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Abstract  

We present a regional synthesis of the structural architecture and tectonic evolution of the Western 

Alpine Ophiolites (WAO), exposed in NW Italy. The WAO represents the remnants of Alpine Tethys 

(Ligurian–Piedmont Ocean, LPO) that opened between Europe and Adria, and developed in four 

stages from Middle Jurassic to Early Cretaceous. Emplacement of gabbroic intrusions into the 

extending lithospheric mantle of Europe–Adria marked the main magmatic event (Stage 1).  

Coalescent shear zones in the fossil upper mantle (UM) form lithospheric-scale detachment faults, 

which led to the exhumation of UM peridotites and gabbros on the seafloor, and extensive 

serpentinization (Stage 2). Detachment faults, and serpentinized peridotites–gabbros in their 

footwalls, represent preserved fossil oceanic core complexes within the WAO. Emplacement of 

ophiolitic breccias and basaltic lava flows marked the syn-extensional phase (Stage 3). Radiolarian 

chert and limestone were deposited unconformably on this syn-extensional volcanic–sedimentary 

sequence, marking the post-extensional phase (Stage 4). Magmatic ages of gabbroic intrusions and 

mafic–felsic dykes, and depositional ages of post–extensional sequences in the WAO constrain the 

timing of the opening of the LPO as the Middle Jurassic (~170-168 Ma), followed by a tectonic 

quiescence stage in the Late Jurassic–Early Cretaceous.  

 

Key words: Western Alpine Ophiolites; mantle exhumation; detachment fault; oceanic core 

complexes; seafloor spreading evolution of ophiolites; Ligurian–Piedmont ocean basin.  

 

  



 
 

 3 

Introduction  

The Western Alpine Ophiolites (WAO) have contributed to the ophiolite concept significantly 

since the 19th Century, wherein the early Alpine geologists described the spatially associated, 

tripartite serpentinite–diabase–chert assemblages in the Alps and Apennines as an “ophiolite”, and 

interpreted them as ocean floor representatives for the deep axial parts of geosynclines (Brongniart, 

1821; Argand, 1911; Steinmann, 1905, 1927; Elter, 1971; Bernoulli et al., 2003). Although the 

definition of a typical ophiolite sequence has changed considerably since these early studies (see 

Dilek 2003 for an overview), careful observations made by the early ophiolite geologists in the 

Western Alps and the Northern Apennines still remain valid. However, the WAO and their time-

equivalent counterparts in the Northern Apennines (Ligurian ophiolites s.s.) are fundamentally 

different from those Penrose–type and subduction–influenced suprasubduction zone (SSZ) 

ophiolites, such as the Troodos (Cyprus), Semail–Oman (Oman), and Mirdita (Albania) massifs in 

terms of their internal structure, igneous stratigraphy, geochemical makeup and inferred 

emplacement mechanisms (Decandia & Elter, 1972; Dilek et al. 1990; Tankut et al., 1998; Dilek & 

Flower, 2003; Dilek et al., 2007; Dilek & Furnes 2009, 2014; Dilek & Thy, 2009; Pearce & Robinson 

2010; Goodenough et al. 2014; Piccardo et al., 2014; Saccani et al., 2015, 2018; Capponi et al., 

2018). The WAO and the Ligurian ophiolites were derived from the oceanic lithosphere of the 

Liguria–Piedmont Ocean, whereas the SSZ ophiolites in the Neotethyan realm to the east were 

originated from the upper plate of a subduction zone within Neotethys (Dilek 2003; Dilek & 

Robinson, 2003; Dilek & Furnes, 2011, and references therein). Therefore, the WAO provide a 

unique opportunity to examine in 4-dimensions the structure and stratigraphy of a fossil, subduction–

unrelated oceanic lithosphere (sensu Dilek & Furnes 2011), and to investigate the seafloor 

spreading tectonics of an embryonic ocean basin.    

In this paper, we present new structural and lithostratigraphic observations from the WAO 

exposed in the Western Alps, synthesize the available geochronological (i.e., U–Pb dating of 

zircons) and biostratigraphical (i.e., radiolarian ages) information on these ophiolites in the extant 
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literature. We also present a comprehensive model for a multi–phase development of the WAO and 

the seafloor spreading evolution of the LPO. Our work in the WAO has focused on a systematic, 

comparative documentation of the internal structure and lithostratigraphy of main ophiolite 

complexes, in which we identified remnants of key stratigraphic unconformities and major oceanic 

shear zones that are reminiscent of those documented for detachment faults from in situ oceanic 

core complexes along the slow-spreading Mid-Atlantic and Southwest Indian Ridges (Karson and 

Dick, 1983; Blackman et al., 1998; Tucholke et al., 1998; Escartin et al., 2003, 2017; Boschi et al., 

2006; Cannat et al., 2006; Ildefonse et al., 2007; Miranda & Dilek, 2010; Bonnemains et al., 2017). 

Using these key structures and their timing of development, we have reconstructed a common 

architecture of the ophiolites that reflects their pre–alpine evolution. The reconstructed structure and 

stratigraphy of the WAO and our interpretation of the evolution of the LPO, involving the seafloor 

spreading of a restricted ocean basin and post-extensional deposition stages, took ~25–30 million 

years between the Middle Jurassic (~170-168 Ma) and the tectonic quiescence in the Late Jurassic - 

Early Cretaceous. 

 

Regional Geology of the Western Alpine Ophiolites  

The Alpine orogenic belt developed as a result of the collision between Adria in the upper 

plate and Europe in the lower plate as the intervening LPO (Alpine Tethys) closed in the Early 

Cenozoic (Dal Piaz et al., 1972; Ricou & Siddans, 1986; Coward & Dietrich 1989; Laubscher 1991; 

Dilek, 2006; Handy et al., 2010). The LPO evolved after the Late Triassic – Early Jurassic rifting 

between these two continents, followed by the Middle to Late Jurassic seafloor spreading. It has 

been widely interpreted as an ocean basin, floored by hyper–extended crust and exhumed 

lithospheric mantle that underwent low degrees of partial melting during slow spreading (Lemoine et 

al., 1987; Michard et al., 1996; Lavier & Manatschal, 2006; Manatschal & Muntener, 2009; Saccani 

et al., 2015). The geochemical makeup of the Western Alpine and coeval Northern Apennine 

ophiolites is well documented in the literature (Piccardo & Guarnieri, 2010, and the references 
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therein). Our study here does not involve this aspect of the WAO, but we have utilized the widely 

accepted petrogenetic interpretations and models for their melt and magmatic evolution. 

It is generally accepted that the subsequent Alpine orogeny included the following tectonic 

stages: (1) Late Cretaceous to Middle Eocene subduction, (2) Late Eocene to Early Oligocene 

continental collision, and (3) Late Oligocene to Neogene deep crust/mantle indentation and 

development of a doubly-verging crustal architecture (Steck & Hunziker, 1984; Platt et al. 1989; 

Polino et al. 1990; Stampfli & Marthaler, 1990; Michard et al., 1996; Rosenbaum & Lister, 2005; 

Dilek, 2006; Butler et al. 2013; Festa et al., 2019). 

Remnants of the LPO (Dal Piaz et al., 2003) contain eclogite-facies (i.e., Zermatt Zone) and 

blueschist-facies tectonic units (i.e., Combin Zone) that mark the suture zone between Europe and 

Adria (Figs. 1A and 1B; Bearth, 1967; Ballèvre et al, 1990; Ballèvre and Merle, 1993; Balestro et al., 

2009; Tartarotti et al., 2017). Some researchers consider the WAO as the remnants of an embryonic 

ocean (Pognante et al., 1986; Lombardo et al., 2002), whereas some others as the lithospheric 

fragments of a magma poor ocean-continent transition zone of the Alpine Neotethys (Froitzheim and 

Manatschal, 1996; Manatschal and Bernoulli, 1999; Manatschal, 2004). 

