
21 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Decision diagrams for Petri nets:
a comparison of variable ordering algorithms

Published version:

DOI:10.1007/978-3-662-58381-4_4

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1710943 since 2022-05-16T11:49:53Z

Decision diagrams for Petri nets:
a comparison of variable ordering algorithms

Elvio Gilberto Amparore1, Susanna Donatelli1,
Marco Beccuti1, Giulio Garbi1, Andrew Miner2

1 Università di Torino, Dipartimento di Informatica
{amparore,susi,beccuti}@di.unito.it

2 Iowa State University
asminer@iastate.edu

Abstract. The efficacy of decision diagram techniques for state space
generation is known to be heavily dependent on the variable order. Or-
dering can be done a-priori (static) or during the state space generation
(dynamic). We focus our attention on static ordering techniques. Many
static decision diagram variable ordering techniques exist, but it is hard
to choose which method to use, since only fragmented performance in-
formation is available. In the work reported in this paper we used the
models of the Model Checking Contest 2017 edition to conduct an exten-
sive comparison of 18 different algorithms, in order to better understand
their efficacy. Comparison is based on the size of the decision diagram
of the reachable state space, which is generated using the Saturation
method provided by the Meddly library.

Keywords: decision diagrams, static variable ordering, heuristic opti-
mization, saturation.

1 Introduction

A binary decision diagram (BDD) [12] is a well-known data structure that has
been extensively used in industrial hardware verification thanks to its ability
of encoding complex boolean functions on very large domains. In the context
of discrete event dynamic systems in general, and of Petri nets in particular,
BDDs and various extensions (e.g. Multi-way Decision Diagrams, or MDDs) were
proposed to efficiently generate and store the state space of complex systems.
Indeed, symbolic state space generation techniques exploit Decision Diagrams
(DDs) because they allow to encode and manipulate entire sets of states at
once, instead of storing and exploring each state explicitly.

The intermediate and final sizes of DD representations are known to be
strongly dependent on the choice of variable order: a good ordering can sig-
nificantly change the memory consumption and the execution time needed to
generate and encode the state space of a system. Unfortunately finding an opti-
mal variable ordering is known to be NP-complete [11]. Therefore, efficient DD
generation is usually reliant on various heuristics for the selection of (sub)optimal

orderings. In this paper we will only consider static variable ordering, i.e. once
the variable ordering l is selected, the MDD construction starts without the pos-
sibility of changing l. In the literature several papers were published to study the
topic of variable ordering. An overview of these works can be found in [28], and
more recently in [21]. In particular the latter work considers a new set of variable
ordering algorithms, based on Bandwidth-reduction methods [29], and observes
that they can be successfully applied to variable ordering. We also consider the
work published in [20] (based on the ideas in [30]), which are state-of-the-art
variable ordering methods specialized for Petri nets.

The motivation of this work was to understand how these different algorithms
for variable orderings behave. Also, we wanted to investigate whether the avail-
ability of structural information of the Petri net model could make a difference.
As far as we know there is no extensive comparison of these specific methods.

In particular we have addressed the following research objectives:

1. Build an environment (a benchmark) in which different algorithms can be
checked on a vast number of models.

2. Investigate whether structural information like P-semiflows can be exploited
to define better algorithms for variable orderings.

3. Develop metrics to compare variable ordering algorithms in the most fair
manner.

To achieve these objectives we have built a benchmark in which 18 different
algorithms for variable orderings have been implemented and compared on state
space generation of the Petri nets taken from the models of the Model Checking
context (both colored and uncolored), 2017 edition [23]. The implementation
is part of RGMEDD [6], the model-checker of GreatSPN [5], and uses MDD
saturation [14]. The ordering algorithms are either taken from the literature
(both in their basic form and with a few new variations) or they were already
included in GreatSPN. Figure 1, left, depicts the workflow we have followed in
the benchmark.

Given a net system S = (N ,m0) all ordering algorithms in A are run (box 1),
then the reachability set RSl of the system is computed for each ordering l ∈ L
(box 2) and algorithms are ranked according to some MDD metrics MM(RSl),
(box 3). The best algorithm a∗ is then the best algorithm for solving the PN
system S = (N ,m0) (box 4) and its state space RSl could be the one used to
check properties.

This workflow allows to: 1) provide indications on the best performing al-
gorithm for a given model and 2) compare the algorithms in A on a large set
of models to possibly identify the algorithm with the best average performance.
The problem of defining a ranking among algorithms (or of identifying the “best”
algorithm) is non-trivial and will be explored in Section 3.

Figure 1, right, shows a high level view of the approach used to compare
variable ordering algorithms in the benchmark. Columns represent algorithms,
and rows represent model instances, that is to say a Petri net model with an
associated initial marking. A square in position (j, k) represents the state space
generation for the jth model instance done by GreatSPN using the variable

9
>>>>>=
>>>>>;

8 l 2 L: reorder V
according to l and

compute MDD RSl.

Rank algorithms A
according to MDD
metrics of {RSl}.

a⇤ is best algorithm
for hN , m0i. Assign
score points to a.

System hN , m0i

{RSl | l 2 L}

a⇤ 2 A

Run all variable order-
ing algorithms a 2 A

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·i1

i2

i3

i4

i5

i6

in�1

in

...
...

...
...

...
...

model m1

instances

(

model m2

instances

8
>><
>>:

model mk

instances

(

...

Models:

M
o
d
el

in
st

an
ce

s.

a1 a2 a3 a4 ah�1 ah

z }| {
Static Variable

Ordering Algorithms

L = {set of
orderings}

(1)

(2)

(3)

(4)

= instance solved by an. = instance not solved by an.

Model instances
that are solved
by all algorithms
in A.

Model instances
that are solved
by some
algorithms in A.

in�2

Model instances
that are not solved
by any algorithm
in A.

9
=
;

9
>>>>>>>=
>>>>>>>;

Fig. 1. Workflow for analysis and testing of static variable ordering algorithms.

ordering computed by algorithm ak. A black square indicates that the state
space was generated within the given time and memory limits.

In the analysis of the results from the benchmark we shall distinguish among
model instances for which no variable ordering was good enough to allow Great-
SPN to generate the state space (only white squares on the model instance row,
as for the first two rows in the figure), model instances for which at least one
variable ordering was good enough to generate the state space (at least one black
square in the row), and model instances in which GreatSPN generates the state
space with all variable orderings (all black squares in the row), that we shall
consider “easy” instances.

In the analysis it is also important to distinguish whether we evaluate order-
ing algorithms w.r.t. all possible instances or on a representative set of them.
Figure 1, right, highlights that instances are not independent, since they are
often generated from the same “model” that is to say the same Petri net N by
varying the initial marking m0 or some other parameter (like the cardinality of
the color classes). As we shall see in the experimental part, collecting measures
over all instances, in which all instances have the same weight, may lead to a
distortion of the observed behaviour, since the number of instances per model
can differ significantly. A measure “per model” is therefore also considered.

This work could not have been possible without the models made available
by the Model Checking Contest, the functions of the Meddly MDD library and
the GreatSPN framework. We shall now review them in the following.

