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Abstract: Magnetic Nanoparticles (MNPs) are of great interest in biomedicine, due to their wide
range of applications. During recent years, one of the most challenging goals is the development of
new strategies to finely tune the unique properties of MNPs, in order to improve their effectiveness
in the biomedical field. This review provides an up-to-date overview of the methods of synthesis
and functionalization of MNPs focusing on Iron Oxide Nanoparticles (IONPs). Firstly, synthesis
strategies for fabricating IONPs of different composition, sizes, shapes, and structures are outlined.
We describe the close link between physicochemical properties and magnetic characterization,
essential to developing innovative and powerful magnetic-driven nanocarriers. In conclusion,
we provide a complete background of IONPs functionalization, safety, and applications for the
treatment of Central Nervous System disorders.

Keywords: iron oxide nanoparticles; magnetic nanoparticles; synthesis; biomedical applications;
central nervous system

1. Introduction

In the last decades, the power of nanotechnology in numerous fields including biomedical sciences
has been exploited. Nanoparticles (NPs) are solid colloidal particles ranging in size from 1 to 100 nm.
Due to their dimensions comparable with those of cells, viruses, proteins, and genes, they opened the
potentiality of interacting with fundamental biological processes [1]. In recent years, much attention
has been paid to the synthesis of a different kind of NPs as nano-medical materials. Among them,
engineered Magnetic Nanoparticles (MNPs) made of iron, cobalt, or nickel oxides exhibit special
properties, including high surface-to-volume ratio and high magnetic moment, allowing potential
manipulation by an external magnetic field [2]. Especially, MNPs manufactured with ferromagnetic
material, i.e., Iron Oxide Nanoparticles (IONPs), made of magnetite (Fe3O4) and maghemite (γ-Fe2O3)
combine ideal biocompatibility with superparamagnetic properties allowing widespread biomedical
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uses such as targeted drug delivery, bioimaging, hyperthermia, photoablation therapy, biosensors, and
theranostics applications [3,4].

The enhancement of effective drug delivery by magnetic driving of sensitive MNPs has been
especially explored to treat diseases of the Central Nervous System (CNS). In fact, due to the aging of
the population, CNS pathologies such as neurodegenerative diseases are increasingly becoming a
relevant medical and social issue [5]. Current pharmacological treatments are mainly based on the
systemic delivery of active substances into the CNS, whose effectiveness is seriously limited due to
the presence of blood-brain-barrier (BBB). MNPs are therefore considered powerful tools to cross
BBB by means of physical mechanisms and properly deliver the drug cargo in the brain. There are
many in vitro and in vivo evidences of BBB trespassing by MNPs under magnetic fields to deliver
therapeutic agents in the CNS [6,7].

Several steps have to be taken into account to design MNPs suitable for magnetic drug delivery
in CNS. Currently, many methods of synthesis are available making it possible to produce a wide
spectrum of different MNPs, by optimizing protocols, in order to obtain the best physicochemical
properties [8]. Focusing on IONPs, they are usually made of a crystalline core and a surface coating
(e.g., dextran, citrate, chitosan, polyethylene glycol, albumin, etc.), whose dimensions are tunable to
improve their stability, enhance their biocompatibility, and optimize their bio-distribution. NP coating
may be modified with specific targeting molecules or drugs. This variety of physical features
and coatings characterizes IONP action mechanisms and toxicity patterns [9]. Moreover, since the
synthesis methods affect the IONP size distribution, the degree of structural defects, the surface
chemistry, and the magnetic behavior, they finally also determine the interaction with biological
barriers—such as BBB and lipid bilayer of a cell membrane—and the consequent biocompatibility in
the living organisms [10,11]. Furthermore, the iron content in IONPs has a key role in the general iron
homeostasis of the body and in the CNS environment, highly sensitive to iron imbalance, especially in
neurodegenerative diseases [12].

This review focuses on the recent developments of IONP synthesis methods and functionalization,
highlighting the links between IONP physical characteristics and magnetic properties. Finally,
biomedical applications, safety, and toxicity of IONPs in CNS are also briefly outlined.

2. Methods

PRISMA guidelines were followed for the collection and selection of the reported papers
(http://prisma-statement.org). PubMed and ScienceDirect were used as scientific reference resources.
Initially, searches were limited to the articles published in English in the last 2 years and up to
December 2018, mainly because of the fast obsolescence of the literature related to this rapidly evolving
scientific field. Combinations of the following keywords were used: Iron oxide, magnetic, nanoparticles,
synthesis, properties, magnetization, functionalization, central nervous system, and toxicity. The logical
combination of the keywords used for the query has been:

Iron oxide AND magnetic AND nanoparticles AND synthesis AND central nervous system
OR
Iron oxide AND nanoparticles AND magnetization AND properties AND central nervous system
OR
Iron oxide AND nanoparticles AND functionalization AND central nervous system
OR
Iron oxide AND nanoparticles AND toxicity AND central nervous system.

After the removal of duplicates from query results, relevant papers were chosen by reading
titles and abstract content, based on the following criteria: Description of synthesis methods and
functionalization of IONPs; possibly containing data on magnetic characterization; possibly containing
data about the toxicity on CNS target cells (neurons or glial cells). In general, only those papers
concerning CNS biomedical applications of iron oxide NPs, possibly steered by magnetic force,
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were retained for subsequent discussion. On the contrary, papers describing MNPs made of
different materials or addressing the issue of targeting body districts different from CNS, were
generally discarded. Finally, the so filtered papers—comprised of both original research articles
and reviews—were integrally read and their bibliography was manually screened to additionally
retrieve the largest number of seminal works upon which the recent and most relevant literature
is founded.

3. Results

Overall, nine hundred and fifty-one (951) papers were collected through database searching.
The second step of bibliography synthesis consisted in the manual selection of a subset of the so
collected papers, essentially on the basis of their abstract and their actual contents (in particular
the presence of CNS-specific details about IONP behavior and their magnetic characterization).
The number of works resulting from this filtering procedure was fifty-three (53). Sixty-three (63) further
references were then added—as stated in Methods Section—by manually screening the bibliography of
the collected publications, for a final number of one hundred and sixteen (116) entries. As a result of
this last step, more than half (54%) of our reported references are prior to 2017. In particular, apart from
the last two years, also the period ranging between 2012 and 2015 is highly represented in this review,
having thirty-eight (38) cited works.

The selected literature was classified into four main groups:

1. Methods of synthesis of IONPs [13–56]
2. Characterization of IONPs [57–85]
3. Functionalization of IONPs for biomedical CNS applications [86–105]
4. Toxicity of IONPs in CNS [106–116].

