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ABSTRACT 

Land surface temperature (LST) is an important factor in global climate change, vegetation growth, and urban heat 

island (UHI). LST is one of the most important environmental variables measured by satellite remote sensing. Public 

domain data are available from the operational Landsat-8 Thermal Infrared Sensor (TIRS). The present study 

focuses on determining and mapping UHI for the metropolitan city of Turin in Piedmont Italy using Landsat 8 

multitemporal collection dataset from 2013 to 2018. The main purpose of this research is to give an instrument for 

the present urban management and future urban planning in order to increase city resistance and resilience against 

climate change through mitigation and adaptation. Improving green areas using urban forestry can be a way to 

mitigate Summer heat waves and trying to regulate the high demand of energy for cooling buildings. LST has been 

estimated using the Radiative Transfer Equation (RTE) while the LSE (Land Surface Emissivity) according to the 

NDVI Thresholds Method. In the multitemporal collection the UHI has been detected after calculating zonal 

statistics. Surfaces with similar thermal behave have been mapped using an Unsupervised classification (K-means). 

Through the considered years, the analysis has revealed how UHI are very common and persistent in the 

metropolitan Turin area, where vegetation and water content are lower and where there are a high number of 

buildings in concrete and asphalt is widespread. 

Keywords: Landsat 8 TIRS, LST, NDVI, UHI, mapping, mitigation, climate change, urban forestry.  

 

INTRODUCTION 

Land surface temperature (LST) is related to surface energy and water balance, at local through global scales, with 

principal significance for a wide variety of applications, such as climate change, urban climate, the hydrological 

cycle, and vegetation monitoring [1–4]. For these reasons LST represents one of the key climate variables retrievable 

from space-based remote sensing platforms, offering insight into a range of environmental processes and linking 

multiple disciplines across the natural and physical sciences. Apart from being a fundamental variable in quantifying 

elements of the surface energy budget [5], LST has been used to study ocean–atmosphere interactions [6], to track 

global warming and climate change impacts [4,7], as well as being widely used in studies of vegetation monitoring 

[8], drought persistence [9] and urban climate assessments [10]. LST also plays a critical role in linking the water 

and energy cycles through its relationship with surface heat fluxes [11]. Indeed, thermal infrared (TIR) observations 

represent a fundamental element in efforts to map the spatial distribution of evaporation [12] as well as in efforts to 

constrain land surface model simulations [13]. Given the role that LST plays across broad aspects of earth and 

environmental sciences, determining its spatial and temporal variability is of considerable interest [14]. However, 

accurately determining its absolute value, in addition to describing its spatial and temporal development, is 

challenging given that LST varies considerably throughout the diurnal cycle as a function of the surface radiative 

balance, as well as expressing a broad range of spatial and temporal variations due to changing land surface and 

atmospheric conditions [15,16]. The urban heat island (UHI) effect is a phenomenon that the land surface 

temperature in urban areas is apparently higher than that in rural areas [17]. The causes of UHI are diverse, including 

natural factors and human factors, whose root cause is the change of land use. Additionally, the factors such as urban 

configuration, heat release from anthropogenic heat source, atmospheric pollution, geographic location, and climate 

also affect the UHI [18]. With the development of urbanization, urban built-up areas, namely, impervious surfaces, 
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including roads and buildings, instead of green lands and water bodies, are rapidly sprawling and, thus, the city will 

suffer from the UHI effect [19]. Shenzhen, a main financial center in Southern China, increased its urban areas from 

around 3.06% to 39.3% from 1986 to 2005 [20], Hong Kong is a metropolis with a high population density filled 

with high-rise buildings and has a lack of public open spaces in urban areas [21], therefore, the urban areas in 

Shenzhen and Hong Kong suffer from a severe UHI effect. The traditional method for UHI study relies on 

meteorology data derived from urban and rural weather stations. It is difficult to obtain abundant meteorology data 

and impossible to acquire surface meteorology data, aside from dotted meteorology data [22,23]. After the launch 

of the first artificial Earth satellite, Sputnik, in 1957, satellite images have been widely applied in various fields. 