Model Checking Contest. The Model Checking Contest [23] is a yearly scien-
tific event whose aim is to provide a comparison among the different available
verification tools. The 2017 edition employed a set of 817 PNML instances gen-
erated from 75 (un)colored models, provided by the scientific community. The
participating tools are compared on several examination goals, i.e. state space,

reachability, LTL and CTL formulas. The MCC team has designed a score sys-
tem to evaluate tools that we shall employ as one of the considered benchmark
metrics for evaluating the algorithms, as evaluating the orderings can be reduced
to evaluating the same tool, GreatSPN, in as many variations as the number of
ordering algorithms considered.

Meddly library. Meddly (Multi-terminal and Edge-valued Decision Diagram Li-
brarY) [10] is an open-source library implementation of Binary Decision Di-
agrams (BDDs) and several variants, including Multi-way Decision Diagrams
(MDDs, implemented “natively”) and Matrix Diagrams (MxDs, implemented as
MDDs with an identity reduction rule). Users can construct one or more forests
(collections of nodes) over the same or different domains (collections of vari-
ables). Several “apply” operations are implemented, including customized and
efficient relational product operations and saturation [14] for generating the set
of states (as an MDD) reachable from an initial set of states according to a tran-
sition relation (as an MxD). Saturation may be invoked either with an already
known (“pre-generated”) transition relation, or with a transition relation that is
built “on the fly” during saturation [15], although this is currently a prototype
implementation. The transition relation may be specified as a single monolithic
relation that is then automatically split [26], or as a relation partitioned by levels
or by events [16], which is usually preferred since the relation for a single Petri
net transition tends to be small and easy to construct.

GreatSPN framework. GreatSPN is a well-known collection of tools for the de-
sign and analysis of Petri net models [5, 6]. The tools are aimed at the qualitative
and quantitative analysis of Generalized Stochastic Petri Net (GSPN) [1] and
Stochastic Symmetrical Net (SSN) through computation of structural proper-
ties, state space generation and analysis, analytical computation of performance
indices, fluid approximation and diffusion approximation, symbolic CTL model
checking, all available through a common graphical user interface [4]. The state
space generation [9] of GreatSPN is based on Meddly. In this paper we use the
collection of variable ordering heuristics implemented in GreatSPN. This collec-
tion has been enlarged to include all the variable ordering algorithms described
in Section 2.

The paper is organized as follows: Section 2 reviews the considered algo-
rithms; Section 3 describes the benchmark (models, scores and results); and
Section 4 concludes the paper outlining possible future directions of work.

2 The set A of variable ordering algorithms

In this section we briefly review the algorithms considered by the benchmark.
Although our target model category is that of Petri nets, we describe the algo-
rithms in a more general form (as some of them were not defined specifically
for Petri nets). We therefore consider the following high level description of the
model.

Let V be the set of variables, that translates directly to MDD levels. Let
E be the set of events in the model. Events are connected to input and output
variables. Let V in(e) and V out(e) be the sets of input and output variables
of event e, respectively. Let Ein(v) and Eout(v) be the set of events to which
variable v participates as an input or as an output variable, respectively. For
some models, structural information is known in the form of disjoint variable
partitions named structural units. Let Π be the set of structural units. With
Π(v) we denote the unit of variable v. Let V (π) be the set of vertices in unit
π ∈ Π. In this paper we consider three different types of structural unit sets. Let
ΠPSF be the set of units corresponding to the P-semiflows of the net, obtained
ignoring the place multiplicity. On some models, structural units are known
because the model is composed of smaller parts. We mainly refer to [18] for the
concept of Nested Units (NU). Let ΠNU be this set of structural units, which
is defined only for a subset of models. Finally, structural units can be derived
using a clustering algorithm. Let ΠCl be the set of such units. We will discuss
clustering in Section 2.6.

Following these criteria, we subdivide the set of algorithms A into AGen, the
set of algorithms that do not use any structural information; APSF, the set of
algorithms that require ΠPSF; and ANU, the set of algorithms that require ΠNU.
Since clustering can be computed on almost any model, we consider methods
that use ΠCl as part of AGen.

In our context, the set of MDD variables V corresponds to the place set of
the Petri net, and the set of events is the transition set of the Petri net. Let
l : V → N be a variable order, i.e. an assignment of consecutive integer values
to the variables V .

2.1 Breadth-first and Depth-first orderings

Breadth-first and Depth-first search orderings (BFS and DFS) are two of the
simplest possible variable ordering heuristics. They consist of a traversal of the
net graph, starting from the first place, recording the visited places in breadth
and depth order. These two methods usually show poor performance, but are
included nonetheless in our tests since they are sometimes employed for BDD
generation.

2.2 Force-based orderings

The Force heuristic, introduced in [3], is a n-dimensional graph layering tech-
nique based on the idea that variables form a hyper-graph, such that variables
connected by the same event are subject to an “attractive” force, while variables
not directly connected by an event are subject to a “repulsive” force. Events
and variables are positioned over a real-valued line, and then sorted to get the
ordering.

Algorithm 1 gives the general skeleton of the Force algorithm. The algorithm
starts by shuffling the variable set, then it iterates trying to achieve a convergence
of a metric. Usually, different initial orders produce different final orders, so

Algorithm 1 Pseudocode of the Force heuristic.

Function Force:
Shuffle the variables randomly.
repeat:

for each event e ∈ E:
compute center of gravity coge = 1

|e|
∑
v∈e l(v)

for each variable v ∈ V :
compute hyper-position p(v) = 1

E(v)

∑
e∈E(v) coge

Sort vertices according the their p(v) value.
Compute PTS (i) =

∑
e∈E

∑
v∈e

∣∣coge − p(v)
∣∣.

until series of PTS (i) values monotonically decreases.
return the variable order that had the smallest PTS (i) value.

Force can be seen as a factory of variable orders. In addition, starting from
a non-random initial order usually produces a better order. The metric is the
total distance between the transition points and the variable points, known as
Point-Transition Spans (PTS).

Structural information of the model can be used to establish additional cen-
ters of gravity. We tested the following three variations of the Force method:

– Force: Events are used as centers of gravity, as described in Algorithm 1.
– Force-P: P-semiflows are used as centers of gravity, along with the Petri net

events. The method is tested only for those models that have P-semiflows.
– Force-NU: Structural units are used as centers of gravity, along with the

events. This intuitively tries to keep together those variables that belong to
the same structural unit. Again, this variation can be used only for those
models that have Nested Units.

The set A of algorithms considered in the benchmark includes: Force in AGen;
the method Force-P in APSF; and the method Force-NU in ANU, for a total of
three variations of this method.