In the study area (Fig. 2), the WAO are represented by three ophiolite complexes (Monviso - 

MO, Queyras Schistes Lustrés - QU, and Chenaillet - CH), which display different Alpine 

metamorphic overprint and deformation features. The MO is N-S–trending, few km-thick (Fig. 2) and 

extends for ~35 kilometres along strike (Balestro et al., 2018). It is tectonically juxtaposed against 

the Dora Maira Unit, which represents part of the deeply subducted and exhumed continental margin 

of Europe. The MO consists of serpentinite, metagabbro, metabasalt and metasedimentary rocks 

(Lombardo et al., 1978). The general structure of the MO is a manifestation of subduction zone 

deformation and metamorphism (eclogite-facies), and subsequent collision related, W-vergent 

folding and shearing, coeval with blueschist- and greenschist-facies metamorphic re-equilibration 

(Philippot, 1990; Groppo & Castelli, 2010; Angiboust et al., 2012; Balestro et al., 2014; Balestro et 
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al., 2015b). However, the primary lithological units, their contact relationships, and the seafloor 

spreading–related structures are overall well preserved in the MO.   

The QU to the west overlies the MO tectonically (Fig. 2) and consists of three major units (the 

lower, intermediate and upper units of Lagabrielle & Polino, 1988) that were juxtaposed together 

during the continental collision-related alpine–stage shortening, associated with large-scale 

boudinage development and pervasive folding. The QU is made of blocks of serpentinized 

metaperidotites, metamorphosed gabbros and metabasaltic lavas, all of which are embedded in a 

metasedimentary unit (Schistes Lustrés Auct.; Lemoine & Tricart, 1986; Lagabrielle & Polino, 1988; 

Deville et al., 1992). Blocks of these lithologies range in size from a few metres to few kilometres. 

Metasedimentary succession is composed of metabreccia with mafic–ultramafic rock clasts, 

metachert, marble and widespread calcschist (Tricart & Lemoine, 1991; Tricart & Schwartz, 2006). 

Both the blocks and their meta-sedimentary matrix display alpine-stage blueschist metamorphic 

overprint, whose degree decreases structurally up–section within the QU (Vitale Brovarone et al., 

2014). 

The CH in the west constitutes a <1 km–thick thrust sheet, juxtaposed against the QU (Fig. 

2; Lemoine, 1971; Bertrand et al, 1987; Manatschal et al., 2011). It consists of serpentinized 

peridotites intruded by small gabbroic plutons and stocks (up to 200 metres wide) and covered by 

few m–thick, discontinuous layers of clastic sediments derived from an ophiolitic source, and up–to 

400-m-thick basaltic lavas (Caby, 1995; Chalot Pra, 2005). It displays sub-greenschist facies 

metamorphic mineral assemblages and textures, and hence it is the least metamorphosed LPO 

remnant among the WAO (Mével et al., 1978).  

 

 

Internal Structure and Stratigraphy of the Western Alpine Ophiolites 

In this section, we describe and document the intraoceanic (i.e., pre-Alpine) internal structure 

and stratigraphy of the Monviso (MO), Queyras (QU) and Chenaillet (CH) ophiolites, with a focus on 
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their lithological units, contact relationships (intrusive, tectonic, unconformity), and mineral 

assemblages and textures. Primary intra-oceanic features and internal organization are constrained, 

for the first time in this paper, through a correlation of regional-scale stratigraphic unconformities, 

previously recognized in the MO by Balestro et al. (2015b) and Festa et al. (2015). These 

unconformities are defined as primary depositional surfaces; the lack of any deformational structures 

and mylonitic textures associated with them indicates that they do not represent shear zones or fault 

contacts. Unconformities allow us to recognize stratigraphic breaks in the depositional records of 

ocean basin strata (see, e.g., Clari et al., 1995 and reference therein). 

We have identified three major tectonostratigraphic sequences within the WAO, marking 

significant temporal boundaries in the pre–alpine evolution of the LPO. These tectonostratigraphic 

sequences include: serpentinized upper mantle (UM) metaperidotites with mafic to felsic meta-

intrusive rocks, a syn–extensional metavolcanic and metasedimentary succession, and a post–

extensional metasedimentary succession. Extensional mylonitic to cataclastic shear zones with 

talcschist and serpentine schist assemblages make up the top structural horizon of the UM 

metaperidotites, and are hereby interpreted as oceanic detachment faults. The syn–extensional 

metavolcanic and metasedimentary succession with a syn–kinematic ophiolitic metabreccia rests 

directly on these shear zones. The youngest post–extensional sedimentary succession on top 

contains different lithofacies distribution than the other two, older sequences. 

In our descriptions of the lithological units and their ages we use the geological time scale of 

the International Chronostratigraphic Chart by Cohen et al. (2018). 

 

Monviso Ophiolite (MO) 

The MO represents the structurally lowest ophiolite complex within the present-day tectonic 

stack of the WAO (Figs. 2, 3A and 3B), and displays the highest degree of alpine–stage deformation 

and metamorphism among the three ophiolite complexes.  
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Upper mantle peridotites and mafic and felsic intrusions  

The UM metaperidotites in the MO are represented largely by up to 1 kilometre–thick, 

massive serpentinite. Weakly serpentinized domains within this UM sequence consist of 

metalherzolite and metaharzburgite, with strongly deformed porphyroclasts of olivine, orthopyroxene 

and clinopyroxene. Locally preserved lizardite with mesh structures suggests primary ocean floor 

serpentinization, which likely occurred at temperatures below 300°C (Lafay et al., 2013). Massive 

serpentinite outcrops are directly overlain by metres-thick, discontinuous layers of meta-

ophicarbonate (Fig. 3A).  

Metagabbros occur as intrusive bodies in the massive serpentinites (Fig. 3A) and range in 

size from decimetres–thick dykes to 100s of metres–thick and sub-kilometre long stocks and 

plutons. Their emplacement age has been constrained to 163±2 Ma (i.e., middle Callovian–early 

Oxfordian; Rubatto & Hermann, 2003). Gabbroic rocks are composed mainly of Mg- and Al-rich and 

minor Fe and Ti-rich metagabbros. Mg- and Al-rich metagabbro is medium- to coarse-grained, and 

includes augite mostly replaced by Cr-bearing omphacite, plagioclase replaced by clinozoisite and 

albite, and rare chromite and ilmenite. Olivine bearing metagabbro and cumulate metatroctolite are 

locally associated with Mg- and Al-rich metagabbro. Fe- and Ti-rich metagabbro occurs as pods 

within the Mg- and Al-rich metagabbro outcrops (Fig. 3A), and consists of garnet, omphacite, rutile 

and relics of augite. Augite grains show hornblende intergrowths with low δ18O values, produced by 

hydrothermal alteration of gabbro (Rubatto & Angiboust, 2015). Contacts between the massive 

serpentinite and metagabbro are marked by rodingitic reaction rinds, composed of grossular garnet, 

Mg-chlorite, epidote, diopside and vesuvianite. Locally, the lack of pervasive alpine metamorphic 

overprint (Bogatto & Castelli, 1997) indicates that the rodingite forming metasomatic event started as 

part of an in-situ oceanic serpentinization process. 

