing responder patients. When only features from MRI images were used, the logistic regression 

created a model containing 10th percentile and correlation 1 from T2w images, and cluster prominence and 

information measure of correlation 2 from the ADC maps. This model reached an AUC of 0.72, and a 

sensitivity and specificity of 73% (16/22) and 70% (21/30) respectively, at the Youden index (0.37). Finally, 

when features from PET and MRI images were combined, the logistic regression computed a model 

containing: PET homogeneity, PET contrast, PET 10th percentile, glycolytic volume, metabolic volume, and 

T2w correlation1. The AUC obtained by this model was 0.86, while sensitivity and specificity at the Youden 

index (0.42) were 86% (19/22) and 83% (25/30), respectively. When lowering the cut-off to 0.25 the model 

will correctly recognize as responder one additional patient (sensitivity 91%; 20/22) but at the expense of a 

marked reduction in specificity (53%; 16/30) (see Figure 2B). 

 

Discussion 

In this study we show that a logistic regression model containing 5 second-order PET texture features and one 

second-order texture feature from the T2 MRI sequence yields the highest predictivity in determining which 

patients will or will not respond to neoadjuvant therapy (AUC=0.86). However, the combined PET-MRI 

regression model yielded results that were only slightly better than a model including only 5 PET features 

(AUC=0.84) and far better than a model including only MRI features (AUC=0.72). If FDG-PET will beis 

confirmed as a reliable predictor of response, then hybrid PET-MRI imaging could be implemented in the 

future be implemented both to stage LARC and to tailor treatment to the individual patient. 

In the above described regression models the Youden index allows determination of the best cut-off value 

between sensitivity and specificity. However, from a clinical stand-pointstandpoint a high sensitivity value 
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would ensure that most patients that will benefit from CRT treatment actually receive it, even if this will come 

at the cost of a large group of patients having to undergo treatment unnecessarily. In our studystudy, the highest 

sensitivity was obtained by lowering the cut-off value of the ROC curve of the multiparametric PET model to 

0.28. Assuming we were in clinical practice, the PET model would have correctly suggested the use of CRT 

in over 9 out of 10 patients (i.e. 91% sensitivity) and have avoided unnecessary treatment in almost 6 of 10 

patients (i.e. 57% specificity).  

Of note, the AUC was lower for each first or second order features taken individually. Overall, PET 

homogeneity yielded the best results with an AUC of 0.77 followed by PET inverse difference normalized and 

ADC entropy. Based on current knowledge an explanation cannot be given to why patients with metabolically 

inhomogeneous LARC respond better to neoadjuvant treatment;, however, a similar trend was also reported 

by Lovinfosse et al. [14]. We might envisage that molecular traits of tumor may be responsible for poor 

response and that combining molecular and imaging metrics will allow better comprehension on of the 

mechanisms that underlie tumor objective response. One additional finding of this study is that we confirm 

that dissimilarity and contrast directly correlates  with good response, while metabolic volume and glycolytic 

volume inversely correlates with good response to RT as previously demonstrated by other authors which who 

adopted a different method, i.e., odds ratio, to evaluate correlation between individual features and response 

to CRT instead of ROC analysis [14,15]. 

There are some points of strength of this study that deserve consideration. First, unlike opposite to most 

previous studies on the assessment of radiomics features of LARC [12,25], in this study not only first but also 

second order features were extracted to assess tumor characteristics. Second order features provide information 

on the spatial relations between neighboring regions/voxels of the tumor, which first order features, such as 

histogram derivedhistogram-derived features cannot explore. Lovinfosse et al [14] showed that histogram 

features failed to independently predict outcome measures in multivariate analysis. Contrarily, the same 

authors identified coarseness, a local textural feature that quantifies granularity of tumor, as a predictor of 

disease free survival [14]. Second, multi-variate analysis was performed to identify groups of features that 

were more predictive of response to treatment than individual parameters. Third, the collection of PET and 

MRI images we used were all from the same institution, taken  on the same equipment and using the same 

exam protocols, ensuring a high reproducibility of test. Fourth, to our knowledge this is the first time that PET 

and MRI features have been combined in a single classifier with the aim of predicting response to neoadjuvant 

therapy in LARC, with promising results. For data analysisanalysis, we used the original image instead of 

filtered images as in Dinapoli et al. [25]. Using Ooriginal images avoids including bias in the original data and 

allows exploitation of a larger number of texture parameters. 