2.3 Bandwidth-reduction methods

Bandwidth-reduction(BR) methods are a class of algorithms that try to permute
a sparse matrix into a band matrix, i.e. where most of the non-zero entries are
confined in a (hopefully) small band near the diagonal. It is known [13] that re-
ducing the event span in the variable order generally improves the compactness
of the generated MDD. Therefore, event span reduction can be seen as an equiv-
alent of a bandwidth reduction on a sparse matrix. A first connection between
bandwidth-reduction methods and variable ordering has been tested in [21] and
in [25] on the model bipartite graph. In these works the considered BR methods
are:

– CM, CM2 and ACM: The Reverse Cuthill-Mckee [17]. We test three implementa-
tions of this method: The one implemented in the Boost-C++ library (CM),
the one implemented in the ViennaCL library (CM2), and the Advanced
Cuthill-Mckee (ACM);

– KING: The King algorithm [22];
– SLO and SLO-16: The Sloan algorithm [29], with two parametric variations.

The first version uses W1 = 1 and W2 = 2 (default values), while the second
version uses W1 = 1, W2 = 16. Further information on these two variants
can be found in [7].

– GPS: the Gibbs-Poole-Stockmeyer algorithm [19].

The choice was motivated by their ready availability in the Boost-C++ and
ViennaCL libraries. In particular, Sloan, which is the state-of-the-art method
for bandwidth reduction, showed promising performance as a variable ordering
method. Sloan almost always outperforms [21] the other BR methods, but for
completeness of our benchmark we have decided to test all of them. We con-
centrate our review on the Sloan method only, due to its effectiveness and its
parametric nature.

The goal of the Sloan algorithm is to condense the entries of a symmetric
square matrix A around its diagonal, thus reducing the matrix bandwidth and
profile [29]. It works on symmetric matrices only, hence it is necessary to impose
some form of translation of the model graph into a form that is accepted by
the algorithm. The work in [25] adopts the symmetrization of the dependency
graph of the model, i.e. the input matrix A for the Sloan algorithm will have
(|V |+ |E|)×(|V |+ |E|) entries. We follow instead a different approach. The size
of A is U , with |V | ≤ U ≤ |V |+ |E|. Every event e generates entries in A: when
|V in(e)|×|V out(e)| < T , where T is a threshold value, all entries in the cross prod-
uct V in(e)× V out(e) are set to nonzero in A. If instead |V in(e)|×|V out(e)| ≥ T ,
a pseudo-vertex ve is added, and all V in(e)×{ve} and {ve}×V out(e) entries in A
are set to be nonzero. Usually U will be equal to V , or just slightly larger. This
choice better represents the variable–variable interaction matrix, while avoiding
degenerate cases where a highly connected event could generate a dense ma-
trix A. In our implementation, the threshold T is set to 100. The matrix is
finally made symmetric using: A′ = A + AT. As we shall see in section 3, the
computational cost of Sloan remains almost always bounded.

Algorithm 2 Pseudocode of the Sloan algorithm.

Function Sloan:
Select a vertex u of the graph.
Select v as the most-distant vertex to u with a graph traversal.
Establish a gradient from 0 in v to d in u using a breadth-first traversal.
Initialize traversal frontier Q = {v}
repeat until Q is empty:

Remove from the frontier Q the vertex v′ that minimizes P (v′).
Add v′ to the variable ordering l.
Add the unexplored adjacent vertices of v′ to Q.

A second relevant characteristic of Sloan is its parametric priority function
P (v′), which guides variable selection in the greedy strategy. A very compact

pseudocode of Sloan is given in Algorithm 2. A more detailed one can be found
in [24]. The method follows two phases. In the first phase it determines a pseudo-
diameter of the A matrix graph, i.e. two vertices v, u that have an (almost)
maximal distance. Usually, a heuristic approach based on the construction of
the root level structure of the graph is employed. The method then performs
a traversal, starting from v, exploring in sequence all vertices in the traversal
frontier Q that maximize the priority function:

P (v′) = −W1 · incr(v′) +W2 · dist(v, v′)

where incr(v′) is the number of unexplored vertices adjacent to v′, dist(v, v′)
is the distance between the initial vertex v and v′, and W1 and W2 are two
integer weights. The weights control how Sloan prioritizes the traversal of the
local cluster (W1) and how much the selection should follow the gradient (W2).
Since the two weights control a linear combination of factors, in our analysis we
shall consider only the ratio W1

W2
. Two ratios are tested: W1

W2
= 1

2 , named SLO,

and W1

W2
= 1

16 , named SLO-16. An analysis of the parametric variations of Sloan
for variable ordering selection can be found in [7].

2.4 P-semiflows chaining algorithm

In this subsection we propose a new heuristic algorithm exploiting the ΠPSF set
of structural units obtained by the P-semiflows computation. A P-semiflow is
a positive, integer, left annuler of the incidence matrix of a Petri net, and it
is known that, in any reachable marking, the sum of tokens in the net places,
weighted by the P-semi-flow coefficients, is constant and equal to the weighted
sum of the initial marking (P-invariant). Its main idea is to maintain the places
shared between two ΠPSF units (i.e. P-semiflows) as close as possible in the
final MDD variable ordering, since their markings cannot vary arbitrarily. The
pseudo-code is reported in Algorithm 3.

The algorithm takes as input the ΠPSF set and returns as output a variable
ordering (stored in the ordered l). Initially, the πi unit sharing the highest num-
ber of places with another unit is removed by ΠPSF and saved in πcurr. All its
places are added to l.

Then the main loop runs until ΠPSF becomes empty. The loop comprises the
following operations. The πj unit sharing the highest number of places with πcurr
is selected. All the places of πj in l, which are not currently in C (i.e. the list of
currently discovered common places) are removed. The common places between
πi and πj not present in C are appended to l. Then the places present only in
πj are added to l. After these steps, C is updated with the common places in πi
and πj , and πj is removed by ΠPSF. Finally πcurr becomes πj , completing the
iteration. This algorithm is named P and belongs to the APSF set.

2.5 The Noack and the Tovchigrechko greedy heuristics algorithms

The Noack [27] and the Tovchigrechko [30] methods are greedy heuristics that
build up the variable order sequence by picking, at every iteration, the variable

Algorithm 3 Pseudocode of the P-semiflows chaining algorithm.

Function P-chaining(ΠPSF):
l = ∅ is the ordered list of places.
C = ∅ is the set of current discovered common places.
Select a unit πi ∈ ΠPSF s.t. max{i,j}∈|ΠPSF| πi ∩ πj with i 6= j
ΠPSF = ΠPSF \ {πi}
πcurr = πi
Append V (πcurr) to l
repeat until ΠPSF is empty:

Select a unit πj ∈ ΠPSF s.t. maxj∈|ΠPSF| πcurr ∩ πj
Remove (l ∩ V (πj)) \ C from l
Append V (πcurr ∩ πj) \ C to l
Append V (πj) \ (C ∩ V (πcurr)) to l
Add V (πcurr ∩ πj) to C
πcurr = πj
ΠPSF = ΠPSF \ {πj}

return l

that minimizes an objective function. A detailed description can be found in [20].
A pseudo-code is given in Algorithm 4.

Algorithm 4 Pseudocode of the Noack/Tovchigrechko heuristics.

Function NOACK-TOV:
S = ∅ is the set of already selected places.
for i from 1 to |V |:

compute weight W (v) = f(v, S) for each v 6∈ S.
find v that maximizes W (v).
l(i) = v.
S ← S ∪ {v}.

return the variable order l.