Massive serpentinite and metagabbro bodies were both intruded by felsic dykes (Fig. 3A). A 

152±2 Ma (i.e., Middle Kimmerdigian to Early Tithonian; see Lombardo et al., 2002) lenticular body 

of Fe-rich metaquartzdiorite (several tens of metres-wide) is also intrusive into an Fe- and Ti-rich 
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metagabbro along sharp, chilled margins.  Metaplagiogranite intrusions in the serpentinite are 

transformed into jadeitite with omphacitite as a result of a late-stage metasomatic overprint 

(Compagnoni et al., 2012). A decimetres–thick meta-albitite dyke in a metabasalt host (Fig. 4A) 

consists of quartz and albite, amphibole and white mica aggregates. These 152±2 Ma felsic dykes 

are the products of a late-stage intraoceanic magmatism. 

The exposed, uppermost surface of the massive serpentinite unit in the MO locally displays 

up to few tens of metres–thick talcschist and serpentine schist (Fig. 4B). Talcschist comprises talc, 

chlorite and amphibole, with minor calcite, magnetite, garnet and apatite, whereas the serpentine 

schist consists mainly of antigorite and magnetite with minor talc and calcite. These schistose rocks 

also include decimetres to metres-long blocks of Fe- and Ti-rich metagabbro (Fig. 3A). Unlike the 

metagabbro bodies within the massive serpentinite, these metagabbro units are devoid of rodingitic 

reaction rims, indicating that their emplacement must have occurred after the main phase of 

intraoceanic serpentinization of the UM peridotites. Some metagabbro blocks are enveloped by up 

to decimetres–thick cataclastic metabreccias, which are composed of the same gabbroic rocks as in 

the blocks. Talcschist and serpentine schist rocks with cataclastically deformed metagabbros, 

forming tectonic breccias, have been interpreted as the products of intraoceanic, pre-alpine 

detachment faulting (i.e., the Baracun Shear Zone of Festa et al., 2015), which involved rock-fluid 

interactions among gabbro intrusions, serpentinite and hydrothermal fluids during the exhumation of 

the lithospheric mantle.  

 

Syn-extensional volcanic and sedimentary sequence 

The massive serpentinite and metagabbros, and the serpentine schist– and talcschist–

bearing shear zone (Fig 3A), are discontinuously overlain by metabasaltic lavas and calcschist with 

metasandstone and metabreccia interlayers (Fig. 3A). Metabasaltic lavas (Fig. 4A) range in 

thickness from tens of metres to several hundreds of metres, and include fine-grained aphyric 

metabasalt, pillow metalavas (up to 1 m in size), and volcanic metabreccia. These mafic metalavas 
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are composed mainly of albite, amphibole, chlorite and epidote with relics of garnet and omphacite. 

Minor amounts of white mica, carbonate and quartz occur in the volcanic metabreccia. Rare 

centimetres thick layers of quartzite (i.e., the very bottom of the post-extensional sequence, see 

below) occur at the top of this volcanic metabreccia. Metabasaltic rocks also occur as decimetres-

thick, fine-grained dykes within the metagabbro bodies. 

Calcschist in the syn-extensional stratigraphic units mainly consists of calcite, quartz, Mg– 

chlorite and Cr–bearing white mica, and contains magnetite pseudomorph after spinel. 

Metasandstone and matrix-supported (sedimentary) metabreccia interlayers (Fig. 4C) within the 

calcschist are made of sub-angular clasts of metagabbro, which consists of omphacite, chlorite, Cr-

bearing white mica and epidote. Metasandstone shows graded-bedding and metabreccia laterally 

grades into metasandstone in some outcrops. Thickness of the calcschist shows significant lateral 

variations, ranging from several centimetres to ~70 metres (Balestro et al., 2015b), and generally 

tapers out towards the sheared horizons of talcschist and serpentine schist of the Baracun Shear 

Zone (Figs. 3A and 3B). 

 

Post-extensional sedimentary sequence  

The ophiolitic units and the syn-extensional cover of the MO are unconformably overlain by 

thin (~several decimetres-thick) horizons of whitish marble that are in turn unconformably overlain by 

several tens of metres-thick calcschist (Fig. 3A). The whitish marble (Fig. 4D) consists of calcite and 

white mica, and it closely resembles the Upper Jurassic–Lower Cretaceous Calpionella Limestone of 

the non-metamorphosed cover of the Internal Ligurian ophiolites in the Northern Apennines (Fig. 

4B). The calcschist contains distinct, few centimetres to several decimetres thick horizons of impure 

marble and quartz schist (Fig. 4B).  

This post–extensional calcschist is devoid of any ophiolite derived detrital material, although 

it unconformably overlies the ophiolite units and the syn-extensional sequence. It mainly contains 

carbonate minerals, quartz and white mica, whereas the quartz schist interlayers include quartz, 
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white mica and chlorite with minor albite and garnet. The age of the post-extensional calcschist was 

interpreted as the Early Cretaceous (Lagabrielle, 1994), based on its correlation with a package of 

similar unmetamorphosed sedimentary rocks (e.g., Palombini Shale) in the Northern Apennines. 

 

Queyras Ophiolite (QU) 

QU is tectonically juxtaposed against the MO to the east, and consists of tectonically sliced 

remnants of ophiolite units and related metasedimentary cover successions (Figs. 5A and 5B). 

Ophiolitic lithologies include serpentinized metaperidotites, metagabbros and metabasalts.  

 

Upper mantle peridotites and mafic-felsic intrusions  

Serpentinized metaperidotites in the QU consist of plagioclase-bearing lherzolite with minor 

harzburgite, dunite and pyroxenite, and locally retain lizardite mesh textures (Schwartz et al., 2013). 

As in the MO, the serpentinized peridotites in the QU are also capped by both massive and sheared 

meta-ophicarbonate horizons, which are locally up to few tens of metres in thickness (Fig. 5A). 

The metaperidotites are intruded by dykes and stocks of metagabbro (Fig. 5A). Gabbroic 

rocks are commonly coarse-grained and rodingitized, and locally display pegmatitic textures. They 

have Mg- and Al-rich compositions and consist of albite, zoisite, chlorite, epidote, Na-bearing 

amphibole, jadeite, garnet and phengite, with relict porphyroclasts of olivine and augite with 

hornblende rims. Locally well preserved mylonitic to flaser textures in the metagabbros represent 

pre-alpine, intra-oceanic deformation fabrics (Lagabrielle, 1987).  

Fe- and Ti-rich metagabbro in the serpentinized metaperidotites is spatially associated with 

Mg- and Al-rich metagabbro bodies (Fig. 5A), and forms up to tens of metres-long lenticular bodies 

or irregular pods. These metagabbros consist mainly of clinopyroxene, widely replaced by 

amphibole and chlorite, and albite, chlorite and epidote pseudomorphs after plagioclase, and 

ilmenite replaced by Fe-oxide and titanite. Felsic meta-intrusive rocks vary from metaleucodiorite to 

meta-albitite, metatrondjemite and metaplagiogranite s.s. (Lombardo & Pognante, 1982; Carpena & 
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Caby, 1984), forming few decimetres-thick dykes. Metamorphic mineral assemblages in these dyke 

rocks include albite, quartz, jadeite and amphibole. Fine-grained, hypabyssal metadolerite locally 

overlies the metagabbro. 