4. Discussion

4.1. Synthesis of IONPs

The most commonly used materials for the synthesis of MNPs consist of compounds
(usually oxides) of iron, cobalt, or nickel, in combination with other metals such as copper, zinc,
strontium, and barium. However, as already mentioned, this review focuses only on those procedures
and precursor compounds suitable for the production of iron oxide MNPs. In general, the synthesis of
MNPs is a very critical multistep procedure, which must be optimized since its early design phase,
given that even a small variation in the production process can significantly change the desired
outcome [8]. For this reason, both physical and chemical properties of the particles needs to be strictly
controlled in order to fit a number of different applications [13]. Specifically, depending on the desired
features and on the final field of application, three main routes for IONP preparation have been
developed during last decades: Chemical, physical, and biological, the former comprising about the
90% of all synthesis methods (Figure 1) [14,15].
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4.1.1. Co-Precipitation Method

The co-precipitation method is probably the most popular method for IONP synthesis.
In particular, it is widely used in biomedical applications, because of the non-toxic nature of
the materials usually employed [16]. The term “co-precipitation” refers to the phenomenon by
which a precipitate can carry down one or more substance—normally soluble in those particular
conditions—through nucleation and grain growth. This method allows MNPs to be synthesized in an
inert nitrogen atmosphere at room temperature [17]. For a schematic representation of such a synthesis
technique, see Figure 2, where a typical procedure for the production of spherical IONPs is shown [18].
Through the co-precipitation synthesis, it is possible to obtain MNPs broadly distributed around a
mean diameter value ranging from 5 to 40 nm (Table 1). More generally, size, shape, and magnetic
properties of the resulting IONPs depend on reaction conditions such as the type of salts used [19], pH,
and ionic strength [20,21].

Materials 2018, 11, x FOR PEER REVIEW  4 of 25 

 

4.1.1. Co-Precipitation Method  

The co-precipitation method is probably the most popular method for IONP synthesis. In 
particular, it is widely used in biomedical applications, because of the non-toxic nature of the 
materials usually employed [16]. The term “co-precipitation” refers to the phenomenon by which a 
precipitate can carry down one or more substance—normally soluble in those particular 
conditions—through nucleation and grain growth. This method allows MNPs to be synthesized in 
an inert nitrogen atmosphere at room temperature [17]. For a schematic representation of such a 
synthesis technique, see Figure 2, where a typical procedure for the production of spherical IONPs is 
shown [18]. Through the co-precipitation synthesis, it is possible to obtain MNPs broadly distributed 
around a mean diameter value ranging from 5 to 40 nm (Table 1). More generally, size, shape, and 
magnetic properties of the resulting IONPs depend on reaction conditions such as the type of salts 
used [19], pH, and ionic strength [20,21].  

 
Figure 2. Flowchart for the synthesis of IONPs by co-precipitation [19]. In this example, Fe3O4 NPs 
are prepared from a mixture of FeSO4 and FeCl3 in the molar ratio of 1:2. Magnetic phase and particle 
size can be adjusted by varying Fe2+/Fe3+ ratio, temperature, pH, and the type of base used. 

4.1.2. Thermal Decomposition Method 

Thermal decomposition is one of the most effective methods to produce narrow size 
distribution MNPs, also allowing for the fine-tuning of particle mean diameter [22]. In particular, 
thermal decomposition can be achieved by two different protocols, namely “heating-up” and 
“hot-injection”. The heating-up process implies the continuous heating of a pre-mixed solution of 
precursor compounds, surfactants, and solvent, up to a given temperature at which NPs start 
clustering and growing [23,24]. On the contrary, the hot-injection method induces a fast and 
homogeneous nucleation by injecting reagents into a hot surfactant solution followed by a controlled 
growth phase. In any case, both the processes are based on the same principle consisting in heating a 
non-magnetic organometallic precursor compound in the presence of organic solvents and 
surfactants [25]. Usually, iron carbonyls and acetylacetonates are used as non-magnetic precursors, 
while fatty acids, rather than oleic acid, are commonly used as surfactants [18]. Importantly, argon 
plays an important role to maintain the atmosphere inert. The optimal temperature required for this 
reaction ranges between 100 °C and 350 °C, leading to the production of crystalline MNPs sized 
between 4 and 30 nm in diameter (Table 1) and exhibiting a high degree of uniformity (i.e., narrow 
size distributions) [22,26]. In this context, temperature and time of reaction are important factors to 
control particle size. 

4.1.3. Microemulsion Method 

The microemulsion is a thermodynamically stable dispersion of two immiscible liquids in the 
presence of a surfactant, which forms a monolayer at the interface between oil and water, possibly 
exhibiting an ultralow interfacial tension [27]. In microemulsion, IONPs are typically synthetized by 
intramicellar nucleation and growth, following the standard procedure exemplified in Figure 3 [28]. 
The physicochemical properties of NPs prepared by such a technique essentially depend upon the 
choice of the surfactant. Specifically, nanoparticles result in spherical shape, nearly monodispersed, 

Figure 2. Flowchart for the synthesis of IONPs by co-precipitation [19]. In this example, Fe3O4 NPs are
prepared from a mixture of FeSO4 and FeCl3 in the molar ratio of 1:2. Magnetic phase and particle size
can be adjusted by varying Fe2+/Fe3+ ratio, temperature, pH, and the type of base used.

4.1.2. Thermal Decomposition Method

Thermal decomposition is one of the most effective methods to produce narrow size distribution
MNPs, also allowing for the fine-tuning of particle mean diameter [22]. In particular, thermal
decomposition can be achieved by two different protocols, namely “heating-up” and “hot-injection”.
The heating-up process implies the continuous heating of a pre-mixed solution of precursor compounds,
surfactants, and solvent, up to a given temperature at which NPs start clustering and growing [23,24].
On the contrary, the hot-injection method induces a fast and homogeneous nucleation by injecting
reagents into a hot surfactant solution followed by a controlled growth phase. In any case, both
the processes are based on the same principle consisting in heating a non-magnetic organometallic
precursor compound in the presence of organic solvents and surfactants [25]. Usually, iron carbonyls
and acetylacetonates are used as non-magnetic precursors, while fatty acids, rather than oleic acid,
are commonly used as surfactants [18]. Importantly, argon plays an important role to maintain the
atmosphere inert. The optimal temperature required for this reaction ranges between 100 ◦C and
350 ◦C, leading to the production of crystalline MNPs sized between 4 and 30 nm in diameter (Table 1)
and exhibiting a high degree of uniformity (i.e., narrow size distributions) [22,26]. In this context,
temperature and time of reaction are important factors to control particle size.

4.1.3. Microemulsion Method

The microemulsion is a thermodynamically stable dispersion of two immiscible liquids in the
presence of a surfactant, which forms a monolayer at the interface between oil and water, possibly
exhibiting an ultralow interfacial tension [27]. In microemulsion, IONPs are typically synthetized by
intramicellar nucleation and growth, following the standard procedure exemplified in Figure 3 [28].
The physicochemical properties of NPs prepared by such a technique essentially depend upon the
choice of the surfactant. Specifically, nanoparticles result in spherical shape, nearly monodispersed,
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with an average diameter ranging between 10 and 25 nm [28,29]. In this context, water-in-Oil (W/O)
microemulsions are called reverse micelles [30].
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(respectively with FeCl3 and NaBH4 in aqueous solution) are used for the preparation of MNPs with
an iron core coated by a Fe3O4 shell [28]. Abbreviation: CTAB = cetyltrimethylammonium bromide.

4.1.4. Hydrothermal Method

A broad range of crystalline IONPs can be synthetized by using the hydrothermal method.
The general system consists of (solid) metal linoleate, an ethanol-linoleic acid liquid phase,
and water-ethanol solution kept under hydrothermal (i.e., high-temperature and high-pressure)
conditions [31]. Specifically, the typical reaction temperature to perform hydrothermal synthesis
is around 220 ◦C, while the required pressure is above 107 Pa, for a total reaction time of about
72 h [18,31,32]. Usually, a temperature gradient is created within a Teflon-lined stainless-steel autoclave
whose cooler end will host the deposition of the mineral solute, finally growing the desired crystal.
Through this technique, shape and size of the resulting NPs are generally very uniform, with the
possibility of tuning NP size from few nanometers to several hundred (see Table 1) [31,33,34]. However,
in order for the magnetic properties to be effective, the most interesting diameters are the smallest
ones, since the upper limit for the formation of single domain particles is about 80 nm [18]. In general,
particle size and size distribution depend upon the precursor concentration, total reaction time, and
the temperature at which the reaction takes place [35]. Moreover, the hydrothermal synthesis is
eco-friendly and versatile as no organic solvents or post-treatments are required [36].