The main difference between the Noack and the Tovchigrechko methods is
the weight function f(v, S), defined as:

fNoack(v, S) =
∑

e∈Eout(v)
k1(e)∧k2(e)

(
g1(e) + z1(e)

)
+

∑

e∈Ein(v)
k1(e)∧k2(e)

(
g2(e) + c2(e)

)

fTov(v, S) =
∑

e∈Eout(v)
k1(e)

g1(e) +
∑

e∈Eout(v)
k2(e)

c1(e) +
∑

e∈Ein(v)
k1(e)

g2(e) +
∑

e∈Ein(v)
k2(e)

c2(e)

where the sub-terms are defined as:

g1(e) =
max
(

0.1, |S∩V in(e)|
)

|V in(e)| , g2(e) = 1+|S∩V in(e)|
|V in(e)|

c1(e) =
max
(

0.1, 2·|S∩V out(e)|
)

|V out(e)| , c2(e) =
max
(

0.2, 2·|S∩V out(e)|
)

|V out(e)|

z1(e) = 2·|S∩V out(e)|
|V out(e)| , k1(e) = |V in(e)| > 0, k2(e) = |V out(e)| > 0

Not much technical information is known about the criteria that were fol-
lowed for the definition of the fNoack and fTov functions. An important charac-
teristic is that both functions have different criteria for input and output event
conditions, i.e. they do not work on the symmetrized event relation, like the
Sloan method. The Noack and Tovchigrechko heuristics will be called NOACK and
TOV in the benchmark.

2.6 Markov Clustering heuristic

The heuristic MCL is based on the idea of exploring the effectiveness of clustering
algorithms to improve variable order technique. The hypothesis is that in some
models, it could be beneficial to first group places that belong to connected
clusters. For our tests we selected the Markov Cluster algorithm [31]. The method
works as a modified version of Sloan, where clusters are first ordered according
to their average gradient, and then places belonging to the same cluster will
appear consecutively on the variable ordering, following the cluster orders. This
method is named MCL and belongs to the AGen set.

2.7 Gradient-Π ordering

The Gradient-Π heuristic is a new heuristic that mixes a set of structural infor-
mation Π with a gradient-like approach similar to the Sloan method. A detailed
description can be found in [8]. We tested two variations of this method:

– Grad-P: the set Π is the set ΠPSF of P-semiflows of the net.
– Grad-NU: the set Π is the set ΠNU of Nested Units of the net.

A pseudo-code is given in Algorithm 5.
Gradient-Π shares with the P-chaining method the idea of ordering the vari-

ables taking one invariant at a time. The main differences are that 1) the struc-
tural units are ordered according to a score(π) function that is based on the
gradient, and 2) the variables inside each unit π are again ordered in gradient
order.

3 The Benchmark

The considered model instances are that of the Model Checking Contest, 2017
edition [23], which consists of 817 PNML files. We discarded several instances

Algorithm 5 Pseudocode of the Gradient-Π heuristics.

Function Gradient-Π(v0, Π):
Select v as the most-distant vertex to v0 with a graph traversal.
Establish a gradient from 0 in v to d in v0 using a breadth-first traversal.
l← {}
while exists at least one π ∈ Π with π \ S 6= ∅:

for each element π ∈ Π with π \ S 6= ∅:
Compute score(π) =

∑
v∈π∩Sgrad(v) −

∑
v∈π\S grad(v)

Let πmax be the element with maximum score(π) value.
Append variables in (πmax \ S) to l in ascending gradient order.
S ← S ∪ πmax.

Append all variables in (V \ S) to l in ascending gradient order.
return l.

that our tool was not capable to solve in the imposed time and memory limits,
because either the net was too big or the RS MDD was too large under any
considered ordering. Thus, we considered for the benchmark the set I made of
393 instances, belonging to a setM of 69 models. These 393 instances run for the
18 tested algorithms for 20 minutes, with 4GB of memory and a decision diagram
cache of 226 entries. In the 393 instances of I two sub-groups are identified: The
set IPSF ⊂ I of instances for which P-semiflows are available, with 315 instances
generated from a subset MPSF of 62 models; The set INU ⊂ I of instances for
which nested units are available, with 109 instances generated from a subset
MNU of 15 models.

The overall tests were performed on OCCAM [2] (Open Computing Cluster
for Advanced data Manipulation), a multi-purpose flexible HPC cluster designed
and maintained by a collaboration between the University of Torino and the
Torino branch of the National Institute for Nuclear Physics. OCCAM contains
slightly more than 1100 CPU cores including three different types of computing
nodes: standard Xeon E5 dual-socket nodes, large Xeon E5 quad-sockets nodes
with 768 GB RAM, and multi-GPU NVIDIA nodes.

Scores. Typically, the most important parameter that measures the performance
of variable ordering is the MDD peak size, measured in nodes. The peak size rep-
resents the maximum MDD size reached during the computation, and it therefore
represents the memory requirement. It is also directly related to the time cost
of building the MDD. For these reasons we preferred to use the peak size alone
instead of weighted measures of time, memory and peak size, that would make
interpretation of the results more complex. The peak size is, however, a quan-
tity that is strictly related to the model instance. Different instances of the same
model will have unrelated peak sizes, often with different magnitudes. To treat in-
stances in a balanced way, some form of normalized score is needed. We consider
three different score functions: for all of them the score of an algorithm is first
normalized against the other algorithms on the same instance, which gives a score
per instance, and then summed over all instances. Let i be an instance, solved

by algorithms A = {a1, . . . , am} with peak nodes Pi = {pa1(i), . . . , pam(i)}. The
scores of an algorithm a for an instance i are:

– The Mean Standard Score of instance i is defined as: MSSa(i) = µA(i)−pa(i)
σA(i) ,

where µA(i) and σA(i) are the mean and standard deviations for instance I
summed over all algorithms that solved instance i .

– The Normalized Score for instance i is defined as: NSa(i) = min{p∈Pi}
pa(i) , which

just rescales the peak nodes taking the minimum as the scaling factor.
– The Model Checking Contest score1 for instance i is defined as: MCCa(i) = 48

if a terminates on i in the given time bound, plus 24 if pa(i) = min{p ∈ Pi}.
The final score used for ranking algorithms over a set I ′ ⊆ I is then determined
as the sum over I ′ of the scores per instance:

– The Mean Standard Score of algorithm a: MSSa = 1
|I′|
∑
i∈I′ MSSa(i)

– The Normalized Score of algorithm a: NSa = 1
|I′|
∑
i∈I′ NSa(i)

– The Model Checking Contest score of a: MCCa = 1
|I′|
∑
i∈I′ MCCa(i)

MSS requires a certain amount of samples to be significant. Therefore, we
apply it only for those model instances were all our tested algorithms terminated
in the time bound. The set of instances where all algorithms finish is named
“Easy instances” hereafter. We use MSS∗a, NS∗a and MCC∗a to denote that the
score is computed on the set of Easy instances only. If we instead consider all
the instances, where some algorithms could not finish in time, we may apply
only the NS and the MCC score. We decided to test the MCC score to check if
it is a good or a biased metric, when compared to the standard score.