The satellite images with a thermal infrared band, such as the images of Landsat TM, Landsat OLI-TIRS, ASTER 

(Advanced Spaceborne Thermal Emission and Reflection Radiometer) and MODIS (Moderate Resolution Imaging 

Spectroradiometer), can be converted to land surface temperature (LST) to study the UHI. In 1972, Rao firstly 

proposed that remote sensing could be applied to study the UHI and produced a land surface thermal distribution 

graph by the thermal infrared data from satellite images [24,25]. After that, satellite images have been widely used 

to study the LST and UHI. Therefore, various algorithms, such as the mono-window algorithm (MWA), single-

channel method (SCM) and split-window algorithm (SWA) and Radiative Transfer Equation (RTE) were proposed 

for LST estimation. Howard firstly discovered the temperature in the center of London was obviously higher than 

that in its suburbs [26,27]. In China, the LST and land use classification were first applied in Guangzhou, China 

using the Landsat TM data from 1985 to 2000 to compare the correlation between the UHI and land use types, and 

suggested that the urban greening and landscape designs in Guangzhou should consider more about vegetation types, 

namely forest, shrubs, and lawns, to control the UHI [28]. In Canada, the temperature difference among different 

land use types in Toronto on 3 September 2008 using the Landsat TM data discovered that the higher urban 

utilization corresponded to higher UHI intensity [29]. 

In conclusion urban heat island (UHI) effect indicates the higher air and land surface temperature (LST) in urban 

areas in comparison to the surrounding rural area, generated by high levels of near-surface energy emission, solar 

radiation absorption of ground objects and low rates of evapotranspiration (with urban concentrations generating 

modelled and observed changes in regional temperatures [30]. The relationship between landscape pattern and UHI 

becomes globally considerable [31]. A large number of studies considered that the built-up area and bare land 

accelerate the effect of UHI, whereas green space and water reduce the UHI intensity [32]. Furthermore, LST is 

controlled by the complex pattern of landscape composition and configuration [33]. Some researchers have found 

that natural and socio-economic factors simultaneously create certain effects on LST pattern [33]. Landsat 5 TM 

and Landsat 8 OLI thermal infrared data with 120 and 100 m spatial resolutions, respectively, have been utilized for 

local-scale studies of UHI [34]. A variety of algorithms have been developed to retrieve LST from Landsat data, 

such as mono-window algorithm, single-channel algorithm [36], etc. Urban hot spots (UHS), the special urban 

thermal features, experience extreme heat stress mainly developed by man-made activities within a UHI zone [37]. 

So, identifying these UHS for mitigation purpose becomes an important task to maintain the ecological balance 

within a city. Different scholars in different time periods attempted to draw a correlation between LST in UHIs and 

some land use/land cover (LU–LC) indices for different study area [38]. Landsat-8 was successfully launched on 

11 February 2013 and deployed into orbit with two instruments on-board: (1) the Operational Land Imager (OLI) 

with nine spectral bands in the visual (VIS), near infrared (NIR), and the shortwave infrared (SWIR) spectral 

regions, and (2) the Thermal Infrared Sensor (TIRS) with two spectral bands in the LWIR. The spatial resolution of 

TIRS data is 100 m (resampled at 60 m) with a revisit time of 16 days, and as a result, applications are different than 

those of other sensors with coarser spatial resolutions and shorter revisit times. In this paper, the main purpose is to 

give an instrument for the present urban management and future urban planning focusing on determining and 

mapping UHI for the metropolitan city of Turin in Piedmont Italy in order to increase resistance and resilience in 

the study area against climate change through mitigation and adaptation. 

 

STUDY AREA 

The metropolitan area of Turin is located in Piedmont, in the North West of Italy. In this case of study it has been 

analysed an area around 1000 km2 including some of the following municipalities areas: Alpignano, Baldissero 

Torinese, Beinasco, Borgaro, Collegno, Druento, Gerbido, Grugliasco, Mappano, Moncalieri, Nichelino, 

Orbassano, Perosa, Pecetto, Pino torinese, Rivalta Torinese, Rivoli, San Mauro Torinese, Torino, Venaria 

etc…Turin is the capital city of Piedmont and it is one of the most important metropolitan city of Italy. It is located 
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in the Po river basin and it’s surrounded by hills in the South and Alps in the North-West. The latitudinal and 

longitudinal of Turin is 45°04′ N 7°42′ E (WGS84). Geologically, Turin is characterized by Quaternary alluvial and 

lacustrine deposits. The city has an elevation of 200–715 m. The soil is mainly alluvial with clay minerals and 

organic matters with shallow water content. Turin's climate is classified as warm and temperate. Turin is a city with 

a significant rainfall. Even in the driest month there is a lot of rain. Turin is characterized by humid subtropical (Cfa) 

climate according to the Köppen-Geiger system classification [39]. Summer season is hot, while winter season is 

cool and moist. July and August are the hottest months, while December and January are the coldest months. The 

temperature of Turin often is lower to the other metropolitan areas of Piedmont due to the presence of prevailing 

wind from the nearer Val di Susa Valley. Rainfall is convectional (in Spring and Autumn). The mean annual 

temperature varies from -2.5°C to 27.9°C and average annual rainfall is about 850-1000 mm [World Meteorological 