4.1.5. Polyol Method

The polyol method allows synthetizing uniform MNPs at a relatively low temperature and it
is based on precursor compounds such as oxides, acetates and nitrates dissolved or suspended in
diols (Figure 4). It is a versatile and up-scalable method suitable for the production of large batches of
IONPs, encompassing a wide range of possible size, from ultra-small spheres of 4 nm in diameter to
larger ones up to 100 nm, depending on reaction conditions (e.g., temperature, reaction time, heating
profile, nature of the polyol solvent, or organometallic precursors) [37,38]. The polyol method is also a
useful technique for the synthesis of nanocrystalline alloys and bio-metallic clusters. Table 1 shows the
typical time and temperature required to obtain NPs through this procedure [38].
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reaction between a metal acetylacetonate (precursor compound) and triethylene (diol solvent).

4.1.6. Sol–Gel Method

This method for IONP production consists in the hydroxylation and condensation of some iron
precursors forming a “sol” (i.e., a colloidal solution) of nanoparticles that is then dried—or “gelled”—by
solvent removal until an iron oxide 3D network is obtained (see Figure 5) [39,40]. In this process,
water is usually used as a solvent; alternatively precursors can also be hydrolyzed by acids or bases.
The reaction can be performed at room temperature (see Table 1) [41] and the size of the resulting
spherical IONPs can be tuned between 15 and 50 nm [42].
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dissolved in ethylene glycol at 50 ◦C. The resulting sol is then dried by heating to get the gel, and
finally, the IONPs of interest.

4.1.7. Biomineralization

Many living organisms—including humans—have a genetically encoded ability to synthesize
minerals and other inorganic substances in a process known as bio-mineralization. In particular,
some species are able to produce “biogenic” magnetic nanoparticles on which they base their sense of
direction. For example, magnetotactic bacteria can generate magnetosomes (protein-coated nanosized
crystals of magnetic iron oxide) [43,44]. For the typical parameters (time, temperature, and MNP size)
characterizing these bio-mineralization processes, see Table 1.

4.1.8. Sputter Deposition

A commonly used physical way for IONP synthesis is the so-called sputter deposition.
By this technique, Fe atoms are extracted from a solid iron target material (working as a cathode) after
its bombardment through energetic particles. Iron atoms sputtered—for instance—by a high-pressure
magnetron-sputtering gun are subsequently decelerated into a cooled growth chamber as a result of
their collisions with the atoms of Ar and He gas present in the chamber. The so formed iron NPs are
then ejected from the aggregation chamber through a pressure gradient system and then deposited
onto a sample holder in the adjacent deposition chamber. Afterwards, a small amount of oxygen is
introduced in the deposition chamber to allow the oxidation (Fe3O4) of NP surface, thus leading to
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the formation of iron/iron-oxide core-shell nanoclusters [45]. By adjusting the physical parameters of
the process—such as the pressure in the aggregation chamber, the ratio of He to Ar gas, and the
magnetron-sputter power—NP mean diameter can be tuned from 1 to 100 nm [46,47]. Notably, also
NP ferromagnetic properties can be changed by ion irradiation [48–50].

Table 1. IONP synthesis techniques and comparison with respect to their different parameters.

Methods Temperature Time Size Magnetic Properties References

Co-precipitation 20–150 ◦C minutes 5–40 nm Ms = 36.8 emu·g−1 [17,18,20,51]

Thermal decomposition 100–350 ◦C hours-days 4–30 nm Ms = 13.4–49.5 A·m2·kg−1 [22,25,52]

Microemulsion 20–80 ◦C hours 10–25 nm
Ms = 81 emu·g−1

Mr = 10 emu·g−1

Hc = 130 Oe
[28,53]

Hydrothermal 150–280 ◦C hours-days 10–800 nm Ms = 35–40 emu·g−1

Hc = 0.6–15.7 Oe
[31–33,54]

Polyol 130–220 ◦C hours 4–100 nm Ms = 197–243 emu·g−1 [37,38]

Sol-gel 25–200 ◦C hours 15–50 nm Ms = 37.5 emu·g−1 [39,55,56]

Biomineralization 80 ◦C hours ~140 nm Ms = 92–100 A·m2·kg−1 [43,44]

Sputter deposition 100–800 ◦C hours 5–100 nm
Ms = 48–71 emu·g−1

Mr = 2.5–5 emu·g−1

Hc = 160–220 Oe
[45–50]

4.1.9. Application to CNS

As well as an improved biocompatibility and bioavailability, IONPs provide specific advantages
for the treatment of neurological disorders based on their possibility to be imaged and externally
driven through magnetic scanners for a targeted drug-delivery (theranostic approach). Importantly,
external static magnetic fields could also be used to enhance BBB permeability against IONPs, whereas
alternating magnetic fields are suitable for selectively killing tumor cells via localized hyperthermia [6].
Among the methods reviewed above, IONPs prepared by co-precipitation, thermal decomposition,
microemulsion, and sol-gel, usually exhibit superior targeting capabilities if compared with other
synthesis methods [17,22,28]. On the other hand, the main advantage of co-precipitation, hydrothermal
and biomineralization synthesis is that they do not require harmful solvents—water being the most
used ones—for the preparation of IONPs, thus reducing their toxic potential, especially on neurons [31].

4.2. Characterization of IONPs

After the synthesis of IONPs, the characterization of their physicochemical properties can be
provided by means of several sophisticated techniques (see Table 2). In the next sections, the focus
will be on the techniques used to investigate shape, size, size distribution, and magnetic properties
of IONPs.

4.2.1. Microscopic Techniques

Due to the very high resolution achieved by electron microscopy (<1 nm), both Scanning Electron
Microscopy (SEM) and Transmission Electron Microscopy (TEM) are widely used to determine,
respectively, the surface morphology and the inner structure of NPs. Unlike SEM that produces
images making use of reflected (or knocked-off) electrons, TEM indeed works by detecting transmitted
electrons that may carry valuable information on the IONP inner structure (e.g., crystal structure,
stress state, and more) [57]. Moreover, nanometric investigation of shape heterogeneity, average
size, and dispersion can be accomplished by using scanning tunneling microscopy and atomic force
microscopy [14].
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4.2.2. Spectroscopic Techniques

Many spectroscopic techniques are used for IONPs characterization. X-ray diffraction allows
collecting information about the crystalline structure of the particles (i.e., angle, width), while structure
characterization and functional group determination, are commonly performed by Fourier-Transform
Infrared (FTIR) spectroscopy [58,59], thanks to the presence of molecules absorbing light in the region
from 2.5 µm to 15 µm (wavenumber from 4000 cm−1 to 660 cm−1). Alternatively, NMR (Nuclear
Magnetic Resonance) techniques can be used to study the structure of a compound. The ability of NMR
to provide information regarding the specific bonding structure and stereochemistry of molecules of
pharmaceutical interest has made it a powerful analytical instrument for structural determination [60].
Furthermore, the thermal stability of IONPs can be determined by using the thermogravimetry
analysis [61]. Dynamic Light Scattering (DLS) has several advantages for sizing MNPs and it has
been widely used to determine the hydrodynamic diameter of IONPs (typically ranging between 30 to
190 nm) via the Stokes-Einstein equation [62]. Moreover, IONPs can be electrostatically characterized by
using Zeta potential measurement in order to determine their surface charge (see Table 2). In general,
surface charge, and in turn, the Zeta potential can be modified by using polymer coating [63,64].
Mass spectroscopy requires a very small amount of sample to determine molecular weight and
surface properties with high accuracy and precision. Fluorescence correlation spectroscopy (using
the visible and UV radiation) is normally employed for studying concentration effects, molecular
diffusion, and chemical kinetics. Surface-enhanced Raman spectroscopy and circular dichroism make
it possible to determine IONP structural conformation; Raman spectroscopy in particular offers the
unique possibility to record spectra directly in aqueous solution, without the need for any sophisticated
sample preparation [14] (see Table 2).