There are also limitations to this work. First, our results should be validated on data originating from different 

scanners and different acquisition protocols. Second, texture analysis was performed on the largest single-slice 

mask rather than on the whole tumor. HovewerHowever, whetherthe decision to use the whole dataset or only 

the slice most representative of the tumourtumor to measure radiomics features has long been debated and 

which is best has not been convincingly determined. Indeed, Ng et al. [26] [PMID: 23194641], in a study 
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involving 55 patients with primary colorectal cancer, showed that entropy computed on CT images was higher 

and uniformity lower for the whole tumor volume compared to the largest cross-sectional area at all filter levels 

, and Kaplan Meier analysis showed better separation of entropy and uniformity for whole tumor analysis for 

5-year overall survival.  NeverthelessHowever, findings of other Authors appear to be going in a different 

direction [27] [PMID 28881840]. Lubner et al. [28] [PMID: 25968046], for example, compared 2D and 3D 

texture features from CT images in a subset of 20 patients with hepatic metastatic colorectal cancer and 

demonstrated that overall results were fairly similar in Bland–Altman analysis (e.g., for entropy, the limits of 

agreement were -0.0182, 0.029, bias 0.005). Also, in a larger study involving 588 patients with non-small cell 

lung cancer, Shen et al. [29] [PMID: 28930698] demonstrated that 2D texture features performed slightly better 

in discriminating between high and low risk tumors, thus suggesting their use in clinical practice since they 

are less time-consuming and do not require heavy-load computation asneeded for the 3D analysis. 

Moreover, 2D analysis has been previously demonstrated asto be a robust prognostic tool to provide important 

information for patients’ management [30,31,32,33,34,35]. [PMID: 28523352, PMID: 28707546, PMID: 

25768265, PMID: 26971430, PMID: 21943720, PMID: 21102348]. 

There are severalSeveral advantages of 2D analysis that may be worthwhile addressing. First, in a clinical 

perspective where time is an important issue, 2D analysis is more straightforward thant 3D analysis, both 

ifwhether performed manually or via semi-automatic segmentation. Second, in the specific setting of rectal 

cancer, 3D segmentation of 2D MRI images may not be accurate, in particular on the cranial and caudal 

margins of the lesion due to low tissue contrast on T2w images and low spatial resolution of DWI.      

In our study, we tried to reduce reader variability by automatically detecting the largest slice of the tumor and 

semi-automatically segmenting it. The final segmentation required a minimal user’s intervention and might be 

easily integrated in clinical practice, providing a straightforward tool for a better management of patients. 

Currently, we are working on the implementation of a deep learning algorithm to automatically segment rectal 

cancers on MR images, and, if successful, in the future we will in the future test this algorithm to extract 3D 

texture features, comparing the results with our current findings of 2D analysis. 

We will evaluate differences between the 2D and the 3D approach as the next step. Third, we used a semi-

automatic method for segmentation of the tumor, which cannot completely avoid inter-reader variability. 

However, this is the first study attempting to perform a semi-automatic segmentation, which is a very 

challenging task due to the low contrast between tumor and healthy regions.  

In conclusion, in this study we explore the potential role of texture parameters derived from pretreatment MRI 

and PET images in predicting the response to CRT/RT in patients with locally advanced rectal cancerLARC. 

These preliminary results, if confirmed, could be useful to personalize patient treatment, for example avoiding 

to avoid toxicity of neoadjuvant therapy in patients predicted non responders.  
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TABLES 

 

 

 

 

 

 

 

 

 

Table 1: List of features computed on T2w and PE T images. “X” in columns 2,3,4 show features that have been chosen in the 
features  selection step on each features   subset.   

 Features PET MRI PET+MRI 

F
IR

S
T

 O
R

D
E

R
 mean intensity    

median intensity    

10th percentile  X X (T2w) X (PET,T2w) 

25th percentile     

75th percentile     

Metabolic volume (PET) X  X (PET) 

Glycolytic volume (PET) X  X (PET) 

G
L

C
M

 

autocorrelation [36]    

contrast [37] X X (ADC) X (PET, ADC) 

correlation 1 [36]  X (T2w) X (T2w) 

correlation 2 [37]    

cluster prominence [36] X X (ADC, T2w) X (PET, T2w, ADC) 

cluster shade [36]  X (ADC) X (ADC) 

Dissimilarity [36]   X (T2w)  

Energy [37]  X  X (PET) 

Entropy [36]    

Homogeneity [37] X X (T2w) X (PET) 

maximum probability [37]    

variance [37]  X (T2w) X (T2w) 

sum variance [37]    

sum entropy [37] X X (T2w) X (PET, T2w) 

sum average [37]    

difference variance [37]    

difference entropy [37]    

information measure of correlation 1 [37] X X (ADC) X (PET, ADC) 

information measure of correlation 2 [37]    

inverse difference normalized [38]    

inverse difference moment normalized [38]    
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Table 2: Patients and lesions characteristics 

 All (n = 52) pR+ (n = 22) pR– (n = 30) p-value 

Age 68 (60-74) 63 (57-70) 71 (63-75) 0.05a 

Sex     

Men 35 14 (40.0%) 21 (60.0%) 0.662 b 

Women 17 8 (47.1%) 9 (52.9%) 0.662 b 

Histological type     

Adenocarcinoma 42 17 (40.5%) 25 (59.5%) 0.607 b 

Mucinous cancer 9 5 (55.6%) 4 (44.4%) 0.370 b 

Villous adenoma 1 0 (0.0%) 1 (100.0%) 0.711 b 

Grading     

0 4 4 (100.0%) 0 (0.0%) 0.013 b 

1 4 4 (100.0%) 0 (0.0%) 0.013 b 

2 27 6 (22.2%) 21 (77.8%) 0.003 b 

3 10 1 (10.0%) 9 (90.0%) 0.021 b 

Not Evaluated 7 7 (100.0%) 0 (0.0%) n.a. 