Organisation (United Nations)]. The only area of Turin city is about 130.2 km2. Turin experiences a very high 

density of population (6750.67 persons/km2) [Italian National Institute of Statistics (Italian: Istituto Nazionale di 

Statistica; Istat)]. Tourism, manufacturing in particular cars, food and wine production are the dominant industries 

of Turin. The city is well known for Italian fashion hub and architectural heritage. 

 

 
Figure 1 Area of study (Reference Frame: WGS84 UTM 32N) 
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MATERIALS AND METHODS 

 

Materials 

For this paper, it has been used USGS Landsat 8 Surface Reflectance Tier 1 Collection 

(LANDSAT/LC08/C01/T1_SR/LC08). Each scene has been downloaded from Google Earth Engine [40] clipped 

with the area of interest (AOI), a shape polygon of the metropolitan area of Turin. LST and NDVI were retrieved 

from the following bands: 4 Red {0.64 - 0.67 µm} with GSD 30 m; 5 Near-Infrared {0.85 - 0.88 µm} with GSD 30 

m; 10 TIRS 1 {10.6 - 11.19 µm} with a GSD 100 m resampled at 60 m of the Landsat 8 OLI and TIRS images of 

the metropolitan area of Turin. The images collection used for this research including each EO Landsat 8 data 

acquired over Turin from from 11th April 2013 to 31th December 2018 for a total of six years of observation with a 

revist time of 16 days and acquisition times that corresponding at 10.13 ± 0.15 GMT. The total amount of scene is 

237 images for each bands used including also the pixel quality dataset.  

LST has been resampled at 30 m using the software tool SAGA GIS vers.9.0.0 [41]. USGS Landsat 8 Surface 

Reflectance Tier 1 Collection dataset is atmospherically corrected at surface reflectance. These images contain five 

visible and near-infrared (VNIR) bands and two short-wave infrared (SWIR) bands processed to orthorectified 

surface reflectance, and two thermal infrared (TIR) bands processed to orthorectified brightness temperature. These 

data have been atmospherically corrected by the provider using LaSRC [42] and includes a cloud, shadow, water 

and snow mask produced using CFMASK [42], as well as a per-pixel saturation mask. In order to calculate zonal 

statistics and create maps it has been used also the software QGIS vers. 2.18.00 [43] Even if LST cannot be 

assimilated to air temperature in order to evaluate LST calculation, it has been compared the air temperature with 

LST pixels in correspondence of meteorological stations in green areas and parks and also water basin where 

temperature is not affected to the high absorbance of manmade materials and rocks, and so it can be compared and 

validate with LST. The RMSE calculated during the processing for the entire filtered collection is 1.5°C. In this case 

of study the validation has been conducted using meteorological stations spread on the area of interest. In particular 

10 meteorological stations have been considered, but only three has been used because the others are located in 

areas in which material physical properties do not permitted to link LST with surface air temperature (collected 

following WMO correct procedures). 

 

Proc. of SPIE Vol. 11157  111570O-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 

 

 

 
Fig 2 Meteorological stations distribution in the Metropolitan Turin area (Reference Frame: WGS84 UTM 32N) 

Methods 

The dataset USGS Landsat 8 Surface Reflectance Tier 1 Collection has been use to calculate LST and NDVI from 

band 4-5-10 of the Landsat 8 OLI and TIRS. The thermal infrared band (band 10) for Landsat 8 TIRS image has a 

spatial resolution of 100 m. This thermal band was resampled using the nearest neighbor algorithm [41] with a pixel 

size of 30 m to match the optical bands. 