Similar to the MO, up to 20-metres-thick, discontinuous layers of talc and chlorite schist, 

serpentine schist and chloritite (Fig. 6A) occur at the top of massive serpentinites (Fig. 5). These 

rocks locally include blocks of metagabbro (Pinet et al., 1989), and display mylonitic to cataclastic 

shear zones (Lagabrielle et al., 2015). The uppermost part of massive serpentinites also includes 

Cu- and Fe-sulphide mineralization zones, interpreted to be exhalative deposits formed as a result of 

hydrothermal discharge on the seafloor (Giacometti et al., 2014).  

 

Syn-extensional sedimentary and volcanic sequence 

The oldest sedimentary rocks resting directly on the serpentinized metaperidotites, 

metagabbro bodies and shear zones, are laterally discontinuous and consist of few centimetres- to 

several tens of metres-thick layers of polygenic metabreccia and metasandstone (Fig. 5A). These 

rocks are poorly sorted and matrix-supported, and have centimetres scale sub-angular clasts (Fig. 

6B), which are made of metaperidotite, serpentinite, metagabbro and metaflasergabbro, with minor 

occurrences of basaltic, quartz and feldspathic clasts (Tricart & Lemoine, 1983; Le Mer et al., 1986). 

The matrix is composed of very fine-grained carbonate, amphibole, chlorite, epidote, albite and 

antigorite assemblages. These polygenic metabreccia and metasandstone units are locally overlain 

or interfingered with a metabasalt sequence, which consists of metapillow lavas and basaltic 

(monogenic) metabreccias, ranging in thickness from few metres to 200 metres (Fig. 6C). 

Monogenic metabreccia clasts are angular to irregular in shape, up to 30 centimetres–wide, and 

embedded in a matrix of chlorite, albite, epidote, amphibole, white mica and calcite (Lagabrielle & 

Polino, 1985). Fine-grained, decimetre–scale metabasaltic dykes crosscut the serpentinite, 

metagabbro and metaflasergabbro (Lombardo & Pognante, 1982; Tricart & Lemoine, 1983). Locally, 
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metadolerite dykes crosscut the metagabbro and metaflasergabbro units, and a metabreccia unit 

containing doleritic clasts overlies the metagabbro (Saby, 1987; Pinet et al., 1989). 

 

Post-extensional sedimentary sequence 

The ophiolitic units and the syn-extensional metasedimentary and metavolcanic sequences 

of the QU are unconformably overlain by a post-extensional metasedimentary sequence (Fig. 5A). 

The latter starts at the bottom with a Middle to Upper Jurassic metachert unit, which is overlain along 

a regional-scale unconformity by an Upper Jurassic to Lower Cretaceous whitish marble unit (Fig. 

5A).  Discontinuous layers of metachert rest unconformably on meta-ophicarbonate and metabasalt 

(Figs. 5B and 6D), or occur as local intercalations within basaltic metabreccia. The metachert 

consists mainly of quartz and Fe- and Mn-oxides, and may contain in places Middle Bathonian 

(Unitary Association Zone, UAZ 6 of Baumgartner et al., 1995; Cordey & Bailly, 2007), Upper 

Bathonian to Lower Callovian (UAZ 7 of Baumgartner et al., 1995; Schaaf et al., 1985; De Wever et 

al., 1987) and Upper Oxfordian (UAZ 9 of Baumgartner et al., 1995; De Wever & Caby, 1981; De 

Wever & Baumgartner, 1995) radiolarians.  

The overlying whitish marble (Fig. 6E) is up to tens of metres in thickness, and is made of 

calcite and ankerite with minor quartz, amphibole, white mica, Fe-oxides and Fe-sulphide. The age 

of marble is constrained as the Upper Jurassic to Lower Cretaceous (Lemoine et al., 1970), in 

correlation with the Calpionella Limestone of the non-metamorphosed cover of the Internal Ligurian 

ophiolites in the Northern Apennines (Principi et al., 2004). 

The post-extensional succession continues upward with a 100s of metre–thick calcschist 

unit, which comprises three discrete members (Fig. 5A). The lower calcschist member (Replatte 

Formation of Lemoine, 1971) consists of calcite, quartz, white mica and graphite, and its protoliths 

are made of shale and limestone layers. It locally includes blocks of peridotites, reminiscent of 

olistoliths sensu Festa et al. (2016). This lower calcschist member has been correlated with the 
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Lower to Upper Cretaceous Palombini Shale overlying the Internal Ligurian ophiolites in the 

Northern Apennines (Principi et al., 2004). 

The middle member (Fig. 5A) is represented by tens of metres thick black micaschist (Roche 

Noire Formation of Tricart, 1973), which consists mainly of quartz, white mica and graphite. The 

protolith of this micaschist was fine-grained sandstone with organic material, and its correlates well 

with the Val Lavagna Schist Group of the Internal Ligurian Units in the Northern Apennines 

(Lagabrielle, 1994). Black micaschist is transitional upwards into the Gondrand Flysch of Lemoine 

(1971), which consists of alternating layers of calcschist and metasandstone with clasts of granitoid, 

metamorphic and carbonate rocks. These clastic rocks are interpreted as Cenomanian and younger 

deepsea fan deposits, with sediments derived from the European continental margin (Lemoine et al., 

1984; Burroni et al., 2003). This uppermost post-extensional sedimentary unit of the QU shows the 

same stratigraphic position as the Ronco and Canale Formations in the Internal Ligurian Unit 

ophiolites in the Northern Apennines (Pandolfi & Marroni, 1997; Burroni et al., 2003; Elter et al., 

2006). 

 

Chenaillet Ophiolite (CH) 

Among the Western Alpine Ophiolites, the CH is the only unit that escaped alpine-stage 

deformation and metamorphism. Its ophiolite sequence (Figs. 7A and 7B) consists of UM peridotites 

that were intruded by gabbroic stocks and felsic dykes, and overlain by syn-extensional basaltic 

lavas and minor sedimentary rocks (Bertrand et al., 1987; Chalot-Pra, 2005; Manatschal et al., 

2011). Unlike in the MO and QU, a post-extensional sedimentary sequence does not occur in the 

CH. 

 

Upper mantle peridotites and mafic and felsic intrusions  

Upper mantle units in the CH include serpentinized, spinel-bearing harzburgite and lherzolite 

(Fig. 8A), with minor plagioclase-bearing lherzolite, dunite, pyroxenite and wherlite (Chalot Pra et al., 
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2003). Discontinuous layers of ophicarbonate rocks, up to 10-metres-thick, cover these 

serpentinized peridotites. Ophicarbonates are made of clasts of peridotites ranging in size from 

several centimetres to few decimetres in length, and cemented by calcite vein networks (Lafay et al., 

2017).  

Serpentinized peridotites are intruded by stocks and dykes (tens of metres in width) of 

troctolite (Fig. 8B) and Mg- and Al-rich gabbro (Fig. 7A). Gabbroic rocks are coarse-grained, contain 

mainly plagioclase, olivine and clinopyroxene, and show pegmatitic textures. Troctolite and albitite 

dyke rocks have been dated at 165±1 Ma (Li et al., 2013). Mafic intrusive rocks locally show typical 

texture of flasergabbro and were deformed along discrete, ductile shear zones, which display high-

temperature recrystallization mineral assemblages of augite and hornblende, and veins and pods of 

leucodiorite as syn-kinematic partial melting products (Mével et al., 1978; Caby, 1995). These 

leucodiorite veins, which consist of quartz, plagioclase, clinopyroxene and amphibole have been 

dated at 156±3 Ma (Costa & Caby, 2001). Serpentinite and gabbro units are locally crosscut by Fe- 

and Ti-rich gabbro dykes, which are composed of clinopyroxene, amphibole, ilmenite and 

plagioclase (Chalot Pra, 2005; Fig. 7A). Deformed gabbros are also crosscut by 148±2 Ma 

(Tithonian) albitite dykes (Fig. 8A; Costa & Caby, 2001), indicating a renewed phase of felsic 

magmatism following the high-temperature ductile deformation and metamorphism. Albitite has also 

been observed as dykes intrusive into a magmatic breccia consisting of doleritic and basaltic clasts  

(Chapelle, 1990). 