Table 2. Characterization techniques used to evaluate physicochemical properties of IONPs.

Techniques Evaluation

Infrared spectroscopy (IR) Nature of surface functionalization

Nuclear magnetic resonance spectroscopy (NMR) Longitudinal and transverse relaxivity;
Structure conformation

Superconducting quantum interference device (SQUID);
Vibrating sample magnetometry (VSM) Magnetic properties

Electron microscopy (transmission, TEM; scanning, SEM) Morphology, crystallinity, size distribution,
composition

X-ray diffraction (XRD) Crystal structure, size

Dynamic light scattering (DLS) Hydrodynamic diameter

Zeta potential measurement Surface charge

Thermal analysis (differential scanning calorimetry,
thermogravimetric analysis, etc.)

Surface coverage, thermal stability, nature of surface
functionalization, carrier-drug interaction

Mass spectroscopy Molecular weight

Fluorescence correlation spectroscopy Dimension, binding kinetics of hydrodynamic

Surface-enhanced Raman scattering Size distribution, electronic characteristics

Circular dichroism Thermal constancy

Scanning tunnelling microscopy;
Small-angle X-ray scattering Shape heterogeneity, size and size navigation

Atomic force microscopy Shape heterogeneity

4.2.3. Magnetometric Techniques

The magnetic properties of IONPs can be assessed by measuring the magnetization of a
samples when subjected to an externally applied magnetic field H varying from −10,000 Oe to
10,000 Oe, at a defined temperature. The Vibrating Sample Magnetometer (VSM) and Superconducting
Quantum Interference Device (SQUID) are the most common techniques able to measure important
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magnetic parameters of MNPs, such as saturation magnetization, coercive field, and remnant
magnetization [65,66]. To date, these measurements represent an essential characterization step,
because of the interplay between MNPs and the external magnetic fields employed for magnetic-driven
nanocarriers as useful strategies for numerous biomedical applications. In the next section of this
review, the magnetic properties of MNPs and their link with the methods of synthesis are investigated
in more detail.

4.2.4. Magnetic Properties of IONPs

The MNPs design, particularly related to their physical and chemical properties, can be
controlled to fit different biomedical applications, allowing an accurate control of their spatial, temporal,
and dosage distribution [1]. The increasing interest in nanomedicine has aroused a special focus on
fabrication protocols for high-performance IONPs, for obtaining not only the desired physicochemical
properties, such as: Morphology, size, and structure, but also a good biocompatibility [67,68].

As reported in Section 4.1, many methods have been developed for IONPs production allowing
shape, size and structure controlled synthesis [69,70]. The methods most used in the biomedical
field are thermal decomposition of metallic precursors, co-precipitation, and hydrothermal synthesis,
in which pressure and reaction temperature values are critical to control the growth and nucleation of
IONPs from solution [4]. Many researchers successfully applied these methods for IONPs, in order to
obtain nanostructures with various shapes [71,72]. Additionally, efforts have been applied not only
for the synthesis of 0-dimensional IONPs, but also of 1 and 3-dimensional structures, developed via a
microwave-assisted procedure, also showing that sophisticated morphology (i.e., Fe3O4 nanotubes or
elliptical nanorings) has effective magnetic properties [73,74]. In summary, different morphology and
dimensions can be obtained by carefully adjusting the main parameters of the reactions during the
synthesis process such as heating temperature, molar ratio, or concentration of the reactants.

We will examine how IONP physical characteristics could impact on magnetic properties.
The various materials can be classified by different form of magnetic behaviors, based on

their response to an external magnetic field that, at the microscopic level, interacts with atomic
dipoles, causing a measurable macroscopic magnetic moment. Five basic types of magnetism are
known: Diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, and ferrimagnetism.
Ferrimagnetic and ferromagnetic materials are the most interesting ones, exhibiting remarkable
magnetic properties. In particular, ferromagnetic materials show a high magnetization M during the
interaction with the applied field H. The magnetization does not increase indefinitely, but reaches
asymptotically the saturation magnetization Ms. After turning off the external field H a little amount of
residual magnetization, Mr remains and the applied magnetic field required to reduce to zero the
magnetization of the material is called coercive field or coercitivity Hc. This relationship between H
and M is plotted in Figure 6a, showing the magnetic hysteresis loop [75].

The dimension of IONPs, determines the surface-to-volume ratio in turn linked with their
reactivity, also responsible for attraction and agglomeration phenomena. In fact, IONPs magnetism
is dominated by size effects, due to the magnetic domain structure of ferromagnetic material
(i.e., Weiss domain, volume in which all atomic magnetic dipole are aligned). In 1930, Frenkel
and Dorfman suggested the principle of the superparamagnetism theory, stating that ferromagnetic
materials transfer from multi-domains to a single-domain state by particle resizing to nanoscale
(Figure 6b). The existence of a critical size at which the transition to single-domain (i.e., state of
uniform magnetization) occurs is well established in the literature. It happens when the magnetic
energy configuration of multi-domains is no more favorable compared to the single domain: The gain
in energy through the division is less then than the energy of the domain wall. It can be calculated
analytically [76] for a sphere or an infinite cylinder as:

Dc = P [(A Ku)1/2/(µ0 × Ms
2)], (1)
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where Dc is the critical diameter, P is a dimensionless constant depending on the shape (~34 for a
cylinder, ~72 for a sphere), A is the exchange stiffness constant, Ku is the uniaxial anisotropy constant,
µ0 is the magnetic permeability in vacuum, and Ms is the saturation magnetization [66,77]. For real
NPs (1) still approximately holds using a P that is generally in the range 20–80.Materials 2018, 11, x FOR PEER REVIEW  10 of 25 

 

 
Figure 6. Principal features of magnetic material: (a) Hysteresis loop of ferromagnetic and 
ferrimagnetic materials. Critical magnetic parameters: Saturation magnetization (Ms), Coercive field 
(Hc), and Remnant Magnetization (Mr) are shown. (b) Magnetization behavior of ferromagnetic and 
superparamagnetic NPs under an external magnetic field. Domains of a ferromagnetic NP align with 
the applied fields. The magnetic moment of single domain superparamagnetic NPs aligns with the 
applied field. In the absence of an external field, ferromagnetic NPs will maintain a net 
magnetization, whereas superparamagnetic NPs will exhibit no net magnetization due to rapid 
reversal of the magnetic moment. The relationship between NP size, the magnetic domain structures, 
and coercive field is shown. Ds and Dc are the ‘superparamagnetism’ and ‘critical’ size threshold. 
Modified from Reference [77]. 