After creating a multitemporal stack in SAGA GIS [41] the bands 4-5 have been used to calculated NDVI as follow: 

 

Meteorological station (ARPA Piemonte) 

http://www.arpa.piemonte.it/
UTM_X WGS84 UTM_Y WGS84

Baducchi 398146 4979330

Pino Torinese 402746 4988284

Rivoli 381856 4992919

Torino Alenia 390656 4992737

Torino Giardini Reali 397030 4991748

Torino Reiss Romoli 395447 4996309

Torino Vallere 395514 4985692

Torino Via della Consolata 395972 4992235

Venaria Ceronda 392378 4998772

Venaria La Mandria 386790 5003396
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                             NDVI =  
NIR (b5) − RED (b4)

NIR (b5) + RED(b4)
                              (1) 

 

LST was retrieved by Brightness temperature (in Kelvin) already present into the dataset collection. For Landsat 8 

OLI, K1 is 774.89 and K2 is 1321.08.  

The surface emissivity, ε, was estimated using the NDVI thresholds method [44; 45; 46; 47]. The fractional 

vegetation, Fv, of each pixel was determined from the NDVI using the following equation [48]:  

 

                                         Fv = (
NDVI − NDVImin

NDVImax − NDVImin

)
2

                                     (2) 

 

where NDVImin is the minimum NDVI value (0.2) where pixels are considered as bare soil and NDVImax is the 

maximum NDVI value (0.5) where pixels are considered as healthy vegetation.  

dε is the effect of the geometrical distribution of the natural surfaces and internal reflections. For heterogeneous and 

undulating surfaces, the value of dε may be 2% [48]. 

 

                                              dε = (1 − εs)(1 − Fv)Fεv                                           (3) 

 

where εv is vegetation emissivity, εs is soil emissivity, Fv is fractional vegetation and F is a shape factor whose mean 

is 0.55 [44]. 

 

                                             dε = εvFv + εs(1 − Fv) + dε                                       (4) 

 

where ε is emissivity. From Equations (4) and (5), ε may be determined by the following equation: 

 

                                                      ε = 0.004 ∗ Fv + 0.986                                         (5) 

 

With this equation Land Surface emissivities (LSE) has been calculated for all the multitemporal series of 6 years. 

LST in (°C) finally was derived for each image using the following equation [49]: 

 

                                             LST =
TB

1 + [
λσTB

hc
] ∗ lnε 

− 273.15                            (6) 

 

where λ is the effective wavelength (10.9 the mean between 10.6 - 11.19 µm for band 10 in Landsat 8 data), σ is 

Boltzmann constant (1.38 × 10−23 J/K), h is Plank’s constant (6.626 × 10−34 Js), c is the velocity of light in a vacuum 

(2.998 × 10−8 m/sec) and ε is emissivity. 

LST collection has been filtered considering the pixel quality given by the EO Data provider using the software IDL 

ENVI vers. 8.0.0 with a selfmade script algorithm in order to obtain images without clouds [50]. Before starting this 

procedure the total images number of multitemporal series was 237 after the filtering 143, for a total overall 

observation of six years.  
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The LST filtered collection has been used to produce zonal statistics for each pixels through the multitemporal series 

using IDL software in particular: median (m), standard deviation (std) and m*std where: 

 

                                                       𝑚𝑠𝑡𝑑 = 3 ∗ 𝑚 − 𝑠𝑡𝑑                                                   (7) 

 

Median and m*std obtained through the multitemporal series have been subjected to a cluster analysis in order to 

identify areas with similar behave in the SAGA GIS tool [41]. An Unsupervised automatic classification K-Means 

has been realized. It has been identify 8 clusters according to the method Minimum Distance and Hillclimbing 

combined [41] in order to map metropolitan Turin areas. 

UHI and non-UHI were identified by the range of LST determined by the following equations [51] with a diffence 

instead of using mean in thic study it is used the median:  

 

                                                        LST = m + 0.5 ∗ δ                                         (8) 

                                                 0 < LST ≤ m + 0.5 ∗ δ                                         (9)  

 

where m and δ are the median and standard deviation of LST in the study area, respectively. 

In this study, LST statistics maps were used in delineating the UHS in Turin to provide special emphasis for 

continuous monitoring. These UHS (Urban Hot Spot) were delineated by the following equation [52]: 

 

                                                         LST > m + 2 ∗ δ                                           (10) 

Statistics on meteorological data has been realized using the historical dataset of ARPA Piedmont, the Regional 

Agency for Environmental Proctection.  