Cataclastic shear zones cap the serpentinite and gabbro units in the CH. Cataclastic gabbro 

consists of angular clasts of gabbro in a matrix of albite, amphibole, chlorite and epidote.  The 

cataclastically deformed serpentinite represents a matrix-supported serpentine gouge (Fig. 8C). 

These cataclastic shear zones have been interpreted to represent a detachment fault (Manatschal et 

al., 2011).  

 

Syn-extensional sedimentary and volcanic sequence 
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The syn-extensional sedimentary and volcanic sequence in the CH locally starts at the 

bottom with a 2-metres-thick, matrix- to clast-supported breccia, overlain by graded sandstone and 

siltstone (Fig. 6). Clasts are irregular to rounded in shape, and are made of serpentinite, gabbro and 

dolerite (Manatschal et al., 2011). Clastic rocks are overlain by a 400-m-thick volcanic sequence, 

which is composed of basaltic pillow lava, pillow breccia and hyaloclastite breccia (Fig. 8D). These 

rocks display MORB geochemical affinities (Chalot Pra, 2005), and are locally interbedded with few 

decimetres to few metres thick, lensoidal interlayers of sandstone, which is made of pyroxene, spinel 

and amphibole grains (Bertrand et al., 1984). Sub-volcanic dolerite occurs as both dykes within the 

underlying serpentinite and gabbro (Fig. 8B), and as hypabyssal bodies and dykes at the bottom and 

within the volcanic sequence (Chalot Pra, 2005).  

 

Development of the LPO oceanic lithosphere 

Our field-based structural and lithostratigraphic observations and the available 

geochronological data indicate various stages in the evolution of the LPO. We examine this 

evolutionary trend in four main stages, which may have partially overlapped in time. The first stage 

was characterized by mafic magmatism and emplacement of gabbroic plutons into the lithospheric 

mantle. We define this stage as the main magmatic event. Chronological constraints are supported, 

where possible, by biostratigraphic ages, which are documented to be comparable to radiometric 

ages (e.g., Bill et al., 2001; Principi et al., 2004; Manatschal et al., 2007 and reference therein).  

The second stage was represented by lithospheric-scale extension and detachment faulting, 

likely aided by thermal weakening related to the emplacement of gabbroic intrusions during the main 

magmatic event. This episode marks the main tectonic event during the ophiolite formation. The 

third stage involved renewed magmatism via the eruption of basaltic lava flows and syn-extensional 

deposition of ophiolitic breccias directly on the previously exhumed, serpentinized peridotites and 

gabbros. The final stage involved post-extensional deposition of radiolarian chert, limestone, 

turbiditic sediments and abyssal clay on a rugged seafloor topography within the ocean basin, 
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shaped by the extensional tectonics. This phase marks a magmatically and tectonically quiet 

episode in the history of the LPO, prior to its closure. We explain these four stages through a 

sequential tectonic model (Figs. 9 and 10).  

 

Stage 1: Main magmatic event 

Gabbroic bodies in the WAO occur as shallow intrusions, which were emplaced at depths of 

~7 to 8 kilometres (Fig. 9A) in the UM peridotites (Chalot Pra et al., 2003; Piccardo et al., 2014) and 

crystallized in ephemeral magma chambers (Costa & Caby, 2001). These intrusions are composed 

of troctolite and Mg- and Al-rich gabbros with minor Fe- and Ti-rich gabbros and felsic differentiates. 

They collectively represent the partial melting products of a lithospheric mantle (Chalot Pra et al., 

2003), which was composed of spinel-bearing lherzolite and harzburgite with minor plagioclase-

bearing lherzolite (Saccani et al., 2015).  

Gabbroic intrusive bodies that are up to several hundreds of metres in thickness occur mainly 

in the footwalls of detachment faults, which are spatially associated with mylonitic to cataclastic 

shear zones (Manatschal & Muntener, 2009; Manatschal et al., 2011; Balestro et al., 2015b, 2018; 

Festa et al., 2015; Lagabrielle et al., 2015). The crystallization ages of these gabbros constrain the 

timing of their emplacement as the Early to Middle Callovian (165±1 Ma; Li et al, 2013) to Early 

Oxfordian (163±2 Ma; Rubatto & Hermann, 2003) in the CH and in the MO, respectively. These 

ages display close temporal relationships with gabbro intrusions in the other WAO ophiolites (165-

164 Ma; Rubatto et al., 1998; Rebay et al., 2018). Crystallization ages of similar gabbro intrusions 

within the UM peridotites in the Northern Apennines ophiolites also range between 165 Ma and 161 

Ma (Tribuzio et al., 2016).  

Radiometric ages from gabbro intrusions in the QU are lacking but biostratigraphic ages of 

radiolarian metachert (i.e., Radiolarites Auct.) layers, which were deposited on the exhumed upper 

mantle peridotites and gabbroic intrusions, provide the minimum ages of their emplacement. In the 

QU, the oldest depositional age of metachert (Middle Bathonian; Cordey & Bailly, 2007) suggests a 
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pre-Middle Bathonian, likely Bajocian, emplacement age of the oldest gabbro intrusions, if we 

consider the time span between their crystallization and exhumation from ~7-8 kilometres at depth 

beneath the seafloor. Taking the base and the top of the Bathonian at 168.3±1.3 Ma and 166.1±1.2 

Ma (Cohen et al., 2013), respectively, we can constrain the timing of the emplacement of gabbro 

intrusions as later than ~167 Ma (middle Bathonian; see also discussion in Cordey & Bailly, 2007). 

Thus, the emplacement of gabbro intrusions in the WAO peridotites appears to have occurred first in 

the QU (170-168 Ma), then in the CH (165±1 Ma) and in the MO (163±2 Ma). This interpretation 

remains valid even when we use different time scales that consider the base and the top of 

Bathonian at 164.0±2 Ma and 160.0±2 Ma (Odin, 1994) or at 166.0+3.8/-5.6 Ma and 160.4+1.1/-0.5 

Ma (Pálfy et al., 2000), respectively. Although more conservatively constrained, a pre-middle 

Bathonian (likely Bajocian) emplacement age of the oldest gabbro intrusions in the QU is still 

younger than the gabbro ages documented from the MO (163±2 Ma).  

 

Stage 2: Lithospheric scale extension and upper mantle exhumation 

Emplacement of gabbro intrusions into the UM peridotites of the WAO was followed by 

widespread extensional deformation and the development of lithospheric-scale detachment faults 

(Fig. 9B; Manatschal et al., 2011; Balestro et al., 2015b; Festa et al., 2015; Lagabrielle et al., 2015). 

Detachment faulting was accompanied by ductile and brittle deformation episodes, and by the 

interplay of magmatic, metamorphic, metasomatic and sedimentary processes (see below), which 

occurred during different stages of UM exhumation. Detachment faulting facilitated progressive 

uplifting and unroofing of “plum pudding” of discrete gabbro bodies embedded within the host 

peridotites, as strain localization concentrated along the margins of these gabbro intrusions. This 

scenario is analogous to those documented from modern, in-situ oceanic core complexes along the 

slow- (Atlantis Massif, Mid-Atlantic Ridge - MAR) and ultraslow-spreading (Atlantis Bank, Southwest 

Indian Ridge - SWIR) mid-ocean ridges (e.g., Cannat, 1993; Karson & Lawrence, 1997; Dilek et al., 
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1998; Tucholke et al., 1998; Boschi et al., 2006; Dick et al., 2008; MacLeod et al., 2009; Miranda & 

Dilek, 2010; Escartin et al., 2017).  