Score normalization: One problem of this benchmark setup is that the MCC
model set is made by multiple parametric instances of the same model, and
the number of model instances per model vary largely. Some models have just
one instance, while other models have up to 40 instances. Usually, the relative
performance of each algorithm on different instances of the same model are
similar, according to our experience. Thus, an instance-oriented benchmark is
biased toward those models that have more instances. Therefore, we consider
two benchmark settings for the computation of the scores:

– Scores “By Instance”: each model instance has the same weight, so those
models with many instances will be more important. This reflects more
closely the MCC score model.

– Scores “By Model”: each score value is normalized against the number of
instances Im of each considered model m ∈M′. Therefore, MSSa is redefined
as:

MSSa = 1
|M′|

∑

m∈M′

1
|Im|

∑

i∈Im
MSSa(i)

Analogously, NSa and MCCa are by-model versions of the NS and MCC
scores.

1 We actually use a simplified version where answer correctness is not considered.

In our opinion, the normalization of the by-model scores reflects more closely
the idea of “average behaviour” of a variable ordering heuristic when applied to
a new, unknown problem.

Assumptions: The computations are carried out by the GreatSPN model checker,
which uses saturation by-events to generate the MDD representation of the state
space. Since we consider MDD peak size for score computation, this is relevant,
since other RS algorithms could produce different scores. We assume also that
the model selection made for the MCC model set is somewhat “fair”. In principle
this is true, in the sense that the models have been selected using various criteria
(variety, interest, case studies, ...) that have nothing to do with the performance
of the saturation algorithm.

Table 1. Performance of the ordering algorithms using the MCC2017 models.

By instances By models

Algorithms Instances Average scores Models Average scores

Name A N solv. best NSa MSS∗a NS∗a MCCa N solv. best NSa MSS
∗
a NS

∗
a MCCa

Force AGen 393 289 41 0.37 -0.16 0.21 37.80 69 27.31 9.89 0.79 -0.39 0.44 41.34
BFS AGen 393 188 12 0.10 0.46 0.07 23.69 69 5.80 1.34 0.52 1.03 0.11 25.50
DFS AGen 393 187 3 0.08 0.41 0.07 23.02 69 5.11 0.62 0.50 0.76 0.12 24.34
CM AGen 393 263 42 0.31 -0.13 0.18 34.69 69 16.35 2.81 0.68 -0.25 0.31 33.79
CM2 AGen 393 274 46 0.27 0.08 0.13 36.27 69 16.30 7.82 0.70 0.27 0.21 36.46
ACM AGen 393 275 46 0.27 0.08 0.13 36.40 69 16.25 7.82 0.70 0.27 0.21 36.49
GPS AGen 393 276 46 0.27 0.08 0.13 36.52 69 16.31 7.82 0.70 0.27 0.21 36.53
KING AGen 393 249 27 0.28 -0.13 0.18 32.06 69 15.43 2.16 0.66 -0.21 0.30 32.62
SLO AGen 393 327 36 0.39 -0.13 0.20 42.14 69 24.76 4.65 0.88 -0.32 0.37 43.99
SLO-16 AGen 393 331 43 0.40 -0.12 0.19 43.05 69 26.24 8.31 0.89 -0.32 0.39 45.56
NOACK AGen 393 290 37 0.37 -0.12 0.21 37.68 69 29.18 6.87 0.77 -0.32 0.45 39.55
TOV AGen 393 293 46 0.38 -0.12 0.21 38.60 69 29.30 8.90 0.80 -0.32 0.46 41.59
MCL AGen 393 223 13 0.20 0.11 0.12 28.03 69 13.00 2.38 0.64 0.16 0.22 31.38

Algorithms that require P-semiflows:

P-chain APSF 315 234 18 0.22 0.05 0.14 37.03 62 13.30 4.35 0.80 0.24 0.26 40.09
GradP APSF 315 260 73 0.55 -0.18 0.25 45.18 62 32.98 13.97 0.87 -0.40 0.51 47.27
ForceP APSF 315 255 35 0.39 -0.19 0.22 41.52 62 23.19 6.44 0.82 -0.41 0.43 42.01

Algorithms that require Nested Units:

GradNU ANU 109 92 39 0.66 -0.07 0.11 49.10 15 10.19 6.67 0.94 -0.21 0.34 55.82
ForceNU ANU 109 85 1 0.23 -0.07 0.05 37.65 15 2.35 0.09 0.80 -0.18 0.12 38.45

Results: Table 1 describes the general summary of the benchmark results. For
each algorithm, we report again its requirement class (AGen,APSF,ANU). The
table reports the average results for the “By instances” and “By Models” nor-
malization. For the “By instances” group, it reports the number of instances
where the algorithm is applied, the number of solved instances in the time and
memory bounds, and the number of times the algorithm finds the best ordering

among the others. The next four columns report the NS score on all instances
NSa, the MSS score on the easy instances (MSS∗a), the NS score on the easy
instances (NS∗a), and the MCCa score on all instances. The structure is repeated
for the “By model” normalization. First the number of applied models is re-
ported, followed by the number of models solved by each algorithm (which can
be fractional, since when an algorithm solves only some instances of a model, it
gets a fractional score) and the number of best orders found. Finally, the scores
are repeated, normalized by model.

From the table emerges that the Sloan algorithm has the best average per-
formance on the MCC models, with a clear margin. It is then followed by the
TOV/NOACK heuristics, and the Force heuristics. Methods that exploit structural
information also show very positive results. Gradient-P (which is applied only
to 315 instances out of 393) is particularly effective in finding the best variable
orders most of the time. Similarly, Gradient-NU has again very positive scores.

Other methods, like BFS and DFS have usually a bad average behaviour, even
if they perform well on a small subset of instances. Considering the column of
“best” instances, some methods seem to perform well, like CM, but this is a bias
caused by the uneven number of instances per model (i.e. some models have more
instances than others). In fact, the behaviour of the CM algorithm when weighted
by-models is much more modest. To our surprise, the P-chaining method shows
only a mediocre average performance even though there are several instances
where it performs particularly well.

In general, most instances are solved by more than one algorithm. In the
rest of the section we go into model details, first considering the performance of
the algorithms, and then by ranking the methods considering either instances(I,
IPSF, INU) or models(M, MPSF, MNU).

3.1 Results of the benchmark

Figure 2 shows the benchmark results, separated by instance class and algorithm
class. The plots on the left (1, 3, and 5) report the results on the Easy instances,
while those on the right report the results for all the instances. In the left plots
we report the three tested metrics, while on the right plots we discard the MSS
metric, since the available samples for each instance may vary and could be too
low for the Gaussian assumption. To fit all scores in a single plot we have rescaled
the score values in the [0, 1] range.

Algorithms are sorted by their NS score, best one on the left. The top row
(plot 1 and 2) considers the AGen methods on all I instances. The center row
considers the AGen ∪ APSF methods on the IPSF instances. The bottom row
considers the AGen ∪ ANU methods on the INU instances. Plots 1, 3, and 5
consider 152, 122 and 15 instances, respectively, which are the “easy” instances.
The Easy instances are in a certain sense a biased set, since instances are dropped
(not easy) every time any algorithm fails in generating a reasonable variable
order. However, from these plots it is possible to observe that the trend of the
NS score is close to that of the MSS score. Therefore, we will mainly consider
the NS score only, since it can be computed on the whole set of instances.