Decreasing further their size, the IONPs reach the superparamagnetic diameter Ds, showing 
zero coercivity and no hysteresis, due to the thermal effects. In fact, when the external magnetic field 
is switched off, the magnetic domains point at random orientation, with zero resultant. The degree 
of alignment of magnetic moments depends on temperature, it decreases when the temperature 
increases and vanishes beyond a critical temperature, where the magnetization becomes zero. Above 
this critical temperature (i.e., blocking temperature Tb), the characteristics of superparamagnets are 
identical to those of paramagnets with a very high reactivity, i.e., they lose magnetism after the 
removal of the applied field but maintain an extremely large moment during the interaction. In 
general, IONPs, with Fe3O4 as the most magnetic material, can exhibit superparamagnetic properties 
at room temperature when their size is small enough [66], they are generally called 
Superparamagnetic Iron Oxides Nanoparticles (SPIONs) or Ultra-Small Iron Oxides nanoparticles 
(USPIONs), with size >50 nm or <50 nm, respectively [3]. Working with SPIONs in the biomedical 
field is highly recommended, because of their high magnetization response under external field 
interaction and their no zero magnetization behavior without applied field, avoiding the risk of 
agglomeration, and reciprocal attraction [6]. 

Drawing the magnetization curve (M-H curve) for different preparation of IONPs (different 
size, shape, etc.) is useful to study the link between magnetic and physical properties. This is 
generally done by means of VSM or SQUID [66]. High Ms is an important parameter for 
characterizing IONPs, which is typically is measured in emu∙g−1, mainly depends on the chemical 
composition of NPs. Low values of coercive field Hc, measured in Oe, together with the remnant 
magnetization Mr, are other important indicators of emerging superparamagnetic properties. 

Different critical sizes have been investigated for IONPs, but typically the optimal range for 
biological applications is considered around 10–100 nm. For instance, Li and colleagues studied the 

Figure 6. Principal features of magnetic material: (a) Hysteresis loop of ferromagnetic and
ferrimagnetic materials. Critical magnetic parameters: Saturation magnetization (Ms), Coercive field
(Hc), and Remnant Magnetization (Mr) are shown. (b) Magnetization behavior of ferromagnetic and
superparamagnetic NPs under an external magnetic field. Domains of a ferromagnetic NP align with
the applied fields. The magnetic moment of single domain superparamagnetic NPs aligns with the
applied field. In the absence of an external field, ferromagnetic NPs will maintain a net magnetization,
whereas superparamagnetic NPs will exhibit no net magnetization due to rapid reversal of the magnetic
moment. The relationship between NP size, the magnetic domain structures, and coercive field is shown.
Ds and Dc are the ‘superparamagnetism’ and ‘critical’ size threshold. Modified from Reference [77].

Decreasing further their size, the IONPs reach the superparamagnetic diameter Ds, showing zero
coercivity and no hysteresis, due to the thermal effects. In fact, when the external magnetic field is
switched off, the magnetic domains point at random orientation, with zero resultant. The degree of
alignment of magnetic moments depends on temperature, it decreases when the temperature increases
and vanishes beyond a critical temperature, where the magnetization becomes zero. Above this
critical temperature (i.e., blocking temperature Tb), the characteristics of superparamagnets are
identical to those of paramagnets with a very high reactivity, i.e., they lose magnetism after the
removal of the applied field but maintain an extremely large moment during the interaction. In general,
IONPs, with Fe3O4 as the most magnetic material, can exhibit superparamagnetic properties at room
temperature when their size is small enough [66], they are generally called Superparamagnetic Iron
Oxides Nanoparticles (SPIONs) or Ultra-Small Iron Oxides nanoparticles (USPIONs), with size >50 nm
or <50 nm, respectively [3]. Working with SPIONs in the biomedical field is highly recommended,
because of their high magnetization response under external field interaction and their no zero
magnetization behavior without applied field, avoiding the risk of agglomeration, and reciprocal
attraction [6].

Drawing the magnetization curve (M-H curve) for different preparation of IONPs (different size,
shape, etc.) is useful to study the link between magnetic and physical properties. This is generally done
by means of VSM or SQUID [66]. High Ms is an important parameter for characterizing IONPs, which is
typically is measured in emu·g−1, mainly depends on the chemical composition of NPs. Low values of
coercive field Hc, measured in Oe, together with the remnant magnetization Mr, are other important
indicators of emerging superparamagnetic properties.
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Different critical sizes have been investigated for IONPs, but typically the optimal range for
biological applications is considered around 10–100 nm. For instance, Li and colleagues studied
the transition from multi to single-domain, establishing the critical size value (~76 nm) for highly
crystalline cube-Fe3O4 NPs. Additionally, the effect of shape was investigated., revealing higher values
for Hc and Mr values of cubic NPs with respect to the spherical, due to the different orientation of
polycrystalline structure and the consequent spin alignment (Figure 7) [78].
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The effect of size on magnetic properties of Fe3O4 NPs embedded in SiO2 matrix was studied by
Fuentes-Garcia and colleagues, showing that the coercive force becomes zero for a critical size of about
20 nm [79].

In the last few years, many researchers characterized IONPs by their magnetic profile or compared
different materials included in the formulation and structure of IONPs [80–83]. See Table 3 for an
overview of some IONPs synthesis methods, magnetic, and physical properties.

4.2.5. Application to CNS

Focusing on CNS applications, the characterization of IONPs is fundamental to elucidate
phenomena such as interaction with magnetic field and agglomeration. In this context, the main
uses of IONPs are as a contrast agent for Magnetic Resonance Imaging (MRI), as heating sources in
hyperthermia, and as targeted drug-carriers with BBB-crossing capabilities [6]. For example, octapod
SPIONs, characterized by TEM analysis and SQUID, showed a more effective MR contrast effect with
respect to spherical ones, allowing an accurate detection of tumors [72]. This novel strategy could be
useful also for hyperthermia treatment and magnetically guided drug delivery in CNS. Shevtsov and
colleagues studied chitosan-dextran SPIONs for the treatment of glioblastoma, the most devastating
brain cancer [80]. The accumulation of NPs in the tumor cells was evaluated by means of histological
studies and such SPIONs exhibited enhanced properties for the targeted delivery of chemotherapy
and for the delineation of the tumor mass in the brain. Moreover, the synthesis strategy described
in [79] (IONPs stabilized SiO2 matrix) avoided agglomeration phenomena and the characterization by
SQUID revealed an effective magnetic excitation to produce hyperthermia.

Finally, the magnetic properties are critical for the passage of IONPs across the endothelial
monolayer. Static magnetic fields can facilitate the entry of IONPs into the brain side and the proper
delivery of their drug cargo. In addition, alternating magnetic fields can increment BBB permeability
by magnetic heating [6]. In this regard, Kaushik et al. produced NPs of CoFe3O4 for non-invasive
magnetically-guided delivery across BBB in mice. The uniform distribution was evaluated using
in situ TEM and SEM in ultrathin sections of mouse brain, showing minimal agglomeration [77].
This study provides evidence for the great potentiality of the coordinated use of magnetic forces for
nondestructive BBB crossing and the site-specific delivery of therapeutics to treat CNS diseases, such as
Alzheimer’s and brain tumors.
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Table 3. Examples of different types of IONPs.