 

RESULTS 

Before performing any kind of application process, a validation of derived LST is absolutely necessary with in situ 

measurement or with another type of satellite sensor for example MODIS. In the present research, in situ 

measurement data were used to validate the LST values as a reference tool. In order to test the good quality of 

thermal calibration processing each images of the filtered collection LST has been validated with the temperature 

detected by a some meteorological stations. Even if LST is different to air temperature to bypass this it has been 

considerd only the meteorological stations in non-anthropic areas such as buildings, roads etc with a natural area 

with a minimum extent of 10.000 m2 (a pixel thermal Lansat 8). These particular meteo-stations shown in fig. 2 are 

located in green areas with a preminent cover in grass. The performed analysis considering the same time in the data 

acqusition by satellite and meteo-stations, show how in these natural areas LST differ from meteo station with a 

maximum of 1.00°C for all considered data. To sum up the table in fig.3 shows the LST and the air temperature of 

all seasons and the meteorological summer in the six years. 

Meteorological station 
LST (pixel meteo station)  

T(°C) 

Meteo Station 

T (°C) 

LST (pixel meteo station)  

T(°C) 

Meteo Station 

T (°C) 

Baducchi 29.3 28.08 10.8 9.46 

Pino Torinese 25.5 24.74 8.4 9.16 

Rivoli 30.0 28.55 10.1 10.60 

Torino Giardini Reali 30.3 29.84 11.4 11.17 

Venaria La Mandria 26.2 26.03 8.6 7.07 

Mean 28.3 27.45 9.8 9.5 

Standard Deviation 2.02 1.83 1.19 1.42 

Fig.3 Valide LST 
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The decision to map LST median and m*std through 6 yeas depending on the following reason: the median consider 

the LST and the UHI phenomenon during all the seasons while m*std  permitted in these anaylisis on focusing to the 

Meteorological Summer season (from June to August). The following maps produced permitted to observe how 

LST, UHI and UHS are distrubuted in Turin considering all the observation years. The cluster analysis considering 

8 groups, has revealed areas with similar thermal behave as follow: 

 

Cluster Elements Std.Dev. LST (°C) all seasons  

1 30938 0.36 12.9 

2 65906 0.22 12.1 

3 72140 0.21 11.4 

4 71388 0.21 10.7 

5 76341 0.20 10.0 

6 86148 0.19 9.3 

7 60708 0.23 8.6 

8 33472 0.38 7.7 

 

 

Fig.4 LST clusters all seasons considering six years and relative data table (Reference Frame: WGS84 UTM 32N) 
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Cluster Elements Std.Dev. 
LST (°C) all seasons 

Meteorological Summer 

1 6697 1.64 37.2 

2 41028 0.63 34.0 

3 74530 0.45 32.3 

4 80843 0.42 30.8 

5 89042 0.41 29.4 

6 91474 0.41 28.0 

7 67834 0.46 26.5 

8 45593 0.67 24.8 

 

Fig.5 LST clusters meteorological summer seasons considering six years and relative data table (Reference Frame: 

WGS84 UTM 32N) 

 

The intensity of UHI may be defined as the difference.between the average or median temperature of UHI and non 

UHI (according to formula 9). In Turin Metropolitan area, the UHI zones consistently extend from North-East to 

South especially around the city belt where factories and social housing districts are spread. It is interesting to see 

how natural park, tree-lined streets are able to reduce significantly the temperature in the area. 
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Cluster Elements Std.Dev. 
UHI Mean temperature 

(°C) all seasons 

1 33935 0.67 15.5 

2 69389 0.40 14.0 

3 78953 0.37 12.7 

4 78012 0.37 11.4 

5 84326 0.36 10.2 

6 82854 0.36 9.0 

7 52992 0.45 7.6 

8 16580 0.88 5.6 

 

 

Fig.5 UHI clusters all seasons considering six years and relative data table (Reference Frame: WGS84 UTM 32N) 

 

Cluster Elements Std.Dev. 

UHI  Mean 

temperature (°C) 

Meteorological 

Summer 

1 20140 1.14 37.1 

2 63136 0.56 34.8 

3 74259 0.50 33.0 
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4 70798 0.50 31.3 

5 77563 0.47 29.6 

6 86674 0.45 28.0 

7 62288 0.53 26.4 

8 42183 0.73 24.4 

 

 

Fig.6 UHI clusters meteorological summer seasons considering six years and relative data table (Reference Frame: 

WGS84 UTM 32N) 

UHS were more abundant in the built-up industrial areas along the northern and southern parts of Turin due to lack 

of both vegetation and shadows despite the higher albedo of exposed surface. Roadways, power plants, metal roofs, 
parking area and industrial factories are most suitable places for the development of UHS.  