In[141]:= Print@"Per istanze:"D;
GraphicsGrid@8

8ScorePlot3@InstOnlyGenD, ScorePlot2@InstOnlyGenD<,
8ScorePlot3@InstPinvD, ScorePlot2@InstPinvD<,
8ScorePlot3@InstNupnD, ScorePlot2@InstNupnD<

<, ImageSize Ø 730, Spacings Ø 8-65, 0<D
Print@"Per modelli:"D;
GraphicsGrid@8

8ScorePlot3@ModelsOnlyGenD, ScorePlot2@ModelsOnlyGenD<,
8ScorePlot3@ModelsPinvD, ScorePlot2@ModelsPinvD<,
8ScorePlot3@ModelsNupnD, ScorePlot2@ModelsNupnD<

<, ImageSize Ø 730, Spacings Ø 8-65, 0<D
Per istanze:

Out[142]=

Fo
rc

e

TO
V

N
O

A
CK SL

O

SL
O

-1
6

CM

K
IN

G

G
PS

CM
2

A
CM M
CL

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

SL
O

-1
6

SL
O

TO
V

N
O

A
CK

Fo
rc

e

CM

K
IN

G

G
PS

CM
2

A
CM M
CL

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dP

Fo
rc

e

TO
V

Fo
rc

e-
P

N
O

A
CK

SL
O

-1
6

SL
O

CM

K
IN

G

P-
ch

ai
n

M
CL G
PS

CM
2

A
CM

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dP

TO
V

Fo
rc

e

Fo
rc

e-
P

N
O

A
CK

SL
O

-1
6

SL
O

CM

K
IN

G

P-
ch

ai
n

M
CL G
PS

CM
2

A
CM

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dN
U

G
PS

CM
2

A
CM

Fo
rc

e-
N

U

TO
V

N
O

A
CK

Fo
rc

e

M
CL

SL
O

-1
6

SL
O

CM

K
IN

G

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dN
U

G
PS

A
CM CM

2

SL
O

-1
6

Fo
rc

e-
N

U

SL
O

TO
V

N
O

A
CK

M
CL

Fo
rc

e

CM

K
IN

G

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

Per modelli:

Out[144]=

TO
V

N
O

A
CK

Fo
rc

e

SL
O

-1
6

SL
O

CM

K
IN

G

M
CL G
PS

CM
2

A
CM D
FS

 B

FS

0.

0.2

0.4

0.6

0.8

1.

SL
O

-1
6

SL
O

TO
V

Fo
rc

e

N
O

A
CK G
PS

A
CM CM

2

CM

K
IN

G

M
CL

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dP

TO
V

N
O

A
CK

Fo
rc

e

Fo
rc

e-
P

SL
O

-1
6

SL
O

CM

K
IN

G

P-
ch

ai
n

M
CL G
PS

CM
2

A
CM D
FS

 B

FS

0.

0.2

0.4

0.6

0.8

1.

SL
O

-1
6

SL
O

G
ra

dP

Fo
rc

e-
P

Fo
rc

e

TO
V

P-
ch

ai
n

N
O

A
CK G
PS

A
CM CM

2

CM

K
IN

G

M
CL

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dN
U

G
PS

CM
2

A
CM

Fo
rc

e-
N

U

TO
V

Fo
rc

e

M
CL

N
O

A
CK

SL
O

-1
6

SL
O

CM

K
IN

G

D
FS

 B

FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dN
U

G
PS

A
CM CM

2

SL
O

-1
6

SL
O

Fo
rc

e-
N

U

Fo
rc

e

TO
V

N
O

A
CK

M
CL CM

K
IN

G

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

(1)

(3)

(5)

(2)

(4)

(6)

Easy instances:
(instances solved by all algorithms)

All Instances:
(instances solved by at least one algorithm)

I
in

st
a
n
ce

s:
I N

U
in

st
an

ce
s:

(w
it

h
S
tr

u
c
tu

ra
l
U

n
it

s)
I P

S
F

in
st

an
ce

s:
(w

it
h

P
-s

e
m

ifl
o
w

s)

In[5772]:= GraphicsRow@8ListLinePlot@881<, 82<, 83<, 84<<,

PlotLegends Ø 8"MSS", "NS", "MCC"<,

Mesh Ø All,

PlotMarkers Ø 8MSSMarker, NSMarker, MCCMarker<,

H*PlotStyleØTable@ColorData@1,"ColorList"DPcolorsPnTT,8n,P<D,*L
Frame Ø TrueD<D

Out[5772]=

In[5772]:= GraphicsRow@8ListLinePlot@881<, 82<, 83<, 84<<,

PlotLegends Ø 8"MSS", "NS", "MCC"<,

Mesh Ø All,

PlotMarkers Ø 8MSSMarker, NSMarker, MCCMarker<,

H*PlotStyleØTable@ColorData@1,"ColorList"DPcolorsPnTT,8n,P<D,*L
Frame Ø TrueD<D

Out[5772]=

In[5772]:= GraphicsRow@8ListLinePlot@881<, 82<, 83<, 84<<,

PlotLegends Ø 8"MSS", "NS", "MCC"<,

Mesh Ø All,

PlotMarkers Ø 8MSSMarker, NSMarker, MCCMarker<,

H*PlotStyleØTable@ColorData@1,"ColorList"DPcolorsPnTT,8n,P<D,*L
Frame Ø TrueD<D

Out[5772]=

Fig. 2. Benchmark results, weighted by instance.

Plots 5 and 6 use fewer samples than the others, and the algorithm ranking
is slightly different. We suspect that this discrepancy can be explained by the
small number of available instances. Therefore, we mainly focus our attention
on the other plots. The Sloan methods and the Gradient-Π methods appear
to have the best performance, in terms of both the NS score and the MCC
score. When we look at the average behaviour on all instances (plot 2), we may
also observe that TOV/NOACK and Force have close-to-best performance. This
shows that being capable of using the structural information of the model for
the purpose of variable ordering can be an effective strategy.