Type of IONPs Synthesis Method Physicochemical
Properties Magnetometric Properties Reference

Fe3O4
Thermal decomposition

of iron oleate in NaCl
Octapodes;
20–30 nm

Ms = 51–71 emu·g−1

Tb = 240–290 K
(SQUID)

[72]

Fe3O4
Liquid precipitation +

controlled crystal growth
Crystallite Cube;

10–300 nm

Ms = 54.7–84.7 emu·g−1

Dc = 76 nm
(SQUID)

[78]

Fe3O4
in SiO2 matrix

Co-precipitation +
Stober modification

Cubic inverse
spinel structure;

6–17 nm

Ms = 0.001–0.0015 emu
Hc = 24–26 Oe

(SQUID)
[79]

Fe3O4
Thermal decomposition

of iron oleate
Cuboid shape;

7–11 nm

Ms 5 K = 11.96 emu·g−1

Ms 310 K = 11.01 emu·g−1

Tb = 181 K
Hc = 375 Oe (5 K)

(VSM)

[84]

FemOn Precipitation method Spherical shape;
28.8–68.1 nm

Ms = 43.8 emu·g−1

(VSM)
[85]

FemOn-SiO2 Co-precipitation
Irregular

nanoflakes;
98–101 nm

Ms = 11 emu·g−1

(VSM)
[82]

SiO2-FemOn Co-precipitation
Core-shell
structure;

98–101 nm

Ms = 37.2 emu·g−1

(VSM)
[82]

Ms = saturation magnetization; Tb = blocking temperature; Dc = critical size; and Hc = coercivity field.

4.3. Functionalization of IONPs

The most important limitation to drug delivery in the brain is the presence of the BBB, which
virtually inhibit the diffusion of the majority of substances to neurons [6]. IONPs can be used to
overcome this limitation, but attention has to be posed to possible induced neurotoxicity caused by
their oxidation and to mechanisms for enhancing and/or controlling the barrier trespassing [9].
Naked IONPs without coating face many problems such as the aggregation in water, chemical
instability in the air, poor biodegradability in the physiological environment, and non-specific
interaction with serum protein [86]. To prevent iron oxidation and to minimize the direct exposure of
the biological surfaces to IONPs, coating with a biocompatible shell is required. The interaction with
cells and functionalized NPs strongly depends on the inorganic or organic materials used [87] for the
shell creation (Figure 8). The main purposes of surface modification of IONPs are the following:

1. To improve or modify dispersion in tissues;
2. To improve the surface activity;
3. To enhance physicochemical and mechanical properties;
4. To improve biocompatibility.

An example of the second function, relevant for CNS, is the conjugation with positively
charged biomolecules (e.g., peptides or cationic proteins such as albumin) that could facilitate the
internalization of IONPs, loaded with drugs, across the BBB [9].

In this section, the main methods of IONP functionalization are summarized, with a particular
attention to CNS applications [88].

It is worth mentioning that IONPs can be also used to add magnetic properties to other engineered
particles. For example, they have been used to decorate the polymeric shell of nanobubbles [89].
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4.3.1. Ligand Addition

The basic principle of this method is the addition of a ligand molecule to the external surface of
the IONPs without eliminating any preexisting ligand. Many functional groups such as hydroxyl,
carbohydrate, thyol, and phosphonate can bind to the surface of IONPs (Figure 9) [90].
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4.3.2. Ligand Exchange

Ligand exchange is the most commonly used method for controlling the surface properties of
IONPs [91]. The hydrophobic nature of the IONPs can be switched to hydrophilic by ligand exchange [92].
In the ligand exchange a new type of functional group replaces the initial hydrocarbon layer directly.
The new ligand contains two different kinds of functional groups: 1) Functional groups, which can
directly link to the surface of the IONPs tightly by the effect of their chemical bonding; and 2) other
functional groups that help particles dissolve in water solution [91].
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4.3.3. Silica Coating

Silica is the most used compound for surface coating of IONPs to reduce the toxicity [93].
Silica coating is widely applied to the surface functionalization of NPs and also to improve stability
in water and it protects them in an acidic environment [51]. In general, silica coating increases the
particle size and modifies the magnetic properties of IONPs. It helps in binding with the various
ligands at the surface and provides a protective layer for drug molecules and IONP itself [94]. As listed
in Table 4, different methods of silica coating for the IONPs exist. In addition, small molecules such
as dyes, drugs, and even quantum dots can be consolidated into the silica shell during its formation.
Silica surface can be covalently attached to different ligands and biomolecules to target organs via
antibody-antigen recognition [95]. Moreover, silica coating enhances colloidal stability with a relatively
easy regulation of the coating process, and as already stated, it can contribute to reduce the IONPs
toxicity, a particularly critical aspect for all the CNS applications [96].

Table 4. Synthesis methods for silica-coated IONPs.

Synthesis Method Advantage Disadvantage

Stöber method Controllable silica shell and
uniform size, high crystallinity

Lack of understanding of its
kinetics and mechanism

Microemulsion Control of particle size Poor yield, time consuming
Aeresol pyrolysis Hermitically coated Complex experimental condition

Adapted from [11].

4.3.4. Aminosilane Coating

Aminosilane (AmS) coated IONPs are widley used as a multifunctional drug delivery system.
Surface modification of IONPs by AmS can indeed prevent aggregation and allows the addition of
specific functionalities to IONPs [97,98]. As for their biocompatibility, it has been shown that
AmS-coated particles affected cell metabolic activity only at high concentrations (around 200 µg/mL),
while leaving the membrane intact [97]. On the other hand, AmS-IONPs at concentrations above
200 µg/mL have been shown to reduce neuron viability by 50%, both in the presence or absence of a
magnetic field [98].

4.3.5. Polymer Coating

Polymer functionalized IONPs have been extensively investigated for their unique physical and
chemical properties. The polymer-coated iron oxide nanoparticles (PIONPs) are used in various
biomedical applications such as PET imaging or fluorescent imaging (Table 5). Recently, PIONPs have
been used to treat anemia and neurological disorder [99].

Table 5. Common polymers used for functionalized IONPs in biomedical applications.

Polymers Advantage Application Reference

Chitosan Biocompatible, hydrophilic MRI contrast agent,
Drug delivery agent [93]

Dextran Enhance blood circulation,
stabilizes colloidal suspension

MRI contrast agent,
Molecular diagnostic agent [100]

Gelatin Gelling agent,
biocompatible emulsifier Magnetic resonance imaging [101]

Polyethylene glycol Internalization efficiency
of the NPs

Magnetic hyperthermia agent,
MRI theranostics [102,103]

Polyvinyl alcohol Prevents particles coagulation Drug delivery agents,
cytotoxicity studies [104]
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4.3.6. Application to CNS