 

Cluster Elements Std.Dev. 
UHS Mean temperature 

(°C) all seasons 

1 29001 1.81 24.3 

2 67664 1.01 20.4 

3 82770 0.90 17.2 

4 85111 0.88 14.1 

5 88826 0.87 11.1 

6 81594 0.92 8.1 

7 47979 1.22 4.7 

8 14096 2.71 -1.0 
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Fig.7 UHS clusters all seasons considering six years and relative data table (Reference Frame: WGS84 UTM 32N) 

 

Cluster Elements Std.Dev. 
UHS Mean temperature (°C) 

Meteorological Summer 

1 34783 1.66 43.7 

2 69728 1.01 39.9 

3 77638 0.94 36.6 

4 76698 0.94 33.4 

5 83260 0.90 30.1 

6 83531 0.92 27.1 

7 53937 1.13 23.7 

8 17466 2.09 18.9 
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Fig.8 UHS clusters meteorological summer seasons considering six years and relative data table (Reference Frame: 

WGS84 UTM 32N) 

Almost all hot spots have a very little or negligible amount of vegetation and water bodies. In general, LST presents 

a positive relationship with urban areas and an inverse relationship with NDVI. Because of this NDVI shows a 

strong negative correlation with LST for the whole city (−0.80) and for the non-UHI (−0.59). This strength becomes 

weaker for UHI (−0.41) this is due to the presence of complexity in landscape composition. Thus, LST–NDVI and 

LST in urban areas both build stronger correlation in large natural landscapes, while it tends to be weaker in small 

built-up areas. 

It is very interesting fact that LST distribution is very closely related to the distribution of NDVI and Urban areas. 

Generally, LST is negatively related to NDVI and positively related to urban areas. But, this relationship may be 

varied due to spatial resolution, latitudinal extension or seasonal variation.  

 

CONCLUSIONS 

Remote sensing has many interesting new applications, especially in the last decade [52,53], in particular in this 

article, Landsat 8 OLI and TIRS data were used to investigate the UHI intensity effect in the metropolitan area of 

Turin in Italy and to interpret the dynamic relationship between LST with LC/LU (Land Use & Land Cover) through 

years. LST mapping has important applications [54-59]. UHI zones were identified through LST. Bare land and 

built-up area are mostly responsible for LST generation. The presence of vegetation and water bodies reduces the 

LST level so urban forestry could rapresent a useful tool in order to regulate thermal exchanges and increasing 

resistance and resilience against summer hate waves. Furthermore, the relationships between LST–NDVI was 

interpreted quantitatively by linear regression analysis at the pixel level. For whole metropolitan area of Turin, LST 

Proc. of SPIE Vol. 11157  111570O-13
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 

 

shows strong negative correlation with NDVI; and strong positive correlation with anthropogenic areas (buildings, 

factories, etc). The relationships become weaker for UHI. It may be due to the presence of more heterogeneous 

landscapes within the built-up area. Also, it has to consider that Summer high temperatures and heat waves are 

usually matched with an increasing demand of energy for cooling in general with a tremendous impact on carbon 

emissions and pollution. In future, many additional research works may be included especially those in planning 

and manage city. Regulating energy exchanges through forestry for example evaluating how to manage smartly UHI 

in function of the seasons and energy consumption. Mapping UHI and LST through years may be a useful tool in 

health care sector. Further studies may concern how to manage humans and animals exposure to heat waves risks. 

In fact, the identification of areas most exposed to thermal extremes may help to well organize and manage health 

care resources and identifying neighborhoods with more vulnerable population. First, LST may be retrieved using 

another method or different spatial resolution. Second, the in situ LST data may be measured with the same overpass 

of satellites for the calibration and validation of LST estimation. Third, apart from linear regression, several new 

statistical methods can be applied to estimate the correlation between LST and different LU–LC indices. Finally, 

ecological evaluation of UHI zones may be analysed with the inclusion of more biophysical parameters. Last, but 

not least UHI can be helpful in energy management. They are useful in Winter while negative in Summer. A good 

strategy to regulate UHI in function of the season, it may be rapresented by planting broadleaves and study their 

contribute in the regulation of energy exchanges and thermal fluxes. At the present only green city and wood 

buildings and new materials may represent good solutions to increase resistance and resilience to heat waves and in 

general climate change effects in anthropic areas. 
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