Figure 3 shows the benchmark results weighted “By models”. Plots 1, 3,
and 5 consider 56, 50 and 6 models, respectively, which are those models which
have at least one “easy” instance. Some methods have a different ranking due
to the bias introduced by the uneven number of model instances. For example,
the performance of the CM method appears to be worse when weighting “By
models”. This is explained by the fact that CM performs well on three models
(BridgeAndVehicle, Diffusion2D and SmallOperatingSystem) that have a large
number of instances, but on average it does not produce very good variable
orders. Again, the ranking has the Sloan method on top for the NS score on
plots 2 and 4. The Gradient-Π methods show a more modest NS score, even
if they are still on top of the rankings. However, the MCC score of these two
methods are very high, suggesting their effectiveness (plot 4 and 6). Again, the

In[141]:= Print@"Per istanze:"D;
GraphicsGrid@8

8ScorePlot3@InstOnlyGenD, ScorePlot2@InstOnlyGenD<,
8ScorePlot3@InstPinvD, ScorePlot2@InstPinvD<,
8ScorePlot3@InstNupnD, ScorePlot2@InstNupnD<

<, ImageSize Ø 730, Spacings Ø 8-65, 0<D
Print@"Per modelli:"D;
GraphicsGrid@8

8ScorePlot3@ModelsOnlyGenD, ScorePlot2@ModelsOnlyGenD<,
8ScorePlot3@ModelsPinvD, ScorePlot2@ModelsPinvD<,
8ScorePlot3@ModelsNupnD, ScorePlot2@ModelsNupnD<

<, ImageSize Ø 730, Spacings Ø 8-65, 0<D
Per istanze:

Out[142]=

Fo
rc

e

TO
V

N
O

A
CK SL

O

SL
O

-1
6

CM

K
IN

G

G
PS

CM
2

A
CM M
CL

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

SL
O

-1
6

SL
O

TO
V

N
O

A
CK

Fo
rc

e

CM

K
IN

G

G
PS

CM
2

A
CM M
CL

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dP

Fo
rc

e

TO
V

Fo
rc

e-
P

N
O

A
CK

SL
O

-1
6

SL
O

CM

K
IN

G

P-
ch

ai
n

M
CL G
PS

CM
2

A
CM

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dP

TO
V

Fo
rc

e

Fo
rc

e-
P

N
O

A
CK

SL
O

-1
6

SL
O

CM

K
IN

G

P-
ch

ai
n

M
CL G
PS

CM
2

A
CM

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dN
U

G
PS

CM
2

A
CM

Fo
rc

e-
N

U

TO
V

N
O

A
CK

Fo
rc

e

M
CL

SL
O

-1
6

SL
O

CM

K
IN

G

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dN
U

G
PS

A
CM CM

2

SL
O

-1
6

Fo
rc

e-
N

U

SL
O

TO
V

N
O

A
CK

M
CL

Fo
rc

e

CM

K
IN

G

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

Per modelli:

Out[144]=

TO
V

N
O

A
CK

Fo
rc

e

SL
O

-1
6

SL
O

CM

K
IN

G

M
CL G
PS

CM
2

A
CM D
FS

 B

FS

0.

0.2

0.4

0.6

0.8

1.

SL
O

-1
6

SL
O

TO
V

Fo
rc

e

N
O

A
CK G
PS

A
CM CM

2

CM

K
IN

G

M
CL

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dP

TO
V

N
O

A
CK

Fo
rc

e

Fo
rc

e-
P

SL
O

-1
6

SL
O

CM

K
IN

G

P-
ch

ai
n

M
CL G
PS

CM
2

A
CM D
FS

 B

FS

0.

0.2

0.4

0.6

0.8

1.

SL
O

-1
6

SL
O

G
ra

dP

Fo
rc

e-
P

Fo
rc

e

TO
V

P-
ch

ai
n

N
O

A
CK G
PS

A
CM CM

2

CM

K
IN

G

M
CL

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dN
U

G
PS

CM
2

A
CM

Fo
rc

e-
N

U

TO
V

Fo
rc

e

M
CL

N
O

A
CK

SL
O

-1
6

SL
O

CM

K
IN

G

D
FS

 B

FS

0.

0.2

0.4

0.6

0.8

1.

G
ra

dN
U

G
PS

A
CM CM

2

SL
O

-1
6

SL
O

Fo
rc

e-
N

U

Fo
rc

e

TO
V

N
O

A
CK

M
CL CM

K
IN

G

 B

FS

D
FS

0.

0.2

0.4

0.6

0.8

1.

(1)

(3)

(5)

(2)

(4)

(6)

I
in

st
an

ce
s:

I N
U

in
st

an
ce

s:
(w

it
h

S
tr

u
c
tu

ra
l
U

n
it

s)
I P

S
F

in
st

an
ce

s:
(w

it
h

P
-s

e
m

ifl
o
w

s)

Easy instances, weighted by models: All instances, weighted by models:
In[5772]:= GraphicsRow@8ListLinePlot@881<, 82<, 83<, 84<<,

PlotLegends Ø 8"MSS", "NS", "MCC"<,

Mesh Ø All,

PlotMarkers Ø 8MSSMarker, NSMarker, MCCMarker<,
H*PlotStyleØTable@ColorData@1,"ColorList"DPcolorsPnTT,8n,P<D,*L
Frame Ø TrueD<D

Out[5772]=

In[5772]:= GraphicsRow@8ListLinePlot@881<, 82<, 83<, 84<<,

PlotLegends Ø 8"MSS", "NS", "MCC"<,

Mesh Ø All,

PlotMarkers Ø 8MSSMarker, NSMarker, MCCMarker<,

H*PlotStyleØTable@ColorData@1,"ColorList"DPcolorsPnTT,8n,P<D,*L
Frame Ø TrueD<D

Out[5772]=

In[5772]:= GraphicsRow@8ListLinePlot@881<, 82<, 83<, 84<<,
PlotLegends Ø 8"MSS", "NS", "MCC"<,

Mesh Ø All,

PlotMarkers Ø 8MSSMarker, NSMarker, MCCMarker<,

H*PlotStyleØTable@ColorData@1,"ColorList"DPcolorsPnTT,8n,P<D,*L
Frame Ø TrueD<D

Out[5772]=

Fig. 3. Benchmark results, weighted by model.

number of Easy instances is very small and does not allow to make conclusions
on the results of plots 1, 3 and 5.

As stated before, the ranking of the NS score is not the same as the MCC
score. To better investigate this behaviour we look at the NS score distributions
of the algorithms in Figure 4.

In[166]:= GridA99plot, " ", RotateA , 90 DegreeE==, Alignment Ø TopE

Out[166]=

Fig. 4. NS score distributions for the “By Instance” case, on all models.

Figure 4 shows the NS score distributions on the 393 model instances. The
bar of each algorithm a shows the distribution of the NS scores obtained by
a for all the instances. From the distribution, it is clear that most algorithms

have very polarized behaviours (either they produce a very good order, or they
fail). However, Sloan has a more continuous distribution, meaning that on many
instances it is capable of producing a reasonable variable order, even if it is
not the best among the generated ones. Therefore, a method that on-average
performs reasonably well will have an high MCC score, like SLO-16 in Fig. 2(2).
Also, Grad-P has a very high chance of finding the best solution among the
tested ones, showing that it is a very promising heuristic.