The high-temperature shear zones observed around the QU and CH gabbros indicate that 

extensional shearing occurred at the brittle-ductile transition zone at depths of ~8 km (e.g. 

Manatschal et al., 2011). The associated crystal to plastic deformation developed a mylonitic fabric 

in the gabbros (i.e., flasergabbro) at temperatures of 700° to 800°C (Mevel et al., 1978). Syn-

kinematic partial melting of gabbros at temperatures in excess of 850°C (Caby, 1995) produced 

leucodioritic veins, dated at 156±3 Ma (Costa and Caby, 2001) in the CH. These observations are 

similar to those observed at modern and in-situ oceanic core complexes, where high-temperature 

shear zones evolved into detachment faults in the presence of gabbroic melts (Karson & Dick, 1983; 

Karson, 1998; MacLeod et al., 2002; Escartin et al., 2008; Miranda & Dilek, 2010; Bonnemains et al., 

2017).  

Continued extensional deformation and exhumation were accompanied by cooling and 

metamorphic and metasomatic processes, which produced unique fabrics and mineral assemblages 

in the host peridotites and their gabbroic intrusions. Up to tens of metres-thick horizons of talcschist 

and serpentine schist formed along a 20- to 25-kilometres-long shear zone within the MO (i.e., 

Baracun Shear Zone; see Festa et al., 2015). Shearing and metasomatism were accompanied by 

amphibolite-facies metamorphism, hydrothermal alteration of gabbros, and production of silica-

enriched hydrothermal fluids that interacted with the exhumed ultramafic rocks (Balestro et al., 

2015a). These processes collectively caused extensive talc and chlorite schist formation at 

temperatures ranging between 200°C and 500°C (Bonnemains et al., 2017). Similar occurrences of 

talc and chlorite schist in narrow shear zones (<100 m), characterized by rock softening and strain 

localization, have been reported from low-angle detachment faults in the Atlantis Massif core 

complex along the Mid-Atlantic Ridge (Karson & Lawrence, 1997; Karson et al., 2006; Boschi et al., 

2006). Widespread serpentinization of the peridotites was facilitated by downward propagation of 

fracture networks and played an important role during their exhumation, contributing to the 
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weakening of the UM rocks, as documented in thermal and rheological models and by their 

comparison with non-volcanic rifted margin evolution of Western Iberia (Perez-Guissinye & Reston, 

2000, and references therein). Penetration of seawater in the UM peridotites of the Lanzo Ultramafic 

Massif, which represents a well-preserved remnant of mantle rocks in the WAO (Piccardo et al., 

2014), has been estimated to reach at least 3 km depth (Debret et al., 2013).  

The existence of horizons of ophicarbonate rocks and tectonic breccias along the 

detachment faults indicates that extensional deformation acquired a brittle mode at shallower depths 

(~1-3 km) beneath the seafloor both in the MO and CH (Manatschal et al., 2011; Balestro et al., 

2015b). In the CH, serpentinite brecciation and carbonate precipitation were polyphase events, 

which occurred at temperatures ranging between 110°C and 180°C in the presence of long-lived 

hydrothermal fluid circulations (Lafay et al., 2017). In the MO, exhumation of serpentinized mantle 

rocks and their gabbroic bodies in the footwall of a detachment fault produced submarine debris 

flows (i.e., sedimentary breccia), which were then accumulated in wedge-shaped depocentres above 

this detachment fault that was already exposed on the seafloor (Balestro et al., 2015a). Similar 

debris flow deposits have been described from the QU, where ophiolitic breccias occur (Tricart & 

Lemoine, 1983). In the CH, high-angle normal faults, truncating the previously formed low-angle 

detachment faults (Manatschal et al., 2011) represent the last stage of extensional brittle faulting.  

 

Stage 3: Syn-extensional magmatism and deposition 

Serpentinized peridotites, gabbroic plutons, and the detachment surfaces in the WAO were 

crosscut by doleritic and plagiogranitic dykes and overlain by basaltic pillow and massive lava flows 

(Fig. 9C). In the CH, basaltic lavas are locally intercalated with hyaloclastites (Chalot Pra, 2005), and 

volcanic breccias are locally interbedded with ophiolitic sandstones. These relationships provide 

significant temporal constraints on the timing of detachment faulting and upper mantle exhumation. 

Plagiogranite intrusions have been constrained in age to 152±2 Ma (i.e., Late Kimmerdigian - Early 

Tithonian) in the MO (Lombardo et al., 2002). A similar age (148±2 Ma) was obtained from albitite 
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dykes in the CH (Costa & Caby, 2001). Recent U-Pb zircon dating of gabbro and albitite in the CH 

(Li et al., 2013) revealed a contemporaneous age of 165±1 Ma for both rocks, suggesting 

synchronous emplacement of mafic and felsic intrusions during the main magmatic event. However, 

the occurrence in the CH of albitite dykes crosscutting flasergabbros (Chapelle, 1990) indicates that 

a younger episode of post–detachment felsic magmatism occurred in this ophiolite. This inference is 

compatible with the young ages of plagiogranite intrusions in the MO.  Furthermore, similar volcanic 

and intrusive rocks in the Northern Apennine ophiolites have been also dated to the latest Jurassic 

(i.e., the second magmatic event of Marroni and Pandolfi, 2007). Plagiogranite dykes in the MO 

have been interpreted as the products of fractional crystallization of evolved magmas (Castelli & 

Lombardo, 2007; Furnes & Dilek, 2017), which migrated upwards through the exhumed UM 

peridotites and their gabbroic intrusive bodies during the advanced stages of the seafloor spreading 

evolution of the LPO (Fig. 9C and 10A).  

Radiometric age data from the lavas and felsic intrusions in the QU are lacking. However, the 

existing biostratigraphic ages of radiolarian metachert of the post-extensional sequence 

unconformably overlying the metabasalt, meta-ophicarbonates, serpentinized metaperidotites and 

metagabbros, clearly show that mafic volcanism and felsic dyking in this domain of the LPO must 

have occurred between Middle Bathonian (~167 Ma) and Late Oxfordian (~158-157 Ma). Syn-

extensional magmatism in the QU was temporally associated with the development of detachment 

faults, and was completed by ~157 Ma. This stage of magmatism and deposition continued into 

152±2 Ma in the MO, and possibly until 148±2 Ma in the CH, as constrained by the ages of different 

generations of felsic dykes described earlier. These age relationships between the pre-alpine 

magmatic and structural features in the three ophiolite complexes may suggest that the oceanic 

lithosphere in the QU was already off-axis in the LPO, while detachment faulting, UM exhumation 

and syn-extensional magmatism were ongoing within the MO and CH along a spreading ridge axis 

(Fig. 10A). 
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Basaltic lava flows occupied topographic lows on the exhumed detachment fault surfaces 

(Chalot Pra et al., 2003; Manatschal et al., 2011) and in the hangingwall units of these detachment 

faults in the MO and CH (Balestro et al., 2015b; Figs. 9C and 10B). The hyaloclastite deposits locally 

occurring in the CH may have been produced by gravity flows generated by sub-marine lava flows in 

the hangingwalls of intraoceanic detachment faults, as documented from slow-spreading ridges and 

seamounts (Batiza et al., 1984; Smith & Batiza, 1989; Carey & Shneider, 2011, and references 

therein). Similar spatial relationships between basaltic lavas and detachment faults have been 

reported from the Atlantis Massif and the MARK area (Mid-Atlantic Ridge by the Kane Fracture 

Zone; Blackman et al., 1998; Escartin & Canales, 2011). In the MARK area, high–angle normal 

faults appear to have acted as magma conduits for volcanism, which resulted in the eruption of 

basaltic lavas directly on the exhumed serpentinized peridotites in their footwalls (Dick et al., 2008).  