Post CRTpathologic T stage     

0 9 9 (100.0%) 0 (0.0%) <0.001 b 

1 5 3 (60.0%) 2 (40.0%) 0.510 b 

2 14 6 (42.9%) 8 (57.1%) 0.877 b 

3 22 3 (13.6%) 19 (86.4%) <0.001 b 

4 1 0 (0.0%) 1 (100.0%) 0.711 b 

Tis 1 1 (100.0%) 0 (0.0%) 0.211 b 

Post CRTpathologic nodal status      

0 42 20 (47.6%) 22 (52.4%) 0.118 b 

Positive 10 2 (80.0%) 8 (80.0%) 0.118 b 

pR+=Mandard stage≤2; pR-= Mandard stage≥3. Age and tumour size are expressed as median with interquartile ranges in 

parentheses, while other measurements are expressed as counts with percentages in parenthesis. a p-value of the Mann-Whitney 

test.  b p-value of the Fisher’s exact mid-P test. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 14 

 

 

  

Table 3: Area under the ROC curve, sensitivity, specificity, Youden Index and p-value of feature that were statistically different 
between pR+ and pR- groups. INN=Inverse difference moment; IDMN= Inverse difference moment normalized. Sensitivity and 
specificity are expressed as percentage, within the number of patients in parentheses. 

    AUC Sensitivity  Specificity Criterion p-value 

P
ET

 

Homogeneity  0.771 72.7 (16/22) 76.7 (23/30) <0.18 <0.001 

Dissimilarity  0.745 81.8 (18/22) 60.0 (18/30) >4.3 <0.001 

INN  0.744 72.7 (16/22) 70.0 (21/30) <0.935 <0.001 

Glycolytic Volume 0.741 90.9 (20/22) 56.7 (17/30) <1.549*106 <0.001 

IDMN  0.736 68.2 (15/22) 80.0 (24/30) <0.9915 <0.001 

Difference Variance  0.736 68.2 (15/22) 76.7 (23/30) >34.2 0.001 

Contrast 0.736 68.2 (15/22) 76.7 (23/30) >34 0.001 

Sum entropy  0.735 63.6 (14/22) 80.0 (24/30) >4.665 0.001 

Metabolic volume 0.73 63.6 (14/22) 83.3 (25/30) <486 0.001 

Difference entropy  0.706 77.3 (17/22) 66.7 (20/30) >2.47 0.005 

Energy  0.698 77.3 (17/22) 60.0 (18/30)  <0.0016 0.007 

Maximum probability 0.668 86.4 (19/22) 43.3 (13/30) <0.008 0.027 

A
D

C
 

Difference entropy  0.683 86.4 (19/22) 50.0 (15/30) >1.98 0.014 

Homogeneity  0.682 77.3 (17/22) 56.7 (17/30) <0.34 0.015 

Dissimilarity 0.679 90.9 (20/22) 43.3 (13/30) >2.349 0.018 

INN  0.679 77.3 (17/22) 56.7 (17/30) <0.963 0.017 

Entropy 0.656 68.2 (15/22) 70.0 (21/30) >6.35 0.045 
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FIGURE CAPTIONS 

Fig 1 Pipeline of the tumor segmentation on the T2w image. a) T2w image; b) cropped T2w image: c) cropped 

DW image; d) k-means applied on the T2w image; e) k-means applied on the DW image; f) thresholding to 

extract tumoral cluster on the T2w image; g) thresholding to extract tumoral cluster on the DW image; h) 

intersection between k-means mask f) and g); i) final mask refined by the radiologist and superimposed to the 

T2w image 

Fig. 2 (A) Receiver Operating Characteristic (ROC) curves of PET and ADC features having the highest areas 

under the ROC curve and the highest sensitivities; (B) radiomicradiomics signature score for every patient: the 

green marks indicate the patients in the responder group, while the red marks represent the patients in the non-

responder group (B). Dotted line is the threshold which optimize sensitivity over specificity 

Fig. 2 Heatmap shows the normalized mean difference of radiomicradiomics features distributions between 

pR+ and pR- for both MRI (T2w and ADC) and PET images. * indicates features statistically different between 

pR+ and pR- patients (p-value<0.05) using a two-sided Mann-Whitney test 

Fig. 3 Area under the receiver operating characteristics (ROC) curve reached by each of radiomics features 

computed on both PET and MRI (T2w and ADC) images.  ROCs were computed 100 times using random 

training sets composed of 80% of the whole patients’ dataset. Means and standard deviations are showed. 

IMC= Information measure of correlation; INN = Inverse difference moment; IDNN = Inverse difference 

moment normalized 
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