In recent years, IONPs functionalized by means of different types of coating were investigated for
the treatment of important CNS pathologies. The improvement of biocompatibility with respect to
naked IONPs is a crucial point of their surface modifications. In this regard, silica-coated SPIONs
showed good biocompatibility and an effective magnetic-guided deliverability into the diseased
brain regions [94]. Alternatively, the coating of SPIONs by means of organic materials also provided
high safety levels, allowing a more extensive use of these agents in the current and future CNS
applications. For example, the stability of dextran-SPIONs for MRI application following storage
at different temperatures was monitored in Reference [100], showing good stability and the lack of
agglomeration or sedimentation. Chitosan is another natural polymer used in various CNS application,
such as drug delivery. The main benefit deriving from chitosan coating consists in the support function
it can provide for different type of drugs, without impairing the NP properties. Unfortunately, chitosan
presents also some limitations due to its reduced solubility in water at physiological pH, thus making
chemical changes for improved water-solubility necessary [93]. For this purpose, an interesting
hybrid chitosan-dextran SPION system has been shown to be able to enhance the internalization
inside glioblastoma cells, revealing how new formulations can improve cellular uptake [80]. Similarly,
antibody-conjugated polyethilene glycol-coated IONPs were shown to promote the internalization in
brain tumor cells with a high stability degree when suspended in biological media [102]. Ivask and
colleagues compared uptake and transcytosis of different functionalized SPIONs in an in vitro BBB
model [105]. Overall, these findings point out that polymeric coating is one of the most powerful
strategies for improving the internalization of IONPs by the endothelial cells of the BBB and the
consequent release in the CNS. In particular, dextran, chitosan, and also polyethylene glycol are the
best candidates to study optimized formulations of coated IONPs and improve targeted drug transport
across BBB.

4.4. Toxicity in CNS

As previously mentioned, several IONPs applications for CNS pathologies have been proposed,
but their toxicity for living organism still remains an opened issue. Safety concerns were raised
regarding their application, due to contradictory results about neurotoxicity [6].

It is well established in literature the high complexity of mechanisms that can induce cytotoxicity
after NPs interaction and involve both cellular and molecular pathways. They include physical
damage of membrane, structural changes in cytoskeleton components, defects of transcription
and oxidative damage of DNA, damage of mitochondria, disturbance of lysosome functioning,
generation of reactive oxygen species (ROS), alteration of membrane protein functions, and synthesis of
inflammatory factors and mediators [106]. Nevertheless, a satisfactory understanding of the
interactions with biological systems is still missing. Currently, several studies on their harmful effects
are carried out in various in vitro and in vivo models, in order to investigate the relation between
biocompatibility and NPs or MNPs features [88,93].

Focusing on IONPs, their physicochemical features, such as size, shape, surface charge, and
coatings, determine their cytotoxicity. For example, IONPs of few nanometers (approximatively
<10 nm) are more toxic than larger ones, which cannot enter the nucleus. The dimension of IONPs is
also a significant factor for the biodistribution at body level, affecting the blood circulation time and
the filtration from spleen, liver, or kidneys [106].

In general, IONPs are assumed to be biocompatible, but upon intracellular degradation, IONPs
do release iron ions, influencing iron homeostasis at general body level. Especially, due to the high
vulnerability of CNS for iron imbalance, much work still has to be done to fully understand how
different types of IONPs could affect the brain, BBB (see Figure 10) and what potential adverse effects
on CNS can derive from their exposure [12,107]. This is particularly critical in brain neurodegenerative
processes as iron homeostasis unbalance impact on the evolution of the diseases or could be involved in
the pathogenesis mechanisms [6,108,109]. Yarjanli and colleagues reviewed a large number of studies
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concluding that IONPs, according to their physicochemical properties, can lead to iron accumulation,
oxidative stress, protein aggregation in the neural cells, and may induce neurodegeneration [108].
Additionally, the review of Xie and coworkers evaluated the close links between biocompatibility and
size, concentration, surface properties, morphologies and structures of IONPs, underlining the need of
carefully engineering biocompatible NPs with in vitro study of degradation and cells availability to
ensure in vivo safe metabolization [4].

In vitro experiments aimed at evaluating the effects of IONPs on the CNS, used different cell
models (i.e., human brain microvascular endothelial cells, astrocytes, or neurons cell cultures) [107].
The main indicators for toxicity considered by literature are [110]:

• dose and time-dependent cell viability and/or proliferation;
• production of Reactive Oxygen Species (ROS);
• cell membrane disruptions;
• alteration of mitochondrial activity;
• genotoxicity induction.
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Figure 10. Interference of IONPs with CNS iron homeostasis and its involvement in neurodegeneration
process. (1) IONPs in the bloodstream can alter the permeability of BBB. The integrity of BBB
can be damaged by ROS production and/or inhibition of Occludin-proteins (belonging to tight
junctions proteins TJ); (2) based on their size, surface charge and coating IONPs are subject to the
formation of protein corona around IONPs, leading to opsonization phenomena. This can alter
physicochemical properties of IONPs and/or improve transport across BBB; (3) IONPs can be also
eliminated from blood circulation by means of recognition and uptake by monocytes or other cells of
Mononuclear Phagocytic System; (4) IONPs can cross BBB by means of paracellular or transcellular
mechanism and enter in CNS [6]; (5) according to their size, IONPs can be internalized by pinocytosis
(dimensions < 10 nm) or endocytosis (approximatively larger than 10 nm) into the CNS cells; (6) in the
intracellular environment IONPs are degraded in the acid environment of endosomes (degradation
time depending on IONP size) with consequent release of iron ions in the cytoplasm; astrocytes
are more sensitive to uptake and accumulation of IONPs [111]; (7) in the neurons, after the IONPs
internalization and degradation, iron ions participate to redox cycling taking part to many biological
processes implicated in neurodegeneration and neural damage: (a) Fenton’s reaction with production
of ROS (consequent lipid peroxidation and/or DNA damage); (b) alteration of iron regulation
proteins (responsible for iron transport, uptake and storage); (c) alteration of mitochondrial activity;
(d) accumulation in iron pool; (e) apoptosis; and (f) protein aggregation (e.g., Aβ, α-synuclein) [108].
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Several in vitro assessments of IONPs toxicity in CNS investigate the interconnection between
NPs physicochemical features and glial and neuronal cells activity. SPIONs made of Fe2O3 (diameter
51.88 nm) showed neurotoxic effects in PC12 cell line, in a dose-dependent manner at 60–200 µg/mL,
but not at 10–50 µg/mL [85]. This is in agreement with a proposed cytotoxicity threshold of
100 µg/mL [4]. Moreover, after short and long-term exposure of human brain cells to IONPs,
cytotoxicity and proliferation impairment are proved, also revealing that astrocytes are more vulnerable
than neurons [111,112].

Conversely, Dextran-coated SPIONs (10–50 nm) showed to be safer, did not impair the
hippocampal cell viability at low doses after 24 h of incubation [113], which confirm the positive
effect of the polymeric coating [4,108], as also discussed in Section 4.3.

The majority of neurotoxicity studies on IONPs are performed in 2-dimensional in vitro
cultures [83,85,109,112,113]. There is, however, an increasing interest on co-cultured and 3-dimensional
cells cultures, which are more realistic models with respect to 2D systems [114,115], extended also
to other types of inorganic NPs, such as silica NPs [116]. For instance, brain cells can be cultured to
form spheroids, which allow recreating the 3D-spatial environment of the CNS, in order to test
advantageously and more precisely IONPs toxicity. In summary, the exploration of the impact of
various IONPs on CNS functions and the development of new strategies to test it are a current
research trend running in parallel with the study of iron homeostasis alterations involved in
neurodegenerative disorders.

5. Conclusions and Future Perspectives

Due to their unique physicochemical properties, IONPs are considered as one of the most
promising tools for biomedical applications because of magnetic driving via external field. In particular,
IONPs could be ideal for the physical targeting of CNS, optimizing the crossing of BBB and the drug
delivery into the brain. For this reason, the development of engineered IONPs by means of controllable
synthesis methods and a careful tuning of their properties are in constant progression.