 

Stage 4: Post-extensional deposition and tectonic quiescence  

The regional unconformity beneath the post-extensional sedimentary sequence (Fig. 9D) 

marks the temporal boundary between lithospheric-scale extension associated with detachment 

faulting and UM exhumation and a period of tectonic quiescence during which mainly pelagic 

deposition took place in and across the LPO (Marroni et al., 2017).  A several 100 metres-thick, 

complete post-extensional metasedimentary sequence (Fig. 9D and 10B) occurs in the QU, covering 

the exhumed serpentinized metaperidotites with gabbroic meta-intrusive bodies, meta-

ophicarbonates, and metabasaltic lavas. The protoliths of metachert, whitish marble, and various 

calcschist units in this sequence correspond to radiolarite, Calpionella Limestone, and a thick 

succession of the Palombini Shale and Val Lavagna Group, respectively (see also, e.g., Lemoine et 

al., 1970; Decandia & Elter, 1972; Lemoine et al., 1984; Lagabrielle, 1994; Burroni et al., 2003). 

Metachert units invariably occur between ophiolitic metabreccias and pillow metalavas below and a 

fine-grained pelagic sequence above, and occupy fault controlled structural lows and baythmetric 

depressions on the palaeo-ocean floor (Fig. 9D and 10B). The overlying whitish marble (stratigraphic 
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and time equivalent of the Calpionella Limestone), which rests directly on both the serpentinized 

metaperidotites and the metachert shows variations in thickness from a metre to 10s of metres 

across the QU. The deposition of the protolith of this marble unit at the Tithonian–Berriasian 

boundary (i.e., between ~152 and 140 Ma) (Principi et al., 2004, and reference therein) marked the 

end of active seafloor spreading and the beginning of a tectonically quiet period in the evolutionary 

history of the LPO (Fig. 10B and 10C). This timing also coincides with widespread deposition of 

carbonaceous and siliciclastic sediments on the continental margins of both Adria and Europe as 

well as in the LPO (Principi et al., 2004). 

Deposition of the thick, Lower to Upper Cretaceous calcschist succession (i.e., Replatte 

Formation, Roche Noire Formation and Gondrand Flysch) above the whitish marble continued in the 

LPO, as thinly bedded marly and calcareous turbidites were mixed with coarse-grained clastic 

sediments (Fig. 10B), sourced from the European continental margin. These depositional features 

are identical to those of non-metamorphosed Internal Ligurian Units in the Northern Apennine 

ophiolites in terms of both their facies (Palombini Shale and Val Lavagna Group) and age (Lower to 

Upper Cretaceous; Burroni et al., 2003; Elter et al., 2006). 

In contrast to the QU, the whitish marble (Calpionella Limestone) at the bottom of the Lower 

Cretaceous calcschist unit (Palombini Shale) in the post-extensional sequence of the MO is very thin 

(~several decimetres only). This observation suggests that the post – extensional sequence in the 

MO may have formed on fault-controlled structural paleo-highs on the seafloor (Figs. 9D and 10B). 

The lack of any mylonitic or cataclastic structures associated with the uncomformities beneath the 

whitish marble and the Lower Cretaceous calcschist implies that these contacts correspond to 

primary depositional surfaces (see Festa et al., 2015 for details). The occurrence of the Lower 

Cretaceous calcschist resting directly on the upper mantle rocks and syn-extensional sedimentary 

rocks (see Balestro et al., 2015b; Festa et al., 2015; Figs. 10B and 10C), indicates nearly 7 to 12 

million years of non-deposition between the timing of the eruption of syn-etensional basalts (~152±2 

Ma) and the deposition of the protolith of this post-extensional calcschist. We, thus, infer, that the 
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extensional deformation and related upper mantle exhumation along and across the detachment 

fault were already terminated by the time of the deposition of the Lower Cretaceous calcschist. This 

time interval of 7–12 m.y. corresponding to the timing of non-deposition coincided with the doming, 

crustal denudation, syn-extensional clastic deposition, and exhumation of an oceanic core complex 

in the MO domain of the LPO (Fig. 10C). 

Modern oceanic core complexes along the MAR form dome-shaped bathymetric highs (up to 

3000 metres) above the seafloor, and display striated and corrugated megamullion surfaces 

(detachment faults) that extend for several tens of kilometres (10 to 40 km) across and over 

hundreds of square kilometres in area (Escartin et al., 2017, and references therein). Some of these 

corrugated detachment surfaces are shown to have accommodated down-dip slips at a rate of 125 

millimetres per year (Yu et al. 2013; Fruh-Green et al. 2017). Syn-extensional basaltic lavas and 

deposits resting on these modern oceanic core complexes along the MAR and SWIR represent 

supradetachment basin products (Blackman et al. 1998; Karson et al., 2006; Escartin & Canales 

2011; Hayman et al., 2011), analogous to their counterparts in continental core complexes (Oner & 

Dilek 2013). 

 

Conclusions 

The results of this study show that the development of the pre-alpine structure and 

stratigraphy of the WAO and the evolution of the LPO involved seafloor spreading of a restricted 

ocean basin between Europe and Adria in a ~25 to 30 million years of time interval from the Middle 

Jurassic (~170-168 Ma) to the Late Jurassic–Early Cretaceous. This seafloor spreading evolution of 

the LPO took place in four main stages that are well defined by tectonic, magmatic and depositional 

features in the rock record of the WAO. Emplacement of gabbro bodies in the upper mantle 

peridotites occurred in the pre-middle Bathonian (i.e. <167 Ma), middle Callovian (i.e., 165±1), and 

late Callovian–early Oxfordian (163±2 Ma) in the QU, CH and MO, respectively, and marked Stage 

1.  Widespread extensional deformation characterized by lithospheric–scale detachment faulting, 
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upper mantle exhumation–denudation, and doming marked Stage 2 in the evolution of the LPO. This 

extensional deformation was initially aided by thermal weakening associated with the emplacement 

of gabbro intrusions. These processes were analogous to to those documented from modern slow- 

(Atlantis Massif, MAR) and ultraslow-spreading (Atlantis Bank, SWIR) ridges (Karson and Lawrence, 

1997; Cannat et al., 2006; Karson et al., 2006; Ildefonse et al., 2007; Miranda & Dilek, 2010). 

Emplacement of basaltic dykes into the exhumed peridotites and gabbroic plutons, and eruption of 

basaltic lavas on these mafic and ultramafic basement rocks occurred during a period of syn-

extensional magmatism, marking Stage 3. This stage also involved the deposition of ophiolitic 

breccias. Serpentinized peridotites with their gabbroic intrusions and the syn–extensional volcanic 

and sedimentary sequences in the WAO were subsequently overlain by pelagic sediments (now 

represented by metachert, white marble and calcschist) during Stage 4, when a tectonic quiescence 

period prevailed within the LPO.   