4 Conclusions and Future works

In this paper we presented a comparative benchmark of 18 variable ordering
algorithms. Some of these algorithms are popular among Petri net based model
checkers, while others have been defined to investigate the use of structural infor-
mation for variable orderings. We observed that among the generic methods, the
Sloan method, the Tovchigrechko/Noack methods and the Force method have
the best performance, and their effectiveness covers different subsets of model
instances. While the methods of Tovchigrechko/Noack were designed for Petri
net models, the method of Sloan is a standard algorithm for bandwidth reduc-
tion of matrices, whose effectiveness for variable ordering was pointed out only
recently in [21] and [25]. We conjecture that a key ingredient of the Sloan method
is the gradient. This conjecture has been used in [8] to design the new heuristic
Gradient-Π, which is an hybrid between Sloan and P-chain. This heuristic proves
to have very good performance. We conjecture that other algorithms, like TOV

or Force, could be improved by using a superimposed gradient. When the net
has some structural information, like P-semiflows or Nested Units, we observed
that only some specialized algorithms could take a significant advantage from
it. Surprisingly, the P-chaining method (one of the original heuristics of Great-
SPN) showed poor performance when compared to more modern algorithms like
Gradient-Π. However, the general results of other heuristics (Force-P, Gradient-
Π) allow us to conclude that structural information is useful in deriving good
variable orders. Of course, exploitation of structural information cannot be a
general technique, since it is not available for all models.

We also tested three different scoring metrics. We observed an agreement
between the MSS and the NS score, which is nice since NS can be used even
when few algorithms complete. We also observed that MCC is a good score, that
favours a different aspect than MSS/NS, i.e. MCC favours the average behaviour
over finding better ordering. The use of a per-model weight on the scores has
helped in identifying a bias in the benchmark results. We think that some form
of per-model weight is necessary when using the MCC model set.

It should be noted that we observed a ranking similar to the one reported
in [25]. That paper deals with metrics for variable ordering (without RS construc-
tion), but in the last section the authors report a small experimental assessment
similar to our benchmark. In that assessment Tovchigrechko was not tested, and
the best algorithms were mostly Sloan and Force. For Sloan, they used the de-
fault parameter setting with a rather different symmetrization of the adjacency

matrix. In addition, the tested model set was different (106 instances). However,
the final observations drawn in that paper are close to the ones we get from our
tests, confirming the effectiveness of the Sloan method for variable ordering.

Acknowledgement.

We would like to thank the MCC team and all colleagues that collaborated
with them for the construction of the MCC database of models, and the Meddly
library developers.

References

1. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Transactions
on Computer Systems 2, 93–122 (May 1984)

2. Aldinucci, M., Bagnasco, S., Lusso, S., Pasteris, P., Vallero, S., Rabellino, S.: The
Open Computing Cluster for Advanced data Manipulation (OCCAM). In: 22nd
Int. Conf. on Computing in High Energy and Nuclear Physics. San Francisco (2016)

3. Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: A fast and easy-to-implement
variable-ordering heuristic. In: Proc. of GLSVLSI. pp. 116–119. ACM, NY (2003)

4. Amparore, E.G.: Reengineering the editor of the GreatSPN framework. In: PNSE@
Petri Nets. pp. 153–170 (2015)

5. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 Years
of GreatSPN, chap. In: Principles of Performance and Reliability Modeling and
Evaluation: Essays in Honor of Kishor Trivedi, pp. 227–254. Springer, Cham (2016)

6. Amparore, E.G., Beccuti, M., Donatelli, S.: (stochastic) model checking in Great-
SPN. In: Ciardo, G., Kindler, E. (eds.) 35th Int. Conf. Application and Theory of
Petri Nets and Concurrency, Tunis. pp. 354–363. Springer, Cham (2014)

7. Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A.: Decision diagrams
for Petri nets: which variable ordering? In: Petri Net Performance Engineering
conference (PNSE). pp. 31–50. CEUR-WS (2017)

8. Amparore, E.G., Susanna, D., Marco, B.: Gradient-based variable ordering of de-
cision diagrams for systems with structural units. Automated Technology for Ver-
ification and Analysis (ATVA) (2017)

9. Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis, G.:
The GreatSPN tool: recent enhancements. Performance Eval. 36(4), 4–9 (2009)

10. Babar, J., Miner, A.: Meddly: Multi-terminal and edge-valued decision diagram
library. In: Quantitative Evaluation of Systems, International Conference on. pp.
195–196. IEEE Computer Society, Los Alamitos, CA, USA (2010)

11. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput. 45(9), 993–1002 (Sep 1996)

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35, 677–691 (August 1986)

13. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned
transition relations. In: IFIP TC10/WG 10.5 Very Large Scale Integration. pp.
49–58. North-Holland (1991)

14. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An efficient iteration strategy
for symbolic state-space generation. In: TACAS’01. pp. 328–342 (2001)

15. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: In Proc. of
TACAS 2003. pp. 379–393. LNCS 2619, Springer (apr 2003)

16. Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. In: Proc. CHARME. pp. 146–161. LNCS
3725, Springer (2005)

17. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In:
Proc. of the 1969 24th National Conference. pp. 157–172. ACM, New York (1969)

18. Garavel, H.: Nested-Unit Petri Nets: A structural means to increase efficiency and
scalability of verification on elementary nets. In: 36th Int. Conf. Application and
Theory of Petri Nets, Brussels. pp. 179–199. Springer, Cham (2015)

19. Gibbs, N.E., Poole, Jr, W.G., Stockmeyer, P.K.: An algorithm for reducing the
bandwidth and profile of a sparse matrix. SIAM Journal on Numerical Analysis
13(2), 236–250 (1976)

20. Heiner, M., Rohr, C., Schwarick, M., Tovchigrechko, A.A.: MARCIE’s secrets of
efficient model checking. In: Transactions on Petri Nets and Other Models of Con-
currency XI. pp. 286–296. Springer, Heidelberg (2016)

21. Kamp, E.: Bandwidth, profile and wavefront reduction for static variable ordering
in symbolic model checking. Tech. rep., University of Twente (June, 2015)

22. King, I.P.: An automatic reordering scheme for simultaneous equations derived
from network systems. Journal of Numerical Methods in Eng. 2(4), 523–533 (1970)

23. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Berthomieu, B., Cia-
rdo, G., Colange, M., Dal Zilio, S., Amparore, E., Beccuti, M., Liebke, T., Mei-
jer, J., Miner, A., Rohr, C., Srba, J., Thierry-Mieg, Y., van de Pol, J., Wolf,
K.: Complete Results for the 2017 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2017/results.php (June 2017)

24. Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront
reduction. BIT Numerical Mathematics 37(3), 559–590 (1997)

25. Meijer, J., van de Pol, J.: Bandwidth and wavefront reduction for static variable
ordering in symbolic reachability analysis. In: 8th NASA Formal Methods, 2016,
Minneapolis. pp. 255–271. Springer, Cham (2016)

26. Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams.
Performance Evaluation 56(1-4), 145–165 (mar 2004)

27. Noack, A.: A ZBDD package for efficient model checking of Petri nets (in German).
Ph.D. thesis, BTU Cottbus, Department of CS (1999)

28. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient
BDD/MDD construction. Tech. rep., University of California (2008)

29. Sloan, S.W.: An algorithm for profile and wavefront reduction of sparse matrices.
International Journal for Numerical Methods in Engineering 23(2), 239–251 (1986)

30. Tovchigrechko, A.: Model checking using interval decision diagrams. Ph.D. thesis,
BTU Cottbus, Department of CS (2008)

31. Van Dongen, S.: A cluster algorithm for graphs. Inform. systems 10, 1–40 (2000)