This review provides an up-to-date overview about the possible strategies to successfully design
suitable IONPs able to move from the proof-of-concept level to future clinical settings. The need of
an accurate selection of physicochemical properties, such as size, shape, and structure, adjusting the
parameters of the synthesis process is the first required step. At the same level, the functionalization of
IONPs with different polymers or chemical compound is essential for the improvement of various
biomedical applications in CNS. A deeper investigation on the magnetic characterization of IONPs
is necessary, in order to better understand the interaction of IONPs with the external magnetic
field used as a driving/delivery system. The emergent property of superparamagnetism makes
IONPs appealing nanomaterials, as proved by the large number of current studies focused on the
detailed analysis of magnetic properties, such as saturation magnetization, coercive field, and remnant
magnetization. These parameters are critical for the interplay with the applied magnetic field, allowing
the modulation of magnetic-driven nanocarriers in the biological environment.

Furthermore, special attention must be paid to the assessment of biocompatibility and potential
risk associated with the IONPs exposure. The low toxicity of IONPs is generally assumed, but since
results are often contradictory, further investigation is required, also developing innovative cell models
to test it. This is a crucial point due to the high vulnerability of CNS for iron imbalance, especially in
the alterations of iron homeostasis strongly connected with neurodegenerative disorders.

In conclusion, a challenging aspect is the need of new smart magnetic nanocarriers able to cross
BBB and to reach the brain from bloodstream effectively and safely. For this purpose, the use of an
integrated approach taking into account type, composition, functionalization, and minimization of
toxicity can promote the optimal choice for magnetic-field-directed NPs.



Materials 2019, 12, 465 18 of 24

Author Contributions: Conceptualization, F.A.R., O.A., R.C., C.G., F.D.; methodology, S.A.M.K.A., E.F., F.A.R., I.S.,
M.A., F.D.; data mining, S.A.M.K.A., E.F., I.S., M.A.; writing—original draft preparation, S.M.A.K.A., E.F., F.A.R.,
C.G., F.D.; writing—review and editing, S.A.M.K.A., E.F., F.A.R., I.S., M.A., O.A., R.C., C.G., F.D.; supervision,
C.G., F.D.

Funding: This research was funded by the University of Turin local research 2018 (ex 60%, C.G. and R.C).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

2D 2-Dimension
3D 3-Dimension
AmS AminoSilane
Aβ Amyloid-beta
BBB Blood-Brain-Barrier
CNS Central Nervous System
CTAB cetyltrimethylammonium bromide
DLS Dynamic Light Scattering
DNA DeoxyriboNucleic Acid
FTIR Fourier-Transform Infrared
IONP Iron Oxides Nanoparticle
IR Infrared
MNP Magnetic Nanoparticle
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
NMR Nuclear Magnetic Resonance
NP Nanoparticles
PET Positron Emission Tomography
PIONP Polymer-coated Iron Oxides Nanoparticle
ROS Reactive Oxygen Species
SEM Scanning Electron Microscopy
SPIONs Superparamagnetic Iron Oxides Nanoparticles
SQUID Superconducting Quantum Interference Device
TEM Transmission Electron Microscopy
USPION Ultra-Small Iron Oxides Nanoparticle
VSM Vibrating Sample Magnetometer
W/O Water-in-Oil
XRD X-Ray Diffraction
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power absorption measurements on iron oxide nanoparticles synthesized by thermal decomposition of
Fe(acac)3. J. Magn. Magn. Mater. 2018, 449, 286–296. [CrossRef]

http://dx.doi.org/10.3390/molecules23010009
http://www.ncbi.nlm.nih.gov/pubmed/29267188
http://dx.doi.org/10.1016/bs.irn.2016.06.007
http://www.ncbi.nlm.nih.gov/pubmed/27678178
http://dx.doi.org/10.3109/21691401.2014.982802
http://www.ncbi.nlm.nih.gov/pubmed/25435409
http://dx.doi.org/10.1166/jnn.2014.9213
http://www.ncbi.nlm.nih.gov/pubmed/24730284
http://dx.doi.org/10.3390/nano8090634
http://dx.doi.org/10.3390/nano8100810
http://dx.doi.org/10.2147/IJN.S165675
http://www.ncbi.nlm.nih.gov/pubmed/29780247
http://dx.doi.org/10.1016/j.addr.2009.03.007
http://dx.doi.org/10.2147/NSA.S99986
http://www.ncbi.nlm.nih.gov/pubmed/27578966
http://dx.doi.org/10.1016/j.protcy.2016.05.029
http://dx.doi.org/10.3390/nano8060430
http://www.ncbi.nlm.nih.gov/pubmed/29899262
http://dx.doi.org/10.1016/j.msec.2016.04.093
http://www.ncbi.nlm.nih.gov/pubmed/27287099
http://dx.doi.org/10.3390/polym10010091
http://dx.doi.org/10.1016/j.apt.2018.07.017
http://dx.doi.org/10.1016/j.colsurfb.2018.05.017
http://dx.doi.org/10.1016/j.rinp.2017.07.066
http://dx.doi.org/10.1088/1361-6528/aaae59
http://www.ncbi.nlm.nih.gov/pubmed/29485102
http://dx.doi.org/10.1039/b815548h
http://www.ncbi.nlm.nih.gov/pubmed/19690734
http://dx.doi.org/10.1016/j.partic.2015.09.011
http://dx.doi.org/10.1088/1361-6528/aa5ab0
http://www.ncbi.nlm.nih.gov/pubmed/28192283
http://dx.doi.org/10.1016/j.jmmm.2017.10.053


Materials 2019, 12, 465 20 of 24

27. Grüttner, C.; Müller, K.; Teller, J.; Westphal, F. Synthesis and functionalisation of magnetic nanoparticles for
hyperthermia applications. Int. J. Hyperthermia 2013, 29, 777–789. [CrossRef]

28. Kekalo, K.; Koo, K.; Zeitchick, E.; Baker, I. Microemulsion synthesis of iron core/iron oxide shell magnetic
nanoparticles and their physicochemical properties. Mater. Res. Soc. Symp. Proc. 2012, 1416, 61–66. [CrossRef]

29. López, R.G.; Pineda, M.G.; Hurtado, G.; de León, R.D.; Fernández, S.; Saade, H.; Bueno, D. Chitosan-coated
magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. Int. J. Mol. Sci. 2013,
14, 19636–19650. [CrossRef]

30. Ban, I.; Stergar, J.; Drofenik, M.; Ferk, G.; Makovec, D. Synthesis of chromium-Nickel nanoparticles prepared
by a microemulsion method and mechanical milling. Acta Chim. Slov. 2013, 60, 750–755.

31. Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and
application. Angew. Chem. 2007, 46, 1222–1244. [CrossRef]

32. Wang, Y.; Yang, C.X.; Yan, X.P. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe
for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale 2017, 9,
9049–9055. [CrossRef] [PubMed]

33. Nejati, K.; Zabihi, R. Preparation and magnetic properties of nano size nickel ferrite particles using
hydrothermal method. Chem. Cent. J. 2012, 6, 394. [CrossRef] [PubMed]

34. Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Ammar, S.; Gadri, A. Synthesis, photoluminescence and Magnetic
properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Phys. E
Low-Dimens. Syst. Nanostruct. 2018, 101, 212–219. [CrossRef]
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