The WAO display significant structural and magmatic evidence for the seafloor spreading 

evolution of the LPO despite the multi–phase, subduction– and collision–induced deformational and 

metamorphic overprint. Biostratigraphic and geochronological data in different ophiolite complexes in 

the WAO reflect a snapshot view of diachronous development of a slow–spread oceanic lithosphere 

in different domains within a restricted ocean basin. The mode and tempo of the documented 

tectonic, magmatic and depositional processes that shaped the internal structure of the WAO are 

significantly different from those described from modern and ancient suprasubduction zone oceanic 

lithosphere types. Thus, the structural architecture and the evolutional history of the WAO may 

potentially serve as a template for those subduction–unrelated ophiolites, derived from downgoing 

lower oceanic plates during the closure of small ocean basins.  
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Figure 1 – (A) Simplified tectonic map of the Western Alps (modified from Balestro et al., 2015b) 
showing the location of the study area (black rectangle) (CL: Canavese Line; PF: Penninic Front; 
PTF: Padane Thrust Front; SFS: Stura Fault System). (B) Location of the Western Alps within the 
broader Alpine orogenic belt. 
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Figure 2 – Geological map of the study area in the Western Alps, showing the spatial and tectonic 
relationships between the Monviso, Queyras and Chenaillet ophiolites, and the continental margin 
units of Europe (modified from Balestro et al., 2011, 2013, 2018; Kerckhove et al., 1979).  
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Figure 3 – (A) Pre-alpine stratigraphic columnar section of the Monviso ophiolite, depicting the 
lateral and vertical variations in the ophiolite and the overlying sedimentary succession. The sharp 
tectonic contact between the mantle-gabbro rocks and the syn-extensional volcanic and 
sedimentary rocks represent the Baracun Shear Zone (Festa et al. 2015), an intra-oceanic 
detachment fault marked by the occurrence of talcschist and serpentine schist. (B) Representative 
geological cross-section of the present-day structural and geological setting of the Monviso ophiolite 
(cross section profile is shown in Figure 2). 
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Figure 4 – Field images of various lithologies and contact relationships in the Monviso ophiolite: (A) 
Folded meta-albitite (ma) dyke (black line) intrusion in metabasalt (mb) (E of Colle di Sampeyre, 
Long. 7°8’48, Lat. 44°32’18); (B) Talcschist-bearing detachment fault, unconformably overlain 
(dotted yellow line) by post-extensional calcschist with impure marble (m) horizons (Colle del 
Baracun, Long. 7°3’50, Lat. 44°46’32); (C) Close-up image of a syn-extensional metabreccia, 
consisting of gabbroic clasts (black lines) in a coarse-grained mafic matrix (E of Colle del Baracun, 
Long. 7°4’11, Lat. 44°46’26); (D) Overturned primary contact (black arrows) between metabasalt 
and post-extensional whitish marble (SE of Colle di Luca, Long. 7°9’25, Lat. 44°37’24; hammer for 
scale). 
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Figure 5 – (A) Pre-alpine stratigraphic columnar section of the Queyras ophiolite, depicting the 
lateral and vertical variations in the ophiolite and the overlying sedimentary succession. Talc and 
chlorite schist and serpentine schist marking a shear zone (TCS) between the UM peridotites–
gabbros and the syn-extensional lavas and metasediments, interpreted as a low–angle detachment 
fault (see also Lagabrielle et al., 2015). (B) Representative cross section of the present-day 
structural and geological setting of the Queyras ophiolite (cross section profile is shown in Figure 2). 
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Figure 6 – Field images of various lithologies and contact relationships in the Queyras ophiolite: (A) 
The dashed line between the massive serpentinite and talcschist–serpentine schist marks a tectonic 
contact. Talcschist – serpentine schist is part of an extensional shear zone (detachment fault) (E of 
Cialmassa, Long. 7°6’22, Lat. 44°33’19); (B) Close-up photograph of syn-extensional 
metasandstone, consisting of serpentinite clasts (white lines) in a fine-grained carbonate matrix 
(Cialmassa, Long. 7°5’45, Lat. 44°33’34); (C) Close up view of preserved metapillow lavas in the 
syn-extensional volcanic sequence (Mollasco, Long. 6°57’9, Lat. 44°31’46); (D) Overturned primary 
contact between the metabasalt, metachert and whitish marble units (Mollasco, Long. 6°57’9, Lat. 
44°31’46). (E) Primary unconformity contact (black arrows) between the metabasalt unit and the 
post-extensional whitish marble (SE of Bric Bouchet, Long. 7°1’16, Lat. 44°47’58; hammer for 
scale). 
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Figure 7 – (A) Pre-Alpine stratigraphic columnar section of the Chenaillet ophiolite, depicting the 
contact relationships between the UM peridotites, gabbros, various dyke intrusions, basaltic lavas, 
volcanic breccia and syn-extensional sediments (modified after Manatschal et al., 2011). Fault rocks 
(FR) mark the inferred detachment fault (Manatschal et al., 2011). (B) Representative cross section 
of the present-day structural and geological setting of the Chenaillet ophiolite (cross section profile is 
shown in Figure 2). 
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Figure 8 – Field images of various lithologies and contact relationships in the Chenaillet ophiolite: 
(A) Albitite dyke intrusion in a serpentinized peridotite (S of Punta Rascia, Long. 6°46’50, Lat. 
44°55’30; hammer for scale); (B) Close-up view of a dolerite dyke intruded into a Mg-Al gabbro 
(Punta Rascia, Long. 6°46’37, Lat. 44°55’48); (C) Primary contact (dashed white line) between a 
basaltic lava flow on top and a cataclastically deformed serpentinite below. This cataclastic 
serpentinite is part of an extensional shear zone and detachment fault (hammer for scale) (Cima le 
Vert, Long. 6°46’31, Lat. 44°54’41); (D) Basaltic pillow lava flows (W of Cima le Vert, Long. 6°46’26, 
Lat. 44°54’33).  
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Figure 9 – Sequential tectonic diagrams depicting the four main stages of the evolution of the WAO 
emplacement (modified from Ildefonse et al., 2007). (A) Main magmatic event (Stage 1), (B) 
Lithospheric-scale extension and UM exhumation controlled by detachment faulting (Stage 2), (C) 
Syn-extensional volcanism and sedimentation on the exhumed detachment fault and UM peridotites 
(Stage 3). This stage corresponds to the seafloor spreading and oceanic core complex development 
episode along a slow-spreading ridge system within the LPO.  (D) Tectonic quiescence phase and 
deposition of the post-extensional sedimentary sequence (Stage 4).  
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Figure 10 – (A) Interpretative block diagram depicting the inferred palaeogeography of the Ligurian–
Piedmont Ocean and the rifted continental margins of Europe and Adria (modified from Balestro et 
al., 2018; Frontal cross-section modified from Dilek & Furnes, 2011; Piccardo, 2009; Peron-Pinvidic 
& Manatschal, 2009). (B) Simplified reconstruction of the seafloor architecture of the WAO, as 
preserved after the sealing of the post-extensional succession. The sedimentary cover shows lateral 
and vertical variations, passing from a complete succession in the Queyras ophiolite to a reduced 
succession in the Monviso ophiolite. (C) Time chart showing a diachronous development of the 
tectonic quiescence phase (Stage 4), across the WAO and the LPO, as inferred from the timing of 
the main unconformities sealing the exhumed UM rocks (see text for details). Timing of the syn-
extensional magmatism (Stage 3) is also marked for the Monviso ophiolite (red bar). Dashed orange 
bars represent inferred ages. Time scale adopted from Cohen et al. (2013). 

 


